v8/src/arm/macro-assembler-arm.cc
yurys@chromium.org c4224f09a2 Notify CPU profiler when calling native getters
This change modifies code produced by BaseLoadStubCompiler::GenerateLoadCallback so that instead of calling AccessorGetter direcly it calls InvokeAccessorGetter which changes VM state and calls the actual callback. This way CPU profiler knows which external callback is being executed in this case. Indirect call happens only if CpuProfiler::is_profiling() is true.

This is exactly same change as r15116 with a build fix for test-api.cc

BUG=244580
TBR=danno@chromium.org

Review URL: https://codereview.chromium.org/16858013

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@15135 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-06-13 19:16:35 +00:00

3826 lines
130 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <limits.h> // For LONG_MIN, LONG_MAX.
#include "v8.h"
#if defined(V8_TARGET_ARCH_ARM)
#include "bootstrapper.h"
#include "codegen.h"
#include "debug.h"
#include "runtime.h"
namespace v8 {
namespace internal {
MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
: Assembler(arg_isolate, buffer, size),
generating_stub_(false),
allow_stub_calls_(true),
has_frame_(false) {
if (isolate() != NULL) {
code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
isolate());
}
}
void MacroAssembler::Jump(Register target, Condition cond) {
bx(target, cond);
}
void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
Condition cond) {
mov(ip, Operand(target, rmode));
bx(ip, cond);
}
void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode,
Condition cond) {
ASSERT(!RelocInfo::IsCodeTarget(rmode));
Jump(reinterpret_cast<intptr_t>(target), rmode, cond);
}
void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
Condition cond) {
ASSERT(RelocInfo::IsCodeTarget(rmode));
// 'code' is always generated ARM code, never THUMB code
AllowDeferredHandleDereference embedding_raw_address;
Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
}
int MacroAssembler::CallSize(Register target, Condition cond) {
return kInstrSize;
}
void MacroAssembler::Call(Register target, Condition cond) {
// Block constant pool for the call instruction sequence.
BlockConstPoolScope block_const_pool(this);
Label start;
bind(&start);
blx(target, cond);
ASSERT_EQ(CallSize(target, cond), SizeOfCodeGeneratedSince(&start));
}
int MacroAssembler::CallSize(
Address target, RelocInfo::Mode rmode, Condition cond) {
int size = 2 * kInstrSize;
Instr mov_instr = cond | MOV | LeaveCC;
intptr_t immediate = reinterpret_cast<intptr_t>(target);
if (!Operand(immediate, rmode).is_single_instruction(this, mov_instr)) {
size += kInstrSize;
}
return size;
}
int MacroAssembler::CallSizeNotPredictableCodeSize(
Address target, RelocInfo::Mode rmode, Condition cond) {
int size = 2 * kInstrSize;
Instr mov_instr = cond | MOV | LeaveCC;
intptr_t immediate = reinterpret_cast<intptr_t>(target);
if (!Operand(immediate, rmode).is_single_instruction(NULL, mov_instr)) {
size += kInstrSize;
}
return size;
}
void MacroAssembler::Call(Address target,
RelocInfo::Mode rmode,
Condition cond,
TargetAddressStorageMode mode) {
// Block constant pool for the call instruction sequence.
BlockConstPoolScope block_const_pool(this);
Label start;
bind(&start);
bool old_predictable_code_size = predictable_code_size();
if (mode == NEVER_INLINE_TARGET_ADDRESS) {
set_predictable_code_size(true);
}
// Call sequence on V7 or later may be :
// movw ip, #... @ call address low 16
// movt ip, #... @ call address high 16
// blx ip
// @ return address
// Or for pre-V7 or values that may be back-patched
// to avoid ICache flushes:
// ldr ip, [pc, #...] @ call address
// blx ip
// @ return address
// Statement positions are expected to be recorded when the target
// address is loaded. The mov method will automatically record
// positions when pc is the target, since this is not the case here
// we have to do it explicitly.
positions_recorder()->WriteRecordedPositions();
mov(ip, Operand(reinterpret_cast<int32_t>(target), rmode));
blx(ip, cond);
ASSERT_EQ(CallSize(target, rmode, cond), SizeOfCodeGeneratedSince(&start));
if (mode == NEVER_INLINE_TARGET_ADDRESS) {
set_predictable_code_size(old_predictable_code_size);
}
}
int MacroAssembler::CallSize(Handle<Code> code,
RelocInfo::Mode rmode,
TypeFeedbackId ast_id,
Condition cond) {
AllowDeferredHandleDereference using_raw_address;
return CallSize(reinterpret_cast<Address>(code.location()), rmode, cond);
}
void MacroAssembler::Call(Handle<Code> code,
RelocInfo::Mode rmode,
TypeFeedbackId ast_id,
Condition cond,
TargetAddressStorageMode mode) {
Label start;
bind(&start);
ASSERT(RelocInfo::IsCodeTarget(rmode));
if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
SetRecordedAstId(ast_id);
rmode = RelocInfo::CODE_TARGET_WITH_ID;
}
// 'code' is always generated ARM code, never THUMB code
AllowDeferredHandleDereference embedding_raw_address;
Call(reinterpret_cast<Address>(code.location()), rmode, cond, mode);
}
void MacroAssembler::Ret(Condition cond) {
bx(lr, cond);
}
void MacroAssembler::Drop(int count, Condition cond) {
if (count > 0) {
add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond);
}
}
void MacroAssembler::Ret(int drop, Condition cond) {
Drop(drop, cond);
Ret(cond);
}
void MacroAssembler::Swap(Register reg1,
Register reg2,
Register scratch,
Condition cond) {
if (scratch.is(no_reg)) {
eor(reg1, reg1, Operand(reg2), LeaveCC, cond);
eor(reg2, reg2, Operand(reg1), LeaveCC, cond);
eor(reg1, reg1, Operand(reg2), LeaveCC, cond);
} else {
mov(scratch, reg1, LeaveCC, cond);
mov(reg1, reg2, LeaveCC, cond);
mov(reg2, scratch, LeaveCC, cond);
}
}
void MacroAssembler::Call(Label* target) {
bl(target);
}
void MacroAssembler::Push(Handle<Object> handle) {
mov(ip, Operand(handle));
push(ip);
}
void MacroAssembler::Move(Register dst, Handle<Object> value) {
mov(dst, Operand(value));
}
void MacroAssembler::Move(Register dst, Register src, Condition cond) {
if (!dst.is(src)) {
mov(dst, src, LeaveCC, cond);
}
}
void MacroAssembler::Move(DwVfpRegister dst, DwVfpRegister src) {
if (!dst.is(src)) {
vmov(dst, src);
}
}
void MacroAssembler::And(Register dst, Register src1, const Operand& src2,
Condition cond) {
if (!src2.is_reg() &&
!src2.must_output_reloc_info(this) &&
src2.immediate() == 0) {
mov(dst, Operand::Zero(), LeaveCC, cond);
} else if (!src2.is_single_instruction(this) &&
!src2.must_output_reloc_info(this) &&
CpuFeatures::IsSupported(ARMv7) &&
IsPowerOf2(src2.immediate() + 1)) {
ubfx(dst, src1, 0,
WhichPowerOf2(static_cast<uint32_t>(src2.immediate()) + 1), cond);
} else {
and_(dst, src1, src2, LeaveCC, cond);
}
}
void MacroAssembler::Ubfx(Register dst, Register src1, int lsb, int width,
Condition cond) {
ASSERT(lsb < 32);
if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
and_(dst, src1, Operand(mask), LeaveCC, cond);
if (lsb != 0) {
mov(dst, Operand(dst, LSR, lsb), LeaveCC, cond);
}
} else {
ubfx(dst, src1, lsb, width, cond);
}
}
void MacroAssembler::Sbfx(Register dst, Register src1, int lsb, int width,
Condition cond) {
ASSERT(lsb < 32);
if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
and_(dst, src1, Operand(mask), LeaveCC, cond);
int shift_up = 32 - lsb - width;
int shift_down = lsb + shift_up;
if (shift_up != 0) {
mov(dst, Operand(dst, LSL, shift_up), LeaveCC, cond);
}
if (shift_down != 0) {
mov(dst, Operand(dst, ASR, shift_down), LeaveCC, cond);
}
} else {
sbfx(dst, src1, lsb, width, cond);
}
}
void MacroAssembler::Bfi(Register dst,
Register src,
Register scratch,
int lsb,
int width,
Condition cond) {
ASSERT(0 <= lsb && lsb < 32);
ASSERT(0 <= width && width < 32);
ASSERT(lsb + width < 32);
ASSERT(!scratch.is(dst));
if (width == 0) return;
if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
bic(dst, dst, Operand(mask));
and_(scratch, src, Operand((1 << width) - 1));
mov(scratch, Operand(scratch, LSL, lsb));
orr(dst, dst, scratch);
} else {
bfi(dst, src, lsb, width, cond);
}
}
void MacroAssembler::Bfc(Register dst, Register src, int lsb, int width,
Condition cond) {
ASSERT(lsb < 32);
if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
bic(dst, src, Operand(mask));
} else {
Move(dst, src, cond);
bfc(dst, lsb, width, cond);
}
}
void MacroAssembler::Usat(Register dst, int satpos, const Operand& src,
Condition cond) {
if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
ASSERT(!dst.is(pc) && !src.rm().is(pc));
ASSERT((satpos >= 0) && (satpos <= 31));
// These asserts are required to ensure compatibility with the ARMv7
// implementation.
ASSERT((src.shift_op() == ASR) || (src.shift_op() == LSL));
ASSERT(src.rs().is(no_reg));
Label done;
int satval = (1 << satpos) - 1;
if (cond != al) {
b(NegateCondition(cond), &done); // Skip saturate if !condition.
}
if (!(src.is_reg() && dst.is(src.rm()))) {
mov(dst, src);
}
tst(dst, Operand(~satval));
b(eq, &done);
mov(dst, Operand::Zero(), LeaveCC, mi); // 0 if negative.
mov(dst, Operand(satval), LeaveCC, pl); // satval if positive.
bind(&done);
} else {
usat(dst, satpos, src, cond);
}
}
void MacroAssembler::LoadRoot(Register destination,
Heap::RootListIndex index,
Condition cond) {
if (CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS) &&
!Heap::RootCanBeWrittenAfterInitialization(index) &&
!predictable_code_size()) {
Handle<Object> root(isolate()->heap()->roots_array_start()[index],
isolate());
if (!isolate()->heap()->InNewSpace(*root)) {
// The CPU supports fast immediate values, and this root will never
// change. We will load it as a relocatable immediate value.
mov(destination, Operand(root), LeaveCC, cond);
return;
}
}
ldr(destination, MemOperand(kRootRegister, index << kPointerSizeLog2), cond);
}
void MacroAssembler::StoreRoot(Register source,
Heap::RootListIndex index,
Condition cond) {
str(source, MemOperand(kRootRegister, index << kPointerSizeLog2), cond);
}
void MacroAssembler::LoadHeapObject(Register result,
Handle<HeapObject> object) {
AllowDeferredHandleDereference using_raw_address;
if (isolate()->heap()->InNewSpace(*object)) {
Handle<Cell> cell = isolate()->factory()->NewCell(object);
mov(result, Operand(cell));
ldr(result, FieldMemOperand(result, Cell::kValueOffset));
} else {
mov(result, Operand(object));
}
}
void MacroAssembler::InNewSpace(Register object,
Register scratch,
Condition cond,
Label* branch) {
ASSERT(cond == eq || cond == ne);
and_(scratch, object, Operand(ExternalReference::new_space_mask(isolate())));
cmp(scratch, Operand(ExternalReference::new_space_start(isolate())));
b(cond, branch);
}
void MacroAssembler::RecordWriteField(
Register object,
int offset,
Register value,
Register dst,
LinkRegisterStatus lr_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action,
SmiCheck smi_check) {
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == INLINE_SMI_CHECK) {
JumpIfSmi(value, &done);
}
// Although the object register is tagged, the offset is relative to the start
// of the object, so so offset must be a multiple of kPointerSize.
ASSERT(IsAligned(offset, kPointerSize));
add(dst, object, Operand(offset - kHeapObjectTag));
if (emit_debug_code()) {
Label ok;
tst(dst, Operand((1 << kPointerSizeLog2) - 1));
b(eq, &ok);
stop("Unaligned cell in write barrier");
bind(&ok);
}
RecordWrite(object,
dst,
value,
lr_status,
save_fp,
remembered_set_action,
OMIT_SMI_CHECK);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
mov(value, Operand(BitCast<int32_t>(kZapValue + 4)));
mov(dst, Operand(BitCast<int32_t>(kZapValue + 8)));
}
}
// Will clobber 4 registers: object, address, scratch, ip. The
// register 'object' contains a heap object pointer. The heap object
// tag is shifted away.
void MacroAssembler::RecordWrite(Register object,
Register address,
Register value,
LinkRegisterStatus lr_status,
SaveFPRegsMode fp_mode,
RememberedSetAction remembered_set_action,
SmiCheck smi_check) {
// The compiled code assumes that record write doesn't change the
// context register, so we check that none of the clobbered
// registers are cp.
ASSERT(!address.is(cp) && !value.is(cp));
if (emit_debug_code()) {
ldr(ip, MemOperand(address));
cmp(ip, value);
Check(eq, "Wrong address or value passed to RecordWrite");
}
Label done;
if (smi_check == INLINE_SMI_CHECK) {
JumpIfSmi(value, &done);
}
CheckPageFlag(value,
value, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask,
eq,
&done);
CheckPageFlag(object,
value, // Used as scratch.
MemoryChunk::kPointersFromHereAreInterestingMask,
eq,
&done);
// Record the actual write.
if (lr_status == kLRHasNotBeenSaved) {
push(lr);
}
RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode);
CallStub(&stub);
if (lr_status == kLRHasNotBeenSaved) {
pop(lr);
}
bind(&done);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
mov(address, Operand(BitCast<int32_t>(kZapValue + 12)));
mov(value, Operand(BitCast<int32_t>(kZapValue + 16)));
}
}
void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
Register address,
Register scratch,
SaveFPRegsMode fp_mode,
RememberedSetFinalAction and_then) {
Label done;
if (emit_debug_code()) {
Label ok;
JumpIfNotInNewSpace(object, scratch, &ok);
stop("Remembered set pointer is in new space");
bind(&ok);
}
// Load store buffer top.
ExternalReference store_buffer =
ExternalReference::store_buffer_top(isolate());
mov(ip, Operand(store_buffer));
ldr(scratch, MemOperand(ip));
// Store pointer to buffer and increment buffer top.
str(address, MemOperand(scratch, kPointerSize, PostIndex));
// Write back new top of buffer.
str(scratch, MemOperand(ip));
// Call stub on end of buffer.
// Check for end of buffer.
tst(scratch, Operand(StoreBuffer::kStoreBufferOverflowBit));
if (and_then == kFallThroughAtEnd) {
b(eq, &done);
} else {
ASSERT(and_then == kReturnAtEnd);
Ret(eq);
}
push(lr);
StoreBufferOverflowStub store_buffer_overflow =
StoreBufferOverflowStub(fp_mode);
CallStub(&store_buffer_overflow);
pop(lr);
bind(&done);
if (and_then == kReturnAtEnd) {
Ret();
}
}
// Push and pop all registers that can hold pointers.
void MacroAssembler::PushSafepointRegisters() {
// Safepoints expect a block of contiguous register values starting with r0:
ASSERT(((1 << kNumSafepointSavedRegisters) - 1) == kSafepointSavedRegisters);
// Safepoints expect a block of kNumSafepointRegisters values on the
// stack, so adjust the stack for unsaved registers.
const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
ASSERT(num_unsaved >= 0);
sub(sp, sp, Operand(num_unsaved * kPointerSize));
stm(db_w, sp, kSafepointSavedRegisters);
}
void MacroAssembler::PopSafepointRegisters() {
const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
ldm(ia_w, sp, kSafepointSavedRegisters);
add(sp, sp, Operand(num_unsaved * kPointerSize));
}
void MacroAssembler::PushSafepointRegistersAndDoubles() {
// Number of d-regs not known at snapshot time.
ASSERT(!Serializer::enabled());
PushSafepointRegisters();
sub(sp, sp, Operand(DwVfpRegister::NumAllocatableRegisters() *
kDoubleSize));
for (int i = 0; i < DwVfpRegister::NumAllocatableRegisters(); i++) {
vstr(DwVfpRegister::FromAllocationIndex(i), sp, i * kDoubleSize);
}
}
void MacroAssembler::PopSafepointRegistersAndDoubles() {
// Number of d-regs not known at snapshot time.
ASSERT(!Serializer::enabled());
for (int i = 0; i < DwVfpRegister::NumAllocatableRegisters(); i++) {
vldr(DwVfpRegister::FromAllocationIndex(i), sp, i * kDoubleSize);
}
add(sp, sp, Operand(DwVfpRegister::NumAllocatableRegisters() *
kDoubleSize));
PopSafepointRegisters();
}
void MacroAssembler::StoreToSafepointRegistersAndDoublesSlot(Register src,
Register dst) {
str(src, SafepointRegistersAndDoublesSlot(dst));
}
void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
str(src, SafepointRegisterSlot(dst));
}
void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
ldr(dst, SafepointRegisterSlot(src));
}
int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
// The registers are pushed starting with the highest encoding,
// which means that lowest encodings are closest to the stack pointer.
ASSERT(reg_code >= 0 && reg_code < kNumSafepointRegisters);
return reg_code;
}
MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
}
MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
// Number of d-regs not known at snapshot time.
ASSERT(!Serializer::enabled());
// General purpose registers are pushed last on the stack.
int doubles_size = DwVfpRegister::NumAllocatableRegisters() * kDoubleSize;
int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
return MemOperand(sp, doubles_size + register_offset);
}
void MacroAssembler::Ldrd(Register dst1, Register dst2,
const MemOperand& src, Condition cond) {
ASSERT(src.rm().is(no_reg));
ASSERT(!dst1.is(lr)); // r14.
// V8 does not use this addressing mode, so the fallback code
// below doesn't support it yet.
ASSERT((src.am() != PreIndex) && (src.am() != NegPreIndex));
// Generate two ldr instructions if ldrd is not available.
if (CpuFeatures::IsSupported(ARMv7) && !predictable_code_size() &&
(dst1.code() % 2 == 0) && (dst1.code() + 1 == dst2.code())) {
CpuFeatureScope scope(this, ARMv7);
ldrd(dst1, dst2, src, cond);
} else {
if ((src.am() == Offset) || (src.am() == NegOffset)) {
MemOperand src2(src);
src2.set_offset(src2.offset() + 4);
if (dst1.is(src.rn())) {
ldr(dst2, src2, cond);
ldr(dst1, src, cond);
} else {
ldr(dst1, src, cond);
ldr(dst2, src2, cond);
}
} else { // PostIndex or NegPostIndex.
ASSERT((src.am() == PostIndex) || (src.am() == NegPostIndex));
if (dst1.is(src.rn())) {
ldr(dst2, MemOperand(src.rn(), 4, Offset), cond);
ldr(dst1, src, cond);
} else {
MemOperand src2(src);
src2.set_offset(src2.offset() - 4);
ldr(dst1, MemOperand(src.rn(), 4, PostIndex), cond);
ldr(dst2, src2, cond);
}
}
}
}
void MacroAssembler::Strd(Register src1, Register src2,
const MemOperand& dst, Condition cond) {
ASSERT(dst.rm().is(no_reg));
ASSERT(!src1.is(lr)); // r14.
// V8 does not use this addressing mode, so the fallback code
// below doesn't support it yet.
ASSERT((dst.am() != PreIndex) && (dst.am() != NegPreIndex));
// Generate two str instructions if strd is not available.
if (CpuFeatures::IsSupported(ARMv7) && !predictable_code_size() &&
(src1.code() % 2 == 0) && (src1.code() + 1 == src2.code())) {
CpuFeatureScope scope(this, ARMv7);
strd(src1, src2, dst, cond);
} else {
MemOperand dst2(dst);
if ((dst.am() == Offset) || (dst.am() == NegOffset)) {
dst2.set_offset(dst2.offset() + 4);
str(src1, dst, cond);
str(src2, dst2, cond);
} else { // PostIndex or NegPostIndex.
ASSERT((dst.am() == PostIndex) || (dst.am() == NegPostIndex));
dst2.set_offset(dst2.offset() - 4);
str(src1, MemOperand(dst.rn(), 4, PostIndex), cond);
str(src2, dst2, cond);
}
}
}
void MacroAssembler::VFPEnsureFPSCRState(Register scratch) {
// If needed, restore wanted bits of FPSCR.
Label fpscr_done;
vmrs(scratch);
tst(scratch, Operand(kVFPDefaultNaNModeControlBit));
b(ne, &fpscr_done);
orr(scratch, scratch, Operand(kVFPDefaultNaNModeControlBit));
vmsr(scratch);
bind(&fpscr_done);
}
void MacroAssembler::VFPCanonicalizeNaN(const DwVfpRegister value,
const Condition cond) {
vsub(value, value, kDoubleRegZero, cond);
}
void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
const DwVfpRegister src2,
const Condition cond) {
// Compare and move FPSCR flags to the normal condition flags.
VFPCompareAndLoadFlags(src1, src2, pc, cond);
}
void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
const double src2,
const Condition cond) {
// Compare and move FPSCR flags to the normal condition flags.
VFPCompareAndLoadFlags(src1, src2, pc, cond);
}
void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
const DwVfpRegister src2,
const Register fpscr_flags,
const Condition cond) {
// Compare and load FPSCR.
vcmp(src1, src2, cond);
vmrs(fpscr_flags, cond);
}
void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
const double src2,
const Register fpscr_flags,
const Condition cond) {
// Compare and load FPSCR.
vcmp(src1, src2, cond);
vmrs(fpscr_flags, cond);
}
void MacroAssembler::Vmov(const DwVfpRegister dst,
const double imm,
const Register scratch) {
static const DoubleRepresentation minus_zero(-0.0);
static const DoubleRepresentation zero(0.0);
DoubleRepresentation value(imm);
// Handle special values first.
if (value.bits == zero.bits) {
vmov(dst, kDoubleRegZero);
} else if (value.bits == minus_zero.bits) {
vneg(dst, kDoubleRegZero);
} else {
vmov(dst, imm, scratch);
}
}
void MacroAssembler::ConvertNumberToInt32(Register object,
Register dst,
Register heap_number_map,
Register scratch1,
Register scratch2,
Register scratch3,
DwVfpRegister double_scratch1,
DwVfpRegister double_scratch2,
Label* not_number) {
Label done;
UntagAndJumpIfSmi(dst, object, &done);
JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
vldr(double_scratch1, FieldMemOperand(object, HeapNumber::kValueOffset));
ECMAToInt32(dst, double_scratch1,
scratch1, scratch2, scratch3, double_scratch2);
bind(&done);
}
void MacroAssembler::LoadNumber(Register object,
DwVfpRegister dst,
Register heap_number_map,
Register scratch,
Label* not_number) {
Label is_smi, done;
UntagAndJumpIfSmi(scratch, object, &is_smi);
JumpIfNotHeapNumber(object, heap_number_map, scratch, not_number);
vldr(dst, FieldMemOperand(object, HeapNumber::kValueOffset));
b(&done);
// Handle loading a double from a smi.
bind(&is_smi);
vmov(dst.high(), scratch);
vcvt_f64_s32(dst, dst.high());
bind(&done);
}
void MacroAssembler::LoadNumberAsInt32Double(Register object,
DwVfpRegister double_dst,
Register heap_number_map,
Register scratch,
DwVfpRegister double_scratch,
Label* not_int32) {
ASSERT(!scratch.is(object));
ASSERT(!heap_number_map.is(object) && !heap_number_map.is(scratch));
Label done, obj_is_not_smi;
UntagAndJumpIfNotSmi(scratch, object, &obj_is_not_smi);
vmov(double_scratch.low(), scratch);
vcvt_f64_s32(double_dst, double_scratch.low());
b(&done);
bind(&obj_is_not_smi);
JumpIfNotHeapNumber(object, heap_number_map, scratch, not_int32);
// Load the number.
// Load the double value.
vldr(double_dst, FieldMemOperand(object, HeapNumber::kValueOffset));
TestDoubleIsInt32(double_dst, double_scratch);
// Jump to not_int32 if the operation did not succeed.
b(ne, not_int32);
bind(&done);
}
void MacroAssembler::LoadNumberAsInt32(Register object,
Register dst,
Register heap_number_map,
Register scratch,
DwVfpRegister double_scratch0,
DwVfpRegister double_scratch1,
Label* not_int32) {
ASSERT(!dst.is(object));
ASSERT(!scratch.is(object));
Label done, maybe_undefined;
UntagAndJumpIfSmi(dst, object, &done);
JumpIfNotHeapNumber(object, heap_number_map, scratch, &maybe_undefined);
// Object is a heap number.
// Convert the floating point value to a 32-bit integer.
// Load the double value.
vldr(double_scratch0, FieldMemOperand(object, HeapNumber::kValueOffset));
TryDoubleToInt32Exact(dst, double_scratch0, double_scratch1);
// Jump to not_int32 if the operation did not succeed.
b(ne, not_int32);
b(&done);
bind(&maybe_undefined);
CompareRoot(object, Heap::kUndefinedValueRootIndex);
b(ne, not_int32);
// |undefined| is truncated to 0.
mov(dst, Operand(Smi::FromInt(0)));
// Fall through.
bind(&done);
}
void MacroAssembler::EnterFrame(StackFrame::Type type) {
// r0-r3: preserved
stm(db_w, sp, cp.bit() | fp.bit() | lr.bit());
mov(ip, Operand(Smi::FromInt(type)));
push(ip);
mov(ip, Operand(CodeObject()));
push(ip);
add(fp, sp, Operand(3 * kPointerSize)); // Adjust FP to point to saved FP.
}
void MacroAssembler::LeaveFrame(StackFrame::Type type) {
// r0: preserved
// r1: preserved
// r2: preserved
// Drop the execution stack down to the frame pointer and restore
// the caller frame pointer and return address.
mov(sp, fp);
ldm(ia_w, sp, fp.bit() | lr.bit());
}
void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space) {
// Set up the frame structure on the stack.
ASSERT_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement);
ASSERT_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset);
ASSERT_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset);
Push(lr, fp);
mov(fp, Operand(sp)); // Set up new frame pointer.
// Reserve room for saved entry sp and code object.
sub(sp, sp, Operand(2 * kPointerSize));
if (emit_debug_code()) {
mov(ip, Operand::Zero());
str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset));
}
mov(ip, Operand(CodeObject()));
str(ip, MemOperand(fp, ExitFrameConstants::kCodeOffset));
// Save the frame pointer and the context in top.
mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
str(fp, MemOperand(ip));
mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
str(cp, MemOperand(ip));
// Optionally save all double registers.
if (save_doubles) {
SaveFPRegs(sp, ip);
// Note that d0 will be accessible at
// fp - 2 * kPointerSize - DwVfpRegister::kMaxNumRegisters * kDoubleSize,
// since the sp slot and code slot were pushed after the fp.
}
// Reserve place for the return address and stack space and align the frame
// preparing for calling the runtime function.
const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
sub(sp, sp, Operand((stack_space + 1) * kPointerSize));
if (frame_alignment > 0) {
ASSERT(IsPowerOf2(frame_alignment));
and_(sp, sp, Operand(-frame_alignment));
}
// Set the exit frame sp value to point just before the return address
// location.
add(ip, sp, Operand(kPointerSize));
str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset));
}
void MacroAssembler::InitializeNewString(Register string,
Register length,
Heap::RootListIndex map_index,
Register scratch1,
Register scratch2) {
SmiTag(scratch1, length);
LoadRoot(scratch2, map_index);
str(scratch1, FieldMemOperand(string, String::kLengthOffset));
mov(scratch1, Operand(String::kEmptyHashField));
str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
str(scratch1, FieldMemOperand(string, String::kHashFieldOffset));
}
int MacroAssembler::ActivationFrameAlignment() {
#if defined(V8_HOST_ARCH_ARM)
// Running on the real platform. Use the alignment as mandated by the local
// environment.
// Note: This will break if we ever start generating snapshots on one ARM
// platform for another ARM platform with a different alignment.
return OS::ActivationFrameAlignment();
#else // defined(V8_HOST_ARCH_ARM)
// If we are using the simulator then we should always align to the expected
// alignment. As the simulator is used to generate snapshots we do not know
// if the target platform will need alignment, so this is controlled from a
// flag.
return FLAG_sim_stack_alignment;
#endif // defined(V8_HOST_ARCH_ARM)
}
void MacroAssembler::LeaveExitFrame(bool save_doubles,
Register argument_count) {
// Optionally restore all double registers.
if (save_doubles) {
// Calculate the stack location of the saved doubles and restore them.
const int offset = 2 * kPointerSize;
sub(r3, fp,
Operand(offset + DwVfpRegister::kMaxNumRegisters * kDoubleSize));
RestoreFPRegs(r3, ip);
}
// Clear top frame.
mov(r3, Operand::Zero());
mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
str(r3, MemOperand(ip));
// Restore current context from top and clear it in debug mode.
mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
ldr(cp, MemOperand(ip));
#ifdef DEBUG
str(r3, MemOperand(ip));
#endif
// Tear down the exit frame, pop the arguments, and return.
mov(sp, Operand(fp));
ldm(ia_w, sp, fp.bit() | lr.bit());
if (argument_count.is_valid()) {
add(sp, sp, Operand(argument_count, LSL, kPointerSizeLog2));
}
}
void MacroAssembler::GetCFunctionDoubleResult(const DwVfpRegister dst) {
if (use_eabi_hardfloat()) {
Move(dst, d0);
} else {
vmov(dst, r0, r1);
}
}
void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) {
// This macro takes the dst register to make the code more readable
// at the call sites. However, the dst register has to be r5 to
// follow the calling convention which requires the call type to be
// in r5.
ASSERT(dst.is(r5));
if (call_kind == CALL_AS_FUNCTION) {
mov(dst, Operand(Smi::FromInt(1)));
} else {
mov(dst, Operand(Smi::FromInt(0)));
}
}
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
Register code_reg,
Label* done,
bool* definitely_mismatches,
InvokeFlag flag,
const CallWrapper& call_wrapper,
CallKind call_kind) {
bool definitely_matches = false;
*definitely_mismatches = false;
Label regular_invoke;
// Check whether the expected and actual arguments count match. If not,
// setup registers according to contract with ArgumentsAdaptorTrampoline:
// r0: actual arguments count
// r1: function (passed through to callee)
// r2: expected arguments count
// r3: callee code entry
// The code below is made a lot easier because the calling code already sets
// up actual and expected registers according to the contract if values are
// passed in registers.
ASSERT(actual.is_immediate() || actual.reg().is(r0));
ASSERT(expected.is_immediate() || expected.reg().is(r2));
ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(r3));
if (expected.is_immediate()) {
ASSERT(actual.is_immediate());
if (expected.immediate() == actual.immediate()) {
definitely_matches = true;
} else {
mov(r0, Operand(actual.immediate()));
const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
if (expected.immediate() == sentinel) {
// Don't worry about adapting arguments for builtins that
// don't want that done. Skip adaption code by making it look
// like we have a match between expected and actual number of
// arguments.
definitely_matches = true;
} else {
*definitely_mismatches = true;
mov(r2, Operand(expected.immediate()));
}
}
} else {
if (actual.is_immediate()) {
cmp(expected.reg(), Operand(actual.immediate()));
b(eq, &regular_invoke);
mov(r0, Operand(actual.immediate()));
} else {
cmp(expected.reg(), Operand(actual.reg()));
b(eq, &regular_invoke);
}
}
if (!definitely_matches) {
if (!code_constant.is_null()) {
mov(r3, Operand(code_constant));
add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
}
Handle<Code> adaptor =
isolate()->builtins()->ArgumentsAdaptorTrampoline();
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(adaptor));
SetCallKind(r5, call_kind);
Call(adaptor);
call_wrapper.AfterCall();
if (!*definitely_mismatches) {
b(done);
}
} else {
SetCallKind(r5, call_kind);
Jump(adaptor, RelocInfo::CODE_TARGET);
}
bind(&regular_invoke);
}
}
void MacroAssembler::InvokeCode(Register code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper,
CallKind call_kind) {
// You can't call a function without a valid frame.
ASSERT(flag == JUMP_FUNCTION || has_frame());
Label done;
bool definitely_mismatches = false;
InvokePrologue(expected, actual, Handle<Code>::null(), code,
&done, &definitely_mismatches, flag,
call_wrapper, call_kind);
if (!definitely_mismatches) {
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(code));
SetCallKind(r5, call_kind);
Call(code);
call_wrapper.AfterCall();
} else {
ASSERT(flag == JUMP_FUNCTION);
SetCallKind(r5, call_kind);
Jump(code);
}
// Continue here if InvokePrologue does handle the invocation due to
// mismatched parameter counts.
bind(&done);
}
}
void MacroAssembler::InvokeCode(Handle<Code> code,
const ParameterCount& expected,
const ParameterCount& actual,
RelocInfo::Mode rmode,
InvokeFlag flag,
CallKind call_kind) {
// You can't call a function without a valid frame.
ASSERT(flag == JUMP_FUNCTION || has_frame());
Label done;
bool definitely_mismatches = false;
InvokePrologue(expected, actual, code, no_reg,
&done, &definitely_mismatches, flag,
NullCallWrapper(), call_kind);
if (!definitely_mismatches) {
if (flag == CALL_FUNCTION) {
SetCallKind(r5, call_kind);
Call(code, rmode);
} else {
SetCallKind(r5, call_kind);
Jump(code, rmode);
}
// Continue here if InvokePrologue does handle the invocation due to
// mismatched parameter counts.
bind(&done);
}
}
void MacroAssembler::InvokeFunction(Register fun,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper,
CallKind call_kind) {
// You can't call a function without a valid frame.
ASSERT(flag == JUMP_FUNCTION || has_frame());
// Contract with called JS functions requires that function is passed in r1.
ASSERT(fun.is(r1));
Register expected_reg = r2;
Register code_reg = r3;
ldr(code_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
ldr(expected_reg,
FieldMemOperand(code_reg,
SharedFunctionInfo::kFormalParameterCountOffset));
SmiUntag(expected_reg);
ldr(code_reg,
FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
ParameterCount expected(expected_reg);
InvokeCode(code_reg, expected, actual, flag, call_wrapper, call_kind);
}
void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper,
CallKind call_kind) {
// You can't call a function without a valid frame.
ASSERT(flag == JUMP_FUNCTION || has_frame());
// Get the function and setup the context.
LoadHeapObject(r1, function);
ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
// We call indirectly through the code field in the function to
// allow recompilation to take effect without changing any of the
// call sites.
ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
InvokeCode(r3, expected, actual, flag, call_wrapper, call_kind);
}
void MacroAssembler::IsObjectJSObjectType(Register heap_object,
Register map,
Register scratch,
Label* fail) {
ldr(map, FieldMemOperand(heap_object, HeapObject::kMapOffset));
IsInstanceJSObjectType(map, scratch, fail);
}
void MacroAssembler::IsInstanceJSObjectType(Register map,
Register scratch,
Label* fail) {
ldrb(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
cmp(scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
b(lt, fail);
cmp(scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
b(gt, fail);
}
void MacroAssembler::IsObjectJSStringType(Register object,
Register scratch,
Label* fail) {
ASSERT(kNotStringTag != 0);
ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
tst(scratch, Operand(kIsNotStringMask));
b(ne, fail);
}
void MacroAssembler::IsObjectNameType(Register object,
Register scratch,
Label* fail) {
ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
cmp(scratch, Operand(LAST_NAME_TYPE));
b(hi, fail);
}
#ifdef ENABLE_DEBUGGER_SUPPORT
void MacroAssembler::DebugBreak() {
mov(r0, Operand::Zero());
mov(r1, Operand(ExternalReference(Runtime::kDebugBreak, isolate())));
CEntryStub ces(1);
ASSERT(AllowThisStubCall(&ces));
Call(ces.GetCode(isolate()), RelocInfo::DEBUG_BREAK);
}
#endif
void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
int handler_index) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
// For the JSEntry handler, we must preserve r0-r4, r5-r7 are available.
// We will build up the handler from the bottom by pushing on the stack.
// Set up the code object (r5) and the state (r6) for pushing.
unsigned state =
StackHandler::IndexField::encode(handler_index) |
StackHandler::KindField::encode(kind);
mov(r5, Operand(CodeObject()));
mov(r6, Operand(state));
// Push the frame pointer, context, state, and code object.
if (kind == StackHandler::JS_ENTRY) {
mov(r7, Operand(Smi::FromInt(0))); // Indicates no context.
mov(ip, Operand::Zero()); // NULL frame pointer.
stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() | ip.bit());
} else {
stm(db_w, sp, r5.bit() | r6.bit() | cp.bit() | fp.bit());
}
// Link the current handler as the next handler.
mov(r6, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
ldr(r5, MemOperand(r6));
push(r5);
// Set this new handler as the current one.
str(sp, MemOperand(r6));
}
void MacroAssembler::PopTryHandler() {
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
pop(r1);
mov(ip, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
str(r1, MemOperand(ip));
}
void MacroAssembler::JumpToHandlerEntry() {
// Compute the handler entry address and jump to it. The handler table is
// a fixed array of (smi-tagged) code offsets.
// r0 = exception, r1 = code object, r2 = state.
ldr(r3, FieldMemOperand(r1, Code::kHandlerTableOffset)); // Handler table.
add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
mov(r2, Operand(r2, LSR, StackHandler::kKindWidth)); // Handler index.
ldr(r2, MemOperand(r3, r2, LSL, kPointerSizeLog2)); // Smi-tagged offset.
add(r1, r1, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start.
add(pc, r1, Operand::SmiUntag(r2)); // Jump
}
void MacroAssembler::Throw(Register value) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
// The exception is expected in r0.
if (!value.is(r0)) {
mov(r0, value);
}
// Drop the stack pointer to the top of the top handler.
mov(r3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
ldr(sp, MemOperand(r3));
// Restore the next handler.
pop(r2);
str(r2, MemOperand(r3));
// Get the code object (r1) and state (r2). Restore the context and frame
// pointer.
ldm(ia_w, sp, r1.bit() | r2.bit() | cp.bit() | fp.bit());
// If the handler is a JS frame, restore the context to the frame.
// (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
// or cp.
tst(cp, cp);
str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
JumpToHandlerEntry();
}
void MacroAssembler::ThrowUncatchable(Register value) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
// The exception is expected in r0.
if (!value.is(r0)) {
mov(r0, value);
}
// Drop the stack pointer to the top of the top stack handler.
mov(r3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
ldr(sp, MemOperand(r3));
// Unwind the handlers until the ENTRY handler is found.
Label fetch_next, check_kind;
jmp(&check_kind);
bind(&fetch_next);
ldr(sp, MemOperand(sp, StackHandlerConstants::kNextOffset));
bind(&check_kind);
STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
ldr(r2, MemOperand(sp, StackHandlerConstants::kStateOffset));
tst(r2, Operand(StackHandler::KindField::kMask));
b(ne, &fetch_next);
// Set the top handler address to next handler past the top ENTRY handler.
pop(r2);
str(r2, MemOperand(r3));
// Get the code object (r1) and state (r2). Clear the context and frame
// pointer (0 was saved in the handler).
ldm(ia_w, sp, r1.bit() | r2.bit() | cp.bit() | fp.bit());
JumpToHandlerEntry();
}
void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
Register scratch,
Label* miss) {
Label same_contexts;
ASSERT(!holder_reg.is(scratch));
ASSERT(!holder_reg.is(ip));
ASSERT(!scratch.is(ip));
// Load current lexical context from the stack frame.
ldr(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
// In debug mode, make sure the lexical context is set.
#ifdef DEBUG
cmp(scratch, Operand::Zero());
Check(ne, "we should not have an empty lexical context");
#endif
// Load the native context of the current context.
int offset =
Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
ldr(scratch, FieldMemOperand(scratch, offset));
ldr(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
// Check the context is a native context.
if (emit_debug_code()) {
// Cannot use ip as a temporary in this verification code. Due to the fact
// that ip is clobbered as part of cmp with an object Operand.
push(holder_reg); // Temporarily save holder on the stack.
// Read the first word and compare to the native_context_map.
ldr(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
LoadRoot(ip, Heap::kNativeContextMapRootIndex);
cmp(holder_reg, ip);
Check(eq, "JSGlobalObject::native_context should be a native context.");
pop(holder_reg); // Restore holder.
}
// Check if both contexts are the same.
ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
cmp(scratch, Operand(ip));
b(eq, &same_contexts);
// Check the context is a native context.
if (emit_debug_code()) {
// Cannot use ip as a temporary in this verification code. Due to the fact
// that ip is clobbered as part of cmp with an object Operand.
push(holder_reg); // Temporarily save holder on the stack.
mov(holder_reg, ip); // Move ip to its holding place.
LoadRoot(ip, Heap::kNullValueRootIndex);
cmp(holder_reg, ip);
Check(ne, "JSGlobalProxy::context() should not be null.");
ldr(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
LoadRoot(ip, Heap::kNativeContextMapRootIndex);
cmp(holder_reg, ip);
Check(eq, "JSGlobalObject::native_context should be a native context.");
// Restore ip is not needed. ip is reloaded below.
pop(holder_reg); // Restore holder.
// Restore ip to holder's context.
ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
}
// Check that the security token in the calling global object is
// compatible with the security token in the receiving global
// object.
int token_offset = Context::kHeaderSize +
Context::SECURITY_TOKEN_INDEX * kPointerSize;
ldr(scratch, FieldMemOperand(scratch, token_offset));
ldr(ip, FieldMemOperand(ip, token_offset));
cmp(scratch, Operand(ip));
b(ne, miss);
bind(&same_contexts);
}
void MacroAssembler::GetNumberHash(Register t0, Register scratch) {
// First of all we assign the hash seed to scratch.
LoadRoot(scratch, Heap::kHashSeedRootIndex);
SmiUntag(scratch);
// Xor original key with a seed.
eor(t0, t0, Operand(scratch));
// Compute the hash code from the untagged key. This must be kept in sync
// with ComputeIntegerHash in utils.h.
//
// hash = ~hash + (hash << 15);
mvn(scratch, Operand(t0));
add(t0, scratch, Operand(t0, LSL, 15));
// hash = hash ^ (hash >> 12);
eor(t0, t0, Operand(t0, LSR, 12));
// hash = hash + (hash << 2);
add(t0, t0, Operand(t0, LSL, 2));
// hash = hash ^ (hash >> 4);
eor(t0, t0, Operand(t0, LSR, 4));
// hash = hash * 2057;
mov(scratch, Operand(t0, LSL, 11));
add(t0, t0, Operand(t0, LSL, 3));
add(t0, t0, scratch);
// hash = hash ^ (hash >> 16);
eor(t0, t0, Operand(t0, LSR, 16));
}
void MacroAssembler::LoadFromNumberDictionary(Label* miss,
Register elements,
Register key,
Register result,
Register t0,
Register t1,
Register t2) {
// Register use:
//
// elements - holds the slow-case elements of the receiver on entry.
// Unchanged unless 'result' is the same register.
//
// key - holds the smi key on entry.
// Unchanged unless 'result' is the same register.
//
// result - holds the result on exit if the load succeeded.
// Allowed to be the same as 'key' or 'result'.
// Unchanged on bailout so 'key' or 'result' can be used
// in further computation.
//
// Scratch registers:
//
// t0 - holds the untagged key on entry and holds the hash once computed.
//
// t1 - used to hold the capacity mask of the dictionary
//
// t2 - used for the index into the dictionary.
Label done;
GetNumberHash(t0, t1);
// Compute the capacity mask.
ldr(t1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset));
SmiUntag(t1);
sub(t1, t1, Operand(1));
// Generate an unrolled loop that performs a few probes before giving up.
static const int kProbes = 4;
for (int i = 0; i < kProbes; i++) {
// Use t2 for index calculations and keep the hash intact in t0.
mov(t2, t0);
// Compute the masked index: (hash + i + i * i) & mask.
if (i > 0) {
add(t2, t2, Operand(SeededNumberDictionary::GetProbeOffset(i)));
}
and_(t2, t2, Operand(t1));
// Scale the index by multiplying by the element size.
ASSERT(SeededNumberDictionary::kEntrySize == 3);
add(t2, t2, Operand(t2, LSL, 1)); // t2 = t2 * 3
// Check if the key is identical to the name.
add(t2, elements, Operand(t2, LSL, kPointerSizeLog2));
ldr(ip, FieldMemOperand(t2, SeededNumberDictionary::kElementsStartOffset));
cmp(key, Operand(ip));
if (i != kProbes - 1) {
b(eq, &done);
} else {
b(ne, miss);
}
}
bind(&done);
// Check that the value is a normal property.
// t2: elements + (index * kPointerSize)
const int kDetailsOffset =
SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
ldr(t1, FieldMemOperand(t2, kDetailsOffset));
tst(t1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask)));
b(ne, miss);
// Get the value at the masked, scaled index and return.
const int kValueOffset =
SeededNumberDictionary::kElementsStartOffset + kPointerSize;
ldr(result, FieldMemOperand(t2, kValueOffset));
}
void MacroAssembler::Allocate(int object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags) {
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
mov(result, Operand(0x7091));
mov(scratch1, Operand(0x7191));
mov(scratch2, Operand(0x7291));
}
jmp(gc_required);
return;
}
ASSERT(!result.is(scratch1));
ASSERT(!result.is(scratch2));
ASSERT(!scratch1.is(scratch2));
ASSERT(!scratch1.is(ip));
ASSERT(!scratch2.is(ip));
// Make object size into bytes.
if ((flags & SIZE_IN_WORDS) != 0) {
object_size *= kPointerSize;
}
ASSERT_EQ(0, object_size & kObjectAlignmentMask);
// Check relative positions of allocation top and limit addresses.
// The values must be adjacent in memory to allow the use of LDM.
// Also, assert that the registers are numbered such that the values
// are loaded in the correct order.
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
intptr_t top =
reinterpret_cast<intptr_t>(allocation_top.address());
intptr_t limit =
reinterpret_cast<intptr_t>(allocation_limit.address());
ASSERT((limit - top) == kPointerSize);
ASSERT(result.code() < ip.code());
// Set up allocation top address and object size registers.
Register topaddr = scratch1;
Register obj_size_reg = scratch2;
mov(topaddr, Operand(allocation_top));
Operand obj_size_operand = Operand(object_size);
if (!obj_size_operand.is_single_instruction(this)) {
// We are about to steal IP, so we need to load this value first
mov(obj_size_reg, obj_size_operand);
}
// This code stores a temporary value in ip. This is OK, as the code below
// does not need ip for implicit literal generation.
if ((flags & RESULT_CONTAINS_TOP) == 0) {
// Load allocation top into result and allocation limit into ip.
ldm(ia, topaddr, result.bit() | ip.bit());
} else {
if (emit_debug_code()) {
// Assert that result actually contains top on entry. ip is used
// immediately below so this use of ip does not cause difference with
// respect to register content between debug and release mode.
ldr(ip, MemOperand(topaddr));
cmp(result, ip);
Check(eq, "Unexpected allocation top");
}
// Load allocation limit into ip. Result already contains allocation top.
ldr(ip, MemOperand(topaddr, limit - top));
}
if ((flags & DOUBLE_ALIGNMENT) != 0) {
// Align the next allocation. Storing the filler map without checking top is
// always safe because the limit of the heap is always aligned.
ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
and_(scratch2, result, Operand(kDoubleAlignmentMask), SetCC);
Label aligned;
b(eq, &aligned);
mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
str(scratch2, MemOperand(result, kDoubleSize / 2, PostIndex));
bind(&aligned);
}
// Calculate new top and bail out if new space is exhausted. Use result
// to calculate the new top.
if (obj_size_operand.is_single_instruction(this)) {
// We can add the size as an immediate
add(scratch2, result, obj_size_operand, SetCC);
} else {
// Doesn't fit in an immediate, we have to use the register
add(scratch2, result, obj_size_reg, SetCC);
}
b(cs, gc_required);
cmp(scratch2, Operand(ip));
b(hi, gc_required);
str(scratch2, MemOperand(topaddr));
// Tag object if requested.
if ((flags & TAG_OBJECT) != 0) {
add(result, result, Operand(kHeapObjectTag));
}
}
void MacroAssembler::Allocate(Register object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags) {
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
mov(result, Operand(0x7091));
mov(scratch1, Operand(0x7191));
mov(scratch2, Operand(0x7291));
}
jmp(gc_required);
return;
}
// Assert that the register arguments are different and that none of
// them are ip. ip is used explicitly in the code generated below.
ASSERT(!result.is(scratch1));
ASSERT(!result.is(scratch2));
ASSERT(!scratch1.is(scratch2));
ASSERT(!object_size.is(ip));
ASSERT(!result.is(ip));
ASSERT(!scratch1.is(ip));
ASSERT(!scratch2.is(ip));
// Check relative positions of allocation top and limit addresses.
// The values must be adjacent in memory to allow the use of LDM.
// Also, assert that the registers are numbered such that the values
// are loaded in the correct order.
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
intptr_t top =
reinterpret_cast<intptr_t>(allocation_top.address());
intptr_t limit =
reinterpret_cast<intptr_t>(allocation_limit.address());
ASSERT((limit - top) == kPointerSize);
ASSERT(result.code() < ip.code());
// Set up allocation top address.
Register topaddr = scratch1;
mov(topaddr, Operand(allocation_top));
// This code stores a temporary value in ip. This is OK, as the code below
// does not need ip for implicit literal generation.
if ((flags & RESULT_CONTAINS_TOP) == 0) {
// Load allocation top into result and allocation limit into ip.
ldm(ia, topaddr, result.bit() | ip.bit());
} else {
if (emit_debug_code()) {
// Assert that result actually contains top on entry. ip is used
// immediately below so this use of ip does not cause difference with
// respect to register content between debug and release mode.
ldr(ip, MemOperand(topaddr));
cmp(result, ip);
Check(eq, "Unexpected allocation top");
}
// Load allocation limit into ip. Result already contains allocation top.
ldr(ip, MemOperand(topaddr, limit - top));
}
if ((flags & DOUBLE_ALIGNMENT) != 0) {
// Align the next allocation. Storing the filler map without checking top is
// always safe because the limit of the heap is always aligned.
ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
and_(scratch2, result, Operand(kDoubleAlignmentMask), SetCC);
Label aligned;
b(eq, &aligned);
mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
str(scratch2, MemOperand(result, kDoubleSize / 2, PostIndex));
bind(&aligned);
}
// Calculate new top and bail out if new space is exhausted. Use result
// to calculate the new top. Object size may be in words so a shift is
// required to get the number of bytes.
if ((flags & SIZE_IN_WORDS) != 0) {
add(scratch2, result, Operand(object_size, LSL, kPointerSizeLog2), SetCC);
} else {
add(scratch2, result, Operand(object_size), SetCC);
}
b(cs, gc_required);
cmp(scratch2, Operand(ip));
b(hi, gc_required);
// Update allocation top. result temporarily holds the new top.
if (emit_debug_code()) {
tst(scratch2, Operand(kObjectAlignmentMask));
Check(eq, "Unaligned allocation in new space");
}
str(scratch2, MemOperand(topaddr));
// Tag object if requested.
if ((flags & TAG_OBJECT) != 0) {
add(result, result, Operand(kHeapObjectTag));
}
}
void MacroAssembler::UndoAllocationInNewSpace(Register object,
Register scratch) {
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
// Make sure the object has no tag before resetting top.
and_(object, object, Operand(~kHeapObjectTagMask));
#ifdef DEBUG
// Check that the object un-allocated is below the current top.
mov(scratch, Operand(new_space_allocation_top));
ldr(scratch, MemOperand(scratch));
cmp(object, scratch);
Check(lt, "Undo allocation of non allocated memory");
#endif
// Write the address of the object to un-allocate as the current top.
mov(scratch, Operand(new_space_allocation_top));
str(object, MemOperand(scratch));
}
void MacroAssembler::AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
mov(scratch1, Operand(length, LSL, 1)); // Length in bytes, not chars.
add(scratch1, scratch1,
Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize));
and_(scratch1, scratch1, Operand(~kObjectAlignmentMask));
// Allocate two-byte string in new space.
Allocate(scratch1,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Set the map, length and hash field.
InitializeNewString(result,
length,
Heap::kStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::AllocateAsciiString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
ASSERT(kCharSize == 1);
add(scratch1, length,
Operand(kObjectAlignmentMask + SeqOneByteString::kHeaderSize));
and_(scratch1, scratch1, Operand(~kObjectAlignmentMask));
// Allocate ASCII string in new space.
Allocate(scratch1,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Set the map, length and hash field.
InitializeNewString(result,
length,
Heap::kAsciiStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::AllocateTwoByteConsString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
TAG_OBJECT);
InitializeNewString(result,
length,
Heap::kConsStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::AllocateAsciiConsString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
Label allocate_new_space, install_map;
AllocationFlags flags = TAG_OBJECT;
ExternalReference high_promotion_mode = ExternalReference::
new_space_high_promotion_mode_active_address(isolate());
mov(scratch1, Operand(high_promotion_mode));
ldr(scratch1, MemOperand(scratch1, 0));
cmp(scratch1, Operand::Zero());
b(eq, &allocate_new_space);
Allocate(ConsString::kSize,
result,
scratch1,
scratch2,
gc_required,
static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE));
jmp(&install_map);
bind(&allocate_new_space);
Allocate(ConsString::kSize,
result,
scratch1,
scratch2,
gc_required,
flags);
bind(&install_map);
InitializeNewString(result,
length,
Heap::kConsAsciiStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::AllocateTwoByteSlicedString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
TAG_OBJECT);
InitializeNewString(result,
length,
Heap::kSlicedStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::AllocateAsciiSlicedString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
TAG_OBJECT);
InitializeNewString(result,
length,
Heap::kSlicedAsciiStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::CompareObjectType(Register object,
Register map,
Register type_reg,
InstanceType type) {
ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
CompareInstanceType(map, type_reg, type);
}
void MacroAssembler::CompareInstanceType(Register map,
Register type_reg,
InstanceType type) {
ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
cmp(type_reg, Operand(type));
}
void MacroAssembler::CompareRoot(Register obj,
Heap::RootListIndex index) {
ASSERT(!obj.is(ip));
LoadRoot(ip, index);
cmp(obj, ip);
}
void MacroAssembler::CheckFastElements(Register map,
Register scratch,
Label* fail) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
cmp(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue));
b(hi, fail);
}
void MacroAssembler::CheckFastObjectElements(Register map,
Register scratch,
Label* fail) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
b(ls, fail);
cmp(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue));
b(hi, fail);
}
void MacroAssembler::CheckFastSmiElements(Register map,
Register scratch,
Label* fail) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
b(hi, fail);
}
void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
Register key_reg,
Register elements_reg,
Register scratch1,
Label* fail,
int elements_offset) {
Label smi_value, store;
// Handle smi values specially.
JumpIfSmi(value_reg, &smi_value);
// Ensure that the object is a heap number
CheckMap(value_reg,
scratch1,
isolate()->factory()->heap_number_map(),
fail,
DONT_DO_SMI_CHECK);
vldr(d0, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
// Force a canonical NaN.
if (emit_debug_code()) {
vmrs(ip);
tst(ip, Operand(kVFPDefaultNaNModeControlBit));
Assert(ne, "Default NaN mode not set");
}
VFPCanonicalizeNaN(d0);
b(&store);
bind(&smi_value);
SmiToDouble(d0, value_reg);
bind(&store);
add(scratch1, elements_reg, Operand::DoubleOffsetFromSmiKey(key_reg));
vstr(d0, FieldMemOperand(scratch1,
FixedDoubleArray::kHeaderSize - elements_offset));
}
void MacroAssembler::CompareMap(Register obj,
Register scratch,
Handle<Map> map,
Label* early_success) {
ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
CompareMap(scratch, map, early_success);
}
void MacroAssembler::CompareMap(Register obj_map,
Handle<Map> map,
Label* early_success) {
cmp(obj_map, Operand(map));
}
void MacroAssembler::CheckMap(Register obj,
Register scratch,
Handle<Map> map,
Label* fail,
SmiCheckType smi_check_type) {
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, fail);
}
Label success;
CompareMap(obj, scratch, map, &success);
b(ne, fail);
bind(&success);
}
void MacroAssembler::CheckMap(Register obj,
Register scratch,
Heap::RootListIndex index,
Label* fail,
SmiCheckType smi_check_type) {
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, fail);
}
ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
LoadRoot(ip, index);
cmp(scratch, ip);
b(ne, fail);
}
void MacroAssembler::DispatchMap(Register obj,
Register scratch,
Handle<Map> map,
Handle<Code> success,
SmiCheckType smi_check_type) {
Label fail;
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, &fail);
}
ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
mov(ip, Operand(map));
cmp(scratch, ip);
Jump(success, RelocInfo::CODE_TARGET, eq);
bind(&fail);
}
void MacroAssembler::TryGetFunctionPrototype(Register function,
Register result,
Register scratch,
Label* miss,
bool miss_on_bound_function) {
// Check that the receiver isn't a smi.
JumpIfSmi(function, miss);
// Check that the function really is a function. Load map into result reg.
CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE);
b(ne, miss);
if (miss_on_bound_function) {
ldr(scratch,
FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
ldr(scratch,
FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
tst(scratch,
Operand(Smi::FromInt(1 << SharedFunctionInfo::kBoundFunction)));
b(ne, miss);
}
// Make sure that the function has an instance prototype.
Label non_instance;
ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
tst(scratch, Operand(1 << Map::kHasNonInstancePrototype));
b(ne, &non_instance);
// Get the prototype or initial map from the function.
ldr(result,
FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// If the prototype or initial map is the hole, don't return it and
// simply miss the cache instead. This will allow us to allocate a
// prototype object on-demand in the runtime system.
LoadRoot(ip, Heap::kTheHoleValueRootIndex);
cmp(result, ip);
b(eq, miss);
// If the function does not have an initial map, we're done.
Label done;
CompareObjectType(result, scratch, scratch, MAP_TYPE);
b(ne, &done);
// Get the prototype from the initial map.
ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
jmp(&done);
// Non-instance prototype: Fetch prototype from constructor field
// in initial map.
bind(&non_instance);
ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
// All done.
bind(&done);
}
void MacroAssembler::CallStub(CodeStub* stub,
TypeFeedbackId ast_id,
Condition cond) {
ASSERT(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
Call(stub->GetCode(isolate()), RelocInfo::CODE_TARGET, ast_id, cond);
}
void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) {
ASSERT(allow_stub_calls_ ||
stub->CompilingCallsToThisStubIsGCSafe(isolate()));
Jump(stub->GetCode(isolate()), RelocInfo::CODE_TARGET, cond);
}
static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
return ref0.address() - ref1.address();
}
void MacroAssembler::CallApiFunctionAndReturn(ExternalReference function,
Address function_address,
ExternalReference thunk_ref,
Register thunk_last_arg,
int stack_space,
bool returns_handle,
int return_value_offset) {
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate());
const int kNextOffset = 0;
const int kLimitOffset = AddressOffset(
ExternalReference::handle_scope_limit_address(isolate()),
next_address);
const int kLevelOffset = AddressOffset(
ExternalReference::handle_scope_level_address(isolate()),
next_address);
// Allocate HandleScope in callee-save registers.
mov(r7, Operand(next_address));
ldr(r4, MemOperand(r7, kNextOffset));
ldr(r5, MemOperand(r7, kLimitOffset));
ldr(r6, MemOperand(r7, kLevelOffset));
add(r6, r6, Operand(1));
str(r6, MemOperand(r7, kLevelOffset));
if (FLAG_log_timer_events) {
FrameScope frame(this, StackFrame::MANUAL);
PushSafepointRegisters();
PrepareCallCFunction(1, r0);
mov(r0, Operand(ExternalReference::isolate_address(isolate())));
CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
PopSafepointRegisters();
}
ASSERT(!thunk_last_arg.is(r3));
Label profiler_disabled;
Label end_profiler_check;
bool* is_profiling_flag =
isolate()->cpu_profiler()->is_profiling_address();
STATIC_ASSERT(sizeof(*is_profiling_flag) == 1);
mov(r3, Operand(reinterpret_cast<int32_t>(is_profiling_flag)));
ldrb(r3, MemOperand(r3, 0));
cmp(r3, Operand(0));
b(eq, &profiler_disabled);
// Additional parameter is the address of the actual callback.
mov(thunk_last_arg, Operand(reinterpret_cast<int32_t>(function_address)));
mov(r3, Operand(thunk_ref));
jmp(&end_profiler_check);
bind(&profiler_disabled);
mov(r3, Operand(function));
bind(&end_profiler_check);
// Native call returns to the DirectCEntry stub which redirects to the
// return address pushed on stack (could have moved after GC).
// DirectCEntry stub itself is generated early and never moves.
DirectCEntryStub stub;
stub.GenerateCall(this, r3);
if (FLAG_log_timer_events) {
FrameScope frame(this, StackFrame::MANUAL);
PushSafepointRegisters();
PrepareCallCFunction(1, r0);
mov(r0, Operand(ExternalReference::isolate_address(isolate())));
CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
PopSafepointRegisters();
}
Label promote_scheduled_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
Label return_value_loaded;
if (returns_handle) {
Label load_return_value;
cmp(r0, Operand::Zero());
b(eq, &load_return_value);
// derefernce returned value
ldr(r0, MemOperand(r0));
b(&return_value_loaded);
bind(&load_return_value);
}
// load value from ReturnValue
ldr(r0, MemOperand(fp, return_value_offset*kPointerSize));
bind(&return_value_loaded);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
str(r4, MemOperand(r7, kNextOffset));
if (emit_debug_code()) {
ldr(r1, MemOperand(r7, kLevelOffset));
cmp(r1, r6);
Check(eq, "Unexpected level after return from api call");
}
sub(r6, r6, Operand(1));
str(r6, MemOperand(r7, kLevelOffset));
ldr(ip, MemOperand(r7, kLimitOffset));
cmp(r5, ip);
b(ne, &delete_allocated_handles);
// Check if the function scheduled an exception.
bind(&leave_exit_frame);
LoadRoot(r4, Heap::kTheHoleValueRootIndex);
mov(ip, Operand(ExternalReference::scheduled_exception_address(isolate())));
ldr(r5, MemOperand(ip));
cmp(r4, r5);
b(ne, &promote_scheduled_exception);
// LeaveExitFrame expects unwind space to be in a register.
mov(r4, Operand(stack_space));
LeaveExitFrame(false, r4);
mov(pc, lr);
bind(&promote_scheduled_exception);
TailCallExternalReference(
ExternalReference(Runtime::kPromoteScheduledException, isolate()),
0,
1);
// HandleScope limit has changed. Delete allocated extensions.
bind(&delete_allocated_handles);
str(r5, MemOperand(r7, kLimitOffset));
mov(r4, r0);
PrepareCallCFunction(1, r5);
mov(r0, Operand(ExternalReference::isolate_address(isolate())));
CallCFunction(
ExternalReference::delete_handle_scope_extensions(isolate()), 1);
mov(r0, r4);
jmp(&leave_exit_frame);
}
bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
if (!has_frame_ && stub->SometimesSetsUpAFrame()) return false;
return allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe(isolate());
}
void MacroAssembler::IllegalOperation(int num_arguments) {
if (num_arguments > 0) {
add(sp, sp, Operand(num_arguments * kPointerSize));
}
LoadRoot(r0, Heap::kUndefinedValueRootIndex);
}
void MacroAssembler::IndexFromHash(Register hash, Register index) {
// If the hash field contains an array index pick it out. The assert checks
// that the constants for the maximum number of digits for an array index
// cached in the hash field and the number of bits reserved for it does not
// conflict.
ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
(1 << String::kArrayIndexValueBits));
// We want the smi-tagged index in key. kArrayIndexValueMask has zeros in
// the low kHashShift bits.
Ubfx(hash, hash, String::kHashShift, String::kArrayIndexValueBits);
SmiTag(index, hash);
}
void MacroAssembler::SmiToDouble(DwVfpRegister value, Register smi) {
ASSERT(value.code() < 16);
if (CpuFeatures::IsSupported(VFP3)) {
vmov(value.low(), smi);
vcvt_f64_s32(value, 1);
} else {
SmiUntag(ip, smi);
vmov(value.low(), ip);
vcvt_f64_s32(value, value.low());
}
}
void MacroAssembler::TestDoubleIsInt32(DwVfpRegister double_input,
DwVfpRegister double_scratch) {
ASSERT(!double_input.is(double_scratch));
vcvt_s32_f64(double_scratch.low(), double_input);
vcvt_f64_s32(double_scratch, double_scratch.low());
VFPCompareAndSetFlags(double_input, double_scratch);
}
void MacroAssembler::TryDoubleToInt32Exact(Register result,
DwVfpRegister double_input,
DwVfpRegister double_scratch) {
ASSERT(!double_input.is(double_scratch));
vcvt_s32_f64(double_scratch.low(), double_input);
vmov(result, double_scratch.low());
vcvt_f64_s32(double_scratch, double_scratch.low());
VFPCompareAndSetFlags(double_input, double_scratch);
}
void MacroAssembler::TryInt32Floor(Register result,
DwVfpRegister double_input,
Register input_high,
DwVfpRegister double_scratch,
Label* done,
Label* exact) {
ASSERT(!result.is(input_high));
ASSERT(!double_input.is(double_scratch));
Label negative, exception;
// Test for NaN and infinities.
Sbfx(result, input_high,
HeapNumber::kExponentShift, HeapNumber::kExponentBits);
cmp(result, Operand(-1));
b(eq, &exception);
// Test for values that can be exactly represented as a
// signed 32-bit integer.
TryDoubleToInt32Exact(result, double_input, double_scratch);
// If exact, return (result already fetched).
b(eq, exact);
cmp(input_high, Operand::Zero());
b(mi, &negative);
// Input is in ]+0, +inf[.
// If result equals 0x7fffffff input was out of range or
// in ]0x7fffffff, 0x80000000[. We ignore this last case which
// could fits into an int32, that means we always think input was
// out of range and always go to exception.
// If result < 0x7fffffff, go to done, result fetched.
cmn(result, Operand(1));
b(mi, &exception);
b(done);
// Input is in ]-inf, -0[.
// If x is a non integer negative number,
// floor(x) <=> round_to_zero(x) - 1.
bind(&negative);
sub(result, result, Operand(1), SetCC);
// If result is still negative, go to done, result fetched.
// Else, we had an overflow and we fall through exception.
b(mi, done);
bind(&exception);
}
void MacroAssembler::ECMAToInt32(Register result,
DwVfpRegister double_input,
Register scratch,
Register scratch_high,
Register scratch_low,
DwVfpRegister double_scratch) {
ASSERT(!scratch_high.is(result));
ASSERT(!scratch_low.is(result));
ASSERT(!scratch_low.is(scratch_high));
ASSERT(!scratch.is(result) &&
!scratch.is(scratch_high) &&
!scratch.is(scratch_low));
ASSERT(!double_input.is(double_scratch));
Label out_of_range, only_low, negate, done;
vcvt_s32_f64(double_scratch.low(), double_input);
vmov(result, double_scratch.low());
// If result is not saturated (0x7fffffff or 0x80000000), we are done.
sub(scratch, result, Operand(1));
cmp(scratch, Operand(0x7ffffffe));
b(lt, &done);
vmov(scratch_low, scratch_high, double_input);
Ubfx(scratch, scratch_high,
HeapNumber::kExponentShift, HeapNumber::kExponentBits);
// Load scratch with exponent - 1. This is faster than loading
// with exponent because Bias + 1 = 1024 which is an *ARM* immediate value.
sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
// If exponent is greater than or equal to 84, the 32 less significant
// bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
// the result is 0.
// Compare exponent with 84 (compare exponent - 1 with 83).
cmp(scratch, Operand(83));
b(ge, &out_of_range);
// If we reach this code, 31 <= exponent <= 83.
// So, we don't have to handle cases where 0 <= exponent <= 20 for
// which we would need to shift right the high part of the mantissa.
// Scratch contains exponent - 1.
// Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
rsb(scratch, scratch, Operand(51), SetCC);
b(ls, &only_low);
// 21 <= exponent <= 51, shift scratch_low and scratch_high
// to generate the result.
mov(scratch_low, Operand(scratch_low, LSR, scratch));
// Scratch contains: 52 - exponent.
// We needs: exponent - 20.
// So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
rsb(scratch, scratch, Operand(32));
Ubfx(result, scratch_high,
0, HeapNumber::kMantissaBitsInTopWord);
// Set the implicit 1 before the mantissa part in scratch_high.
orr(result, result, Operand(1 << HeapNumber::kMantissaBitsInTopWord));
orr(result, scratch_low, Operand(result, LSL, scratch));
b(&negate);
bind(&out_of_range);
mov(result, Operand::Zero());
b(&done);
bind(&only_low);
// 52 <= exponent <= 83, shift only scratch_low.
// On entry, scratch contains: 52 - exponent.
rsb(scratch, scratch, Operand::Zero());
mov(result, Operand(scratch_low, LSL, scratch));
bind(&negate);
// If input was positive, scratch_high ASR 31 equals 0 and
// scratch_high LSR 31 equals zero.
// New result = (result eor 0) + 0 = result.
// If the input was negative, we have to negate the result.
// Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
// New result = (result eor 0xffffffff) + 1 = 0 - result.
eor(result, result, Operand(scratch_high, ASR, 31));
add(result, result, Operand(scratch_high, LSR, 31));
bind(&done);
}
void MacroAssembler::GetLeastBitsFromSmi(Register dst,
Register src,
int num_least_bits) {
if (CpuFeatures::IsSupported(ARMv7) && !predictable_code_size()) {
ubfx(dst, src, kSmiTagSize, num_least_bits);
} else {
SmiUntag(dst, src);
and_(dst, dst, Operand((1 << num_least_bits) - 1));
}
}
void MacroAssembler::GetLeastBitsFromInt32(Register dst,
Register src,
int num_least_bits) {
and_(dst, src, Operand((1 << num_least_bits) - 1));
}
void MacroAssembler::CallRuntime(const Runtime::Function* f,
int num_arguments) {
// All parameters are on the stack. r0 has the return value after call.
// If the expected number of arguments of the runtime function is
// constant, we check that the actual number of arguments match the
// expectation.
if (f->nargs >= 0 && f->nargs != num_arguments) {
IllegalOperation(num_arguments);
return;
}
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
mov(r0, Operand(num_arguments));
mov(r1, Operand(ExternalReference(f, isolate())));
CEntryStub stub(1);
CallStub(&stub);
}
void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) {
CallRuntime(Runtime::FunctionForId(fid), num_arguments);
}
void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) {
const Runtime::Function* function = Runtime::FunctionForId(id);
mov(r0, Operand(function->nargs));
mov(r1, Operand(ExternalReference(function, isolate())));
CEntryStub stub(1, kSaveFPRegs);
CallStub(&stub);
}
void MacroAssembler::CallExternalReference(const ExternalReference& ext,
int num_arguments) {
mov(r0, Operand(num_arguments));
mov(r1, Operand(ext));
CEntryStub stub(1);
CallStub(&stub);
}
void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
int num_arguments,
int result_size) {
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
mov(r0, Operand(num_arguments));
JumpToExternalReference(ext);
}
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size) {
TailCallExternalReference(ExternalReference(fid, isolate()),
num_arguments,
result_size);
}
void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
#if defined(__thumb__)
// Thumb mode builtin.
ASSERT((reinterpret_cast<intptr_t>(builtin.address()) & 1) == 1);
#endif
mov(r1, Operand(builtin));
CEntryStub stub(1);
Jump(stub.GetCode(isolate()), RelocInfo::CODE_TARGET);
}
void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a builtin without a valid frame.
ASSERT(flag == JUMP_FUNCTION || has_frame());
GetBuiltinEntry(r2, id);
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(r2));
SetCallKind(r5, CALL_AS_METHOD);
Call(r2);
call_wrapper.AfterCall();
} else {
ASSERT(flag == JUMP_FUNCTION);
SetCallKind(r5, CALL_AS_METHOD);
Jump(r2);
}
}
void MacroAssembler::GetBuiltinFunction(Register target,
Builtins::JavaScript id) {
// Load the builtins object into target register.
ldr(target,
MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
// Load the JavaScript builtin function from the builtins object.
ldr(target, FieldMemOperand(target,
JSBuiltinsObject::OffsetOfFunctionWithId(id)));
}
void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
ASSERT(!target.is(r1));
GetBuiltinFunction(r1, id);
// Load the code entry point from the builtins object.
ldr(target, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
}
void MacroAssembler::SetCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
if (FLAG_native_code_counters && counter->Enabled()) {
mov(scratch1, Operand(value));
mov(scratch2, Operand(ExternalReference(counter)));
str(scratch1, MemOperand(scratch2));
}
}
void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
ASSERT(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
mov(scratch2, Operand(ExternalReference(counter)));
ldr(scratch1, MemOperand(scratch2));
add(scratch1, scratch1, Operand(value));
str(scratch1, MemOperand(scratch2));
}
}
void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
ASSERT(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
mov(scratch2, Operand(ExternalReference(counter)));
ldr(scratch1, MemOperand(scratch2));
sub(scratch1, scratch1, Operand(value));
str(scratch1, MemOperand(scratch2));
}
}
void MacroAssembler::Assert(Condition cond, const char* msg) {
if (emit_debug_code())
Check(cond, msg);
}
void MacroAssembler::AssertFastElements(Register elements) {
if (emit_debug_code()) {
ASSERT(!elements.is(ip));
Label ok;
push(elements);
ldr(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
cmp(elements, ip);
b(eq, &ok);
LoadRoot(ip, Heap::kFixedDoubleArrayMapRootIndex);
cmp(elements, ip);
b(eq, &ok);
LoadRoot(ip, Heap::kFixedCOWArrayMapRootIndex);
cmp(elements, ip);
b(eq, &ok);
Abort("JSObject with fast elements map has slow elements");
bind(&ok);
pop(elements);
}
}
void MacroAssembler::Check(Condition cond, const char* msg) {
Label L;
b(cond, &L);
Abort(msg);
// will not return here
bind(&L);
}
void MacroAssembler::Abort(const char* msg) {
Label abort_start;
bind(&abort_start);
// We want to pass the msg string like a smi to avoid GC
// problems, however msg is not guaranteed to be aligned
// properly. Instead, we pass an aligned pointer that is
// a proper v8 smi, but also pass the alignment difference
// from the real pointer as a smi.
intptr_t p1 = reinterpret_cast<intptr_t>(msg);
intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
#ifdef DEBUG
if (msg != NULL) {
RecordComment("Abort message: ");
RecordComment(msg);
}
#endif
mov(r0, Operand(p0));
push(r0);
mov(r0, Operand(Smi::FromInt(p1 - p0)));
push(r0);
// Disable stub call restrictions to always allow calls to abort.
if (!has_frame_) {
// We don't actually want to generate a pile of code for this, so just
// claim there is a stack frame, without generating one.
FrameScope scope(this, StackFrame::NONE);
CallRuntime(Runtime::kAbort, 2);
} else {
CallRuntime(Runtime::kAbort, 2);
}
// will not return here
if (is_const_pool_blocked()) {
// If the calling code cares about the exact number of
// instructions generated, we insert padding here to keep the size
// of the Abort macro constant.
static const int kExpectedAbortInstructions = 10;
int abort_instructions = InstructionsGeneratedSince(&abort_start);
ASSERT(abort_instructions <= kExpectedAbortInstructions);
while (abort_instructions++ < kExpectedAbortInstructions) {
nop();
}
}
}
void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
if (context_chain_length > 0) {
// Move up the chain of contexts to the context containing the slot.
ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
for (int i = 1; i < context_chain_length; i++) {
ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
}
} else {
// Slot is in the current function context. Move it into the
// destination register in case we store into it (the write barrier
// cannot be allowed to destroy the context in esi).
mov(dst, cp);
}
}
void MacroAssembler::LoadTransitionedArrayMapConditional(
ElementsKind expected_kind,
ElementsKind transitioned_kind,
Register map_in_out,
Register scratch,
Label* no_map_match) {
// Load the global or builtins object from the current context.
ldr(scratch,
MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
ldr(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
// Check that the function's map is the same as the expected cached map.
ldr(scratch,
MemOperand(scratch,
Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
size_t offset = expected_kind * kPointerSize +
FixedArrayBase::kHeaderSize;
ldr(ip, FieldMemOperand(scratch, offset));
cmp(map_in_out, ip);
b(ne, no_map_match);
// Use the transitioned cached map.
offset = transitioned_kind * kPointerSize +
FixedArrayBase::kHeaderSize;
ldr(map_in_out, FieldMemOperand(scratch, offset));
}
void MacroAssembler::LoadInitialArrayMap(
Register function_in, Register scratch,
Register map_out, bool can_have_holes) {
ASSERT(!function_in.is(map_out));
Label done;
ldr(map_out, FieldMemOperand(function_in,
JSFunction::kPrototypeOrInitialMapOffset));
if (!FLAG_smi_only_arrays) {
ElementsKind kind = can_have_holes ? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS;
LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
kind,
map_out,
scratch,
&done);
} else if (can_have_holes) {
LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
FAST_HOLEY_SMI_ELEMENTS,
map_out,
scratch,
&done);
}
bind(&done);
}
void MacroAssembler::LoadGlobalFunction(int index, Register function) {
// Load the global or builtins object from the current context.
ldr(function,
MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
// Load the native context from the global or builtins object.
ldr(function, FieldMemOperand(function,
GlobalObject::kNativeContextOffset));
// Load the function from the native context.
ldr(function, MemOperand(function, Context::SlotOffset(index)));
}
void MacroAssembler::LoadArrayFunction(Register function) {
// Load the global or builtins object from the current context.
ldr(function,
MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
// Load the global context from the global or builtins object.
ldr(function,
FieldMemOperand(function, GlobalObject::kGlobalContextOffset));
// Load the array function from the native context.
ldr(function,
MemOperand(function, Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
}
void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
Register map,
Register scratch) {
// Load the initial map. The global functions all have initial maps.
ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
if (emit_debug_code()) {
Label ok, fail;
CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
b(&ok);
bind(&fail);
Abort("Global functions must have initial map");
bind(&ok);
}
}
void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
Register reg,
Register scratch,
Label* not_power_of_two_or_zero) {
sub(scratch, reg, Operand(1), SetCC);
b(mi, not_power_of_two_or_zero);
tst(scratch, reg);
b(ne, not_power_of_two_or_zero);
}
void MacroAssembler::JumpIfNotPowerOfTwoOrZeroAndNeg(
Register reg,
Register scratch,
Label* zero_and_neg,
Label* not_power_of_two) {
sub(scratch, reg, Operand(1), SetCC);
b(mi, zero_and_neg);
tst(scratch, reg);
b(ne, not_power_of_two);
}
void MacroAssembler::JumpIfNotBothSmi(Register reg1,
Register reg2,
Label* on_not_both_smi) {
STATIC_ASSERT(kSmiTag == 0);
tst(reg1, Operand(kSmiTagMask));
tst(reg2, Operand(kSmiTagMask), eq);
b(ne, on_not_both_smi);
}
void MacroAssembler::UntagAndJumpIfSmi(
Register dst, Register src, Label* smi_case) {
STATIC_ASSERT(kSmiTag == 0);
SmiUntag(dst, src, SetCC);
b(cc, smi_case); // Shifter carry is not set for a smi.
}
void MacroAssembler::UntagAndJumpIfNotSmi(
Register dst, Register src, Label* non_smi_case) {
STATIC_ASSERT(kSmiTag == 0);
SmiUntag(dst, src, SetCC);
b(cs, non_smi_case); // Shifter carry is set for a non-smi.
}
void MacroAssembler::JumpIfEitherSmi(Register reg1,
Register reg2,
Label* on_either_smi) {
STATIC_ASSERT(kSmiTag == 0);
tst(reg1, Operand(kSmiTagMask));
tst(reg2, Operand(kSmiTagMask), ne);
b(eq, on_either_smi);
}
void MacroAssembler::AssertNotSmi(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
tst(object, Operand(kSmiTagMask));
Check(ne, "Operand is a smi");
}
}
void MacroAssembler::AssertSmi(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
tst(object, Operand(kSmiTagMask));
Check(eq, "Operand is not smi");
}
}
void MacroAssembler::AssertString(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
tst(object, Operand(kSmiTagMask));
Check(ne, "Operand is a smi and not a string");
push(object);
ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
CompareInstanceType(object, object, FIRST_NONSTRING_TYPE);
pop(object);
Check(lo, "Operand is not a string");
}
}
void MacroAssembler::AssertName(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
tst(object, Operand(kSmiTagMask));
Check(ne, "Operand is a smi and not a name");
push(object);
ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
CompareInstanceType(object, object, LAST_NAME_TYPE);
pop(object);
Check(le, "Operand is not a name");
}
}
void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) {
if (emit_debug_code()) {
CompareRoot(reg, index);
Check(eq, "HeapNumberMap register clobbered.");
}
}
void MacroAssembler::JumpIfNotHeapNumber(Register object,
Register heap_number_map,
Register scratch,
Label* on_not_heap_number) {
ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
cmp(scratch, heap_number_map);
b(ne, on_not_heap_number);
}
void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings(
Register first,
Register second,
Register scratch1,
Register scratch2,
Label* failure) {
// Test that both first and second are sequential ASCII strings.
// Assume that they are non-smis.
ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1,
scratch2,
scratch1,
scratch2,
failure);
}
void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first,
Register second,
Register scratch1,
Register scratch2,
Label* failure) {
// Check that neither is a smi.
and_(scratch1, first, Operand(second));
JumpIfSmi(scratch1, failure);
JumpIfNonSmisNotBothSequentialAsciiStrings(first,
second,
scratch1,
scratch2,
failure);
}
// Allocates a heap number or jumps to the need_gc label if the young space
// is full and a scavenge is needed.
void MacroAssembler::AllocateHeapNumber(Register result,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* gc_required,
TaggingMode tagging_mode) {
// Allocate an object in the heap for the heap number and tag it as a heap
// object.
Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
tagging_mode == TAG_RESULT ? TAG_OBJECT : NO_ALLOCATION_FLAGS);
// Store heap number map in the allocated object.
AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
if (tagging_mode == TAG_RESULT) {
str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
} else {
str(heap_number_map, MemOperand(result, HeapObject::kMapOffset));
}
}
void MacroAssembler::AllocateHeapNumberWithValue(Register result,
DwVfpRegister value,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* gc_required) {
AllocateHeapNumber(result, scratch1, scratch2, heap_number_map, gc_required);
sub(scratch1, result, Operand(kHeapObjectTag));
vstr(value, scratch1, HeapNumber::kValueOffset);
}
// Copies a fixed number of fields of heap objects from src to dst.
void MacroAssembler::CopyFields(Register dst,
Register src,
DwVfpRegister double_scratch,
SwVfpRegister single_scratch,
int field_count) {
int double_count = field_count / (DwVfpRegister::kSizeInBytes / kPointerSize);
for (int i = 0; i < double_count; i++) {
vldr(double_scratch, FieldMemOperand(src, i * DwVfpRegister::kSizeInBytes));
vstr(double_scratch, FieldMemOperand(dst, i * DwVfpRegister::kSizeInBytes));
}
STATIC_ASSERT(SwVfpRegister::kSizeInBytes == kPointerSize);
STATIC_ASSERT(2 * SwVfpRegister::kSizeInBytes == DwVfpRegister::kSizeInBytes);
int remain = field_count % (DwVfpRegister::kSizeInBytes / kPointerSize);
if (remain != 0) {
vldr(single_scratch,
FieldMemOperand(src, (field_count - 1) * kPointerSize));
vstr(single_scratch,
FieldMemOperand(dst, (field_count - 1) * kPointerSize));
}
}
void MacroAssembler::CopyBytes(Register src,
Register dst,
Register length,
Register scratch) {
Label align_loop, align_loop_1, word_loop, byte_loop, byte_loop_1, done;
// Align src before copying in word size chunks.
bind(&align_loop);
cmp(length, Operand::Zero());
b(eq, &done);
bind(&align_loop_1);
tst(src, Operand(kPointerSize - 1));
b(eq, &word_loop);
ldrb(scratch, MemOperand(src, 1, PostIndex));
strb(scratch, MemOperand(dst, 1, PostIndex));
sub(length, length, Operand(1), SetCC);
b(ne, &byte_loop_1);
// Copy bytes in word size chunks.
bind(&word_loop);
if (emit_debug_code()) {
tst(src, Operand(kPointerSize - 1));
Assert(eq, "Expecting alignment for CopyBytes");
}
cmp(length, Operand(kPointerSize));
b(lt, &byte_loop);
ldr(scratch, MemOperand(src, kPointerSize, PostIndex));
if (CpuFeatures::IsSupported(UNALIGNED_ACCESSES)) {
str(scratch, MemOperand(dst, kPointerSize, PostIndex));
} else {
strb(scratch, MemOperand(dst, 1, PostIndex));
mov(scratch, Operand(scratch, LSR, 8));
strb(scratch, MemOperand(dst, 1, PostIndex));
mov(scratch, Operand(scratch, LSR, 8));
strb(scratch, MemOperand(dst, 1, PostIndex));
mov(scratch, Operand(scratch, LSR, 8));
strb(scratch, MemOperand(dst, 1, PostIndex));
}
sub(length, length, Operand(kPointerSize));
b(&word_loop);
// Copy the last bytes if any left.
bind(&byte_loop);
cmp(length, Operand::Zero());
b(eq, &done);
bind(&byte_loop_1);
ldrb(scratch, MemOperand(src, 1, PostIndex));
strb(scratch, MemOperand(dst, 1, PostIndex));
sub(length, length, Operand(1), SetCC);
b(ne, &byte_loop_1);
bind(&done);
}
void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
Register end_offset,
Register filler) {
Label loop, entry;
b(&entry);
bind(&loop);
str(filler, MemOperand(start_offset, kPointerSize, PostIndex));
bind(&entry);
cmp(start_offset, end_offset);
b(lt, &loop);
}
void MacroAssembler::CheckFor32DRegs(Register scratch) {
mov(scratch, Operand(ExternalReference::cpu_features()));
ldr(scratch, MemOperand(scratch));
tst(scratch, Operand(1u << VFP32DREGS));
}
void MacroAssembler::SaveFPRegs(Register location, Register scratch) {
CheckFor32DRegs(scratch);
vstm(db_w, location, d16, d31, ne);
sub(location, location, Operand(16 * kDoubleSize), LeaveCC, eq);
vstm(db_w, location, d0, d15);
}
void MacroAssembler::RestoreFPRegs(Register location, Register scratch) {
CheckFor32DRegs(scratch);
vldm(ia_w, location, d0, d15);
vldm(ia_w, location, d16, d31, ne);
add(location, location, Operand(16 * kDoubleSize), LeaveCC, eq);
}
void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
Register first,
Register second,
Register scratch1,
Register scratch2,
Label* failure) {
int kFlatAsciiStringMask =
kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
int kFlatAsciiStringTag = ASCII_STRING_TYPE;
and_(scratch1, first, Operand(kFlatAsciiStringMask));
and_(scratch2, second, Operand(kFlatAsciiStringMask));
cmp(scratch1, Operand(kFlatAsciiStringTag));
// Ignore second test if first test failed.
cmp(scratch2, Operand(kFlatAsciiStringTag), eq);
b(ne, failure);
}
void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type,
Register scratch,
Label* failure) {
int kFlatAsciiStringMask =
kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
int kFlatAsciiStringTag = ASCII_STRING_TYPE;
and_(scratch, type, Operand(kFlatAsciiStringMask));
cmp(scratch, Operand(kFlatAsciiStringTag));
b(ne, failure);
}
static const int kRegisterPassedArguments = 4;
int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments,
int num_double_arguments) {
int stack_passed_words = 0;
if (use_eabi_hardfloat()) {
// In the hard floating point calling convention, we can use
// all double registers to pass doubles.
if (num_double_arguments > DoubleRegister::NumRegisters()) {
stack_passed_words +=
2 * (num_double_arguments - DoubleRegister::NumRegisters());
}
} else {
// In the soft floating point calling convention, every double
// argument is passed using two registers.
num_reg_arguments += 2 * num_double_arguments;
}
// Up to four simple arguments are passed in registers r0..r3.
if (num_reg_arguments > kRegisterPassedArguments) {
stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
}
return stack_passed_words;
}
void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
int num_double_arguments,
Register scratch) {
int frame_alignment = ActivationFrameAlignment();
int stack_passed_arguments = CalculateStackPassedWords(
num_reg_arguments, num_double_arguments);
if (frame_alignment > kPointerSize) {
// Make stack end at alignment and make room for num_arguments - 4 words
// and the original value of sp.
mov(scratch, sp);
sub(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
ASSERT(IsPowerOf2(frame_alignment));
and_(sp, sp, Operand(-frame_alignment));
str(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
} else {
sub(sp, sp, Operand(stack_passed_arguments * kPointerSize));
}
}
void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
Register scratch) {
PrepareCallCFunction(num_reg_arguments, 0, scratch);
}
void MacroAssembler::SetCallCDoubleArguments(DwVfpRegister dreg) {
if (use_eabi_hardfloat()) {
Move(d0, dreg);
} else {
vmov(r0, r1, dreg);
}
}
void MacroAssembler::SetCallCDoubleArguments(DwVfpRegister dreg1,
DwVfpRegister dreg2) {
if (use_eabi_hardfloat()) {
if (dreg2.is(d0)) {
ASSERT(!dreg1.is(d1));
Move(d1, dreg2);
Move(d0, dreg1);
} else {
Move(d0, dreg1);
Move(d1, dreg2);
}
} else {
vmov(r0, r1, dreg1);
vmov(r2, r3, dreg2);
}
}
void MacroAssembler::SetCallCDoubleArguments(DwVfpRegister dreg,
Register reg) {
if (use_eabi_hardfloat()) {
Move(d0, dreg);
Move(r0, reg);
} else {
Move(r2, reg);
vmov(r0, r1, dreg);
}
}
void MacroAssembler::CallCFunction(ExternalReference function,
int num_reg_arguments,
int num_double_arguments) {
mov(ip, Operand(function));
CallCFunctionHelper(ip, num_reg_arguments, num_double_arguments);
}
void MacroAssembler::CallCFunction(Register function,
int num_reg_arguments,
int num_double_arguments) {
CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
}
void MacroAssembler::CallCFunction(ExternalReference function,
int num_arguments) {
CallCFunction(function, num_arguments, 0);
}
void MacroAssembler::CallCFunction(Register function,
int num_arguments) {
CallCFunction(function, num_arguments, 0);
}
void MacroAssembler::CallCFunctionHelper(Register function,
int num_reg_arguments,
int num_double_arguments) {
ASSERT(has_frame());
// Make sure that the stack is aligned before calling a C function unless
// running in the simulator. The simulator has its own alignment check which
// provides more information.
#if defined(V8_HOST_ARCH_ARM)
if (emit_debug_code()) {
int frame_alignment = OS::ActivationFrameAlignment();
int frame_alignment_mask = frame_alignment - 1;
if (frame_alignment > kPointerSize) {
ASSERT(IsPowerOf2(frame_alignment));
Label alignment_as_expected;
tst(sp, Operand(frame_alignment_mask));
b(eq, &alignment_as_expected);
// Don't use Check here, as it will call Runtime_Abort possibly
// re-entering here.
stop("Unexpected alignment");
bind(&alignment_as_expected);
}
}
#endif
// Just call directly. The function called cannot cause a GC, or
// allow preemption, so the return address in the link register
// stays correct.
Call(function);
int stack_passed_arguments = CalculateStackPassedWords(
num_reg_arguments, num_double_arguments);
if (ActivationFrameAlignment() > kPointerSize) {
ldr(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
} else {
add(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize)));
}
}
void MacroAssembler::GetRelocatedValueLocation(Register ldr_location,
Register result) {
const uint32_t kLdrOffsetMask = (1 << 12) - 1;
const int32_t kPCRegOffset = 2 * kPointerSize;
ldr(result, MemOperand(ldr_location));
if (emit_debug_code()) {
// Check that the instruction is a ldr reg, [pc + offset] .
and_(result, result, Operand(kLdrPCPattern));
cmp(result, Operand(kLdrPCPattern));
Check(eq, "The instruction to patch should be a load from pc.");
// Result was clobbered. Restore it.
ldr(result, MemOperand(ldr_location));
}
// Get the address of the constant.
and_(result, result, Operand(kLdrOffsetMask));
add(result, ldr_location, Operand(result));
add(result, result, Operand(kPCRegOffset));
}
void MacroAssembler::CheckPageFlag(
Register object,
Register scratch,
int mask,
Condition cc,
Label* condition_met) {
Bfc(scratch, object, 0, kPageSizeBits);
ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
tst(scratch, Operand(mask));
b(cc, condition_met);
}
void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
Register scratch,
Label* if_deprecated) {
if (map->CanBeDeprecated()) {
mov(scratch, Operand(map));
ldr(scratch, FieldMemOperand(scratch, Map::kBitField3Offset));
tst(scratch, Operand(Smi::FromInt(Map::Deprecated::kMask)));
b(ne, if_deprecated);
}
}
void MacroAssembler::JumpIfBlack(Register object,
Register scratch0,
Register scratch1,
Label* on_black) {
HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern.
ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
}
void MacroAssembler::HasColor(Register object,
Register bitmap_scratch,
Register mask_scratch,
Label* has_color,
int first_bit,
int second_bit) {
ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, no_reg));
GetMarkBits(object, bitmap_scratch, mask_scratch);
Label other_color, word_boundary;
ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
tst(ip, Operand(mask_scratch));
b(first_bit == 1 ? eq : ne, &other_color);
// Shift left 1 by adding.
add(mask_scratch, mask_scratch, Operand(mask_scratch), SetCC);
b(eq, &word_boundary);
tst(ip, Operand(mask_scratch));
b(second_bit == 1 ? ne : eq, has_color);
jmp(&other_color);
bind(&word_boundary);
ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize));
tst(ip, Operand(1));
b(second_bit == 1 ? ne : eq, has_color);
bind(&other_color);
}
// Detect some, but not all, common pointer-free objects. This is used by the
// incremental write barrier which doesn't care about oddballs (they are always
// marked black immediately so this code is not hit).
void MacroAssembler::JumpIfDataObject(Register value,
Register scratch,
Label* not_data_object) {
Label is_data_object;
ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
b(eq, &is_data_object);
ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
// If it's a string and it's not a cons string then it's an object containing
// no GC pointers.
ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
tst(scratch, Operand(kIsIndirectStringMask | kIsNotStringMask));
b(ne, not_data_object);
bind(&is_data_object);
}
void MacroAssembler::GetMarkBits(Register addr_reg,
Register bitmap_reg,
Register mask_reg) {
ASSERT(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg));
and_(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask));
Ubfx(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
Ubfx(ip, addr_reg, kLowBits, kPageSizeBits - kLowBits);
add(bitmap_reg, bitmap_reg, Operand(ip, LSL, kPointerSizeLog2));
mov(ip, Operand(1));
mov(mask_reg, Operand(ip, LSL, mask_reg));
}
void MacroAssembler::EnsureNotWhite(
Register value,
Register bitmap_scratch,
Register mask_scratch,
Register load_scratch,
Label* value_is_white_and_not_data) {
ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, ip));
GetMarkBits(value, bitmap_scratch, mask_scratch);
// If the value is black or grey we don't need to do anything.
ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
Label done;
// Since both black and grey have a 1 in the first position and white does
// not have a 1 there we only need to check one bit.
ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
tst(mask_scratch, load_scratch);
b(ne, &done);
if (emit_debug_code()) {
// Check for impossible bit pattern.
Label ok;
// LSL may overflow, making the check conservative.
tst(load_scratch, Operand(mask_scratch, LSL, 1));
b(eq, &ok);
stop("Impossible marking bit pattern");
bind(&ok);
}
// Value is white. We check whether it is data that doesn't need scanning.
// Currently only checks for HeapNumber and non-cons strings.
Register map = load_scratch; // Holds map while checking type.
Register length = load_scratch; // Holds length of object after testing type.
Label is_data_object;
// Check for heap-number
ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
CompareRoot(map, Heap::kHeapNumberMapRootIndex);
mov(length, Operand(HeapNumber::kSize), LeaveCC, eq);
b(eq, &is_data_object);
// Check for strings.
ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
// If it's a string and it's not a cons string then it's an object containing
// no GC pointers.
Register instance_type = load_scratch;
ldrb(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
tst(instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask));
b(ne, value_is_white_and_not_data);
// It's a non-indirect (non-cons and non-slice) string.
// If it's external, the length is just ExternalString::kSize.
// Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
// External strings are the only ones with the kExternalStringTag bit
// set.
ASSERT_EQ(0, kSeqStringTag & kExternalStringTag);
ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
tst(instance_type, Operand(kExternalStringTag));
mov(length, Operand(ExternalString::kSize), LeaveCC, ne);
b(ne, &is_data_object);
// Sequential string, either ASCII or UC16.
// For ASCII (char-size of 1) we shift the smi tag away to get the length.
// For UC16 (char-size of 2) we just leave the smi tag in place, thereby
// getting the length multiplied by 2.
ASSERT(kOneByteStringTag == 4 && kStringEncodingMask == 4);
ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
ldr(ip, FieldMemOperand(value, String::kLengthOffset));
tst(instance_type, Operand(kStringEncodingMask));
mov(ip, Operand(ip, LSR, 1), LeaveCC, ne);
add(length, ip, Operand(SeqString::kHeaderSize + kObjectAlignmentMask));
and_(length, length, Operand(~kObjectAlignmentMask));
bind(&is_data_object);
// Value is a data object, and it is white. Mark it black. Since we know
// that the object is white we can make it black by flipping one bit.
ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
orr(ip, ip, Operand(mask_scratch));
str(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
and_(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask));
ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
add(ip, ip, Operand(length));
str(ip, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
bind(&done);
}
void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) {
Usat(output_reg, 8, Operand(input_reg));
}
void MacroAssembler::ClampDoubleToUint8(Register result_reg,
DwVfpRegister input_reg,
DwVfpRegister temp_double_reg) {
Label above_zero;
Label done;
Label in_bounds;
Vmov(temp_double_reg, 0.0);
VFPCompareAndSetFlags(input_reg, temp_double_reg);
b(gt, &above_zero);
// Double value is less than zero, NaN or Inf, return 0.
mov(result_reg, Operand::Zero());
b(al, &done);
// Double value is >= 255, return 255.
bind(&above_zero);
Vmov(temp_double_reg, 255.0, result_reg);
VFPCompareAndSetFlags(input_reg, temp_double_reg);
b(le, &in_bounds);
mov(result_reg, Operand(255));
b(al, &done);
// In 0-255 range, round and truncate.
bind(&in_bounds);
// Save FPSCR.
vmrs(ip);
// Set rounding mode to round to the nearest integer by clearing bits[23:22].
bic(result_reg, ip, Operand(kVFPRoundingModeMask));
vmsr(result_reg);
vcvt_s32_f64(input_reg.low(), input_reg, kFPSCRRounding);
vmov(result_reg, input_reg.low());
// Restore FPSCR.
vmsr(ip);
bind(&done);
}
void MacroAssembler::LoadInstanceDescriptors(Register map,
Register descriptors) {
ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
}
void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
}
void MacroAssembler::EnumLength(Register dst, Register map) {
STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
and_(dst, dst, Operand(Smi::FromInt(Map::EnumLengthBits::kMask)));
}
void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) {
Register empty_fixed_array_value = r6;
LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
Label next, start;
mov(r2, r0);
// Check if the enum length field is properly initialized, indicating that
// there is an enum cache.
ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
EnumLength(r3, r1);
cmp(r3, Operand(Smi::FromInt(Map::kInvalidEnumCache)));
b(eq, call_runtime);
jmp(&start);
bind(&next);
ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
// For all objects but the receiver, check that the cache is empty.
EnumLength(r3, r1);
cmp(r3, Operand(Smi::FromInt(0)));
b(ne, call_runtime);
bind(&start);
// Check that there are no elements. Register r2 contains the current JS
// object we've reached through the prototype chain.
ldr(r2, FieldMemOperand(r2, JSObject::kElementsOffset));
cmp(r2, empty_fixed_array_value);
b(ne, call_runtime);
ldr(r2, FieldMemOperand(r1, Map::kPrototypeOffset));
cmp(r2, null_value);
b(ne, &next);
}
void MacroAssembler::TestJSArrayForAllocationSiteInfo(
Register receiver_reg,
Register scratch_reg) {
Label no_info_available;
ExternalReference new_space_start =
ExternalReference::new_space_start(isolate());
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
add(scratch_reg, receiver_reg,
Operand(JSArray::kSize + AllocationSiteInfo::kSize - kHeapObjectTag));
cmp(scratch_reg, Operand(new_space_start));
b(lt, &no_info_available);
mov(ip, Operand(new_space_allocation_top));
ldr(ip, MemOperand(ip));
cmp(scratch_reg, ip);
b(gt, &no_info_available);
ldr(scratch_reg, MemOperand(scratch_reg, -AllocationSiteInfo::kSize));
cmp(scratch_reg,
Operand(Handle<Map>(isolate()->heap()->allocation_site_info_map())));
bind(&no_info_available);
}
#ifdef DEBUG
bool AreAliased(Register reg1,
Register reg2,
Register reg3,
Register reg4,
Register reg5,
Register reg6) {
int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid();
RegList regs = 0;
if (reg1.is_valid()) regs |= reg1.bit();
if (reg2.is_valid()) regs |= reg2.bit();
if (reg3.is_valid()) regs |= reg3.bit();
if (reg4.is_valid()) regs |= reg4.bit();
if (reg5.is_valid()) regs |= reg5.bit();
if (reg6.is_valid()) regs |= reg6.bit();
int n_of_non_aliasing_regs = NumRegs(regs);
return n_of_valid_regs != n_of_non_aliasing_regs;
}
#endif
CodePatcher::CodePatcher(byte* address, int instructions)
: address_(address),
size_(instructions * Assembler::kInstrSize),
masm_(NULL, address, size_ + Assembler::kGap) {
// Create a new macro assembler pointing to the address of the code to patch.
// The size is adjusted with kGap on order for the assembler to generate size
// bytes of instructions without failing with buffer size constraints.
ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
CodePatcher::~CodePatcher() {
// Indicate that code has changed.
CPU::FlushICache(address_, size_);
// Check that the code was patched as expected.
ASSERT(masm_.pc_ == address_ + size_);
ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
void CodePatcher::Emit(Instr instr) {
masm()->emit(instr);
}
void CodePatcher::Emit(Address addr) {
masm()->emit(reinterpret_cast<Instr>(addr));
}
void CodePatcher::EmitCondition(Condition cond) {
Instr instr = Assembler::instr_at(masm_.pc_);
instr = (instr & ~kCondMask) | cond;
masm_.emit(instr);
}
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM