v8/src/frames.cc
iposva@chromium.org c5ee961882 Adapt to new calling convention on ARM:
- Simplified frame entry and frame exit code.
- Added ArgumentsAdaptorTrampoline and check for matching argument counts in the InvokePrologue.
- Removed definition and uses of USE_OLD_CALLING_CONVENTIONS.
- Changed MacroAssembler::InvokeBuiltin to match ia32 version.
- Start introducing convenience instructions in the ARM assembler as needed. These instructions take all Register parameters to avoid extra typing of "Operand(reg)".


To keep the architectures in sync these changes have been made to the ia32 files:
- Changed MacroAssembler::EnterFrame(StackFrame::Type type) to MacroAssembler::EnterInternalFrame().


These parts are still missing:
- unimplemented: Builtins::Generate_FunctionApply - large limit
- unimplemented: Builtins::Generate_ArgumentsAdaptorTrampoline - non-function call
- The files have not been lint'd yet.


Review URL: http://codereview.chromium.org/1930

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@289 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-09-12 03:29:06 +00:00

596 lines
18 KiB
C++

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "frames-inl.h"
#include "scopeinfo.h"
#include "string-stream.h"
#include "top.h"
#include "zone-inl.h"
namespace v8 { namespace internal {
DEFINE_int(max_stack_trace_source_length, 300,
"maximum length of function source code printed in a stack trace.");
// -------------------------------------------------------------------------
// Iterator that supports traversing the stack handlers of a
// particular frame. Needs to know the top of the handler chain.
class StackHandlerIterator BASE_EMBEDDED {
public:
StackHandlerIterator(const StackFrame* frame, StackHandler* handler)
: limit_(frame->fp()), handler_(handler) {
// Make sure the handler has already been unwound to this frame.
ASSERT(frame->sp() <= handler->address());
}
StackHandler* handler() const { return handler_; }
bool done() { return handler_->address() > limit_; }
void Advance() {
ASSERT(!done());
handler_ = handler_->next();
}
private:
const Address limit_;
StackHandler* handler_;
};
// -------------------------------------------------------------------------
#define INITIALIZE_SINGLETON(type, field) field##_(this),
StackFrameIterator::StackFrameIterator()
: STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
frame_(NULL), handler_(NULL), thread_(Top::GetCurrentThread()) {
Reset();
}
StackFrameIterator::StackFrameIterator(ThreadLocalTop* t)
: STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
frame_(NULL), handler_(NULL), thread_(t) {
Reset();
}
#undef INITIALIZE_SINGLETON
void StackFrameIterator::Advance() {
ASSERT(!done());
// Compute the state of the calling frame before restoring
// callee-saved registers and unwinding handlers. This allows the
// frame code that computes the caller state to access the top
// handler and the value of any callee-saved register if needed.
StackFrame::State state;
StackFrame::Type type = frame_->GetCallerState(&state);
// Unwind handlers corresponding to the current frame.
StackHandlerIterator it(frame_, handler_);
while (!it.done()) it.Advance();
handler_ = it.handler();
// Advance to the calling frame.
frame_ = SingletonFor(type, &state);
// When we're done iterating over the stack frames, the handler
// chain must have been completely unwound.
ASSERT(!done() || handler_ == NULL);
}
void StackFrameIterator::Reset() {
Address fp = Top::c_entry_fp(thread_);
StackFrame::State state;
StackFrame::Type type = ExitFrame::GetStateForFramePointer(fp, &state);
frame_ = SingletonFor(type, &state);
handler_ = StackHandler::FromAddress(Top::handler(thread_));
}
StackFrame* StackFrameIterator::SingletonFor(StackFrame::Type type,
StackFrame::State* state) {
#define FRAME_TYPE_CASE(type, field) \
case StackFrame::type: result = &field##_; break;
StackFrame* result = NULL;
switch (type) {
case StackFrame::NONE: return NULL;
STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
default: break;
}
ASSERT(result != NULL);
result->state_ = *state;
return result;
#undef FRAME_TYPE_CASE
}
// -------------------------------------------------------------------------
JavaScriptFrameIterator::JavaScriptFrameIterator(StackFrame::Id id) {
while (true) {
Advance();
if (frame()->id() == id) return;
}
}
void JavaScriptFrameIterator::Advance() {
do {
iterator_.Advance();
} while (!iterator_.done() && !iterator_.frame()->is_java_script());
}
void JavaScriptFrameIterator::AdvanceToArgumentsFrame() {
if (!frame()->has_adapted_arguments()) return;
iterator_.Advance();
ASSERT(iterator_.frame()->is_arguments_adaptor());
}
void JavaScriptFrameIterator::Reset() {
iterator_.Reset();
Advance();
}
// -------------------------------------------------------------------------
void StackHandler::Cook(Code* code) {
ASSERT(code->contains(pc()));
set_pc(AddressFrom<Address>(pc() - code->instruction_start()));
}
void StackHandler::Uncook(Code* code) {
set_pc(code->instruction_start() + OffsetFrom(pc()));
ASSERT(code->contains(pc()));
}
// -------------------------------------------------------------------------
bool StackFrame::HasHandler() const {
StackHandlerIterator it(this, top_handler());
return !it.done();
}
void StackFrame::CookFramesForThread(ThreadLocalTop* thread) {
ASSERT(!thread->stack_is_cooked());
for (StackFrameIterator it(thread); !it.done(); it.Advance()) {
it.frame()->Cook();
}
thread->set_stack_is_cooked(true);
}
void StackFrame::UncookFramesForThread(ThreadLocalTop* thread) {
ASSERT(thread->stack_is_cooked());
for (StackFrameIterator it(thread); !it.done(); it.Advance()) {
it.frame()->Uncook();
}
thread->set_stack_is_cooked(false);
}
void StackFrame::Cook() {
Code* code = FindCode();
for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) {
it.handler()->Cook(code);
}
ASSERT(code->contains(pc()));
set_pc(AddressFrom<Address>(pc() - code->instruction_start()));
}
void StackFrame::Uncook() {
Code* code = FindCode();
for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) {
it.handler()->Uncook(code);
}
set_pc(code->instruction_start() + OffsetFrom(pc()));
ASSERT(code->contains(pc()));
}
Code* EntryFrame::FindCode() const {
return Heap::js_entry_code();
}
StackFrame::Type EntryFrame::GetCallerState(State* state) const {
const int offset = EntryFrameConstants::kCallerFPOffset;
Address fp = Memory::Address_at(this->fp() + offset);
return ExitFrame::GetStateForFramePointer(fp, state);
}
Code* EntryConstructFrame::FindCode() const {
return Heap::js_construct_entry_code();
}
Code* ExitFrame::FindCode() const {
return Heap::c_entry_code();
}
StackFrame::Type ExitFrame::GetCallerState(State* state) const {
// Setup the caller state.
state->sp = pp();
state->fp = Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset);
state->pc_address
= reinterpret_cast<Address*>(fp() + ExitFrameConstants::kCallerPCOffset);
return ComputeType(state);
}
Address ExitFrame::GetCallerStackPointer() const {
return fp() + ExitFrameConstants::kPPDisplacement;
}
Code* ExitDebugFrame::FindCode() const {
return Heap::c_entry_debug_break_code();
}
Address StandardFrame::GetExpressionAddress(int n) const {
const int offset = StandardFrameConstants::kExpressionsOffset;
return fp() + offset - n * kPointerSize;
}
int StandardFrame::ComputeExpressionsCount() const {
const int offset =
StandardFrameConstants::kExpressionsOffset + kPointerSize;
Address base = fp() + offset;
Address limit = sp();
ASSERT(base >= limit); // stack grows downwards
// Include register-allocated locals in number of expressions.
return (base - limit) / kPointerSize;
}
StackFrame::Type StandardFrame::GetCallerState(State* state) const {
state->sp = caller_sp();
state->fp = caller_fp();
state->pc_address = reinterpret_cast<Address*>(ComputePCAddress(fp()));
return ComputeType(state);
}
bool StandardFrame::IsExpressionInsideHandler(int n) const {
Address address = GetExpressionAddress(n);
for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) {
if (it.handler()->includes(address)) return true;
}
return false;
}
Object* JavaScriptFrame::GetParameter(int index) const {
ASSERT(index >= 0 && index < ComputeParametersCount());
const int offset = JavaScriptFrameConstants::kParam0Offset;
return Memory::Object_at(pp() + offset - (index * kPointerSize));
}
int JavaScriptFrame::ComputeParametersCount() const {
Address base = pp() + JavaScriptFrameConstants::kReceiverOffset;
Address limit = fp() + JavaScriptFrameConstants::kSavedRegistersOffset;
return (base - limit) / kPointerSize;
}
bool JavaScriptFrame::IsConstructor() const {
Address pc = has_adapted_arguments()
? Memory::Address_at(ComputePCAddress(caller_fp()))
: caller_pc();
return IsConstructTrampolineFrame(pc);
}
Code* ArgumentsAdaptorFrame::FindCode() const {
return Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline);
}
Code* InternalFrame::FindCode() const {
const int offset = InternalFrameConstants::kCodeOffset;
Object* code = Memory::Object_at(fp() + offset);
if (code == NULL) {
// The code object isn't set; find it and set it.
code = Heap::FindCodeObject(pc());
ASSERT(!code->IsFailure());
Memory::Object_at(fp() + offset) = code;
}
ASSERT(code != NULL);
return Code::cast(code);
}
void StackFrame::PrintIndex(StringStream* accumulator,
PrintMode mode,
int index) {
accumulator->Add((mode == OVERVIEW) ? "%5d: " : "[%d]: ", index);
}
void JavaScriptFrame::Print(StringStream* accumulator,
PrintMode mode,
int index) const {
HandleScope scope;
Object* receiver = this->receiver();
Object* function = this->function();
accumulator->PrintSecurityTokenIfChanged(function);
PrintIndex(accumulator, mode, index);
Code* code = NULL;
if (IsConstructor()) accumulator->Add("new ");
accumulator->PrintFunction(function, receiver, &code);
accumulator->Add("(this=%o", receiver);
// Get scope information for nicer output, if possible. If code is
// NULL, or doesn't contain scope info, info will return 0 for the
// number of parameters, stack slots, or context slots.
ScopeInfo<PreallocatedStorage> info(code);
// Print the parameters.
int parameters_count = ComputeParametersCount();
for (int i = 0; i < parameters_count; i++) {
accumulator->Add(",");
// If we have a name for the parameter we print it. Nameless
// parameters are either because we have more actual parameters
// than formal parameters or because we have no scope information.
if (i < info.number_of_parameters()) {
accumulator->PrintName(*info.parameter_name(i));
accumulator->Add("=");
}
accumulator->Add("%o", GetParameter(i));
}
accumulator->Add(")");
if (mode == OVERVIEW) {
accumulator->Add("\n");
return;
}
accumulator->Add(" {\n");
// Compute the number of locals and expression stack elements.
int stack_locals_count = info.number_of_stack_slots();
int heap_locals_count = info.number_of_context_slots();
int expressions_count = ComputeExpressionsCount();
// Print stack-allocated local variables.
if (stack_locals_count > 0) {
accumulator->Add(" // stack-allocated locals\n");
}
for (int i = 0; i < stack_locals_count; i++) {
accumulator->Add(" var ");
accumulator->PrintName(*info.stack_slot_name(i));
accumulator->Add(" = ");
if (i < expressions_count) {
accumulator->Add("%o", GetExpression(i));
} else {
accumulator->Add("// no expression found - inconsistent frame?");
}
accumulator->Add("\n");
}
// Try to get hold of the context of this frame.
Context* context = NULL;
if (this->context() != NULL && this->context()->IsContext()) {
context = Context::cast(this->context());
}
// Print heap-allocated local variables.
if (heap_locals_count > Context::MIN_CONTEXT_SLOTS) {
accumulator->Add(" // heap-allocated locals\n");
}
for (int i = Context::MIN_CONTEXT_SLOTS; i < heap_locals_count; i++) {
accumulator->Add(" var ");
accumulator->PrintName(*info.context_slot_name(i));
accumulator->Add(" = ");
if (context != NULL) {
if (i < context->length()) {
accumulator->Add("%o", context->get(i));
} else {
accumulator->Add(
"// warning: missing context slot - inconsistent frame?");
}
} else {
accumulator->Add("// warning: no context found - inconsistent frame?");
}
accumulator->Add("\n");
}
// Print the expression stack.
int expressions_start = stack_locals_count;
if (expressions_start < expressions_count) {
accumulator->Add(" // expression stack (top to bottom)\n");
}
for (int i = expressions_count - 1; i >= expressions_start; i--) {
if (IsExpressionInsideHandler(i)) continue;
accumulator->Add(" [%02d] : %o\n", i, GetExpression(i));
}
// Print details about the function.
if (FLAG_max_stack_trace_source_length != 0 && code != NULL) {
SharedFunctionInfo* shared = JSFunction::cast(function)->shared();
accumulator->Add("--------- s o u r c e c o d e ---------\n");
shared->SourceCodePrint(accumulator, FLAG_max_stack_trace_source_length);
accumulator->Add("\n-----------------------------------------\n");
}
accumulator->Add("}\n\n");
}
void ArgumentsAdaptorFrame::Print(StringStream* accumulator,
PrintMode mode,
int index) const {
int actual = ComputeParametersCount();
int expected = -1;
Object* function = this->function();
if (function->IsJSFunction()) {
expected = JSFunction::cast(function)->shared()->formal_parameter_count();
}
PrintIndex(accumulator, mode, index);
accumulator->Add("arguments adaptor frame: %d->%d", actual, expected);
if (mode == OVERVIEW) {
accumulator->Add("\n");
return;
}
accumulator->Add(" {\n");
// Print actual arguments.
if (actual > 0) accumulator->Add(" // actual arguments\n");
for (int i = 0; i < actual; i++) {
accumulator->Add(" [%02d] : %o", i, GetParameter(i));
if (expected != -1 && i >= expected) {
accumulator->Add(" // not passed to callee");
}
accumulator->Add("\n");
}
accumulator->Add("}\n\n");
}
void EntryFrame::Iterate(ObjectVisitor* v) const {
StackHandlerIterator it(this, top_handler());
ASSERT(!it.done());
StackHandler* handler = it.handler();
ASSERT(handler->is_entry());
handler->Iterate(v);
// Make sure that there's the entry frame does not contain more than
// one stack handler.
if (kDebug) {
it.Advance();
ASSERT(it.done());
}
}
void StandardFrame::IterateExpressions(ObjectVisitor* v) const {
const int offset = StandardFrameConstants::kContextOffset;
Object** base = &Memory::Object_at(sp());
Object** limit = &Memory::Object_at(fp() + offset) + 1;
for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) {
StackHandler* handler = it.handler();
// Traverse pointers down to - but not including - the next
// handler in the handler chain. Update the base to skip the
// handler and allow the handler to traverse its own pointers.
const Address address = handler->address();
v->VisitPointers(base, reinterpret_cast<Object**>(address));
base = reinterpret_cast<Object**>(address + StackHandlerConstants::kSize);
// Traverse the pointers in the handler itself.
handler->Iterate(v);
}
v->VisitPointers(base, limit);
}
void JavaScriptFrame::Iterate(ObjectVisitor* v) const {
IterateExpressions(v);
// Traverse callee-saved registers, receiver, and parameters.
const int kBaseOffset = JavaScriptFrameConstants::kSavedRegistersOffset;
const int kLimitOffset = JavaScriptFrameConstants::kReceiverOffset;
Object** base = &Memory::Object_at(fp() + kBaseOffset);
Object** limit = &Memory::Object_at(pp() + kLimitOffset) + 1;
v->VisitPointers(base, limit);
}
void InternalFrame::Iterate(ObjectVisitor* v) const {
// Internal frames only have object pointers on the expression stack
// as they never have any arguments.
IterateExpressions(v);
}
// -------------------------------------------------------------------------
JavaScriptFrame* StackFrameLocator::FindJavaScriptFrame(int n) {
ASSERT(n >= 0);
for (int i = 0; i <= n; i++) {
while (!iterator_.frame()->is_java_script()) iterator_.Advance();
if (i == n) return JavaScriptFrame::cast(iterator_.frame());
iterator_.Advance();
}
UNREACHABLE();
return NULL;
}
// -------------------------------------------------------------------------
int NumRegs(RegList reglist) {
int n = 0;
while (reglist != 0) {
n++;
reglist &= reglist - 1; // clear one bit
}
return n;
}
int JSCallerSavedCode(int n) {
static int reg_code[kNumJSCallerSaved];
static bool initialized = false;
if (!initialized) {
initialized = true;
int i = 0;
for (int r = 0; r < kNumRegs; r++)
if ((kJSCallerSaved & (1 << r)) != 0)
reg_code[i++] = r;
ASSERT(i == kNumJSCallerSaved);
}
ASSERT(0 <= n && n < kNumJSCallerSaved);
return reg_code[n];
}
} } // namespace v8::internal