v8/test/cctest/test-code-stub-assembler.cc
Jakob Kummerow cfc6a5c2c6 Reland: [cleanup] Refactor the Factory
There is no good reason to have the meat of most objects' initialization
logic in heap.cc, all wrapped by the CALL_HEAP_FUNCTION macro. Instead,
this CL changes the protocol between Heap and Factory to be AllocateRaw,
and all object initialization work after (possibly retried) successful
raw allocation happens in the Factory.

This saves about 20KB of binary size on x64.

Original review: https://chromium-review.googlesource.com/c/v8/v8/+/959533
Originally landed as r52416 / f9a2e24bbc

Cq-Include-Trybots: luci.v8.try:v8_linux_noi18n_rel_ng
Change-Id: Id072cbe6b3ed30afd339c7e502844b99ca12a647
Reviewed-on: https://chromium-review.googlesource.com/1000540
Commit-Queue: Jakob Kummerow <jkummerow@chromium.org>
Reviewed-by: Hannes Payer <hpayer@chromium.org>
Reviewed-by: Michael Starzinger <mstarzinger@chromium.org>
Cr-Commit-Position: refs/heads/master@{#52492}
2018-04-09 19:52:22 +00:00

3264 lines
118 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <cmath>
#include "src/api.h"
#include "src/base/utils/random-number-generator.h"
#include "src/builtins/builtins-promise-gen.h"
#include "src/builtins/builtins-string-gen.h"
#include "src/char-predicates.h"
#include "src/code-factory.h"
#include "src/code-stub-assembler.h"
#include "src/compiler/node.h"
#include "src/debug/debug.h"
#include "src/isolate.h"
#include "src/objects-inl.h"
#include "src/objects/promise-inl.h"
#include "test/cctest/compiler/code-assembler-tester.h"
#include "test/cctest/compiler/function-tester.h"
namespace v8 {
namespace internal {
namespace compiler {
namespace {
typedef CodeAssemblerLabel Label;
typedef CodeAssemblerVariable Variable;
Handle<String> MakeString(const char* str) {
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
return factory->InternalizeUtf8String(str);
}
Handle<String> MakeName(const char* str, int suffix) {
EmbeddedVector<char, 128> buffer;
SNPrintF(buffer, "%s%d", str, suffix);
return MakeString(buffer.start());
}
int sum9(int a0, int a1, int a2, int a3, int a4, int a5, int a6, int a7,
int a8) {
return a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8;
}
static int sum3(int a0, int a1, int a2) { return a0 + a1 + a2; }
} // namespace
TEST(CallCFunction9) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
Node* const fun_constant = m.ExternalConstant(
ExternalReference(reinterpret_cast<Address>(sum9), isolate));
MachineType type_intptr = MachineType::IntPtr();
Node* const result = m.CallCFunction9(
type_intptr, type_intptr, type_intptr, type_intptr, type_intptr,
type_intptr, type_intptr, type_intptr, type_intptr, type_intptr,
fun_constant, m.IntPtrConstant(0), m.IntPtrConstant(1),
m.IntPtrConstant(2), m.IntPtrConstant(3), m.IntPtrConstant(4),
m.IntPtrConstant(5), m.IntPtrConstant(6), m.IntPtrConstant(7),
m.IntPtrConstant(8));
m.Return(m.SmiTag(result));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call().ToHandleChecked();
CHECK_EQ(36, Handle<Smi>::cast(result)->value());
}
TEST(CallCFunction3WithCallerSavedRegisters) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
Node* const fun_constant = m.ExternalConstant(
ExternalReference(reinterpret_cast<Address>(sum3), isolate));
MachineType type_intptr = MachineType::IntPtr();
Node* const result = m.CallCFunction3WithCallerSavedRegisters(
type_intptr, type_intptr, type_intptr, type_intptr, fun_constant,
m.IntPtrConstant(0), m.IntPtrConstant(1), m.IntPtrConstant(2),
kSaveFPRegs);
m.Return(m.SmiTag(result));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call().ToHandleChecked();
CHECK_EQ(3, Handle<Smi>::cast(result)->value());
}
namespace {
void CheckToUint32Result(uint32_t expected, Handle<Object> result) {
const int64_t result_int64 = NumberToInt64(*result);
const uint32_t result_uint32 = NumberToUint32(*result);
CHECK_EQ(static_cast<int64_t>(result_uint32), result_int64);
CHECK_EQ(expected, result_uint32);
// Ensure that the result is normalized to a Smi, i.e. a HeapNumber is only
// returned if the result is not within Smi range.
const bool expected_fits_into_intptr =
static_cast<int64_t>(expected) <=
static_cast<int64_t>(std::numeric_limits<intptr_t>::max());
if (expected_fits_into_intptr &&
Smi::IsValid(static_cast<intptr_t>(expected))) {
CHECK(result->IsSmi());
} else {
CHECK(result->IsHeapNumber());
}
}
} // namespace
TEST(ToUint32) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
const int kContextOffset = 2;
Node* const context = m.Parameter(kNumParams + kContextOffset);
Node* const input = m.Parameter(0);
m.Return(m.ToUint32(context, input));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
// clang-format off
double inputs[] = {
std::nan("-1"), std::nan("1"), std::nan("2"),
-std::numeric_limits<double>::infinity(),
std::numeric_limits<double>::infinity(),
-0.0, -0.001, -0.5, -0.999, -1.0,
0.0, 0.001, 0.5, 0.999, 1.0,
-2147483647.9, -2147483648.0, -2147483648.5, -2147483648.9, // SmiMin.
2147483646.9, 2147483647.0, 2147483647.5, 2147483647.9, // SmiMax.
-4294967295.9, -4294967296.0, -4294967296.5, -4294967297.0, // - 2^32.
4294967295.9, 4294967296.0, 4294967296.5, 4294967297.0, // 2^32.
};
uint32_t expectations[] = {
0, 0, 0,
0,
0,
0, 0, 0, 0, 4294967295,
0, 0, 0, 0, 1,
2147483649, 2147483648, 2147483648, 2147483648,
2147483646, 2147483647, 2147483647, 2147483647,
1, 0, 0, 4294967295,
4294967295, 0, 0, 1,
};
// clang-format on
STATIC_ASSERT(arraysize(inputs) == arraysize(expectations));
const int test_count = arraysize(inputs);
for (int i = 0; i < test_count; i++) {
Handle<Object> input_obj = factory->NewNumber(inputs[i]);
Handle<HeapNumber> input_num;
// Check with Smi input.
if (input_obj->IsSmi()) {
Handle<Smi> input_smi = Handle<Smi>::cast(input_obj);
Handle<Object> result = ft.Call(input_smi).ToHandleChecked();
CheckToUint32Result(expectations[i], result);
input_num = factory->NewHeapNumber(inputs[i]);
} else {
input_num = Handle<HeapNumber>::cast(input_obj);
}
// Check with HeapNumber input.
{
CHECK(input_num->IsHeapNumber());
Handle<Object> result = ft.Call(input_num).ToHandleChecked();
CheckToUint32Result(expectations[i], result);
}
}
// A couple of final cases for ToNumber conversions.
CheckToUint32Result(0, ft.Call(factory->undefined_value()).ToHandleChecked());
CheckToUint32Result(0, ft.Call(factory->null_value()).ToHandleChecked());
CheckToUint32Result(0, ft.Call(factory->false_value()).ToHandleChecked());
CheckToUint32Result(1, ft.Call(factory->true_value()).ToHandleChecked());
CheckToUint32Result(
42,
ft.Call(factory->NewStringFromAsciiChecked("0x2A")).ToHandleChecked());
ft.CheckThrows(factory->match_symbol());
}
TEST(FixedArrayAccessSmiIndex) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
Handle<FixedArray> array = isolate->factory()->NewFixedArray(5);
array->set(4, Smi::FromInt(733));
m.Return(m.LoadFixedArrayElement(m.HeapConstant(array),
m.SmiTag(m.IntPtrConstant(4)), 0,
CodeStubAssembler::SMI_PARAMETERS));
FunctionTester ft(asm_tester.GenerateCode());
MaybeHandle<Object> result = ft.Call();
CHECK_EQ(733, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(LoadHeapNumberValue) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
Handle<HeapNumber> number = isolate->factory()->NewHeapNumber(1234);
m.Return(m.SmiFromInt32(m.Signed(
m.ChangeFloat64ToUint32(m.LoadHeapNumberValue(m.HeapConstant(number))))));
FunctionTester ft(asm_tester.GenerateCode());
MaybeHandle<Object> result = ft.Call();
CHECK_EQ(1234, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(LoadInstanceType) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
Handle<HeapObject> undefined = isolate->factory()->undefined_value();
m.Return(m.SmiFromInt32(m.LoadInstanceType(m.HeapConstant(undefined))));
FunctionTester ft(asm_tester.GenerateCode());
MaybeHandle<Object> result = ft.Call();
CHECK_EQ(InstanceType::ODDBALL_TYPE,
Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(DecodeWordFromWord32) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
class TestBitField : public BitField<unsigned, 3, 3> {};
m.Return(m.SmiTag(
m.Signed(m.DecodeWordFromWord32<TestBitField>(m.Int32Constant(0x2F)))));
FunctionTester ft(asm_tester.GenerateCode());
MaybeHandle<Object> result = ft.Call();
// value = 00101111
// mask = 00111000
// result = 101
CHECK_EQ(5, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(JSFunction) {
const int kNumParams = 3; // Receiver, left, right.
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
m.Return(m.SmiFromInt32(
m.Int32Add(m.SmiToInt32(m.Parameter(1)), m.SmiToInt32(m.Parameter(2)))));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
MaybeHandle<Object> result = ft.Call(isolate->factory()->undefined_value(),
handle(Smi::FromInt(23), isolate),
handle(Smi::FromInt(34), isolate));
CHECK_EQ(57, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(ComputeIntegerHash) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
m.Return(m.SmiFromInt32(m.ComputeIntegerHash(m.SmiUntag(m.Parameter(0)),
m.SmiToInt32(m.Parameter(1)))));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Smi> hash_seed = isolate->factory()->hash_seed();
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
for (int i = 0; i < 1024; i++) {
int k = rand_gen.NextInt(Smi::kMaxValue);
Handle<Smi> key(Smi::FromInt(k), isolate);
Handle<Object> result = ft.Call(key, hash_seed).ToHandleChecked();
uint32_t hash = ComputeIntegerHash(k, hash_seed->value());
Smi* expected = Smi::FromInt(hash & Smi::kMaxValue);
CHECK_EQ(expected, Smi::cast(*result));
}
}
TEST(ToString) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
m.Return(m.ToString(m.Parameter(kNumParams + 2), m.Parameter(0)));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> test_cases = isolate->factory()->NewFixedArray(5);
Handle<FixedArray> smi_test = isolate->factory()->NewFixedArray(2);
smi_test->set(0, Smi::FromInt(42));
Handle<String> str(isolate->factory()->InternalizeUtf8String("42"));
smi_test->set(1, *str);
test_cases->set(0, *smi_test);
Handle<FixedArray> number_test = isolate->factory()->NewFixedArray(2);
Handle<HeapNumber> num(isolate->factory()->NewHeapNumber(3.14));
number_test->set(0, *num);
str = isolate->factory()->InternalizeUtf8String("3.14");
number_test->set(1, *str);
test_cases->set(1, *number_test);
Handle<FixedArray> string_test = isolate->factory()->NewFixedArray(2);
str = isolate->factory()->InternalizeUtf8String("test");
string_test->set(0, *str);
string_test->set(1, *str);
test_cases->set(2, *string_test);
Handle<FixedArray> oddball_test = isolate->factory()->NewFixedArray(2);
oddball_test->set(0, isolate->heap()->undefined_value());
str = isolate->factory()->InternalizeUtf8String("undefined");
oddball_test->set(1, *str);
test_cases->set(3, *oddball_test);
Handle<FixedArray> tostring_test = isolate->factory()->NewFixedArray(2);
Handle<FixedArray> js_array_storage = isolate->factory()->NewFixedArray(2);
js_array_storage->set(0, Smi::FromInt(1));
js_array_storage->set(1, Smi::FromInt(2));
Handle<JSArray> js_array = isolate->factory()->NewJSArray(2);
JSArray::SetContent(js_array, js_array_storage);
tostring_test->set(0, *js_array);
str = isolate->factory()->InternalizeUtf8String("1,2");
tostring_test->set(1, *str);
test_cases->set(4, *tostring_test);
for (int i = 0; i < 5; ++i) {
Handle<FixedArray> test = handle(FixedArray::cast(test_cases->get(i)));
Handle<Object> obj = handle(test->get(0), isolate);
Handle<String> expected = handle(String::cast(test->get(1)));
Handle<Object> result = ft.Call(obj).ToHandleChecked();
CHECK(result->IsString());
CHECK(String::Equals(Handle<String>::cast(result), expected));
}
}
TEST(TryToName) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
enum Result { kKeyIsIndex, kKeyIsUnique, kBailout };
{
Node* key = m.Parameter(0);
Node* expected_result = m.Parameter(1);
Node* expected_arg = m.Parameter(2);
Label passed(&m), failed(&m);
Label if_keyisindex(&m), if_keyisunique(&m), if_bailout(&m);
{
Variable var_index(&m, MachineType::PointerRepresentation());
Variable var_unique(&m, MachineRepresentation::kTagged);
m.TryToName(key, &if_keyisindex, &var_index, &if_keyisunique, &var_unique,
&if_bailout);
m.BIND(&if_keyisindex);
m.GotoIfNot(m.WordEqual(expected_result,
m.SmiConstant(Smi::FromInt(kKeyIsIndex))),
&failed);
m.Branch(m.WordEqual(m.SmiUntag(expected_arg), var_index.value()),
&passed, &failed);
m.BIND(&if_keyisunique);
m.GotoIfNot(m.WordEqual(expected_result,
m.SmiConstant(Smi::FromInt(kKeyIsUnique))),
&failed);
m.Branch(m.WordEqual(expected_arg, var_unique.value()), &passed, &failed);
}
m.BIND(&if_bailout);
m.Branch(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kBailout))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_index(Smi::FromInt(kKeyIsIndex), isolate);
Handle<Object> expect_unique(Smi::FromInt(kKeyIsUnique), isolate);
Handle<Object> expect_bailout(Smi::FromInt(kBailout), isolate);
{
// TryToName(<zero smi>) => if_keyisindex: smi value.
Handle<Object> key(Smi::kZero, isolate);
ft.CheckTrue(key, expect_index, key);
}
{
// TryToName(<positive smi>) => if_keyisindex: smi value.
Handle<Object> key(Smi::FromInt(153), isolate);
ft.CheckTrue(key, expect_index, key);
}
{
// TryToName(<negative smi>) => if_keyisindex: smi value.
// A subsequent bounds check needs to take care of this case.
Handle<Object> key(Smi::FromInt(-1), isolate);
ft.CheckTrue(key, expect_index, key);
}
{
// TryToName(<heap number with int value>) => if_keyisindex: number.
Handle<Object> key(isolate->factory()->NewHeapNumber(153));
Handle<Object> index(Smi::FromInt(153), isolate);
ft.CheckTrue(key, expect_index, index);
}
{
// TryToName(<true>) => if_keyisunique: "true".
Handle<Object> key = isolate->factory()->true_value();
Handle<Object> unique = isolate->factory()->InternalizeUtf8String("true");
ft.CheckTrue(key, expect_unique, unique);
}
{
// TryToName(<false>) => if_keyisunique: "false".
Handle<Object> key = isolate->factory()->false_value();
Handle<Object> unique = isolate->factory()->InternalizeUtf8String("false");
ft.CheckTrue(key, expect_unique, unique);
}
{
// TryToName(<null>) => if_keyisunique: "null".
Handle<Object> key = isolate->factory()->null_value();
Handle<Object> unique = isolate->factory()->InternalizeUtf8String("null");
ft.CheckTrue(key, expect_unique, unique);
}
{
// TryToName(<undefined>) => if_keyisunique: "undefined".
Handle<Object> key = isolate->factory()->undefined_value();
Handle<Object> unique =
isolate->factory()->InternalizeUtf8String("undefined");
ft.CheckTrue(key, expect_unique, unique);
}
{
// TryToName(<symbol>) => if_keyisunique: <symbol>.
Handle<Object> key = isolate->factory()->NewSymbol();
ft.CheckTrue(key, expect_unique, key);
}
{
// TryToName(<internalized string>) => if_keyisunique: <internalized string>
Handle<Object> key = isolate->factory()->InternalizeUtf8String("test");
ft.CheckTrue(key, expect_unique, key);
}
{
// TryToName(<internalized number string>) => if_keyisindex: number.
Handle<Object> key = isolate->factory()->InternalizeUtf8String("153");
Handle<Object> index(Smi::FromInt(153), isolate);
ft.CheckTrue(key, expect_index, index);
}
{
// TryToName(<internalized uncacheable number string>) => bailout
Handle<Object> key =
isolate->factory()->InternalizeUtf8String("4294967294");
ft.CheckTrue(key, expect_bailout);
}
{
// TryToName(<non-internalized number string>) => if_keyisindex: number.
Handle<String> key = isolate->factory()->NewStringFromAsciiChecked("153");
uint32_t dummy;
CHECK(key->AsArrayIndex(&dummy));
CHECK(key->HasHashCode());
CHECK(!key->IsInternalizedString());
Handle<Object> index(Smi::FromInt(153), isolate);
ft.CheckTrue(key, expect_index, index);
}
{
// TryToName(<number string without cached index>) => bailout.
Handle<String> key = isolate->factory()->NewStringFromAsciiChecked("153");
CHECK(!key->HasHashCode());
ft.CheckTrue(key, expect_bailout);
}
{
// TryToName(<non-internalized string>) => bailout.
Handle<Object> key = isolate->factory()->NewStringFromAsciiChecked("test");
ft.CheckTrue(key, expect_bailout);
}
if (FLAG_thin_strings) {
// TryToName(<thin string>) => internalized version.
Handle<String> s = isolate->factory()->NewStringFromAsciiChecked("foo");
Handle<String> internalized = isolate->factory()->InternalizeString(s);
ft.CheckTrue(s, expect_unique, internalized);
}
if (FLAG_thin_strings) {
// TryToName(<thin two-byte string>) => internalized version.
uc16 array1[] = {2001, 2002, 2003};
Vector<const uc16> str1(array1);
Handle<String> s =
isolate->factory()->NewStringFromTwoByte(str1).ToHandleChecked();
Handle<String> internalized = isolate->factory()->InternalizeString(s);
ft.CheckTrue(s, expect_unique, internalized);
}
}
namespace {
template <typename Dictionary>
void TestEntryToIndex() {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
Node* entry = m.SmiUntag(m.Parameter(0));
Node* result = m.EntryToIndex<Dictionary>(entry);
m.Return(m.SmiTag(result));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
// Test a wide range of entries but staying linear in the first 100 entries.
for (int entry = 0; entry < Dictionary::kMaxCapacity;
entry = entry * 1.01 + 1) {
Handle<Object> result =
ft.Call(handle(Smi::FromInt(entry), isolate)).ToHandleChecked();
CHECK_EQ(Dictionary::EntryToIndex(entry), Smi::ToInt(*result));
}
}
TEST(NameDictionaryEntryToIndex) { TestEntryToIndex<NameDictionary>(); }
TEST(GlobalDictionaryEntryToIndex) { TestEntryToIndex<GlobalDictionary>(); }
} // namespace
namespace {
template <typename Dictionary>
void TestNameDictionaryLookup() {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
enum Result { kFound, kNotFound };
{
Node* dictionary = m.Parameter(0);
Node* unique_name = m.Parameter(1);
Node* expected_result = m.Parameter(2);
Node* expected_arg = m.Parameter(3);
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m);
Variable var_name_index(&m, MachineType::PointerRepresentation());
m.NameDictionaryLookup<Dictionary>(dictionary, unique_name, &if_found,
&var_name_index, &if_not_found);
m.BIND(&if_found);
m.GotoIfNot(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&failed);
m.Branch(m.WordEqual(m.SmiUntag(expected_arg), var_name_index.value()),
&passed, &failed);
m.BIND(&if_not_found);
m.Branch(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
Handle<Dictionary> dictionary = Dictionary::New(isolate, 40);
PropertyDetails fake_details = PropertyDetails::Empty();
Factory* factory = isolate->factory();
Handle<Name> keys[] = {
factory->InternalizeUtf8String("0"),
factory->InternalizeUtf8String("42"),
factory->InternalizeUtf8String("-153"),
factory->InternalizeUtf8String("0.0"),
factory->InternalizeUtf8String("4.2"),
factory->InternalizeUtf8String(""),
factory->InternalizeUtf8String("name"),
factory->NewSymbol(),
factory->NewPrivateSymbol(),
};
for (size_t i = 0; i < arraysize(keys); i++) {
Handle<Object> value = factory->NewPropertyCell(keys[i]);
dictionary = Dictionary::Add(dictionary, keys[i], value, fake_details);
}
for (size_t i = 0; i < arraysize(keys); i++) {
int entry = dictionary->FindEntry(keys[i]);
int name_index =
Dictionary::EntryToIndex(entry) + Dictionary::kEntryKeyIndex;
CHECK_NE(Dictionary::kNotFound, entry);
Handle<Object> expected_name_index(Smi::FromInt(name_index), isolate);
ft.CheckTrue(dictionary, keys[i], expect_found, expected_name_index);
}
Handle<Name> non_existing_keys[] = {
factory->InternalizeUtf8String("1"),
factory->InternalizeUtf8String("-42"),
factory->InternalizeUtf8String("153"),
factory->InternalizeUtf8String("-1.0"),
factory->InternalizeUtf8String("1.3"),
factory->InternalizeUtf8String("a"),
factory->InternalizeUtf8String("boom"),
factory->NewSymbol(),
factory->NewPrivateSymbol(),
};
for (size_t i = 0; i < arraysize(non_existing_keys); i++) {
int entry = dictionary->FindEntry(non_existing_keys[i]);
CHECK_EQ(Dictionary::kNotFound, entry);
ft.CheckTrue(dictionary, non_existing_keys[i], expect_not_found);
}
}
} // namespace
TEST(NameDictionaryLookup) { TestNameDictionaryLookup<NameDictionary>(); }
TEST(GlobalDictionaryLookup) { TestNameDictionaryLookup<GlobalDictionary>(); }
TEST(NumberDictionaryLookup) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
enum Result { kFound, kNotFound };
{
Node* dictionary = m.Parameter(0);
Node* key = m.SmiUntag(m.Parameter(1));
Node* expected_result = m.Parameter(2);
Node* expected_arg = m.Parameter(3);
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m);
Variable var_entry(&m, MachineType::PointerRepresentation());
m.NumberDictionaryLookup(dictionary, key, &if_found, &var_entry,
&if_not_found);
m.BIND(&if_found);
m.GotoIfNot(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&failed);
m.Branch(m.WordEqual(m.SmiUntag(expected_arg), var_entry.value()), &passed,
&failed);
m.BIND(&if_not_found);
m.Branch(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
const int kKeysCount = 1000;
Handle<NumberDictionary> dictionary =
NumberDictionary::New(isolate, kKeysCount);
uint32_t keys[kKeysCount];
Handle<Object> fake_value(Smi::FromInt(42), isolate);
PropertyDetails fake_details = PropertyDetails::Empty();
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
for (int i = 0; i < kKeysCount; i++) {
int random_key = rand_gen.NextInt(Smi::kMaxValue);
keys[i] = static_cast<uint32_t>(random_key);
if (dictionary->FindEntry(keys[i]) != NumberDictionary::kNotFound) continue;
dictionary =
NumberDictionary::Add(dictionary, keys[i], fake_value, fake_details);
}
// Now try querying existing keys.
for (int i = 0; i < kKeysCount; i++) {
int entry = dictionary->FindEntry(keys[i]);
CHECK_NE(NumberDictionary::kNotFound, entry);
Handle<Object> key(Smi::FromInt(keys[i]), isolate);
Handle<Object> expected_entry(Smi::FromInt(entry), isolate);
ft.CheckTrue(dictionary, key, expect_found, expected_entry);
}
// Now try querying random keys which do not exist in the dictionary.
for (int i = 0; i < kKeysCount;) {
int random_key = rand_gen.NextInt(Smi::kMaxValue);
int entry = dictionary->FindEntry(random_key);
if (entry != NumberDictionary::kNotFound) continue;
i++;
Handle<Object> key(Smi::FromInt(random_key), isolate);
ft.CheckTrue(dictionary, key, expect_not_found);
}
}
TEST(TransitionLookup) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams);
enum Result { kFound, kNotFound };
class TempAssembler : public CodeStubAssembler {
public:
explicit TempAssembler(compiler::CodeAssemblerState* state)
: CodeStubAssembler(state) {}
void Generate() {
TNode<TransitionArray> transitions = CAST(Parameter(0));
TNode<Name> name = CAST(Parameter(1));
TNode<Smi> expected_result = CAST(Parameter(2));
TNode<Object> expected_arg = CAST(Parameter(3));
Label passed(this), failed(this);
Label if_found(this), if_not_found(this);
TVARIABLE(IntPtrT, var_transition_index);
TransitionLookup(name, transitions, &if_found, &var_transition_index,
&if_not_found);
BIND(&if_found);
GotoIfNot(WordEqual(expected_result, SmiConstant(kFound)), &failed);
Branch(WordEqual(expected_arg, SmiTag(var_transition_index.value())),
&passed, &failed);
BIND(&if_not_found);
Branch(WordEqual(expected_result, SmiConstant(kNotFound)), &passed,
&failed);
BIND(&passed);
Return(BooleanConstant(true));
BIND(&failed);
Return(BooleanConstant(false));
}
};
TempAssembler(asm_tester.state()).Generate();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
const int ATTRS_COUNT = (READ_ONLY | DONT_ENUM | DONT_DELETE) + 1;
STATIC_ASSERT(ATTRS_COUNT == 8);
const int kKeysCount = 300;
Handle<Map> root_map = Map::Create(isolate, 0);
Handle<Name> keys[kKeysCount];
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
Factory* factory = isolate->factory();
Handle<FieldType> any = FieldType::Any(isolate);
for (int i = 0; i < kKeysCount; i++) {
Handle<Name> name;
if (i % 30 == 0) {
name = factory->NewPrivateSymbol();
} else if (i % 10 == 0) {
name = factory->NewSymbol();
} else {
int random_key = rand_gen.NextInt(Smi::kMaxValue);
name = MakeName("p", random_key);
}
keys[i] = name;
bool is_private = name->IsPrivate();
PropertyAttributes base_attributes = is_private ? DONT_ENUM : NONE;
// Ensure that all the combinations of cases are covered:
// 1) there is a "base" attributes transition
// 2) there are other non-base attributes transitions
if ((i & 1) == 0) {
CHECK(!Map::CopyWithField(root_map, name, any, base_attributes, kMutable,
Representation::Tagged(), INSERT_TRANSITION)
.is_null());
}
if ((i & 2) == 0) {
for (int j = 0; j < ATTRS_COUNT; j++) {
PropertyAttributes attributes = static_cast<PropertyAttributes>(j);
if (attributes == base_attributes) continue;
// Don't add private symbols with enumerable attributes.
if (is_private && ((attributes & DONT_ENUM) == 0)) continue;
CHECK(!Map::CopyWithField(root_map, name, any, attributes, kMutable,
Representation::Tagged(), INSERT_TRANSITION)
.is_null());
}
}
}
CHECK(root_map->raw_transitions()->ToStrongHeapObject()->IsTransitionArray());
Handle<TransitionArray> transitions(
TransitionArray::cast(root_map->raw_transitions()->ToStrongHeapObject()));
DCHECK(transitions->IsSortedNoDuplicates());
// Ensure we didn't overflow transition array and therefore all the
// combinations of cases are covered.
CHECK(TransitionsAccessor(root_map).CanHaveMoreTransitions());
// Now try querying keys.
bool positive_lookup_tested = false;
bool negative_lookup_tested = false;
for (int i = 0; i < kKeysCount; i++) {
Handle<Name> name = keys[i];
int transition_number = transitions->SearchNameForTesting(*name);
if (transition_number != TransitionArray::kNotFound) {
Handle<Smi> expected_value(
Smi::FromInt(TransitionArray::ToKeyIndex(transition_number)),
isolate);
ft.CheckTrue(transitions, name, expect_found, expected_value);
positive_lookup_tested = true;
} else {
ft.CheckTrue(transitions, name, expect_not_found);
negative_lookup_tested = true;
}
}
CHECK(positive_lookup_tested);
CHECK(negative_lookup_tested);
}
namespace {
void AddProperties(Handle<JSObject> object, Handle<Name> names[],
size_t count) {
Isolate* isolate = object->GetIsolate();
for (size_t i = 0; i < count; i++) {
Handle<Object> value(Smi::FromInt(static_cast<int>(42 + i)), isolate);
JSObject::AddProperty(object, names[i], value, NONE);
}
}
Handle<AccessorPair> CreateAccessorPair(FunctionTester* ft,
const char* getter_body,
const char* setter_body) {
Handle<AccessorPair> pair = ft->isolate->factory()->NewAccessorPair();
if (getter_body) {
pair->set_getter(*ft->NewFunction(getter_body));
}
if (setter_body) {
pair->set_setter(*ft->NewFunction(setter_body));
}
return pair;
}
void AddProperties(Handle<JSObject> object, Handle<Name> names[],
size_t names_count, Handle<Object> values[],
size_t values_count, int seed = 0) {
Isolate* isolate = object->GetIsolate();
for (size_t i = 0; i < names_count; i++) {
Handle<Object> value = values[(seed + i) % values_count];
if (value->IsAccessorPair()) {
Handle<AccessorPair> pair = Handle<AccessorPair>::cast(value);
Handle<Object> getter(pair->getter(), isolate);
Handle<Object> setter(pair->setter(), isolate);
JSObject::DefineAccessor(object, names[i], getter, setter, NONE).Check();
} else {
JSObject::AddProperty(object, names[i], value, NONE);
}
}
}
} // namespace
TEST(TryHasOwnProperty) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
enum Result { kFound, kNotFound, kBailout };
{
Node* object = m.Parameter(0);
Node* unique_name = m.Parameter(1);
Node* expected_result = m.Parameter(2);
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m), if_bailout(&m);
Node* map = m.LoadMap(object);
Node* instance_type = m.LoadMapInstanceType(map);
m.TryHasOwnProperty(object, map, instance_type, unique_name, &if_found,
&if_not_found, &if_bailout);
m.BIND(&if_found);
m.Branch(m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&passed, &failed);
m.BIND(&if_not_found);
m.Branch(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.BIND(&if_bailout);
m.Branch(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kBailout))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
Handle<Object> expect_bailout(Smi::FromInt(kBailout), isolate);
Factory* factory = isolate->factory();
Handle<Name> deleted_property_name =
factory->InternalizeUtf8String("deleted");
Handle<Name> names[] = {
factory->InternalizeUtf8String("a"),
factory->InternalizeUtf8String("bb"),
factory->InternalizeUtf8String("ccc"),
factory->InternalizeUtf8String("dddd"),
factory->InternalizeUtf8String("eeeee"),
factory->InternalizeUtf8String(""),
factory->InternalizeUtf8String("name"),
factory->NewSymbol(),
factory->NewPrivateSymbol(),
};
std::vector<Handle<JSObject>> objects;
{
// Fast object, no inobject properties.
int inobject_properties = 0;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names));
CHECK_EQ(JS_OBJECT_TYPE, object->map()->instance_type());
CHECK_EQ(inobject_properties, object->map()->GetInObjectProperties());
CHECK(!object->map()->is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, all inobject properties.
int inobject_properties = arraysize(names) * 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names));
CHECK_EQ(JS_OBJECT_TYPE, object->map()->instance_type());
CHECK_EQ(inobject_properties, object->map()->GetInObjectProperties());
CHECK(!object->map()->is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, half inobject properties.
int inobject_properties = arraysize(names) / 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names));
CHECK_EQ(JS_OBJECT_TYPE, object->map()->instance_type());
CHECK_EQ(inobject_properties, object->map()->GetInObjectProperties());
CHECK(!object->map()->is_dictionary_map());
objects.push_back(object);
}
{
// Dictionary mode object.
Handle<JSFunction> function =
factory->NewFunctionForTest(factory->empty_string());
Handle<JSObject> object = factory->NewJSObject(function);
AddProperties(object, names, arraysize(names));
JSObject::NormalizeProperties(object, CLEAR_INOBJECT_PROPERTIES, 0, "test");
JSObject::AddProperty(object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name,
LanguageMode::kSloppy)
.FromJust());
CHECK_EQ(JS_OBJECT_TYPE, object->map()->instance_type());
CHECK(object->map()->is_dictionary_map());
objects.push_back(object);
}
{
// Global object.
Handle<JSFunction> function =
factory->NewFunctionForTest(factory->empty_string());
JSFunction::EnsureHasInitialMap(function);
function->initial_map()->set_instance_type(JS_GLOBAL_OBJECT_TYPE);
function->initial_map()->set_is_prototype_map(true);
function->initial_map()->set_is_dictionary_map(true);
function->initial_map()->set_may_have_interesting_symbols(true);
Handle<JSObject> object = factory->NewJSGlobalObject(function);
AddProperties(object, names, arraysize(names));
JSObject::AddProperty(object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name,
LanguageMode::kSloppy)
.FromJust());
CHECK_EQ(JS_GLOBAL_OBJECT_TYPE, object->map()->instance_type());
CHECK(object->map()->is_dictionary_map());
objects.push_back(object);
}
{
for (Handle<JSObject> object : objects) {
for (size_t name_index = 0; name_index < arraysize(names); name_index++) {
Handle<Name> name = names[name_index];
CHECK(JSReceiver::HasProperty(object, name).FromJust());
ft.CheckTrue(object, name, expect_found);
}
}
}
{
Handle<Name> non_existing_names[] = {
factory->NewSymbol(),
factory->InternalizeUtf8String("ne_a"),
factory->InternalizeUtf8String("ne_bb"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("ne_ccc"),
factory->InternalizeUtf8String("ne_dddd"),
deleted_property_name,
};
for (Handle<JSObject> object : objects) {
for (size_t key_index = 0; key_index < arraysize(non_existing_names);
key_index++) {
Handle<Name> name = non_existing_names[key_index];
CHECK(!JSReceiver::HasProperty(object, name).FromJust());
ft.CheckTrue(object, name, expect_not_found);
}
}
}
{
Handle<JSFunction> function =
factory->NewFunctionForTest(factory->empty_string());
Handle<JSProxy> object = factory->NewJSProxy(function, objects[0]);
CHECK_EQ(JS_PROXY_TYPE, object->map()->instance_type());
ft.CheckTrue(object, names[0], expect_bailout);
}
{
Handle<JSObject> object = isolate->global_proxy();
CHECK_EQ(JS_GLOBAL_PROXY_TYPE, object->map()->instance_type());
ft.CheckTrue(object, names[0], expect_bailout);
}
}
TEST(TryGetOwnProperty) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
Handle<Symbol> not_found_symbol = factory->NewSymbol();
Handle<Symbol> bailout_symbol = factory->NewSymbol();
{
Node* object = m.Parameter(0);
Node* unique_name = m.Parameter(1);
Node* context = m.Parameter(kNumParams + 2);
Variable var_value(&m, MachineRepresentation::kTagged);
Label if_found(&m), if_not_found(&m), if_bailout(&m);
Node* map = m.LoadMap(object);
Node* instance_type = m.LoadMapInstanceType(map);
m.TryGetOwnProperty(context, object, object, map, instance_type,
unique_name, &if_found, &var_value, &if_not_found,
&if_bailout);
m.BIND(&if_found);
m.Return(var_value.value());
m.BIND(&if_not_found);
m.Return(m.HeapConstant(not_found_symbol));
m.BIND(&if_bailout);
m.Return(m.HeapConstant(bailout_symbol));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Name> deleted_property_name =
factory->InternalizeUtf8String("deleted");
Handle<Name> names[] = {
factory->InternalizeUtf8String("bb"),
factory->NewSymbol(),
factory->InternalizeUtf8String("a"),
factory->InternalizeUtf8String("ccc"),
factory->InternalizeUtf8String("esajefe"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("eeeee"),
factory->InternalizeUtf8String("p1"),
factory->InternalizeUtf8String("acshw23e"),
factory->InternalizeUtf8String(""),
factory->InternalizeUtf8String("dddd"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("name"),
factory->InternalizeUtf8String("p2"),
factory->InternalizeUtf8String("p3"),
factory->InternalizeUtf8String("p4"),
factory->NewPrivateSymbol(),
};
Handle<Object> values[] = {
factory->NewFunctionForTest(factory->empty_string()),
factory->NewSymbol(),
factory->InternalizeUtf8String("a"),
CreateAccessorPair(&ft, "() => 188;", "() => 199;"),
factory->NewFunctionForTest(factory->InternalizeUtf8String("bb")),
factory->InternalizeUtf8String("ccc"),
CreateAccessorPair(&ft, "() => 88;", nullptr),
handle(Smi::FromInt(1), isolate),
factory->InternalizeUtf8String(""),
CreateAccessorPair(&ft, nullptr, "() => 99;"),
factory->NewHeapNumber(4.2),
handle(Smi::FromInt(153), isolate),
factory->NewJSObject(
factory->NewFunctionForTest(factory->empty_string())),
factory->NewPrivateSymbol(),
};
STATIC_ASSERT(arraysize(values) < arraysize(names));
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
std::vector<Handle<JSObject>> objects;
{
// Fast object, no inobject properties.
int inobject_properties = 0;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
CHECK_EQ(JS_OBJECT_TYPE, object->map()->instance_type());
CHECK_EQ(inobject_properties, object->map()->GetInObjectProperties());
CHECK(!object->map()->is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, all inobject properties.
int inobject_properties = arraysize(names) * 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
CHECK_EQ(JS_OBJECT_TYPE, object->map()->instance_type());
CHECK_EQ(inobject_properties, object->map()->GetInObjectProperties());
CHECK(!object->map()->is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, half inobject properties.
int inobject_properties = arraysize(names) / 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
CHECK_EQ(JS_OBJECT_TYPE, object->map()->instance_type());
CHECK_EQ(inobject_properties, object->map()->GetInObjectProperties());
CHECK(!object->map()->is_dictionary_map());
objects.push_back(object);
}
{
// Dictionary mode object.
Handle<JSFunction> function =
factory->NewFunctionForTest(factory->empty_string());
Handle<JSObject> object = factory->NewJSObject(function);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
JSObject::NormalizeProperties(object, CLEAR_INOBJECT_PROPERTIES, 0, "test");
JSObject::AddProperty(object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name,
LanguageMode::kSloppy)
.FromJust());
CHECK_EQ(JS_OBJECT_TYPE, object->map()->instance_type());
CHECK(object->map()->is_dictionary_map());
objects.push_back(object);
}
{
// Global object.
Handle<JSGlobalObject> object = isolate->global_object();
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
JSObject::AddProperty(object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name,
LanguageMode::kSloppy)
.FromJust());
CHECK_EQ(JS_GLOBAL_OBJECT_TYPE, object->map()->instance_type());
CHECK(object->map()->is_dictionary_map());
objects.push_back(object);
}
// TODO(ishell): test proxy and interceptors when they are supported.
{
for (Handle<JSObject> object : objects) {
for (size_t name_index = 0; name_index < arraysize(names); name_index++) {
Handle<Name> name = names[name_index];
Handle<Object> expected_value =
JSReceiver::GetProperty(object, name).ToHandleChecked();
Handle<Object> value = ft.Call(object, name).ToHandleChecked();
CHECK(expected_value->SameValue(*value));
}
}
}
{
Handle<Name> non_existing_names[] = {
factory->NewSymbol(),
factory->InternalizeUtf8String("ne_a"),
factory->InternalizeUtf8String("ne_bb"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("ne_ccc"),
factory->InternalizeUtf8String("ne_dddd"),
deleted_property_name,
};
for (Handle<JSObject> object : objects) {
for (size_t key_index = 0; key_index < arraysize(non_existing_names);
key_index++) {
Handle<Name> name = non_existing_names[key_index];
Handle<Object> expected_value =
JSReceiver::GetProperty(object, name).ToHandleChecked();
CHECK(expected_value->IsUndefined(isolate));
Handle<Object> value = ft.Call(object, name).ToHandleChecked();
CHECK_EQ(*not_found_symbol, *value);
}
}
}
{
Handle<JSFunction> function =
factory->NewFunctionForTest(factory->empty_string());
Handle<JSProxy> object = factory->NewJSProxy(function, objects[0]);
CHECK_EQ(JS_PROXY_TYPE, object->map()->instance_type());
Handle<Object> value = ft.Call(object, names[0]).ToHandleChecked();
// Proxies are not supported yet.
CHECK_EQ(*bailout_symbol, *value);
}
{
Handle<JSObject> object = isolate->global_proxy();
CHECK_EQ(JS_GLOBAL_PROXY_TYPE, object->map()->instance_type());
// Global proxies are not supported yet.
Handle<Object> value = ft.Call(object, names[0]).ToHandleChecked();
CHECK_EQ(*bailout_symbol, *value);
}
}
namespace {
void AddElement(Handle<JSObject> object, uint32_t index, Handle<Object> value,
PropertyAttributes attributes = NONE) {
JSObject::AddDataElement(object, index, value, attributes).ToHandleChecked();
}
} // namespace
TEST(TryLookupElement) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
enum Result { kFound, kAbsent, kNotFound, kBailout };
{
Node* object = m.Parameter(0);
Node* index = m.SmiUntag(m.Parameter(1));
Node* expected_result = m.Parameter(2);
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m), if_bailout(&m), if_absent(&m);
Node* map = m.LoadMap(object);
Node* instance_type = m.LoadMapInstanceType(map);
m.TryLookupElement(object, map, instance_type, index, &if_found, &if_absent,
&if_not_found, &if_bailout);
m.BIND(&if_found);
m.Branch(m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&passed, &failed);
m.BIND(&if_absent);
m.Branch(m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kAbsent))),
&passed, &failed);
m.BIND(&if_not_found);
m.Branch(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.BIND(&if_bailout);
m.Branch(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kBailout))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Factory* factory = isolate->factory();
Handle<Object> smi0(Smi::kZero, isolate);
Handle<Object> smi1(Smi::FromInt(1), isolate);
Handle<Object> smi7(Smi::FromInt(7), isolate);
Handle<Object> smi13(Smi::FromInt(13), isolate);
Handle<Object> smi42(Smi::FromInt(42), isolate);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_absent(Smi::FromInt(kAbsent), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
Handle<Object> expect_bailout(Smi::FromInt(kBailout), isolate);
#define CHECK_FOUND(object, index) \
CHECK(JSReceiver::HasElement(object, index).FromJust()); \
ft.CheckTrue(object, smi##index, expect_found);
#define CHECK_NOT_FOUND(object, index) \
CHECK(!JSReceiver::HasElement(object, index).FromJust()); \
ft.CheckTrue(object, smi##index, expect_not_found);
#define CHECK_ABSENT(object, index) \
{ \
bool success; \
Handle<Smi> smi(Smi::FromInt(index), isolate); \
LookupIterator it = \
LookupIterator::PropertyOrElement(isolate, object, smi, &success); \
CHECK(success); \
CHECK(!JSReceiver::HasProperty(&it).FromJust()); \
ft.CheckTrue(object, smi, expect_absent); \
}
{
Handle<JSArray> object = factory->NewJSArray(0, PACKED_SMI_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 1, smi0);
CHECK_EQ(PACKED_SMI_ELEMENTS, object->map()->elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_NOT_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSArray> object = factory->NewJSArray(0, HOLEY_SMI_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 13, smi0);
CHECK_EQ(HOLEY_SMI_ELEMENTS, object->map()->elements_kind());
CHECK_FOUND(object, 0);
CHECK_NOT_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSArray> object = factory->NewJSArray(0, PACKED_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 1, smi0);
CHECK_EQ(PACKED_ELEMENTS, object->map()->elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_NOT_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSArray> object = factory->NewJSArray(0, HOLEY_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 13, smi0);
CHECK_EQ(HOLEY_ELEMENTS, object->map()->elements_kind());
CHECK_FOUND(object, 0);
CHECK_NOT_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSTypedArray> object = factory->NewJSTypedArray(INT32_ELEMENTS, 2);
Local<v8::ArrayBuffer> buffer = Utils::ToLocal(object->GetBuffer());
CHECK_EQ(INT32_ELEMENTS, object->map()->elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_ABSENT(object, -10);
CHECK_ABSENT(object, 13);
CHECK_ABSENT(object, 42);
v8::ArrayBuffer::Contents contents = buffer->Externalize();
buffer->Neuter();
isolate->array_buffer_allocator()->Free(contents.Data(),
contents.ByteLength());
CHECK_ABSENT(object, 0);
CHECK_ABSENT(object, 1);
CHECK_ABSENT(object, -10);
CHECK_ABSENT(object, 13);
CHECK_ABSENT(object, 42);
}
{
Handle<JSFunction> constructor = isolate->string_function();
Handle<JSObject> object = factory->NewJSObject(constructor);
Handle<String> str = factory->InternalizeUtf8String("ab");
Handle<JSValue>::cast(object)->set_value(*str);
AddElement(object, 13, smi0);
CHECK_EQ(FAST_STRING_WRAPPER_ELEMENTS, object->map()->elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSFunction> constructor = isolate->string_function();
Handle<JSObject> object = factory->NewJSObject(constructor);
Handle<String> str = factory->InternalizeUtf8String("ab");
Handle<JSValue>::cast(object)->set_value(*str);
AddElement(object, 13, smi0);
JSObject::NormalizeElements(object);
CHECK_EQ(SLOW_STRING_WRAPPER_ELEMENTS, object->map()->elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
// TODO(ishell): uncomment once NO_ELEMENTS kind is supported.
// {
// Handle<Map> map = Map::Create(isolate, 0);
// map->set_elements_kind(NO_ELEMENTS);
// Handle<JSObject> object = factory->NewJSObjectFromMap(map);
// CHECK_EQ(NO_ELEMENTS, object->map()->elements_kind());
//
// CHECK_NOT_FOUND(object, 0);
// CHECK_NOT_FOUND(object, 1);
// CHECK_NOT_FOUND(object, 7);
// CHECK_NOT_FOUND(object, 13);
// CHECK_NOT_FOUND(object, 42);
// }
#undef CHECK_FOUND
#undef CHECK_NOT_FOUND
{
Handle<JSArray> handler = factory->NewJSArray(0);
Handle<JSFunction> function =
factory->NewFunctionForTest(factory->empty_string());
Handle<JSProxy> object = factory->NewJSProxy(function, handler);
CHECK_EQ(JS_PROXY_TYPE, object->map()->instance_type());
ft.CheckTrue(object, smi0, expect_bailout);
}
{
Handle<JSObject> object = isolate->global_object();
CHECK_EQ(JS_GLOBAL_OBJECT_TYPE, object->map()->instance_type());
ft.CheckTrue(object, smi0, expect_bailout);
}
{
Handle<JSObject> object = isolate->global_proxy();
CHECK_EQ(JS_GLOBAL_PROXY_TYPE, object->map()->instance_type());
ft.CheckTrue(object, smi0, expect_bailout);
}
}
TEST(AllocateJSObjectFromMap) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
Node* map = m.Parameter(0);
Node* properties = m.Parameter(1);
Node* elements = m.Parameter(2);
Node* result = m.AllocateJSObjectFromMap(map, properties, elements);
m.Return(result);
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Map> maps[] = {
handle(isolate->object_function()->initial_map(), isolate),
handle(isolate->array_function()->initial_map(), isolate),
};
{
Handle<FixedArray> empty_fixed_array = factory->empty_fixed_array();
Handle<PropertyArray> empty_property_array =
factory->empty_property_array();
for (size_t i = 0; i < arraysize(maps); i++) {
Handle<Map> map = maps[i];
Handle<JSObject> result = Handle<JSObject>::cast(
ft.Call(map, empty_fixed_array, empty_fixed_array).ToHandleChecked());
CHECK_EQ(result->map(), *map);
CHECK_EQ(result->property_array(), *empty_property_array);
CHECK_EQ(result->elements(), *empty_fixed_array);
CHECK(result->HasFastProperties());
#ifdef VERIFY_HEAP
isolate->heap()->Verify();
#endif
}
}
{
// TODO(cbruni): handle in-object properties
Handle<JSObject> object = Handle<JSObject>::cast(
v8::Utils::OpenHandle(*CompileRun("var object = {a:1,b:2, 1:1, 2:2}; "
"object")));
JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, 0,
"Normalize");
Handle<JSObject> result = Handle<JSObject>::cast(
ft.Call(handle(object->map(), isolate),
handle(object->property_dictionary(), isolate),
handle(object->elements(), isolate))
.ToHandleChecked());
CHECK_EQ(result->map(), object->map());
CHECK_EQ(result->property_dictionary(), object->property_dictionary());
CHECK(!result->HasFastProperties());
#ifdef VERIFY_HEAP
isolate->heap()->Verify();
#endif
}
#undef VERIFY
}
TEST(AllocateNameDictionary) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
Node* capacity = m.Parameter(0);
Node* result = m.AllocateNameDictionary(m.SmiUntag(capacity));
m.Return(result);
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
{
for (int i = 0; i < 256; i = i * 1.1 + 1) {
Handle<Object> result =
ft.Call(handle(Smi::FromInt(i), isolate)).ToHandleChecked();
Handle<NameDictionary> dict = NameDictionary::New(isolate, i);
// Both dictionaries should be memory equal.
int size =
FixedArrayBase::kHeaderSize + (dict->length() - 1) * kPointerSize;
CHECK_EQ(0, memcmp(*dict, *result, size));
}
}
}
TEST(PopAndReturnConstant) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
const int kNumProgrammaticParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams - kNumProgrammaticParams);
CodeStubAssembler m(asm_tester.state());
// Call a function that return |kNumProgramaticParams| parameters in addition
// to those specified by the static descriptor. |kNumProgramaticParams| is
// specified as a constant.
m.PopAndReturn(m.Int32Constant(kNumProgrammaticParams),
m.SmiConstant(Smi::FromInt(1234)));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result;
for (int test_count = 0; test_count < 100; ++test_count) {
result = ft.Call(isolate->factory()->undefined_value(),
Handle<Smi>(Smi::FromInt(1234), isolate),
isolate->factory()->undefined_value(),
isolate->factory()->undefined_value())
.ToHandleChecked();
CHECK_EQ(1234, Handle<Smi>::cast(result)->value());
}
}
TEST(PopAndReturnVariable) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
const int kNumProgrammaticParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams - kNumProgrammaticParams);
CodeStubAssembler m(asm_tester.state());
// Call a function that return |kNumProgramaticParams| parameters in addition
// to those specified by the static descriptor. |kNumProgramaticParams| is
// passed in as a parameter to the function so that it can't be recongized as
// a constant.
m.PopAndReturn(m.SmiUntag(m.Parameter(1)), m.SmiConstant(Smi::FromInt(1234)));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result;
for (int test_count = 0; test_count < 100; ++test_count) {
result = ft.Call(isolate->factory()->undefined_value(),
Handle<Smi>(Smi::FromInt(1234), isolate),
isolate->factory()->undefined_value(),
Handle<Smi>(Smi::FromInt(kNumProgrammaticParams), isolate))
.ToHandleChecked();
CHECK_EQ(1234, Handle<Smi>::cast(result)->value());
}
}
TEST(OneToTwoByteStringCopy) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
m.CopyStringCharacters(m.Parameter(0), m.Parameter(1), m.IntPtrConstant(0),
m.IntPtrConstant(0), m.IntPtrConstant(5),
String::ONE_BYTE_ENCODING, String::TWO_BYTE_ENCODING);
m.Return(m.SmiConstant(Smi::FromInt(0)));
Handle<String> string1 = isolate->factory()->InternalizeUtf8String("abcde");
uc16 array[] = {1000, 1001, 1002, 1003, 1004};
Vector<const uc16> str(array);
Handle<String> string2 =
isolate->factory()->NewStringFromTwoByte(str).ToHandleChecked();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.Call(string1, string2);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars()[0],
Handle<SeqTwoByteString>::cast(string2)->GetChars()[0]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars()[1],
Handle<SeqTwoByteString>::cast(string2)->GetChars()[1]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars()[2],
Handle<SeqTwoByteString>::cast(string2)->GetChars()[2]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars()[3],
Handle<SeqTwoByteString>::cast(string2)->GetChars()[3]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars()[4],
Handle<SeqTwoByteString>::cast(string2)->GetChars()[4]);
}
TEST(OneToOneByteStringCopy) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
m.CopyStringCharacters(m.Parameter(0), m.Parameter(1), m.IntPtrConstant(0),
m.IntPtrConstant(0), m.IntPtrConstant(5),
String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING);
m.Return(m.SmiConstant(Smi::FromInt(0)));
Handle<String> string1 = isolate->factory()->InternalizeUtf8String("abcde");
uint8_t array[] = {100, 101, 102, 103, 104};
Vector<const uint8_t> str(array);
Handle<String> string2 =
isolate->factory()->NewStringFromOneByte(str).ToHandleChecked();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.Call(string1, string2);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars()[0],
Handle<SeqOneByteString>::cast(string2)->GetChars()[0]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars()[1],
Handle<SeqOneByteString>::cast(string2)->GetChars()[1]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars()[2],
Handle<SeqOneByteString>::cast(string2)->GetChars()[2]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars()[3],
Handle<SeqOneByteString>::cast(string2)->GetChars()[3]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars()[4],
Handle<SeqOneByteString>::cast(string2)->GetChars()[4]);
}
TEST(OneToOneByteStringCopyNonZeroStart) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
m.CopyStringCharacters(m.Parameter(0), m.Parameter(1), m.IntPtrConstant(0),
m.IntPtrConstant(3), m.IntPtrConstant(2),
String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING);
m.Return(m.SmiConstant(Smi::FromInt(0)));
Handle<String> string1 = isolate->factory()->InternalizeUtf8String("abcde");
uint8_t array[] = {100, 101, 102, 103, 104};
Vector<const uint8_t> str(array);
Handle<String> string2 =
isolate->factory()->NewStringFromOneByte(str).ToHandleChecked();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.Call(string1, string2);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars()[0],
Handle<SeqOneByteString>::cast(string2)->GetChars()[3]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars()[1],
Handle<SeqOneByteString>::cast(string2)->GetChars()[4]);
CHECK_EQ(100, Handle<SeqOneByteString>::cast(string2)->GetChars()[0]);
CHECK_EQ(101, Handle<SeqOneByteString>::cast(string2)->GetChars()[1]);
CHECK_EQ(102, Handle<SeqOneByteString>::cast(string2)->GetChars()[2]);
}
TEST(TwoToTwoByteStringCopy) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
m.CopyStringCharacters(m.Parameter(0), m.Parameter(1), m.IntPtrConstant(0),
m.IntPtrConstant(0), m.IntPtrConstant(5),
String::TWO_BYTE_ENCODING, String::TWO_BYTE_ENCODING);
m.Return(m.SmiConstant(Smi::FromInt(0)));
uc16 array1[] = {2000, 2001, 2002, 2003, 2004};
Vector<const uc16> str1(array1);
Handle<String> string1 =
isolate->factory()->NewStringFromTwoByte(str1).ToHandleChecked();
uc16 array2[] = {1000, 1001, 1002, 1003, 1004};
Vector<const uc16> str2(array2);
Handle<String> string2 =
isolate->factory()->NewStringFromTwoByte(str2).ToHandleChecked();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.Call(string1, string2);
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars()[0],
Handle<SeqTwoByteString>::cast(string2)->GetChars()[0]);
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars()[1],
Handle<SeqTwoByteString>::cast(string2)->GetChars()[1]);
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars()[2],
Handle<SeqTwoByteString>::cast(string2)->GetChars()[2]);
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars()[3],
Handle<SeqTwoByteString>::cast(string2)->GetChars()[3]);
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars()[4],
Handle<SeqTwoByteString>::cast(string2)->GetChars()[4]);
}
TEST(Arguments) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
CodeStubArguments arguments(&m, m.IntPtrConstant(3));
CSA_ASSERT(
&m, m.WordEqual(arguments.AtIndex(0), m.SmiConstant(Smi::FromInt(12))));
CSA_ASSERT(
&m, m.WordEqual(arguments.AtIndex(1), m.SmiConstant(Smi::FromInt(13))));
CSA_ASSERT(
&m, m.WordEqual(arguments.AtIndex(2), m.SmiConstant(Smi::FromInt(14))));
arguments.PopAndReturn(arguments.GetReceiver());
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call(isolate->factory()->undefined_value(),
Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate))
.ToHandleChecked();
CHECK_EQ(*isolate->factory()->undefined_value(), *result);
}
TEST(ArgumentsWithSmiConstantIndices) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
CodeStubArguments arguments(&m, m.SmiConstant(3), nullptr,
CodeStubAssembler::SMI_PARAMETERS);
CSA_ASSERT(&m,
m.WordEqual(arguments.AtIndex(m.SmiConstant(0),
CodeStubAssembler::SMI_PARAMETERS),
m.SmiConstant(Smi::FromInt(12))));
CSA_ASSERT(&m,
m.WordEqual(arguments.AtIndex(m.SmiConstant(1),
CodeStubAssembler::SMI_PARAMETERS),
m.SmiConstant(Smi::FromInt(13))));
CSA_ASSERT(&m,
m.WordEqual(arguments.AtIndex(m.SmiConstant(2),
CodeStubAssembler::SMI_PARAMETERS),
m.SmiConstant(Smi::FromInt(14))));
arguments.PopAndReturn(arguments.GetReceiver());
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call(isolate->factory()->undefined_value(),
Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate))
.ToHandleChecked();
CHECK_EQ(*isolate->factory()->undefined_value(), *result);
}
TNode<Smi> NonConstantSmi(CodeStubAssembler* m, int value) {
// Generate a SMI with the given value and feed it through a Phi so it can't
// be inferred to be constant.
Variable var(m, MachineRepresentation::kTagged, m->SmiConstant(value));
Label dummy_done(m);
// Even though the Goto always executes, it will taint the variable and thus
// make it appear non-constant when used later.
m->GotoIf(m->Int32Constant(1), &dummy_done);
var.Bind(m->SmiConstant(value));
m->Goto(&dummy_done);
m->BIND(&dummy_done);
// Ensure that the above hackery actually created a non-constant SMI.
Smi* smi_constant;
CHECK(!m->ToSmiConstant(var.value(), smi_constant));
return m->UncheckedCast<Smi>(var.value());
}
TEST(ArgumentsWithSmiIndices) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
CodeStubArguments arguments(&m, m.SmiConstant(3), nullptr,
CodeStubAssembler::SMI_PARAMETERS);
CSA_ASSERT(&m,
m.WordEqual(arguments.AtIndex(NonConstantSmi(&m, 0),
CodeStubAssembler::SMI_PARAMETERS),
m.SmiConstant(Smi::FromInt(12))));
CSA_ASSERT(&m,
m.WordEqual(arguments.AtIndex(NonConstantSmi(&m, 1),
CodeStubAssembler::SMI_PARAMETERS),
m.SmiConstant(Smi::FromInt(13))));
CSA_ASSERT(&m,
m.WordEqual(arguments.AtIndex(NonConstantSmi(&m, 2),
CodeStubAssembler::SMI_PARAMETERS),
m.SmiConstant(Smi::FromInt(14))));
arguments.PopAndReturn(arguments.GetReceiver());
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call(isolate->factory()->undefined_value(),
Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate))
.ToHandleChecked();
CHECK_EQ(*isolate->factory()->undefined_value(), *result);
}
TEST(ArgumentsForEach) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
CodeStubArguments arguments(&m, m.IntPtrConstant(3));
Variable sum(&m, MachineRepresentation::kTagged);
CodeAssemblerVariableList list({&sum}, m.zone());
sum.Bind(m.SmiConstant(0));
arguments.ForEach(
list, [&m, &sum](Node* arg) { sum.Bind(m.SmiAdd(sum.value(), arg)); });
arguments.PopAndReturn(sum.value());
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call(isolate->factory()->undefined_value(),
Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate))
.ToHandleChecked();
CHECK_EQ(Smi::FromInt(12 + 13 + 14), *result);
}
TEST(IsDebugActive) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
Label if_active(&m), if_not_active(&m);
m.Branch(m.IsDebugActive(), &if_active, &if_not_active);
m.BIND(&if_active);
m.Return(m.TrueConstant());
m.BIND(&if_not_active);
m.Return(m.FalseConstant());
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK(!isolate->debug()->is_active());
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(isolate->heap()->false_value(), *result);
bool* debug_is_active = reinterpret_cast<bool*>(
ExternalReference::debug_is_active_address(isolate).address());
// Cheat to enable debug (TODO: do this properly).
*debug_is_active = true;
result = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(isolate->heap()->true_value(), *result);
// Reset debug mode.
*debug_is_active = false;
}
class AppendJSArrayCodeStubAssembler : public CodeStubAssembler {
public:
AppendJSArrayCodeStubAssembler(compiler::CodeAssemblerState* state,
ElementsKind kind)
: CodeStubAssembler(state), kind_(kind) {}
void TestAppendJSArrayImpl(Isolate* isolate, CodeAssemblerTester* csa_tester,
Object* o1, Object* o2, Object* o3, Object* o4,
int initial_size, int result_size) {
Handle<JSArray> array = isolate->factory()->NewJSArray(
kind_, 2, initial_size, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
JSObject::SetElement(isolate, array, 0,
Handle<Smi>(Smi::FromInt(1), isolate),
LanguageMode::kSloppy)
.Check();
JSObject::SetElement(isolate, array, 1,
Handle<Smi>(Smi::FromInt(2), isolate),
LanguageMode::kSloppy)
.Check();
CodeStubArguments args(this, IntPtrConstant(kNumParams));
TVariable<IntPtrT> arg_index(this);
Label bailout(this);
arg_index = IntPtrConstant(0);
Node* length = BuildAppendJSArray(kind_, HeapConstant(array), &args,
&arg_index, &bailout);
Return(length);
BIND(&bailout);
Return(SmiTag(IntPtrAdd(arg_index.value(), IntPtrConstant(2))));
FunctionTester ft(csa_tester->GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(Handle<Object>(o1, isolate), Handle<Object>(o2, isolate),
Handle<Object>(o3, isolate), Handle<Object>(o4, isolate))
.ToHandleChecked();
CHECK_EQ(kind_, array->GetElementsKind());
CHECK_EQ(result_size, Handle<Smi>::cast(result)->value());
CHECK_EQ(result_size, Smi::ToInt(array->length()));
Object* obj = *JSObject::GetElement(isolate, array, 2).ToHandleChecked();
CHECK_EQ(result_size < 3 ? isolate->heap()->undefined_value() : o1, obj);
obj = *JSObject::GetElement(isolate, array, 3).ToHandleChecked();
CHECK_EQ(result_size < 4 ? isolate->heap()->undefined_value() : o2, obj);
obj = *JSObject::GetElement(isolate, array, 4).ToHandleChecked();
CHECK_EQ(result_size < 5 ? isolate->heap()->undefined_value() : o3, obj);
obj = *JSObject::GetElement(isolate, array, 5).ToHandleChecked();
CHECK_EQ(result_size < 6 ? isolate->heap()->undefined_value() : o4, obj);
}
static void TestAppendJSArray(Isolate* isolate, ElementsKind kind, Object* o1,
Object* o2, Object* o3, Object* o4,
int initial_size, int result_size) {
CodeAssemblerTester asm_tester(isolate, kNumParams);
AppendJSArrayCodeStubAssembler m(asm_tester.state(), kind);
m.TestAppendJSArrayImpl(isolate, &asm_tester, o1, o2, o3, o4, initial_size,
result_size);
}
private:
static const int kNumParams = 4;
ElementsKind kind_;
};
TEST(BuildAppendJSArrayFastElement) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 6, 6);
}
TEST(BuildAppendJSArrayFastElementGrow) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 2, 6);
}
TEST(BuildAppendJSArrayFastSmiElement) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 6, 6);
}
TEST(BuildAppendJSArrayFastSmiElementGrow) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 2, 6);
}
TEST(BuildAppendJSArrayFastSmiElementObject) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
isolate->heap()->undefined_value(), Smi::FromInt(6), 6, 4);
}
TEST(BuildAppendJSArrayFastSmiElementObjectGrow) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
isolate->heap()->undefined_value(), Smi::FromInt(6), 2, 4);
}
TEST(BuildAppendJSArrayFastDoubleElements) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_DOUBLE_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 6, 6);
}
TEST(BuildAppendJSArrayFastDoubleElementsGrow) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_DOUBLE_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 2, 6);
}
TEST(BuildAppendJSArrayFastDoubleElementsObject) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_DOUBLE_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
isolate->heap()->undefined_value(), Smi::FromInt(6), 6, 4);
}
namespace {
template <typename Stub, typename... Args>
void Recompile(Args... args) {
Stub stub(args...);
stub.DeleteStubFromCacheForTesting();
stub.GetCode();
}
} // namespace
void CustomPromiseHook(v8::PromiseHookType type, v8::Local<v8::Promise> promise,
v8::Local<v8::Value> parentPromise) {}
TEST(IsPromiseHookEnabled) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
m.Return(m.SelectBooleanConstant(m.IsPromiseHookEnabledOrDebugIsActive()));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(isolate->heap()->false_value(), *result);
isolate->SetPromiseHook(CustomPromiseHook);
result = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(isolate->heap()->true_value(), *result);
isolate->SetPromiseHook(nullptr);
result = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(isolate->heap()->false_value(), *result);
}
TEST(AllocateAndInitJSPromise) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
Node* const context = m.Parameter(kNumParams + 2);
Node* const promise = m.AllocateAndInitJSPromise(context);
m.Return(promise);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result->IsJSPromise());
}
TEST(AllocateAndSetJSPromise) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
Node* const context = m.Parameter(kNumParams + 2);
Node* const promise = m.AllocateAndSetJSPromise(
context, v8::Promise::kRejected, m.SmiConstant(1));
m.Return(promise);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result->IsJSPromise());
Handle<JSPromise> js_promise = Handle<JSPromise>::cast(result);
CHECK_EQ(v8::Promise::kRejected, js_promise->status());
CHECK_EQ(Smi::FromInt(1), js_promise->result());
CHECK(!js_promise->has_handler());
}
TEST(IsSymbol) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
Node* const symbol = m.Parameter(0);
m.Return(m.SelectBooleanConstant(m.IsSymbol(symbol)));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->NewSymbol()).ToHandleChecked();
CHECK_EQ(isolate->heap()->true_value(), *result);
result = ft.Call(isolate->factory()->empty_string()).ToHandleChecked();
CHECK_EQ(isolate->heap()->false_value(), *result);
}
TEST(IsPrivateSymbol) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
Node* const symbol = m.Parameter(0);
m.Return(m.SelectBooleanConstant(m.IsPrivateSymbol(symbol)));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->NewSymbol()).ToHandleChecked();
CHECK_EQ(isolate->heap()->false_value(), *result);
result = ft.Call(isolate->factory()->empty_string()).ToHandleChecked();
CHECK_EQ(isolate->heap()->false_value(), *result);
result = ft.Call(isolate->factory()->NewPrivateSymbol()).ToHandleChecked();
CHECK_EQ(isolate->heap()->true_value(), *result);
}
TEST(PromiseHasHandler) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
Node* const context = m.Parameter(kNumParams + 2);
Node* const promise =
m.AllocateAndInitJSPromise(context, m.UndefinedConstant());
m.Return(m.SelectBooleanConstant(m.PromiseHasHandler(promise)));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(isolate->heap()->false_value(), *result);
}
TEST(CreatePromiseResolvingFunctionsContext) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
Node* const context = m.Parameter(kNumParams + 2);
Node* const native_context = m.LoadNativeContext(context);
Node* const promise =
m.AllocateAndInitJSPromise(context, m.UndefinedConstant());
Node* const promise_context = m.CreatePromiseResolvingFunctionsContext(
promise, m.BooleanConstant(false), native_context);
m.Return(promise_context);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result->IsContext());
Handle<Context> context_js = Handle<Context>::cast(result);
CHECK_EQ(isolate->native_context()->closure(), context_js->closure());
CHECK_EQ(isolate->heap()->the_hole_value(), context_js->extension());
CHECK_EQ(*isolate->native_context(), context_js->native_context());
CHECK(context_js->get(PromiseBuiltinsAssembler::kPromiseSlot)->IsJSPromise());
CHECK_EQ(isolate->heap()->false_value(),
context_js->get(PromiseBuiltinsAssembler::kDebugEventSlot));
}
TEST(CreatePromiseResolvingFunctions) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
Node* const context = m.Parameter(kNumParams + 2);
Node* const native_context = m.LoadNativeContext(context);
Node* const promise =
m.AllocateAndInitJSPromise(context, m.UndefinedConstant());
Node *resolve, *reject;
std::tie(resolve, reject) = m.CreatePromiseResolvingFunctions(
promise, m.BooleanConstant(false), native_context);
Node* const kSize = m.IntPtrConstant(2);
Node* const arr = m.AllocateFixedArray(PACKED_ELEMENTS, kSize);
m.StoreFixedArrayElement(arr, 0, resolve);
m.StoreFixedArrayElement(arr, 1, reject);
m.Return(arr);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result_obj =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result_obj->IsFixedArray());
Handle<FixedArray> result_arr = Handle<FixedArray>::cast(result_obj);
CHECK(result_arr->get(0)->IsJSFunction());
CHECK(result_arr->get(1)->IsJSFunction());
}
TEST(NewElementsCapacity) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate, 1);
CodeStubAssembler m(asm_tester.state());
m.Return(m.SmiTag(m.CalculateNewElementsCapacity(
m.SmiUntag(m.Parameter(0)), CodeStubAssembler::INTPTR_PARAMETERS)));
FunctionTester ft(asm_tester.GenerateCode(), 1);
Handle<Smi> test_value = Handle<Smi>(Smi::FromInt(0), isolate);
Handle<Smi> result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(1), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(2), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(1025), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
}
TEST(NewElementsCapacitySmi) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate, 1);
CodeStubAssembler m(asm_tester.state());
m.Return(m.CalculateNewElementsCapacity(m.Parameter(0),
CodeStubAssembler::SMI_PARAMETERS));
FunctionTester ft(asm_tester.GenerateCode(), 1);
Handle<Smi> test_value = Handle<Smi>(Smi::FromInt(0), isolate);
Handle<Smi> result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(1), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(2), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(1025), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
}
TEST(AllocateFunctionWithMapAndContext) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
Node* const context = m.Parameter(kNumParams + 2);
Node* const native_context = m.LoadNativeContext(context);
Node* const promise =
m.AllocateAndInitJSPromise(context, m.UndefinedConstant());
Node* promise_context = m.CreatePromiseResolvingFunctionsContext(
promise, m.BooleanConstant(false), native_context);
Node* resolve_info = m.LoadContextElement(
native_context,
Context::PROMISE_CAPABILITY_DEFAULT_RESOLVE_SHARED_FUN_INDEX);
Node* const map = m.LoadContextElement(
native_context, Context::STRICT_FUNCTION_WITHOUT_PROTOTYPE_MAP_INDEX);
Node* const resolve =
m.AllocateFunctionWithMapAndContext(map, resolve_info, promise_context);
m.Return(resolve);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result_obj =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result_obj->IsJSFunction());
Handle<JSFunction> fun = Handle<JSFunction>::cast(result_obj);
CHECK_EQ(isolate->heap()->empty_property_array(), fun->property_array());
CHECK_EQ(isolate->heap()->empty_fixed_array(), fun->elements());
CHECK_EQ(isolate->heap()->many_closures_cell(), fun->feedback_cell());
CHECK(!fun->has_prototype_slot());
CHECK_EQ(*isolate->promise_capability_default_resolve_shared_fun(),
fun->shared());
CHECK_EQ(isolate->promise_capability_default_resolve_shared_fun()->GetCode(),
fun->code());
}
TEST(CreatePromiseGetCapabilitiesExecutorContext) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
Node* const context = m.Parameter(kNumParams + 2);
Node* const native_context = m.LoadNativeContext(context);
Node* const map = m.LoadRoot(Heap::kPromiseCapabilityMapRootIndex);
Node* const capability = m.AllocateStruct(map);
m.StoreObjectFieldNoWriteBarrier(
capability, PromiseCapability::kPromiseOffset, m.UndefinedConstant());
m.StoreObjectFieldNoWriteBarrier(
capability, PromiseCapability::kResolveOffset, m.UndefinedConstant());
m.StoreObjectFieldNoWriteBarrier(capability, PromiseCapability::kRejectOffset,
m.UndefinedConstant());
Node* const executor_context =
m.CreatePromiseGetCapabilitiesExecutorContext(capability, native_context);
m.Return(executor_context);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result_obj =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result_obj->IsContext());
Handle<Context> context_js = Handle<Context>::cast(result_obj);
CHECK_EQ(PromiseBuiltinsAssembler::kCapabilitiesContextLength,
context_js->length());
CHECK_EQ(isolate->native_context()->closure(), context_js->closure());
CHECK_EQ(isolate->heap()->the_hole_value(), context_js->extension());
CHECK_EQ(*isolate->native_context(), context_js->native_context());
CHECK(context_js->get(PromiseBuiltinsAssembler::kCapabilitySlot)
->IsPromiseCapability());
}
TEST(NewPromiseCapability) {
Isolate* isolate(CcTest::InitIsolateOnce());
{ // Builtin Promise
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
Node* const context = m.Parameter(kNumParams + 2);
Node* const native_context = m.LoadNativeContext(context);
Node* const promise_constructor =
m.LoadContextElement(native_context, Context::PROMISE_FUNCTION_INDEX);
Node* const debug_event = m.TrueConstant();
Node* const capability =
m.CallBuiltin(Builtins::kNewPromiseCapability, context,
promise_constructor, debug_event);
m.Return(capability);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result_obj =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result_obj->IsPromiseCapability());
Handle<PromiseCapability> result =
Handle<PromiseCapability>::cast(result_obj);
CHECK(result->promise()->IsJSPromise());
CHECK(result->resolve()->IsJSFunction());
CHECK(result->reject()->IsJSFunction());
CHECK_EQ(*isolate->promise_capability_default_reject_shared_fun(),
JSFunction::cast(result->reject())->shared());
CHECK_EQ(*isolate->promise_capability_default_resolve_shared_fun(),
JSFunction::cast(result->resolve())->shared());
Handle<JSFunction> callbacks[] = {
handle(JSFunction::cast(result->resolve())),
handle(JSFunction::cast(result->reject()))};
for (auto&& callback : callbacks) {
Handle<Context> context(Context::cast(callback->context()));
CHECK_EQ(isolate->native_context()->closure(), context->closure());
CHECK_EQ(isolate->heap()->the_hole_value(), context->extension());
CHECK_EQ(*isolate->native_context(), context->native_context());
CHECK_EQ(PromiseBuiltinsAssembler::kPromiseContextLength,
context->length());
CHECK_EQ(context->get(PromiseBuiltinsAssembler::kPromiseSlot),
result->promise());
}
}
{ // Custom Promise
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
Node* const context = m.Parameter(kNumParams + 2);
Node* const constructor = m.Parameter(1);
Node* const debug_event = m.TrueConstant();
Node* const capability = m.CallBuiltin(Builtins::kNewPromiseCapability,
context, constructor, debug_event);
m.Return(capability);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<JSFunction> constructor_fn =
Handle<JSFunction>::cast(v8::Utils::OpenHandle(*CompileRun(
"(function FakePromise(executor) {"
" var self = this;"
" function resolve(value) { self.resolvedValue = value; }"
" function reject(reason) { self.rejectedReason = reason; }"
" executor(resolve, reject);"
"})")));
Handle<Object> result_obj =
ft.Call(isolate->factory()->undefined_value(), constructor_fn)
.ToHandleChecked();
CHECK(result_obj->IsPromiseCapability());
Handle<PromiseCapability> result =
Handle<PromiseCapability>::cast(result_obj);
CHECK(result->promise()->IsJSObject());
Handle<JSObject> promise(JSObject::cast(result->promise()));
CHECK_EQ(constructor_fn->prototype_or_initial_map(), promise->map());
CHECK(result->resolve()->IsJSFunction());
CHECK(result->reject()->IsJSFunction());
Handle<String> resolved_str =
isolate->factory()->NewStringFromAsciiChecked("resolvedStr");
Handle<String> rejected_str =
isolate->factory()->NewStringFromAsciiChecked("rejectedStr");
Handle<Object> argv1[] = {resolved_str};
Handle<Object> ret =
Execution::Call(isolate, handle(result->resolve(), isolate),
isolate->factory()->undefined_value(), 1, argv1)
.ToHandleChecked();
Handle<Object> prop1 =
JSReceiver::GetProperty(isolate, promise, "resolvedValue")
.ToHandleChecked();
CHECK_EQ(*resolved_str, *prop1);
Handle<Object> argv2[] = {rejected_str};
ret = Execution::Call(isolate, handle(result->reject(), isolate),
isolate->factory()->undefined_value(), 1, argv2)
.ToHandleChecked();
Handle<Object> prop2 =
JSReceiver::GetProperty(isolate, promise, "rejectedReason")
.ToHandleChecked();
CHECK_EQ(*rejected_str, *prop2);
}
}
TEST(DirectMemoryTest8BitWord32Immediate) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
int8_t buffer[] = {1, 2, 4, 8, 17, 33, 65, 127};
const int element_count = 8;
Label bad(&m);
Node* buffer_node = m.IntPtrConstant(reinterpret_cast<intptr_t>(buffer));
for (size_t i = 0; i < element_count; ++i) {
for (size_t j = 0; j < element_count; ++j) {
Node* loaded = m.LoadBufferObject(buffer_node, static_cast<int>(i),
MachineType::Uint8());
Node* masked = m.Word32And(loaded, m.Int32Constant(buffer[j]));
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
}
}
m.Return(m.SmiConstant(1));
m.BIND(&bad);
m.Return(m.SmiConstant(0));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK_EQ(1, ft.CallChecked<Smi>()->value());
}
TEST(DirectMemoryTest16BitWord32Immediate) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
int16_t buffer[] = {156, 2234, 4544, 8444, 1723, 3888, 658, 1278};
const int element_count = 8;
Label bad(&m);
Node* buffer_node = m.IntPtrConstant(reinterpret_cast<intptr_t>(buffer));
for (size_t i = 0; i < element_count; ++i) {
for (size_t j = 0; j < element_count; ++j) {
Node* loaded =
m.LoadBufferObject(buffer_node, static_cast<int>(i * sizeof(int16_t)),
MachineType::Uint16());
Node* masked = m.Word32And(loaded, m.Int32Constant(buffer[j]));
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
}
}
m.Return(m.SmiConstant(1));
m.BIND(&bad);
m.Return(m.SmiConstant(0));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK_EQ(1, ft.CallChecked<Smi>()->value());
}
TEST(DirectMemoryTest8BitWord32) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
int8_t buffer[] = {1, 2, 4, 8, 17, 33, 65, 127, 67, 38};
const int element_count = 10;
Label bad(&m);
Node* constants[element_count];
Node* buffer_node = m.IntPtrConstant(reinterpret_cast<intptr_t>(buffer));
for (size_t i = 0; i < element_count; ++i) {
constants[i] = m.LoadBufferObject(buffer_node, static_cast<int>(i),
MachineType::Uint8());
}
for (size_t i = 0; i < element_count; ++i) {
for (size_t j = 0; j < element_count; ++j) {
Node* loaded = m.LoadBufferObject(buffer_node, static_cast<int>(i),
MachineType::Uint8());
Node* masked = m.Word32And(loaded, constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
masked = m.Word32And(constants[i], constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
}
}
m.Return(m.SmiConstant(1));
m.BIND(&bad);
m.Return(m.SmiConstant(0));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK_EQ(1, ft.CallChecked<Smi>()->value());
}
TEST(DirectMemoryTest16BitWord32) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
int16_t buffer[] = {1, 2, 4, 8, 12345, 33, 65, 255, 67, 3823};
const int element_count = 10;
Label bad(&m);
Node* constants[element_count];
Node* buffer_node1 = m.IntPtrConstant(reinterpret_cast<intptr_t>(buffer));
for (size_t i = 0; i < element_count; ++i) {
constants[i] =
m.LoadBufferObject(buffer_node1, static_cast<int>(i * sizeof(int16_t)),
MachineType::Uint16());
}
Node* buffer_node2 = m.IntPtrConstant(reinterpret_cast<intptr_t>(buffer));
for (size_t i = 0; i < element_count; ++i) {
for (size_t j = 0; j < element_count; ++j) {
Node* loaded = m.LoadBufferObject(buffer_node1,
static_cast<int>(i * sizeof(int16_t)),
MachineType::Uint16());
Node* masked = m.Word32And(loaded, constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
// Force a memory access relative to a high-number register.
loaded = m.LoadBufferObject(buffer_node2,
static_cast<int>(i * sizeof(int16_t)),
MachineType::Uint16());
masked = m.Word32And(loaded, constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
masked = m.Word32And(constants[i], constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
}
}
m.Return(m.SmiConstant(1));
m.BIND(&bad);
m.Return(m.SmiConstant(0));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK_EQ(1, ft.CallChecked<Smi>()->value());
}
TEST(LoadJSArrayElementsMap) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
Node* context = m.Parameter(kNumParams + 2);
Node* native_context = m.LoadNativeContext(context);
Node* kind = m.SmiToInt32(m.Parameter(0));
m.Return(m.LoadJSArrayElementsMap(kind, native_context));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
for (int kind = 0; kind <= HOLEY_DOUBLE_ELEMENTS; kind++) {
Handle<Map> csa_result =
ft.CallChecked<Map>(handle(Smi::FromInt(kind), isolate));
ElementsKind elements_kind = static_cast<ElementsKind>(kind);
Handle<Map> result(
isolate->native_context()->GetInitialJSArrayMap(elements_kind));
CHECK_EQ(*csa_result, *result);
}
}
TEST(AllocateStruct) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
Node* map = m.Parameter(0);
Node* result = m.AllocateStruct(map);
m.Return(result);
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Map> maps[] = {
handle(isolate->heap()->tuple3_map(), isolate),
handle(isolate->heap()->tuple2_map(), isolate),
};
{
for (size_t i = 0; i < 2; i++) {
Handle<Map> map = maps[i];
Handle<Struct> result =
Handle<Struct>::cast(ft.Call(map).ToHandleChecked());
CHECK_EQ(result->map(), *map);
#ifdef VERIFY_HEAP
isolate->heap()->Verify();
#endif
}
}
}
TEST(GotoIfNotWhiteSpaceOrLineTerminator) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
StringTrimAssembler m(asm_tester.state());
{ // Returns true if whitespace, false otherwise.
Label if_not_whitespace(&m);
m.GotoIfNotWhiteSpaceOrLineTerminator(m.SmiToInt32(m.Parameter(0)),
&if_not_whitespace);
m.Return(m.TrueConstant());
m.BIND(&if_not_whitespace);
m.Return(m.FalseConstant());
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> true_value = ft.true_value();
Handle<Object> false_value = ft.false_value();
for (uc16 c = 0; c < 0xFFFF; c++) {
Handle<Object> expected_value =
WhiteSpaceOrLineTerminator::Is(c) ? true_value : false_value;
ft.CheckCall(expected_value, handle(Smi::FromInt(c), isolate));
}
}
TEST(BranchIfNumberRelationalComparison) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* f = isolate->factory();
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
Label return_true(&m), return_false(&m);
m.BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual,
m.Parameter(0), m.Parameter(1),
&return_true, &return_false);
m.BIND(&return_true);
m.Return(m.BooleanConstant(true));
m.BIND(&return_false);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.CheckTrue(f->NewNumber(0), f->NewNumber(0));
ft.CheckTrue(f->NewNumber(1), f->NewNumber(0));
ft.CheckTrue(f->NewNumber(1), f->NewNumber(1));
ft.CheckFalse(f->NewNumber(0), f->NewNumber(1));
ft.CheckFalse(f->NewNumber(-1), f->NewNumber(0));
ft.CheckTrue(f->NewNumber(-1), f->NewNumber(-1));
ft.CheckTrue(f->NewNumber(-1), f->NewNumber(-1.5));
ft.CheckFalse(f->NewNumber(-1.5), f->NewNumber(-1));
ft.CheckTrue(f->NewNumber(-1.5), f->NewNumber(-1.5));
}
TEST(IsNumberArrayIndex) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
m.Return(m.SmiFromInt32(
m.UncheckedCast<Int32T>(m.IsNumberArrayIndex(m.Parameter(0)))));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
double indices[] = {Smi::kMinValue,
-11,
-1,
0,
1,
2,
Smi::kMaxValue,
-11.0,
-11.1,
-2.0,
-1.0,
-0.0,
0.0,
0.00001,
0.1,
1,
2,
Smi::kMinValue - 1.0,
Smi::kMinValue + 1.0,
Smi::kMinValue + 1.2,
kMaxInt + 1.2,
kMaxInt - 10.0,
kMaxInt - 1.0,
kMaxInt,
kMaxInt + 1.0,
kMaxInt + 10.0};
for (size_t i = 0; i < arraysize(indices); i++) {
Handle<Object> index = isolate->factory()->NewNumber(indices[i]);
uint32_t array_index;
CHECK_EQ(index->ToArrayIndex(&array_index),
(ft.CallChecked<Smi>(index)->value() == 1));
}
}
TEST(NumberMinMax) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester_min(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester_min.state());
m.Return(m.NumberMin(m.Parameter(0), m.Parameter(1)));
}
FunctionTester ft_min(asm_tester_min.GenerateCode(), kNumParams);
CodeAssemblerTester asm_tester_max(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester_max.state());
m.Return(m.NumberMax(m.Parameter(0), m.Parameter(1)));
}
FunctionTester ft_max(asm_tester_max.GenerateCode(), kNumParams);
// Test smi values.
Handle<Smi> smi_1(Smi::FromInt(1), isolate);
Handle<Smi> smi_2(Smi::FromInt(2), isolate);
Handle<Smi> smi_5(Smi::FromInt(5), isolate);
CHECK_EQ(ft_min.CallChecked<Smi>(smi_1, smi_2)->value(), 1);
CHECK_EQ(ft_min.CallChecked<Smi>(smi_2, smi_1)->value(), 1);
CHECK_EQ(ft_max.CallChecked<Smi>(smi_1, smi_2)->value(), 2);
CHECK_EQ(ft_max.CallChecked<Smi>(smi_2, smi_1)->value(), 2);
// Test double values.
Handle<Object> double_a = isolate->factory()->NewNumber(2.5);
Handle<Object> double_b = isolate->factory()->NewNumber(3.5);
Handle<Object> nan =
isolate->factory()->NewNumber(std::numeric_limits<double>::quiet_NaN());
Handle<Object> infinity = isolate->factory()->NewNumber(V8_INFINITY);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(double_a, double_b)->value(), 2.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(double_b, double_a)->value(), 2.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(infinity, double_a)->value(), 2.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(double_a, infinity)->value(), 2.5);
CHECK(std::isnan(ft_min.CallChecked<HeapNumber>(nan, double_a)->value()));
CHECK(std::isnan(ft_min.CallChecked<HeapNumber>(double_a, nan)->value()));
CHECK_EQ(ft_max.CallChecked<HeapNumber>(double_a, double_b)->value(), 3.5);
CHECK_EQ(ft_max.CallChecked<HeapNumber>(double_b, double_a)->value(), 3.5);
CHECK_EQ(ft_max.CallChecked<HeapNumber>(infinity, double_a)->value(),
V8_INFINITY);
CHECK_EQ(ft_max.CallChecked<HeapNumber>(double_a, infinity)->value(),
V8_INFINITY);
CHECK(std::isnan(ft_max.CallChecked<HeapNumber>(nan, double_a)->value()));
CHECK(std::isnan(ft_max.CallChecked<HeapNumber>(double_a, nan)->value()));
// Mixed smi/double values.
CHECK_EQ(ft_max.CallChecked<HeapNumber>(smi_1, double_b)->value(), 3.5);
CHECK_EQ(ft_max.CallChecked<HeapNumber>(double_b, smi_1)->value(), 3.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(smi_5, double_b)->value(), 3.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(double_b, smi_5)->value(), 3.5);
}
TEST(NumberAddSub) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester_add(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester_add.state());
m.Return(m.NumberAdd(m.Parameter(0), m.Parameter(1)));
}
FunctionTester ft_add(asm_tester_add.GenerateCode(), kNumParams);
CodeAssemblerTester asm_tester_sub(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester_sub.state());
m.Return(m.NumberSub(m.Parameter(0), m.Parameter(1)));
}
FunctionTester ft_sub(asm_tester_sub.GenerateCode(), kNumParams);
// Test smi values.
Handle<Smi> smi_1(Smi::FromInt(1), isolate);
Handle<Smi> smi_2(Smi::FromInt(2), isolate);
CHECK_EQ(ft_add.CallChecked<Smi>(smi_1, smi_2)->value(), 3);
CHECK_EQ(ft_sub.CallChecked<Smi>(smi_2, smi_1)->value(), 1);
// Test double values.
Handle<Object> double_a = isolate->factory()->NewNumber(2.5);
Handle<Object> double_b = isolate->factory()->NewNumber(3.0);
CHECK_EQ(ft_add.CallChecked<HeapNumber>(double_a, double_b)->value(), 5.5);
CHECK_EQ(ft_sub.CallChecked<HeapNumber>(double_a, double_b)->value(), -.5);
// Test overflow.
Handle<Smi> smi_max(Smi::FromInt(Smi::kMaxValue), isolate);
Handle<Smi> smi_min(Smi::FromInt(Smi::kMinValue), isolate);
CHECK_EQ(ft_add.CallChecked<HeapNumber>(smi_max, smi_1)->value(),
static_cast<double>(Smi::kMaxValue) + 1);
CHECK_EQ(ft_sub.CallChecked<HeapNumber>(smi_min, smi_1)->value(),
static_cast<double>(Smi::kMinValue) - 1);
// Test mixed smi/double values.
CHECK_EQ(ft_add.CallChecked<HeapNumber>(smi_1, double_a)->value(), 3.5);
CHECK_EQ(ft_add.CallChecked<HeapNumber>(double_a, smi_1)->value(), 3.5);
CHECK_EQ(ft_sub.CallChecked<HeapNumber>(smi_1, double_a)->value(), -1.5);
CHECK_EQ(ft_sub.CallChecked<HeapNumber>(double_a, smi_1)->value(), 1.5);
}
TEST(CloneEmptyFixedArray) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
m.Return(m.CloneFixedArray(m.Parameter(0)));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->empty_fixed_array());
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray* result(FixedArray::cast(*result_raw));
CHECK_EQ(0, result->length());
CHECK_EQ(*(isolate->factory()->empty_fixed_array()), result);
}
TEST(CloneFixedArray) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
m.Return(m.CloneFixedArray(m.Parameter(0)));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray* result(FixedArray::cast(*result_raw));
CHECK_EQ(5, result->length());
CHECK(result->get(0)->IsTheHole(isolate));
CHECK_EQ(Smi::cast(result->get(1))->value(), 1234);
CHECK(result->get(2)->IsTheHole(isolate));
CHECK(result->get(3)->IsTheHole(isolate));
CHECK(result->get(4)->IsTheHole(isolate));
}
TEST(CloneFixedArrayCOW) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
m.Return(m.CloneFixedArray(m.Parameter(0)));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
source->set_map(isolate->heap()->fixed_cow_array_map());
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray* result(FixedArray::cast(*result_raw));
CHECK_EQ(*source, result);
}
TEST(ExtractFixedArrayCOWForceCopy) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
CodeStubAssembler::ExtractFixedArrayFlags flags;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays;
m.Return(m.ExtractFixedArray(m.Parameter(0), m.SmiConstant(0), nullptr,
nullptr, flags,
CodeStubAssembler::SMI_PARAMETERS));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
source->set_map(isolate->heap()->fixed_cow_array_map());
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray* result(FixedArray::cast(*result_raw));
CHECK_NE(*source, result);
CHECK_EQ(5, result->length());
CHECK(result->get(0)->IsTheHole(isolate));
CHECK_EQ(Smi::cast(result->get(1))->value(), 1234);
CHECK(result->get(2)->IsTheHole(isolate));
CHECK(result->get(3)->IsTheHole(isolate));
CHECK(result->get(4)->IsTheHole(isolate));
}
TEST(ExtractFixedArraySimple) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
CodeStubAssembler::ExtractFixedArrayFlags flags;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kDontCopyCOW;
m.Return(m.ExtractFixedArray(m.Parameter(0), m.Parameter(1), m.Parameter(2),
nullptr, flags,
CodeStubAssembler::SMI_PARAMETERS));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw =
ft.Call(source, Handle<Smi>(Smi::FromInt(1), isolate),
Handle<Smi>(Smi::FromInt(2), isolate))
.ToHandleChecked();
FixedArray* result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result->length());
CHECK_EQ(Smi::cast(result->get(0))->value(), 1234);
CHECK(result->get(1)->IsTheHole(isolate));
}
TEST(ExtractFixedArraySimpleSmiConstant) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
CodeStubAssembler::ExtractFixedArrayFlags flags;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kDontCopyCOW;
m.Return(m.ExtractFixedArray(m.Parameter(0), m.SmiConstant(1),
m.SmiConstant(2), nullptr, flags,
CodeStubAssembler::SMI_PARAMETERS));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray* result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result->length());
CHECK_EQ(Smi::cast(result->get(0))->value(), 1234);
CHECK(result->get(1)->IsTheHole(isolate));
}
TEST(ExtractFixedArraySimpleIntPtrConstant) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
CodeStubAssembler::ExtractFixedArrayFlags flags;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kDontCopyCOW;
m.Return(m.ExtractFixedArray(m.Parameter(0), m.IntPtrConstant(1),
m.IntPtrConstant(2), nullptr, flags,
CodeStubAssembler::INTPTR_PARAMETERS));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray* result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result->length());
CHECK_EQ(Smi::cast(result->get(0))->value(), 1234);
CHECK(result->get(1)->IsTheHole(isolate));
}
TEST(ExtractFixedArraySimpleIntPtrConstantNoDoubles) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
m.Return(m.ExtractFixedArray(
m.Parameter(0), m.IntPtrConstant(1), m.IntPtrConstant(2), nullptr,
CodeStubAssembler::ExtractFixedArrayFlag::kFixedArrays,
CodeStubAssembler::INTPTR_PARAMETERS));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray* result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result->length());
CHECK_EQ(Smi::cast(result->get(0))->value(), 1234);
CHECK(result->get(1)->IsTheHole(isolate));
}
TEST(ExtractFixedArraySimpleIntPtrParameters) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
Node* p1_untagged = m.SmiUntag(m.Parameter(1));
Node* p2_untagged = m.SmiUntag(m.Parameter(2));
m.Return(m.ExtractFixedArray(m.Parameter(0), p1_untagged, p2_untagged));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw =
ft.Call(source, Handle<Smi>(Smi::FromInt(1), isolate),
Handle<Smi>(Smi::FromInt(2), isolate))
.ToHandleChecked();
FixedArray* result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result->length());
CHECK_EQ(Smi::cast(result->get(0))->value(), 1234);
CHECK(result->get(1)->IsTheHole(isolate));
Handle<FixedDoubleArray> source_double = Handle<FixedDoubleArray>::cast(
isolate->factory()->NewFixedDoubleArray(5));
source_double->set(0, 10);
source_double->set(1, 11);
source_double->set(2, 12);
source_double->set(3, 13);
source_double->set(4, 14);
Handle<Object> double_result_raw =
ft.Call(source_double, Handle<Smi>(Smi::FromInt(1), isolate),
Handle<Smi>(Smi::FromInt(2), isolate))
.ToHandleChecked();
FixedDoubleArray* double_result(FixedDoubleArray::cast(*double_result_raw));
CHECK_EQ(2, double_result->length());
CHECK_EQ(double_result->get_scalar(0), 11);
CHECK_EQ(double_result->get_scalar(1), 12);
}
TEST(SingleInputPhiElimination) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
Variable temp1(&m, MachineRepresentation::kTagged);
Variable temp2(&m, MachineRepresentation::kTagged);
Label temp_label(&m, {&temp1, &temp2});
Label end_label(&m, {&temp1, &temp2});
temp1.Bind(m.Parameter(1));
temp2.Bind(m.Parameter(1));
m.Branch(m.WordEqual(m.Parameter(0), m.Parameter(1)), &end_label,
&temp_label);
temp1.Bind(m.Parameter(2));
temp2.Bind(m.Parameter(2));
m.BIND(&temp_label);
m.Goto(&end_label);
m.BIND(&end_label);
m.Return(temp1.value());
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
// Generating code without an assert is enough to make sure that the
// single-input phi is properly eliminated.
}
} // namespace compiler
} // namespace internal
} // namespace v8