d6808c0f9c
BUG= https://bugs.chromium.org/p/chromium/issues/detail?id=697191 Change-Id: I01ddd6824b1a79d86944ac766f5c2070e9b0c244 Reviewed-on: https://chromium-review.googlesource.com/448317 Reviewed-by: Ben Titzer <titzer@chromium.org> Commit-Queue: Eric Holk <eholk@chromium.org> Cr-Commit-Position: refs/heads/master@{#43522}
448 lines
15 KiB
C++
448 lines
15 KiB
C++
// Copyright 2017 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <algorithm>
|
|
|
|
#include "include/v8.h"
|
|
#include "src/isolate.h"
|
|
#include "src/objects-inl.h"
|
|
#include "src/objects.h"
|
|
#include "src/ostreams.h"
|
|
#include "src/wasm/wasm-interpreter.h"
|
|
#include "src/wasm/wasm-module-builder.h"
|
|
#include "src/wasm/wasm-module.h"
|
|
#include "test/common/wasm/test-signatures.h"
|
|
#include "test/common/wasm/wasm-module-runner.h"
|
|
#include "test/fuzzer/fuzzer-support.h"
|
|
|
|
#define WASM_CODE_FUZZER_HASH_SEED 83
|
|
|
|
typedef uint8_t byte;
|
|
|
|
using namespace v8::internal::wasm;
|
|
|
|
namespace {
|
|
|
|
class DataRange {
|
|
const uint8_t* data_;
|
|
size_t size_;
|
|
|
|
public:
|
|
DataRange(const uint8_t* data, size_t size) : data_(data), size_(size) {}
|
|
|
|
size_t size() const { return size_; }
|
|
|
|
std::pair<DataRange, DataRange> split(uint32_t index) const {
|
|
return std::make_pair(DataRange(data_, index),
|
|
DataRange(data_ + index, size() - index));
|
|
}
|
|
|
|
std::pair<DataRange, DataRange> split() {
|
|
uint16_t index = get<uint16_t>();
|
|
if (size() > 0) {
|
|
index = index % size();
|
|
} else {
|
|
index = 0;
|
|
}
|
|
return split(index);
|
|
}
|
|
|
|
template <typename T>
|
|
T get() {
|
|
if (size() == 0) {
|
|
return T();
|
|
} else {
|
|
// We want to support the case where we have less than sizeof(T) bytes
|
|
// remaining in the slice. For example, if we emit an i32 constant, it's
|
|
// okay if we don't have a full four bytes available, we'll just use what
|
|
// we have. We aren't concerned about endianness because we are generating
|
|
// arbitrary expressions.
|
|
const size_t num_bytes = std::min(sizeof(T), size());
|
|
T result = T();
|
|
memcpy(&result, data_, num_bytes);
|
|
data_ += num_bytes;
|
|
size_ -= num_bytes;
|
|
return result;
|
|
}
|
|
}
|
|
};
|
|
|
|
class WasmGenerator {
|
|
template <WasmOpcode Op, ValueType... Args>
|
|
std::function<void(DataRange)> op() {
|
|
return [this](DataRange data) {
|
|
Generate<Args...>(data);
|
|
builder_->Emit(Op);
|
|
};
|
|
}
|
|
|
|
template <ValueType T>
|
|
std::function<void(DataRange)> block() {
|
|
return [this](DataRange data) {
|
|
blocks_.push_back(T);
|
|
builder_->EmitWithU8(
|
|
kExprBlock, static_cast<uint8_t>(WasmOpcodes::ValueTypeCodeFor(T)));
|
|
Generate<T>(data);
|
|
builder_->Emit(kExprEnd);
|
|
blocks_.pop_back();
|
|
};
|
|
}
|
|
|
|
template <ValueType T>
|
|
std::function<void(DataRange)> block_br() {
|
|
return [this](DataRange data) {
|
|
blocks_.push_back(T);
|
|
builder_->EmitWithU8(
|
|
kExprBlock, static_cast<uint8_t>(WasmOpcodes::ValueTypeCodeFor(T)));
|
|
|
|
const uint32_t target_block = data.get<uint32_t>() % blocks_.size();
|
|
const ValueType break_type = blocks_[target_block];
|
|
|
|
Generate(break_type, data);
|
|
builder_->EmitWithVarInt(kExprBr, target_block);
|
|
builder_->Emit(kExprEnd);
|
|
blocks_.pop_back();
|
|
};
|
|
}
|
|
|
|
public:
|
|
WasmGenerator(v8::internal::wasm::WasmFunctionBuilder* fn) : builder_(fn) {}
|
|
|
|
void Generate(ValueType type, DataRange data);
|
|
|
|
template <ValueType T>
|
|
void Generate(DataRange data);
|
|
|
|
template <ValueType T1, ValueType T2, ValueType... Ts>
|
|
void Generate(DataRange data) {
|
|
const auto parts = data.split();
|
|
Generate<T1>(parts.first);
|
|
Generate<T2, Ts...>(parts.second);
|
|
}
|
|
|
|
private:
|
|
v8::internal::wasm::WasmFunctionBuilder* builder_;
|
|
std::vector<ValueType> blocks_;
|
|
};
|
|
|
|
template <>
|
|
void WasmGenerator::Generate<kWasmI32>(DataRange data) {
|
|
if (data.size() <= sizeof(uint32_t)) {
|
|
builder_->EmitI32Const(data.get<uint32_t>());
|
|
} else {
|
|
const std::function<void(DataRange)> alternates[] = {
|
|
op<kExprI32Eqz, kWasmI32>(), //
|
|
op<kExprI32Eq, kWasmI32, kWasmI32>(),
|
|
op<kExprI32Ne, kWasmI32, kWasmI32>(),
|
|
op<kExprI32LtS, kWasmI32, kWasmI32>(),
|
|
op<kExprI32LtU, kWasmI32, kWasmI32>(),
|
|
op<kExprI32GeS, kWasmI32, kWasmI32>(),
|
|
op<kExprI32GeU, kWasmI32, kWasmI32>(),
|
|
|
|
op<kExprI64Eqz, kWasmI64>(), //
|
|
op<kExprI64Eq, kWasmI64, kWasmI64>(),
|
|
op<kExprI64Ne, kWasmI64, kWasmI64>(),
|
|
op<kExprI64LtS, kWasmI64, kWasmI64>(),
|
|
op<kExprI64LtU, kWasmI64, kWasmI64>(),
|
|
op<kExprI64GeS, kWasmI64, kWasmI64>(),
|
|
op<kExprI64GeU, kWasmI64, kWasmI64>(),
|
|
|
|
op<kExprF32Eq, kWasmF32, kWasmF32>(),
|
|
op<kExprF32Ne, kWasmF32, kWasmF32>(),
|
|
op<kExprF32Lt, kWasmF32, kWasmF32>(),
|
|
op<kExprF32Ge, kWasmF32, kWasmF32>(),
|
|
|
|
op<kExprF64Eq, kWasmF64, kWasmF64>(),
|
|
op<kExprF64Ne, kWasmF64, kWasmF64>(),
|
|
op<kExprF64Lt, kWasmF64, kWasmF64>(),
|
|
op<kExprF64Ge, kWasmF64, kWasmF64>(),
|
|
|
|
op<kExprI32Add, kWasmI32, kWasmI32>(),
|
|
op<kExprI32Sub, kWasmI32, kWasmI32>(),
|
|
op<kExprI32Mul, kWasmI32, kWasmI32>(),
|
|
|
|
op<kExprI32DivS, kWasmI32, kWasmI32>(),
|
|
op<kExprI32DivU, kWasmI32, kWasmI32>(),
|
|
op<kExprI32RemS, kWasmI32, kWasmI32>(),
|
|
op<kExprI32RemU, kWasmI32, kWasmI32>(),
|
|
|
|
op<kExprI32And, kWasmI32, kWasmI32>(),
|
|
op<kExprI32Ior, kWasmI32, kWasmI32>(),
|
|
op<kExprI32Xor, kWasmI32, kWasmI32>(),
|
|
op<kExprI32Shl, kWasmI32, kWasmI32>(),
|
|
op<kExprI32ShrU, kWasmI32, kWasmI32>(),
|
|
op<kExprI32ShrS, kWasmI32, kWasmI32>(),
|
|
op<kExprI32Ror, kWasmI32, kWasmI32>(),
|
|
op<kExprI32Rol, kWasmI32, kWasmI32>(),
|
|
|
|
op<kExprI32Clz, kWasmI32>(), //
|
|
op<kExprI32Ctz, kWasmI32>(), //
|
|
op<kExprI32Popcnt, kWasmI32>(),
|
|
|
|
op<kExprI32ConvertI64, kWasmI64>(), //
|
|
op<kExprI32SConvertF32, kWasmF32>(),
|
|
op<kExprI32UConvertF32, kWasmF32>(),
|
|
op<kExprI32SConvertF64, kWasmF64>(),
|
|
op<kExprI32UConvertF64, kWasmF64>(),
|
|
op<kExprI32ReinterpretF32, kWasmF32>(),
|
|
|
|
block<kWasmI32>(),
|
|
block_br<kWasmI32>()};
|
|
|
|
static_assert(arraysize(alternates) < std::numeric_limits<uint8_t>::max(),
|
|
"Too many alternates. Replace with a bigger type if needed.");
|
|
const auto which = data.get<uint8_t>();
|
|
|
|
alternates[which % arraysize(alternates)](data);
|
|
}
|
|
}
|
|
|
|
template <>
|
|
void WasmGenerator::Generate<kWasmI64>(DataRange data) {
|
|
if (data.size() <= sizeof(uint64_t)) {
|
|
const uint8_t bytes[] = {WASM_I64V(data.get<uint64_t>())};
|
|
builder_->EmitCode(bytes, arraysize(bytes));
|
|
} else {
|
|
const std::function<void(DataRange)> alternates[] = {
|
|
op<kExprI64Add, kWasmI64, kWasmI64>(),
|
|
op<kExprI64Sub, kWasmI64, kWasmI64>(),
|
|
op<kExprI64Mul, kWasmI64, kWasmI64>(),
|
|
|
|
op<kExprI64DivS, kWasmI64, kWasmI64>(),
|
|
op<kExprI64DivU, kWasmI64, kWasmI64>(),
|
|
op<kExprI64RemS, kWasmI64, kWasmI64>(),
|
|
op<kExprI64RemU, kWasmI64, kWasmI64>(),
|
|
|
|
op<kExprI64And, kWasmI64, kWasmI64>(),
|
|
op<kExprI64Ior, kWasmI64, kWasmI64>(),
|
|
op<kExprI64Xor, kWasmI64, kWasmI64>(),
|
|
op<kExprI64Shl, kWasmI64, kWasmI64>(),
|
|
op<kExprI64ShrU, kWasmI64, kWasmI64>(),
|
|
op<kExprI64ShrS, kWasmI64, kWasmI64>(),
|
|
op<kExprI64Ror, kWasmI64, kWasmI64>(),
|
|
op<kExprI64Rol, kWasmI64, kWasmI64>(),
|
|
|
|
op<kExprI64Clz, kWasmI64>(),
|
|
op<kExprI64Ctz, kWasmI64>(),
|
|
op<kExprI64Popcnt, kWasmI64>(),
|
|
|
|
block<kWasmI64>(),
|
|
block_br<kWasmI64>()};
|
|
|
|
static_assert(arraysize(alternates) < std::numeric_limits<uint8_t>::max(),
|
|
"Too many alternates. Replace with a bigger type if needed.");
|
|
const auto which = data.get<uint8_t>();
|
|
|
|
alternates[which % arraysize(alternates)](data);
|
|
}
|
|
}
|
|
|
|
template <>
|
|
void WasmGenerator::Generate<kWasmF32>(DataRange data) {
|
|
if (data.size() <= sizeof(uint32_t)) {
|
|
const uint32_t i = data.get<uint32_t>();
|
|
builder_->Emit(kExprF32Const);
|
|
builder_->EmitCode(reinterpret_cast<const uint8_t*>(&i), sizeof(i));
|
|
} else {
|
|
const std::function<void(DataRange)> alternates[] = {
|
|
op<kExprF32Add, kWasmF32, kWasmF32>(),
|
|
op<kExprF32Sub, kWasmF32, kWasmF32>(),
|
|
op<kExprF32Mul, kWasmF32, kWasmF32>(),
|
|
|
|
block<kWasmF32>(), block_br<kWasmF32>()};
|
|
|
|
static_assert(arraysize(alternates) < std::numeric_limits<uint8_t>::max(),
|
|
"Too many alternates. Replace with a bigger type if needed.");
|
|
const auto which = data.get<uint8_t>();
|
|
|
|
alternates[which % arraysize(alternates)](data);
|
|
}
|
|
}
|
|
|
|
template <>
|
|
void WasmGenerator::Generate<kWasmF64>(DataRange data) {
|
|
if (data.size() <= sizeof(uint64_t)) {
|
|
// TODO (eholk): generate full 64-bit constants
|
|
uint64_t i = 0;
|
|
while (data.size() > 0) {
|
|
i <<= 8;
|
|
i |= data.get<uint8_t>();
|
|
}
|
|
builder_->Emit(kExprF64Const);
|
|
builder_->EmitCode(reinterpret_cast<uint8_t*>(&i), sizeof(i));
|
|
} else {
|
|
const std::function<void(DataRange)> alternates[] = {
|
|
op<kExprF64Add, kWasmF64, kWasmF64>(),
|
|
op<kExprF64Sub, kWasmF64, kWasmF64>(),
|
|
op<kExprF64Mul, kWasmF64, kWasmF64>(),
|
|
|
|
block<kWasmF64>(), block_br<kWasmF64>()};
|
|
|
|
static_assert(arraysize(alternates) < std::numeric_limits<uint8_t>::max(),
|
|
"Too many alternates. Replace with a bigger type if needed.");
|
|
const auto which = data.get<uint8_t>();
|
|
|
|
alternates[which % arraysize(alternates)](data);
|
|
}
|
|
}
|
|
|
|
void WasmGenerator::Generate(ValueType type, DataRange data) {
|
|
switch (type) {
|
|
case kWasmI32:
|
|
return Generate<kWasmI32>(data);
|
|
case kWasmI64:
|
|
return Generate<kWasmI64>(data);
|
|
case kWasmF32:
|
|
return Generate<kWasmF32>(data);
|
|
case kWasmF64:
|
|
return Generate<kWasmF64>(data);
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
}
|
|
|
|
extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
|
|
// Save the flag so that we can change it and restore it later.
|
|
bool generate_test = v8::internal::FLAG_wasm_code_fuzzer_gen_test;
|
|
if (generate_test) {
|
|
v8::internal::OFStream os(stdout);
|
|
|
|
os << "// Copyright 2017 the V8 project authors. All rights reserved."
|
|
<< std::endl;
|
|
os << "// Use of this source code is governed by a BSD-style license that "
|
|
"can be"
|
|
<< std::endl;
|
|
os << "// found in the LICENSE file." << std::endl;
|
|
os << std::endl;
|
|
os << "load(\"test/mjsunit/wasm/wasm-constants.js\");" << std::endl;
|
|
os << "load(\"test/mjsunit/wasm/wasm-module-builder.js\");" << std::endl;
|
|
os << std::endl;
|
|
os << "(function() {" << std::endl;
|
|
os << " var builder = new WasmModuleBuilder();" << std::endl;
|
|
os << " builder.addMemory(16, 32, false);" << std::endl;
|
|
os << " builder.addFunction(\"test\", kSig_i_iii)" << std::endl;
|
|
os << " .addBodyWithEnd([" << std::endl;
|
|
}
|
|
v8_fuzzer::FuzzerSupport* support = v8_fuzzer::FuzzerSupport::Get();
|
|
v8::Isolate* isolate = support->GetIsolate();
|
|
v8::internal::Isolate* i_isolate =
|
|
reinterpret_cast<v8::internal::Isolate*>(isolate);
|
|
|
|
// Clear any pending exceptions from a prior run.
|
|
if (i_isolate->has_pending_exception()) {
|
|
i_isolate->clear_pending_exception();
|
|
}
|
|
|
|
v8::Isolate::Scope isolate_scope(isolate);
|
|
v8::HandleScope handle_scope(isolate);
|
|
v8::Context::Scope context_scope(support->GetContext());
|
|
v8::TryCatch try_catch(isolate);
|
|
|
|
v8::internal::AccountingAllocator allocator;
|
|
v8::internal::Zone zone(&allocator, ZONE_NAME);
|
|
|
|
TestSignatures sigs;
|
|
|
|
WasmModuleBuilder builder(&zone);
|
|
|
|
v8::internal::wasm::WasmFunctionBuilder* f =
|
|
builder.AddFunction(sigs.i_iii());
|
|
|
|
WasmGenerator gen(f);
|
|
gen.Generate<kWasmI32>(DataRange(data, static_cast<uint32_t>(size)));
|
|
|
|
uint8_t end_opcode = kExprEnd;
|
|
f->EmitCode(&end_opcode, 1);
|
|
f->ExportAs(v8::internal::CStrVector("main"));
|
|
|
|
ZoneBuffer buffer(&zone);
|
|
builder.WriteTo(buffer);
|
|
|
|
v8::internal::wasm::testing::SetupIsolateForWasmModule(i_isolate);
|
|
|
|
v8::internal::HandleScope scope(i_isolate);
|
|
|
|
ErrorThrower interpreter_thrower(i_isolate, "Interpreter");
|
|
std::unique_ptr<const WasmModule> module(testing::DecodeWasmModuleForTesting(
|
|
i_isolate, &interpreter_thrower, buffer.begin(), buffer.end(),
|
|
v8::internal::wasm::ModuleOrigin::kWasmOrigin, true));
|
|
|
|
// Clear the flag so that the WebAssembly code is not printed twice.
|
|
v8::internal::FLAG_wasm_code_fuzzer_gen_test = false;
|
|
if (module == nullptr) {
|
|
if (generate_test) {
|
|
v8::internal::OFStream os(stdout);
|
|
os << " ])" << std::endl;
|
|
os << " .exportFunc();" << std::endl;
|
|
os << " assertThrows(function() { builder.instantiate(); });"
|
|
<< std::endl;
|
|
os << "})();" << std::endl;
|
|
}
|
|
return 0;
|
|
}
|
|
if (generate_test) {
|
|
v8::internal::OFStream os(stdout);
|
|
os << " ])" << std::endl;
|
|
os << " .exportFunc();" << std::endl;
|
|
os << " var module = builder.instantiate();" << std::endl;
|
|
os << " module.exports.test(1, 2, 3);" << std::endl;
|
|
os << "})();" << std::endl;
|
|
}
|
|
|
|
ModuleWireBytes wire_bytes(buffer.begin(), buffer.end());
|
|
int32_t result_interpreted;
|
|
bool possible_nondeterminism = false;
|
|
{
|
|
WasmVal args[] = {WasmVal(1), WasmVal(2), WasmVal(3)};
|
|
result_interpreted = testing::InterpretWasmModule(
|
|
i_isolate, &interpreter_thrower, module.get(), wire_bytes, 0, args,
|
|
&possible_nondeterminism);
|
|
}
|
|
|
|
ErrorThrower compiler_thrower(i_isolate, "Compiler");
|
|
v8::internal::Handle<v8::internal::JSObject> instance =
|
|
testing::InstantiateModuleForTesting(i_isolate, &compiler_thrower,
|
|
module.get(), wire_bytes);
|
|
// Restore the flag.
|
|
v8::internal::FLAG_wasm_code_fuzzer_gen_test = generate_test;
|
|
if (!interpreter_thrower.error()) {
|
|
CHECK(!instance.is_null());
|
|
} else {
|
|
return 0;
|
|
}
|
|
int32_t result_compiled;
|
|
{
|
|
v8::internal::Handle<v8::internal::Object> arguments[] = {
|
|
v8::internal::handle(v8::internal::Smi::FromInt(1), i_isolate),
|
|
v8::internal::handle(v8::internal::Smi::FromInt(2), i_isolate),
|
|
v8::internal::handle(v8::internal::Smi::FromInt(3), i_isolate)};
|
|
result_compiled = testing::CallWasmFunctionForTesting(
|
|
i_isolate, instance, &compiler_thrower, "main", arraysize(arguments),
|
|
arguments, v8::internal::wasm::ModuleOrigin::kWasmOrigin);
|
|
}
|
|
if (result_interpreted == bit_cast<int32_t>(0xdeadbeef) &&
|
|
!possible_nondeterminism) {
|
|
CHECK(i_isolate->has_pending_exception());
|
|
i_isolate->clear_pending_exception();
|
|
} else {
|
|
// The WebAssembly spec allows the sign bit of NaN to be non-deterministic.
|
|
// This sign bit may cause result_interpreted to be different than
|
|
// result_compiled. Therefore we do not check the equality of the results
|
|
// if the execution may have produced a NaN at some point.
|
|
if (!possible_nondeterminism && (result_interpreted != result_compiled)) {
|
|
printf("\nInterpreter returned 0x%x but compiled code returned 0x%x\n",
|
|
result_interpreted, result_compiled);
|
|
V8_Fatal(__FILE__, __LINE__, "WasmCodeFuzzerHash=%x",
|
|
v8::internal::StringHasher::HashSequentialString(
|
|
data, static_cast<int>(size), WASM_CODE_FUZZER_HASH_SEED));
|
|
}
|
|
}
|
|
return 0;
|
|
}
|