14c5b0ae67
Scopes in V8 are used to guarantee one or more properties during its lifetimes. If a scope is not named e.g MyClassScope(args) instead of MyClassScope scope(args) it will get created and automatically destroyed and therefore, being useless as a scope. This CL would produce a compiling warning when that happens to ward off this developer error. Follow-up to ccrev.com/2552415 in which it was introduced and implemented for Guard classes. Change-Id: Ifa0fb89cc3d9bdcdee0fd8150a2618af5ef45cbf Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2555001 Commit-Queue: Santiago Aboy Solanes <solanes@chromium.org> Reviewed-by: Ulan Degenbaev <ulan@chromium.org> Reviewed-by: Leszek Swirski <leszeks@chromium.org> Reviewed-by: Michael Lippautz <mlippautz@chromium.org> Reviewed-by: Jakob Kummerow <jkummerow@chromium.org> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Tobias Tebbi <tebbi@chromium.org> Cr-Commit-Position: refs/heads/master@{#71425}
508 lines
17 KiB
C++
508 lines
17 KiB
C++
// Copyright 2014 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/compiler/backend/gap-resolver.h"
|
|
|
|
#include "src/base/utils/random-number-generator.h"
|
|
#include "test/cctest/cctest.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
namespace compiler {
|
|
|
|
const auto GetRegConfig = RegisterConfiguration::Default;
|
|
|
|
// Fragments the given FP operand into an equivalent set of FP operands to
|
|
// simplify ParallelMove equivalence testing.
|
|
void GetCanonicalOperands(const InstructionOperand& op,
|
|
std::vector<InstructionOperand>* fragments) {
|
|
CHECK(!kSimpleFPAliasing);
|
|
CHECK(op.IsFPLocationOperand());
|
|
const LocationOperand& loc = LocationOperand::cast(op);
|
|
MachineRepresentation rep = loc.representation();
|
|
int base = -1;
|
|
int aliases = GetRegConfig()->GetAliases(
|
|
rep, 0, MachineRepresentation::kFloat32, &base);
|
|
CHECK_LT(0, aliases);
|
|
CHECK_GE(4, aliases);
|
|
int index = -1;
|
|
int step = 1;
|
|
if (op.IsFPRegister()) {
|
|
index = loc.register_code() * aliases;
|
|
} else {
|
|
index = loc.index();
|
|
step = -1;
|
|
}
|
|
for (int i = 0; i < aliases; i++) {
|
|
fragments->push_back(AllocatedOperand(loc.location_kind(),
|
|
MachineRepresentation::kFloat32,
|
|
index + i * step));
|
|
}
|
|
}
|
|
|
|
// The state of our move interpreter is the mapping of operands to values. Note
|
|
// that the actual values don't really matter, all we care about is equality.
|
|
class InterpreterState {
|
|
public:
|
|
void ExecuteInParallel(const ParallelMove* moves) {
|
|
InterpreterState copy(*this);
|
|
for (const auto m : *moves) {
|
|
CHECK(!m->IsRedundant());
|
|
const InstructionOperand& src = m->source();
|
|
const InstructionOperand& dst = m->destination();
|
|
if (!kSimpleFPAliasing && src.IsFPLocationOperand() &&
|
|
dst.IsFPLocationOperand()) {
|
|
// Canonicalize FP location-location moves by fragmenting them into
|
|
// an equivalent sequence of float32 moves, to simplify state
|
|
// equivalence testing.
|
|
std::vector<InstructionOperand> src_fragments;
|
|
GetCanonicalOperands(src, &src_fragments);
|
|
CHECK(!src_fragments.empty());
|
|
std::vector<InstructionOperand> dst_fragments;
|
|
GetCanonicalOperands(dst, &dst_fragments);
|
|
CHECK_EQ(src_fragments.size(), dst_fragments.size());
|
|
|
|
for (size_t i = 0; i < src_fragments.size(); ++i) {
|
|
write(dst_fragments[i], copy.read(src_fragments[i]));
|
|
}
|
|
continue;
|
|
}
|
|
// All other moves.
|
|
write(dst, copy.read(src));
|
|
}
|
|
}
|
|
|
|
bool operator==(const InterpreterState& other) const {
|
|
return values_ == other.values_;
|
|
}
|
|
|
|
private:
|
|
// struct for mapping operands to a unique value, that makes it easier to
|
|
// detect illegal parallel moves, and to evaluate moves for equivalence. This
|
|
// is a one way transformation. All general register and slot operands are
|
|
// mapped to the default representation. FP registers and slots are mapped to
|
|
// float64 except on architectures with non-simple FP register aliasing, where
|
|
// the actual representation is used.
|
|
struct Key {
|
|
bool is_constant;
|
|
MachineRepresentation rep;
|
|
LocationOperand::LocationKind kind;
|
|
int index;
|
|
|
|
bool operator<(const Key& other) const {
|
|
if (this->is_constant != other.is_constant) {
|
|
return this->is_constant;
|
|
}
|
|
if (this->rep != other.rep) {
|
|
return this->rep < other.rep;
|
|
}
|
|
if (this->kind != other.kind) {
|
|
return this->kind < other.kind;
|
|
}
|
|
return this->index < other.index;
|
|
}
|
|
|
|
bool operator==(const Key& other) const {
|
|
return this->is_constant == other.is_constant && this->rep == other.rep &&
|
|
this->kind == other.kind && this->index == other.index;
|
|
}
|
|
};
|
|
|
|
// Internally, the state is a normalized permutation of Value pairs.
|
|
using Value = Key;
|
|
using OperandMap = std::map<Key, Value>;
|
|
|
|
Value read(const InstructionOperand& op) const {
|
|
OperandMap::const_iterator it = values_.find(KeyFor(op));
|
|
return (it == values_.end()) ? ValueFor(op) : it->second;
|
|
}
|
|
|
|
void write(const InstructionOperand& dst, Value v) {
|
|
if (v == ValueFor(dst)) {
|
|
values_.erase(KeyFor(dst));
|
|
} else {
|
|
values_[KeyFor(dst)] = v;
|
|
}
|
|
}
|
|
|
|
static Key KeyFor(const InstructionOperand& op) {
|
|
bool is_constant = op.IsConstant();
|
|
MachineRepresentation rep =
|
|
v8::internal::compiler::InstructionSequence::DefaultRepresentation();
|
|
LocationOperand::LocationKind kind;
|
|
int index;
|
|
if (!is_constant) {
|
|
const LocationOperand& loc_op = LocationOperand::cast(op);
|
|
// Preserve FP representation when FP register aliasing is complex.
|
|
// Otherwise, canonicalize to kFloat64.
|
|
if (IsFloatingPoint(loc_op.representation())) {
|
|
rep = kSimpleFPAliasing ? MachineRepresentation::kFloat64
|
|
: loc_op.representation();
|
|
}
|
|
if (loc_op.IsAnyRegister()) {
|
|
index = loc_op.register_code();
|
|
} else {
|
|
index = loc_op.index();
|
|
}
|
|
kind = loc_op.location_kind();
|
|
} else {
|
|
index = ConstantOperand::cast(op).virtual_register();
|
|
kind = LocationOperand::REGISTER;
|
|
}
|
|
Key key = {is_constant, rep, kind, index};
|
|
return key;
|
|
}
|
|
|
|
static Value ValueFor(const InstructionOperand& op) { return KeyFor(op); }
|
|
|
|
static InstructionOperand FromKey(Key key) {
|
|
if (key.is_constant) {
|
|
return ConstantOperand(key.index);
|
|
}
|
|
return AllocatedOperand(key.kind, key.rep, key.index);
|
|
}
|
|
|
|
friend std::ostream& operator<<(std::ostream& os,
|
|
const InterpreterState& is) {
|
|
const char* space = "";
|
|
for (auto& value : is.values_) {
|
|
InstructionOperand source = FromKey(value.second);
|
|
InstructionOperand destination = FromKey(value.first);
|
|
os << space << MoveOperands{source, destination};
|
|
space = " ";
|
|
}
|
|
return os;
|
|
}
|
|
|
|
OperandMap values_;
|
|
};
|
|
|
|
// An abstract interpreter for moves, swaps and parallel moves.
|
|
class MoveInterpreter : public GapResolver::Assembler {
|
|
public:
|
|
explicit MoveInterpreter(Zone* zone) : zone_(zone) {}
|
|
|
|
void AssembleMove(InstructionOperand* source,
|
|
InstructionOperand* destination) override {
|
|
ParallelMove* moves = zone_->New<ParallelMove>(zone_);
|
|
moves->AddMove(*source, *destination);
|
|
state_.ExecuteInParallel(moves);
|
|
}
|
|
|
|
void AssembleSwap(InstructionOperand* source,
|
|
InstructionOperand* destination) override {
|
|
ParallelMove* moves = zone_->New<ParallelMove>(zone_);
|
|
moves->AddMove(*source, *destination);
|
|
moves->AddMove(*destination, *source);
|
|
state_.ExecuteInParallel(moves);
|
|
}
|
|
|
|
void AssembleParallelMove(const ParallelMove* moves) {
|
|
state_.ExecuteInParallel(moves);
|
|
}
|
|
|
|
InterpreterState state() const { return state_; }
|
|
|
|
private:
|
|
Zone* const zone_;
|
|
InterpreterState state_;
|
|
};
|
|
|
|
class ParallelMoveCreator : public HandleAndZoneScope {
|
|
public:
|
|
ParallelMoveCreator() : rng_(CcTest::random_number_generator()) {}
|
|
|
|
// Creates a ParallelMove with 'size' random MoveOperands. Note that illegal
|
|
// moves will be rejected, so the actual number of MoveOperands may be less.
|
|
ParallelMove* Create(int size) {
|
|
ParallelMove* parallel_move = main_zone()->New<ParallelMove>(main_zone());
|
|
// Valid ParallelMoves can't have interfering destination ops.
|
|
std::set<InstructionOperand, CompareOperandModuloType> destinations;
|
|
// Valid ParallelMoves can't have interfering source ops of different reps.
|
|
std::map<InstructionOperand, MachineRepresentation,
|
|
CompareOperandModuloType>
|
|
sources;
|
|
for (int i = 0; i < size; ++i) {
|
|
MachineRepresentation rep = RandomRepresentation();
|
|
MoveOperands mo(CreateRandomOperand(true, rep),
|
|
CreateRandomOperand(false, rep));
|
|
if (mo.IsRedundant()) continue;
|
|
|
|
const InstructionOperand& dst = mo.destination();
|
|
bool reject = false;
|
|
// On architectures where FP register aliasing is non-simple, update the
|
|
// destinations set with the float equivalents of the operand and check
|
|
// that all destinations are unique and do not alias each other.
|
|
if (!kSimpleFPAliasing && mo.destination().IsFPLocationOperand()) {
|
|
std::vector<InstructionOperand> fragments;
|
|
GetCanonicalOperands(dst, &fragments);
|
|
CHECK(!fragments.empty());
|
|
for (size_t i = 0; i < fragments.size(); ++i) {
|
|
if (destinations.find(fragments[i]) == destinations.end()) {
|
|
destinations.insert(fragments[i]);
|
|
} else {
|
|
reject = true;
|
|
break;
|
|
}
|
|
}
|
|
// Update the sources map, and check that no FP source has multiple
|
|
// representations.
|
|
const InstructionOperand& src = mo.source();
|
|
if (src.IsFPRegister()) {
|
|
std::vector<InstructionOperand> fragments;
|
|
MachineRepresentation src_rep =
|
|
LocationOperand::cast(src).representation();
|
|
GetCanonicalOperands(src, &fragments);
|
|
CHECK(!fragments.empty());
|
|
for (size_t i = 0; i < fragments.size(); ++i) {
|
|
auto find_it = sources.find(fragments[i]);
|
|
if (find_it != sources.end() && find_it->second != src_rep) {
|
|
reject = true;
|
|
break;
|
|
}
|
|
sources.insert(std::make_pair(fragments[i], src_rep));
|
|
}
|
|
}
|
|
} else {
|
|
if (destinations.find(dst) == destinations.end()) {
|
|
destinations.insert(dst);
|
|
} else {
|
|
reject = true;
|
|
}
|
|
}
|
|
|
|
if (!reject) {
|
|
parallel_move->AddMove(mo.source(), mo.destination());
|
|
}
|
|
}
|
|
return parallel_move;
|
|
}
|
|
|
|
// Creates a ParallelMove from a list of operand pairs. Even operands are
|
|
// destinations, odd ones are sources.
|
|
ParallelMove* Create(const std::vector<InstructionOperand>& operand_pairs) {
|
|
ParallelMove* parallel_move = main_zone()->New<ParallelMove>(main_zone());
|
|
for (size_t i = 0; i < operand_pairs.size(); i += 2) {
|
|
const InstructionOperand& dst = operand_pairs[i];
|
|
const InstructionOperand& src = operand_pairs[i + 1];
|
|
parallel_move->AddMove(src, dst);
|
|
}
|
|
return parallel_move;
|
|
}
|
|
|
|
private:
|
|
MachineRepresentation RandomRepresentation() {
|
|
int index = rng_->NextInt(6);
|
|
switch (index) {
|
|
case 0:
|
|
return MachineRepresentation::kWord32;
|
|
case 1:
|
|
return MachineRepresentation::kWord64;
|
|
case 2:
|
|
return MachineRepresentation::kFloat32;
|
|
case 3:
|
|
return MachineRepresentation::kFloat64;
|
|
case 4:
|
|
return MachineRepresentation::kSimd128;
|
|
case 5:
|
|
return MachineRepresentation::kTagged;
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// min(num_alloctable_general_registers for each arch) == 5 from
|
|
// assembler-ia32.h
|
|
const int kMaxIndex = 5;
|
|
const int kMaxIndices = kMaxIndex + 1;
|
|
|
|
// Non-FP slots shouldn't overlap FP slots.
|
|
// FP slots with different representations shouldn't overlap.
|
|
int GetValidSlotIndex(MachineRepresentation rep, int index) {
|
|
DCHECK_GE(kMaxIndex, index);
|
|
// The first group of slots are for non-FP values.
|
|
if (!IsFloatingPoint(rep)) return index;
|
|
// The next group are for float values.
|
|
int base = kMaxIndices;
|
|
if (rep == MachineRepresentation::kFloat32) return base + index;
|
|
// Double values.
|
|
base += kMaxIndices;
|
|
if (rep == MachineRepresentation::kFloat64) return base + index * 2;
|
|
// SIMD values
|
|
base += kMaxIndices * 2;
|
|
CHECK_EQ(MachineRepresentation::kSimd128, rep);
|
|
return base + index * 4;
|
|
}
|
|
|
|
InstructionOperand CreateRandomOperand(bool is_source,
|
|
MachineRepresentation rep) {
|
|
auto conf = RegisterConfiguration::Default();
|
|
auto GetValidRegisterCode = [&conf](MachineRepresentation rep, int index) {
|
|
switch (rep) {
|
|
case MachineRepresentation::kFloat32:
|
|
return conf->RegisterConfiguration::GetAllocatableFloatCode(index);
|
|
case MachineRepresentation::kFloat64:
|
|
return conf->RegisterConfiguration::GetAllocatableDoubleCode(index);
|
|
case MachineRepresentation::kSimd128:
|
|
return conf->RegisterConfiguration::GetAllocatableSimd128Code(index);
|
|
default:
|
|
return conf->RegisterConfiguration::GetAllocatableGeneralCode(index);
|
|
}
|
|
UNREACHABLE();
|
|
};
|
|
int index = rng_->NextInt(kMaxIndex);
|
|
// destination can't be Constant.
|
|
switch (rng_->NextInt(is_source ? 3 : 2)) {
|
|
case 0:
|
|
return AllocatedOperand(LocationOperand::STACK_SLOT, rep,
|
|
GetValidSlotIndex(rep, index));
|
|
case 1:
|
|
return AllocatedOperand(LocationOperand::REGISTER, rep,
|
|
GetValidRegisterCode(rep, index));
|
|
case 2:
|
|
return ConstantOperand(index);
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
private:
|
|
v8::base::RandomNumberGenerator* rng_;
|
|
};
|
|
|
|
void RunTest(ParallelMove* pm, Zone* zone) {
|
|
// Note: The gap resolver modifies the ParallelMove, so interpret first.
|
|
MoveInterpreter mi1(zone);
|
|
mi1.AssembleParallelMove(pm);
|
|
|
|
MoveInterpreter mi2(zone);
|
|
GapResolver resolver(&mi2);
|
|
resolver.Resolve(pm);
|
|
|
|
CHECK_EQ(mi1.state(), mi2.state());
|
|
}
|
|
|
|
TEST(Aliasing) {
|
|
// On platforms with simple aliasing, these parallel moves are ill-formed.
|
|
if (kSimpleFPAliasing) return;
|
|
|
|
ParallelMoveCreator pmc;
|
|
Zone* zone = pmc.main_zone();
|
|
|
|
auto s0 = AllocatedOperand(LocationOperand::REGISTER,
|
|
MachineRepresentation::kFloat32, 0);
|
|
auto s1 = AllocatedOperand(LocationOperand::REGISTER,
|
|
MachineRepresentation::kFloat32, 1);
|
|
auto s2 = AllocatedOperand(LocationOperand::REGISTER,
|
|
MachineRepresentation::kFloat32, 2);
|
|
auto s3 = AllocatedOperand(LocationOperand::REGISTER,
|
|
MachineRepresentation::kFloat32, 3);
|
|
auto s4 = AllocatedOperand(LocationOperand::REGISTER,
|
|
MachineRepresentation::kFloat32, 4);
|
|
|
|
auto d0 = AllocatedOperand(LocationOperand::REGISTER,
|
|
MachineRepresentation::kFloat64, 0);
|
|
auto d1 = AllocatedOperand(LocationOperand::REGISTER,
|
|
MachineRepresentation::kFloat64, 1);
|
|
auto d16 = AllocatedOperand(LocationOperand::REGISTER,
|
|
MachineRepresentation::kFloat64, 16);
|
|
|
|
// Double slots must be odd to match frame allocation.
|
|
auto dSlot = AllocatedOperand(LocationOperand::STACK_SLOT,
|
|
MachineRepresentation::kFloat64, 3);
|
|
|
|
// Cycles involving s- and d-registers.
|
|
{
|
|
std::vector<InstructionOperand> moves = {
|
|
s2, s0, // s2 <- s0
|
|
d0, d1 // d0 <- d1
|
|
};
|
|
RunTest(pmc.Create(moves), zone);
|
|
}
|
|
{
|
|
std::vector<InstructionOperand> moves = {
|
|
d0, d1, // d0 <- d1
|
|
s2, s0 // s2 <- s0
|
|
};
|
|
RunTest(pmc.Create(moves), zone);
|
|
}
|
|
{
|
|
std::vector<InstructionOperand> moves = {
|
|
s2, s1, // s2 <- s1
|
|
d0, d1 // d0 <- d1
|
|
};
|
|
RunTest(pmc.Create(moves), zone);
|
|
}
|
|
{
|
|
std::vector<InstructionOperand> moves = {
|
|
d0, d1, // d0 <- d1
|
|
s2, s1 // s2 <- s1
|
|
};
|
|
RunTest(pmc.Create(moves), zone);
|
|
}
|
|
// Two cycles involving a single d-register.
|
|
{
|
|
std::vector<InstructionOperand> moves = {
|
|
d0, d1, // d0 <- d1
|
|
s2, s1, // s2 <- s1
|
|
s3, s0 // s3 <- s0
|
|
};
|
|
RunTest(pmc.Create(moves), zone);
|
|
}
|
|
// Cycle with a float move that must be deferred until after swaps.
|
|
{
|
|
std::vector<InstructionOperand> moves = {
|
|
d0, d1, // d0 <- d1
|
|
s2, s0, // s2 <- s0
|
|
s3, s4 // s3 <- s4 must be deferred
|
|
};
|
|
RunTest(pmc.Create(moves), zone);
|
|
}
|
|
// Cycles involving s-registers and a non-aliased d-register.
|
|
{
|
|
std::vector<InstructionOperand> moves = {
|
|
d16, d0, // d16 <- d0
|
|
s1, s2, // s1 <- s2
|
|
d1, d16 // d1 <- d16
|
|
};
|
|
RunTest(pmc.Create(moves), zone);
|
|
}
|
|
{
|
|
std::vector<InstructionOperand> moves = {
|
|
s2, s1, // s1 <- s2
|
|
d0, d16, // d16 <- d0
|
|
d16, d1 // d1 <- d16
|
|
};
|
|
RunTest(pmc.Create(moves), zone);
|
|
}
|
|
{
|
|
std::vector<InstructionOperand> moves = {
|
|
d0, d16, // d0 <- d16
|
|
d16, d1, // s2 <- s0
|
|
s3, s0 // d0 <- d1
|
|
};
|
|
RunTest(pmc.Create(moves), zone);
|
|
}
|
|
// Cycle involving aliasing registers and a slot.
|
|
{
|
|
std::vector<InstructionOperand> moves = {
|
|
dSlot, d0, // dSlot <- d0
|
|
d1, dSlot, // d1 <- dSlot
|
|
s0, s3 // s0 <- s3
|
|
};
|
|
RunTest(pmc.Create(moves), zone);
|
|
}
|
|
}
|
|
|
|
TEST(FuzzResolver) {
|
|
ParallelMoveCreator pmc;
|
|
for (int size = 0; size < 80; ++size) {
|
|
for (int repeat = 0; repeat < 50; ++repeat) {
|
|
RunTest(pmc.Create(size), pmc.main_zone());
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace compiler
|
|
} // namespace internal
|
|
} // namespace v8
|