v8/test/unittests/compiler/instruction-selector-unittest.cc
bmeurer@chromium.org bfd37ab267 Move unit tests to test/unittests.
As per discussion on the V8 team, this is the place we want them to live,
not following the Chrome Style Guide for this.

BUG=v8:3489
LOG=y
R=svenpanne@chromium.org

Review URL: https://codereview.chromium.org/615393002

git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@24350 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-10-01 08:34:25 +00:00

519 lines
18 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/compiler/instruction-selector-unittest.h"
#include "src/flags.h"
#include "test/unittests/compiler/compiler-test-utils.h"
namespace v8 {
namespace internal {
namespace compiler {
namespace {
typedef RawMachineAssembler::Label MLabel;
} // namespace
InstructionSelectorTest::InstructionSelectorTest() : rng_(FLAG_random_seed) {}
InstructionSelectorTest::~InstructionSelectorTest() {}
InstructionSelectorTest::Stream InstructionSelectorTest::StreamBuilder::Build(
InstructionSelector::Features features,
InstructionSelectorTest::StreamBuilderMode mode) {
Schedule* schedule = Export();
if (FLAG_trace_turbo) {
OFStream out(stdout);
out << "=== Schedule before instruction selection ===" << std::endl
<< *schedule;
}
EXPECT_NE(0, graph()->NodeCount());
CompilationInfo info(test_->isolate(), test_->zone());
Linkage linkage(&info, call_descriptor());
InstructionSequence sequence(&linkage, graph(), schedule);
SourcePositionTable source_position_table(graph());
InstructionSelector selector(&sequence, &source_position_table, features);
selector.SelectInstructions();
if (FLAG_trace_turbo) {
OFStream out(stdout);
out << "=== Code sequence after instruction selection ===" << std::endl
<< sequence;
}
Stream s;
std::set<int> virtual_registers;
for (InstructionSequence::const_iterator i = sequence.begin();
i != sequence.end(); ++i) {
Instruction* instr = *i;
if (instr->opcode() < 0) continue;
if (mode == kTargetInstructions) {
switch (instr->arch_opcode()) {
#define CASE(Name) \
case k##Name: \
break;
TARGET_ARCH_OPCODE_LIST(CASE)
#undef CASE
default:
continue;
}
}
if (mode == kAllExceptNopInstructions && instr->arch_opcode() == kArchNop) {
continue;
}
for (size_t i = 0; i < instr->OutputCount(); ++i) {
InstructionOperand* output = instr->OutputAt(i);
EXPECT_NE(InstructionOperand::IMMEDIATE, output->kind());
if (output->IsConstant()) {
s.constants_.insert(std::make_pair(
output->index(), sequence.GetConstant(output->index())));
virtual_registers.insert(output->index());
} else if (output->IsUnallocated()) {
virtual_registers.insert(
UnallocatedOperand::cast(output)->virtual_register());
}
}
for (size_t i = 0; i < instr->InputCount(); ++i) {
InstructionOperand* input = instr->InputAt(i);
EXPECT_NE(InstructionOperand::CONSTANT, input->kind());
if (input->IsImmediate()) {
s.immediates_.insert(std::make_pair(
input->index(), sequence.GetImmediate(input->index())));
} else if (input->IsUnallocated()) {
virtual_registers.insert(
UnallocatedOperand::cast(input)->virtual_register());
}
}
s.instructions_.push_back(instr);
}
for (std::set<int>::const_iterator i = virtual_registers.begin();
i != virtual_registers.end(); ++i) {
int virtual_register = *i;
if (sequence.IsDouble(virtual_register)) {
EXPECT_FALSE(sequence.IsReference(virtual_register));
s.doubles_.insert(virtual_register);
}
if (sequence.IsReference(virtual_register)) {
EXPECT_FALSE(sequence.IsDouble(virtual_register));
s.references_.insert(virtual_register);
}
}
for (int i = 0; i < sequence.GetFrameStateDescriptorCount(); i++) {
s.deoptimization_entries_.push_back(sequence.GetFrameStateDescriptor(
InstructionSequence::StateId::FromInt(i)));
}
return s;
}
// -----------------------------------------------------------------------------
// Return.
TARGET_TEST_F(InstructionSelectorTest, ReturnFloat32Constant) {
const float kValue = 4.2f;
StreamBuilder m(this, kMachFloat32);
m.Return(m.Float32Constant(kValue));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(InstructionOperand::CONSTANT, s[0]->OutputAt(0)->kind());
EXPECT_FLOAT_EQ(kValue, s.ToFloat32(s[0]->OutputAt(0)));
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(1U, s[1]->InputCount());
}
TARGET_TEST_F(InstructionSelectorTest, ReturnParameter) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Parameter(0));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(1U, s[1]->InputCount());
}
TARGET_TEST_F(InstructionSelectorTest, ReturnZero) {
StreamBuilder m(this, kMachInt32);
m.Return(m.Int32Constant(0));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(InstructionOperand::CONSTANT, s[0]->OutputAt(0)->kind());
EXPECT_EQ(0, s.ToInt32(s[0]->OutputAt(0)));
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(1U, s[1]->InputCount());
}
// -----------------------------------------------------------------------------
// Conversions.
TARGET_TEST_F(InstructionSelectorTest, TruncateFloat64ToInt32WithParameter) {
StreamBuilder m(this, kMachInt32, kMachFloat64);
m.Return(m.TruncateFloat64ToInt32(m.Parameter(0)));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
EXPECT_EQ(kArchTruncateDoubleToI, s[1]->arch_opcode());
EXPECT_EQ(1U, s[1]->InputCount());
EXPECT_EQ(1U, s[1]->OutputCount());
EXPECT_EQ(kArchRet, s[2]->arch_opcode());
}
// -----------------------------------------------------------------------------
// Parameters.
TARGET_TEST_F(InstructionSelectorTest, DoubleParameter) {
StreamBuilder m(this, kMachFloat64, kMachFloat64);
Node* param = m.Parameter(0);
m.Return(param);
Stream s = m.Build(kAllInstructions);
EXPECT_TRUE(s.IsDouble(param->id()));
}
TARGET_TEST_F(InstructionSelectorTest, ReferenceParameter) {
StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged);
Node* param = m.Parameter(0);
m.Return(param);
Stream s = m.Build(kAllInstructions);
EXPECT_TRUE(s.IsReference(param->id()));
}
// -----------------------------------------------------------------------------
// Finish.
TARGET_TEST_F(InstructionSelectorTest, Finish) {
StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged);
Node* param = m.Parameter(0);
Node* finish = m.NewNode(m.common()->Finish(1), param, m.graph()->start());
m.Return(finish);
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
ASSERT_TRUE(s[0]->Output()->IsUnallocated());
EXPECT_EQ(param->id(), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kArchNop, s[1]->arch_opcode());
ASSERT_EQ(1U, s[1]->InputCount());
ASSERT_TRUE(s[1]->InputAt(0)->IsUnallocated());
EXPECT_EQ(param->id(), s.ToVreg(s[1]->InputAt(0)));
ASSERT_EQ(1U, s[1]->OutputCount());
ASSERT_TRUE(s[1]->Output()->IsUnallocated());
EXPECT_TRUE(UnallocatedOperand::cast(s[1]->Output())->HasSameAsInputPolicy());
EXPECT_EQ(finish->id(), s.ToVreg(s[1]->Output()));
EXPECT_TRUE(s.IsReference(finish->id()));
}
// -----------------------------------------------------------------------------
// Phi.
typedef InstructionSelectorTestWithParam<MachineType>
InstructionSelectorPhiTest;
TARGET_TEST_P(InstructionSelectorPhiTest, Doubleness) {
const MachineType type = GetParam();
StreamBuilder m(this, type, type, type);
Node* param0 = m.Parameter(0);
Node* param1 = m.Parameter(1);
MLabel a, b, c;
m.Branch(m.Int32Constant(0), &a, &b);
m.Bind(&a);
m.Goto(&c);
m.Bind(&b);
m.Goto(&c);
m.Bind(&c);
Node* phi = m.Phi(type, param0, param1);
m.Return(phi);
Stream s = m.Build(kAllInstructions);
EXPECT_EQ(s.IsDouble(phi->id()), s.IsDouble(param0->id()));
EXPECT_EQ(s.IsDouble(phi->id()), s.IsDouble(param1->id()));
}
TARGET_TEST_P(InstructionSelectorPhiTest, Referenceness) {
const MachineType type = GetParam();
StreamBuilder m(this, type, type, type);
Node* param0 = m.Parameter(0);
Node* param1 = m.Parameter(1);
MLabel a, b, c;
m.Branch(m.Int32Constant(1), &a, &b);
m.Bind(&a);
m.Goto(&c);
m.Bind(&b);
m.Goto(&c);
m.Bind(&c);
Node* phi = m.Phi(type, param0, param1);
m.Return(phi);
Stream s = m.Build(kAllInstructions);
EXPECT_EQ(s.IsReference(phi->id()), s.IsReference(param0->id()));
EXPECT_EQ(s.IsReference(phi->id()), s.IsReference(param1->id()));
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorPhiTest,
::testing::Values(kMachFloat64, kMachInt8, kMachUint8,
kMachInt16, kMachUint16, kMachInt32,
kMachUint32, kMachInt64, kMachUint64,
kMachPtr, kMachAnyTagged));
// -----------------------------------------------------------------------------
// ValueEffect.
TARGET_TEST_F(InstructionSelectorTest, ValueEffect) {
StreamBuilder m1(this, kMachInt32, kMachPtr);
Node* p1 = m1.Parameter(0);
m1.Return(m1.Load(kMachInt32, p1, m1.Int32Constant(0)));
Stream s1 = m1.Build(kAllInstructions);
StreamBuilder m2(this, kMachInt32, kMachPtr);
Node* p2 = m2.Parameter(0);
m2.Return(m2.NewNode(m2.machine()->Load(kMachInt32), p2, m2.Int32Constant(0),
m2.NewNode(m2.common()->ValueEffect(1), p2)));
Stream s2 = m2.Build(kAllInstructions);
EXPECT_LE(3U, s1.size());
ASSERT_EQ(s1.size(), s2.size());
TRACED_FORRANGE(size_t, i, 0, s1.size() - 1) {
const Instruction* i1 = s1[i];
const Instruction* i2 = s2[i];
EXPECT_EQ(i1->arch_opcode(), i2->arch_opcode());
EXPECT_EQ(i1->InputCount(), i2->InputCount());
EXPECT_EQ(i1->OutputCount(), i2->OutputCount());
}
}
// -----------------------------------------------------------------------------
// Calls with deoptimization.
TARGET_TEST_F(InstructionSelectorTest, CallJSFunctionWithDeopt) {
StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged, kMachAnyTagged,
kMachAnyTagged);
BailoutId bailout_id(42);
Node* function_node = m.Parameter(0);
Node* receiver = m.Parameter(1);
Node* context = m.Parameter(2);
Node* parameters = m.NewNode(m.common()->StateValues(1), m.Int32Constant(1));
Node* locals = m.NewNode(m.common()->StateValues(0));
Node* stack = m.NewNode(m.common()->StateValues(0));
Node* context_dummy = m.Int32Constant(0);
Node* state_node = m.NewNode(
m.common()->FrameState(JS_FRAME, bailout_id,
OutputFrameStateCombine::Push()),
parameters, locals, stack, context_dummy, m.UndefinedConstant());
Node* call = m.CallJS0(function_node, receiver, context, state_node);
m.Return(call);
Stream s = m.Build(kAllExceptNopInstructions);
// Skip until kArchCallJSFunction.
size_t index = 0;
for (; index < s.size() && s[index]->arch_opcode() != kArchCallJSFunction;
index++) {
}
// Now we should have two instructions: call and return.
ASSERT_EQ(index + 2, s.size());
EXPECT_EQ(kArchCallJSFunction, s[index++]->arch_opcode());
EXPECT_EQ(kArchRet, s[index++]->arch_opcode());
// TODO(jarin) Check deoptimization table.
}
TARGET_TEST_F(InstructionSelectorTest, CallFunctionStubWithDeopt) {
StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged, kMachAnyTagged,
kMachAnyTagged);
BailoutId bailout_id_before(42);
// Some arguments for the call node.
Node* function_node = m.Parameter(0);
Node* receiver = m.Parameter(1);
Node* context = m.Int32Constant(1); // Context is ignored.
// Build frame state for the state before the call.
Node* parameters = m.NewNode(m.common()->StateValues(1), m.Int32Constant(43));
Node* locals = m.NewNode(m.common()->StateValues(1), m.Int32Constant(44));
Node* stack = m.NewNode(m.common()->StateValues(1), m.Int32Constant(45));
Node* context_sentinel = m.Int32Constant(0);
Node* frame_state_before = m.NewNode(
m.common()->FrameState(JS_FRAME, bailout_id_before,
OutputFrameStateCombine::Push()),
parameters, locals, stack, context_sentinel, m.UndefinedConstant());
// Build the call.
Node* call = m.CallFunctionStub0(function_node, receiver, context,
frame_state_before, CALL_AS_METHOD);
m.Return(call);
Stream s = m.Build(kAllExceptNopInstructions);
// Skip until kArchCallJSFunction.
size_t index = 0;
for (; index < s.size() && s[index]->arch_opcode() != kArchCallCodeObject;
index++) {
}
// Now we should have two instructions: call, return.
ASSERT_EQ(index + 2, s.size());
// Check the call instruction
const Instruction* call_instr = s[index++];
EXPECT_EQ(kArchCallCodeObject, call_instr->arch_opcode());
size_t num_operands =
1 + // Code object.
1 +
4 + // Frame state deopt id + one input for each value in frame state.
1 + // Function.
1; // Context.
ASSERT_EQ(num_operands, call_instr->InputCount());
// Code object.
EXPECT_TRUE(call_instr->InputAt(0)->IsImmediate());
// Deoptimization id.
int32_t deopt_id_before = s.ToInt32(call_instr->InputAt(1));
FrameStateDescriptor* desc_before =
s.GetFrameStateDescriptor(deopt_id_before);
EXPECT_EQ(bailout_id_before, desc_before->bailout_id());
EXPECT_EQ(OutputFrameStateCombine::kPushOutput,
desc_before->state_combine().kind());
EXPECT_EQ(1u, desc_before->parameters_count());
EXPECT_EQ(1u, desc_before->locals_count());
EXPECT_EQ(1u, desc_before->stack_count());
EXPECT_EQ(43, s.ToInt32(call_instr->InputAt(2)));
EXPECT_EQ(0, s.ToInt32(call_instr->InputAt(3)));
EXPECT_EQ(44, s.ToInt32(call_instr->InputAt(4)));
EXPECT_EQ(45, s.ToInt32(call_instr->InputAt(5)));
// Function.
EXPECT_EQ(function_node->id(), s.ToVreg(call_instr->InputAt(6)));
// Context.
EXPECT_EQ(context->id(), s.ToVreg(call_instr->InputAt(7)));
EXPECT_EQ(kArchRet, s[index++]->arch_opcode());
EXPECT_EQ(index, s.size());
}
TARGET_TEST_F(InstructionSelectorTest,
CallFunctionStubDeoptRecursiveFrameState) {
StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged, kMachAnyTagged,
kMachAnyTagged);
BailoutId bailout_id_before(42);
BailoutId bailout_id_parent(62);
// Some arguments for the call node.
Node* function_node = m.Parameter(0);
Node* receiver = m.Parameter(1);
Node* context = m.Int32Constant(66);
// Build frame state for the state before the call.
Node* parameters = m.NewNode(m.common()->StateValues(1), m.Int32Constant(63));
Node* locals = m.NewNode(m.common()->StateValues(1), m.Int32Constant(64));
Node* stack = m.NewNode(m.common()->StateValues(1), m.Int32Constant(65));
Node* frame_state_parent =
m.NewNode(m.common()->FrameState(JS_FRAME, bailout_id_parent,
OutputFrameStateCombine::Ignore()),
parameters, locals, stack, context, m.UndefinedConstant());
Node* context2 = m.Int32Constant(46);
Node* parameters2 =
m.NewNode(m.common()->StateValues(1), m.Int32Constant(43));
Node* locals2 = m.NewNode(m.common()->StateValues(1), m.Int32Constant(44));
Node* stack2 = m.NewNode(m.common()->StateValues(1), m.Int32Constant(45));
Node* frame_state_before =
m.NewNode(m.common()->FrameState(JS_FRAME, bailout_id_before,
OutputFrameStateCombine::Push()),
parameters2, locals2, stack2, context2, frame_state_parent);
// Build the call.
Node* call = m.CallFunctionStub0(function_node, receiver, context2,
frame_state_before, CALL_AS_METHOD);
m.Return(call);
Stream s = m.Build(kAllExceptNopInstructions);
// Skip until kArchCallJSFunction.
size_t index = 0;
for (; index < s.size() && s[index]->arch_opcode() != kArchCallCodeObject;
index++) {
}
// Now we should have three instructions: call, return.
EXPECT_EQ(index + 2, s.size());
// Check the call instruction
const Instruction* call_instr = s[index++];
EXPECT_EQ(kArchCallCodeObject, call_instr->arch_opcode());
size_t num_operands =
1 + // Code object.
1 + // Frame state deopt id
4 + // One input for each value in frame state + context.
4 + // One input for each value in the parent frame state + context.
1 + // Function.
1; // Context.
EXPECT_EQ(num_operands, call_instr->InputCount());
// Code object.
EXPECT_TRUE(call_instr->InputAt(0)->IsImmediate());
// Deoptimization id.
int32_t deopt_id_before = s.ToInt32(call_instr->InputAt(1));
FrameStateDescriptor* desc_before =
s.GetFrameStateDescriptor(deopt_id_before);
EXPECT_EQ(bailout_id_before, desc_before->bailout_id());
EXPECT_EQ(1u, desc_before->parameters_count());
EXPECT_EQ(1u, desc_before->locals_count());
EXPECT_EQ(1u, desc_before->stack_count());
EXPECT_EQ(63, s.ToInt32(call_instr->InputAt(2)));
// Context:
EXPECT_EQ(66, s.ToInt32(call_instr->InputAt(3)));
EXPECT_EQ(64, s.ToInt32(call_instr->InputAt(4)));
EXPECT_EQ(65, s.ToInt32(call_instr->InputAt(5)));
// Values from parent environment should follow.
EXPECT_EQ(43, s.ToInt32(call_instr->InputAt(6)));
EXPECT_EQ(46, s.ToInt32(call_instr->InputAt(7)));
EXPECT_EQ(44, s.ToInt32(call_instr->InputAt(8)));
EXPECT_EQ(45, s.ToInt32(call_instr->InputAt(9)));
// Function.
EXPECT_EQ(function_node->id(), s.ToVreg(call_instr->InputAt(10)));
// Context.
EXPECT_EQ(context2->id(), s.ToVreg(call_instr->InputAt(11)));
// Continuation.
EXPECT_EQ(kArchRet, s[index++]->arch_opcode());
EXPECT_EQ(index, s.size());
}
} // namespace compiler
} // namespace internal
} // namespace v8