v8/test/unittests/compiler/graph-reducer-unittest.cc
2015-01-22 14:16:55 +00:00

674 lines
18 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/graph.h"
#include "src/compiler/graph-reducer.h"
#include "src/compiler/node.h"
#include "src/compiler/operator.h"
#include "test/unittests/test-utils.h"
#include "testing/gmock/include/gmock/gmock.h"
using testing::_;
using testing::DefaultValue;
using testing::Return;
using testing::Sequence;
using testing::StrictMock;
namespace v8 {
namespace internal {
namespace compiler {
namespace {
struct TestOperator : public Operator {
TestOperator(Operator::Opcode opcode, Operator::Properties properties,
const char* op_name, size_t value_in, size_t value_out)
: Operator(opcode, properties, op_name, value_in, 0, 0, value_out, 0, 0) {
}
};
const uint8_t kOpcodeA0 = 10;
const uint8_t kOpcodeA1 = 11;
const uint8_t kOpcodeA2 = 12;
const uint8_t kOpcodeB0 = 20;
const uint8_t kOpcodeB1 = 21;
const uint8_t kOpcodeB2 = 22;
const uint8_t kOpcodeC0 = 30;
const uint8_t kOpcodeC1 = 31;
const uint8_t kOpcodeC2 = 32;
static TestOperator kOpA0(kOpcodeA0, Operator::kNoWrite, "opa1", 0, 1);
static TestOperator kOpA1(kOpcodeA1, Operator::kNoProperties, "opa2", 1, 1);
static TestOperator kOpA2(kOpcodeA2, Operator::kNoProperties, "opa3", 2, 1);
static TestOperator kOpB0(kOpcodeB0, Operator::kNoWrite, "opa0", 0, 0);
static TestOperator kOpB1(kOpcodeB1, Operator::kNoWrite, "opa1", 1, 0);
static TestOperator kOpB2(kOpcodeB2, Operator::kNoWrite, "opa2", 2, 0);
static TestOperator kOpC0(kOpcodeC0, Operator::kNoWrite, "opc0", 0, 0);
static TestOperator kOpC1(kOpcodeC1, Operator::kNoWrite, "opc1", 1, 0);
static TestOperator kOpC2(kOpcodeC2, Operator::kNoWrite, "opc2", 2, 0);
struct MockReducer : public Reducer {
MOCK_METHOD1(Reduce, Reduction(Node*));
};
// Replaces all "A" operators with "B" operators without creating new nodes.
class InPlaceABReducer : public Reducer {
public:
virtual Reduction Reduce(Node* node) {
switch (node->op()->opcode()) {
case kOpcodeA0:
EXPECT_EQ(0, node->InputCount());
node->set_op(&kOpB0);
return Replace(node);
case kOpcodeA1:
EXPECT_EQ(1, node->InputCount());
node->set_op(&kOpB1);
return Replace(node);
case kOpcodeA2:
EXPECT_EQ(2, node->InputCount());
node->set_op(&kOpB2);
return Replace(node);
}
return NoChange();
}
};
// Replaces all "A" operators with "B" operators by allocating new nodes.
class NewABReducer : public Reducer {
public:
explicit NewABReducer(Graph* graph) : graph_(graph) {}
virtual Reduction Reduce(Node* node) {
switch (node->op()->opcode()) {
case kOpcodeA0:
EXPECT_EQ(0, node->InputCount());
return Replace(graph_->NewNode(&kOpB0));
case kOpcodeA1:
EXPECT_EQ(1, node->InputCount());
return Replace(graph_->NewNode(&kOpB1, node->InputAt(0)));
case kOpcodeA2:
EXPECT_EQ(2, node->InputCount());
return Replace(
graph_->NewNode(&kOpB2, node->InputAt(0), node->InputAt(1)));
}
return NoChange();
}
Graph* graph_;
};
// Wraps all "kOpA0" nodes in "kOpB1" operators by allocating new nodes.
class A0Wrapper FINAL : public Reducer {
public:
explicit A0Wrapper(Graph* graph) : graph_(graph) {}
virtual Reduction Reduce(Node* node) OVERRIDE {
switch (node->op()->opcode()) {
case kOpcodeA0:
EXPECT_EQ(0, node->InputCount());
return Replace(graph_->NewNode(&kOpB1, node));
}
return NoChange();
}
Graph* graph_;
};
// Wraps all "kOpB0" nodes in two "kOpC1" operators by allocating new nodes.
class B0Wrapper FINAL : public Reducer {
public:
explicit B0Wrapper(Graph* graph) : graph_(graph) {}
virtual Reduction Reduce(Node* node) OVERRIDE {
switch (node->op()->opcode()) {
case kOpcodeB0:
EXPECT_EQ(0, node->InputCount());
return Replace(graph_->NewNode(&kOpC1, graph_->NewNode(&kOpC1, node)));
}
return NoChange();
}
Graph* graph_;
};
// Replaces all "kOpA1" nodes with the first input.
class A1Forwarder : public Reducer {
virtual Reduction Reduce(Node* node) {
switch (node->op()->opcode()) {
case kOpcodeA1:
EXPECT_EQ(1, node->InputCount());
return Replace(node->InputAt(0));
}
return NoChange();
}
};
// Replaces all "kOpB1" nodes with the first input.
class B1Forwarder : public Reducer {
virtual Reduction Reduce(Node* node) {
switch (node->op()->opcode()) {
case kOpcodeB1:
EXPECT_EQ(1, node->InputCount());
return Replace(node->InputAt(0));
}
return NoChange();
}
};
// Replaces all "B" operators with "C" operators without creating new nodes.
class InPlaceBCReducer : public Reducer {
public:
virtual Reduction Reduce(Node* node) {
switch (node->op()->opcode()) {
case kOpcodeB0:
EXPECT_EQ(0, node->InputCount());
node->set_op(&kOpC0);
return Replace(node);
case kOpcodeB1:
EXPECT_EQ(1, node->InputCount());
node->set_op(&kOpC1);
return Replace(node);
case kOpcodeB2:
EXPECT_EQ(2, node->InputCount());
node->set_op(&kOpC2);
return Replace(node);
}
return NoChange();
}
};
// Swaps the inputs to "kOp2A" and "kOp2B" nodes based on ids.
class AB2Sorter : public Reducer {
virtual Reduction Reduce(Node* node) {
switch (node->op()->opcode()) {
case kOpcodeA2:
case kOpcodeB2:
EXPECT_EQ(2, node->InputCount());
Node* x = node->InputAt(0);
Node* y = node->InputAt(1);
if (x->id() > y->id()) {
node->ReplaceInput(0, y);
node->ReplaceInput(1, x);
return Replace(node);
}
}
return NoChange();
}
};
} // namespace
class GraphReducerTest : public TestWithZone {
public:
GraphReducerTest() : graph_(zone()) {}
static void SetUpTestCase() {
TestWithZone::SetUpTestCase();
DefaultValue<Reduction>::Set(Reducer::NoChange());
}
static void TearDownTestCase() {
DefaultValue<Reduction>::Clear();
TestWithZone::TearDownTestCase();
}
protected:
void ReduceNode(Node* node, Reducer* r) {
GraphReducer reducer(graph(), zone());
reducer.AddReducer(r);
reducer.ReduceNode(node);
}
void ReduceNode(Node* node, Reducer* r1, Reducer* r2) {
GraphReducer reducer(graph(), zone());
reducer.AddReducer(r1);
reducer.AddReducer(r2);
reducer.ReduceNode(node);
}
void ReduceNode(Node* node, Reducer* r1, Reducer* r2, Reducer* r3) {
GraphReducer reducer(graph(), zone());
reducer.AddReducer(r1);
reducer.AddReducer(r2);
reducer.AddReducer(r3);
reducer.ReduceNode(node);
}
void ReduceGraph(Reducer* r1) {
GraphReducer reducer(graph(), zone());
reducer.AddReducer(r1);
reducer.ReduceGraph();
}
void ReduceGraph(Reducer* r1, Reducer* r2) {
GraphReducer reducer(graph(), zone());
reducer.AddReducer(r1);
reducer.AddReducer(r2);
reducer.ReduceGraph();
}
void ReduceGraph(Reducer* r1, Reducer* r2, Reducer* r3) {
GraphReducer reducer(graph(), zone());
reducer.AddReducer(r1);
reducer.AddReducer(r2);
reducer.AddReducer(r3);
reducer.ReduceGraph();
}
Graph* graph() { return &graph_; }
private:
Graph graph_;
};
TEST_F(GraphReducerTest, NodeIsDeadAfterReplace) {
StrictMock<MockReducer> r;
Node* node0 = graph()->NewNode(&kOpA0);
Node* node1 = graph()->NewNode(&kOpA1, node0);
Node* node2 = graph()->NewNode(&kOpA1, node0);
EXPECT_CALL(r, Reduce(node0)).WillOnce(Return(Reducer::NoChange()));
EXPECT_CALL(r, Reduce(node1)).WillOnce(Return(Reducer::Replace(node2)));
ReduceNode(node1, &r);
EXPECT_FALSE(node0->IsDead());
EXPECT_TRUE(node1->IsDead());
EXPECT_FALSE(node2->IsDead());
}
TEST_F(GraphReducerTest, ReduceOnceForEveryReducer) {
StrictMock<MockReducer> r1, r2;
Node* node0 = graph()->NewNode(&kOpA0);
EXPECT_CALL(r1, Reduce(node0));
EXPECT_CALL(r2, Reduce(node0));
ReduceNode(node0, &r1, &r2);
}
TEST_F(GraphReducerTest, ReduceAgainAfterChanged) {
Sequence s1, s2, s3;
StrictMock<MockReducer> r1, r2, r3;
Node* node0 = graph()->NewNode(&kOpA0);
EXPECT_CALL(r1, Reduce(node0));
EXPECT_CALL(r2, Reduce(node0));
EXPECT_CALL(r3, Reduce(node0)).InSequence(s1, s2, s3).WillOnce(
Return(Reducer::Changed(node0)));
EXPECT_CALL(r1, Reduce(node0)).InSequence(s1);
EXPECT_CALL(r2, Reduce(node0)).InSequence(s2);
ReduceNode(node0, &r1, &r2, &r3);
}
TEST_F(GraphReducerTest, ReduceGraphFromEnd1) {
StrictMock<MockReducer> r1;
Node* n = graph()->NewNode(&kOpA0);
Node* end = graph()->NewNode(&kOpA1, n);
graph()->SetEnd(end);
Sequence s;
EXPECT_CALL(r1, Reduce(n));
EXPECT_CALL(r1, Reduce(end));
ReduceGraph(&r1);
}
TEST_F(GraphReducerTest, ReduceGraphFromEnd2) {
StrictMock<MockReducer> r1;
Node* n1 = graph()->NewNode(&kOpA0);
Node* n2 = graph()->NewNode(&kOpA1, n1);
Node* n3 = graph()->NewNode(&kOpA1, n1);
Node* end = graph()->NewNode(&kOpA2, n2, n3);
graph()->SetEnd(end);
Sequence s1, s2;
EXPECT_CALL(r1, Reduce(n1)).InSequence(s1, s2);
EXPECT_CALL(r1, Reduce(n2)).InSequence(s1);
EXPECT_CALL(r1, Reduce(n3)).InSequence(s2);
EXPECT_CALL(r1, Reduce(end)).InSequence(s1, s2);
ReduceGraph(&r1);
}
TEST_F(GraphReducerTest, ReduceInPlace1) {
Node* n1 = graph()->NewNode(&kOpA0);
Node* end = graph()->NewNode(&kOpA1, n1);
graph()->SetEnd(end);
// Tests A* => B* with in-place updates.
InPlaceABReducer r;
for (int i = 0; i < 3; i++) {
int before = graph()->NodeCount();
ReduceGraph(&r);
EXPECT_EQ(before, graph()->NodeCount());
EXPECT_EQ(&kOpB0, n1->op());
EXPECT_EQ(&kOpB1, end->op());
EXPECT_EQ(n1, end->InputAt(0));
}
}
TEST_F(GraphReducerTest, ReduceInPlace2) {
Node* n1 = graph()->NewNode(&kOpA0);
Node* n2 = graph()->NewNode(&kOpA1, n1);
Node* n3 = graph()->NewNode(&kOpA1, n1);
Node* end = graph()->NewNode(&kOpA2, n2, n3);
graph()->SetEnd(end);
// Tests A* => B* with in-place updates.
InPlaceABReducer r;
for (int i = 0; i < 3; i++) {
int before = graph()->NodeCount();
ReduceGraph(&r);
EXPECT_EQ(before, graph()->NodeCount());
EXPECT_EQ(&kOpB0, n1->op());
EXPECT_EQ(&kOpB1, n2->op());
EXPECT_EQ(n1, n2->InputAt(0));
EXPECT_EQ(&kOpB1, n3->op());
EXPECT_EQ(n1, n3->InputAt(0));
EXPECT_EQ(&kOpB2, end->op());
EXPECT_EQ(n2, end->InputAt(0));
EXPECT_EQ(n3, end->InputAt(1));
}
}
TEST_F(GraphReducerTest, ReduceNew1) {
Node* n1 = graph()->NewNode(&kOpA0);
Node* n2 = graph()->NewNode(&kOpA1, n1);
Node* n3 = graph()->NewNode(&kOpA1, n1);
Node* end = graph()->NewNode(&kOpA2, n2, n3);
graph()->SetEnd(end);
NewABReducer r(graph());
// Tests A* => B* while creating new nodes.
for (int i = 0; i < 3; i++) {
int before = graph()->NodeCount();
ReduceGraph(&r);
if (i == 0) {
EXPECT_NE(before, graph()->NodeCount());
} else {
EXPECT_EQ(before, graph()->NodeCount());
}
Node* nend = graph()->end();
EXPECT_NE(end, nend); // end() should be updated too.
Node* nn2 = nend->InputAt(0);
Node* nn3 = nend->InputAt(1);
Node* nn1 = nn2->InputAt(0);
EXPECT_EQ(nn1, nn3->InputAt(0));
EXPECT_EQ(&kOpB0, nn1->op());
EXPECT_EQ(&kOpB1, nn2->op());
EXPECT_EQ(&kOpB1, nn3->op());
EXPECT_EQ(&kOpB2, nend->op());
}
}
TEST_F(GraphReducerTest, Wrapping1) {
Node* end = graph()->NewNode(&kOpA0);
graph()->SetEnd(end);
EXPECT_EQ(1, graph()->NodeCount());
A0Wrapper r(graph());
ReduceGraph(&r);
EXPECT_EQ(2, graph()->NodeCount());
Node* nend = graph()->end();
EXPECT_NE(end, nend);
EXPECT_EQ(&kOpB1, nend->op());
EXPECT_EQ(1, nend->InputCount());
EXPECT_EQ(end, nend->InputAt(0));
}
TEST_F(GraphReducerTest, Wrapping2) {
Node* end = graph()->NewNode(&kOpB0);
graph()->SetEnd(end);
EXPECT_EQ(1, graph()->NodeCount());
B0Wrapper r(graph());
ReduceGraph(&r);
EXPECT_EQ(3, graph()->NodeCount());
Node* nend = graph()->end();
EXPECT_NE(end, nend);
EXPECT_EQ(&kOpC1, nend->op());
EXPECT_EQ(1, nend->InputCount());
Node* n1 = nend->InputAt(0);
EXPECT_NE(end, n1);
EXPECT_EQ(&kOpC1, n1->op());
EXPECT_EQ(1, n1->InputCount());
EXPECT_EQ(end, n1->InputAt(0));
}
TEST_F(GraphReducerTest, Forwarding1) {
Node* n1 = graph()->NewNode(&kOpA0);
Node* end = graph()->NewNode(&kOpA1, n1);
graph()->SetEnd(end);
A1Forwarder r;
// Tests A1(x) => x
for (int i = 0; i < 3; i++) {
int before = graph()->NodeCount();
ReduceGraph(&r);
EXPECT_EQ(before, graph()->NodeCount());
EXPECT_EQ(&kOpA0, n1->op());
EXPECT_EQ(n1, graph()->end());
}
}
TEST_F(GraphReducerTest, Forwarding2) {
Node* n1 = graph()->NewNode(&kOpA0);
Node* n2 = graph()->NewNode(&kOpA1, n1);
Node* n3 = graph()->NewNode(&kOpA1, n1);
Node* end = graph()->NewNode(&kOpA2, n2, n3);
graph()->SetEnd(end);
A1Forwarder r;
// Tests reducing A2(A1(x), A1(y)) => A2(x, y).
for (int i = 0; i < 3; i++) {
int before = graph()->NodeCount();
ReduceGraph(&r);
EXPECT_EQ(before, graph()->NodeCount());
EXPECT_EQ(&kOpA0, n1->op());
EXPECT_EQ(n1, end->InputAt(0));
EXPECT_EQ(n1, end->InputAt(1));
EXPECT_EQ(&kOpA2, end->op());
EXPECT_EQ(0, n2->UseCount());
EXPECT_EQ(0, n3->UseCount());
}
}
TEST_F(GraphReducerTest, Forwarding3) {
// Tests reducing a chain of A1(A1(A1(A1(x)))) => x.
for (int i = 0; i < 8; i++) {
Node* n1 = graph()->NewNode(&kOpA0);
Node* end = n1;
for (int j = 0; j < i; j++) {
end = graph()->NewNode(&kOpA1, end);
}
graph()->SetEnd(end);
A1Forwarder r;
for (int i = 0; i < 3; i++) {
int before = graph()->NodeCount();
ReduceGraph(&r);
EXPECT_EQ(before, graph()->NodeCount());
EXPECT_EQ(&kOpA0, n1->op());
EXPECT_EQ(n1, graph()->end());
}
}
}
TEST_F(GraphReducerTest, ReduceForward1) {
Node* n1 = graph()->NewNode(&kOpA0);
Node* n2 = graph()->NewNode(&kOpA1, n1);
Node* n3 = graph()->NewNode(&kOpA1, n1);
Node* end = graph()->NewNode(&kOpA2, n2, n3);
graph()->SetEnd(end);
InPlaceABReducer r;
B1Forwarder f;
// Tests first reducing A => B, then B1(x) => x.
for (int i = 0; i < 3; i++) {
int before = graph()->NodeCount();
ReduceGraph(&r, &f);
EXPECT_EQ(before, graph()->NodeCount());
EXPECT_EQ(&kOpB0, n1->op());
EXPECT_TRUE(n2->IsDead());
EXPECT_EQ(n1, end->InputAt(0));
EXPECT_TRUE(n3->IsDead());
EXPECT_EQ(n1, end->InputAt(0));
EXPECT_EQ(&kOpB2, end->op());
EXPECT_EQ(0, n2->UseCount());
EXPECT_EQ(0, n3->UseCount());
}
}
TEST_F(GraphReducerTest, Sorter1) {
AB2Sorter r;
for (int i = 0; i < 6; i++) {
Node* n1 = graph()->NewNode(&kOpA0);
Node* n2 = graph()->NewNode(&kOpA1, n1);
Node* n3 = graph()->NewNode(&kOpA1, n1);
Node* end = NULL; // Initialize to please the compiler.
if (i == 0) end = graph()->NewNode(&kOpA2, n2, n3);
if (i == 1) end = graph()->NewNode(&kOpA2, n3, n2);
if (i == 2) end = graph()->NewNode(&kOpA2, n2, n1);
if (i == 3) end = graph()->NewNode(&kOpA2, n1, n2);
if (i == 4) end = graph()->NewNode(&kOpA2, n3, n1);
if (i == 5) end = graph()->NewNode(&kOpA2, n1, n3);
graph()->SetEnd(end);
int before = graph()->NodeCount();
ReduceGraph(&r);
EXPECT_EQ(before, graph()->NodeCount());
EXPECT_EQ(&kOpA0, n1->op());
EXPECT_EQ(&kOpA1, n2->op());
EXPECT_EQ(&kOpA1, n3->op());
EXPECT_EQ(&kOpA2, end->op());
EXPECT_EQ(end, graph()->end());
EXPECT_LE(end->InputAt(0)->id(), end->InputAt(1)->id());
}
}
// Generate a node graph with the given permutations.
void GenDAG(Graph* graph, int* p3, int* p2, int* p1) {
Node* level4 = graph->NewNode(&kOpA0);
Node* level3[] = {graph->NewNode(&kOpA1, level4),
graph->NewNode(&kOpA1, level4)};
Node* level2[] = {graph->NewNode(&kOpA1, level3[p3[0]]),
graph->NewNode(&kOpA1, level3[p3[1]]),
graph->NewNode(&kOpA1, level3[p3[0]]),
graph->NewNode(&kOpA1, level3[p3[1]])};
Node* level1[] = {graph->NewNode(&kOpA2, level2[p2[0]], level2[p2[1]]),
graph->NewNode(&kOpA2, level2[p2[2]], level2[p2[3]])};
Node* end = graph->NewNode(&kOpA2, level1[p1[0]], level1[p1[1]]);
graph->SetEnd(end);
}
TEST_F(GraphReducerTest, SortForwardReduce) {
// Tests combined reductions on a series of DAGs.
for (int j = 0; j < 2; j++) {
int p3[] = {j, 1 - j};
for (int m = 0; m < 2; m++) {
int p1[] = {m, 1 - m};
for (int k = 0; k < 24; k++) { // All permutations of 0, 1, 2, 3
int p2[] = {-1, -1, -1, -1};
int n = k;
for (int d = 4; d >= 1; d--) { // Construct permutation.
int p = n % d;
for (int z = 0; z < 4; z++) {
if (p2[z] == -1) {
if (p == 0) p2[z] = d - 1;
p--;
}
}
n = n / d;
}
GenDAG(graph(), p3, p2, p1);
AB2Sorter r1;
A1Forwarder r2;
InPlaceABReducer r3;
ReduceGraph(&r1, &r2, &r3);
Node* end = graph()->end();
EXPECT_EQ(&kOpB2, end->op());
Node* n1 = end->InputAt(0);
Node* n2 = end->InputAt(1);
EXPECT_NE(n1, n2);
EXPECT_LT(n1->id(), n2->id());
EXPECT_EQ(&kOpB2, n1->op());
EXPECT_EQ(&kOpB2, n2->op());
Node* n4 = n1->InputAt(0);
EXPECT_EQ(&kOpB0, n4->op());
EXPECT_EQ(n4, n1->InputAt(1));
EXPECT_EQ(n4, n2->InputAt(0));
EXPECT_EQ(n4, n2->InputAt(1));
}
}
}
}
TEST_F(GraphReducerTest, Order) {
// Test that the order of reducers doesn't matter, as they should be
// rerun for changed nodes.
for (int i = 0; i < 2; i++) {
Node* n1 = graph()->NewNode(&kOpA0);
Node* end = graph()->NewNode(&kOpA1, n1);
graph()->SetEnd(end);
InPlaceABReducer abr;
InPlaceBCReducer bcr;
// Tests A* => C* with in-place updates.
for (int j = 0; j < 3; j++) {
int before = graph()->NodeCount();
if (i == 0) {
ReduceGraph(&abr, &bcr);
} else {
ReduceGraph(&bcr, &abr);
}
EXPECT_EQ(before, graph()->NodeCount());
EXPECT_EQ(&kOpC0, n1->op());
EXPECT_EQ(&kOpC1, end->op());
EXPECT_EQ(n1, end->InputAt(0));
}
}
}
} // namespace compiler
} // namespace internal
} // namespace v8