5fd2b71236
MarkingParity was used to avoid performing an operation on an object if it was marked multiple times. We no longer mark things multiple times, so this concept is no longer required. BUG=chromium:666275 Review-Url: https://codereview.chromium.org/2529173002 Cr-Commit-Position: refs/heads/master@{#41354}
775 lines
30 KiB
C++
775 lines
30 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/mips/codegen-mips.h"
|
|
|
|
#if V8_TARGET_ARCH_MIPS
|
|
|
|
#include <memory>
|
|
|
|
#include "src/codegen.h"
|
|
#include "src/macro-assembler.h"
|
|
#include "src/mips/simulator-mips.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
#define __ masm.
|
|
|
|
#if defined(V8_HOST_ARCH_MIPS)
|
|
MemCopyUint8Function CreateMemCopyUint8Function(Isolate* isolate,
|
|
MemCopyUint8Function stub) {
|
|
#if defined(USE_SIMULATOR) || defined(_MIPS_ARCH_MIPS32R6) || \
|
|
defined(_MIPS_ARCH_MIPS32RX)
|
|
return stub;
|
|
#else
|
|
size_t actual_size;
|
|
byte* buffer =
|
|
static_cast<byte*>(base::OS::Allocate(3 * KB, &actual_size, true));
|
|
if (buffer == nullptr) return stub;
|
|
|
|
// This code assumes that cache lines are 32 bytes and if the cache line is
|
|
// larger it will not work correctly.
|
|
MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
|
|
CodeObjectRequired::kNo);
|
|
|
|
{
|
|
Label lastb, unaligned, aligned, chkw,
|
|
loop16w, chk1w, wordCopy_loop, skip_pref, lastbloop,
|
|
leave, ua_chk16w, ua_loop16w, ua_skip_pref, ua_chkw,
|
|
ua_chk1w, ua_wordCopy_loop, ua_smallCopy, ua_smallCopy_loop;
|
|
|
|
// The size of each prefetch.
|
|
uint32_t pref_chunk = 32;
|
|
// The maximum size of a prefetch, it must not be less than pref_chunk.
|
|
// If the real size of a prefetch is greater than max_pref_size and
|
|
// the kPrefHintPrepareForStore hint is used, the code will not work
|
|
// correctly.
|
|
uint32_t max_pref_size = 128;
|
|
DCHECK(pref_chunk < max_pref_size);
|
|
|
|
// pref_limit is set based on the fact that we never use an offset
|
|
// greater then 5 on a store pref and that a single pref can
|
|
// never be larger then max_pref_size.
|
|
uint32_t pref_limit = (5 * pref_chunk) + max_pref_size;
|
|
int32_t pref_hint_load = kPrefHintLoadStreamed;
|
|
int32_t pref_hint_store = kPrefHintPrepareForStore;
|
|
uint32_t loadstore_chunk = 4;
|
|
|
|
// The initial prefetches may fetch bytes that are before the buffer being
|
|
// copied. Start copies with an offset of 4 so avoid this situation when
|
|
// using kPrefHintPrepareForStore.
|
|
DCHECK(pref_hint_store != kPrefHintPrepareForStore ||
|
|
pref_chunk * 4 >= max_pref_size);
|
|
|
|
// If the size is less than 8, go to lastb. Regardless of size,
|
|
// copy dst pointer to v0 for the retuen value.
|
|
__ slti(t2, a2, 2 * loadstore_chunk);
|
|
__ bne(t2, zero_reg, &lastb);
|
|
__ mov(v0, a0); // In delay slot.
|
|
|
|
// If src and dst have different alignments, go to unaligned, if they
|
|
// have the same alignment (but are not actually aligned) do a partial
|
|
// load/store to make them aligned. If they are both already aligned
|
|
// we can start copying at aligned.
|
|
__ xor_(t8, a1, a0);
|
|
__ andi(t8, t8, loadstore_chunk - 1); // t8 is a0/a1 word-displacement.
|
|
__ bne(t8, zero_reg, &unaligned);
|
|
__ subu(a3, zero_reg, a0); // In delay slot.
|
|
|
|
__ andi(a3, a3, loadstore_chunk - 1); // Copy a3 bytes to align a0/a1.
|
|
__ beq(a3, zero_reg, &aligned); // Already aligned.
|
|
__ subu(a2, a2, a3); // In delay slot. a2 is the remining bytes count.
|
|
|
|
if (kArchEndian == kLittle) {
|
|
__ lwr(t8, MemOperand(a1));
|
|
__ addu(a1, a1, a3);
|
|
__ swr(t8, MemOperand(a0));
|
|
__ addu(a0, a0, a3);
|
|
} else {
|
|
__ lwl(t8, MemOperand(a1));
|
|
__ addu(a1, a1, a3);
|
|
__ swl(t8, MemOperand(a0));
|
|
__ addu(a0, a0, a3);
|
|
}
|
|
// Now dst/src are both aligned to (word) aligned addresses. Set a2 to
|
|
// count how many bytes we have to copy after all the 64 byte chunks are
|
|
// copied and a3 to the dst pointer after all the 64 byte chunks have been
|
|
// copied. We will loop, incrementing a0 and a1 until a0 equals a3.
|
|
__ bind(&aligned);
|
|
__ andi(t8, a2, 0x3f);
|
|
__ beq(a2, t8, &chkw); // Less than 64?
|
|
__ subu(a3, a2, t8); // In delay slot.
|
|
__ addu(a3, a0, a3); // Now a3 is the final dst after loop.
|
|
|
|
// When in the loop we prefetch with kPrefHintPrepareForStore hint,
|
|
// in this case the a0+x should be past the "t0-32" address. This means:
|
|
// for x=128 the last "safe" a0 address is "t0-160". Alternatively, for
|
|
// x=64 the last "safe" a0 address is "t0-96". In the current version we
|
|
// will use "pref hint, 128(a0)", so "t0-160" is the limit.
|
|
if (pref_hint_store == kPrefHintPrepareForStore) {
|
|
__ addu(t0, a0, a2); // t0 is the "past the end" address.
|
|
__ Subu(t9, t0, pref_limit); // t9 is the "last safe pref" address.
|
|
}
|
|
|
|
__ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk));
|
|
__ Pref(pref_hint_load, MemOperand(a1, 1 * pref_chunk));
|
|
__ Pref(pref_hint_load, MemOperand(a1, 2 * pref_chunk));
|
|
__ Pref(pref_hint_load, MemOperand(a1, 3 * pref_chunk));
|
|
|
|
if (pref_hint_store != kPrefHintPrepareForStore) {
|
|
__ Pref(pref_hint_store, MemOperand(a0, 1 * pref_chunk));
|
|
__ Pref(pref_hint_store, MemOperand(a0, 2 * pref_chunk));
|
|
__ Pref(pref_hint_store, MemOperand(a0, 3 * pref_chunk));
|
|
}
|
|
__ bind(&loop16w);
|
|
__ lw(t0, MemOperand(a1));
|
|
|
|
if (pref_hint_store == kPrefHintPrepareForStore) {
|
|
__ sltu(v1, t9, a0); // If a0 > t9, don't use next prefetch.
|
|
__ Branch(USE_DELAY_SLOT, &skip_pref, gt, v1, Operand(zero_reg));
|
|
}
|
|
__ lw(t1, MemOperand(a1, 1, loadstore_chunk)); // Maybe in delay slot.
|
|
|
|
__ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk));
|
|
__ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk));
|
|
|
|
__ bind(&skip_pref);
|
|
__ lw(t2, MemOperand(a1, 2, loadstore_chunk));
|
|
__ lw(t3, MemOperand(a1, 3, loadstore_chunk));
|
|
__ lw(t4, MemOperand(a1, 4, loadstore_chunk));
|
|
__ lw(t5, MemOperand(a1, 5, loadstore_chunk));
|
|
__ lw(t6, MemOperand(a1, 6, loadstore_chunk));
|
|
__ lw(t7, MemOperand(a1, 7, loadstore_chunk));
|
|
__ Pref(pref_hint_load, MemOperand(a1, 4 * pref_chunk));
|
|
|
|
__ sw(t0, MemOperand(a0));
|
|
__ sw(t1, MemOperand(a0, 1, loadstore_chunk));
|
|
__ sw(t2, MemOperand(a0, 2, loadstore_chunk));
|
|
__ sw(t3, MemOperand(a0, 3, loadstore_chunk));
|
|
__ sw(t4, MemOperand(a0, 4, loadstore_chunk));
|
|
__ sw(t5, MemOperand(a0, 5, loadstore_chunk));
|
|
__ sw(t6, MemOperand(a0, 6, loadstore_chunk));
|
|
__ sw(t7, MemOperand(a0, 7, loadstore_chunk));
|
|
|
|
__ lw(t0, MemOperand(a1, 8, loadstore_chunk));
|
|
__ lw(t1, MemOperand(a1, 9, loadstore_chunk));
|
|
__ lw(t2, MemOperand(a1, 10, loadstore_chunk));
|
|
__ lw(t3, MemOperand(a1, 11, loadstore_chunk));
|
|
__ lw(t4, MemOperand(a1, 12, loadstore_chunk));
|
|
__ lw(t5, MemOperand(a1, 13, loadstore_chunk));
|
|
__ lw(t6, MemOperand(a1, 14, loadstore_chunk));
|
|
__ lw(t7, MemOperand(a1, 15, loadstore_chunk));
|
|
__ Pref(pref_hint_load, MemOperand(a1, 5 * pref_chunk));
|
|
|
|
__ sw(t0, MemOperand(a0, 8, loadstore_chunk));
|
|
__ sw(t1, MemOperand(a0, 9, loadstore_chunk));
|
|
__ sw(t2, MemOperand(a0, 10, loadstore_chunk));
|
|
__ sw(t3, MemOperand(a0, 11, loadstore_chunk));
|
|
__ sw(t4, MemOperand(a0, 12, loadstore_chunk));
|
|
__ sw(t5, MemOperand(a0, 13, loadstore_chunk));
|
|
__ sw(t6, MemOperand(a0, 14, loadstore_chunk));
|
|
__ sw(t7, MemOperand(a0, 15, loadstore_chunk));
|
|
__ addiu(a0, a0, 16 * loadstore_chunk);
|
|
__ bne(a0, a3, &loop16w);
|
|
__ addiu(a1, a1, 16 * loadstore_chunk); // In delay slot.
|
|
__ mov(a2, t8);
|
|
|
|
// Here we have src and dest word-aligned but less than 64-bytes to go.
|
|
// Check for a 32 bytes chunk and copy if there is one. Otherwise jump
|
|
// down to chk1w to handle the tail end of the copy.
|
|
__ bind(&chkw);
|
|
__ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk));
|
|
__ andi(t8, a2, 0x1f);
|
|
__ beq(a2, t8, &chk1w); // Less than 32?
|
|
__ nop(); // In delay slot.
|
|
__ lw(t0, MemOperand(a1));
|
|
__ lw(t1, MemOperand(a1, 1, loadstore_chunk));
|
|
__ lw(t2, MemOperand(a1, 2, loadstore_chunk));
|
|
__ lw(t3, MemOperand(a1, 3, loadstore_chunk));
|
|
__ lw(t4, MemOperand(a1, 4, loadstore_chunk));
|
|
__ lw(t5, MemOperand(a1, 5, loadstore_chunk));
|
|
__ lw(t6, MemOperand(a1, 6, loadstore_chunk));
|
|
__ lw(t7, MemOperand(a1, 7, loadstore_chunk));
|
|
__ addiu(a1, a1, 8 * loadstore_chunk);
|
|
__ sw(t0, MemOperand(a0));
|
|
__ sw(t1, MemOperand(a0, 1, loadstore_chunk));
|
|
__ sw(t2, MemOperand(a0, 2, loadstore_chunk));
|
|
__ sw(t3, MemOperand(a0, 3, loadstore_chunk));
|
|
__ sw(t4, MemOperand(a0, 4, loadstore_chunk));
|
|
__ sw(t5, MemOperand(a0, 5, loadstore_chunk));
|
|
__ sw(t6, MemOperand(a0, 6, loadstore_chunk));
|
|
__ sw(t7, MemOperand(a0, 7, loadstore_chunk));
|
|
__ addiu(a0, a0, 8 * loadstore_chunk);
|
|
|
|
// Here we have less than 32 bytes to copy. Set up for a loop to copy
|
|
// one word at a time. Set a2 to count how many bytes we have to copy
|
|
// after all the word chunks are copied and a3 to the dst pointer after
|
|
// all the word chunks have been copied. We will loop, incrementing a0
|
|
// and a1 untill a0 equals a3.
|
|
__ bind(&chk1w);
|
|
__ andi(a2, t8, loadstore_chunk - 1);
|
|
__ beq(a2, t8, &lastb);
|
|
__ subu(a3, t8, a2); // In delay slot.
|
|
__ addu(a3, a0, a3);
|
|
|
|
__ bind(&wordCopy_loop);
|
|
__ lw(t3, MemOperand(a1));
|
|
__ addiu(a0, a0, loadstore_chunk);
|
|
__ addiu(a1, a1, loadstore_chunk);
|
|
__ bne(a0, a3, &wordCopy_loop);
|
|
__ sw(t3, MemOperand(a0, -1, loadstore_chunk)); // In delay slot.
|
|
|
|
__ bind(&lastb);
|
|
__ Branch(&leave, le, a2, Operand(zero_reg));
|
|
__ addu(a3, a0, a2);
|
|
|
|
__ bind(&lastbloop);
|
|
__ lb(v1, MemOperand(a1));
|
|
__ addiu(a0, a0, 1);
|
|
__ addiu(a1, a1, 1);
|
|
__ bne(a0, a3, &lastbloop);
|
|
__ sb(v1, MemOperand(a0, -1)); // In delay slot.
|
|
|
|
__ bind(&leave);
|
|
__ jr(ra);
|
|
__ nop();
|
|
|
|
// Unaligned case. Only the dst gets aligned so we need to do partial
|
|
// loads of the source followed by normal stores to the dst (once we
|
|
// have aligned the destination).
|
|
__ bind(&unaligned);
|
|
__ andi(a3, a3, loadstore_chunk - 1); // Copy a3 bytes to align a0/a1.
|
|
__ beq(a3, zero_reg, &ua_chk16w);
|
|
__ subu(a2, a2, a3); // In delay slot.
|
|
|
|
if (kArchEndian == kLittle) {
|
|
__ lwr(v1, MemOperand(a1));
|
|
__ lwl(v1,
|
|
MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ addu(a1, a1, a3);
|
|
__ swr(v1, MemOperand(a0));
|
|
__ addu(a0, a0, a3);
|
|
} else {
|
|
__ lwl(v1, MemOperand(a1));
|
|
__ lwr(v1,
|
|
MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ addu(a1, a1, a3);
|
|
__ swl(v1, MemOperand(a0));
|
|
__ addu(a0, a0, a3);
|
|
}
|
|
|
|
// Now the dst (but not the source) is aligned. Set a2 to count how many
|
|
// bytes we have to copy after all the 64 byte chunks are copied and a3 to
|
|
// the dst pointer after all the 64 byte chunks have been copied. We will
|
|
// loop, incrementing a0 and a1 until a0 equals a3.
|
|
__ bind(&ua_chk16w);
|
|
__ andi(t8, a2, 0x3f);
|
|
__ beq(a2, t8, &ua_chkw);
|
|
__ subu(a3, a2, t8); // In delay slot.
|
|
__ addu(a3, a0, a3);
|
|
|
|
if (pref_hint_store == kPrefHintPrepareForStore) {
|
|
__ addu(t0, a0, a2);
|
|
__ Subu(t9, t0, pref_limit);
|
|
}
|
|
|
|
__ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk));
|
|
__ Pref(pref_hint_load, MemOperand(a1, 1 * pref_chunk));
|
|
__ Pref(pref_hint_load, MemOperand(a1, 2 * pref_chunk));
|
|
|
|
if (pref_hint_store != kPrefHintPrepareForStore) {
|
|
__ Pref(pref_hint_store, MemOperand(a0, 1 * pref_chunk));
|
|
__ Pref(pref_hint_store, MemOperand(a0, 2 * pref_chunk));
|
|
__ Pref(pref_hint_store, MemOperand(a0, 3 * pref_chunk));
|
|
}
|
|
|
|
__ bind(&ua_loop16w);
|
|
__ Pref(pref_hint_load, MemOperand(a1, 3 * pref_chunk));
|
|
if (kArchEndian == kLittle) {
|
|
__ lwr(t0, MemOperand(a1));
|
|
__ lwr(t1, MemOperand(a1, 1, loadstore_chunk));
|
|
__ lwr(t2, MemOperand(a1, 2, loadstore_chunk));
|
|
|
|
if (pref_hint_store == kPrefHintPrepareForStore) {
|
|
__ sltu(v1, t9, a0);
|
|
__ Branch(USE_DELAY_SLOT, &ua_skip_pref, gt, v1, Operand(zero_reg));
|
|
}
|
|
__ lwr(t3, MemOperand(a1, 3, loadstore_chunk)); // Maybe in delay slot.
|
|
|
|
__ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk));
|
|
__ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk));
|
|
|
|
__ bind(&ua_skip_pref);
|
|
__ lwr(t4, MemOperand(a1, 4, loadstore_chunk));
|
|
__ lwr(t5, MemOperand(a1, 5, loadstore_chunk));
|
|
__ lwr(t6, MemOperand(a1, 6, loadstore_chunk));
|
|
__ lwr(t7, MemOperand(a1, 7, loadstore_chunk));
|
|
__ lwl(t0,
|
|
MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t1,
|
|
MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t2,
|
|
MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t3,
|
|
MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t4,
|
|
MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t5,
|
|
MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t6,
|
|
MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t7,
|
|
MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
|
|
} else {
|
|
__ lwl(t0, MemOperand(a1));
|
|
__ lwl(t1, MemOperand(a1, 1, loadstore_chunk));
|
|
__ lwl(t2, MemOperand(a1, 2, loadstore_chunk));
|
|
|
|
if (pref_hint_store == kPrefHintPrepareForStore) {
|
|
__ sltu(v1, t9, a0);
|
|
__ Branch(USE_DELAY_SLOT, &ua_skip_pref, gt, v1, Operand(zero_reg));
|
|
}
|
|
__ lwl(t3, MemOperand(a1, 3, loadstore_chunk)); // Maybe in delay slot.
|
|
|
|
__ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk));
|
|
__ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk));
|
|
|
|
__ bind(&ua_skip_pref);
|
|
__ lwl(t4, MemOperand(a1, 4, loadstore_chunk));
|
|
__ lwl(t5, MemOperand(a1, 5, loadstore_chunk));
|
|
__ lwl(t6, MemOperand(a1, 6, loadstore_chunk));
|
|
__ lwl(t7, MemOperand(a1, 7, loadstore_chunk));
|
|
__ lwr(t0,
|
|
MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t1,
|
|
MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t2,
|
|
MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t3,
|
|
MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t4,
|
|
MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t5,
|
|
MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t6,
|
|
MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t7,
|
|
MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
|
|
}
|
|
__ Pref(pref_hint_load, MemOperand(a1, 4 * pref_chunk));
|
|
__ sw(t0, MemOperand(a0));
|
|
__ sw(t1, MemOperand(a0, 1, loadstore_chunk));
|
|
__ sw(t2, MemOperand(a0, 2, loadstore_chunk));
|
|
__ sw(t3, MemOperand(a0, 3, loadstore_chunk));
|
|
__ sw(t4, MemOperand(a0, 4, loadstore_chunk));
|
|
__ sw(t5, MemOperand(a0, 5, loadstore_chunk));
|
|
__ sw(t6, MemOperand(a0, 6, loadstore_chunk));
|
|
__ sw(t7, MemOperand(a0, 7, loadstore_chunk));
|
|
if (kArchEndian == kLittle) {
|
|
__ lwr(t0, MemOperand(a1, 8, loadstore_chunk));
|
|
__ lwr(t1, MemOperand(a1, 9, loadstore_chunk));
|
|
__ lwr(t2, MemOperand(a1, 10, loadstore_chunk));
|
|
__ lwr(t3, MemOperand(a1, 11, loadstore_chunk));
|
|
__ lwr(t4, MemOperand(a1, 12, loadstore_chunk));
|
|
__ lwr(t5, MemOperand(a1, 13, loadstore_chunk));
|
|
__ lwr(t6, MemOperand(a1, 14, loadstore_chunk));
|
|
__ lwr(t7, MemOperand(a1, 15, loadstore_chunk));
|
|
__ lwl(t0,
|
|
MemOperand(a1, 9, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t1,
|
|
MemOperand(a1, 10, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t2,
|
|
MemOperand(a1, 11, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t3,
|
|
MemOperand(a1, 12, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t4,
|
|
MemOperand(a1, 13, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t5,
|
|
MemOperand(a1, 14, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t6,
|
|
MemOperand(a1, 15, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t7,
|
|
MemOperand(a1, 16, loadstore_chunk, MemOperand::offset_minus_one));
|
|
} else {
|
|
__ lwl(t0, MemOperand(a1, 8, loadstore_chunk));
|
|
__ lwl(t1, MemOperand(a1, 9, loadstore_chunk));
|
|
__ lwl(t2, MemOperand(a1, 10, loadstore_chunk));
|
|
__ lwl(t3, MemOperand(a1, 11, loadstore_chunk));
|
|
__ lwl(t4, MemOperand(a1, 12, loadstore_chunk));
|
|
__ lwl(t5, MemOperand(a1, 13, loadstore_chunk));
|
|
__ lwl(t6, MemOperand(a1, 14, loadstore_chunk));
|
|
__ lwl(t7, MemOperand(a1, 15, loadstore_chunk));
|
|
__ lwr(t0,
|
|
MemOperand(a1, 9, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t1,
|
|
MemOperand(a1, 10, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t2,
|
|
MemOperand(a1, 11, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t3,
|
|
MemOperand(a1, 12, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t4,
|
|
MemOperand(a1, 13, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t5,
|
|
MemOperand(a1, 14, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t6,
|
|
MemOperand(a1, 15, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t7,
|
|
MemOperand(a1, 16, loadstore_chunk, MemOperand::offset_minus_one));
|
|
}
|
|
__ Pref(pref_hint_load, MemOperand(a1, 5 * pref_chunk));
|
|
__ sw(t0, MemOperand(a0, 8, loadstore_chunk));
|
|
__ sw(t1, MemOperand(a0, 9, loadstore_chunk));
|
|
__ sw(t2, MemOperand(a0, 10, loadstore_chunk));
|
|
__ sw(t3, MemOperand(a0, 11, loadstore_chunk));
|
|
__ sw(t4, MemOperand(a0, 12, loadstore_chunk));
|
|
__ sw(t5, MemOperand(a0, 13, loadstore_chunk));
|
|
__ sw(t6, MemOperand(a0, 14, loadstore_chunk));
|
|
__ sw(t7, MemOperand(a0, 15, loadstore_chunk));
|
|
__ addiu(a0, a0, 16 * loadstore_chunk);
|
|
__ bne(a0, a3, &ua_loop16w);
|
|
__ addiu(a1, a1, 16 * loadstore_chunk); // In delay slot.
|
|
__ mov(a2, t8);
|
|
|
|
// Here less than 64-bytes. Check for
|
|
// a 32 byte chunk and copy if there is one. Otherwise jump down to
|
|
// ua_chk1w to handle the tail end of the copy.
|
|
__ bind(&ua_chkw);
|
|
__ Pref(pref_hint_load, MemOperand(a1));
|
|
__ andi(t8, a2, 0x1f);
|
|
|
|
__ beq(a2, t8, &ua_chk1w);
|
|
__ nop(); // In delay slot.
|
|
if (kArchEndian == kLittle) {
|
|
__ lwr(t0, MemOperand(a1));
|
|
__ lwr(t1, MemOperand(a1, 1, loadstore_chunk));
|
|
__ lwr(t2, MemOperand(a1, 2, loadstore_chunk));
|
|
__ lwr(t3, MemOperand(a1, 3, loadstore_chunk));
|
|
__ lwr(t4, MemOperand(a1, 4, loadstore_chunk));
|
|
__ lwr(t5, MemOperand(a1, 5, loadstore_chunk));
|
|
__ lwr(t6, MemOperand(a1, 6, loadstore_chunk));
|
|
__ lwr(t7, MemOperand(a1, 7, loadstore_chunk));
|
|
__ lwl(t0,
|
|
MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t1,
|
|
MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t2,
|
|
MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t3,
|
|
MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t4,
|
|
MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t5,
|
|
MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t6,
|
|
MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwl(t7,
|
|
MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
|
|
} else {
|
|
__ lwl(t0, MemOperand(a1));
|
|
__ lwl(t1, MemOperand(a1, 1, loadstore_chunk));
|
|
__ lwl(t2, MemOperand(a1, 2, loadstore_chunk));
|
|
__ lwl(t3, MemOperand(a1, 3, loadstore_chunk));
|
|
__ lwl(t4, MemOperand(a1, 4, loadstore_chunk));
|
|
__ lwl(t5, MemOperand(a1, 5, loadstore_chunk));
|
|
__ lwl(t6, MemOperand(a1, 6, loadstore_chunk));
|
|
__ lwl(t7, MemOperand(a1, 7, loadstore_chunk));
|
|
__ lwr(t0,
|
|
MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t1,
|
|
MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t2,
|
|
MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t3,
|
|
MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t4,
|
|
MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t5,
|
|
MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t6,
|
|
MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
|
|
__ lwr(t7,
|
|
MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
|
|
}
|
|
__ addiu(a1, a1, 8 * loadstore_chunk);
|
|
__ sw(t0, MemOperand(a0));
|
|
__ sw(t1, MemOperand(a0, 1, loadstore_chunk));
|
|
__ sw(t2, MemOperand(a0, 2, loadstore_chunk));
|
|
__ sw(t3, MemOperand(a0, 3, loadstore_chunk));
|
|
__ sw(t4, MemOperand(a0, 4, loadstore_chunk));
|
|
__ sw(t5, MemOperand(a0, 5, loadstore_chunk));
|
|
__ sw(t6, MemOperand(a0, 6, loadstore_chunk));
|
|
__ sw(t7, MemOperand(a0, 7, loadstore_chunk));
|
|
__ addiu(a0, a0, 8 * loadstore_chunk);
|
|
|
|
// Less than 32 bytes to copy. Set up for a loop to
|
|
// copy one word at a time.
|
|
__ bind(&ua_chk1w);
|
|
__ andi(a2, t8, loadstore_chunk - 1);
|
|
__ beq(a2, t8, &ua_smallCopy);
|
|
__ subu(a3, t8, a2); // In delay slot.
|
|
__ addu(a3, a0, a3);
|
|
|
|
__ bind(&ua_wordCopy_loop);
|
|
if (kArchEndian == kLittle) {
|
|
__ lwr(v1, MemOperand(a1));
|
|
__ lwl(v1,
|
|
MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
|
|
} else {
|
|
__ lwl(v1, MemOperand(a1));
|
|
__ lwr(v1,
|
|
MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
|
|
}
|
|
__ addiu(a0, a0, loadstore_chunk);
|
|
__ addiu(a1, a1, loadstore_chunk);
|
|
__ bne(a0, a3, &ua_wordCopy_loop);
|
|
__ sw(v1, MemOperand(a0, -1, loadstore_chunk)); // In delay slot.
|
|
|
|
// Copy the last 8 bytes.
|
|
__ bind(&ua_smallCopy);
|
|
__ beq(a2, zero_reg, &leave);
|
|
__ addu(a3, a0, a2); // In delay slot.
|
|
|
|
__ bind(&ua_smallCopy_loop);
|
|
__ lb(v1, MemOperand(a1));
|
|
__ addiu(a0, a0, 1);
|
|
__ addiu(a1, a1, 1);
|
|
__ bne(a0, a3, &ua_smallCopy_loop);
|
|
__ sb(v1, MemOperand(a0, -1)); // In delay slot.
|
|
|
|
__ jr(ra);
|
|
__ nop();
|
|
}
|
|
CodeDesc desc;
|
|
masm.GetCode(&desc);
|
|
DCHECK(!RelocInfo::RequiresRelocation(desc));
|
|
|
|
Assembler::FlushICache(isolate, buffer, actual_size);
|
|
base::OS::ProtectCode(buffer, actual_size);
|
|
return FUNCTION_CAST<MemCopyUint8Function>(buffer);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) {
|
|
#if defined(USE_SIMULATOR)
|
|
return nullptr;
|
|
#else
|
|
size_t actual_size;
|
|
byte* buffer =
|
|
static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
|
|
if (buffer == nullptr) return nullptr;
|
|
|
|
MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
|
|
CodeObjectRequired::kNo);
|
|
|
|
__ MovFromFloatParameter(f12);
|
|
__ sqrt_d(f0, f12);
|
|
__ MovToFloatResult(f0);
|
|
__ Ret();
|
|
|
|
CodeDesc desc;
|
|
masm.GetCode(&desc);
|
|
DCHECK(!RelocInfo::RequiresRelocation(desc));
|
|
|
|
Assembler::FlushICache(isolate, buffer, actual_size);
|
|
base::OS::ProtectCode(buffer, actual_size);
|
|
return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer);
|
|
#endif
|
|
}
|
|
|
|
#undef __
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
// Platform-specific RuntimeCallHelper functions.
|
|
|
|
void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
|
|
masm->EnterFrame(StackFrame::INTERNAL);
|
|
DCHECK(!masm->has_frame());
|
|
masm->set_has_frame(true);
|
|
}
|
|
|
|
|
|
void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
|
|
masm->LeaveFrame(StackFrame::INTERNAL);
|
|
DCHECK(masm->has_frame());
|
|
masm->set_has_frame(false);
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
// Code generators
|
|
|
|
#define __ ACCESS_MASM(masm)
|
|
|
|
void StringCharLoadGenerator::Generate(MacroAssembler* masm,
|
|
Register string,
|
|
Register index,
|
|
Register result,
|
|
Label* call_runtime) {
|
|
// Fetch the instance type of the receiver into result register.
|
|
__ lw(result, FieldMemOperand(string, HeapObject::kMapOffset));
|
|
__ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
|
|
|
|
// We need special handling for indirect strings.
|
|
Label check_sequential;
|
|
__ And(at, result, Operand(kIsIndirectStringMask));
|
|
__ Branch(&check_sequential, eq, at, Operand(zero_reg));
|
|
|
|
// Dispatch on the indirect string shape: slice or cons.
|
|
Label cons_string;
|
|
__ And(at, result, Operand(kSlicedNotConsMask));
|
|
__ Branch(&cons_string, eq, at, Operand(zero_reg));
|
|
|
|
// Handle slices.
|
|
Label indirect_string_loaded;
|
|
__ lw(result, FieldMemOperand(string, SlicedString::kOffsetOffset));
|
|
__ lw(string, FieldMemOperand(string, SlicedString::kParentOffset));
|
|
__ sra(at, result, kSmiTagSize);
|
|
__ Addu(index, index, at);
|
|
__ jmp(&indirect_string_loaded);
|
|
|
|
// Handle cons strings.
|
|
// Check whether the right hand side is the empty string (i.e. if
|
|
// this is really a flat string in a cons string). If that is not
|
|
// the case we would rather go to the runtime system now to flatten
|
|
// the string.
|
|
__ bind(&cons_string);
|
|
__ lw(result, FieldMemOperand(string, ConsString::kSecondOffset));
|
|
__ LoadRoot(at, Heap::kempty_stringRootIndex);
|
|
__ Branch(call_runtime, ne, result, Operand(at));
|
|
// Get the first of the two strings and load its instance type.
|
|
__ lw(string, FieldMemOperand(string, ConsString::kFirstOffset));
|
|
|
|
__ bind(&indirect_string_loaded);
|
|
__ lw(result, FieldMemOperand(string, HeapObject::kMapOffset));
|
|
__ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
|
|
|
|
// Distinguish sequential and external strings. Only these two string
|
|
// representations can reach here (slices and flat cons strings have been
|
|
// reduced to the underlying sequential or external string).
|
|
Label external_string, check_encoding;
|
|
__ bind(&check_sequential);
|
|
STATIC_ASSERT(kSeqStringTag == 0);
|
|
__ And(at, result, Operand(kStringRepresentationMask));
|
|
__ Branch(&external_string, ne, at, Operand(zero_reg));
|
|
|
|
// Prepare sequential strings
|
|
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
|
|
__ Addu(string,
|
|
string,
|
|
SeqTwoByteString::kHeaderSize - kHeapObjectTag);
|
|
__ jmp(&check_encoding);
|
|
|
|
// Handle external strings.
|
|
__ bind(&external_string);
|
|
if (FLAG_debug_code) {
|
|
// Assert that we do not have a cons or slice (indirect strings) here.
|
|
// Sequential strings have already been ruled out.
|
|
__ And(at, result, Operand(kIsIndirectStringMask));
|
|
__ Assert(eq, kExternalStringExpectedButNotFound,
|
|
at, Operand(zero_reg));
|
|
}
|
|
// Rule out short external strings.
|
|
STATIC_ASSERT(kShortExternalStringTag != 0);
|
|
__ And(at, result, Operand(kShortExternalStringMask));
|
|
__ Branch(call_runtime, ne, at, Operand(zero_reg));
|
|
__ lw(string, FieldMemOperand(string, ExternalString::kResourceDataOffset));
|
|
|
|
Label one_byte, done;
|
|
__ bind(&check_encoding);
|
|
STATIC_ASSERT(kTwoByteStringTag == 0);
|
|
__ And(at, result, Operand(kStringEncodingMask));
|
|
__ Branch(&one_byte, ne, at, Operand(zero_reg));
|
|
// Two-byte string.
|
|
__ Lsa(at, string, index, 1);
|
|
__ lhu(result, MemOperand(at));
|
|
__ jmp(&done);
|
|
__ bind(&one_byte);
|
|
// One_byte string.
|
|
__ Addu(at, string, index);
|
|
__ lbu(result, MemOperand(at));
|
|
__ bind(&done);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
// nop(CODE_AGE_MARKER_NOP)
|
|
static const uint32_t kCodeAgePatchFirstInstruction = 0x00010180;
|
|
#endif
|
|
|
|
|
|
CodeAgingHelper::CodeAgingHelper(Isolate* isolate) {
|
|
USE(isolate);
|
|
DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
|
|
// Since patcher is a large object, allocate it dynamically when needed,
|
|
// to avoid overloading the stack in stress conditions.
|
|
// DONT_FLUSH is used because the CodeAgingHelper is initialized early in
|
|
// the process, before MIPS simulator ICache is setup.
|
|
std::unique_ptr<CodePatcher> patcher(
|
|
new CodePatcher(isolate, young_sequence_.start(),
|
|
young_sequence_.length() / Assembler::kInstrSize,
|
|
CodePatcher::DONT_FLUSH));
|
|
PredictableCodeSizeScope scope(patcher->masm(), young_sequence_.length());
|
|
patcher->masm()->PushStandardFrame(a1);
|
|
patcher->masm()->nop(Assembler::CODE_AGE_SEQUENCE_NOP);
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
bool CodeAgingHelper::IsOld(byte* candidate) const {
|
|
return Memory::uint32_at(candidate) == kCodeAgePatchFirstInstruction;
|
|
}
|
|
#endif
|
|
|
|
|
|
bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
|
|
bool result = isolate->code_aging_helper()->IsYoung(sequence);
|
|
DCHECK(result || isolate->code_aging_helper()->IsOld(sequence));
|
|
return result;
|
|
}
|
|
|
|
Code::Age Code::GetCodeAge(Isolate* isolate, byte* sequence) {
|
|
if (IsYoungSequence(isolate, sequence)) return kNoAgeCodeAge;
|
|
|
|
Address target_address =
|
|
Assembler::target_address_at(sequence + Assembler::kInstrSize);
|
|
Code* stub = GetCodeFromTargetAddress(target_address);
|
|
return GetAgeOfCodeAgeStub(stub);
|
|
}
|
|
|
|
void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence,
|
|
Code::Age age) {
|
|
uint32_t young_length = isolate->code_aging_helper()->young_sequence_length();
|
|
if (age == kNoAgeCodeAge) {
|
|
isolate->code_aging_helper()->CopyYoungSequenceTo(sequence);
|
|
Assembler::FlushICache(isolate, sequence, young_length);
|
|
} else {
|
|
Code* stub = GetCodeAgeStub(isolate, age);
|
|
CodePatcher patcher(isolate, sequence,
|
|
young_length / Assembler::kInstrSize);
|
|
// Mark this code sequence for FindPlatformCodeAgeSequence().
|
|
patcher.masm()->nop(Assembler::CODE_AGE_MARKER_NOP);
|
|
// Load the stub address to t9 and call it,
|
|
// GetCodeAge() extracts the stub address from this instruction.
|
|
patcher.masm()->li(
|
|
t9,
|
|
Operand(reinterpret_cast<uint32_t>(stub->instruction_start())),
|
|
CONSTANT_SIZE);
|
|
patcher.masm()->nop(); // Prevent jalr to jal optimization.
|
|
patcher.masm()->jalr(t9, a0);
|
|
patcher.masm()->nop(); // Branch delay slot nop.
|
|
patcher.masm()->nop(); // Pad the empty space.
|
|
}
|
|
}
|
|
|
|
|
|
#undef __
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
#endif // V8_TARGET_ARCH_MIPS
|