v8/src/ia32/deoptimizer-ia32.cc
jkummerow@chromium.org c7a9bffbcf Clean up the usage of V8_TARGET_ARCH_${arch} and V8_HOST_ARCH_${arch}
R=jkummerow@chromium.org

Review URL: https://codereview.chromium.org/18037002

Patch from Haitao Feng <haitao.feng@intel.com>.

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@15391 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-06-28 15:34:48 +00:00

758 lines
28 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if V8_TARGET_ARCH_IA32
#include "codegen.h"
#include "deoptimizer.h"
#include "full-codegen.h"
#include "safepoint-table.h"
namespace v8 {
namespace internal {
const int Deoptimizer::table_entry_size_ = 10;
int Deoptimizer::patch_size() {
return Assembler::kCallInstructionLength;
}
void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) {
Isolate* isolate = code->GetIsolate();
HandleScope scope(isolate);
// Compute the size of relocation information needed for the code
// patching in Deoptimizer::DeoptimizeFunction.
int min_reloc_size = 0;
int prev_pc_offset = 0;
DeoptimizationInputData* deopt_data =
DeoptimizationInputData::cast(code->deoptimization_data());
for (int i = 0; i < deopt_data->DeoptCount(); i++) {
int pc_offset = deopt_data->Pc(i)->value();
if (pc_offset == -1) continue;
ASSERT_GE(pc_offset, prev_pc_offset);
int pc_delta = pc_offset - prev_pc_offset;
// We use RUNTIME_ENTRY reloc info which has a size of 2 bytes
// if encodable with small pc delta encoding and up to 6 bytes
// otherwise.
if (pc_delta <= RelocInfo::kMaxSmallPCDelta) {
min_reloc_size += 2;
} else {
min_reloc_size += 6;
}
prev_pc_offset = pc_offset;
}
// If the relocation information is not big enough we create a new
// relocation info object that is padded with comments to make it
// big enough for lazy doptimization.
int reloc_length = code->relocation_info()->length();
if (min_reloc_size > reloc_length) {
int comment_reloc_size = RelocInfo::kMinRelocCommentSize;
// Padding needed.
int min_padding = min_reloc_size - reloc_length;
// Number of comments needed to take up at least that much space.
int additional_comments =
(min_padding + comment_reloc_size - 1) / comment_reloc_size;
// Actual padding size.
int padding = additional_comments * comment_reloc_size;
// Allocate new relocation info and copy old relocation to the end
// of the new relocation info array because relocation info is
// written and read backwards.
Factory* factory = isolate->factory();
Handle<ByteArray> new_reloc =
factory->NewByteArray(reloc_length + padding, TENURED);
OS::MemCopy(new_reloc->GetDataStartAddress() + padding,
code->relocation_info()->GetDataStartAddress(),
reloc_length);
// Create a relocation writer to write the comments in the padding
// space. Use position 0 for everything to ensure short encoding.
RelocInfoWriter reloc_info_writer(
new_reloc->GetDataStartAddress() + padding, 0);
intptr_t comment_string
= reinterpret_cast<intptr_t>(RelocInfo::kFillerCommentString);
RelocInfo rinfo(0, RelocInfo::COMMENT, comment_string, NULL);
for (int i = 0; i < additional_comments; ++i) {
#ifdef DEBUG
byte* pos_before = reloc_info_writer.pos();
#endif
reloc_info_writer.Write(&rinfo);
ASSERT(RelocInfo::kMinRelocCommentSize ==
pos_before - reloc_info_writer.pos());
}
// Replace relocation information on the code object.
code->set_relocation_info(*new_reloc);
}
}
void Deoptimizer::DeoptimizeFunctionWithPreparedFunctionList(
JSFunction* function) {
Isolate* isolate = function->GetIsolate();
HandleScope scope(isolate);
DisallowHeapAllocation nha;
ASSERT(function->IsOptimized());
ASSERT(function->FunctionsInFunctionListShareSameCode());
// Get the optimized code.
Code* code = function->code();
Address code_start_address = code->instruction_start();
// The optimized code is going to be patched, so we cannot use it any more.
function->shared()->EvictFromOptimizedCodeMap(code, "deoptimized function");
// We will overwrite the code's relocation info in-place. Relocation info
// is written backward. The relocation info is the payload of a byte
// array. Later on we will slide this to the start of the byte array and
// create a filler object in the remaining space.
ByteArray* reloc_info = code->relocation_info();
Address reloc_end_address = reloc_info->address() + reloc_info->Size();
RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address);
// For each LLazyBailout instruction insert a call to the corresponding
// deoptimization entry.
// Since the call is a relative encoding, write new
// reloc info. We do not need any of the existing reloc info because the
// existing code will not be used again (we zap it in debug builds).
//
// Emit call to lazy deoptimization at all lazy deopt points.
DeoptimizationInputData* deopt_data =
DeoptimizationInputData::cast(code->deoptimization_data());
#ifdef DEBUG
Address prev_call_address = NULL;
#endif
for (int i = 0; i < deopt_data->DeoptCount(); i++) {
if (deopt_data->Pc(i)->value() == -1) continue;
// Patch lazy deoptimization entry.
Address call_address = code_start_address + deopt_data->Pc(i)->value();
CodePatcher patcher(call_address, patch_size());
Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY);
patcher.masm()->call(deopt_entry, RelocInfo::NONE32);
// We use RUNTIME_ENTRY for deoptimization bailouts.
RelocInfo rinfo(call_address + 1, // 1 after the call opcode.
RelocInfo::RUNTIME_ENTRY,
reinterpret_cast<intptr_t>(deopt_entry),
NULL);
reloc_info_writer.Write(&rinfo);
ASSERT_GE(reloc_info_writer.pos(),
reloc_info->address() + ByteArray::kHeaderSize);
ASSERT(prev_call_address == NULL ||
call_address >= prev_call_address + patch_size());
ASSERT(call_address + patch_size() <= code->instruction_end());
#ifdef DEBUG
prev_call_address = call_address;
#endif
}
// Move the relocation info to the beginning of the byte array.
int new_reloc_size = reloc_end_address - reloc_info_writer.pos();
OS::MemMove(
code->relocation_start(), reloc_info_writer.pos(), new_reloc_size);
// The relocation info is in place, update the size.
reloc_info->set_length(new_reloc_size);
// Handle the junk part after the new relocation info. We will create
// a non-live object in the extra space at the end of the former reloc info.
Address junk_address = reloc_info->address() + reloc_info->Size();
ASSERT(junk_address <= reloc_end_address);
isolate->heap()->CreateFillerObjectAt(junk_address,
reloc_end_address - junk_address);
// Add the deoptimizing code to the list.
DeoptimizingCodeListNode* node = new DeoptimizingCodeListNode(code);
DeoptimizerData* data = isolate->deoptimizer_data();
node->set_next(data->deoptimizing_code_list_);
data->deoptimizing_code_list_ = node;
// We might be in the middle of incremental marking with compaction.
// Tell collector to treat this code object in a special way and
// ignore all slots that might have been recorded on it.
isolate->heap()->mark_compact_collector()->InvalidateCode(code);
ReplaceCodeForRelatedFunctions(function, code);
if (FLAG_trace_deopt) {
PrintF("[forced deoptimization: ");
function->PrintName();
PrintF(" / %x]\n", reinterpret_cast<uint32_t>(function));
}
}
static const byte kJnsInstruction = 0x79;
static const byte kJnsOffset = 0x11;
static const byte kCallInstruction = 0xe8;
static const byte kNopByteOne = 0x66;
static const byte kNopByteTwo = 0x90;
// The back edge bookkeeping code matches the pattern:
//
// sub <profiling_counter>, <delta>
// jns ok
// call <interrupt stub>
// ok:
//
// The patched back edge looks like this:
//
// sub <profiling_counter>, <delta> ;; Not changed
// nop
// nop
// call <on-stack replacment>
// ok:
void Deoptimizer::PatchInterruptCodeAt(Code* unoptimized_code,
Address pc_after,
Code* interrupt_code,
Code* replacement_code) {
ASSERT(!InterruptCodeIsPatched(unoptimized_code,
pc_after,
interrupt_code,
replacement_code));
// Turn the jump into nops.
Address call_target_address = pc_after - kIntSize;
*(call_target_address - 3) = kNopByteOne;
*(call_target_address - 2) = kNopByteTwo;
// Replace the call address.
Assembler::set_target_address_at(call_target_address,
replacement_code->entry());
unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
unoptimized_code, call_target_address, replacement_code);
}
void Deoptimizer::RevertInterruptCodeAt(Code* unoptimized_code,
Address pc_after,
Code* interrupt_code,
Code* replacement_code) {
ASSERT(InterruptCodeIsPatched(unoptimized_code,
pc_after,
interrupt_code,
replacement_code));
// Restore the original jump.
Address call_target_address = pc_after - kIntSize;
*(call_target_address - 3) = kJnsInstruction;
*(call_target_address - 2) = kJnsOffset;
// Restore the original call address.
Assembler::set_target_address_at(call_target_address,
interrupt_code->entry());
interrupt_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
unoptimized_code, call_target_address, interrupt_code);
}
#ifdef DEBUG
bool Deoptimizer::InterruptCodeIsPatched(Code* unoptimized_code,
Address pc_after,
Code* interrupt_code,
Code* replacement_code) {
Address call_target_address = pc_after - kIntSize;
ASSERT_EQ(kCallInstruction, *(call_target_address - 1));
if (*(call_target_address - 3) == kNopByteOne) {
ASSERT_EQ(replacement_code->entry(),
Assembler::target_address_at(call_target_address));
ASSERT_EQ(kNopByteTwo, *(call_target_address - 2));
return true;
} else {
ASSERT_EQ(interrupt_code->entry(),
Assembler::target_address_at(call_target_address));
ASSERT_EQ(kJnsInstruction, *(call_target_address - 3));
ASSERT_EQ(kJnsOffset, *(call_target_address - 2));
return false;
}
}
#endif // DEBUG
static int LookupBailoutId(DeoptimizationInputData* data, BailoutId ast_id) {
ByteArray* translations = data->TranslationByteArray();
int length = data->DeoptCount();
for (int i = 0; i < length; i++) {
if (data->AstId(i) == ast_id) {
TranslationIterator it(translations, data->TranslationIndex(i)->value());
int value = it.Next();
ASSERT(Translation::BEGIN == static_cast<Translation::Opcode>(value));
// Read the number of frames.
value = it.Next();
if (value == 1) return i;
}
}
UNREACHABLE();
return -1;
}
void Deoptimizer::DoComputeOsrOutputFrame() {
DeoptimizationInputData* data = DeoptimizationInputData::cast(
compiled_code_->deoptimization_data());
unsigned ast_id = data->OsrAstId()->value();
// TODO(kasperl): This should not be the bailout_id_. It should be
// the ast id. Confusing.
ASSERT(bailout_id_ == ast_id);
int bailout_id = LookupBailoutId(data, BailoutId(ast_id));
unsigned translation_index = data->TranslationIndex(bailout_id)->value();
ByteArray* translations = data->TranslationByteArray();
TranslationIterator iterator(translations, translation_index);
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator.Next());
ASSERT(Translation::BEGIN == opcode);
USE(opcode);
int count = iterator.Next();
iterator.Next(); // Drop JS frames count.
ASSERT(count == 1);
USE(count);
opcode = static_cast<Translation::Opcode>(iterator.Next());
USE(opcode);
ASSERT(Translation::JS_FRAME == opcode);
unsigned node_id = iterator.Next();
USE(node_id);
ASSERT(node_id == ast_id);
int closure_id = iterator.Next();
USE(closure_id);
ASSERT_EQ(Translation::kSelfLiteralId, closure_id);
unsigned height = iterator.Next();
unsigned height_in_bytes = height * kPointerSize;
USE(height_in_bytes);
unsigned fixed_size = ComputeFixedSize(function_);
unsigned input_frame_size = input_->GetFrameSize();
ASSERT(fixed_size + height_in_bytes == input_frame_size);
unsigned stack_slot_size = compiled_code_->stack_slots() * kPointerSize;
unsigned outgoing_height = data->ArgumentsStackHeight(bailout_id)->value();
unsigned outgoing_size = outgoing_height * kPointerSize;
unsigned output_frame_size = fixed_size + stack_slot_size + outgoing_size;
ASSERT(outgoing_size == 0); // OSR does not happen in the middle of a call.
if (FLAG_trace_osr) {
PrintF("[on-stack replacement: begin 0x%08" V8PRIxPTR " ",
reinterpret_cast<intptr_t>(function_));
PrintFunctionName();
PrintF(" => node=%u, frame=%d->%d, ebp:esp=0x%08x:0x%08x]\n",
ast_id,
input_frame_size,
output_frame_size,
input_->GetRegister(ebp.code()),
input_->GetRegister(esp.code()));
}
// There's only one output frame in the OSR case.
output_count_ = 1;
output_ = new FrameDescription*[1];
output_[0] = new(output_frame_size) FrameDescription(
output_frame_size, function_);
output_[0]->SetFrameType(StackFrame::JAVA_SCRIPT);
// Clear the incoming parameters in the optimized frame to avoid
// confusing the garbage collector.
unsigned output_offset = output_frame_size - kPointerSize;
int parameter_count = function_->shared()->formal_parameter_count() + 1;
for (int i = 0; i < parameter_count; ++i) {
output_[0]->SetFrameSlot(output_offset, 0);
output_offset -= kPointerSize;
}
// Translate the incoming parameters. This may overwrite some of the
// incoming argument slots we've just cleared.
int input_offset = input_frame_size - kPointerSize;
bool ok = true;
int limit = input_offset - (parameter_count * kPointerSize);
while (ok && input_offset > limit) {
ok = DoOsrTranslateCommand(&iterator, &input_offset);
}
// There are no translation commands for the caller's pc and fp, the
// context, and the function. Set them up explicitly.
for (int i = StandardFrameConstants::kCallerPCOffset;
ok && i >= StandardFrameConstants::kMarkerOffset;
i -= kPointerSize) {
uint32_t input_value = input_->GetFrameSlot(input_offset);
if (FLAG_trace_osr) {
const char* name = "UNKNOWN";
switch (i) {
case StandardFrameConstants::kCallerPCOffset:
name = "caller's pc";
break;
case StandardFrameConstants::kCallerFPOffset:
name = "fp";
break;
case StandardFrameConstants::kContextOffset:
name = "context";
break;
case StandardFrameConstants::kMarkerOffset:
name = "function";
break;
}
PrintF(" [sp + %d] <- 0x%08x ; [sp + %d] (fixed part - %s)\n",
output_offset,
input_value,
input_offset,
name);
}
output_[0]->SetFrameSlot(output_offset, input_->GetFrameSlot(input_offset));
input_offset -= kPointerSize;
output_offset -= kPointerSize;
}
// All OSR stack frames are dynamically aligned to an 8-byte boundary.
int frame_pointer = input_->GetRegister(ebp.code());
if ((frame_pointer & kPointerSize) != 0) {
frame_pointer -= kPointerSize;
has_alignment_padding_ = 1;
}
int32_t alignment_state = (has_alignment_padding_ == 1) ?
kAlignmentPaddingPushed :
kNoAlignmentPadding;
if (FLAG_trace_osr) {
PrintF(" [sp + %d] <- 0x%08x ; (alignment state)\n",
output_offset,
alignment_state);
}
output_[0]->SetFrameSlot(output_offset, alignment_state);
output_offset -= kPointerSize;
// Translate the rest of the frame.
while (ok && input_offset >= 0) {
ok = DoOsrTranslateCommand(&iterator, &input_offset);
}
// If translation of any command failed, continue using the input frame.
if (!ok) {
delete output_[0];
output_[0] = input_;
output_[0]->SetPc(reinterpret_cast<uint32_t>(from_));
} else {
// Set up the frame pointer and the context pointer.
output_[0]->SetRegister(ebp.code(), frame_pointer);
output_[0]->SetRegister(esi.code(), input_->GetRegister(esi.code()));
unsigned pc_offset = data->OsrPcOffset()->value();
uint32_t pc = reinterpret_cast<uint32_t>(
compiled_code_->entry() + pc_offset);
output_[0]->SetPc(pc);
}
Code* continuation =
function_->GetIsolate()->builtins()->builtin(Builtins::kNotifyOSR);
output_[0]->SetContinuation(
reinterpret_cast<uint32_t>(continuation->entry()));
if (FLAG_trace_osr) {
PrintF("[on-stack replacement translation %s: 0x%08" V8PRIxPTR " ",
ok ? "finished" : "aborted",
reinterpret_cast<intptr_t>(function_));
PrintFunctionName();
PrintF(" => pc=0x%0x]\n", output_[0]->GetPc());
}
}
void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) {
// Set the register values. The values are not important as there are no
// callee saved registers in JavaScript frames, so all registers are
// spilled. Registers ebp and esp are set to the correct values though.
for (int i = 0; i < Register::kNumRegisters; i++) {
input_->SetRegister(i, i * 4);
}
input_->SetRegister(esp.code(), reinterpret_cast<intptr_t>(frame->sp()));
input_->SetRegister(ebp.code(), reinterpret_cast<intptr_t>(frame->fp()));
for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); i++) {
input_->SetDoubleRegister(i, 0.0);
}
// Fill the frame content from the actual data on the frame.
for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) {
input_->SetFrameSlot(i, Memory::uint32_at(tos + i));
}
}
void Deoptimizer::SetPlatformCompiledStubRegisters(
FrameDescription* output_frame, CodeStubInterfaceDescriptor* descriptor) {
intptr_t handler =
reinterpret_cast<intptr_t>(descriptor->deoptimization_handler_);
int params = descriptor->register_param_count_;
if (descriptor->stack_parameter_count_ != NULL) {
params++;
}
output_frame->SetRegister(eax.code(), params);
output_frame->SetRegister(ebx.code(), handler);
}
void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) {
for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
double double_value = input_->GetDoubleRegister(i);
output_frame->SetDoubleRegister(i, double_value);
}
}
bool Deoptimizer::HasAlignmentPadding(JSFunction* function) {
int parameter_count = function->shared()->formal_parameter_count() + 1;
unsigned input_frame_size = input_->GetFrameSize();
unsigned alignment_state_offset =
input_frame_size - parameter_count * kPointerSize -
StandardFrameConstants::kFixedFrameSize -
kPointerSize;
ASSERT(JavaScriptFrameConstants::kDynamicAlignmentStateOffset ==
JavaScriptFrameConstants::kLocal0Offset);
int32_t alignment_state = input_->GetFrameSlot(alignment_state_offset);
return (alignment_state == kAlignmentPaddingPushed);
}
#define __ masm()->
void Deoptimizer::EntryGenerator::Generate() {
GeneratePrologue();
// Save all general purpose registers before messing with them.
const int kNumberOfRegisters = Register::kNumRegisters;
const int kDoubleRegsSize = kDoubleSize *
XMMRegister::kNumAllocatableRegisters;
__ sub(esp, Immediate(kDoubleRegsSize));
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatureScope scope(masm(), SSE2);
for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i);
int offset = i * kDoubleSize;
__ movdbl(Operand(esp, offset), xmm_reg);
}
}
__ pushad();
const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize +
kDoubleRegsSize;
// Get the bailout id from the stack.
__ mov(ebx, Operand(esp, kSavedRegistersAreaSize));
// Get the address of the location in the code object if possible
// and compute the fp-to-sp delta in register edx.
if (type() == EAGER || type() == SOFT) {
__ Set(ecx, Immediate(0));
__ lea(edx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize));
} else {
__ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize));
__ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize));
}
__ sub(edx, ebp);
__ neg(edx);
// Allocate a new deoptimizer object.
__ PrepareCallCFunction(6, eax);
__ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
__ mov(Operand(esp, 0 * kPointerSize), eax); // Function.
__ mov(Operand(esp, 1 * kPointerSize), Immediate(type())); // Bailout type.
__ mov(Operand(esp, 2 * kPointerSize), ebx); // Bailout id.
__ mov(Operand(esp, 3 * kPointerSize), ecx); // Code address or 0.
__ mov(Operand(esp, 4 * kPointerSize), edx); // Fp-to-sp delta.
__ mov(Operand(esp, 5 * kPointerSize),
Immediate(ExternalReference::isolate_address(isolate())));
{
AllowExternalCallThatCantCauseGC scope(masm());
__ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6);
}
// Preserve deoptimizer object in register eax and get the input
// frame descriptor pointer.
__ mov(ebx, Operand(eax, Deoptimizer::input_offset()));
// Fill in the input registers.
for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
int offset = (i * kPointerSize) + FrameDescription::registers_offset();
__ pop(Operand(ebx, offset));
}
int double_regs_offset = FrameDescription::double_registers_offset();
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatureScope scope(masm(), SSE2);
// Fill in the double input registers.
for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
int dst_offset = i * kDoubleSize + double_regs_offset;
int src_offset = i * kDoubleSize;
__ movdbl(xmm0, Operand(esp, src_offset));
__ movdbl(Operand(ebx, dst_offset), xmm0);
}
}
// Clear FPU all exceptions.
// TODO(ulan): Find out why the TOP register is not zero here in some cases,
// and check that the generated code never deoptimizes with unbalanced stack.
__ fnclex();
// Remove the bailout id and the double registers from the stack.
if (type() == EAGER || type() == SOFT) {
__ add(esp, Immediate(kDoubleRegsSize + kPointerSize));
} else {
__ add(esp, Immediate(kDoubleRegsSize + 2 * kPointerSize));
}
// Compute a pointer to the unwinding limit in register ecx; that is
// the first stack slot not part of the input frame.
__ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
__ add(ecx, esp);
// Unwind the stack down to - but not including - the unwinding
// limit and copy the contents of the activation frame to the input
// frame description.
__ lea(edx, Operand(ebx, FrameDescription::frame_content_offset()));
Label pop_loop_header;
__ jmp(&pop_loop_header);
Label pop_loop;
__ bind(&pop_loop);
__ pop(Operand(edx, 0));
__ add(edx, Immediate(sizeof(uint32_t)));
__ bind(&pop_loop_header);
__ cmp(ecx, esp);
__ j(not_equal, &pop_loop);
// Compute the output frame in the deoptimizer.
__ push(eax);
__ PrepareCallCFunction(1, ebx);
__ mov(Operand(esp, 0 * kPointerSize), eax);
{
AllowExternalCallThatCantCauseGC scope(masm());
__ CallCFunction(
ExternalReference::compute_output_frames_function(isolate()), 1);
}
__ pop(eax);
if (type() != OSR) {
// If frame was dynamically aligned, pop padding.
Label no_padding;
__ cmp(Operand(eax, Deoptimizer::has_alignment_padding_offset()),
Immediate(0));
__ j(equal, &no_padding);
__ pop(ecx);
if (FLAG_debug_code) {
__ cmp(ecx, Immediate(kAlignmentZapValue));
__ Assert(equal, "alignment marker expected");
}
__ bind(&no_padding);
} else {
// If frame needs dynamic alignment push padding.
Label no_padding;
__ cmp(Operand(eax, Deoptimizer::has_alignment_padding_offset()),
Immediate(0));
__ j(equal, &no_padding);
__ push(Immediate(kAlignmentZapValue));
__ bind(&no_padding);
}
// Replace the current frame with the output frames.
Label outer_push_loop, inner_push_loop,
outer_loop_header, inner_loop_header;
// Outer loop state: eax = current FrameDescription**, edx = one past the
// last FrameDescription**.
__ mov(edx, Operand(eax, Deoptimizer::output_count_offset()));
__ mov(eax, Operand(eax, Deoptimizer::output_offset()));
__ lea(edx, Operand(eax, edx, times_4, 0));
__ jmp(&outer_loop_header);
__ bind(&outer_push_loop);
// Inner loop state: ebx = current FrameDescription*, ecx = loop index.
__ mov(ebx, Operand(eax, 0));
__ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
__ jmp(&inner_loop_header);
__ bind(&inner_push_loop);
__ sub(ecx, Immediate(sizeof(uint32_t)));
__ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset()));
__ bind(&inner_loop_header);
__ test(ecx, ecx);
__ j(not_zero, &inner_push_loop);
__ add(eax, Immediate(kPointerSize));
__ bind(&outer_loop_header);
__ cmp(eax, edx);
__ j(below, &outer_push_loop);
// In case of OSR or a failed STUB, we have to restore the XMM registers.
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatureScope scope(masm(), SSE2);
for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i);
int src_offset = i * kDoubleSize + double_regs_offset;
__ movdbl(xmm_reg, Operand(ebx, src_offset));
}
}
// Push state, pc, and continuation from the last output frame.
if (type() != OSR) {
__ push(Operand(ebx, FrameDescription::state_offset()));
}
__ push(Operand(ebx, FrameDescription::pc_offset()));
__ push(Operand(ebx, FrameDescription::continuation_offset()));
// Push the registers from the last output frame.
for (int i = 0; i < kNumberOfRegisters; i++) {
int offset = (i * kPointerSize) + FrameDescription::registers_offset();
__ push(Operand(ebx, offset));
}
// Restore the registers from the stack.
__ popad();
// Return to the continuation point.
__ ret(0);
}
void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
// Create a sequence of deoptimization entries.
Label done;
for (int i = 0; i < count(); i++) {
int start = masm()->pc_offset();
USE(start);
__ push_imm32(i);
__ jmp(&done);
ASSERT(masm()->pc_offset() - start == table_entry_size_);
}
__ bind(&done);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_IA32