c49aa16fdf
R=svenpanne@chromium.org Review URL: https://codereview.chromium.org/504343005 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@23440 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
402 lines
11 KiB
JavaScript
402 lines
11 KiB
JavaScript
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
"use strict";
|
|
|
|
// This file relies on the fact that the following declarations have been made
|
|
// in runtime.js:
|
|
// var $Object = global.Object;
|
|
|
|
// Keep reference to original values of some global properties. This
|
|
// has the added benefit that the code in this file is isolated from
|
|
// changes to these properties.
|
|
var $floor = MathFloor;
|
|
var $abs = MathAbs;
|
|
|
|
// Instance class name can only be set on functions. That is the only
|
|
// purpose for MathConstructor.
|
|
function MathConstructor() {}
|
|
var $Math = new MathConstructor();
|
|
|
|
// -------------------------------------------------------------------
|
|
|
|
// ECMA 262 - 15.8.2.1
|
|
function MathAbs(x) {
|
|
if (%_IsSmi(x)) return x >= 0 ? x : -x;
|
|
x = TO_NUMBER_INLINE(x);
|
|
if (x === 0) return 0; // To handle -0.
|
|
return x > 0 ? x : -x;
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.2
|
|
function MathAcosJS(x) {
|
|
return %MathAcos(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.3
|
|
function MathAsinJS(x) {
|
|
return %MathAsin(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.4
|
|
function MathAtanJS(x) {
|
|
return %MathAtan(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.5
|
|
// The naming of y and x matches the spec, as does the order in which
|
|
// ToNumber (valueOf) is called.
|
|
function MathAtan2JS(y, x) {
|
|
return %MathAtan2(TO_NUMBER_INLINE(y), TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.6
|
|
function MathCeil(x) {
|
|
return -MathFloor(-x);
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.8
|
|
function MathExp(x) {
|
|
return %MathExpRT(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.9
|
|
function MathFloor(x) {
|
|
x = TO_NUMBER_INLINE(x);
|
|
// It's more common to call this with a positive number that's out
|
|
// of range than negative numbers; check the upper bound first.
|
|
if (x < 0x80000000 && x > 0) {
|
|
// Numbers in the range [0, 2^31) can be floored by converting
|
|
// them to an unsigned 32-bit value using the shift operator.
|
|
// We avoid doing so for -0, because the result of Math.floor(-0)
|
|
// has to be -0, which wouldn't be the case with the shift.
|
|
return TO_UINT32(x);
|
|
} else {
|
|
return %MathFloorRT(x);
|
|
}
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.10
|
|
function MathLog(x) {
|
|
return %_MathLogRT(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.11
|
|
function MathMax(arg1, arg2) { // length == 2
|
|
var length = %_ArgumentsLength();
|
|
if (length == 2) {
|
|
arg1 = TO_NUMBER_INLINE(arg1);
|
|
arg2 = TO_NUMBER_INLINE(arg2);
|
|
if (arg2 > arg1) return arg2;
|
|
if (arg1 > arg2) return arg1;
|
|
if (arg1 == arg2) {
|
|
// Make sure -0 is considered less than +0.
|
|
return (arg1 === 0 && %_IsMinusZero(arg1)) ? arg2 : arg1;
|
|
}
|
|
// All comparisons failed, one of the arguments must be NaN.
|
|
return NAN;
|
|
}
|
|
var r = -INFINITY;
|
|
for (var i = 0; i < length; i++) {
|
|
var n = %_Arguments(i);
|
|
if (!IS_NUMBER(n)) n = NonNumberToNumber(n);
|
|
// Make sure +0 is considered greater than -0.
|
|
if (NUMBER_IS_NAN(n) || n > r || (r === 0 && n === 0 && %_IsMinusZero(r))) {
|
|
r = n;
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.12
|
|
function MathMin(arg1, arg2) { // length == 2
|
|
var length = %_ArgumentsLength();
|
|
if (length == 2) {
|
|
arg1 = TO_NUMBER_INLINE(arg1);
|
|
arg2 = TO_NUMBER_INLINE(arg2);
|
|
if (arg2 > arg1) return arg1;
|
|
if (arg1 > arg2) return arg2;
|
|
if (arg1 == arg2) {
|
|
// Make sure -0 is considered less than +0.
|
|
return (arg1 === 0 && %_IsMinusZero(arg1)) ? arg1 : arg2;
|
|
}
|
|
// All comparisons failed, one of the arguments must be NaN.
|
|
return NAN;
|
|
}
|
|
var r = INFINITY;
|
|
for (var i = 0; i < length; i++) {
|
|
var n = %_Arguments(i);
|
|
if (!IS_NUMBER(n)) n = NonNumberToNumber(n);
|
|
// Make sure -0 is considered less than +0.
|
|
if (NUMBER_IS_NAN(n) || n < r || (r === 0 && n === 0 && %_IsMinusZero(n))) {
|
|
r = n;
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.13
|
|
function MathPow(x, y) {
|
|
return %_MathPow(TO_NUMBER_INLINE(x), TO_NUMBER_INLINE(y));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.14
|
|
var rngstate; // Initialized to a Uint32Array during genesis.
|
|
function MathRandom() {
|
|
var r0 = (MathImul(18273, rngstate[0] & 0xFFFF) + (rngstate[0] >>> 16)) | 0;
|
|
rngstate[0] = r0;
|
|
var r1 = (MathImul(36969, rngstate[1] & 0xFFFF) + (rngstate[1] >>> 16)) | 0;
|
|
rngstate[1] = r1;
|
|
var x = ((r0 << 16) + (r1 & 0xFFFF)) | 0;
|
|
// Division by 0x100000000 through multiplication by reciprocal.
|
|
return (x < 0 ? (x + 0x100000000) : x) * 2.3283064365386962890625e-10;
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.15
|
|
function MathRound(x) {
|
|
return %RoundNumber(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.17
|
|
function MathSqrt(x) {
|
|
return %_MathSqrtRT(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// Non-standard extension.
|
|
function MathImul(x, y) {
|
|
return %NumberImul(TO_NUMBER_INLINE(x), TO_NUMBER_INLINE(y));
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.28.
|
|
function MathSign(x) {
|
|
x = TO_NUMBER_INLINE(x);
|
|
if (x > 0) return 1;
|
|
if (x < 0) return -1;
|
|
// -0, 0 or NaN.
|
|
return x;
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.34.
|
|
function MathTrunc(x) {
|
|
x = TO_NUMBER_INLINE(x);
|
|
if (x > 0) return MathFloor(x);
|
|
if (x < 0) return MathCeil(x);
|
|
// -0, 0 or NaN.
|
|
return x;
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.30.
|
|
function MathSinh(x) {
|
|
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
|
// Idempotent for NaN, +/-0 and +/-Infinity.
|
|
if (x === 0 || !NUMBER_IS_FINITE(x)) return x;
|
|
return (MathExp(x) - MathExp(-x)) / 2;
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.12.
|
|
function MathCosh(x) {
|
|
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
|
if (!NUMBER_IS_FINITE(x)) return MathAbs(x);
|
|
return (MathExp(x) + MathExp(-x)) / 2;
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.33.
|
|
function MathTanh(x) {
|
|
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
|
// Idempotent for +/-0.
|
|
if (x === 0) return x;
|
|
// Returns +/-1 for +/-Infinity.
|
|
if (!NUMBER_IS_FINITE(x)) return MathSign(x);
|
|
var exp1 = MathExp(x);
|
|
var exp2 = MathExp(-x);
|
|
return (exp1 - exp2) / (exp1 + exp2);
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.5.
|
|
function MathAsinh(x) {
|
|
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
|
// Idempotent for NaN, +/-0 and +/-Infinity.
|
|
if (x === 0 || !NUMBER_IS_FINITE(x)) return x;
|
|
if (x > 0) return MathLog(x + MathSqrt(x * x + 1));
|
|
// This is to prevent numerical errors caused by large negative x.
|
|
return -MathLog(-x + MathSqrt(x * x + 1));
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.3.
|
|
function MathAcosh(x) {
|
|
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
|
if (x < 1) return NAN;
|
|
// Idempotent for NaN and +Infinity.
|
|
if (!NUMBER_IS_FINITE(x)) return x;
|
|
return MathLog(x + MathSqrt(x + 1) * MathSqrt(x - 1));
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.7.
|
|
function MathAtanh(x) {
|
|
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
|
// Idempotent for +/-0.
|
|
if (x === 0) return x;
|
|
// Returns NaN for NaN and +/- Infinity.
|
|
if (!NUMBER_IS_FINITE(x)) return NAN;
|
|
return 0.5 * MathLog((1 + x) / (1 - x));
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.21.
|
|
function MathLog10(x) {
|
|
return MathLog(x) * 0.434294481903251828; // log10(x) = log(x)/log(10).
|
|
}
|
|
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.22.
|
|
function MathLog2(x) {
|
|
return MathLog(x) * 1.442695040888963407; // log2(x) = log(x)/log(2).
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.17.
|
|
function MathHypot(x, y) { // Function length is 2.
|
|
// We may want to introduce fast paths for two arguments and when
|
|
// normalization to avoid overflow is not necessary. For now, we
|
|
// simply assume the general case.
|
|
var length = %_ArgumentsLength();
|
|
var args = new InternalArray(length);
|
|
var max = 0;
|
|
for (var i = 0; i < length; i++) {
|
|
var n = %_Arguments(i);
|
|
if (!IS_NUMBER(n)) n = NonNumberToNumber(n);
|
|
if (n === INFINITY || n === -INFINITY) return INFINITY;
|
|
n = MathAbs(n);
|
|
if (n > max) max = n;
|
|
args[i] = n;
|
|
}
|
|
|
|
// Kahan summation to avoid rounding errors.
|
|
// Normalize the numbers to the largest one to avoid overflow.
|
|
if (max === 0) max = 1;
|
|
var sum = 0;
|
|
var compensation = 0;
|
|
for (var i = 0; i < length; i++) {
|
|
var n = args[i] / max;
|
|
var summand = n * n - compensation;
|
|
var preliminary = sum + summand;
|
|
compensation = (preliminary - sum) - summand;
|
|
sum = preliminary;
|
|
}
|
|
return MathSqrt(sum) * max;
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.16.
|
|
function MathFroundJS(x) {
|
|
return %MathFround(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ES6 draft 07-18-14, section 20.2.2.11
|
|
function MathClz32(x) {
|
|
x = ToUint32(TO_NUMBER_INLINE(x));
|
|
if (x == 0) return 32;
|
|
var result = 0;
|
|
// Binary search.
|
|
if ((x & 0xFFFF0000) === 0) { x <<= 16; result += 16; };
|
|
if ((x & 0xFF000000) === 0) { x <<= 8; result += 8; };
|
|
if ((x & 0xF0000000) === 0) { x <<= 4; result += 4; };
|
|
if ((x & 0xC0000000) === 0) { x <<= 2; result += 2; };
|
|
if ((x & 0x80000000) === 0) { x <<= 1; result += 1; };
|
|
return result;
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.9.
|
|
// Cube root approximation, refer to: http://metamerist.com/cbrt/cbrt.htm
|
|
// Using initial approximation adapted from Kahan's cbrt and 4 iterations
|
|
// of Newton's method.
|
|
function MathCbrt(x) {
|
|
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
|
if (x == 0 || !NUMBER_IS_FINITE(x)) return x;
|
|
return x >= 0 ? CubeRoot(x) : -CubeRoot(-x);
|
|
}
|
|
|
|
macro NEWTON_ITERATION_CBRT(x, approx)
|
|
(1.0 / 3.0) * (x / (approx * approx) + 2 * approx);
|
|
endmacro
|
|
|
|
function CubeRoot(x) {
|
|
var approx_hi = MathFloor(%_DoubleHi(x) / 3) + 0x2A9F7893;
|
|
var approx = %_ConstructDouble(approx_hi, 0);
|
|
approx = NEWTON_ITERATION_CBRT(x, approx);
|
|
approx = NEWTON_ITERATION_CBRT(x, approx);
|
|
approx = NEWTON_ITERATION_CBRT(x, approx);
|
|
return NEWTON_ITERATION_CBRT(x, approx);
|
|
}
|
|
|
|
// -------------------------------------------------------------------
|
|
|
|
function SetUpMath() {
|
|
%CheckIsBootstrapping();
|
|
|
|
%InternalSetPrototype($Math, $Object.prototype);
|
|
%AddNamedProperty(global, "Math", $Math, DONT_ENUM);
|
|
%FunctionSetInstanceClassName(MathConstructor, 'Math');
|
|
|
|
// Set up math constants.
|
|
InstallConstants($Math, $Array(
|
|
// ECMA-262, section 15.8.1.1.
|
|
"E", 2.7182818284590452354,
|
|
// ECMA-262, section 15.8.1.2.
|
|
"LN10", 2.302585092994046,
|
|
// ECMA-262, section 15.8.1.3.
|
|
"LN2", 0.6931471805599453,
|
|
// ECMA-262, section 15.8.1.4.
|
|
"LOG2E", 1.4426950408889634,
|
|
"LOG10E", 0.4342944819032518,
|
|
"PI", 3.1415926535897932,
|
|
"SQRT1_2", 0.7071067811865476,
|
|
"SQRT2", 1.4142135623730951
|
|
));
|
|
|
|
// Set up non-enumerable functions of the Math object and
|
|
// set their names.
|
|
InstallFunctions($Math, DONT_ENUM, $Array(
|
|
"random", MathRandom,
|
|
"abs", MathAbs,
|
|
"acos", MathAcosJS,
|
|
"asin", MathAsinJS,
|
|
"atan", MathAtanJS,
|
|
"ceil", MathCeil,
|
|
"cos", MathCos, // implemented by third_party/fdlibm
|
|
"exp", MathExp,
|
|
"floor", MathFloor,
|
|
"log", MathLog,
|
|
"round", MathRound,
|
|
"sin", MathSin, // implemented by third_party/fdlibm
|
|
"sqrt", MathSqrt,
|
|
"tan", MathTan, // implemented by third_party/fdlibm
|
|
"atan2", MathAtan2JS,
|
|
"pow", MathPow,
|
|
"max", MathMax,
|
|
"min", MathMin,
|
|
"imul", MathImul,
|
|
"sign", MathSign,
|
|
"trunc", MathTrunc,
|
|
"sinh", MathSinh,
|
|
"cosh", MathCosh,
|
|
"tanh", MathTanh,
|
|
"asinh", MathAsinh,
|
|
"acosh", MathAcosh,
|
|
"atanh", MathAtanh,
|
|
"log10", MathLog10,
|
|
"log2", MathLog2,
|
|
"hypot", MathHypot,
|
|
"fround", MathFroundJS,
|
|
"clz32", MathClz32,
|
|
"cbrt", MathCbrt,
|
|
"log1p", MathLog1p, // implemented by third_party/fdlibm
|
|
"expm1", MathExpm1 // implemented by third_party/fdlibm
|
|
));
|
|
|
|
%SetInlineBuiltinFlag(MathCeil);
|
|
%SetInlineBuiltinFlag(MathRandom);
|
|
%SetInlineBuiltinFlag(MathSin);
|
|
%SetInlineBuiltinFlag(MathCos);
|
|
}
|
|
|
|
SetUpMath();
|