v8/src/string-builder.h
jgruber a8e30c0e68 [regexp] Add fast-path for global, callable replace
This adds a fast-path for calls to RegExp.prototype[@@replace] for cases in
which the given regexp is unmodified and global, and the given replace argument
is callable.

The fast-path implementation itself is almost identical to the original JS
implementation except that it currently does not reuse result_array.

SunSpider/unpack-code relies heavily on this codepath.

BUG=v8:5339

Review-Url: https://chromiumcodereview.appspot.com/2433923003
Cr-Commit-Position: refs/heads/master@{#40504}
2016-10-21 12:12:18 +00:00

447 lines
13 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_STRING_BUILDER_H_
#define V8_STRING_BUILDER_H_
#include "src/assert-scope.h"
#include "src/factory.h"
#include "src/handles.h"
#include "src/isolate.h"
#include "src/objects.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
const int kStringBuilderConcatHelperLengthBits = 11;
const int kStringBuilderConcatHelperPositionBits = 19;
typedef BitField<int, 0, kStringBuilderConcatHelperLengthBits>
StringBuilderSubstringLength;
typedef BitField<int, kStringBuilderConcatHelperLengthBits,
kStringBuilderConcatHelperPositionBits>
StringBuilderSubstringPosition;
template <typename sinkchar>
static inline void StringBuilderConcatHelper(String* special, sinkchar* sink,
FixedArray* fixed_array,
int array_length) {
DisallowHeapAllocation no_gc;
int position = 0;
for (int i = 0; i < array_length; i++) {
Object* element = fixed_array->get(i);
if (element->IsSmi()) {
// Smi encoding of position and length.
int encoded_slice = Smi::cast(element)->value();
int pos;
int len;
if (encoded_slice > 0) {
// Position and length encoded in one smi.
pos = StringBuilderSubstringPosition::decode(encoded_slice);
len = StringBuilderSubstringLength::decode(encoded_slice);
} else {
// Position and length encoded in two smis.
Object* obj = fixed_array->get(++i);
DCHECK(obj->IsSmi());
pos = Smi::cast(obj)->value();
len = -encoded_slice;
}
String::WriteToFlat(special, sink + position, pos, pos + len);
position += len;
} else {
String* string = String::cast(element);
int element_length = string->length();
String::WriteToFlat(string, sink + position, 0, element_length);
position += element_length;
}
}
}
// Returns the result length of the concatenation.
// On illegal argument, -1 is returned.
static inline int StringBuilderConcatLength(int special_length,
FixedArray* fixed_array,
int array_length, bool* one_byte) {
DisallowHeapAllocation no_gc;
int position = 0;
for (int i = 0; i < array_length; i++) {
int increment = 0;
Object* elt = fixed_array->get(i);
if (elt->IsSmi()) {
// Smi encoding of position and length.
int smi_value = Smi::cast(elt)->value();
int pos;
int len;
if (smi_value > 0) {
// Position and length encoded in one smi.
pos = StringBuilderSubstringPosition::decode(smi_value);
len = StringBuilderSubstringLength::decode(smi_value);
} else {
// Position and length encoded in two smis.
len = -smi_value;
// Get the position and check that it is a positive smi.
i++;
if (i >= array_length) return -1;
Object* next_smi = fixed_array->get(i);
if (!next_smi->IsSmi()) return -1;
pos = Smi::cast(next_smi)->value();
if (pos < 0) return -1;
}
DCHECK(pos >= 0);
DCHECK(len >= 0);
if (pos > special_length || len > special_length - pos) return -1;
increment = len;
} else if (elt->IsString()) {
String* element = String::cast(elt);
int element_length = element->length();
increment = element_length;
if (*one_byte && !element->HasOnlyOneByteChars()) {
*one_byte = false;
}
} else {
return -1;
}
if (increment > String::kMaxLength - position) {
return kMaxInt; // Provoke throw on allocation.
}
position += increment;
}
return position;
}
class FixedArrayBuilder {
public:
explicit FixedArrayBuilder(Isolate* isolate, int initial_capacity)
: array_(isolate->factory()->NewFixedArrayWithHoles(initial_capacity)),
length_(0),
has_non_smi_elements_(false) {
// Require a non-zero initial size. Ensures that doubling the size to
// extend the array will work.
DCHECK(initial_capacity > 0);
}
explicit FixedArrayBuilder(Handle<FixedArray> backing_store)
: array_(backing_store), length_(0), has_non_smi_elements_(false) {
// Require a non-zero initial size. Ensures that doubling the size to
// extend the array will work.
DCHECK(backing_store->length() > 0);
}
bool HasCapacity(int elements) {
int length = array_->length();
int required_length = length_ + elements;
return (length >= required_length);
}
void EnsureCapacity(int elements) {
int length = array_->length();
int required_length = length_ + elements;
if (length < required_length) {
int new_length = length;
do {
new_length *= 2;
} while (new_length < required_length);
Handle<FixedArray> extended_array =
array_->GetIsolate()->factory()->NewFixedArrayWithHoles(new_length);
array_->CopyTo(0, *extended_array, 0, length_);
array_ = extended_array;
}
}
void Add(Object* value) {
DCHECK(!value->IsSmi());
DCHECK(length_ < capacity());
array_->set(length_, value);
length_++;
has_non_smi_elements_ = true;
}
void Add(Smi* value) {
DCHECK(value->IsSmi());
DCHECK(length_ < capacity());
array_->set(length_, value);
length_++;
}
Handle<FixedArray> array() { return array_; }
int length() { return length_; }
int capacity() { return array_->length(); }
Handle<JSArray> ToJSArray(Handle<JSArray> target_array) {
JSArray::SetContent(target_array, array_);
target_array->set_length(Smi::FromInt(length_));
return target_array;
}
private:
Handle<FixedArray> array_;
int length_;
bool has_non_smi_elements_;
};
class ReplacementStringBuilder {
public:
ReplacementStringBuilder(Heap* heap, Handle<String> subject,
int estimated_part_count)
: heap_(heap),
array_builder_(heap->isolate(), estimated_part_count),
subject_(subject),
character_count_(0),
is_one_byte_(subject->IsOneByteRepresentation()) {
// Require a non-zero initial size. Ensures that doubling the size to
// extend the array will work.
DCHECK(estimated_part_count > 0);
}
static inline void AddSubjectSlice(FixedArrayBuilder* builder, int from,
int to) {
DCHECK(from >= 0);
int length = to - from;
DCHECK(length > 0);
if (StringBuilderSubstringLength::is_valid(length) &&
StringBuilderSubstringPosition::is_valid(from)) {
int encoded_slice = StringBuilderSubstringLength::encode(length) |
StringBuilderSubstringPosition::encode(from);
builder->Add(Smi::FromInt(encoded_slice));
} else {
// Otherwise encode as two smis.
builder->Add(Smi::FromInt(-length));
builder->Add(Smi::FromInt(from));
}
}
void EnsureCapacity(int elements) { array_builder_.EnsureCapacity(elements); }
void AddSubjectSlice(int from, int to) {
AddSubjectSlice(&array_builder_, from, to);
IncrementCharacterCount(to - from);
}
void AddString(Handle<String> string) {
int length = string->length();
DCHECK(length > 0);
AddElement(*string);
if (!string->IsOneByteRepresentation()) {
is_one_byte_ = false;
}
IncrementCharacterCount(length);
}
MaybeHandle<String> ToString();
void IncrementCharacterCount(int by) {
if (character_count_ > String::kMaxLength - by) {
STATIC_ASSERT(String::kMaxLength < kMaxInt);
character_count_ = kMaxInt;
} else {
character_count_ += by;
}
}
private:
void AddElement(Object* element) {
DCHECK(element->IsSmi() || element->IsString());
DCHECK(array_builder_.capacity() > array_builder_.length());
array_builder_.Add(element);
}
Heap* heap_;
FixedArrayBuilder array_builder_;
Handle<String> subject_;
int character_count_;
bool is_one_byte_;
};
class IncrementalStringBuilder {
public:
explicit IncrementalStringBuilder(Isolate* isolate);
INLINE(String::Encoding CurrentEncoding()) { return encoding_; }
template <typename SrcChar, typename DestChar>
INLINE(void Append(SrcChar c));
INLINE(void AppendCharacter(uint8_t c)) {
if (encoding_ == String::ONE_BYTE_ENCODING) {
Append<uint8_t, uint8_t>(c);
} else {
Append<uint8_t, uc16>(c);
}
}
INLINE(void AppendCString(const char* s)) {
const uint8_t* u = reinterpret_cast<const uint8_t*>(s);
if (encoding_ == String::ONE_BYTE_ENCODING) {
while (*u != '\0') Append<uint8_t, uint8_t>(*(u++));
} else {
while (*u != '\0') Append<uint8_t, uc16>(*(u++));
}
}
INLINE(void AppendCString(const uc16* s)) {
if (encoding_ == String::ONE_BYTE_ENCODING) {
while (*s != '\0') Append<uc16, uint8_t>(*(s++));
} else {
while (*s != '\0') Append<uc16, uc16>(*(s++));
}
}
INLINE(bool CurrentPartCanFit(int length)) {
return part_length_ - current_index_ > length;
}
void AppendString(Handle<String> string);
MaybeHandle<String> Finish();
INLINE(bool HasOverflowed()) const { return overflowed_; }
// Change encoding to two-byte.
void ChangeEncoding() {
DCHECK_EQ(String::ONE_BYTE_ENCODING, encoding_);
ShrinkCurrentPart();
encoding_ = String::TWO_BYTE_ENCODING;
Extend();
}
template <typename DestChar>
class NoExtend {
public:
explicit NoExtend(Handle<String> string, int offset) {
DCHECK(string->IsSeqOneByteString() || string->IsSeqTwoByteString());
if (sizeof(DestChar) == 1) {
start_ = reinterpret_cast<DestChar*>(
Handle<SeqOneByteString>::cast(string)->GetChars() + offset);
} else {
start_ = reinterpret_cast<DestChar*>(
Handle<SeqTwoByteString>::cast(string)->GetChars() + offset);
}
cursor_ = start_;
}
INLINE(void Append(DestChar c)) { *(cursor_++) = c; }
INLINE(void AppendCString(const char* s)) {
const uint8_t* u = reinterpret_cast<const uint8_t*>(s);
while (*u != '\0') Append(*(u++));
}
int written() { return static_cast<int>(cursor_ - start_); }
private:
DestChar* start_;
DestChar* cursor_;
DisallowHeapAllocation no_gc_;
};
template <typename DestChar>
class NoExtendString : public NoExtend<DestChar> {
public:
NoExtendString(Handle<String> string, int required_length)
: NoExtend<DestChar>(string, 0), string_(string) {
DCHECK(string->length() >= required_length);
}
Handle<String> Finalize() {
Handle<SeqString> string = Handle<SeqString>::cast(string_);
int length = NoExtend<DestChar>::written();
Handle<String> result = SeqString::Truncate(string, length);
string_ = Handle<String>();
return result;
}
private:
Handle<String> string_;
};
template <typename DestChar>
class NoExtendBuilder : public NoExtend<DestChar> {
public:
NoExtendBuilder(IncrementalStringBuilder* builder, int required_length)
: NoExtend<DestChar>(builder->current_part(), builder->current_index_),
builder_(builder) {
DCHECK(builder->CurrentPartCanFit(required_length));
}
~NoExtendBuilder() {
builder_->current_index_ += NoExtend<DestChar>::written();
}
private:
IncrementalStringBuilder* builder_;
};
private:
Factory* factory() { return isolate_->factory(); }
INLINE(Handle<String> accumulator()) { return accumulator_; }
INLINE(void set_accumulator(Handle<String> string)) {
*accumulator_.location() = *string;
}
INLINE(Handle<String> current_part()) { return current_part_; }
INLINE(void set_current_part(Handle<String> string)) {
*current_part_.location() = *string;
}
// Add the current part to the accumulator.
void Accumulate(Handle<String> new_part);
// Finish the current part and allocate a new part.
void Extend();
// Shrink current part to the right size.
void ShrinkCurrentPart() {
DCHECK(current_index_ < part_length_);
set_current_part(SeqString::Truncate(
Handle<SeqString>::cast(current_part()), current_index_));
}
static const int kInitialPartLength = 32;
static const int kMaxPartLength = 16 * 1024;
static const int kPartLengthGrowthFactor = 2;
Isolate* isolate_;
String::Encoding encoding_;
bool overflowed_;
int part_length_;
int current_index_;
Handle<String> accumulator_;
Handle<String> current_part_;
};
template <typename SrcChar, typename DestChar>
void IncrementalStringBuilder::Append(SrcChar c) {
DCHECK_EQ(encoding_ == String::ONE_BYTE_ENCODING, sizeof(DestChar) == 1);
if (sizeof(DestChar) == 1) {
DCHECK_EQ(String::ONE_BYTE_ENCODING, encoding_);
SeqOneByteString::cast(*current_part_)
->SeqOneByteStringSet(current_index_++, c);
} else {
DCHECK_EQ(String::TWO_BYTE_ENCODING, encoding_);
SeqTwoByteString::cast(*current_part_)
->SeqTwoByteStringSet(current_index_++, c);
}
if (current_index_ == part_length_) Extend();
}
} // namespace internal
} // namespace v8
#endif // V8_STRING_BUILDER_H_