v8/test/cctest/test-macro-assembler-x64.cc
Clemens Hammacher c6077bf1b8 [cleanup] Replace function typedefs by using declarations
Especially for function types, this increases readability significantly.
Also the style guide recommends for 'using' over 'typedef'.

R=mstarzinger@chromium.org

Bug: v8:9183
Change-Id: If2d17863de39383f5a35e089298d37408791ce4b
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1631415
Commit-Queue: Clemens Hammacher <clemensh@chromium.org>
Reviewed-by: Michael Starzinger <mstarzinger@chromium.org>
Cr-Commit-Position: refs/heads/master@{#61872}
2019-05-28 08:35:08 +00:00

1040 lines
29 KiB
C++

// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "src/init/v8.h"
#include "src/base/platform/platform.h"
#include "src/codegen/macro-assembler.h"
#include "src/execution/simulator.h"
#include "src/heap/factory.h"
#include "src/objects/objects-inl.h"
#include "src/objects/smi.h"
#include "src/utils/ostreams.h"
#include "src/x64/assembler-x64-inl.h"
#include "test/cctest/cctest.h"
#include "test/common/assembler-tester.h"
namespace v8 {
namespace internal {
namespace test_macro_assembler_x64 {
// Test the x64 assembler by compiling some simple functions into
// a buffer and executing them. These tests do not initialize the
// V8 library, create a context, or use any V8 objects.
// The AMD64 calling convention is used, with the first five arguments
// in RSI, RDI, RDX, RCX, R8, and R9, and floating point arguments in
// the XMM registers. The return value is in RAX.
// This calling convention is used on Linux, with GCC, and on Mac OS,
// with GCC. A different convention is used on 64-bit windows.
using F0 = int();
#define __ masm->
static void EntryCode(MacroAssembler* masm) {
// Smi constant register is callee save.
__ pushq(kRootRegister);
__ InitializeRootRegister();
}
static void ExitCode(MacroAssembler* masm) { __ popq(kRootRegister); }
TEST(Smi) {
// Check that C++ Smi operations work as expected.
int64_t test_numbers[] = {
0, 1, -1, 127, 128, -128, -129, 255, 256, -256, -257,
Smi::kMaxValue, static_cast<int64_t>(Smi::kMaxValue) + 1,
Smi::kMinValue, static_cast<int64_t>(Smi::kMinValue) - 1
};
int test_number_count = 15;
for (int i = 0; i < test_number_count; i++) {
int64_t number = test_numbers[i];
bool is_valid = Smi::IsValid(number);
bool is_in_range = number >= Smi::kMinValue && number <= Smi::kMaxValue;
CHECK_EQ(is_in_range, is_valid);
if (is_valid) {
Smi smi_from_intptr = Smi::FromIntptr(number);
if (static_cast<int>(number) == number) { // Is a 32-bit int.
Smi smi_from_int = Smi::FromInt(static_cast<int32_t>(number));
CHECK_EQ(smi_from_int, smi_from_intptr);
}
int64_t smi_value = smi_from_intptr.value();
CHECK_EQ(number, smi_value);
}
}
}
static void TestMoveSmi(MacroAssembler* masm, Label* exit, int id, Smi value) {
__ movl(rax, Immediate(id));
__ Move(rcx, value);
__ Set(rdx, static_cast<intptr_t>(value.ptr()));
__ cmpq(rcx, rdx);
__ j(not_equal, exit);
}
// Test that we can move a Smi value literally into a register.
TEST(SmiMove) {
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler; // Create a pointer for the __ macro.
EntryCode(masm);
Label exit;
TestMoveSmi(masm, &exit, 1, Smi::zero());
TestMoveSmi(masm, &exit, 2, Smi::FromInt(127));
TestMoveSmi(masm, &exit, 3, Smi::FromInt(128));
TestMoveSmi(masm, &exit, 4, Smi::FromInt(255));
TestMoveSmi(masm, &exit, 5, Smi::FromInt(256));
TestMoveSmi(masm, &exit, 6, Smi::FromInt(Smi::kMaxValue));
TestMoveSmi(masm, &exit, 7, Smi::FromInt(-1));
TestMoveSmi(masm, &exit, 8, Smi::FromInt(-128));
TestMoveSmi(masm, &exit, 9, Smi::FromInt(-129));
TestMoveSmi(masm, &exit, 10, Smi::FromInt(-256));
TestMoveSmi(masm, &exit, 11, Smi::FromInt(-257));
TestMoveSmi(masm, &exit, 12, Smi::FromInt(Smi::kMinValue));
__ xorq(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(CcTest::i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
void TestSmiCompare(MacroAssembler* masm, Label* exit, int id, int x, int y) {
__ Move(rcx, Smi::FromInt(x));
__ movq(r8, rcx);
__ Move(rdx, Smi::FromInt(y));
__ movq(r9, rdx);
__ SmiCompare(rcx, rdx);
if (x < y) {
__ movl(rax, Immediate(id + 1));
__ j(greater_equal, exit);
} else if (x > y) {
__ movl(rax, Immediate(id + 2));
__ j(less_equal, exit);
} else {
CHECK_EQ(x, y);
__ movl(rax, Immediate(id + 3));
__ j(not_equal, exit);
}
__ movl(rax, Immediate(id + 4));
__ cmpq(rcx, r8);
__ j(not_equal, exit);
__ incq(rax);
__ cmpq(rdx, r9);
__ j(not_equal, exit);
if (x != y) {
__ SmiCompare(rdx, rcx);
if (y < x) {
__ movl(rax, Immediate(id + 9));
__ j(greater_equal, exit);
} else {
CHECK(y > x);
__ movl(rax, Immediate(id + 10));
__ j(less_equal, exit);
}
} else {
__ cmpq(rcx, rcx);
__ movl(rax, Immediate(id + 11));
__ j(not_equal, exit);
__ incq(rax);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
}
}
// Test that we can compare smis for equality (and more).
TEST(SmiCompare) {
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer(2 * Assembler::kMinimalBufferSize);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
TestSmiCompare(masm, &exit, 0x10, 0, 0);
TestSmiCompare(masm, &exit, 0x20, 0, 1);
TestSmiCompare(masm, &exit, 0x30, 1, 0);
TestSmiCompare(masm, &exit, 0x40, 1, 1);
TestSmiCompare(masm, &exit, 0x50, 0, -1);
TestSmiCompare(masm, &exit, 0x60, -1, 0);
TestSmiCompare(masm, &exit, 0x70, -1, -1);
TestSmiCompare(masm, &exit, 0x80, 0, Smi::kMinValue);
TestSmiCompare(masm, &exit, 0x90, Smi::kMinValue, 0);
TestSmiCompare(masm, &exit, 0xA0, 0, Smi::kMaxValue);
TestSmiCompare(masm, &exit, 0xB0, Smi::kMaxValue, 0);
TestSmiCompare(masm, &exit, 0xC0, -1, Smi::kMinValue);
TestSmiCompare(masm, &exit, 0xD0, Smi::kMinValue, -1);
TestSmiCompare(masm, &exit, 0xE0, -1, Smi::kMaxValue);
TestSmiCompare(masm, &exit, 0xF0, Smi::kMaxValue, -1);
TestSmiCompare(masm, &exit, 0x100, Smi::kMinValue, Smi::kMinValue);
TestSmiCompare(masm, &exit, 0x110, Smi::kMinValue, Smi::kMaxValue);
TestSmiCompare(masm, &exit, 0x120, Smi::kMaxValue, Smi::kMinValue);
TestSmiCompare(masm, &exit, 0x130, Smi::kMaxValue, Smi::kMaxValue);
__ xorq(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(CcTest::i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
TEST(SmiTag) {
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
__ movq(rax, Immediate(1)); // Test number.
__ movq(rcx, Immediate(0));
__ SmiTag(rcx, rcx);
__ Set(rdx, Smi::kZero.ptr());
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(2)); // Test number.
__ movq(rcx, Immediate(1024));
__ SmiTag(rcx, rcx);
__ Set(rdx, Smi::FromInt(1024).ptr());
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(3)); // Test number.
__ movq(rcx, Immediate(-1));
__ SmiTag(rcx, rcx);
__ Set(rdx, Smi::FromInt(-1).ptr());
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(4)); // Test number.
__ movq(rcx, Immediate(Smi::kMaxValue));
__ SmiTag(rcx, rcx);
__ Set(rdx, Smi::FromInt(Smi::kMaxValue).ptr());
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(5)); // Test number.
__ movq(rcx, Immediate(Smi::kMinValue));
__ SmiTag(rcx, rcx);
__ Set(rdx, Smi::FromInt(Smi::kMinValue).ptr());
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
// Different target register.
__ movq(rax, Immediate(6)); // Test number.
__ movq(rcx, Immediate(0));
__ SmiTag(r8, rcx);
__ Set(rdx, Smi::zero().ptr());
__ cmpq(r8, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(7)); // Test number.
__ movq(rcx, Immediate(1024));
__ SmiTag(r8, rcx);
__ Set(rdx, Smi::FromInt(1024).ptr());
__ cmpq(r8, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(8)); // Test number.
__ movq(rcx, Immediate(-1));
__ SmiTag(r8, rcx);
__ Set(rdx, Smi::FromInt(-1).ptr());
__ cmpq(r8, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(9)); // Test number.
__ movq(rcx, Immediate(Smi::kMaxValue));
__ SmiTag(r8, rcx);
__ Set(rdx, Smi::FromInt(Smi::kMaxValue).ptr());
__ cmpq(r8, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(10)); // Test number.
__ movq(rcx, Immediate(Smi::kMinValue));
__ SmiTag(r8, rcx);
__ Set(rdx, Smi::FromInt(Smi::kMinValue).ptr());
__ cmpq(r8, rdx);
__ j(not_equal, &exit);
__ xorq(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(CcTest::i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
TEST(SmiCheck) {
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
Condition cond;
__ movl(rax, Immediate(1)); // Test number.
// CheckSmi
__ movl(rcx, Immediate(0));
__ SmiTag(rcx, rcx);
cond = masm->CheckSmi(rcx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ xorq(rcx, Immediate(kSmiTagMask));
cond = masm->CheckSmi(rcx);
__ j(cond, &exit);
__ incq(rax);
__ movl(rcx, Immediate(-1));
__ SmiTag(rcx, rcx);
cond = masm->CheckSmi(rcx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ xorq(rcx, Immediate(kSmiTagMask));
cond = masm->CheckSmi(rcx);
__ j(cond, &exit);
__ incq(rax);
__ movl(rcx, Immediate(Smi::kMaxValue));
__ SmiTag(rcx, rcx);
cond = masm->CheckSmi(rcx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ xorq(rcx, Immediate(kSmiTagMask));
cond = masm->CheckSmi(rcx);
__ j(cond, &exit);
__ incq(rax);
__ movl(rcx, Immediate(Smi::kMinValue));
__ SmiTag(rcx, rcx);
cond = masm->CheckSmi(rcx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ xorq(rcx, Immediate(kSmiTagMask));
cond = masm->CheckSmi(rcx);
__ j(cond, &exit);
// Success
__ xorq(rax, rax);
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(CcTest::i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
void TestSmiIndex(MacroAssembler* masm, Label* exit, int id, int x) {
__ movl(rax, Immediate(id));
for (int i = 0; i < 8; i++) {
__ Move(rcx, Smi::FromInt(x));
SmiIndex index = masm->SmiToIndex(rdx, rcx, i);
CHECK(index.reg == rcx || index.reg == rdx);
__ shlq(index.reg, Immediate(index.scale));
__ Set(r8, static_cast<intptr_t>(x) << i);
__ cmpq(index.reg, r8);
__ j(not_equal, exit);
__ incq(rax);
__ Move(rcx, Smi::FromInt(x));
index = masm->SmiToIndex(rcx, rcx, i);
CHECK(index.reg == rcx);
__ shlq(rcx, Immediate(index.scale));
__ Set(r8, static_cast<intptr_t>(x) << i);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
__ incq(rax);
}
}
TEST(EmbeddedObj) {
#ifdef V8_COMPRESS_POINTERS
FLAG_always_compact = true;
v8::V8::Initialize();
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
Handle<HeapObject> old_array = isolate->factory()->NewFixedArray(2000);
Handle<HeapObject> my_array = isolate->factory()->NewFixedArray(1000);
__ Move(rcx, my_array, RelocInfo::COMPRESSED_EMBEDDED_OBJECT);
__ Move(rax, old_array, RelocInfo::FULL_EMBEDDED_OBJECT);
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef OBJECT_PRINT
StdoutStream os;
code->Print(os);
#endif
using myF0 = Address();
auto f = GeneratedCode<myF0>::FromAddress(isolate, code->entry());
Object result = Object(f.Call());
CHECK_EQ(old_array->ptr(), result.ptr());
// Collect garbage to ensure reloc info can be walked by the heap.
CcTest::CollectAllGarbage();
CcTest::CollectAllGarbage();
CcTest::CollectAllGarbage();
// Test the user-facing reloc interface.
const int mode_mask = RelocInfo::EmbeddedObjectModeMask();
for (RelocIterator it(*code, mode_mask); !it.done(); it.next()) {
RelocInfo::Mode mode = it.rinfo()->rmode();
if (RelocInfo::IsCompressedEmbeddedObject(mode)) {
CHECK_EQ(*my_array, it.rinfo()->target_object());
} else {
CHECK(RelocInfo::IsFullEmbeddedObject(mode));
CHECK_EQ(*old_array, it.rinfo()->target_object());
}
}
#endif // V8_COMPRESS_POINTERS
}
TEST(SmiIndex) {
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
TestSmiIndex(masm, &exit, 0x10, 0);
TestSmiIndex(masm, &exit, 0x20, 1);
TestSmiIndex(masm, &exit, 0x30, 100);
TestSmiIndex(masm, &exit, 0x40, 1000);
TestSmiIndex(masm, &exit, 0x50, Smi::kMaxValue);
__ xorq(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(CcTest::i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
TEST(OperandOffset) {
uint32_t data[256];
for (uint32_t i = 0; i < 256; i++) { data[i] = i * 0x01010101; }
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
Label exit;
EntryCode(masm);
__ pushq(r13);
__ pushq(r14);
__ pushq(rbx);
__ pushq(rbp);
__ pushq(Immediate(0x100)); // <-- rbp
__ movq(rbp, rsp);
__ pushq(Immediate(0x101));
__ pushq(Immediate(0x102));
__ pushq(Immediate(0x103));
__ pushq(Immediate(0x104));
__ pushq(Immediate(0x105)); // <-- rbx
__ pushq(Immediate(0x106));
__ pushq(Immediate(0x107));
__ pushq(Immediate(0x108));
__ pushq(Immediate(0x109)); // <-- rsp
// rbp = rsp[9]
// r15 = rsp[3]
// rbx = rsp[5]
// r13 = rsp[7]
__ leaq(r14, Operand(rsp, 3 * kSystemPointerSize));
__ leaq(r13, Operand(rbp, -3 * kSystemPointerSize));
__ leaq(rbx, Operand(rbp, -5 * kSystemPointerSize));
__ movl(rcx, Immediate(2));
__ Move(r8, reinterpret_cast<Address>(&data[128]), RelocInfo::NONE);
__ movl(rax, Immediate(1));
Operand sp0 = Operand(rsp, 0);
// Test 1.
__ movl(rdx, sp0); // Sanity check.
__ cmpl(rdx, Immediate(0x109));
__ j(not_equal, &exit);
__ incq(rax);
// Test 2.
// Zero to non-zero displacement.
__ movl(rdx, Operand(sp0, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x107));
__ j(not_equal, &exit);
__ incq(rax);
Operand sp2 = Operand(rsp, 2 * kSystemPointerSize);
// Test 3.
__ movl(rdx, sp2); // Sanity check.
__ cmpl(rdx, Immediate(0x107));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(sp2, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
// Non-zero to zero displacement.
__ movl(rdx, Operand(sp2, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x109));
__ j(not_equal, &exit);
__ incq(rax);
Operand sp2c2 =
Operand(rsp, rcx, times_system_pointer_size, 2 * kSystemPointerSize);
// Test 6.
__ movl(rdx, sp2c2); // Sanity check.
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(sp2c2, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x103));
__ j(not_equal, &exit);
__ incq(rax);
// Non-zero to zero displacement.
__ movl(rdx, Operand(sp2c2, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x107));
__ j(not_equal, &exit);
__ incq(rax);
Operand bp0 = Operand(rbp, 0);
// Test 9.
__ movl(rdx, bp0); // Sanity check.
__ cmpl(rdx, Immediate(0x100));
__ j(not_equal, &exit);
__ incq(rax);
// Zero to non-zero displacement.
__ movl(rdx, Operand(bp0, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x102));
__ j(not_equal, &exit);
__ incq(rax);
Operand bp2 = Operand(rbp, -2 * kSystemPointerSize);
// Test 11.
__ movl(rdx, bp2); // Sanity check.
__ cmpl(rdx, Immediate(0x102));
__ j(not_equal, &exit);
__ incq(rax);
// Non-zero to zero displacement.
__ movl(rdx, Operand(bp2, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x100));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bp2, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x104));
__ j(not_equal, &exit);
__ incq(rax);
Operand bp2c4 =
Operand(rbp, rcx, times_system_pointer_size, -4 * kSystemPointerSize);
// Test 14:
__ movl(rdx, bp2c4); // Sanity check.
__ cmpl(rdx, Immediate(0x102));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bp2c4, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x100));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bp2c4, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x104));
__ j(not_equal, &exit);
__ incq(rax);
Operand bx0 = Operand(rbx, 0);
// Test 17.
__ movl(rdx, bx0); // Sanity check.
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx0, 5 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x100));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx0, -4 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x109));
__ j(not_equal, &exit);
__ incq(rax);
Operand bx2 = Operand(rbx, 2 * kSystemPointerSize);
// Test 20.
__ movl(rdx, bx2); // Sanity check.
__ cmpl(rdx, Immediate(0x103));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx2, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x101));
__ j(not_equal, &exit);
__ incq(rax);
// Non-zero to zero displacement.
__ movl(rdx, Operand(bx2, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
Operand bx2c2 =
Operand(rbx, rcx, times_system_pointer_size, -2 * kSystemPointerSize);
// Test 23.
__ movl(rdx, bx2c2); // Sanity check.
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx2c2, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x103));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx2c2, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x107));
__ j(not_equal, &exit);
__ incq(rax);
Operand r80 = Operand(r8, 0);
// Test 26.
__ movl(rdx, r80); // Sanity check.
__ cmpl(rdx, Immediate(0x80808080));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -8 * kIntSize));
__ cmpl(rdx, Immediate(0x78787878));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, 8 * kIntSize));
__ cmpl(rdx, Immediate(0x88888888));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -64 * kIntSize));
__ cmpl(rdx, Immediate(0x40404040));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, 64 * kIntSize));
__ cmpl(rdx, Immediate(0xC0C0C0C0));
__ j(not_equal, &exit);
__ incq(rax);
Operand r88 = Operand(r8, 8 * kIntSize);
// Test 31.
__ movl(rdx, r88); // Sanity check.
__ cmpl(rdx, Immediate(0x88888888));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r88, -8 * kIntSize));
__ cmpl(rdx, Immediate(0x80808080));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r88, 8 * kIntSize));
__ cmpl(rdx, Immediate(0x90909090));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r88, -64 * kIntSize));
__ cmpl(rdx, Immediate(0x48484848));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r88, 64 * kIntSize));
__ cmpl(rdx, Immediate(0xC8C8C8C8));
__ j(not_equal, &exit);
__ incq(rax);
Operand r864 = Operand(r8, 64 * kIntSize);
// Test 36.
__ movl(rdx, r864); // Sanity check.
__ cmpl(rdx, Immediate(0xC0C0C0C0));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, -8 * kIntSize));
__ cmpl(rdx, Immediate(0xB8B8B8B8));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, 8 * kIntSize));
__ cmpl(rdx, Immediate(0xC8C8C8C8));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, -64 * kIntSize));
__ cmpl(rdx, Immediate(0x80808080));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, 32 * kIntSize));
__ cmpl(rdx, Immediate(0xE0E0E0E0));
__ j(not_equal, &exit);
__ incq(rax);
// 32-bit offset to 8-bit offset.
__ movl(rdx, Operand(r864, -60 * kIntSize));
__ cmpl(rdx, Immediate(0x84848484));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, 60 * kIntSize));
__ cmpl(rdx, Immediate(0xFCFCFCFC));
__ j(not_equal, &exit);
__ incq(rax);
// Test unaligned offsets.
// Test 43.
__ movl(rdx, Operand(r80, 2));
__ cmpl(rdx, Immediate(0x81818080));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -2));
__ cmpl(rdx, Immediate(0x80807F7F));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, 126));
__ cmpl(rdx, Immediate(0xA0A09F9F));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -126));
__ cmpl(rdx, Immediate(0x61616060));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, 254));
__ cmpl(rdx, Immediate(0xC0C0BFBF));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -254));
__ cmpl(rdx, Immediate(0x41414040));
__ j(not_equal, &exit);
__ incq(rax);
// Success.
__ movl(rax, Immediate(0));
__ bind(&exit);
__ leaq(rsp, Operand(rbp, kSystemPointerSize));
__ popq(rbp);
__ popq(rbx);
__ popq(r14);
__ popq(r13);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(CcTest::i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
void TestFloat32x4Abs(MacroAssembler* masm, Label* exit, float x, float y,
float z, float w) {
__ AllocateStackSpace(kSimd128Size);
__ Move(xmm1, x);
__ Movss(Operand(rsp, 0 * kFloatSize), xmm1);
__ Move(xmm2, y);
__ Movss(Operand(rsp, 1 * kFloatSize), xmm2);
__ Move(xmm3, z);
__ Movss(Operand(rsp, 2 * kFloatSize), xmm3);
__ Move(xmm4, w);
__ Movss(Operand(rsp, 3 * kFloatSize), xmm4);
__ Movups(xmm0, Operand(rsp, 0));
__ Absps(xmm0);
__ Movups(Operand(rsp, 0), xmm0);
__ incq(rax);
__ Move(xmm1, fabsf(x));
__ Ucomiss(xmm1, Operand(rsp, 0 * kFloatSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm2, fabsf(y));
__ Ucomiss(xmm2, Operand(rsp, 1 * kFloatSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm3, fabsf(z));
__ Ucomiss(xmm3, Operand(rsp, 2 * kFloatSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm4, fabsf(w));
__ Ucomiss(xmm4, Operand(rsp, 3 * kFloatSize));
__ j(not_equal, exit);
__ addq(rsp, Immediate(kSimd128Size));
}
void TestFloat32x4Neg(MacroAssembler* masm, Label* exit, float x, float y,
float z, float w) {
__ AllocateStackSpace(kSimd128Size);
__ Move(xmm1, x);
__ Movss(Operand(rsp, 0 * kFloatSize), xmm1);
__ Move(xmm2, y);
__ Movss(Operand(rsp, 1 * kFloatSize), xmm2);
__ Move(xmm3, z);
__ Movss(Operand(rsp, 2 * kFloatSize), xmm3);
__ Move(xmm4, w);
__ Movss(Operand(rsp, 3 * kFloatSize), xmm4);
__ Movups(xmm0, Operand(rsp, 0));
__ Negps(xmm0);
__ Movups(Operand(rsp, 0), xmm0);
__ incq(rax);
__ Move(xmm1, -x);
__ Ucomiss(xmm1, Operand(rsp, 0 * kFloatSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm2, -y);
__ Ucomiss(xmm2, Operand(rsp, 1 * kFloatSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm3, -z);
__ Ucomiss(xmm3, Operand(rsp, 2 * kFloatSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm4, -w);
__ Ucomiss(xmm4, Operand(rsp, 3 * kFloatSize));
__ j(not_equal, exit);
__ addq(rsp, Immediate(kSimd128Size));
}
void TestFloat64x2Abs(MacroAssembler* masm, Label* exit, double x, double y) {
__ AllocateStackSpace(kSimd128Size);
__ Move(xmm1, x);
__ Movsd(Operand(rsp, 0 * kDoubleSize), xmm1);
__ Move(xmm2, y);
__ Movsd(Operand(rsp, 1 * kDoubleSize), xmm2);
__ movupd(xmm0, Operand(rsp, 0));
__ Abspd(xmm0);
__ movupd(Operand(rsp, 0), xmm0);
__ incq(rax);
__ Move(xmm1, fabs(x));
__ Ucomisd(xmm1, Operand(rsp, 0 * kDoubleSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm2, fabs(y));
__ Ucomisd(xmm2, Operand(rsp, 1 * kDoubleSize));
__ j(not_equal, exit);
__ addq(rsp, Immediate(kSimd128Size));
}
void TestFloat64x2Neg(MacroAssembler* masm, Label* exit, double x, double y) {
__ AllocateStackSpace(kSimd128Size);
__ Move(xmm1, x);
__ Movsd(Operand(rsp, 0 * kDoubleSize), xmm1);
__ Move(xmm2, y);
__ Movsd(Operand(rsp, 1 * kDoubleSize), xmm2);
__ movupd(xmm0, Operand(rsp, 0));
__ Negpd(xmm0);
__ movupd(Operand(rsp, 0), xmm0);
__ incq(rax);
__ Move(xmm1, -x);
__ Ucomisd(xmm1, Operand(rsp, 0 * kDoubleSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm2, -y);
__ Ucomisd(xmm2, Operand(rsp, 1 * kDoubleSize));
__ j(not_equal, exit);
__ addq(rsp, Immediate(kSimd128Size));
}
TEST(SIMDMacros) {
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
__ xorq(rax, rax);
TestFloat32x4Abs(masm, &exit, 1.5, -1.5, 0.5, -0.5);
TestFloat32x4Neg(masm, &exit, 1.5, -1.5, 0.5, -0.5);
TestFloat64x2Abs(masm, &exit, 1.75, -1.75);
TestFloat64x2Neg(masm, &exit, 1.75, -1.75);
__ xorq(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(CcTest::i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
TEST(AreAliased) {
DCHECK(!AreAliased(rax));
DCHECK(!AreAliased(rax, no_reg));
DCHECK(!AreAliased(no_reg, rax, no_reg));
DCHECK(AreAliased(rax, rax));
DCHECK(!AreAliased(no_reg, no_reg));
DCHECK(!AreAliased(rax, rbx, rcx, rdx, no_reg));
DCHECK(AreAliased(rax, rbx, rcx, rdx, rax, no_reg));
// no_regs are allowed in
DCHECK(!AreAliased(rax, no_reg, rbx, no_reg, rcx, no_reg, rdx, no_reg));
DCHECK(AreAliased(rax, no_reg, rbx, no_reg, rcx, no_reg, rdx, rax, no_reg));
}
#undef __
} // namespace test_macro_assembler_x64
} // namespace internal
} // namespace v8