6aed526733
than 64 distinct InstanceTypes. We are hitting that boundary, so this check needs to be more comprehensive. In fact, two bits need to be tested: verify that kNotStringTag isn't set, and that kInternalizedTag is set. BUG= R=yangguo@chromium.org Review URL: https://codereview.chromium.org/17895002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@15358 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
6188 lines
177 KiB
C++
6188 lines
177 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Review notes:
|
|
//
|
|
// - The use of macros in these inline functions may seem superfluous
|
|
// but it is absolutely needed to make sure gcc generates optimal
|
|
// code. gcc is not happy when attempting to inline too deep.
|
|
//
|
|
|
|
#ifndef V8_OBJECTS_INL_H_
|
|
#define V8_OBJECTS_INL_H_
|
|
|
|
#include "elements.h"
|
|
#include "objects.h"
|
|
#include "contexts.h"
|
|
#include "conversions-inl.h"
|
|
#include "heap.h"
|
|
#include "isolate.h"
|
|
#include "property.h"
|
|
#include "spaces.h"
|
|
#include "store-buffer.h"
|
|
#include "v8memory.h"
|
|
#include "factory.h"
|
|
#include "incremental-marking.h"
|
|
#include "transitions-inl.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
PropertyDetails::PropertyDetails(Smi* smi) {
|
|
value_ = smi->value();
|
|
}
|
|
|
|
|
|
Smi* PropertyDetails::AsSmi() {
|
|
// Ensure the upper 2 bits have the same value by sign extending it. This is
|
|
// necessary to be able to use the 31st bit of the property details.
|
|
int value = value_ << 1;
|
|
return Smi::FromInt(value >> 1);
|
|
}
|
|
|
|
|
|
PropertyDetails PropertyDetails::AsDeleted() {
|
|
Smi* smi = Smi::FromInt(value_ | DeletedField::encode(1));
|
|
return PropertyDetails(smi);
|
|
}
|
|
|
|
|
|
#define TYPE_CHECKER(type, instancetype) \
|
|
bool Object::Is##type() { \
|
|
return Object::IsHeapObject() && \
|
|
HeapObject::cast(this)->map()->instance_type() == instancetype; \
|
|
}
|
|
|
|
|
|
#define CAST_ACCESSOR(type) \
|
|
type* type::cast(Object* object) { \
|
|
ASSERT(object->Is##type()); \
|
|
return reinterpret_cast<type*>(object); \
|
|
}
|
|
|
|
|
|
#define INT_ACCESSORS(holder, name, offset) \
|
|
int holder::name() { return READ_INT_FIELD(this, offset); } \
|
|
void holder::set_##name(int value) { WRITE_INT_FIELD(this, offset, value); }
|
|
|
|
|
|
#define ACCESSORS(holder, name, type, offset) \
|
|
type* holder::name() { return type::cast(READ_FIELD(this, offset)); } \
|
|
void holder::set_##name(type* value, WriteBarrierMode mode) { \
|
|
WRITE_FIELD(this, offset, value); \
|
|
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); \
|
|
}
|
|
|
|
|
|
// Getter that returns a tagged Smi and setter that writes a tagged Smi.
|
|
#define ACCESSORS_TO_SMI(holder, name, offset) \
|
|
Smi* holder::name() { return Smi::cast(READ_FIELD(this, offset)); } \
|
|
void holder::set_##name(Smi* value, WriteBarrierMode mode) { \
|
|
WRITE_FIELD(this, offset, value); \
|
|
}
|
|
|
|
|
|
// Getter that returns a Smi as an int and writes an int as a Smi.
|
|
#define SMI_ACCESSORS(holder, name, offset) \
|
|
int holder::name() { \
|
|
Object* value = READ_FIELD(this, offset); \
|
|
return Smi::cast(value)->value(); \
|
|
} \
|
|
void holder::set_##name(int value) { \
|
|
WRITE_FIELD(this, offset, Smi::FromInt(value)); \
|
|
}
|
|
|
|
|
|
#define BOOL_GETTER(holder, field, name, offset) \
|
|
bool holder::name() { \
|
|
return BooleanBit::get(field(), offset); \
|
|
} \
|
|
|
|
|
|
#define BOOL_ACCESSORS(holder, field, name, offset) \
|
|
bool holder::name() { \
|
|
return BooleanBit::get(field(), offset); \
|
|
} \
|
|
void holder::set_##name(bool value) { \
|
|
set_##field(BooleanBit::set(field(), offset, value)); \
|
|
}
|
|
|
|
|
|
bool Object::IsFixedArrayBase() {
|
|
return IsFixedArray() || IsFixedDoubleArray();
|
|
}
|
|
|
|
|
|
// External objects are not extensible, so the map check is enough.
|
|
bool Object::IsExternal() {
|
|
return Object::IsHeapObject() &&
|
|
HeapObject::cast(this)->map() ==
|
|
HeapObject::cast(this)->GetHeap()->external_map();
|
|
}
|
|
|
|
|
|
bool Object::IsAccessorInfo() {
|
|
return IsExecutableAccessorInfo() || IsDeclaredAccessorInfo();
|
|
}
|
|
|
|
|
|
bool Object::IsInstanceOf(FunctionTemplateInfo* expected) {
|
|
// There is a constraint on the object; check.
|
|
if (!this->IsJSObject()) return false;
|
|
// Fetch the constructor function of the object.
|
|
Object* cons_obj = JSObject::cast(this)->map()->constructor();
|
|
if (!cons_obj->IsJSFunction()) return false;
|
|
JSFunction* fun = JSFunction::cast(cons_obj);
|
|
// Iterate through the chain of inheriting function templates to
|
|
// see if the required one occurs.
|
|
for (Object* type = fun->shared()->function_data();
|
|
type->IsFunctionTemplateInfo();
|
|
type = FunctionTemplateInfo::cast(type)->parent_template()) {
|
|
if (type == expected) return true;
|
|
}
|
|
// Didn't find the required type in the inheritance chain.
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Object::IsSmi() {
|
|
return HAS_SMI_TAG(this);
|
|
}
|
|
|
|
|
|
bool Object::IsHeapObject() {
|
|
return Internals::HasHeapObjectTag(this);
|
|
}
|
|
|
|
|
|
bool Object::NonFailureIsHeapObject() {
|
|
ASSERT(!this->IsFailure());
|
|
return (reinterpret_cast<intptr_t>(this) & kSmiTagMask) != 0;
|
|
}
|
|
|
|
|
|
TYPE_CHECKER(HeapNumber, HEAP_NUMBER_TYPE)
|
|
TYPE_CHECKER(Symbol, SYMBOL_TYPE)
|
|
|
|
|
|
bool Object::IsString() {
|
|
return Object::IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->instance_type() < FIRST_NONSTRING_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsName() {
|
|
return IsString() || IsSymbol();
|
|
}
|
|
|
|
|
|
bool Object::IsUniqueName() {
|
|
return IsInternalizedString() || IsSymbol();
|
|
}
|
|
|
|
|
|
bool Object::IsSpecObject() {
|
|
return Object::IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->instance_type() >= FIRST_SPEC_OBJECT_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsSpecFunction() {
|
|
if (!Object::IsHeapObject()) return false;
|
|
InstanceType type = HeapObject::cast(this)->map()->instance_type();
|
|
return type == JS_FUNCTION_TYPE || type == JS_FUNCTION_PROXY_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsInternalizedString() {
|
|
if (!this->IsHeapObject()) return false;
|
|
uint32_t type = HeapObject::cast(this)->map()->instance_type();
|
|
STATIC_ASSERT(kInternalizedTag != 0);
|
|
return (type & (kIsNotStringMask | kIsInternalizedMask)) ==
|
|
(kInternalizedTag | kStringTag);
|
|
}
|
|
|
|
|
|
bool Object::IsConsString() {
|
|
if (!IsString()) return false;
|
|
return StringShape(String::cast(this)).IsCons();
|
|
}
|
|
|
|
|
|
bool Object::IsSlicedString() {
|
|
if (!IsString()) return false;
|
|
return StringShape(String::cast(this)).IsSliced();
|
|
}
|
|
|
|
|
|
bool Object::IsSeqString() {
|
|
if (!IsString()) return false;
|
|
return StringShape(String::cast(this)).IsSequential();
|
|
}
|
|
|
|
|
|
bool Object::IsSeqOneByteString() {
|
|
if (!IsString()) return false;
|
|
return StringShape(String::cast(this)).IsSequential() &&
|
|
String::cast(this)->IsOneByteRepresentation();
|
|
}
|
|
|
|
|
|
bool Object::IsSeqTwoByteString() {
|
|
if (!IsString()) return false;
|
|
return StringShape(String::cast(this)).IsSequential() &&
|
|
String::cast(this)->IsTwoByteRepresentation();
|
|
}
|
|
|
|
|
|
bool Object::IsExternalString() {
|
|
if (!IsString()) return false;
|
|
return StringShape(String::cast(this)).IsExternal();
|
|
}
|
|
|
|
|
|
bool Object::IsExternalAsciiString() {
|
|
if (!IsString()) return false;
|
|
return StringShape(String::cast(this)).IsExternal() &&
|
|
String::cast(this)->IsOneByteRepresentation();
|
|
}
|
|
|
|
|
|
bool Object::IsExternalTwoByteString() {
|
|
if (!IsString()) return false;
|
|
return StringShape(String::cast(this)).IsExternal() &&
|
|
String::cast(this)->IsTwoByteRepresentation();
|
|
}
|
|
|
|
bool Object::HasValidElements() {
|
|
// Dictionary is covered under FixedArray.
|
|
return IsFixedArray() || IsFixedDoubleArray() || IsExternalArray();
|
|
}
|
|
|
|
|
|
MaybeObject* Object::AllocateNewStorageFor(Heap* heap,
|
|
Representation representation,
|
|
PretenureFlag tenure) {
|
|
if (!FLAG_track_double_fields) return this;
|
|
if (!representation.IsDouble()) return this;
|
|
if (IsUninitialized()) {
|
|
return heap->AllocateHeapNumber(0, tenure);
|
|
}
|
|
return heap->AllocateHeapNumber(Number(), tenure);
|
|
}
|
|
|
|
|
|
StringShape::StringShape(String* str)
|
|
: type_(str->map()->instance_type()) {
|
|
set_valid();
|
|
ASSERT((type_ & kIsNotStringMask) == kStringTag);
|
|
}
|
|
|
|
|
|
StringShape::StringShape(Map* map)
|
|
: type_(map->instance_type()) {
|
|
set_valid();
|
|
ASSERT((type_ & kIsNotStringMask) == kStringTag);
|
|
}
|
|
|
|
|
|
StringShape::StringShape(InstanceType t)
|
|
: type_(static_cast<uint32_t>(t)) {
|
|
set_valid();
|
|
ASSERT((type_ & kIsNotStringMask) == kStringTag);
|
|
}
|
|
|
|
|
|
bool StringShape::IsInternalized() {
|
|
ASSERT(valid());
|
|
STATIC_ASSERT(kInternalizedTag != 0);
|
|
return (type_ & (kIsNotStringMask | kIsInternalizedMask)) ==
|
|
(kInternalizedTag | kStringTag);
|
|
}
|
|
|
|
|
|
bool String::IsOneByteRepresentation() {
|
|
uint32_t type = map()->instance_type();
|
|
return (type & kStringEncodingMask) == kOneByteStringTag;
|
|
}
|
|
|
|
|
|
bool String::IsTwoByteRepresentation() {
|
|
uint32_t type = map()->instance_type();
|
|
return (type & kStringEncodingMask) == kTwoByteStringTag;
|
|
}
|
|
|
|
|
|
bool String::IsOneByteRepresentationUnderneath() {
|
|
uint32_t type = map()->instance_type();
|
|
STATIC_ASSERT(kIsIndirectStringTag != 0);
|
|
STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0);
|
|
ASSERT(IsFlat());
|
|
switch (type & (kIsIndirectStringMask | kStringEncodingMask)) {
|
|
case kOneByteStringTag:
|
|
return true;
|
|
case kTwoByteStringTag:
|
|
return false;
|
|
default: // Cons or sliced string. Need to go deeper.
|
|
return GetUnderlying()->IsOneByteRepresentation();
|
|
}
|
|
}
|
|
|
|
|
|
bool String::IsTwoByteRepresentationUnderneath() {
|
|
uint32_t type = map()->instance_type();
|
|
STATIC_ASSERT(kIsIndirectStringTag != 0);
|
|
STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0);
|
|
ASSERT(IsFlat());
|
|
switch (type & (kIsIndirectStringMask | kStringEncodingMask)) {
|
|
case kOneByteStringTag:
|
|
return false;
|
|
case kTwoByteStringTag:
|
|
return true;
|
|
default: // Cons or sliced string. Need to go deeper.
|
|
return GetUnderlying()->IsTwoByteRepresentation();
|
|
}
|
|
}
|
|
|
|
|
|
bool String::HasOnlyOneByteChars() {
|
|
uint32_t type = map()->instance_type();
|
|
return (type & kOneByteDataHintMask) == kOneByteDataHintTag ||
|
|
IsOneByteRepresentation();
|
|
}
|
|
|
|
|
|
bool StringShape::IsCons() {
|
|
return (type_ & kStringRepresentationMask) == kConsStringTag;
|
|
}
|
|
|
|
|
|
bool StringShape::IsSliced() {
|
|
return (type_ & kStringRepresentationMask) == kSlicedStringTag;
|
|
}
|
|
|
|
|
|
bool StringShape::IsIndirect() {
|
|
return (type_ & kIsIndirectStringMask) == kIsIndirectStringTag;
|
|
}
|
|
|
|
|
|
bool StringShape::IsExternal() {
|
|
return (type_ & kStringRepresentationMask) == kExternalStringTag;
|
|
}
|
|
|
|
|
|
bool StringShape::IsSequential() {
|
|
return (type_ & kStringRepresentationMask) == kSeqStringTag;
|
|
}
|
|
|
|
|
|
StringRepresentationTag StringShape::representation_tag() {
|
|
uint32_t tag = (type_ & kStringRepresentationMask);
|
|
return static_cast<StringRepresentationTag>(tag);
|
|
}
|
|
|
|
|
|
uint32_t StringShape::encoding_tag() {
|
|
return type_ & kStringEncodingMask;
|
|
}
|
|
|
|
|
|
uint32_t StringShape::full_representation_tag() {
|
|
return (type_ & (kStringRepresentationMask | kStringEncodingMask));
|
|
}
|
|
|
|
|
|
STATIC_CHECK((kStringRepresentationMask | kStringEncodingMask) ==
|
|
Internals::kFullStringRepresentationMask);
|
|
|
|
STATIC_CHECK(static_cast<uint32_t>(kStringEncodingMask) ==
|
|
Internals::kStringEncodingMask);
|
|
|
|
|
|
bool StringShape::IsSequentialAscii() {
|
|
return full_representation_tag() == (kSeqStringTag | kOneByteStringTag);
|
|
}
|
|
|
|
|
|
bool StringShape::IsSequentialTwoByte() {
|
|
return full_representation_tag() == (kSeqStringTag | kTwoByteStringTag);
|
|
}
|
|
|
|
|
|
bool StringShape::IsExternalAscii() {
|
|
return full_representation_tag() == (kExternalStringTag | kOneByteStringTag);
|
|
}
|
|
|
|
|
|
STATIC_CHECK((kExternalStringTag | kOneByteStringTag) ==
|
|
Internals::kExternalAsciiRepresentationTag);
|
|
|
|
STATIC_CHECK(v8::String::ASCII_ENCODING == kOneByteStringTag);
|
|
|
|
|
|
bool StringShape::IsExternalTwoByte() {
|
|
return full_representation_tag() == (kExternalStringTag | kTwoByteStringTag);
|
|
}
|
|
|
|
|
|
STATIC_CHECK((kExternalStringTag | kTwoByteStringTag) ==
|
|
Internals::kExternalTwoByteRepresentationTag);
|
|
|
|
STATIC_CHECK(v8::String::TWO_BYTE_ENCODING == kTwoByteStringTag);
|
|
|
|
uc32 FlatStringReader::Get(int index) {
|
|
ASSERT(0 <= index && index <= length_);
|
|
if (is_ascii_) {
|
|
return static_cast<const byte*>(start_)[index];
|
|
} else {
|
|
return static_cast<const uc16*>(start_)[index];
|
|
}
|
|
}
|
|
|
|
|
|
bool Object::IsNumber() {
|
|
return IsSmi() || IsHeapNumber();
|
|
}
|
|
|
|
|
|
TYPE_CHECKER(ByteArray, BYTE_ARRAY_TYPE)
|
|
TYPE_CHECKER(FreeSpace, FREE_SPACE_TYPE)
|
|
|
|
|
|
bool Object::IsFiller() {
|
|
if (!Object::IsHeapObject()) return false;
|
|
InstanceType instance_type = HeapObject::cast(this)->map()->instance_type();
|
|
return instance_type == FREE_SPACE_TYPE || instance_type == FILLER_TYPE;
|
|
}
|
|
|
|
|
|
TYPE_CHECKER(ExternalPixelArray, EXTERNAL_PIXEL_ARRAY_TYPE)
|
|
|
|
|
|
bool Object::IsExternalArray() {
|
|
if (!Object::IsHeapObject())
|
|
return false;
|
|
InstanceType instance_type =
|
|
HeapObject::cast(this)->map()->instance_type();
|
|
return (instance_type >= FIRST_EXTERNAL_ARRAY_TYPE &&
|
|
instance_type <= LAST_EXTERNAL_ARRAY_TYPE);
|
|
}
|
|
|
|
|
|
TYPE_CHECKER(ExternalByteArray, EXTERNAL_BYTE_ARRAY_TYPE)
|
|
TYPE_CHECKER(ExternalUnsignedByteArray, EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE)
|
|
TYPE_CHECKER(ExternalShortArray, EXTERNAL_SHORT_ARRAY_TYPE)
|
|
TYPE_CHECKER(ExternalUnsignedShortArray, EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE)
|
|
TYPE_CHECKER(ExternalIntArray, EXTERNAL_INT_ARRAY_TYPE)
|
|
TYPE_CHECKER(ExternalUnsignedIntArray, EXTERNAL_UNSIGNED_INT_ARRAY_TYPE)
|
|
TYPE_CHECKER(ExternalFloatArray, EXTERNAL_FLOAT_ARRAY_TYPE)
|
|
TYPE_CHECKER(ExternalDoubleArray, EXTERNAL_DOUBLE_ARRAY_TYPE)
|
|
|
|
|
|
bool MaybeObject::IsFailure() {
|
|
return HAS_FAILURE_TAG(this);
|
|
}
|
|
|
|
|
|
bool MaybeObject::IsRetryAfterGC() {
|
|
return HAS_FAILURE_TAG(this)
|
|
&& Failure::cast(this)->type() == Failure::RETRY_AFTER_GC;
|
|
}
|
|
|
|
|
|
bool MaybeObject::IsOutOfMemory() {
|
|
return HAS_FAILURE_TAG(this)
|
|
&& Failure::cast(this)->IsOutOfMemoryException();
|
|
}
|
|
|
|
|
|
bool MaybeObject::IsException() {
|
|
return this == Failure::Exception();
|
|
}
|
|
|
|
|
|
bool MaybeObject::IsTheHole() {
|
|
return !IsFailure() && ToObjectUnchecked()->IsTheHole();
|
|
}
|
|
|
|
|
|
bool MaybeObject::IsUninitialized() {
|
|
return !IsFailure() && ToObjectUnchecked()->IsUninitialized();
|
|
}
|
|
|
|
|
|
Failure* Failure::cast(MaybeObject* obj) {
|
|
ASSERT(HAS_FAILURE_TAG(obj));
|
|
return reinterpret_cast<Failure*>(obj);
|
|
}
|
|
|
|
|
|
bool Object::IsJSReceiver() {
|
|
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
|
|
return IsHeapObject() &&
|
|
HeapObject::cast(this)->map()->instance_type() >= FIRST_JS_RECEIVER_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsJSObject() {
|
|
STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
|
|
return IsHeapObject() &&
|
|
HeapObject::cast(this)->map()->instance_type() >= FIRST_JS_OBJECT_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsJSProxy() {
|
|
if (!Object::IsHeapObject()) return false;
|
|
InstanceType type = HeapObject::cast(this)->map()->instance_type();
|
|
return FIRST_JS_PROXY_TYPE <= type && type <= LAST_JS_PROXY_TYPE;
|
|
}
|
|
|
|
|
|
TYPE_CHECKER(JSFunctionProxy, JS_FUNCTION_PROXY_TYPE)
|
|
TYPE_CHECKER(JSSet, JS_SET_TYPE)
|
|
TYPE_CHECKER(JSMap, JS_MAP_TYPE)
|
|
TYPE_CHECKER(JSWeakMap, JS_WEAK_MAP_TYPE)
|
|
TYPE_CHECKER(JSContextExtensionObject, JS_CONTEXT_EXTENSION_OBJECT_TYPE)
|
|
TYPE_CHECKER(Map, MAP_TYPE)
|
|
TYPE_CHECKER(FixedArray, FIXED_ARRAY_TYPE)
|
|
TYPE_CHECKER(FixedDoubleArray, FIXED_DOUBLE_ARRAY_TYPE)
|
|
|
|
|
|
bool Object::IsDescriptorArray() {
|
|
return IsFixedArray();
|
|
}
|
|
|
|
|
|
bool Object::IsTransitionArray() {
|
|
return IsFixedArray();
|
|
}
|
|
|
|
|
|
bool Object::IsDeoptimizationInputData() {
|
|
// Must be a fixed array.
|
|
if (!IsFixedArray()) return false;
|
|
|
|
// There's no sure way to detect the difference between a fixed array and
|
|
// a deoptimization data array. Since this is used for asserts we can
|
|
// check that the length is zero or else the fixed size plus a multiple of
|
|
// the entry size.
|
|
int length = FixedArray::cast(this)->length();
|
|
if (length == 0) return true;
|
|
|
|
length -= DeoptimizationInputData::kFirstDeoptEntryIndex;
|
|
return length >= 0 &&
|
|
length % DeoptimizationInputData::kDeoptEntrySize == 0;
|
|
}
|
|
|
|
|
|
bool Object::IsDeoptimizationOutputData() {
|
|
if (!IsFixedArray()) return false;
|
|
// There's actually no way to see the difference between a fixed array and
|
|
// a deoptimization data array. Since this is used for asserts we can check
|
|
// that the length is plausible though.
|
|
if (FixedArray::cast(this)->length() % 2 != 0) return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Object::IsDependentCode() {
|
|
if (!IsFixedArray()) return false;
|
|
// There's actually no way to see the difference between a fixed array and
|
|
// a dependent codes array.
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Object::IsTypeFeedbackCells() {
|
|
if (!IsFixedArray()) return false;
|
|
// There's actually no way to see the difference between a fixed array and
|
|
// a cache cells array. Since this is used for asserts we can check that
|
|
// the length is plausible though.
|
|
if (FixedArray::cast(this)->length() % 2 != 0) return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Object::IsContext() {
|
|
if (!Object::IsHeapObject()) return false;
|
|
Map* map = HeapObject::cast(this)->map();
|
|
Heap* heap = map->GetHeap();
|
|
return (map == heap->function_context_map() ||
|
|
map == heap->catch_context_map() ||
|
|
map == heap->with_context_map() ||
|
|
map == heap->native_context_map() ||
|
|
map == heap->block_context_map() ||
|
|
map == heap->module_context_map() ||
|
|
map == heap->global_context_map());
|
|
}
|
|
|
|
|
|
bool Object::IsNativeContext() {
|
|
return Object::IsHeapObject() &&
|
|
HeapObject::cast(this)->map() ==
|
|
HeapObject::cast(this)->GetHeap()->native_context_map();
|
|
}
|
|
|
|
|
|
bool Object::IsScopeInfo() {
|
|
return Object::IsHeapObject() &&
|
|
HeapObject::cast(this)->map() ==
|
|
HeapObject::cast(this)->GetHeap()->scope_info_map();
|
|
}
|
|
|
|
|
|
TYPE_CHECKER(JSFunction, JS_FUNCTION_TYPE)
|
|
|
|
|
|
template <> inline bool Is<JSFunction>(Object* obj) {
|
|
return obj->IsJSFunction();
|
|
}
|
|
|
|
|
|
TYPE_CHECKER(Code, CODE_TYPE)
|
|
TYPE_CHECKER(Oddball, ODDBALL_TYPE)
|
|
TYPE_CHECKER(Cell, CELL_TYPE)
|
|
TYPE_CHECKER(PropertyCell, PROPERTY_CELL_TYPE)
|
|
TYPE_CHECKER(SharedFunctionInfo, SHARED_FUNCTION_INFO_TYPE)
|
|
TYPE_CHECKER(JSGeneratorObject, JS_GENERATOR_OBJECT_TYPE)
|
|
TYPE_CHECKER(JSModule, JS_MODULE_TYPE)
|
|
TYPE_CHECKER(JSValue, JS_VALUE_TYPE)
|
|
TYPE_CHECKER(JSDate, JS_DATE_TYPE)
|
|
TYPE_CHECKER(JSMessageObject, JS_MESSAGE_OBJECT_TYPE)
|
|
|
|
|
|
bool Object::IsStringWrapper() {
|
|
return IsJSValue() && JSValue::cast(this)->value()->IsString();
|
|
}
|
|
|
|
|
|
TYPE_CHECKER(Foreign, FOREIGN_TYPE)
|
|
|
|
|
|
bool Object::IsBoolean() {
|
|
return IsOddball() &&
|
|
((Oddball::cast(this)->kind() & Oddball::kNotBooleanMask) == 0);
|
|
}
|
|
|
|
|
|
TYPE_CHECKER(JSArray, JS_ARRAY_TYPE)
|
|
TYPE_CHECKER(JSArrayBuffer, JS_ARRAY_BUFFER_TYPE)
|
|
TYPE_CHECKER(JSTypedArray, JS_TYPED_ARRAY_TYPE)
|
|
TYPE_CHECKER(JSDataView, JS_DATA_VIEW_TYPE)
|
|
|
|
|
|
bool Object::IsJSArrayBufferView() {
|
|
return IsJSDataView() || IsJSTypedArray();
|
|
}
|
|
|
|
|
|
TYPE_CHECKER(JSRegExp, JS_REGEXP_TYPE)
|
|
|
|
|
|
template <> inline bool Is<JSArray>(Object* obj) {
|
|
return obj->IsJSArray();
|
|
}
|
|
|
|
|
|
bool Object::IsHashTable() {
|
|
return Object::IsHeapObject() &&
|
|
HeapObject::cast(this)->map() ==
|
|
HeapObject::cast(this)->GetHeap()->hash_table_map();
|
|
}
|
|
|
|
|
|
bool Object::IsDictionary() {
|
|
return IsHashTable() &&
|
|
this != HeapObject::cast(this)->GetHeap()->string_table();
|
|
}
|
|
|
|
|
|
bool Object::IsStringTable() {
|
|
return IsHashTable() &&
|
|
this == HeapObject::cast(this)->GetHeap()->raw_unchecked_string_table();
|
|
}
|
|
|
|
|
|
bool Object::IsJSFunctionResultCache() {
|
|
if (!IsFixedArray()) return false;
|
|
FixedArray* self = FixedArray::cast(this);
|
|
int length = self->length();
|
|
if (length < JSFunctionResultCache::kEntriesIndex) return false;
|
|
if ((length - JSFunctionResultCache::kEntriesIndex)
|
|
% JSFunctionResultCache::kEntrySize != 0) {
|
|
return false;
|
|
}
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap) {
|
|
reinterpret_cast<JSFunctionResultCache*>(this)->
|
|
JSFunctionResultCacheVerify();
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Object::IsNormalizedMapCache() {
|
|
if (!IsFixedArray()) return false;
|
|
if (FixedArray::cast(this)->length() != NormalizedMapCache::kEntries) {
|
|
return false;
|
|
}
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap) {
|
|
reinterpret_cast<NormalizedMapCache*>(this)->NormalizedMapCacheVerify();
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Object::IsCompilationCacheTable() {
|
|
return IsHashTable();
|
|
}
|
|
|
|
|
|
bool Object::IsCodeCacheHashTable() {
|
|
return IsHashTable();
|
|
}
|
|
|
|
|
|
bool Object::IsPolymorphicCodeCacheHashTable() {
|
|
return IsHashTable();
|
|
}
|
|
|
|
|
|
bool Object::IsMapCache() {
|
|
return IsHashTable();
|
|
}
|
|
|
|
|
|
bool Object::IsObjectHashTable() {
|
|
return IsHashTable();
|
|
}
|
|
|
|
|
|
bool Object::IsPrimitive() {
|
|
return IsOddball() || IsNumber() || IsString();
|
|
}
|
|
|
|
|
|
bool Object::IsJSGlobalProxy() {
|
|
bool result = IsHeapObject() &&
|
|
(HeapObject::cast(this)->map()->instance_type() ==
|
|
JS_GLOBAL_PROXY_TYPE);
|
|
ASSERT(!result || IsAccessCheckNeeded());
|
|
return result;
|
|
}
|
|
|
|
|
|
bool Object::IsGlobalObject() {
|
|
if (!IsHeapObject()) return false;
|
|
|
|
InstanceType type = HeapObject::cast(this)->map()->instance_type();
|
|
return type == JS_GLOBAL_OBJECT_TYPE ||
|
|
type == JS_BUILTINS_OBJECT_TYPE;
|
|
}
|
|
|
|
|
|
TYPE_CHECKER(JSGlobalObject, JS_GLOBAL_OBJECT_TYPE)
|
|
TYPE_CHECKER(JSBuiltinsObject, JS_BUILTINS_OBJECT_TYPE)
|
|
|
|
|
|
bool Object::IsUndetectableObject() {
|
|
return IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->is_undetectable();
|
|
}
|
|
|
|
|
|
bool Object::IsAccessCheckNeeded() {
|
|
return IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->is_access_check_needed();
|
|
}
|
|
|
|
|
|
bool Object::IsStruct() {
|
|
if (!IsHeapObject()) return false;
|
|
switch (HeapObject::cast(this)->map()->instance_type()) {
|
|
#define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE: return true;
|
|
STRUCT_LIST(MAKE_STRUCT_CASE)
|
|
#undef MAKE_STRUCT_CASE
|
|
default: return false;
|
|
}
|
|
}
|
|
|
|
|
|
#define MAKE_STRUCT_PREDICATE(NAME, Name, name) \
|
|
bool Object::Is##Name() { \
|
|
return Object::IsHeapObject() \
|
|
&& HeapObject::cast(this)->map()->instance_type() == NAME##_TYPE; \
|
|
}
|
|
STRUCT_LIST(MAKE_STRUCT_PREDICATE)
|
|
#undef MAKE_STRUCT_PREDICATE
|
|
|
|
|
|
bool Object::IsUndefined() {
|
|
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kUndefined;
|
|
}
|
|
|
|
|
|
bool Object::IsNull() {
|
|
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kNull;
|
|
}
|
|
|
|
|
|
bool Object::IsTheHole() {
|
|
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTheHole;
|
|
}
|
|
|
|
|
|
bool Object::IsUninitialized() {
|
|
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kUninitialized;
|
|
}
|
|
|
|
|
|
bool Object::IsTrue() {
|
|
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTrue;
|
|
}
|
|
|
|
|
|
bool Object::IsFalse() {
|
|
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kFalse;
|
|
}
|
|
|
|
|
|
bool Object::IsArgumentsMarker() {
|
|
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kArgumentMarker;
|
|
}
|
|
|
|
|
|
double Object::Number() {
|
|
ASSERT(IsNumber());
|
|
return IsSmi()
|
|
? static_cast<double>(reinterpret_cast<Smi*>(this)->value())
|
|
: reinterpret_cast<HeapNumber*>(this)->value();
|
|
}
|
|
|
|
|
|
bool Object::IsNaN() {
|
|
return this->IsHeapNumber() && std::isnan(HeapNumber::cast(this)->value());
|
|
}
|
|
|
|
|
|
MaybeObject* Object::ToSmi() {
|
|
if (IsSmi()) return this;
|
|
if (IsHeapNumber()) {
|
|
double value = HeapNumber::cast(this)->value();
|
|
int int_value = FastD2I(value);
|
|
if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
|
|
return Smi::FromInt(int_value);
|
|
}
|
|
}
|
|
return Failure::Exception();
|
|
}
|
|
|
|
|
|
bool Object::HasSpecificClassOf(String* name) {
|
|
return this->IsJSObject() && (JSObject::cast(this)->class_name() == name);
|
|
}
|
|
|
|
|
|
MaybeObject* Object::GetElement(uint32_t index) {
|
|
// GetElement can trigger a getter which can cause allocation.
|
|
// This was not always the case. This ASSERT is here to catch
|
|
// leftover incorrect uses.
|
|
ASSERT(AllowHeapAllocation::IsAllowed());
|
|
return GetElementWithReceiver(this, index);
|
|
}
|
|
|
|
|
|
Object* Object::GetElementNoExceptionThrown(uint32_t index) {
|
|
MaybeObject* maybe = GetElementWithReceiver(this, index);
|
|
ASSERT(!maybe->IsFailure());
|
|
Object* result = NULL; // Initialization to please compiler.
|
|
maybe->ToObject(&result);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Object::GetProperty(Name* key) {
|
|
PropertyAttributes attributes;
|
|
return GetPropertyWithReceiver(this, key, &attributes);
|
|
}
|
|
|
|
|
|
MaybeObject* Object::GetProperty(Name* key, PropertyAttributes* attributes) {
|
|
return GetPropertyWithReceiver(this, key, attributes);
|
|
}
|
|
|
|
|
|
#define FIELD_ADDR(p, offset) \
|
|
(reinterpret_cast<byte*>(p) + offset - kHeapObjectTag)
|
|
|
|
#define READ_FIELD(p, offset) \
|
|
(*reinterpret_cast<Object**>(FIELD_ADDR(p, offset)))
|
|
|
|
#define WRITE_FIELD(p, offset, value) \
|
|
(*reinterpret_cast<Object**>(FIELD_ADDR(p, offset)) = value)
|
|
|
|
#define WRITE_BARRIER(heap, object, offset, value) \
|
|
heap->incremental_marking()->RecordWrite( \
|
|
object, HeapObject::RawField(object, offset), value); \
|
|
if (heap->InNewSpace(value)) { \
|
|
heap->RecordWrite(object->address(), offset); \
|
|
}
|
|
|
|
#define CONDITIONAL_WRITE_BARRIER(heap, object, offset, value, mode) \
|
|
if (mode == UPDATE_WRITE_BARRIER) { \
|
|
heap->incremental_marking()->RecordWrite( \
|
|
object, HeapObject::RawField(object, offset), value); \
|
|
if (heap->InNewSpace(value)) { \
|
|
heap->RecordWrite(object->address(), offset); \
|
|
} \
|
|
}
|
|
|
|
#ifndef V8_TARGET_ARCH_MIPS
|
|
#define READ_DOUBLE_FIELD(p, offset) \
|
|
(*reinterpret_cast<double*>(FIELD_ADDR(p, offset)))
|
|
#else // V8_TARGET_ARCH_MIPS
|
|
// Prevent gcc from using load-double (mips ldc1) on (possibly)
|
|
// non-64-bit aligned HeapNumber::value.
|
|
static inline double read_double_field(void* p, int offset) {
|
|
union conversion {
|
|
double d;
|
|
uint32_t u[2];
|
|
} c;
|
|
c.u[0] = (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)));
|
|
c.u[1] = (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset + 4)));
|
|
return c.d;
|
|
}
|
|
#define READ_DOUBLE_FIELD(p, offset) read_double_field(p, offset)
|
|
#endif // V8_TARGET_ARCH_MIPS
|
|
|
|
#ifndef V8_TARGET_ARCH_MIPS
|
|
#define WRITE_DOUBLE_FIELD(p, offset, value) \
|
|
(*reinterpret_cast<double*>(FIELD_ADDR(p, offset)) = value)
|
|
#else // V8_TARGET_ARCH_MIPS
|
|
// Prevent gcc from using store-double (mips sdc1) on (possibly)
|
|
// non-64-bit aligned HeapNumber::value.
|
|
static inline void write_double_field(void* p, int offset,
|
|
double value) {
|
|
union conversion {
|
|
double d;
|
|
uint32_t u[2];
|
|
} c;
|
|
c.d = value;
|
|
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset))) = c.u[0];
|
|
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset + 4))) = c.u[1];
|
|
}
|
|
#define WRITE_DOUBLE_FIELD(p, offset, value) \
|
|
write_double_field(p, offset, value)
|
|
#endif // V8_TARGET_ARCH_MIPS
|
|
|
|
|
|
#define READ_INT_FIELD(p, offset) \
|
|
(*reinterpret_cast<int*>(FIELD_ADDR(p, offset)))
|
|
|
|
#define WRITE_INT_FIELD(p, offset, value) \
|
|
(*reinterpret_cast<int*>(FIELD_ADDR(p, offset)) = value)
|
|
|
|
#define READ_INTPTR_FIELD(p, offset) \
|
|
(*reinterpret_cast<intptr_t*>(FIELD_ADDR(p, offset)))
|
|
|
|
#define WRITE_INTPTR_FIELD(p, offset, value) \
|
|
(*reinterpret_cast<intptr_t*>(FIELD_ADDR(p, offset)) = value)
|
|
|
|
#define READ_UINT32_FIELD(p, offset) \
|
|
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)))
|
|
|
|
#define WRITE_UINT32_FIELD(p, offset, value) \
|
|
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)) = value)
|
|
|
|
#define READ_INT64_FIELD(p, offset) \
|
|
(*reinterpret_cast<int64_t*>(FIELD_ADDR(p, offset)))
|
|
|
|
#define WRITE_INT64_FIELD(p, offset, value) \
|
|
(*reinterpret_cast<int64_t*>(FIELD_ADDR(p, offset)) = value)
|
|
|
|
#define READ_SHORT_FIELD(p, offset) \
|
|
(*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset)))
|
|
|
|
#define WRITE_SHORT_FIELD(p, offset, value) \
|
|
(*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset)) = value)
|
|
|
|
#define READ_BYTE_FIELD(p, offset) \
|
|
(*reinterpret_cast<byte*>(FIELD_ADDR(p, offset)))
|
|
|
|
#define WRITE_BYTE_FIELD(p, offset, value) \
|
|
(*reinterpret_cast<byte*>(FIELD_ADDR(p, offset)) = value)
|
|
|
|
|
|
Object** HeapObject::RawField(HeapObject* obj, int byte_offset) {
|
|
return &READ_FIELD(obj, byte_offset);
|
|
}
|
|
|
|
|
|
int Smi::value() {
|
|
return Internals::SmiValue(this);
|
|
}
|
|
|
|
|
|
Smi* Smi::FromInt(int value) {
|
|
ASSERT(Smi::IsValid(value));
|
|
return reinterpret_cast<Smi*>(Internals::IntToSmi(value));
|
|
}
|
|
|
|
|
|
Smi* Smi::FromIntptr(intptr_t value) {
|
|
ASSERT(Smi::IsValid(value));
|
|
int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
|
|
return reinterpret_cast<Smi*>((value << smi_shift_bits) | kSmiTag);
|
|
}
|
|
|
|
|
|
Failure::Type Failure::type() const {
|
|
return static_cast<Type>(value() & kFailureTypeTagMask);
|
|
}
|
|
|
|
|
|
bool Failure::IsInternalError() const {
|
|
return type() == INTERNAL_ERROR;
|
|
}
|
|
|
|
|
|
bool Failure::IsOutOfMemoryException() const {
|
|
return type() == OUT_OF_MEMORY_EXCEPTION;
|
|
}
|
|
|
|
|
|
AllocationSpace Failure::allocation_space() const {
|
|
ASSERT_EQ(RETRY_AFTER_GC, type());
|
|
return static_cast<AllocationSpace>((value() >> kFailureTypeTagSize)
|
|
& kSpaceTagMask);
|
|
}
|
|
|
|
|
|
Failure* Failure::InternalError() {
|
|
return Construct(INTERNAL_ERROR);
|
|
}
|
|
|
|
|
|
Failure* Failure::Exception() {
|
|
return Construct(EXCEPTION);
|
|
}
|
|
|
|
|
|
Failure* Failure::OutOfMemoryException(intptr_t value) {
|
|
return Construct(OUT_OF_MEMORY_EXCEPTION, value);
|
|
}
|
|
|
|
|
|
intptr_t Failure::value() const {
|
|
return static_cast<intptr_t>(
|
|
reinterpret_cast<uintptr_t>(this) >> kFailureTagSize);
|
|
}
|
|
|
|
|
|
Failure* Failure::RetryAfterGC() {
|
|
return RetryAfterGC(NEW_SPACE);
|
|
}
|
|
|
|
|
|
Failure* Failure::RetryAfterGC(AllocationSpace space) {
|
|
ASSERT((space & ~kSpaceTagMask) == 0);
|
|
return Construct(RETRY_AFTER_GC, space);
|
|
}
|
|
|
|
|
|
Failure* Failure::Construct(Type type, intptr_t value) {
|
|
uintptr_t info =
|
|
(static_cast<uintptr_t>(value) << kFailureTypeTagSize) | type;
|
|
ASSERT(((info << kFailureTagSize) >> kFailureTagSize) == info);
|
|
// Fill the unused bits with a pattern that's easy to recognize in crash
|
|
// dumps.
|
|
static const int kFailureMagicPattern = 0x0BAD0000;
|
|
return reinterpret_cast<Failure*>(
|
|
(info << kFailureTagSize) | kFailureTag | kFailureMagicPattern);
|
|
}
|
|
|
|
|
|
bool Smi::IsValid(intptr_t value) {
|
|
bool result = Internals::IsValidSmi(value);
|
|
ASSERT_EQ(result, value >= kMinValue && value <= kMaxValue);
|
|
return result;
|
|
}
|
|
|
|
|
|
MapWord MapWord::FromMap(Map* map) {
|
|
return MapWord(reinterpret_cast<uintptr_t>(map));
|
|
}
|
|
|
|
|
|
Map* MapWord::ToMap() {
|
|
return reinterpret_cast<Map*>(value_);
|
|
}
|
|
|
|
|
|
bool MapWord::IsForwardingAddress() {
|
|
return HAS_SMI_TAG(reinterpret_cast<Object*>(value_));
|
|
}
|
|
|
|
|
|
MapWord MapWord::FromForwardingAddress(HeapObject* object) {
|
|
Address raw = reinterpret_cast<Address>(object) - kHeapObjectTag;
|
|
return MapWord(reinterpret_cast<uintptr_t>(raw));
|
|
}
|
|
|
|
|
|
HeapObject* MapWord::ToForwardingAddress() {
|
|
ASSERT(IsForwardingAddress());
|
|
return HeapObject::FromAddress(reinterpret_cast<Address>(value_));
|
|
}
|
|
|
|
|
|
#ifdef VERIFY_HEAP
|
|
void HeapObject::VerifyObjectField(int offset) {
|
|
VerifyPointer(READ_FIELD(this, offset));
|
|
}
|
|
|
|
void HeapObject::VerifySmiField(int offset) {
|
|
CHECK(READ_FIELD(this, offset)->IsSmi());
|
|
}
|
|
#endif
|
|
|
|
|
|
Heap* HeapObject::GetHeap() {
|
|
Heap* heap =
|
|
MemoryChunk::FromAddress(reinterpret_cast<Address>(this))->heap();
|
|
ASSERT(heap != NULL);
|
|
ASSERT(heap->isolate() == Isolate::Current());
|
|
return heap;
|
|
}
|
|
|
|
|
|
Isolate* HeapObject::GetIsolate() {
|
|
return GetHeap()->isolate();
|
|
}
|
|
|
|
|
|
Map* HeapObject::map() {
|
|
return map_word().ToMap();
|
|
}
|
|
|
|
|
|
void HeapObject::set_map(Map* value) {
|
|
set_map_word(MapWord::FromMap(value));
|
|
if (value != NULL) {
|
|
// TODO(1600) We are passing NULL as a slot because maps can never be on
|
|
// evacuation candidate.
|
|
value->GetHeap()->incremental_marking()->RecordWrite(this, NULL, value);
|
|
}
|
|
}
|
|
|
|
|
|
// Unsafe accessor omitting write barrier.
|
|
void HeapObject::set_map_no_write_barrier(Map* value) {
|
|
set_map_word(MapWord::FromMap(value));
|
|
}
|
|
|
|
|
|
MapWord HeapObject::map_word() {
|
|
return MapWord(reinterpret_cast<uintptr_t>(READ_FIELD(this, kMapOffset)));
|
|
}
|
|
|
|
|
|
void HeapObject::set_map_word(MapWord map_word) {
|
|
// WRITE_FIELD does not invoke write barrier, but there is no need
|
|
// here.
|
|
WRITE_FIELD(this, kMapOffset, reinterpret_cast<Object*>(map_word.value_));
|
|
}
|
|
|
|
|
|
HeapObject* HeapObject::FromAddress(Address address) {
|
|
ASSERT_TAG_ALIGNED(address);
|
|
return reinterpret_cast<HeapObject*>(address + kHeapObjectTag);
|
|
}
|
|
|
|
|
|
Address HeapObject::address() {
|
|
return reinterpret_cast<Address>(this) - kHeapObjectTag;
|
|
}
|
|
|
|
|
|
int HeapObject::Size() {
|
|
return SizeFromMap(map());
|
|
}
|
|
|
|
|
|
void HeapObject::IteratePointers(ObjectVisitor* v, int start, int end) {
|
|
v->VisitPointers(reinterpret_cast<Object**>(FIELD_ADDR(this, start)),
|
|
reinterpret_cast<Object**>(FIELD_ADDR(this, end)));
|
|
}
|
|
|
|
|
|
void HeapObject::IteratePointer(ObjectVisitor* v, int offset) {
|
|
v->VisitPointer(reinterpret_cast<Object**>(FIELD_ADDR(this, offset)));
|
|
}
|
|
|
|
|
|
double HeapNumber::value() {
|
|
return READ_DOUBLE_FIELD(this, kValueOffset);
|
|
}
|
|
|
|
|
|
void HeapNumber::set_value(double value) {
|
|
WRITE_DOUBLE_FIELD(this, kValueOffset, value);
|
|
}
|
|
|
|
|
|
int HeapNumber::get_exponent() {
|
|
return ((READ_INT_FIELD(this, kExponentOffset) & kExponentMask) >>
|
|
kExponentShift) - kExponentBias;
|
|
}
|
|
|
|
|
|
int HeapNumber::get_sign() {
|
|
return READ_INT_FIELD(this, kExponentOffset) & kSignMask;
|
|
}
|
|
|
|
|
|
ACCESSORS(JSObject, properties, FixedArray, kPropertiesOffset)
|
|
|
|
|
|
Object** FixedArray::GetFirstElementAddress() {
|
|
return reinterpret_cast<Object**>(FIELD_ADDR(this, OffsetOfElementAt(0)));
|
|
}
|
|
|
|
|
|
bool FixedArray::ContainsOnlySmisOrHoles() {
|
|
Object* the_hole = GetHeap()->the_hole_value();
|
|
Object** current = GetFirstElementAddress();
|
|
for (int i = 0; i < length(); ++i) {
|
|
Object* candidate = *current++;
|
|
if (!candidate->IsSmi() && candidate != the_hole) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
FixedArrayBase* JSObject::elements() {
|
|
Object* array = READ_FIELD(this, kElementsOffset);
|
|
return static_cast<FixedArrayBase*>(array);
|
|
}
|
|
|
|
|
|
void JSObject::ValidateElements() {
|
|
#if DEBUG
|
|
if (FLAG_enable_slow_asserts) {
|
|
ElementsAccessor* accessor = GetElementsAccessor();
|
|
accessor->Validate(this);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
bool JSObject::ShouldTrackAllocationInfo() {
|
|
if (map()->CanTrackAllocationSite()) {
|
|
if (!IsJSArray()) {
|
|
return true;
|
|
}
|
|
|
|
return AllocationSiteInfo::GetMode(GetElementsKind()) ==
|
|
TRACK_ALLOCATION_SITE;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// Heuristic: We only need to create allocation site info if the boilerplate
|
|
// elements kind is the initial elements kind.
|
|
AllocationSiteMode AllocationSiteInfo::GetMode(
|
|
ElementsKind boilerplate_elements_kind) {
|
|
if (FLAG_track_allocation_sites &&
|
|
IsFastSmiElementsKind(boilerplate_elements_kind)) {
|
|
return TRACK_ALLOCATION_SITE;
|
|
}
|
|
|
|
return DONT_TRACK_ALLOCATION_SITE;
|
|
}
|
|
|
|
|
|
AllocationSiteMode AllocationSiteInfo::GetMode(ElementsKind from,
|
|
ElementsKind to) {
|
|
if (FLAG_track_allocation_sites &&
|
|
IsFastSmiElementsKind(from) &&
|
|
(IsFastObjectElementsKind(to) || IsFastDoubleElementsKind(to))) {
|
|
return TRACK_ALLOCATION_SITE;
|
|
}
|
|
|
|
return DONT_TRACK_ALLOCATION_SITE;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::EnsureCanContainHeapObjectElements() {
|
|
ValidateElements();
|
|
ElementsKind elements_kind = map()->elements_kind();
|
|
if (!IsFastObjectElementsKind(elements_kind)) {
|
|
if (IsFastHoleyElementsKind(elements_kind)) {
|
|
return TransitionElementsKind(FAST_HOLEY_ELEMENTS);
|
|
} else {
|
|
return TransitionElementsKind(FAST_ELEMENTS);
|
|
}
|
|
}
|
|
return this;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::EnsureCanContainElements(Object** objects,
|
|
uint32_t count,
|
|
EnsureElementsMode mode) {
|
|
ElementsKind current_kind = map()->elements_kind();
|
|
ElementsKind target_kind = current_kind;
|
|
ASSERT(mode != ALLOW_COPIED_DOUBLE_ELEMENTS);
|
|
bool is_holey = IsFastHoleyElementsKind(current_kind);
|
|
if (current_kind == FAST_HOLEY_ELEMENTS) return this;
|
|
Heap* heap = GetHeap();
|
|
Object* the_hole = heap->the_hole_value();
|
|
for (uint32_t i = 0; i < count; ++i) {
|
|
Object* current = *objects++;
|
|
if (current == the_hole) {
|
|
is_holey = true;
|
|
target_kind = GetHoleyElementsKind(target_kind);
|
|
} else if (!current->IsSmi()) {
|
|
if (mode == ALLOW_CONVERTED_DOUBLE_ELEMENTS && current->IsNumber()) {
|
|
if (IsFastSmiElementsKind(target_kind)) {
|
|
if (is_holey) {
|
|
target_kind = FAST_HOLEY_DOUBLE_ELEMENTS;
|
|
} else {
|
|
target_kind = FAST_DOUBLE_ELEMENTS;
|
|
}
|
|
}
|
|
} else if (is_holey) {
|
|
target_kind = FAST_HOLEY_ELEMENTS;
|
|
break;
|
|
} else {
|
|
target_kind = FAST_ELEMENTS;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (target_kind != current_kind) {
|
|
return TransitionElementsKind(target_kind);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::EnsureCanContainElements(FixedArrayBase* elements,
|
|
uint32_t length,
|
|
EnsureElementsMode mode) {
|
|
if (elements->map() != GetHeap()->fixed_double_array_map()) {
|
|
ASSERT(elements->map() == GetHeap()->fixed_array_map() ||
|
|
elements->map() == GetHeap()->fixed_cow_array_map());
|
|
if (mode == ALLOW_COPIED_DOUBLE_ELEMENTS) {
|
|
mode = DONT_ALLOW_DOUBLE_ELEMENTS;
|
|
}
|
|
Object** objects = FixedArray::cast(elements)->GetFirstElementAddress();
|
|
return EnsureCanContainElements(objects, length, mode);
|
|
}
|
|
|
|
ASSERT(mode == ALLOW_COPIED_DOUBLE_ELEMENTS);
|
|
if (GetElementsKind() == FAST_HOLEY_SMI_ELEMENTS) {
|
|
return TransitionElementsKind(FAST_HOLEY_DOUBLE_ELEMENTS);
|
|
} else if (GetElementsKind() == FAST_SMI_ELEMENTS) {
|
|
FixedDoubleArray* double_array = FixedDoubleArray::cast(elements);
|
|
for (uint32_t i = 0; i < length; ++i) {
|
|
if (double_array->is_the_hole(i)) {
|
|
return TransitionElementsKind(FAST_HOLEY_DOUBLE_ELEMENTS);
|
|
}
|
|
}
|
|
return TransitionElementsKind(FAST_DOUBLE_ELEMENTS);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::GetElementsTransitionMap(Isolate* isolate,
|
|
ElementsKind to_kind) {
|
|
Map* current_map = map();
|
|
ElementsKind from_kind = current_map->elements_kind();
|
|
if (from_kind == to_kind) return current_map;
|
|
|
|
Context* native_context = isolate->context()->native_context();
|
|
Object* maybe_array_maps = native_context->js_array_maps();
|
|
if (maybe_array_maps->IsFixedArray()) {
|
|
FixedArray* array_maps = FixedArray::cast(maybe_array_maps);
|
|
if (array_maps->get(from_kind) == current_map) {
|
|
Object* maybe_transitioned_map = array_maps->get(to_kind);
|
|
if (maybe_transitioned_map->IsMap()) {
|
|
return Map::cast(maybe_transitioned_map);
|
|
}
|
|
}
|
|
}
|
|
|
|
return GetElementsTransitionMapSlow(to_kind);
|
|
}
|
|
|
|
|
|
void JSObject::set_map_and_elements(Map* new_map,
|
|
FixedArrayBase* value,
|
|
WriteBarrierMode mode) {
|
|
ASSERT(value->HasValidElements());
|
|
if (new_map != NULL) {
|
|
if (mode == UPDATE_WRITE_BARRIER) {
|
|
set_map(new_map);
|
|
} else {
|
|
ASSERT(mode == SKIP_WRITE_BARRIER);
|
|
set_map_no_write_barrier(new_map);
|
|
}
|
|
}
|
|
ASSERT((map()->has_fast_smi_or_object_elements() ||
|
|
(value == GetHeap()->empty_fixed_array())) ==
|
|
(value->map() == GetHeap()->fixed_array_map() ||
|
|
value->map() == GetHeap()->fixed_cow_array_map()));
|
|
ASSERT((value == GetHeap()->empty_fixed_array()) ||
|
|
(map()->has_fast_double_elements() == value->IsFixedDoubleArray()));
|
|
WRITE_FIELD(this, kElementsOffset, value);
|
|
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kElementsOffset, value, mode);
|
|
}
|
|
|
|
|
|
void JSObject::set_elements(FixedArrayBase* value, WriteBarrierMode mode) {
|
|
set_map_and_elements(NULL, value, mode);
|
|
}
|
|
|
|
|
|
void JSObject::initialize_properties() {
|
|
ASSERT(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array()));
|
|
WRITE_FIELD(this, kPropertiesOffset, GetHeap()->empty_fixed_array());
|
|
}
|
|
|
|
|
|
void JSObject::initialize_elements() {
|
|
if (map()->has_fast_smi_or_object_elements() ||
|
|
map()->has_fast_double_elements()) {
|
|
ASSERT(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array()));
|
|
WRITE_FIELD(this, kElementsOffset, GetHeap()->empty_fixed_array());
|
|
} else if (map()->has_external_array_elements()) {
|
|
ExternalArray* empty_array = GetHeap()->EmptyExternalArrayForMap(map());
|
|
ASSERT(!GetHeap()->InNewSpace(empty_array));
|
|
WRITE_FIELD(this, kElementsOffset, empty_array);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::ResetElements() {
|
|
if (map()->is_observed()) {
|
|
// Maintain invariant that observed elements are always in dictionary mode.
|
|
SeededNumberDictionary* dictionary;
|
|
MaybeObject* maybe = SeededNumberDictionary::Allocate(GetHeap(), 0);
|
|
if (!maybe->To(&dictionary)) return maybe;
|
|
if (map() == GetHeap()->non_strict_arguments_elements_map()) {
|
|
FixedArray::cast(elements())->set(1, dictionary);
|
|
} else {
|
|
set_elements(dictionary);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
ElementsKind elements_kind = GetInitialFastElementsKind();
|
|
if (!FLAG_smi_only_arrays) {
|
|
elements_kind = FastSmiToObjectElementsKind(elements_kind);
|
|
}
|
|
MaybeObject* maybe = GetElementsTransitionMap(GetIsolate(), elements_kind);
|
|
Map* map;
|
|
if (!maybe->To(&map)) return maybe;
|
|
set_map(map);
|
|
initialize_elements();
|
|
|
|
return this;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::AllocateStorageForMap(Map* map) {
|
|
ASSERT(this->map()->inobject_properties() == map->inobject_properties());
|
|
ElementsKind obj_kind = this->map()->elements_kind();
|
|
ElementsKind map_kind = map->elements_kind();
|
|
if (map_kind != obj_kind) {
|
|
ElementsKind to_kind = map_kind;
|
|
if (IsMoreGeneralElementsKindTransition(map_kind, obj_kind) ||
|
|
IsDictionaryElementsKind(obj_kind)) {
|
|
to_kind = obj_kind;
|
|
}
|
|
MaybeObject* maybe_obj =
|
|
IsDictionaryElementsKind(to_kind) ? NormalizeElements()
|
|
: TransitionElementsKind(to_kind);
|
|
if (maybe_obj->IsFailure()) return maybe_obj;
|
|
MaybeObject* maybe_map = map->AsElementsKind(to_kind);
|
|
if (!maybe_map->To(&map)) return maybe_map;
|
|
}
|
|
int total_size =
|
|
map->NumberOfOwnDescriptors() + map->unused_property_fields();
|
|
int out_of_object = total_size - map->inobject_properties();
|
|
if (out_of_object != properties()->length()) {
|
|
FixedArray* new_properties;
|
|
MaybeObject* maybe_properties = properties()->CopySize(out_of_object);
|
|
if (!maybe_properties->To(&new_properties)) return maybe_properties;
|
|
set_properties(new_properties);
|
|
}
|
|
set_map(map);
|
|
return this;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::MigrateInstance() {
|
|
// Converting any field to the most specific type will cause the
|
|
// GeneralizeFieldRepresentation algorithm to create the most general existing
|
|
// transition that matches the object. This achieves what is needed.
|
|
return GeneralizeFieldRepresentation(0, Representation::None());
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::TryMigrateInstance() {
|
|
Map* new_map = map()->CurrentMapForDeprecated();
|
|
if (new_map == NULL) return Smi::FromInt(0);
|
|
return MigrateToMap(new_map);
|
|
}
|
|
|
|
|
|
Handle<String> JSObject::ExpectedTransitionKey(Handle<Map> map) {
|
|
DisallowHeapAllocation no_gc;
|
|
if (!map->HasTransitionArray()) return Handle<String>::null();
|
|
TransitionArray* transitions = map->transitions();
|
|
if (!transitions->IsSimpleTransition()) return Handle<String>::null();
|
|
int transition = TransitionArray::kSimpleTransitionIndex;
|
|
PropertyDetails details = transitions->GetTargetDetails(transition);
|
|
Name* name = transitions->GetKey(transition);
|
|
if (details.type() != FIELD) return Handle<String>::null();
|
|
if (details.attributes() != NONE) return Handle<String>::null();
|
|
if (!name->IsString()) return Handle<String>::null();
|
|
return Handle<String>(String::cast(name));
|
|
}
|
|
|
|
|
|
Handle<Map> JSObject::ExpectedTransitionTarget(Handle<Map> map) {
|
|
ASSERT(!ExpectedTransitionKey(map).is_null());
|
|
return Handle<Map>(map->transitions()->GetTarget(
|
|
TransitionArray::kSimpleTransitionIndex));
|
|
}
|
|
|
|
|
|
Handle<Map> JSObject::FindTransitionToField(Handle<Map> map, Handle<Name> key) {
|
|
DisallowHeapAllocation no_allocation;
|
|
if (!map->HasTransitionArray()) return Handle<Map>::null();
|
|
TransitionArray* transitions = map->transitions();
|
|
int transition = transitions->Search(*key);
|
|
if (transition == TransitionArray::kNotFound) return Handle<Map>::null();
|
|
PropertyDetails target_details = transitions->GetTargetDetails(transition);
|
|
if (target_details.type() != FIELD) return Handle<Map>::null();
|
|
if (target_details.attributes() != NONE) return Handle<Map>::null();
|
|
return Handle<Map>(transitions->GetTarget(transition));
|
|
}
|
|
|
|
|
|
int JSObject::LastAddedFieldIndex() {
|
|
Map* map = this->map();
|
|
int last_added = map->LastAdded();
|
|
return map->instance_descriptors()->GetFieldIndex(last_added);
|
|
}
|
|
|
|
|
|
ACCESSORS(Oddball, to_string, String, kToStringOffset)
|
|
ACCESSORS(Oddball, to_number, Object, kToNumberOffset)
|
|
|
|
|
|
byte Oddball::kind() {
|
|
return Smi::cast(READ_FIELD(this, kKindOffset))->value();
|
|
}
|
|
|
|
|
|
void Oddball::set_kind(byte value) {
|
|
WRITE_FIELD(this, kKindOffset, Smi::FromInt(value));
|
|
}
|
|
|
|
|
|
Object* Cell::value() {
|
|
return READ_FIELD(this, kValueOffset);
|
|
}
|
|
|
|
|
|
void Cell::set_value(Object* val, WriteBarrierMode ignored) {
|
|
// The write barrier is not used for global property cells.
|
|
ASSERT(!val->IsPropertyCell() && !val->IsCell());
|
|
WRITE_FIELD(this, kValueOffset, val);
|
|
}
|
|
|
|
ACCESSORS(PropertyCell, dependent_code, DependentCode, kDependentCodeOffset)
|
|
|
|
Object* PropertyCell::type_raw() {
|
|
return READ_FIELD(this, kTypeOffset);
|
|
}
|
|
|
|
|
|
void PropertyCell::set_type_raw(Object* val, WriteBarrierMode ignored) {
|
|
WRITE_FIELD(this, kTypeOffset, val);
|
|
}
|
|
|
|
|
|
int JSObject::GetHeaderSize() {
|
|
InstanceType type = map()->instance_type();
|
|
// Check for the most common kind of JavaScript object before
|
|
// falling into the generic switch. This speeds up the internal
|
|
// field operations considerably on average.
|
|
if (type == JS_OBJECT_TYPE) return JSObject::kHeaderSize;
|
|
switch (type) {
|
|
case JS_GENERATOR_OBJECT_TYPE:
|
|
return JSGeneratorObject::kSize;
|
|
case JS_MODULE_TYPE:
|
|
return JSModule::kSize;
|
|
case JS_GLOBAL_PROXY_TYPE:
|
|
return JSGlobalProxy::kSize;
|
|
case JS_GLOBAL_OBJECT_TYPE:
|
|
return JSGlobalObject::kSize;
|
|
case JS_BUILTINS_OBJECT_TYPE:
|
|
return JSBuiltinsObject::kSize;
|
|
case JS_FUNCTION_TYPE:
|
|
return JSFunction::kSize;
|
|
case JS_VALUE_TYPE:
|
|
return JSValue::kSize;
|
|
case JS_DATE_TYPE:
|
|
return JSDate::kSize;
|
|
case JS_ARRAY_TYPE:
|
|
return JSArray::kSize;
|
|
case JS_ARRAY_BUFFER_TYPE:
|
|
return JSArrayBuffer::kSize;
|
|
case JS_TYPED_ARRAY_TYPE:
|
|
return JSTypedArray::kSize;
|
|
case JS_DATA_VIEW_TYPE:
|
|
return JSDataView::kSize;
|
|
case JS_SET_TYPE:
|
|
return JSSet::kSize;
|
|
case JS_MAP_TYPE:
|
|
return JSMap::kSize;
|
|
case JS_WEAK_MAP_TYPE:
|
|
return JSWeakMap::kSize;
|
|
case JS_REGEXP_TYPE:
|
|
return JSRegExp::kSize;
|
|
case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
|
|
return JSObject::kHeaderSize;
|
|
case JS_MESSAGE_OBJECT_TYPE:
|
|
return JSMessageObject::kSize;
|
|
default:
|
|
UNREACHABLE();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
int JSObject::GetInternalFieldCount() {
|
|
ASSERT(1 << kPointerSizeLog2 == kPointerSize);
|
|
// Make sure to adjust for the number of in-object properties. These
|
|
// properties do contribute to the size, but are not internal fields.
|
|
return ((Size() - GetHeaderSize()) >> kPointerSizeLog2) -
|
|
map()->inobject_properties();
|
|
}
|
|
|
|
|
|
int JSObject::GetInternalFieldOffset(int index) {
|
|
ASSERT(index < GetInternalFieldCount() && index >= 0);
|
|
return GetHeaderSize() + (kPointerSize * index);
|
|
}
|
|
|
|
|
|
Object* JSObject::GetInternalField(int index) {
|
|
ASSERT(index < GetInternalFieldCount() && index >= 0);
|
|
// Internal objects do follow immediately after the header, whereas in-object
|
|
// properties are at the end of the object. Therefore there is no need
|
|
// to adjust the index here.
|
|
return READ_FIELD(this, GetHeaderSize() + (kPointerSize * index));
|
|
}
|
|
|
|
|
|
void JSObject::SetInternalField(int index, Object* value) {
|
|
ASSERT(index < GetInternalFieldCount() && index >= 0);
|
|
// Internal objects do follow immediately after the header, whereas in-object
|
|
// properties are at the end of the object. Therefore there is no need
|
|
// to adjust the index here.
|
|
int offset = GetHeaderSize() + (kPointerSize * index);
|
|
WRITE_FIELD(this, offset, value);
|
|
WRITE_BARRIER(GetHeap(), this, offset, value);
|
|
}
|
|
|
|
|
|
void JSObject::SetInternalField(int index, Smi* value) {
|
|
ASSERT(index < GetInternalFieldCount() && index >= 0);
|
|
// Internal objects do follow immediately after the header, whereas in-object
|
|
// properties are at the end of the object. Therefore there is no need
|
|
// to adjust the index here.
|
|
int offset = GetHeaderSize() + (kPointerSize * index);
|
|
WRITE_FIELD(this, offset, value);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::FastPropertyAt(Representation representation,
|
|
int index) {
|
|
Object* raw_value = RawFastPropertyAt(index);
|
|
return raw_value->AllocateNewStorageFor(GetHeap(), representation);
|
|
}
|
|
|
|
|
|
// Access fast-case object properties at index. The use of these routines
|
|
// is needed to correctly distinguish between properties stored in-object and
|
|
// properties stored in the properties array.
|
|
Object* JSObject::RawFastPropertyAt(int index) {
|
|
// Adjust for the number of properties stored in the object.
|
|
index -= map()->inobject_properties();
|
|
if (index < 0) {
|
|
int offset = map()->instance_size() + (index * kPointerSize);
|
|
return READ_FIELD(this, offset);
|
|
} else {
|
|
ASSERT(index < properties()->length());
|
|
return properties()->get(index);
|
|
}
|
|
}
|
|
|
|
|
|
void JSObject::FastPropertyAtPut(int index, Object* value) {
|
|
// Adjust for the number of properties stored in the object.
|
|
index -= map()->inobject_properties();
|
|
if (index < 0) {
|
|
int offset = map()->instance_size() + (index * kPointerSize);
|
|
WRITE_FIELD(this, offset, value);
|
|
WRITE_BARRIER(GetHeap(), this, offset, value);
|
|
} else {
|
|
ASSERT(index < properties()->length());
|
|
properties()->set(index, value);
|
|
}
|
|
}
|
|
|
|
|
|
int JSObject::GetInObjectPropertyOffset(int index) {
|
|
// Adjust for the number of properties stored in the object.
|
|
index -= map()->inobject_properties();
|
|
ASSERT(index < 0);
|
|
return map()->instance_size() + (index * kPointerSize);
|
|
}
|
|
|
|
|
|
Object* JSObject::InObjectPropertyAt(int index) {
|
|
// Adjust for the number of properties stored in the object.
|
|
index -= map()->inobject_properties();
|
|
ASSERT(index < 0);
|
|
int offset = map()->instance_size() + (index * kPointerSize);
|
|
return READ_FIELD(this, offset);
|
|
}
|
|
|
|
|
|
Object* JSObject::InObjectPropertyAtPut(int index,
|
|
Object* value,
|
|
WriteBarrierMode mode) {
|
|
// Adjust for the number of properties stored in the object.
|
|
index -= map()->inobject_properties();
|
|
ASSERT(index < 0);
|
|
int offset = map()->instance_size() + (index * kPointerSize);
|
|
WRITE_FIELD(this, offset, value);
|
|
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode);
|
|
return value;
|
|
}
|
|
|
|
|
|
|
|
void JSObject::InitializeBody(Map* map,
|
|
Object* pre_allocated_value,
|
|
Object* filler_value) {
|
|
ASSERT(!filler_value->IsHeapObject() ||
|
|
!GetHeap()->InNewSpace(filler_value));
|
|
ASSERT(!pre_allocated_value->IsHeapObject() ||
|
|
!GetHeap()->InNewSpace(pre_allocated_value));
|
|
int size = map->instance_size();
|
|
int offset = kHeaderSize;
|
|
if (filler_value != pre_allocated_value) {
|
|
int pre_allocated = map->pre_allocated_property_fields();
|
|
ASSERT(pre_allocated * kPointerSize + kHeaderSize <= size);
|
|
for (int i = 0; i < pre_allocated; i++) {
|
|
WRITE_FIELD(this, offset, pre_allocated_value);
|
|
offset += kPointerSize;
|
|
}
|
|
}
|
|
while (offset < size) {
|
|
WRITE_FIELD(this, offset, filler_value);
|
|
offset += kPointerSize;
|
|
}
|
|
}
|
|
|
|
|
|
bool JSObject::HasFastProperties() {
|
|
ASSERT(properties()->IsDictionary() == map()->is_dictionary_map());
|
|
return !properties()->IsDictionary();
|
|
}
|
|
|
|
|
|
bool JSObject::TooManyFastProperties(int properties,
|
|
JSObject::StoreFromKeyed store_mode) {
|
|
// Allow extra fast properties if the object has more than
|
|
// kFastPropertiesSoftLimit in-object properties. When this is the case,
|
|
// it is very unlikely that the object is being used as a dictionary
|
|
// and there is a good chance that allowing more map transitions
|
|
// will be worth it.
|
|
int inobject = map()->inobject_properties();
|
|
|
|
int limit;
|
|
if (store_mode == CERTAINLY_NOT_STORE_FROM_KEYED) {
|
|
limit = Max(inobject, kMaxFastProperties);
|
|
} else {
|
|
limit = Max(inobject, kFastPropertiesSoftLimit);
|
|
}
|
|
return properties > limit;
|
|
}
|
|
|
|
|
|
void Struct::InitializeBody(int object_size) {
|
|
Object* value = GetHeap()->undefined_value();
|
|
for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
|
|
WRITE_FIELD(this, offset, value);
|
|
}
|
|
}
|
|
|
|
|
|
bool Object::ToArrayIndex(uint32_t* index) {
|
|
if (IsSmi()) {
|
|
int value = Smi::cast(this)->value();
|
|
if (value < 0) return false;
|
|
*index = value;
|
|
return true;
|
|
}
|
|
if (IsHeapNumber()) {
|
|
double value = HeapNumber::cast(this)->value();
|
|
uint32_t uint_value = static_cast<uint32_t>(value);
|
|
if (value == static_cast<double>(uint_value)) {
|
|
*index = uint_value;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Object::IsStringObjectWithCharacterAt(uint32_t index) {
|
|
if (!this->IsJSValue()) return false;
|
|
|
|
JSValue* js_value = JSValue::cast(this);
|
|
if (!js_value->value()->IsString()) return false;
|
|
|
|
String* str = String::cast(js_value->value());
|
|
if (index >= static_cast<uint32_t>(str->length())) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
void Object::VerifyApiCallResultType() {
|
|
#if ENABLE_EXTRA_CHECKS
|
|
if (!(IsSmi() ||
|
|
IsString() ||
|
|
IsSpecObject() ||
|
|
IsHeapNumber() ||
|
|
IsUndefined() ||
|
|
IsTrue() ||
|
|
IsFalse() ||
|
|
IsNull())) {
|
|
FATAL("API call returned invalid object");
|
|
}
|
|
#endif // ENABLE_EXTRA_CHECKS
|
|
}
|
|
|
|
|
|
FixedArrayBase* FixedArrayBase::cast(Object* object) {
|
|
ASSERT(object->IsFixedArray() || object->IsFixedDoubleArray());
|
|
return reinterpret_cast<FixedArrayBase*>(object);
|
|
}
|
|
|
|
|
|
Object* FixedArray::get(int index) {
|
|
ASSERT(index >= 0 && index < this->length());
|
|
return READ_FIELD(this, kHeaderSize + index * kPointerSize);
|
|
}
|
|
|
|
|
|
bool FixedArray::is_the_hole(int index) {
|
|
return get(index) == GetHeap()->the_hole_value();
|
|
}
|
|
|
|
|
|
void FixedArray::set(int index, Smi* value) {
|
|
ASSERT(map() != HEAP->fixed_cow_array_map());
|
|
ASSERT(index >= 0 && index < this->length());
|
|
ASSERT(reinterpret_cast<Object*>(value)->IsSmi());
|
|
int offset = kHeaderSize + index * kPointerSize;
|
|
WRITE_FIELD(this, offset, value);
|
|
}
|
|
|
|
|
|
void FixedArray::set(int index, Object* value) {
|
|
ASSERT(map() != HEAP->fixed_cow_array_map());
|
|
ASSERT(index >= 0 && index < this->length());
|
|
int offset = kHeaderSize + index * kPointerSize;
|
|
WRITE_FIELD(this, offset, value);
|
|
WRITE_BARRIER(GetHeap(), this, offset, value);
|
|
}
|
|
|
|
|
|
inline bool FixedDoubleArray::is_the_hole_nan(double value) {
|
|
return BitCast<uint64_t, double>(value) == kHoleNanInt64;
|
|
}
|
|
|
|
|
|
inline double FixedDoubleArray::hole_nan_as_double() {
|
|
return BitCast<double, uint64_t>(kHoleNanInt64);
|
|
}
|
|
|
|
|
|
inline double FixedDoubleArray::canonical_not_the_hole_nan_as_double() {
|
|
ASSERT(BitCast<uint64_t>(OS::nan_value()) != kHoleNanInt64);
|
|
ASSERT((BitCast<uint64_t>(OS::nan_value()) >> 32) != kHoleNanUpper32);
|
|
return OS::nan_value();
|
|
}
|
|
|
|
|
|
double FixedDoubleArray::get_scalar(int index) {
|
|
ASSERT(map() != HEAP->fixed_cow_array_map() &&
|
|
map() != HEAP->fixed_array_map());
|
|
ASSERT(index >= 0 && index < this->length());
|
|
double result = READ_DOUBLE_FIELD(this, kHeaderSize + index * kDoubleSize);
|
|
ASSERT(!is_the_hole_nan(result));
|
|
return result;
|
|
}
|
|
|
|
int64_t FixedDoubleArray::get_representation(int index) {
|
|
ASSERT(map() != HEAP->fixed_cow_array_map() &&
|
|
map() != HEAP->fixed_array_map());
|
|
ASSERT(index >= 0 && index < this->length());
|
|
return READ_INT64_FIELD(this, kHeaderSize + index * kDoubleSize);
|
|
}
|
|
|
|
MaybeObject* FixedDoubleArray::get(int index) {
|
|
if (is_the_hole(index)) {
|
|
return GetHeap()->the_hole_value();
|
|
} else {
|
|
return GetHeap()->NumberFromDouble(get_scalar(index));
|
|
}
|
|
}
|
|
|
|
|
|
void FixedDoubleArray::set(int index, double value) {
|
|
ASSERT(map() != HEAP->fixed_cow_array_map() &&
|
|
map() != HEAP->fixed_array_map());
|
|
int offset = kHeaderSize + index * kDoubleSize;
|
|
if (std::isnan(value)) value = canonical_not_the_hole_nan_as_double();
|
|
WRITE_DOUBLE_FIELD(this, offset, value);
|
|
}
|
|
|
|
|
|
void FixedDoubleArray::set_the_hole(int index) {
|
|
ASSERT(map() != HEAP->fixed_cow_array_map() &&
|
|
map() != HEAP->fixed_array_map());
|
|
int offset = kHeaderSize + index * kDoubleSize;
|
|
WRITE_DOUBLE_FIELD(this, offset, hole_nan_as_double());
|
|
}
|
|
|
|
|
|
bool FixedDoubleArray::is_the_hole(int index) {
|
|
int offset = kHeaderSize + index * kDoubleSize;
|
|
return is_the_hole_nan(READ_DOUBLE_FIELD(this, offset));
|
|
}
|
|
|
|
|
|
WriteBarrierMode HeapObject::GetWriteBarrierMode(
|
|
const DisallowHeapAllocation& promise) {
|
|
Heap* heap = GetHeap();
|
|
if (heap->incremental_marking()->IsMarking()) return UPDATE_WRITE_BARRIER;
|
|
if (heap->InNewSpace(this)) return SKIP_WRITE_BARRIER;
|
|
return UPDATE_WRITE_BARRIER;
|
|
}
|
|
|
|
|
|
void FixedArray::set(int index,
|
|
Object* value,
|
|
WriteBarrierMode mode) {
|
|
ASSERT(map() != HEAP->fixed_cow_array_map());
|
|
ASSERT(index >= 0 && index < this->length());
|
|
int offset = kHeaderSize + index * kPointerSize;
|
|
WRITE_FIELD(this, offset, value);
|
|
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode);
|
|
}
|
|
|
|
|
|
void FixedArray::NoIncrementalWriteBarrierSet(FixedArray* array,
|
|
int index,
|
|
Object* value) {
|
|
ASSERT(array->map() != HEAP->fixed_cow_array_map());
|
|
ASSERT(index >= 0 && index < array->length());
|
|
int offset = kHeaderSize + index * kPointerSize;
|
|
WRITE_FIELD(array, offset, value);
|
|
Heap* heap = array->GetHeap();
|
|
if (heap->InNewSpace(value)) {
|
|
heap->RecordWrite(array->address(), offset);
|
|
}
|
|
}
|
|
|
|
|
|
void FixedArray::NoWriteBarrierSet(FixedArray* array,
|
|
int index,
|
|
Object* value) {
|
|
ASSERT(array->map() != HEAP->fixed_cow_array_map());
|
|
ASSERT(index >= 0 && index < array->length());
|
|
ASSERT(!HEAP->InNewSpace(value));
|
|
WRITE_FIELD(array, kHeaderSize + index * kPointerSize, value);
|
|
}
|
|
|
|
|
|
void FixedArray::set_undefined(int index) {
|
|
ASSERT(map() != HEAP->fixed_cow_array_map());
|
|
set_undefined(GetHeap(), index);
|
|
}
|
|
|
|
|
|
void FixedArray::set_undefined(Heap* heap, int index) {
|
|
ASSERT(index >= 0 && index < this->length());
|
|
ASSERT(!heap->InNewSpace(heap->undefined_value()));
|
|
WRITE_FIELD(this, kHeaderSize + index * kPointerSize,
|
|
heap->undefined_value());
|
|
}
|
|
|
|
|
|
void FixedArray::set_null(int index) {
|
|
set_null(GetHeap(), index);
|
|
}
|
|
|
|
|
|
void FixedArray::set_null(Heap* heap, int index) {
|
|
ASSERT(index >= 0 && index < this->length());
|
|
ASSERT(!heap->InNewSpace(heap->null_value()));
|
|
WRITE_FIELD(this, kHeaderSize + index * kPointerSize, heap->null_value());
|
|
}
|
|
|
|
|
|
void FixedArray::set_the_hole(int index) {
|
|
ASSERT(map() != HEAP->fixed_cow_array_map());
|
|
ASSERT(index >= 0 && index < this->length());
|
|
ASSERT(!HEAP->InNewSpace(HEAP->the_hole_value()));
|
|
WRITE_FIELD(this,
|
|
kHeaderSize + index * kPointerSize,
|
|
GetHeap()->the_hole_value());
|
|
}
|
|
|
|
|
|
double* FixedDoubleArray::data_start() {
|
|
return reinterpret_cast<double*>(FIELD_ADDR(this, kHeaderSize));
|
|
}
|
|
|
|
|
|
Object** FixedArray::data_start() {
|
|
return HeapObject::RawField(this, kHeaderSize);
|
|
}
|
|
|
|
|
|
bool DescriptorArray::IsEmpty() {
|
|
ASSERT(length() >= kFirstIndex ||
|
|
this == HEAP->empty_descriptor_array());
|
|
return length() < kFirstIndex;
|
|
}
|
|
|
|
|
|
void DescriptorArray::SetNumberOfDescriptors(int number_of_descriptors) {
|
|
WRITE_FIELD(
|
|
this, kDescriptorLengthOffset, Smi::FromInt(number_of_descriptors));
|
|
}
|
|
|
|
|
|
// Perform a binary search in a fixed array. Low and high are entry indices. If
|
|
// there are three entries in this array it should be called with low=0 and
|
|
// high=2.
|
|
template<SearchMode search_mode, typename T>
|
|
int BinarySearch(T* array, Name* name, int low, int high, int valid_entries) {
|
|
uint32_t hash = name->Hash();
|
|
int limit = high;
|
|
|
|
ASSERT(low <= high);
|
|
|
|
while (low != high) {
|
|
int mid = (low + high) / 2;
|
|
Name* mid_name = array->GetSortedKey(mid);
|
|
uint32_t mid_hash = mid_name->Hash();
|
|
|
|
if (mid_hash >= hash) {
|
|
high = mid;
|
|
} else {
|
|
low = mid + 1;
|
|
}
|
|
}
|
|
|
|
for (; low <= limit; ++low) {
|
|
int sort_index = array->GetSortedKeyIndex(low);
|
|
Name* entry = array->GetKey(sort_index);
|
|
if (entry->Hash() != hash) break;
|
|
if (entry->Equals(name)) {
|
|
if (search_mode == ALL_ENTRIES || sort_index < valid_entries) {
|
|
return sort_index;
|
|
}
|
|
return T::kNotFound;
|
|
}
|
|
}
|
|
|
|
return T::kNotFound;
|
|
}
|
|
|
|
|
|
// Perform a linear search in this fixed array. len is the number of entry
|
|
// indices that are valid.
|
|
template<SearchMode search_mode, typename T>
|
|
int LinearSearch(T* array, Name* name, int len, int valid_entries) {
|
|
uint32_t hash = name->Hash();
|
|
if (search_mode == ALL_ENTRIES) {
|
|
for (int number = 0; number < len; number++) {
|
|
int sorted_index = array->GetSortedKeyIndex(number);
|
|
Name* entry = array->GetKey(sorted_index);
|
|
uint32_t current_hash = entry->Hash();
|
|
if (current_hash > hash) break;
|
|
if (current_hash == hash && entry->Equals(name)) return sorted_index;
|
|
}
|
|
} else {
|
|
ASSERT(len >= valid_entries);
|
|
for (int number = 0; number < valid_entries; number++) {
|
|
Name* entry = array->GetKey(number);
|
|
uint32_t current_hash = entry->Hash();
|
|
if (current_hash == hash && entry->Equals(name)) return number;
|
|
}
|
|
}
|
|
return T::kNotFound;
|
|
}
|
|
|
|
|
|
template<SearchMode search_mode, typename T>
|
|
int Search(T* array, Name* name, int valid_entries) {
|
|
if (search_mode == VALID_ENTRIES) {
|
|
SLOW_ASSERT(array->IsSortedNoDuplicates(valid_entries));
|
|
} else {
|
|
SLOW_ASSERT(array->IsSortedNoDuplicates());
|
|
}
|
|
|
|
int nof = array->number_of_entries();
|
|
if (nof == 0) return T::kNotFound;
|
|
|
|
// Fast case: do linear search for small arrays.
|
|
const int kMaxElementsForLinearSearch = 8;
|
|
if ((search_mode == ALL_ENTRIES &&
|
|
nof <= kMaxElementsForLinearSearch) ||
|
|
(search_mode == VALID_ENTRIES &&
|
|
valid_entries <= (kMaxElementsForLinearSearch * 3))) {
|
|
return LinearSearch<search_mode>(array, name, nof, valid_entries);
|
|
}
|
|
|
|
// Slow case: perform binary search.
|
|
return BinarySearch<search_mode>(array, name, 0, nof - 1, valid_entries);
|
|
}
|
|
|
|
|
|
int DescriptorArray::Search(Name* name, int valid_descriptors) {
|
|
return internal::Search<VALID_ENTRIES>(this, name, valid_descriptors);
|
|
}
|
|
|
|
|
|
int DescriptorArray::SearchWithCache(Name* name, Map* map) {
|
|
int number_of_own_descriptors = map->NumberOfOwnDescriptors();
|
|
if (number_of_own_descriptors == 0) return kNotFound;
|
|
|
|
DescriptorLookupCache* cache = GetIsolate()->descriptor_lookup_cache();
|
|
int number = cache->Lookup(map, name);
|
|
|
|
if (number == DescriptorLookupCache::kAbsent) {
|
|
number = Search(name, number_of_own_descriptors);
|
|
cache->Update(map, name, number);
|
|
}
|
|
|
|
return number;
|
|
}
|
|
|
|
|
|
void Map::LookupDescriptor(JSObject* holder,
|
|
Name* name,
|
|
LookupResult* result) {
|
|
DescriptorArray* descriptors = this->instance_descriptors();
|
|
int number = descriptors->SearchWithCache(name, this);
|
|
if (number == DescriptorArray::kNotFound) return result->NotFound();
|
|
result->DescriptorResult(holder, descriptors->GetDetails(number), number);
|
|
}
|
|
|
|
|
|
void Map::LookupTransition(JSObject* holder,
|
|
Name* name,
|
|
LookupResult* result) {
|
|
if (HasTransitionArray()) {
|
|
TransitionArray* transition_array = transitions();
|
|
int number = transition_array->Search(name);
|
|
if (number != TransitionArray::kNotFound) {
|
|
return result->TransitionResult(holder, number);
|
|
}
|
|
}
|
|
result->NotFound();
|
|
}
|
|
|
|
|
|
Object** DescriptorArray::GetKeySlot(int descriptor_number) {
|
|
ASSERT(descriptor_number < number_of_descriptors());
|
|
return HeapObject::RawField(
|
|
reinterpret_cast<HeapObject*>(this),
|
|
OffsetOfElementAt(ToKeyIndex(descriptor_number)));
|
|
}
|
|
|
|
|
|
Object** DescriptorArray::GetDescriptorStartSlot(int descriptor_number) {
|
|
return GetKeySlot(descriptor_number);
|
|
}
|
|
|
|
|
|
Object** DescriptorArray::GetDescriptorEndSlot(int descriptor_number) {
|
|
return GetValueSlot(descriptor_number - 1) + 1;
|
|
}
|
|
|
|
|
|
Name* DescriptorArray::GetKey(int descriptor_number) {
|
|
ASSERT(descriptor_number < number_of_descriptors());
|
|
return Name::cast(get(ToKeyIndex(descriptor_number)));
|
|
}
|
|
|
|
|
|
int DescriptorArray::GetSortedKeyIndex(int descriptor_number) {
|
|
return GetDetails(descriptor_number).pointer();
|
|
}
|
|
|
|
|
|
Name* DescriptorArray::GetSortedKey(int descriptor_number) {
|
|
return GetKey(GetSortedKeyIndex(descriptor_number));
|
|
}
|
|
|
|
|
|
void DescriptorArray::SetSortedKey(int descriptor_index, int pointer) {
|
|
PropertyDetails details = GetDetails(descriptor_index);
|
|
set(ToDetailsIndex(descriptor_index), details.set_pointer(pointer).AsSmi());
|
|
}
|
|
|
|
|
|
void DescriptorArray::SetRepresentation(int descriptor_index,
|
|
Representation representation) {
|
|
ASSERT(!representation.IsNone());
|
|
PropertyDetails details = GetDetails(descriptor_index);
|
|
set(ToDetailsIndex(descriptor_index),
|
|
details.CopyWithRepresentation(representation).AsSmi());
|
|
}
|
|
|
|
|
|
void DescriptorArray::InitializeRepresentations(Representation representation) {
|
|
int length = number_of_descriptors();
|
|
for (int i = 0; i < length; i++) {
|
|
SetRepresentation(i, representation);
|
|
}
|
|
}
|
|
|
|
|
|
Object** DescriptorArray::GetValueSlot(int descriptor_number) {
|
|
ASSERT(descriptor_number < number_of_descriptors());
|
|
return HeapObject::RawField(
|
|
reinterpret_cast<HeapObject*>(this),
|
|
OffsetOfElementAt(ToValueIndex(descriptor_number)));
|
|
}
|
|
|
|
|
|
Object* DescriptorArray::GetValue(int descriptor_number) {
|
|
ASSERT(descriptor_number < number_of_descriptors());
|
|
return get(ToValueIndex(descriptor_number));
|
|
}
|
|
|
|
|
|
PropertyDetails DescriptorArray::GetDetails(int descriptor_number) {
|
|
ASSERT(descriptor_number < number_of_descriptors());
|
|
Object* details = get(ToDetailsIndex(descriptor_number));
|
|
return PropertyDetails(Smi::cast(details));
|
|
}
|
|
|
|
|
|
PropertyType DescriptorArray::GetType(int descriptor_number) {
|
|
return GetDetails(descriptor_number).type();
|
|
}
|
|
|
|
|
|
int DescriptorArray::GetFieldIndex(int descriptor_number) {
|
|
return GetDetails(descriptor_number).field_index();
|
|
}
|
|
|
|
|
|
JSFunction* DescriptorArray::GetConstantFunction(int descriptor_number) {
|
|
return JSFunction::cast(GetValue(descriptor_number));
|
|
}
|
|
|
|
|
|
Object* DescriptorArray::GetCallbacksObject(int descriptor_number) {
|
|
ASSERT(GetType(descriptor_number) == CALLBACKS);
|
|
return GetValue(descriptor_number);
|
|
}
|
|
|
|
|
|
AccessorDescriptor* DescriptorArray::GetCallbacks(int descriptor_number) {
|
|
ASSERT(GetType(descriptor_number) == CALLBACKS);
|
|
Foreign* p = Foreign::cast(GetCallbacksObject(descriptor_number));
|
|
return reinterpret_cast<AccessorDescriptor*>(p->foreign_address());
|
|
}
|
|
|
|
|
|
void DescriptorArray::Get(int descriptor_number, Descriptor* desc) {
|
|
desc->Init(GetKey(descriptor_number),
|
|
GetValue(descriptor_number),
|
|
GetDetails(descriptor_number));
|
|
}
|
|
|
|
|
|
void DescriptorArray::Set(int descriptor_number,
|
|
Descriptor* desc,
|
|
const WhitenessWitness&) {
|
|
// Range check.
|
|
ASSERT(descriptor_number < number_of_descriptors());
|
|
|
|
NoIncrementalWriteBarrierSet(this,
|
|
ToKeyIndex(descriptor_number),
|
|
desc->GetKey());
|
|
NoIncrementalWriteBarrierSet(this,
|
|
ToValueIndex(descriptor_number),
|
|
desc->GetValue());
|
|
NoIncrementalWriteBarrierSet(this,
|
|
ToDetailsIndex(descriptor_number),
|
|
desc->GetDetails().AsSmi());
|
|
}
|
|
|
|
|
|
void DescriptorArray::Set(int descriptor_number, Descriptor* desc) {
|
|
// Range check.
|
|
ASSERT(descriptor_number < number_of_descriptors());
|
|
|
|
set(ToKeyIndex(descriptor_number), desc->GetKey());
|
|
set(ToValueIndex(descriptor_number), desc->GetValue());
|
|
set(ToDetailsIndex(descriptor_number), desc->GetDetails().AsSmi());
|
|
}
|
|
|
|
|
|
void DescriptorArray::Append(Descriptor* desc,
|
|
const WhitenessWitness& witness) {
|
|
int descriptor_number = number_of_descriptors();
|
|
SetNumberOfDescriptors(descriptor_number + 1);
|
|
Set(descriptor_number, desc, witness);
|
|
|
|
uint32_t hash = desc->GetKey()->Hash();
|
|
|
|
int insertion;
|
|
|
|
for (insertion = descriptor_number; insertion > 0; --insertion) {
|
|
Name* key = GetSortedKey(insertion - 1);
|
|
if (key->Hash() <= hash) break;
|
|
SetSortedKey(insertion, GetSortedKeyIndex(insertion - 1));
|
|
}
|
|
|
|
SetSortedKey(insertion, descriptor_number);
|
|
}
|
|
|
|
|
|
void DescriptorArray::Append(Descriptor* desc) {
|
|
int descriptor_number = number_of_descriptors();
|
|
SetNumberOfDescriptors(descriptor_number + 1);
|
|
Set(descriptor_number, desc);
|
|
|
|
uint32_t hash = desc->GetKey()->Hash();
|
|
|
|
int insertion;
|
|
|
|
for (insertion = descriptor_number; insertion > 0; --insertion) {
|
|
Name* key = GetSortedKey(insertion - 1);
|
|
if (key->Hash() <= hash) break;
|
|
SetSortedKey(insertion, GetSortedKeyIndex(insertion - 1));
|
|
}
|
|
|
|
SetSortedKey(insertion, descriptor_number);
|
|
}
|
|
|
|
|
|
void DescriptorArray::SwapSortedKeys(int first, int second) {
|
|
int first_key = GetSortedKeyIndex(first);
|
|
SetSortedKey(first, GetSortedKeyIndex(second));
|
|
SetSortedKey(second, first_key);
|
|
}
|
|
|
|
|
|
DescriptorArray::WhitenessWitness::WhitenessWitness(FixedArray* array)
|
|
: marking_(array->GetHeap()->incremental_marking()) {
|
|
marking_->EnterNoMarkingScope();
|
|
ASSERT(Marking::Color(array) == Marking::WHITE_OBJECT);
|
|
}
|
|
|
|
|
|
DescriptorArray::WhitenessWitness::~WhitenessWitness() {
|
|
marking_->LeaveNoMarkingScope();
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
int HashTable<Shape, Key>::ComputeCapacity(int at_least_space_for) {
|
|
const int kMinCapacity = 32;
|
|
int capacity = RoundUpToPowerOf2(at_least_space_for * 2);
|
|
if (capacity < kMinCapacity) {
|
|
capacity = kMinCapacity; // Guarantee min capacity.
|
|
}
|
|
return capacity;
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
int HashTable<Shape, Key>::FindEntry(Key key) {
|
|
return FindEntry(GetIsolate(), key);
|
|
}
|
|
|
|
|
|
// Find entry for key otherwise return kNotFound.
|
|
template<typename Shape, typename Key>
|
|
int HashTable<Shape, Key>::FindEntry(Isolate* isolate, Key key) {
|
|
uint32_t capacity = Capacity();
|
|
uint32_t entry = FirstProbe(HashTable<Shape, Key>::Hash(key), capacity);
|
|
uint32_t count = 1;
|
|
// EnsureCapacity will guarantee the hash table is never full.
|
|
while (true) {
|
|
Object* element = KeyAt(entry);
|
|
// Empty entry. Uses raw unchecked accessors because it is called by the
|
|
// string table during bootstrapping.
|
|
if (element == isolate->heap()->raw_unchecked_undefined_value()) break;
|
|
if (element != isolate->heap()->raw_unchecked_the_hole_value() &&
|
|
Shape::IsMatch(key, element)) return entry;
|
|
entry = NextProbe(entry, count++, capacity);
|
|
}
|
|
return kNotFound;
|
|
}
|
|
|
|
|
|
bool SeededNumberDictionary::requires_slow_elements() {
|
|
Object* max_index_object = get(kMaxNumberKeyIndex);
|
|
if (!max_index_object->IsSmi()) return false;
|
|
return 0 !=
|
|
(Smi::cast(max_index_object)->value() & kRequiresSlowElementsMask);
|
|
}
|
|
|
|
uint32_t SeededNumberDictionary::max_number_key() {
|
|
ASSERT(!requires_slow_elements());
|
|
Object* max_index_object = get(kMaxNumberKeyIndex);
|
|
if (!max_index_object->IsSmi()) return 0;
|
|
uint32_t value = static_cast<uint32_t>(Smi::cast(max_index_object)->value());
|
|
return value >> kRequiresSlowElementsTagSize;
|
|
}
|
|
|
|
void SeededNumberDictionary::set_requires_slow_elements() {
|
|
set(kMaxNumberKeyIndex, Smi::FromInt(kRequiresSlowElementsMask));
|
|
}
|
|
|
|
|
|
// ------------------------------------
|
|
// Cast operations
|
|
|
|
|
|
CAST_ACCESSOR(FixedArray)
|
|
CAST_ACCESSOR(FixedDoubleArray)
|
|
CAST_ACCESSOR(DescriptorArray)
|
|
CAST_ACCESSOR(DeoptimizationInputData)
|
|
CAST_ACCESSOR(DeoptimizationOutputData)
|
|
CAST_ACCESSOR(DependentCode)
|
|
CAST_ACCESSOR(TypeFeedbackCells)
|
|
CAST_ACCESSOR(StringTable)
|
|
CAST_ACCESSOR(JSFunctionResultCache)
|
|
CAST_ACCESSOR(NormalizedMapCache)
|
|
CAST_ACCESSOR(ScopeInfo)
|
|
CAST_ACCESSOR(CompilationCacheTable)
|
|
CAST_ACCESSOR(CodeCacheHashTable)
|
|
CAST_ACCESSOR(PolymorphicCodeCacheHashTable)
|
|
CAST_ACCESSOR(MapCache)
|
|
CAST_ACCESSOR(String)
|
|
CAST_ACCESSOR(SeqString)
|
|
CAST_ACCESSOR(SeqOneByteString)
|
|
CAST_ACCESSOR(SeqTwoByteString)
|
|
CAST_ACCESSOR(SlicedString)
|
|
CAST_ACCESSOR(ConsString)
|
|
CAST_ACCESSOR(ExternalString)
|
|
CAST_ACCESSOR(ExternalAsciiString)
|
|
CAST_ACCESSOR(ExternalTwoByteString)
|
|
CAST_ACCESSOR(Symbol)
|
|
CAST_ACCESSOR(Name)
|
|
CAST_ACCESSOR(JSReceiver)
|
|
CAST_ACCESSOR(JSObject)
|
|
CAST_ACCESSOR(Smi)
|
|
CAST_ACCESSOR(HeapObject)
|
|
CAST_ACCESSOR(HeapNumber)
|
|
CAST_ACCESSOR(Oddball)
|
|
CAST_ACCESSOR(Cell)
|
|
CAST_ACCESSOR(PropertyCell)
|
|
CAST_ACCESSOR(SharedFunctionInfo)
|
|
CAST_ACCESSOR(Map)
|
|
CAST_ACCESSOR(JSFunction)
|
|
CAST_ACCESSOR(GlobalObject)
|
|
CAST_ACCESSOR(JSGlobalProxy)
|
|
CAST_ACCESSOR(JSGlobalObject)
|
|
CAST_ACCESSOR(JSBuiltinsObject)
|
|
CAST_ACCESSOR(Code)
|
|
CAST_ACCESSOR(JSArray)
|
|
CAST_ACCESSOR(JSArrayBuffer)
|
|
CAST_ACCESSOR(JSArrayBufferView)
|
|
CAST_ACCESSOR(JSTypedArray)
|
|
CAST_ACCESSOR(JSDataView)
|
|
CAST_ACCESSOR(JSRegExp)
|
|
CAST_ACCESSOR(JSProxy)
|
|
CAST_ACCESSOR(JSFunctionProxy)
|
|
CAST_ACCESSOR(JSSet)
|
|
CAST_ACCESSOR(JSMap)
|
|
CAST_ACCESSOR(JSWeakMap)
|
|
CAST_ACCESSOR(Foreign)
|
|
CAST_ACCESSOR(ByteArray)
|
|
CAST_ACCESSOR(FreeSpace)
|
|
CAST_ACCESSOR(ExternalArray)
|
|
CAST_ACCESSOR(ExternalByteArray)
|
|
CAST_ACCESSOR(ExternalUnsignedByteArray)
|
|
CAST_ACCESSOR(ExternalShortArray)
|
|
CAST_ACCESSOR(ExternalUnsignedShortArray)
|
|
CAST_ACCESSOR(ExternalIntArray)
|
|
CAST_ACCESSOR(ExternalUnsignedIntArray)
|
|
CAST_ACCESSOR(ExternalFloatArray)
|
|
CAST_ACCESSOR(ExternalDoubleArray)
|
|
CAST_ACCESSOR(ExternalPixelArray)
|
|
CAST_ACCESSOR(Struct)
|
|
CAST_ACCESSOR(AccessorInfo)
|
|
|
|
|
|
#define MAKE_STRUCT_CAST(NAME, Name, name) CAST_ACCESSOR(Name)
|
|
STRUCT_LIST(MAKE_STRUCT_CAST)
|
|
#undef MAKE_STRUCT_CAST
|
|
|
|
|
|
template <typename Shape, typename Key>
|
|
HashTable<Shape, Key>* HashTable<Shape, Key>::cast(Object* obj) {
|
|
ASSERT(obj->IsHashTable());
|
|
return reinterpret_cast<HashTable*>(obj);
|
|
}
|
|
|
|
|
|
SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset)
|
|
SMI_ACCESSORS(FreeSpace, size, kSizeOffset)
|
|
|
|
SMI_ACCESSORS(String, length, kLengthOffset)
|
|
|
|
|
|
uint32_t Name::hash_field() {
|
|
return READ_UINT32_FIELD(this, kHashFieldOffset);
|
|
}
|
|
|
|
|
|
void Name::set_hash_field(uint32_t value) {
|
|
WRITE_UINT32_FIELD(this, kHashFieldOffset, value);
|
|
#if V8_HOST_ARCH_64_BIT
|
|
WRITE_UINT32_FIELD(this, kHashFieldOffset + kIntSize, 0);
|
|
#endif
|
|
}
|
|
|
|
|
|
bool Name::Equals(Name* other) {
|
|
if (other == this) return true;
|
|
if ((this->IsInternalizedString() && other->IsInternalizedString()) ||
|
|
this->IsSymbol() || other->IsSymbol()) {
|
|
return false;
|
|
}
|
|
return String::cast(this)->SlowEquals(String::cast(other));
|
|
}
|
|
|
|
|
|
ACCESSORS(Symbol, name, Object, kNameOffset)
|
|
|
|
|
|
bool String::Equals(String* other) {
|
|
if (other == this) return true;
|
|
if (this->IsInternalizedString() && other->IsInternalizedString()) {
|
|
return false;
|
|
}
|
|
return SlowEquals(other);
|
|
}
|
|
|
|
|
|
MaybeObject* String::TryFlatten(PretenureFlag pretenure) {
|
|
if (!StringShape(this).IsCons()) return this;
|
|
ConsString* cons = ConsString::cast(this);
|
|
if (cons->IsFlat()) return cons->first();
|
|
return SlowTryFlatten(pretenure);
|
|
}
|
|
|
|
|
|
String* String::TryFlattenGetString(PretenureFlag pretenure) {
|
|
MaybeObject* flat = TryFlatten(pretenure);
|
|
Object* successfully_flattened;
|
|
if (!flat->ToObject(&successfully_flattened)) return this;
|
|
return String::cast(successfully_flattened);
|
|
}
|
|
|
|
|
|
uint16_t String::Get(int index) {
|
|
ASSERT(index >= 0 && index < length());
|
|
switch (StringShape(this).full_representation_tag()) {
|
|
case kSeqStringTag | kOneByteStringTag:
|
|
return SeqOneByteString::cast(this)->SeqOneByteStringGet(index);
|
|
case kSeqStringTag | kTwoByteStringTag:
|
|
return SeqTwoByteString::cast(this)->SeqTwoByteStringGet(index);
|
|
case kConsStringTag | kOneByteStringTag:
|
|
case kConsStringTag | kTwoByteStringTag:
|
|
return ConsString::cast(this)->ConsStringGet(index);
|
|
case kExternalStringTag | kOneByteStringTag:
|
|
return ExternalAsciiString::cast(this)->ExternalAsciiStringGet(index);
|
|
case kExternalStringTag | kTwoByteStringTag:
|
|
return ExternalTwoByteString::cast(this)->ExternalTwoByteStringGet(index);
|
|
case kSlicedStringTag | kOneByteStringTag:
|
|
case kSlicedStringTag | kTwoByteStringTag:
|
|
return SlicedString::cast(this)->SlicedStringGet(index);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
UNREACHABLE();
|
|
return 0;
|
|
}
|
|
|
|
|
|
void String::Set(int index, uint16_t value) {
|
|
ASSERT(index >= 0 && index < length());
|
|
ASSERT(StringShape(this).IsSequential());
|
|
|
|
return this->IsOneByteRepresentation()
|
|
? SeqOneByteString::cast(this)->SeqOneByteStringSet(index, value)
|
|
: SeqTwoByteString::cast(this)->SeqTwoByteStringSet(index, value);
|
|
}
|
|
|
|
|
|
bool String::IsFlat() {
|
|
if (!StringShape(this).IsCons()) return true;
|
|
return ConsString::cast(this)->second()->length() == 0;
|
|
}
|
|
|
|
|
|
String* String::GetUnderlying() {
|
|
// Giving direct access to underlying string only makes sense if the
|
|
// wrapping string is already flattened.
|
|
ASSERT(this->IsFlat());
|
|
ASSERT(StringShape(this).IsIndirect());
|
|
STATIC_ASSERT(ConsString::kFirstOffset == SlicedString::kParentOffset);
|
|
const int kUnderlyingOffset = SlicedString::kParentOffset;
|
|
return String::cast(READ_FIELD(this, kUnderlyingOffset));
|
|
}
|
|
|
|
|
|
template<class Visitor, class ConsOp>
|
|
void String::Visit(
|
|
String* string,
|
|
unsigned offset,
|
|
Visitor& visitor,
|
|
ConsOp& cons_op,
|
|
int32_t type,
|
|
unsigned length) {
|
|
ASSERT(length == static_cast<unsigned>(string->length()));
|
|
ASSERT(offset <= length);
|
|
unsigned slice_offset = offset;
|
|
while (true) {
|
|
ASSERT(type == string->map()->instance_type());
|
|
|
|
switch (type & (kStringRepresentationMask | kStringEncodingMask)) {
|
|
case kSeqStringTag | kOneByteStringTag:
|
|
visitor.VisitOneByteString(
|
|
SeqOneByteString::cast(string)->GetChars() + slice_offset,
|
|
length - offset);
|
|
return;
|
|
|
|
case kSeqStringTag | kTwoByteStringTag:
|
|
visitor.VisitTwoByteString(
|
|
SeqTwoByteString::cast(string)->GetChars() + slice_offset,
|
|
length - offset);
|
|
return;
|
|
|
|
case kExternalStringTag | kOneByteStringTag:
|
|
visitor.VisitOneByteString(
|
|
ExternalAsciiString::cast(string)->GetChars() + slice_offset,
|
|
length - offset);
|
|
return;
|
|
|
|
case kExternalStringTag | kTwoByteStringTag:
|
|
visitor.VisitTwoByteString(
|
|
ExternalTwoByteString::cast(string)->GetChars() + slice_offset,
|
|
length - offset);
|
|
return;
|
|
|
|
case kSlicedStringTag | kOneByteStringTag:
|
|
case kSlicedStringTag | kTwoByteStringTag: {
|
|
SlicedString* slicedString = SlicedString::cast(string);
|
|
slice_offset += slicedString->offset();
|
|
string = slicedString->parent();
|
|
type = string->map()->instance_type();
|
|
continue;
|
|
}
|
|
|
|
case kConsStringTag | kOneByteStringTag:
|
|
case kConsStringTag | kTwoByteStringTag:
|
|
string = cons_op.Operate(string, &offset, &type, &length);
|
|
if (string == NULL) return;
|
|
slice_offset = offset;
|
|
ASSERT(length == static_cast<unsigned>(string->length()));
|
|
continue;
|
|
|
|
default:
|
|
UNREACHABLE();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// TODO(dcarney): Remove this class after conversion to VisitFlat.
|
|
class ConsStringCaptureOp {
|
|
public:
|
|
inline ConsStringCaptureOp() : cons_string_(NULL) {}
|
|
inline String* Operate(String* string, unsigned*, int32_t*, unsigned*) {
|
|
cons_string_ = ConsString::cast(string);
|
|
return NULL;
|
|
}
|
|
ConsString* cons_string_;
|
|
};
|
|
|
|
|
|
template<class Visitor>
|
|
ConsString* String::VisitFlat(Visitor* visitor,
|
|
String* string,
|
|
int offset,
|
|
int length,
|
|
int32_t type) {
|
|
ASSERT(length >= 0 && length == string->length());
|
|
ASSERT(offset >= 0 && offset <= length);
|
|
ConsStringCaptureOp op;
|
|
Visit(string, offset, *visitor, op, type, static_cast<unsigned>(length));
|
|
return op.cons_string_;
|
|
}
|
|
|
|
|
|
uint16_t SeqOneByteString::SeqOneByteStringGet(int index) {
|
|
ASSERT(index >= 0 && index < length());
|
|
return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
|
|
}
|
|
|
|
|
|
void SeqOneByteString::SeqOneByteStringSet(int index, uint16_t value) {
|
|
ASSERT(index >= 0 && index < length() && value <= kMaxOneByteCharCode);
|
|
WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize,
|
|
static_cast<byte>(value));
|
|
}
|
|
|
|
|
|
Address SeqOneByteString::GetCharsAddress() {
|
|
return FIELD_ADDR(this, kHeaderSize);
|
|
}
|
|
|
|
|
|
uint8_t* SeqOneByteString::GetChars() {
|
|
return reinterpret_cast<uint8_t*>(GetCharsAddress());
|
|
}
|
|
|
|
|
|
Address SeqTwoByteString::GetCharsAddress() {
|
|
return FIELD_ADDR(this, kHeaderSize);
|
|
}
|
|
|
|
|
|
uc16* SeqTwoByteString::GetChars() {
|
|
return reinterpret_cast<uc16*>(FIELD_ADDR(this, kHeaderSize));
|
|
}
|
|
|
|
|
|
uint16_t SeqTwoByteString::SeqTwoByteStringGet(int index) {
|
|
ASSERT(index >= 0 && index < length());
|
|
return READ_SHORT_FIELD(this, kHeaderSize + index * kShortSize);
|
|
}
|
|
|
|
|
|
void SeqTwoByteString::SeqTwoByteStringSet(int index, uint16_t value) {
|
|
ASSERT(index >= 0 && index < length());
|
|
WRITE_SHORT_FIELD(this, kHeaderSize + index * kShortSize, value);
|
|
}
|
|
|
|
|
|
int SeqTwoByteString::SeqTwoByteStringSize(InstanceType instance_type) {
|
|
return SizeFor(length());
|
|
}
|
|
|
|
|
|
int SeqOneByteString::SeqOneByteStringSize(InstanceType instance_type) {
|
|
return SizeFor(length());
|
|
}
|
|
|
|
|
|
String* SlicedString::parent() {
|
|
return String::cast(READ_FIELD(this, kParentOffset));
|
|
}
|
|
|
|
|
|
void SlicedString::set_parent(String* parent, WriteBarrierMode mode) {
|
|
ASSERT(parent->IsSeqString() || parent->IsExternalString());
|
|
WRITE_FIELD(this, kParentOffset, parent);
|
|
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kParentOffset, parent, mode);
|
|
}
|
|
|
|
|
|
SMI_ACCESSORS(SlicedString, offset, kOffsetOffset)
|
|
|
|
|
|
String* ConsString::first() {
|
|
return String::cast(READ_FIELD(this, kFirstOffset));
|
|
}
|
|
|
|
|
|
Object* ConsString::unchecked_first() {
|
|
return READ_FIELD(this, kFirstOffset);
|
|
}
|
|
|
|
|
|
void ConsString::set_first(String* value, WriteBarrierMode mode) {
|
|
WRITE_FIELD(this, kFirstOffset, value);
|
|
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kFirstOffset, value, mode);
|
|
}
|
|
|
|
|
|
String* ConsString::second() {
|
|
return String::cast(READ_FIELD(this, kSecondOffset));
|
|
}
|
|
|
|
|
|
Object* ConsString::unchecked_second() {
|
|
return READ_FIELD(this, kSecondOffset);
|
|
}
|
|
|
|
|
|
void ConsString::set_second(String* value, WriteBarrierMode mode) {
|
|
WRITE_FIELD(this, kSecondOffset, value);
|
|
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kSecondOffset, value, mode);
|
|
}
|
|
|
|
|
|
bool ExternalString::is_short() {
|
|
InstanceType type = map()->instance_type();
|
|
return (type & kShortExternalStringMask) == kShortExternalStringTag;
|
|
}
|
|
|
|
|
|
const ExternalAsciiString::Resource* ExternalAsciiString::resource() {
|
|
return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
|
|
}
|
|
|
|
|
|
void ExternalAsciiString::update_data_cache() {
|
|
if (is_short()) return;
|
|
const char** data_field =
|
|
reinterpret_cast<const char**>(FIELD_ADDR(this, kResourceDataOffset));
|
|
*data_field = resource()->data();
|
|
}
|
|
|
|
|
|
void ExternalAsciiString::set_resource(
|
|
const ExternalAsciiString::Resource* resource) {
|
|
*reinterpret_cast<const Resource**>(
|
|
FIELD_ADDR(this, kResourceOffset)) = resource;
|
|
if (resource != NULL) update_data_cache();
|
|
}
|
|
|
|
|
|
const uint8_t* ExternalAsciiString::GetChars() {
|
|
return reinterpret_cast<const uint8_t*>(resource()->data());
|
|
}
|
|
|
|
|
|
uint16_t ExternalAsciiString::ExternalAsciiStringGet(int index) {
|
|
ASSERT(index >= 0 && index < length());
|
|
return GetChars()[index];
|
|
}
|
|
|
|
|
|
const ExternalTwoByteString::Resource* ExternalTwoByteString::resource() {
|
|
return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
|
|
}
|
|
|
|
|
|
void ExternalTwoByteString::update_data_cache() {
|
|
if (is_short()) return;
|
|
const uint16_t** data_field =
|
|
reinterpret_cast<const uint16_t**>(FIELD_ADDR(this, kResourceDataOffset));
|
|
*data_field = resource()->data();
|
|
}
|
|
|
|
|
|
void ExternalTwoByteString::set_resource(
|
|
const ExternalTwoByteString::Resource* resource) {
|
|
*reinterpret_cast<const Resource**>(
|
|
FIELD_ADDR(this, kResourceOffset)) = resource;
|
|
if (resource != NULL) update_data_cache();
|
|
}
|
|
|
|
|
|
const uint16_t* ExternalTwoByteString::GetChars() {
|
|
return resource()->data();
|
|
}
|
|
|
|
|
|
uint16_t ExternalTwoByteString::ExternalTwoByteStringGet(int index) {
|
|
ASSERT(index >= 0 && index < length());
|
|
return GetChars()[index];
|
|
}
|
|
|
|
|
|
const uint16_t* ExternalTwoByteString::ExternalTwoByteStringGetData(
|
|
unsigned start) {
|
|
return GetChars() + start;
|
|
}
|
|
|
|
|
|
String* ConsStringNullOp::Operate(String*, unsigned*, int32_t*, unsigned*) {
|
|
return NULL;
|
|
}
|
|
|
|
|
|
unsigned ConsStringIteratorOp::OffsetForDepth(unsigned depth) {
|
|
return depth & kDepthMask;
|
|
}
|
|
|
|
|
|
void ConsStringIteratorOp::PushLeft(ConsString* string) {
|
|
frames_[depth_++ & kDepthMask] = string;
|
|
}
|
|
|
|
|
|
void ConsStringIteratorOp::PushRight(ConsString* string) {
|
|
// Inplace update.
|
|
frames_[(depth_-1) & kDepthMask] = string;
|
|
}
|
|
|
|
|
|
void ConsStringIteratorOp::AdjustMaximumDepth() {
|
|
if (depth_ > maximum_depth_) maximum_depth_ = depth_;
|
|
}
|
|
|
|
|
|
void ConsStringIteratorOp::Pop() {
|
|
ASSERT(depth_ > 0);
|
|
ASSERT(depth_ <= maximum_depth_);
|
|
depth_--;
|
|
}
|
|
|
|
|
|
bool ConsStringIteratorOp::HasMore() {
|
|
return depth_ != 0;
|
|
}
|
|
|
|
|
|
void ConsStringIteratorOp::Reset() {
|
|
depth_ = 0;
|
|
}
|
|
|
|
|
|
String* ConsStringIteratorOp::ContinueOperation(int32_t* type_out,
|
|
unsigned* length_out) {
|
|
bool blew_stack = false;
|
|
String* string = NextLeaf(&blew_stack, type_out, length_out);
|
|
// String found.
|
|
if (string != NULL) {
|
|
// Verify output.
|
|
ASSERT(*length_out == static_cast<unsigned>(string->length()));
|
|
ASSERT(*type_out == string->map()->instance_type());
|
|
return string;
|
|
}
|
|
// Traversal complete.
|
|
if (!blew_stack) return NULL;
|
|
// Restart search from root.
|
|
unsigned offset_out;
|
|
string = Search(&offset_out, type_out, length_out);
|
|
// Verify output.
|
|
ASSERT(string == NULL || offset_out == 0);
|
|
ASSERT(string == NULL ||
|
|
*length_out == static_cast<unsigned>(string->length()));
|
|
ASSERT(string == NULL || *type_out == string->map()->instance_type());
|
|
return string;
|
|
}
|
|
|
|
|
|
uint16_t StringCharacterStream::GetNext() {
|
|
ASSERT(buffer8_ != NULL && end_ != NULL);
|
|
// Advance cursor if needed.
|
|
// TODO(dcarney): Ensure uses of the api call HasMore first and avoid this.
|
|
if (buffer8_ == end_) HasMore();
|
|
ASSERT(buffer8_ < end_);
|
|
return is_one_byte_ ? *buffer8_++ : *buffer16_++;
|
|
}
|
|
|
|
|
|
StringCharacterStream::StringCharacterStream(String* string,
|
|
ConsStringIteratorOp* op,
|
|
unsigned offset)
|
|
: is_one_byte_(false),
|
|
op_(op) {
|
|
Reset(string, offset);
|
|
}
|
|
|
|
|
|
void StringCharacterStream::Reset(String* string, unsigned offset) {
|
|
op_->Reset();
|
|
buffer8_ = NULL;
|
|
end_ = NULL;
|
|
int32_t type = string->map()->instance_type();
|
|
unsigned length = string->length();
|
|
String::Visit(string, offset, *this, *op_, type, length);
|
|
}
|
|
|
|
|
|
bool StringCharacterStream::HasMore() {
|
|
if (buffer8_ != end_) return true;
|
|
if (!op_->HasMore()) return false;
|
|
unsigned length;
|
|
int32_t type;
|
|
String* string = op_->ContinueOperation(&type, &length);
|
|
if (string == NULL) return false;
|
|
ASSERT(!string->IsConsString());
|
|
ASSERT(string->length() != 0);
|
|
ConsStringNullOp null_op;
|
|
String::Visit(string, 0, *this, null_op, type, length);
|
|
ASSERT(buffer8_ != end_);
|
|
return true;
|
|
}
|
|
|
|
|
|
void StringCharacterStream::VisitOneByteString(
|
|
const uint8_t* chars, unsigned length) {
|
|
is_one_byte_ = true;
|
|
buffer8_ = chars;
|
|
end_ = chars + length;
|
|
}
|
|
|
|
|
|
void StringCharacterStream::VisitTwoByteString(
|
|
const uint16_t* chars, unsigned length) {
|
|
is_one_byte_ = false;
|
|
buffer16_ = chars;
|
|
end_ = reinterpret_cast<const uint8_t*>(chars + length);
|
|
}
|
|
|
|
|
|
void JSFunctionResultCache::MakeZeroSize() {
|
|
set_finger_index(kEntriesIndex);
|
|
set_size(kEntriesIndex);
|
|
}
|
|
|
|
|
|
void JSFunctionResultCache::Clear() {
|
|
int cache_size = size();
|
|
Object** entries_start = RawField(this, OffsetOfElementAt(kEntriesIndex));
|
|
MemsetPointer(entries_start,
|
|
GetHeap()->the_hole_value(),
|
|
cache_size - kEntriesIndex);
|
|
MakeZeroSize();
|
|
}
|
|
|
|
|
|
int JSFunctionResultCache::size() {
|
|
return Smi::cast(get(kCacheSizeIndex))->value();
|
|
}
|
|
|
|
|
|
void JSFunctionResultCache::set_size(int size) {
|
|
set(kCacheSizeIndex, Smi::FromInt(size));
|
|
}
|
|
|
|
|
|
int JSFunctionResultCache::finger_index() {
|
|
return Smi::cast(get(kFingerIndex))->value();
|
|
}
|
|
|
|
|
|
void JSFunctionResultCache::set_finger_index(int finger_index) {
|
|
set(kFingerIndex, Smi::FromInt(finger_index));
|
|
}
|
|
|
|
|
|
byte ByteArray::get(int index) {
|
|
ASSERT(index >= 0 && index < this->length());
|
|
return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
|
|
}
|
|
|
|
|
|
void ByteArray::set(int index, byte value) {
|
|
ASSERT(index >= 0 && index < this->length());
|
|
WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value);
|
|
}
|
|
|
|
|
|
int ByteArray::get_int(int index) {
|
|
ASSERT(index >= 0 && (index * kIntSize) < this->length());
|
|
return READ_INT_FIELD(this, kHeaderSize + index * kIntSize);
|
|
}
|
|
|
|
|
|
ByteArray* ByteArray::FromDataStartAddress(Address address) {
|
|
ASSERT_TAG_ALIGNED(address);
|
|
return reinterpret_cast<ByteArray*>(address - kHeaderSize + kHeapObjectTag);
|
|
}
|
|
|
|
|
|
Address ByteArray::GetDataStartAddress() {
|
|
return reinterpret_cast<Address>(this) - kHeapObjectTag + kHeaderSize;
|
|
}
|
|
|
|
|
|
uint8_t* ExternalPixelArray::external_pixel_pointer() {
|
|
return reinterpret_cast<uint8_t*>(external_pointer());
|
|
}
|
|
|
|
|
|
uint8_t ExternalPixelArray::get_scalar(int index) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
uint8_t* ptr = external_pixel_pointer();
|
|
return ptr[index];
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalPixelArray::get(int index) {
|
|
return Smi::FromInt(static_cast<int>(get_scalar(index)));
|
|
}
|
|
|
|
|
|
void ExternalPixelArray::set(int index, uint8_t value) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
uint8_t* ptr = external_pixel_pointer();
|
|
ptr[index] = value;
|
|
}
|
|
|
|
|
|
void* ExternalArray::external_pointer() {
|
|
intptr_t ptr = READ_INTPTR_FIELD(this, kExternalPointerOffset);
|
|
return reinterpret_cast<void*>(ptr);
|
|
}
|
|
|
|
|
|
void ExternalArray::set_external_pointer(void* value, WriteBarrierMode mode) {
|
|
intptr_t ptr = reinterpret_cast<intptr_t>(value);
|
|
WRITE_INTPTR_FIELD(this, kExternalPointerOffset, ptr);
|
|
}
|
|
|
|
|
|
int8_t ExternalByteArray::get_scalar(int index) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
int8_t* ptr = static_cast<int8_t*>(external_pointer());
|
|
return ptr[index];
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalByteArray::get(int index) {
|
|
return Smi::FromInt(static_cast<int>(get_scalar(index)));
|
|
}
|
|
|
|
|
|
void ExternalByteArray::set(int index, int8_t value) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
int8_t* ptr = static_cast<int8_t*>(external_pointer());
|
|
ptr[index] = value;
|
|
}
|
|
|
|
|
|
uint8_t ExternalUnsignedByteArray::get_scalar(int index) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
uint8_t* ptr = static_cast<uint8_t*>(external_pointer());
|
|
return ptr[index];
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalUnsignedByteArray::get(int index) {
|
|
return Smi::FromInt(static_cast<int>(get_scalar(index)));
|
|
}
|
|
|
|
|
|
void ExternalUnsignedByteArray::set(int index, uint8_t value) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
uint8_t* ptr = static_cast<uint8_t*>(external_pointer());
|
|
ptr[index] = value;
|
|
}
|
|
|
|
|
|
int16_t ExternalShortArray::get_scalar(int index) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
int16_t* ptr = static_cast<int16_t*>(external_pointer());
|
|
return ptr[index];
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalShortArray::get(int index) {
|
|
return Smi::FromInt(static_cast<int>(get_scalar(index)));
|
|
}
|
|
|
|
|
|
void ExternalShortArray::set(int index, int16_t value) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
int16_t* ptr = static_cast<int16_t*>(external_pointer());
|
|
ptr[index] = value;
|
|
}
|
|
|
|
|
|
uint16_t ExternalUnsignedShortArray::get_scalar(int index) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
uint16_t* ptr = static_cast<uint16_t*>(external_pointer());
|
|
return ptr[index];
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalUnsignedShortArray::get(int index) {
|
|
return Smi::FromInt(static_cast<int>(get_scalar(index)));
|
|
}
|
|
|
|
|
|
void ExternalUnsignedShortArray::set(int index, uint16_t value) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
uint16_t* ptr = static_cast<uint16_t*>(external_pointer());
|
|
ptr[index] = value;
|
|
}
|
|
|
|
|
|
int32_t ExternalIntArray::get_scalar(int index) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
int32_t* ptr = static_cast<int32_t*>(external_pointer());
|
|
return ptr[index];
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalIntArray::get(int index) {
|
|
return GetHeap()->NumberFromInt32(get_scalar(index));
|
|
}
|
|
|
|
|
|
void ExternalIntArray::set(int index, int32_t value) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
int32_t* ptr = static_cast<int32_t*>(external_pointer());
|
|
ptr[index] = value;
|
|
}
|
|
|
|
|
|
uint32_t ExternalUnsignedIntArray::get_scalar(int index) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
uint32_t* ptr = static_cast<uint32_t*>(external_pointer());
|
|
return ptr[index];
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalUnsignedIntArray::get(int index) {
|
|
return GetHeap()->NumberFromUint32(get_scalar(index));
|
|
}
|
|
|
|
|
|
void ExternalUnsignedIntArray::set(int index, uint32_t value) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
uint32_t* ptr = static_cast<uint32_t*>(external_pointer());
|
|
ptr[index] = value;
|
|
}
|
|
|
|
|
|
float ExternalFloatArray::get_scalar(int index) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
float* ptr = static_cast<float*>(external_pointer());
|
|
return ptr[index];
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalFloatArray::get(int index) {
|
|
return GetHeap()->NumberFromDouble(get_scalar(index));
|
|
}
|
|
|
|
|
|
void ExternalFloatArray::set(int index, float value) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
float* ptr = static_cast<float*>(external_pointer());
|
|
ptr[index] = value;
|
|
}
|
|
|
|
|
|
double ExternalDoubleArray::get_scalar(int index) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
double* ptr = static_cast<double*>(external_pointer());
|
|
return ptr[index];
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalDoubleArray::get(int index) {
|
|
return GetHeap()->NumberFromDouble(get_scalar(index));
|
|
}
|
|
|
|
|
|
void ExternalDoubleArray::set(int index, double value) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
double* ptr = static_cast<double*>(external_pointer());
|
|
ptr[index] = value;
|
|
}
|
|
|
|
|
|
int Map::visitor_id() {
|
|
return READ_BYTE_FIELD(this, kVisitorIdOffset);
|
|
}
|
|
|
|
|
|
void Map::set_visitor_id(int id) {
|
|
ASSERT(0 <= id && id < 256);
|
|
WRITE_BYTE_FIELD(this, kVisitorIdOffset, static_cast<byte>(id));
|
|
}
|
|
|
|
|
|
int Map::instance_size() {
|
|
return READ_BYTE_FIELD(this, kInstanceSizeOffset) << kPointerSizeLog2;
|
|
}
|
|
|
|
|
|
int Map::inobject_properties() {
|
|
return READ_BYTE_FIELD(this, kInObjectPropertiesOffset);
|
|
}
|
|
|
|
|
|
int Map::pre_allocated_property_fields() {
|
|
return READ_BYTE_FIELD(this, kPreAllocatedPropertyFieldsOffset);
|
|
}
|
|
|
|
|
|
int HeapObject::SizeFromMap(Map* map) {
|
|
int instance_size = map->instance_size();
|
|
if (instance_size != kVariableSizeSentinel) return instance_size;
|
|
// Only inline the most frequent cases.
|
|
int instance_type = static_cast<int>(map->instance_type());
|
|
if (instance_type == FIXED_ARRAY_TYPE) {
|
|
return FixedArray::BodyDescriptor::SizeOf(map, this);
|
|
}
|
|
if (instance_type == ASCII_STRING_TYPE ||
|
|
instance_type == ASCII_INTERNALIZED_STRING_TYPE) {
|
|
return SeqOneByteString::SizeFor(
|
|
reinterpret_cast<SeqOneByteString*>(this)->length());
|
|
}
|
|
if (instance_type == BYTE_ARRAY_TYPE) {
|
|
return reinterpret_cast<ByteArray*>(this)->ByteArraySize();
|
|
}
|
|
if (instance_type == FREE_SPACE_TYPE) {
|
|
return reinterpret_cast<FreeSpace*>(this)->size();
|
|
}
|
|
if (instance_type == STRING_TYPE ||
|
|
instance_type == INTERNALIZED_STRING_TYPE) {
|
|
return SeqTwoByteString::SizeFor(
|
|
reinterpret_cast<SeqTwoByteString*>(this)->length());
|
|
}
|
|
if (instance_type == FIXED_DOUBLE_ARRAY_TYPE) {
|
|
return FixedDoubleArray::SizeFor(
|
|
reinterpret_cast<FixedDoubleArray*>(this)->length());
|
|
}
|
|
ASSERT(instance_type == CODE_TYPE);
|
|
return reinterpret_cast<Code*>(this)->CodeSize();
|
|
}
|
|
|
|
|
|
void Map::set_instance_size(int value) {
|
|
ASSERT_EQ(0, value & (kPointerSize - 1));
|
|
value >>= kPointerSizeLog2;
|
|
ASSERT(0 <= value && value < 256);
|
|
WRITE_BYTE_FIELD(this, kInstanceSizeOffset, static_cast<byte>(value));
|
|
}
|
|
|
|
|
|
void Map::set_inobject_properties(int value) {
|
|
ASSERT(0 <= value && value < 256);
|
|
WRITE_BYTE_FIELD(this, kInObjectPropertiesOffset, static_cast<byte>(value));
|
|
}
|
|
|
|
|
|
void Map::set_pre_allocated_property_fields(int value) {
|
|
ASSERT(0 <= value && value < 256);
|
|
WRITE_BYTE_FIELD(this,
|
|
kPreAllocatedPropertyFieldsOffset,
|
|
static_cast<byte>(value));
|
|
}
|
|
|
|
|
|
InstanceType Map::instance_type() {
|
|
return static_cast<InstanceType>(READ_BYTE_FIELD(this, kInstanceTypeOffset));
|
|
}
|
|
|
|
|
|
void Map::set_instance_type(InstanceType value) {
|
|
WRITE_BYTE_FIELD(this, kInstanceTypeOffset, value);
|
|
}
|
|
|
|
|
|
int Map::unused_property_fields() {
|
|
return READ_BYTE_FIELD(this, kUnusedPropertyFieldsOffset);
|
|
}
|
|
|
|
|
|
void Map::set_unused_property_fields(int value) {
|
|
WRITE_BYTE_FIELD(this, kUnusedPropertyFieldsOffset, Min(value, 255));
|
|
}
|
|
|
|
|
|
byte Map::bit_field() {
|
|
return READ_BYTE_FIELD(this, kBitFieldOffset);
|
|
}
|
|
|
|
|
|
void Map::set_bit_field(byte value) {
|
|
WRITE_BYTE_FIELD(this, kBitFieldOffset, value);
|
|
}
|
|
|
|
|
|
byte Map::bit_field2() {
|
|
return READ_BYTE_FIELD(this, kBitField2Offset);
|
|
}
|
|
|
|
|
|
void Map::set_bit_field2(byte value) {
|
|
WRITE_BYTE_FIELD(this, kBitField2Offset, value);
|
|
}
|
|
|
|
|
|
void Map::set_non_instance_prototype(bool value) {
|
|
if (value) {
|
|
set_bit_field(bit_field() | (1 << kHasNonInstancePrototype));
|
|
} else {
|
|
set_bit_field(bit_field() & ~(1 << kHasNonInstancePrototype));
|
|
}
|
|
}
|
|
|
|
|
|
bool Map::has_non_instance_prototype() {
|
|
return ((1 << kHasNonInstancePrototype) & bit_field()) != 0;
|
|
}
|
|
|
|
|
|
void Map::set_function_with_prototype(bool value) {
|
|
set_bit_field3(FunctionWithPrototype::update(bit_field3(), value));
|
|
}
|
|
|
|
|
|
bool Map::function_with_prototype() {
|
|
return FunctionWithPrototype::decode(bit_field3());
|
|
}
|
|
|
|
|
|
void Map::set_is_access_check_needed(bool access_check_needed) {
|
|
if (access_check_needed) {
|
|
set_bit_field(bit_field() | (1 << kIsAccessCheckNeeded));
|
|
} else {
|
|
set_bit_field(bit_field() & ~(1 << kIsAccessCheckNeeded));
|
|
}
|
|
}
|
|
|
|
|
|
bool Map::is_access_check_needed() {
|
|
return ((1 << kIsAccessCheckNeeded) & bit_field()) != 0;
|
|
}
|
|
|
|
|
|
void Map::set_is_extensible(bool value) {
|
|
if (value) {
|
|
set_bit_field2(bit_field2() | (1 << kIsExtensible));
|
|
} else {
|
|
set_bit_field2(bit_field2() & ~(1 << kIsExtensible));
|
|
}
|
|
}
|
|
|
|
bool Map::is_extensible() {
|
|
return ((1 << kIsExtensible) & bit_field2()) != 0;
|
|
}
|
|
|
|
|
|
void Map::set_attached_to_shared_function_info(bool value) {
|
|
if (value) {
|
|
set_bit_field2(bit_field2() | (1 << kAttachedToSharedFunctionInfo));
|
|
} else {
|
|
set_bit_field2(bit_field2() & ~(1 << kAttachedToSharedFunctionInfo));
|
|
}
|
|
}
|
|
|
|
bool Map::attached_to_shared_function_info() {
|
|
return ((1 << kAttachedToSharedFunctionInfo) & bit_field2()) != 0;
|
|
}
|
|
|
|
|
|
void Map::set_is_shared(bool value) {
|
|
set_bit_field3(IsShared::update(bit_field3(), value));
|
|
}
|
|
|
|
|
|
bool Map::is_shared() {
|
|
return IsShared::decode(bit_field3());
|
|
}
|
|
|
|
|
|
void Map::set_dictionary_map(bool value) {
|
|
set_bit_field3(DictionaryMap::update(bit_field3(), value));
|
|
}
|
|
|
|
|
|
bool Map::is_dictionary_map() {
|
|
return DictionaryMap::decode(bit_field3());
|
|
}
|
|
|
|
|
|
Code::Flags Code::flags() {
|
|
return static_cast<Flags>(READ_INT_FIELD(this, kFlagsOffset));
|
|
}
|
|
|
|
|
|
inline bool Map::CanTrackAllocationSite() {
|
|
return instance_type() == JS_ARRAY_TYPE;
|
|
}
|
|
|
|
|
|
void Map::set_owns_descriptors(bool is_shared) {
|
|
set_bit_field3(OwnsDescriptors::update(bit_field3(), is_shared));
|
|
}
|
|
|
|
|
|
bool Map::owns_descriptors() {
|
|
return OwnsDescriptors::decode(bit_field3());
|
|
}
|
|
|
|
|
|
void Map::set_is_observed(bool is_observed) {
|
|
ASSERT(instance_type() < FIRST_JS_OBJECT_TYPE ||
|
|
instance_type() > LAST_JS_OBJECT_TYPE ||
|
|
has_slow_elements_kind() || has_external_array_elements());
|
|
set_bit_field3(IsObserved::update(bit_field3(), is_observed));
|
|
}
|
|
|
|
|
|
bool Map::is_observed() {
|
|
return IsObserved::decode(bit_field3());
|
|
}
|
|
|
|
|
|
void Map::deprecate() {
|
|
set_bit_field3(Deprecated::update(bit_field3(), true));
|
|
}
|
|
|
|
|
|
bool Map::is_deprecated() {
|
|
if (!FLAG_track_fields) return false;
|
|
return Deprecated::decode(bit_field3());
|
|
}
|
|
|
|
|
|
void Map::freeze() {
|
|
set_bit_field3(IsFrozen::update(bit_field3(), true));
|
|
}
|
|
|
|
|
|
bool Map::is_frozen() {
|
|
return IsFrozen::decode(bit_field3());
|
|
}
|
|
|
|
|
|
bool Map::CanBeDeprecated() {
|
|
int descriptor = LastAdded();
|
|
for (int i = 0; i <= descriptor; i++) {
|
|
PropertyDetails details = instance_descriptors()->GetDetails(i);
|
|
if (FLAG_track_fields && details.representation().IsNone()) {
|
|
return true;
|
|
}
|
|
if (FLAG_track_fields && details.representation().IsSmi()) {
|
|
return true;
|
|
}
|
|
if (FLAG_track_double_fields && details.representation().IsDouble()) {
|
|
return true;
|
|
}
|
|
if (FLAG_track_heap_object_fields &&
|
|
details.representation().IsHeapObject()) {
|
|
return true;
|
|
}
|
|
if (FLAG_track_fields && details.type() == CONSTANT_FUNCTION) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void Map::NotifyLeafMapLayoutChange() {
|
|
dependent_code()->DeoptimizeDependentCodeGroup(
|
|
GetIsolate(),
|
|
DependentCode::kPrototypeCheckGroup);
|
|
}
|
|
|
|
|
|
bool Map::CanOmitPrototypeChecks() {
|
|
return !HasTransitionArray() && !is_dictionary_map() &&
|
|
FLAG_omit_prototype_checks_for_leaf_maps;
|
|
}
|
|
|
|
|
|
int DependentCode::number_of_entries(DependencyGroup group) {
|
|
if (length() == 0) return 0;
|
|
return Smi::cast(get(group))->value();
|
|
}
|
|
|
|
|
|
void DependentCode::set_number_of_entries(DependencyGroup group, int value) {
|
|
set(group, Smi::FromInt(value));
|
|
}
|
|
|
|
|
|
bool DependentCode::is_code_at(int i) {
|
|
return get(kCodesStartIndex + i)->IsCode();
|
|
}
|
|
|
|
Code* DependentCode::code_at(int i) {
|
|
return Code::cast(get(kCodesStartIndex + i));
|
|
}
|
|
|
|
|
|
CompilationInfo* DependentCode::compilation_info_at(int i) {
|
|
return reinterpret_cast<CompilationInfo*>(
|
|
Foreign::cast(get(kCodesStartIndex + i))->foreign_address());
|
|
}
|
|
|
|
|
|
void DependentCode::set_object_at(int i, Object* object) {
|
|
set(kCodesStartIndex + i, object);
|
|
}
|
|
|
|
|
|
Object* DependentCode::object_at(int i) {
|
|
return get(kCodesStartIndex + i);
|
|
}
|
|
|
|
|
|
Object** DependentCode::slot_at(int i) {
|
|
return HeapObject::RawField(
|
|
this, FixedArray::OffsetOfElementAt(kCodesStartIndex + i));
|
|
}
|
|
|
|
|
|
void DependentCode::clear_at(int i) {
|
|
set_undefined(kCodesStartIndex + i);
|
|
}
|
|
|
|
|
|
void DependentCode::copy(int from, int to) {
|
|
set(kCodesStartIndex + to, get(kCodesStartIndex + from));
|
|
}
|
|
|
|
|
|
void DependentCode::ExtendGroup(DependencyGroup group) {
|
|
GroupStartIndexes starts(this);
|
|
for (int g = kGroupCount - 1; g > group; g--) {
|
|
if (starts.at(g) < starts.at(g + 1)) {
|
|
copy(starts.at(g), starts.at(g + 1));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Code::set_flags(Code::Flags flags) {
|
|
STATIC_ASSERT(Code::NUMBER_OF_KINDS <= KindField::kMax + 1);
|
|
// Make sure that all call stubs have an arguments count.
|
|
ASSERT((ExtractKindFromFlags(flags) != CALL_IC &&
|
|
ExtractKindFromFlags(flags) != KEYED_CALL_IC) ||
|
|
ExtractArgumentsCountFromFlags(flags) >= 0);
|
|
WRITE_INT_FIELD(this, kFlagsOffset, flags);
|
|
}
|
|
|
|
|
|
Code::Kind Code::kind() {
|
|
return ExtractKindFromFlags(flags());
|
|
}
|
|
|
|
|
|
InlineCacheState Code::ic_state() {
|
|
InlineCacheState result = ExtractICStateFromFlags(flags());
|
|
// Only allow uninitialized or debugger states for non-IC code
|
|
// objects. This is used in the debugger to determine whether or not
|
|
// a call to code object has been replaced with a debug break call.
|
|
ASSERT(is_inline_cache_stub() ||
|
|
result == UNINITIALIZED ||
|
|
result == DEBUG_STUB);
|
|
return result;
|
|
}
|
|
|
|
|
|
Code::ExtraICState Code::extra_ic_state() {
|
|
ASSERT(is_inline_cache_stub() || ic_state() == DEBUG_STUB);
|
|
return ExtractExtraICStateFromFlags(flags());
|
|
}
|
|
|
|
|
|
Code::ExtraICState Code::extended_extra_ic_state() {
|
|
ASSERT(is_inline_cache_stub() || ic_state() == DEBUG_STUB);
|
|
ASSERT(needs_extended_extra_ic_state(kind()));
|
|
return ExtractExtendedExtraICStateFromFlags(flags());
|
|
}
|
|
|
|
|
|
Code::StubType Code::type() {
|
|
return ExtractTypeFromFlags(flags());
|
|
}
|
|
|
|
|
|
int Code::arguments_count() {
|
|
ASSERT(is_call_stub() || is_keyed_call_stub() || kind() == STUB);
|
|
return ExtractArgumentsCountFromFlags(flags());
|
|
}
|
|
|
|
|
|
inline bool Code::is_crankshafted() {
|
|
return IsCrankshaftedField::decode(
|
|
READ_UINT32_FIELD(this, kKindSpecificFlags2Offset));
|
|
}
|
|
|
|
|
|
inline void Code::set_is_crankshafted(bool value) {
|
|
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset);
|
|
int updated = IsCrankshaftedField::update(previous, value);
|
|
WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated);
|
|
}
|
|
|
|
|
|
int Code::major_key() {
|
|
ASSERT(kind() == STUB ||
|
|
kind() == UNARY_OP_IC ||
|
|
kind() == BINARY_OP_IC ||
|
|
kind() == COMPARE_IC ||
|
|
kind() == COMPARE_NIL_IC ||
|
|
kind() == LOAD_IC ||
|
|
kind() == KEYED_LOAD_IC ||
|
|
kind() == TO_BOOLEAN_IC);
|
|
return StubMajorKeyField::decode(
|
|
READ_UINT32_FIELD(this, kKindSpecificFlags2Offset));
|
|
}
|
|
|
|
|
|
void Code::set_major_key(int major) {
|
|
ASSERT(kind() == STUB ||
|
|
kind() == UNARY_OP_IC ||
|
|
kind() == BINARY_OP_IC ||
|
|
kind() == COMPARE_IC ||
|
|
kind() == COMPARE_NIL_IC ||
|
|
kind() == LOAD_IC ||
|
|
kind() == KEYED_LOAD_IC ||
|
|
kind() == STORE_IC ||
|
|
kind() == KEYED_STORE_IC ||
|
|
kind() == TO_BOOLEAN_IC);
|
|
ASSERT(0 <= major && major < 256);
|
|
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset);
|
|
int updated = StubMajorKeyField::update(previous, major);
|
|
WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated);
|
|
}
|
|
|
|
|
|
bool Code::is_pregenerated() {
|
|
return (kind() == STUB && IsPregeneratedField::decode(flags()));
|
|
}
|
|
|
|
|
|
void Code::set_is_pregenerated(bool value) {
|
|
ASSERT(kind() == STUB);
|
|
Flags f = flags();
|
|
f = static_cast<Flags>(IsPregeneratedField::update(f, value));
|
|
set_flags(f);
|
|
}
|
|
|
|
|
|
bool Code::optimizable() {
|
|
ASSERT_EQ(FUNCTION, kind());
|
|
return READ_BYTE_FIELD(this, kOptimizableOffset) == 1;
|
|
}
|
|
|
|
|
|
void Code::set_optimizable(bool value) {
|
|
ASSERT_EQ(FUNCTION, kind());
|
|
WRITE_BYTE_FIELD(this, kOptimizableOffset, value ? 1 : 0);
|
|
}
|
|
|
|
|
|
bool Code::has_deoptimization_support() {
|
|
ASSERT_EQ(FUNCTION, kind());
|
|
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
|
|
return FullCodeFlagsHasDeoptimizationSupportField::decode(flags);
|
|
}
|
|
|
|
|
|
void Code::set_has_deoptimization_support(bool value) {
|
|
ASSERT_EQ(FUNCTION, kind());
|
|
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
|
|
flags = FullCodeFlagsHasDeoptimizationSupportField::update(flags, value);
|
|
WRITE_BYTE_FIELD(this, kFullCodeFlags, flags);
|
|
}
|
|
|
|
|
|
bool Code::has_debug_break_slots() {
|
|
ASSERT_EQ(FUNCTION, kind());
|
|
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
|
|
return FullCodeFlagsHasDebugBreakSlotsField::decode(flags);
|
|
}
|
|
|
|
|
|
void Code::set_has_debug_break_slots(bool value) {
|
|
ASSERT_EQ(FUNCTION, kind());
|
|
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
|
|
flags = FullCodeFlagsHasDebugBreakSlotsField::update(flags, value);
|
|
WRITE_BYTE_FIELD(this, kFullCodeFlags, flags);
|
|
}
|
|
|
|
|
|
bool Code::is_compiled_optimizable() {
|
|
ASSERT_EQ(FUNCTION, kind());
|
|
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
|
|
return FullCodeFlagsIsCompiledOptimizable::decode(flags);
|
|
}
|
|
|
|
|
|
void Code::set_compiled_optimizable(bool value) {
|
|
ASSERT_EQ(FUNCTION, kind());
|
|
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
|
|
flags = FullCodeFlagsIsCompiledOptimizable::update(flags, value);
|
|
WRITE_BYTE_FIELD(this, kFullCodeFlags, flags);
|
|
}
|
|
|
|
|
|
int Code::allow_osr_at_loop_nesting_level() {
|
|
ASSERT_EQ(FUNCTION, kind());
|
|
return READ_BYTE_FIELD(this, kAllowOSRAtLoopNestingLevelOffset);
|
|
}
|
|
|
|
|
|
void Code::set_allow_osr_at_loop_nesting_level(int level) {
|
|
ASSERT_EQ(FUNCTION, kind());
|
|
ASSERT(level >= 0 && level <= kMaxLoopNestingMarker);
|
|
WRITE_BYTE_FIELD(this, kAllowOSRAtLoopNestingLevelOffset, level);
|
|
}
|
|
|
|
|
|
int Code::profiler_ticks() {
|
|
ASSERT_EQ(FUNCTION, kind());
|
|
return READ_BYTE_FIELD(this, kProfilerTicksOffset);
|
|
}
|
|
|
|
|
|
void Code::set_profiler_ticks(int ticks) {
|
|
ASSERT_EQ(FUNCTION, kind());
|
|
ASSERT(ticks < 256);
|
|
WRITE_BYTE_FIELD(this, kProfilerTicksOffset, ticks);
|
|
}
|
|
|
|
|
|
unsigned Code::stack_slots() {
|
|
ASSERT(is_crankshafted());
|
|
return StackSlotsField::decode(
|
|
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
|
|
}
|
|
|
|
|
|
void Code::set_stack_slots(unsigned slots) {
|
|
CHECK(slots <= (1 << kStackSlotsBitCount));
|
|
ASSERT(is_crankshafted());
|
|
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
|
|
int updated = StackSlotsField::update(previous, slots);
|
|
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
|
|
}
|
|
|
|
|
|
unsigned Code::safepoint_table_offset() {
|
|
ASSERT(is_crankshafted());
|
|
return SafepointTableOffsetField::decode(
|
|
READ_UINT32_FIELD(this, kKindSpecificFlags2Offset));
|
|
}
|
|
|
|
|
|
void Code::set_safepoint_table_offset(unsigned offset) {
|
|
CHECK(offset <= (1 << kSafepointTableOffsetBitCount));
|
|
ASSERT(is_crankshafted());
|
|
ASSERT(IsAligned(offset, static_cast<unsigned>(kIntSize)));
|
|
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset);
|
|
int updated = SafepointTableOffsetField::update(previous, offset);
|
|
WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated);
|
|
}
|
|
|
|
|
|
unsigned Code::back_edge_table_offset() {
|
|
ASSERT_EQ(FUNCTION, kind());
|
|
return BackEdgeTableOffsetField::decode(
|
|
READ_UINT32_FIELD(this, kKindSpecificFlags2Offset));
|
|
}
|
|
|
|
|
|
void Code::set_back_edge_table_offset(unsigned offset) {
|
|
ASSERT_EQ(FUNCTION, kind());
|
|
ASSERT(IsAligned(offset, static_cast<unsigned>(kIntSize)));
|
|
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset);
|
|
int updated = BackEdgeTableOffsetField::update(previous, offset);
|
|
WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated);
|
|
}
|
|
|
|
|
|
bool Code::back_edges_patched_for_osr() {
|
|
ASSERT_EQ(FUNCTION, kind());
|
|
return BackEdgesPatchedForOSRField::decode(
|
|
READ_UINT32_FIELD(this, kKindSpecificFlags2Offset));
|
|
}
|
|
|
|
|
|
void Code::set_back_edges_patched_for_osr(bool value) {
|
|
ASSERT_EQ(FUNCTION, kind());
|
|
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset);
|
|
int updated = BackEdgesPatchedForOSRField::update(previous, value);
|
|
WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated);
|
|
}
|
|
|
|
|
|
|
|
CheckType Code::check_type() {
|
|
ASSERT(is_call_stub() || is_keyed_call_stub());
|
|
byte type = READ_BYTE_FIELD(this, kCheckTypeOffset);
|
|
return static_cast<CheckType>(type);
|
|
}
|
|
|
|
|
|
void Code::set_check_type(CheckType value) {
|
|
ASSERT(is_call_stub() || is_keyed_call_stub());
|
|
WRITE_BYTE_FIELD(this, kCheckTypeOffset, value);
|
|
}
|
|
|
|
|
|
byte Code::unary_op_type() {
|
|
ASSERT(is_unary_op_stub());
|
|
return UnaryOpTypeField::decode(
|
|
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
|
|
}
|
|
|
|
|
|
void Code::set_unary_op_type(byte value) {
|
|
ASSERT(is_unary_op_stub());
|
|
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
|
|
int updated = UnaryOpTypeField::update(previous, value);
|
|
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
|
|
}
|
|
|
|
|
|
byte Code::to_boolean_state() {
|
|
return extended_extra_ic_state();
|
|
}
|
|
|
|
|
|
bool Code::has_function_cache() {
|
|
ASSERT(kind() == STUB);
|
|
return HasFunctionCacheField::decode(
|
|
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
|
|
}
|
|
|
|
|
|
void Code::set_has_function_cache(bool flag) {
|
|
ASSERT(kind() == STUB);
|
|
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
|
|
int updated = HasFunctionCacheField::update(previous, flag);
|
|
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
|
|
}
|
|
|
|
|
|
bool Code::marked_for_deoptimization() {
|
|
ASSERT(kind() == OPTIMIZED_FUNCTION);
|
|
return MarkedForDeoptimizationField::decode(
|
|
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
|
|
}
|
|
|
|
|
|
void Code::set_marked_for_deoptimization(bool flag) {
|
|
ASSERT(kind() == OPTIMIZED_FUNCTION);
|
|
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
|
|
int updated = MarkedForDeoptimizationField::update(previous, flag);
|
|
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
|
|
}
|
|
|
|
|
|
bool Code::is_inline_cache_stub() {
|
|
Kind kind = this->kind();
|
|
switch (kind) {
|
|
#define CASE(name) case name: return true;
|
|
IC_KIND_LIST(CASE)
|
|
#undef CASE
|
|
default: return false;
|
|
}
|
|
}
|
|
|
|
|
|
bool Code::is_debug_break() {
|
|
return ic_state() == DEBUG_STUB && extra_ic_state() == DEBUG_BREAK;
|
|
}
|
|
|
|
|
|
Code::Flags Code::ComputeFlags(Kind kind,
|
|
InlineCacheState ic_state,
|
|
ExtraICState extra_ic_state,
|
|
StubType type,
|
|
int argc,
|
|
InlineCacheHolderFlag holder) {
|
|
ASSERT(argc <= Code::kMaxArguments);
|
|
// Since the extended extra ic state overlaps with the argument count
|
|
// for CALL_ICs, do so checks to make sure that they don't interfere.
|
|
ASSERT((kind != Code::CALL_IC &&
|
|
kind != Code::KEYED_CALL_IC) ||
|
|
(ExtraICStateField::encode(extra_ic_state) | true));
|
|
// Compute the bit mask.
|
|
unsigned int bits = KindField::encode(kind)
|
|
| ICStateField::encode(ic_state)
|
|
| TypeField::encode(type)
|
|
| ExtendedExtraICStateField::encode(extra_ic_state)
|
|
| CacheHolderField::encode(holder);
|
|
if (!Code::needs_extended_extra_ic_state(kind)) {
|
|
bits |= (argc << kArgumentsCountShift);
|
|
}
|
|
return static_cast<Flags>(bits);
|
|
}
|
|
|
|
|
|
Code::Flags Code::ComputeMonomorphicFlags(Kind kind,
|
|
ExtraICState extra_ic_state,
|
|
StubType type,
|
|
int argc,
|
|
InlineCacheHolderFlag holder) {
|
|
return ComputeFlags(kind, MONOMORPHIC, extra_ic_state, type, argc, holder);
|
|
}
|
|
|
|
|
|
Code::Kind Code::ExtractKindFromFlags(Flags flags) {
|
|
return KindField::decode(flags);
|
|
}
|
|
|
|
|
|
InlineCacheState Code::ExtractICStateFromFlags(Flags flags) {
|
|
return ICStateField::decode(flags);
|
|
}
|
|
|
|
|
|
Code::ExtraICState Code::ExtractExtraICStateFromFlags(Flags flags) {
|
|
return ExtraICStateField::decode(flags);
|
|
}
|
|
|
|
|
|
Code::ExtraICState Code::ExtractExtendedExtraICStateFromFlags(
|
|
Flags flags) {
|
|
return ExtendedExtraICStateField::decode(flags);
|
|
}
|
|
|
|
|
|
Code::StubType Code::ExtractTypeFromFlags(Flags flags) {
|
|
return TypeField::decode(flags);
|
|
}
|
|
|
|
|
|
int Code::ExtractArgumentsCountFromFlags(Flags flags) {
|
|
return (flags & kArgumentsCountMask) >> kArgumentsCountShift;
|
|
}
|
|
|
|
|
|
InlineCacheHolderFlag Code::ExtractCacheHolderFromFlags(Flags flags) {
|
|
return CacheHolderField::decode(flags);
|
|
}
|
|
|
|
|
|
Code::Flags Code::RemoveTypeFromFlags(Flags flags) {
|
|
int bits = flags & ~TypeField::kMask;
|
|
return static_cast<Flags>(bits);
|
|
}
|
|
|
|
|
|
Code* Code::GetCodeFromTargetAddress(Address address) {
|
|
HeapObject* code = HeapObject::FromAddress(address - Code::kHeaderSize);
|
|
// GetCodeFromTargetAddress might be called when marking objects during mark
|
|
// sweep. reinterpret_cast is therefore used instead of the more appropriate
|
|
// Code::cast. Code::cast does not work when the object's map is
|
|
// marked.
|
|
Code* result = reinterpret_cast<Code*>(code);
|
|
return result;
|
|
}
|
|
|
|
|
|
Object* Code::GetObjectFromEntryAddress(Address location_of_address) {
|
|
return HeapObject::
|
|
FromAddress(Memory::Address_at(location_of_address) - Code::kHeaderSize);
|
|
}
|
|
|
|
|
|
Object* Map::prototype() {
|
|
return READ_FIELD(this, kPrototypeOffset);
|
|
}
|
|
|
|
|
|
void Map::set_prototype(Object* value, WriteBarrierMode mode) {
|
|
ASSERT(value->IsNull() || value->IsJSReceiver());
|
|
WRITE_FIELD(this, kPrototypeOffset, value);
|
|
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kPrototypeOffset, value, mode);
|
|
}
|
|
|
|
|
|
// If the descriptor is using the empty transition array, install a new empty
|
|
// transition array that will have place for an element transition.
|
|
static MaybeObject* EnsureHasTransitionArray(Map* map) {
|
|
TransitionArray* transitions;
|
|
MaybeObject* maybe_transitions;
|
|
if (!map->HasTransitionArray()) {
|
|
maybe_transitions = TransitionArray::Allocate(0);
|
|
if (!maybe_transitions->To(&transitions)) return maybe_transitions;
|
|
transitions->set_back_pointer_storage(map->GetBackPointer());
|
|
} else if (!map->transitions()->IsFullTransitionArray()) {
|
|
maybe_transitions = map->transitions()->ExtendToFullTransitionArray();
|
|
if (!maybe_transitions->To(&transitions)) return maybe_transitions;
|
|
} else {
|
|
return map;
|
|
}
|
|
map->set_transitions(transitions);
|
|
return transitions;
|
|
}
|
|
|
|
|
|
void Map::InitializeDescriptors(DescriptorArray* descriptors) {
|
|
int len = descriptors->number_of_descriptors();
|
|
set_instance_descriptors(descriptors);
|
|
SetNumberOfOwnDescriptors(len);
|
|
}
|
|
|
|
|
|
ACCESSORS(Map, instance_descriptors, DescriptorArray, kDescriptorsOffset)
|
|
SMI_ACCESSORS(Map, bit_field3, kBitField3Offset)
|
|
|
|
|
|
void Map::ClearTransitions(Heap* heap, WriteBarrierMode mode) {
|
|
Object* back_pointer = GetBackPointer();
|
|
|
|
if (Heap::ShouldZapGarbage() && HasTransitionArray()) {
|
|
ZapTransitions();
|
|
}
|
|
|
|
WRITE_FIELD(this, kTransitionsOrBackPointerOffset, back_pointer);
|
|
CONDITIONAL_WRITE_BARRIER(
|
|
heap, this, kTransitionsOrBackPointerOffset, back_pointer, mode);
|
|
}
|
|
|
|
|
|
void Map::AppendDescriptor(Descriptor* desc,
|
|
const DescriptorArray::WhitenessWitness& witness) {
|
|
DescriptorArray* descriptors = instance_descriptors();
|
|
int number_of_own_descriptors = NumberOfOwnDescriptors();
|
|
ASSERT(descriptors->number_of_descriptors() == number_of_own_descriptors);
|
|
descriptors->Append(desc, witness);
|
|
SetNumberOfOwnDescriptors(number_of_own_descriptors + 1);
|
|
}
|
|
|
|
|
|
Object* Map::GetBackPointer() {
|
|
Object* object = READ_FIELD(this, kTransitionsOrBackPointerOffset);
|
|
if (object->IsDescriptorArray()) {
|
|
return TransitionArray::cast(object)->back_pointer_storage();
|
|
} else {
|
|
ASSERT(object->IsMap() || object->IsUndefined());
|
|
return object;
|
|
}
|
|
}
|
|
|
|
|
|
bool Map::HasElementsTransition() {
|
|
return HasTransitionArray() && transitions()->HasElementsTransition();
|
|
}
|
|
|
|
|
|
bool Map::HasTransitionArray() {
|
|
Object* object = READ_FIELD(this, kTransitionsOrBackPointerOffset);
|
|
return object->IsTransitionArray();
|
|
}
|
|
|
|
|
|
Map* Map::elements_transition_map() {
|
|
return transitions()->elements_transition();
|
|
}
|
|
|
|
|
|
bool Map::CanHaveMoreTransitions() {
|
|
if (!HasTransitionArray()) return true;
|
|
return FixedArray::SizeFor(transitions()->length() +
|
|
TransitionArray::kTransitionSize)
|
|
<= Page::kMaxNonCodeHeapObjectSize;
|
|
}
|
|
|
|
|
|
MaybeObject* Map::AddTransition(Name* key,
|
|
Map* target,
|
|
SimpleTransitionFlag flag) {
|
|
if (HasTransitionArray()) return transitions()->CopyInsert(key, target);
|
|
return TransitionArray::NewWith(flag, key, target, GetBackPointer());
|
|
}
|
|
|
|
|
|
void Map::SetTransition(int transition_index, Map* target) {
|
|
transitions()->SetTarget(transition_index, target);
|
|
}
|
|
|
|
|
|
Map* Map::GetTransition(int transition_index) {
|
|
return transitions()->GetTarget(transition_index);
|
|
}
|
|
|
|
|
|
MaybeObject* Map::set_elements_transition_map(Map* transitioned_map) {
|
|
MaybeObject* allow_elements = EnsureHasTransitionArray(this);
|
|
if (allow_elements->IsFailure()) return allow_elements;
|
|
transitions()->set_elements_transition(transitioned_map);
|
|
return this;
|
|
}
|
|
|
|
|
|
FixedArray* Map::GetPrototypeTransitions() {
|
|
if (!HasTransitionArray()) return GetHeap()->empty_fixed_array();
|
|
if (!transitions()->HasPrototypeTransitions()) {
|
|
return GetHeap()->empty_fixed_array();
|
|
}
|
|
return transitions()->GetPrototypeTransitions();
|
|
}
|
|
|
|
|
|
MaybeObject* Map::SetPrototypeTransitions(FixedArray* proto_transitions) {
|
|
MaybeObject* allow_prototype = EnsureHasTransitionArray(this);
|
|
if (allow_prototype->IsFailure()) return allow_prototype;
|
|
#ifdef DEBUG
|
|
if (HasPrototypeTransitions()) {
|
|
ASSERT(GetPrototypeTransitions() != proto_transitions);
|
|
ZapPrototypeTransitions();
|
|
}
|
|
#endif
|
|
transitions()->SetPrototypeTransitions(proto_transitions);
|
|
return this;
|
|
}
|
|
|
|
|
|
bool Map::HasPrototypeTransitions() {
|
|
return HasTransitionArray() && transitions()->HasPrototypeTransitions();
|
|
}
|
|
|
|
|
|
TransitionArray* Map::transitions() {
|
|
ASSERT(HasTransitionArray());
|
|
Object* object = READ_FIELD(this, kTransitionsOrBackPointerOffset);
|
|
return TransitionArray::cast(object);
|
|
}
|
|
|
|
|
|
void Map::set_transitions(TransitionArray* transition_array,
|
|
WriteBarrierMode mode) {
|
|
// Transition arrays are not shared. When one is replaced, it should not
|
|
// keep referenced objects alive, so we zap it.
|
|
// When there is another reference to the array somewhere (e.g. a handle),
|
|
// not zapping turns from a waste of memory into a source of crashes.
|
|
if (HasTransitionArray()) {
|
|
ASSERT(transitions() != transition_array);
|
|
ZapTransitions();
|
|
}
|
|
|
|
WRITE_FIELD(this, kTransitionsOrBackPointerOffset, transition_array);
|
|
CONDITIONAL_WRITE_BARRIER(
|
|
GetHeap(), this, kTransitionsOrBackPointerOffset, transition_array, mode);
|
|
}
|
|
|
|
|
|
void Map::init_back_pointer(Object* undefined) {
|
|
ASSERT(undefined->IsUndefined());
|
|
WRITE_FIELD(this, kTransitionsOrBackPointerOffset, undefined);
|
|
}
|
|
|
|
|
|
void Map::SetBackPointer(Object* value, WriteBarrierMode mode) {
|
|
ASSERT(instance_type() >= FIRST_JS_RECEIVER_TYPE);
|
|
ASSERT((value->IsUndefined() && GetBackPointer()->IsMap()) ||
|
|
(value->IsMap() && GetBackPointer()->IsUndefined()));
|
|
Object* object = READ_FIELD(this, kTransitionsOrBackPointerOffset);
|
|
if (object->IsTransitionArray()) {
|
|
TransitionArray::cast(object)->set_back_pointer_storage(value);
|
|
} else {
|
|
WRITE_FIELD(this, kTransitionsOrBackPointerOffset, value);
|
|
CONDITIONAL_WRITE_BARRIER(
|
|
GetHeap(), this, kTransitionsOrBackPointerOffset, value, mode);
|
|
}
|
|
}
|
|
|
|
|
|
// Can either be Smi (no transitions), normal transition array, or a transition
|
|
// array with the header overwritten as a Smi (thus iterating).
|
|
TransitionArray* Map::unchecked_transition_array() {
|
|
Object* object = *HeapObject::RawField(this,
|
|
Map::kTransitionsOrBackPointerOffset);
|
|
TransitionArray* transition_array = static_cast<TransitionArray*>(object);
|
|
return transition_array;
|
|
}
|
|
|
|
|
|
HeapObject* Map::UncheckedPrototypeTransitions() {
|
|
ASSERT(HasTransitionArray());
|
|
ASSERT(unchecked_transition_array()->HasPrototypeTransitions());
|
|
return unchecked_transition_array()->UncheckedPrototypeTransitions();
|
|
}
|
|
|
|
|
|
ACCESSORS(Map, code_cache, Object, kCodeCacheOffset)
|
|
ACCESSORS(Map, dependent_code, DependentCode, kDependentCodeOffset)
|
|
ACCESSORS(Map, constructor, Object, kConstructorOffset)
|
|
|
|
ACCESSORS(JSFunction, shared, SharedFunctionInfo, kSharedFunctionInfoOffset)
|
|
ACCESSORS(JSFunction, literals_or_bindings, FixedArray, kLiteralsOffset)
|
|
ACCESSORS(JSFunction, next_function_link, Object, kNextFunctionLinkOffset)
|
|
|
|
ACCESSORS(GlobalObject, builtins, JSBuiltinsObject, kBuiltinsOffset)
|
|
ACCESSORS(GlobalObject, native_context, Context, kNativeContextOffset)
|
|
ACCESSORS(GlobalObject, global_context, Context, kGlobalContextOffset)
|
|
ACCESSORS(GlobalObject, global_receiver, JSObject, kGlobalReceiverOffset)
|
|
|
|
ACCESSORS(JSGlobalProxy, native_context, Object, kNativeContextOffset)
|
|
|
|
ACCESSORS(AccessorInfo, name, Object, kNameOffset)
|
|
ACCESSORS_TO_SMI(AccessorInfo, flag, kFlagOffset)
|
|
ACCESSORS(AccessorInfo, expected_receiver_type, Object,
|
|
kExpectedReceiverTypeOffset)
|
|
|
|
ACCESSORS(DeclaredAccessorDescriptor, serialized_data, ByteArray,
|
|
kSerializedDataOffset)
|
|
|
|
ACCESSORS(DeclaredAccessorInfo, descriptor, DeclaredAccessorDescriptor,
|
|
kDescriptorOffset)
|
|
|
|
ACCESSORS(ExecutableAccessorInfo, getter, Object, kGetterOffset)
|
|
ACCESSORS(ExecutableAccessorInfo, setter, Object, kSetterOffset)
|
|
ACCESSORS(ExecutableAccessorInfo, data, Object, kDataOffset)
|
|
|
|
ACCESSORS(Box, value, Object, kValueOffset)
|
|
|
|
ACCESSORS(AccessorPair, getter, Object, kGetterOffset)
|
|
ACCESSORS(AccessorPair, setter, Object, kSetterOffset)
|
|
|
|
ACCESSORS(AccessCheckInfo, named_callback, Object, kNamedCallbackOffset)
|
|
ACCESSORS(AccessCheckInfo, indexed_callback, Object, kIndexedCallbackOffset)
|
|
ACCESSORS(AccessCheckInfo, data, Object, kDataOffset)
|
|
|
|
ACCESSORS(InterceptorInfo, getter, Object, kGetterOffset)
|
|
ACCESSORS(InterceptorInfo, setter, Object, kSetterOffset)
|
|
ACCESSORS(InterceptorInfo, query, Object, kQueryOffset)
|
|
ACCESSORS(InterceptorInfo, deleter, Object, kDeleterOffset)
|
|
ACCESSORS(InterceptorInfo, enumerator, Object, kEnumeratorOffset)
|
|
ACCESSORS(InterceptorInfo, data, Object, kDataOffset)
|
|
|
|
ACCESSORS(CallHandlerInfo, callback, Object, kCallbackOffset)
|
|
ACCESSORS(CallHandlerInfo, data, Object, kDataOffset)
|
|
|
|
ACCESSORS(TemplateInfo, tag, Object, kTagOffset)
|
|
ACCESSORS(TemplateInfo, property_list, Object, kPropertyListOffset)
|
|
|
|
ACCESSORS(FunctionTemplateInfo, serial_number, Object, kSerialNumberOffset)
|
|
ACCESSORS(FunctionTemplateInfo, call_code, Object, kCallCodeOffset)
|
|
ACCESSORS(FunctionTemplateInfo, property_accessors, Object,
|
|
kPropertyAccessorsOffset)
|
|
ACCESSORS(FunctionTemplateInfo, prototype_template, Object,
|
|
kPrototypeTemplateOffset)
|
|
ACCESSORS(FunctionTemplateInfo, parent_template, Object, kParentTemplateOffset)
|
|
ACCESSORS(FunctionTemplateInfo, named_property_handler, Object,
|
|
kNamedPropertyHandlerOffset)
|
|
ACCESSORS(FunctionTemplateInfo, indexed_property_handler, Object,
|
|
kIndexedPropertyHandlerOffset)
|
|
ACCESSORS(FunctionTemplateInfo, instance_template, Object,
|
|
kInstanceTemplateOffset)
|
|
ACCESSORS(FunctionTemplateInfo, class_name, Object, kClassNameOffset)
|
|
ACCESSORS(FunctionTemplateInfo, signature, Object, kSignatureOffset)
|
|
ACCESSORS(FunctionTemplateInfo, instance_call_handler, Object,
|
|
kInstanceCallHandlerOffset)
|
|
ACCESSORS(FunctionTemplateInfo, access_check_info, Object,
|
|
kAccessCheckInfoOffset)
|
|
ACCESSORS_TO_SMI(FunctionTemplateInfo, flag, kFlagOffset)
|
|
|
|
ACCESSORS(ObjectTemplateInfo, constructor, Object, kConstructorOffset)
|
|
ACCESSORS(ObjectTemplateInfo, internal_field_count, Object,
|
|
kInternalFieldCountOffset)
|
|
|
|
ACCESSORS(SignatureInfo, receiver, Object, kReceiverOffset)
|
|
ACCESSORS(SignatureInfo, args, Object, kArgsOffset)
|
|
|
|
ACCESSORS(TypeSwitchInfo, types, Object, kTypesOffset)
|
|
|
|
ACCESSORS(AllocationSiteInfo, payload, Object, kPayloadOffset)
|
|
|
|
ACCESSORS(Script, source, Object, kSourceOffset)
|
|
ACCESSORS(Script, name, Object, kNameOffset)
|
|
ACCESSORS(Script, id, Smi, kIdOffset)
|
|
ACCESSORS_TO_SMI(Script, line_offset, kLineOffsetOffset)
|
|
ACCESSORS_TO_SMI(Script, column_offset, kColumnOffsetOffset)
|
|
ACCESSORS(Script, data, Object, kDataOffset)
|
|
ACCESSORS(Script, context_data, Object, kContextOffset)
|
|
ACCESSORS(Script, wrapper, Foreign, kWrapperOffset)
|
|
ACCESSORS_TO_SMI(Script, type, kTypeOffset)
|
|
ACCESSORS_TO_SMI(Script, compilation_type, kCompilationTypeOffset)
|
|
ACCESSORS_TO_SMI(Script, compilation_state, kCompilationStateOffset)
|
|
ACCESSORS(Script, line_ends, Object, kLineEndsOffset)
|
|
ACCESSORS(Script, eval_from_shared, Object, kEvalFromSharedOffset)
|
|
ACCESSORS_TO_SMI(Script, eval_from_instructions_offset,
|
|
kEvalFrominstructionsOffsetOffset)
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
ACCESSORS(DebugInfo, shared, SharedFunctionInfo, kSharedFunctionInfoIndex)
|
|
ACCESSORS(DebugInfo, original_code, Code, kOriginalCodeIndex)
|
|
ACCESSORS(DebugInfo, code, Code, kPatchedCodeIndex)
|
|
ACCESSORS(DebugInfo, break_points, FixedArray, kBreakPointsStateIndex)
|
|
|
|
ACCESSORS_TO_SMI(BreakPointInfo, code_position, kCodePositionIndex)
|
|
ACCESSORS_TO_SMI(BreakPointInfo, source_position, kSourcePositionIndex)
|
|
ACCESSORS_TO_SMI(BreakPointInfo, statement_position, kStatementPositionIndex)
|
|
ACCESSORS(BreakPointInfo, break_point_objects, Object, kBreakPointObjectsIndex)
|
|
#endif
|
|
|
|
ACCESSORS(SharedFunctionInfo, name, Object, kNameOffset)
|
|
ACCESSORS(SharedFunctionInfo, optimized_code_map, Object,
|
|
kOptimizedCodeMapOffset)
|
|
ACCESSORS(SharedFunctionInfo, construct_stub, Code, kConstructStubOffset)
|
|
ACCESSORS(SharedFunctionInfo, initial_map, Object, kInitialMapOffset)
|
|
ACCESSORS(SharedFunctionInfo, instance_class_name, Object,
|
|
kInstanceClassNameOffset)
|
|
ACCESSORS(SharedFunctionInfo, function_data, Object, kFunctionDataOffset)
|
|
ACCESSORS(SharedFunctionInfo, script, Object, kScriptOffset)
|
|
ACCESSORS(SharedFunctionInfo, debug_info, Object, kDebugInfoOffset)
|
|
ACCESSORS(SharedFunctionInfo, inferred_name, String, kInferredNameOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo, ast_node_count, kAstNodeCountOffset)
|
|
|
|
|
|
SMI_ACCESSORS(FunctionTemplateInfo, length, kLengthOffset)
|
|
BOOL_ACCESSORS(FunctionTemplateInfo, flag, hidden_prototype,
|
|
kHiddenPrototypeBit)
|
|
BOOL_ACCESSORS(FunctionTemplateInfo, flag, undetectable, kUndetectableBit)
|
|
BOOL_ACCESSORS(FunctionTemplateInfo, flag, needs_access_check,
|
|
kNeedsAccessCheckBit)
|
|
BOOL_ACCESSORS(FunctionTemplateInfo, flag, read_only_prototype,
|
|
kReadOnlyPrototypeBit)
|
|
BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_expression,
|
|
kIsExpressionBit)
|
|
BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_toplevel,
|
|
kIsTopLevelBit)
|
|
|
|
BOOL_ACCESSORS(SharedFunctionInfo,
|
|
compiler_hints,
|
|
allows_lazy_compilation,
|
|
kAllowLazyCompilation)
|
|
BOOL_ACCESSORS(SharedFunctionInfo,
|
|
compiler_hints,
|
|
allows_lazy_compilation_without_context,
|
|
kAllowLazyCompilationWithoutContext)
|
|
BOOL_ACCESSORS(SharedFunctionInfo,
|
|
compiler_hints,
|
|
uses_arguments,
|
|
kUsesArguments)
|
|
BOOL_ACCESSORS(SharedFunctionInfo,
|
|
compiler_hints,
|
|
has_duplicate_parameters,
|
|
kHasDuplicateParameters)
|
|
|
|
|
|
#if V8_HOST_ARCH_32_BIT
|
|
SMI_ACCESSORS(SharedFunctionInfo, length, kLengthOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo, formal_parameter_count,
|
|
kFormalParameterCountOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo, expected_nof_properties,
|
|
kExpectedNofPropertiesOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo, num_literals, kNumLiteralsOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo, start_position_and_type,
|
|
kStartPositionAndTypeOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo, end_position, kEndPositionOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo, function_token_position,
|
|
kFunctionTokenPositionOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo, compiler_hints,
|
|
kCompilerHintsOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo, opt_count, kOptCountOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo, counters, kCountersOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo,
|
|
stress_deopt_counter,
|
|
kStressDeoptCounterOffset)
|
|
#else
|
|
|
|
#define PSEUDO_SMI_ACCESSORS_LO(holder, name, offset) \
|
|
STATIC_ASSERT(holder::offset % kPointerSize == 0); \
|
|
int holder::name() { \
|
|
int value = READ_INT_FIELD(this, offset); \
|
|
ASSERT(kHeapObjectTag == 1); \
|
|
ASSERT((value & kHeapObjectTag) == 0); \
|
|
return value >> 1; \
|
|
} \
|
|
void holder::set_##name(int value) { \
|
|
ASSERT(kHeapObjectTag == 1); \
|
|
ASSERT((value & 0xC0000000) == 0xC0000000 || \
|
|
(value & 0xC0000000) == 0x000000000); \
|
|
WRITE_INT_FIELD(this, \
|
|
offset, \
|
|
(value << 1) & ~kHeapObjectTag); \
|
|
}
|
|
|
|
#define PSEUDO_SMI_ACCESSORS_HI(holder, name, offset) \
|
|
STATIC_ASSERT(holder::offset % kPointerSize == kIntSize); \
|
|
INT_ACCESSORS(holder, name, offset)
|
|
|
|
|
|
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, length, kLengthOffset)
|
|
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
|
|
formal_parameter_count,
|
|
kFormalParameterCountOffset)
|
|
|
|
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
|
|
expected_nof_properties,
|
|
kExpectedNofPropertiesOffset)
|
|
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, num_literals, kNumLiteralsOffset)
|
|
|
|
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, end_position, kEndPositionOffset)
|
|
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
|
|
start_position_and_type,
|
|
kStartPositionAndTypeOffset)
|
|
|
|
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
|
|
function_token_position,
|
|
kFunctionTokenPositionOffset)
|
|
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
|
|
compiler_hints,
|
|
kCompilerHintsOffset)
|
|
|
|
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, opt_count, kOptCountOffset)
|
|
|
|
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, counters, kCountersOffset)
|
|
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
|
|
stress_deopt_counter,
|
|
kStressDeoptCounterOffset)
|
|
#endif
|
|
|
|
|
|
int SharedFunctionInfo::construction_count() {
|
|
return READ_BYTE_FIELD(this, kConstructionCountOffset);
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::set_construction_count(int value) {
|
|
ASSERT(0 <= value && value < 256);
|
|
WRITE_BYTE_FIELD(this, kConstructionCountOffset, static_cast<byte>(value));
|
|
}
|
|
|
|
|
|
BOOL_ACCESSORS(SharedFunctionInfo,
|
|
compiler_hints,
|
|
live_objects_may_exist,
|
|
kLiveObjectsMayExist)
|
|
|
|
|
|
bool SharedFunctionInfo::IsInobjectSlackTrackingInProgress() {
|
|
return initial_map() != GetHeap()->undefined_value();
|
|
}
|
|
|
|
|
|
BOOL_GETTER(SharedFunctionInfo,
|
|
compiler_hints,
|
|
optimization_disabled,
|
|
kOptimizationDisabled)
|
|
|
|
|
|
void SharedFunctionInfo::set_optimization_disabled(bool disable) {
|
|
set_compiler_hints(BooleanBit::set(compiler_hints(),
|
|
kOptimizationDisabled,
|
|
disable));
|
|
// If disabling optimizations we reflect that in the code object so
|
|
// it will not be counted as optimizable code.
|
|
if ((code()->kind() == Code::FUNCTION) && disable) {
|
|
code()->set_optimizable(false);
|
|
}
|
|
}
|
|
|
|
|
|
int SharedFunctionInfo::profiler_ticks() {
|
|
if (code()->kind() != Code::FUNCTION) return 0;
|
|
return code()->profiler_ticks();
|
|
}
|
|
|
|
|
|
LanguageMode SharedFunctionInfo::language_mode() {
|
|
int hints = compiler_hints();
|
|
if (BooleanBit::get(hints, kExtendedModeFunction)) {
|
|
ASSERT(BooleanBit::get(hints, kStrictModeFunction));
|
|
return EXTENDED_MODE;
|
|
}
|
|
return BooleanBit::get(hints, kStrictModeFunction)
|
|
? STRICT_MODE : CLASSIC_MODE;
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::set_language_mode(LanguageMode language_mode) {
|
|
// We only allow language mode transitions that go set the same language mode
|
|
// again or go up in the chain:
|
|
// CLASSIC_MODE -> STRICT_MODE -> EXTENDED_MODE.
|
|
ASSERT(this->language_mode() == CLASSIC_MODE ||
|
|
this->language_mode() == language_mode ||
|
|
language_mode == EXTENDED_MODE);
|
|
int hints = compiler_hints();
|
|
hints = BooleanBit::set(
|
|
hints, kStrictModeFunction, language_mode != CLASSIC_MODE);
|
|
hints = BooleanBit::set(
|
|
hints, kExtendedModeFunction, language_mode == EXTENDED_MODE);
|
|
set_compiler_hints(hints);
|
|
}
|
|
|
|
|
|
bool SharedFunctionInfo::is_classic_mode() {
|
|
return !BooleanBit::get(compiler_hints(), kStrictModeFunction);
|
|
}
|
|
|
|
BOOL_GETTER(SharedFunctionInfo, compiler_hints, is_extended_mode,
|
|
kExtendedModeFunction)
|
|
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, native, kNative)
|
|
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints,
|
|
name_should_print_as_anonymous,
|
|
kNameShouldPrintAsAnonymous)
|
|
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, bound, kBoundFunction)
|
|
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_anonymous, kIsAnonymous)
|
|
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_function, kIsFunction)
|
|
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, dont_optimize,
|
|
kDontOptimize)
|
|
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, dont_inline, kDontInline)
|
|
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, dont_cache, kDontCache)
|
|
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, dont_flush, kDontFlush)
|
|
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_generator, kIsGenerator)
|
|
|
|
void SharedFunctionInfo::BeforeVisitingPointers() {
|
|
if (IsInobjectSlackTrackingInProgress()) DetachInitialMap();
|
|
}
|
|
|
|
|
|
ACCESSORS(CodeCache, default_cache, FixedArray, kDefaultCacheOffset)
|
|
ACCESSORS(CodeCache, normal_type_cache, Object, kNormalTypeCacheOffset)
|
|
|
|
ACCESSORS(PolymorphicCodeCache, cache, Object, kCacheOffset)
|
|
|
|
bool Script::HasValidSource() {
|
|
Object* src = this->source();
|
|
if (!src->IsString()) return true;
|
|
String* src_str = String::cast(src);
|
|
if (!StringShape(src_str).IsExternal()) return true;
|
|
if (src_str->IsOneByteRepresentation()) {
|
|
return ExternalAsciiString::cast(src)->resource() != NULL;
|
|
} else if (src_str->IsTwoByteRepresentation()) {
|
|
return ExternalTwoByteString::cast(src)->resource() != NULL;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::DontAdaptArguments() {
|
|
ASSERT(code()->kind() == Code::BUILTIN);
|
|
set_formal_parameter_count(kDontAdaptArgumentsSentinel);
|
|
}
|
|
|
|
|
|
int SharedFunctionInfo::start_position() {
|
|
return start_position_and_type() >> kStartPositionShift;
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::set_start_position(int start_position) {
|
|
set_start_position_and_type((start_position << kStartPositionShift)
|
|
| (start_position_and_type() & ~kStartPositionMask));
|
|
}
|
|
|
|
|
|
Code* SharedFunctionInfo::code() {
|
|
return Code::cast(READ_FIELD(this, kCodeOffset));
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::set_code(Code* value, WriteBarrierMode mode) {
|
|
WRITE_FIELD(this, kCodeOffset, value);
|
|
CONDITIONAL_WRITE_BARRIER(value->GetHeap(), this, kCodeOffset, value, mode);
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::ReplaceCode(Code* value) {
|
|
// If the GC metadata field is already used then the function was
|
|
// enqueued as a code flushing candidate and we remove it now.
|
|
if (code()->gc_metadata() != NULL) {
|
|
CodeFlusher* flusher = GetHeap()->mark_compact_collector()->code_flusher();
|
|
flusher->EvictCandidate(this);
|
|
}
|
|
|
|
ASSERT(code()->gc_metadata() == NULL && value->gc_metadata() == NULL);
|
|
set_code(value);
|
|
}
|
|
|
|
|
|
ScopeInfo* SharedFunctionInfo::scope_info() {
|
|
return reinterpret_cast<ScopeInfo*>(READ_FIELD(this, kScopeInfoOffset));
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::set_scope_info(ScopeInfo* value,
|
|
WriteBarrierMode mode) {
|
|
WRITE_FIELD(this, kScopeInfoOffset, reinterpret_cast<Object*>(value));
|
|
CONDITIONAL_WRITE_BARRIER(GetHeap(),
|
|
this,
|
|
kScopeInfoOffset,
|
|
reinterpret_cast<Object*>(value),
|
|
mode);
|
|
}
|
|
|
|
|
|
bool SharedFunctionInfo::is_compiled() {
|
|
return code() !=
|
|
Isolate::Current()->builtins()->builtin(Builtins::kLazyCompile);
|
|
}
|
|
|
|
|
|
bool SharedFunctionInfo::IsApiFunction() {
|
|
return function_data()->IsFunctionTemplateInfo();
|
|
}
|
|
|
|
|
|
FunctionTemplateInfo* SharedFunctionInfo::get_api_func_data() {
|
|
ASSERT(IsApiFunction());
|
|
return FunctionTemplateInfo::cast(function_data());
|
|
}
|
|
|
|
|
|
bool SharedFunctionInfo::HasBuiltinFunctionId() {
|
|
return function_data()->IsSmi();
|
|
}
|
|
|
|
|
|
BuiltinFunctionId SharedFunctionInfo::builtin_function_id() {
|
|
ASSERT(HasBuiltinFunctionId());
|
|
return static_cast<BuiltinFunctionId>(Smi::cast(function_data())->value());
|
|
}
|
|
|
|
|
|
int SharedFunctionInfo::ic_age() {
|
|
return ICAgeBits::decode(counters());
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::set_ic_age(int ic_age) {
|
|
set_counters(ICAgeBits::update(counters(), ic_age));
|
|
}
|
|
|
|
|
|
int SharedFunctionInfo::deopt_count() {
|
|
return DeoptCountBits::decode(counters());
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::set_deopt_count(int deopt_count) {
|
|
set_counters(DeoptCountBits::update(counters(), deopt_count));
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::increment_deopt_count() {
|
|
int value = counters();
|
|
int deopt_count = DeoptCountBits::decode(value);
|
|
deopt_count = (deopt_count + 1) & DeoptCountBits::kMax;
|
|
set_counters(DeoptCountBits::update(value, deopt_count));
|
|
}
|
|
|
|
|
|
int SharedFunctionInfo::opt_reenable_tries() {
|
|
return OptReenableTriesBits::decode(counters());
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::set_opt_reenable_tries(int tries) {
|
|
set_counters(OptReenableTriesBits::update(counters(), tries));
|
|
}
|
|
|
|
|
|
bool SharedFunctionInfo::has_deoptimization_support() {
|
|
Code* code = this->code();
|
|
return code->kind() == Code::FUNCTION && code->has_deoptimization_support();
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::TryReenableOptimization() {
|
|
int tries = opt_reenable_tries();
|
|
set_opt_reenable_tries((tries + 1) & OptReenableTriesBits::kMax);
|
|
// We reenable optimization whenever the number of tries is a large
|
|
// enough power of 2.
|
|
if (tries >= 16 && (((tries - 1) & tries) == 0)) {
|
|
set_optimization_disabled(false);
|
|
set_opt_count(0);
|
|
set_deopt_count(0);
|
|
code()->set_optimizable(true);
|
|
}
|
|
}
|
|
|
|
|
|
bool JSFunction::IsBuiltin() {
|
|
return context()->global_object()->IsJSBuiltinsObject();
|
|
}
|
|
|
|
|
|
bool JSFunction::NeedsArgumentsAdaption() {
|
|
return shared()->formal_parameter_count() !=
|
|
SharedFunctionInfo::kDontAdaptArgumentsSentinel;
|
|
}
|
|
|
|
|
|
bool JSFunction::IsOptimized() {
|
|
return code()->kind() == Code::OPTIMIZED_FUNCTION;
|
|
}
|
|
|
|
|
|
bool JSFunction::IsOptimizable() {
|
|
return code()->kind() == Code::FUNCTION && code()->optimizable();
|
|
}
|
|
|
|
|
|
bool JSFunction::IsMarkedForLazyRecompilation() {
|
|
return code() == GetIsolate()->builtins()->builtin(Builtins::kLazyRecompile);
|
|
}
|
|
|
|
|
|
bool JSFunction::IsMarkedForInstallingRecompiledCode() {
|
|
return code() == GetIsolate()->builtins()->builtin(
|
|
Builtins::kInstallRecompiledCode);
|
|
}
|
|
|
|
|
|
bool JSFunction::IsMarkedForParallelRecompilation() {
|
|
return code() == GetIsolate()->builtins()->builtin(
|
|
Builtins::kParallelRecompile);
|
|
}
|
|
|
|
|
|
bool JSFunction::IsInRecompileQueue() {
|
|
return code() == GetIsolate()->builtins()->builtin(
|
|
Builtins::kInRecompileQueue);
|
|
}
|
|
|
|
|
|
Code* JSFunction::code() {
|
|
return Code::cast(
|
|
Code::GetObjectFromEntryAddress(FIELD_ADDR(this, kCodeEntryOffset)));
|
|
}
|
|
|
|
|
|
void JSFunction::set_code(Code* value) {
|
|
ASSERT(!HEAP->InNewSpace(value));
|
|
Address entry = value->entry();
|
|
WRITE_INTPTR_FIELD(this, kCodeEntryOffset, reinterpret_cast<intptr_t>(entry));
|
|
GetHeap()->incremental_marking()->RecordWriteOfCodeEntry(
|
|
this,
|
|
HeapObject::RawField(this, kCodeEntryOffset),
|
|
value);
|
|
}
|
|
|
|
|
|
void JSFunction::set_code_no_write_barrier(Code* value) {
|
|
ASSERT(!HEAP->InNewSpace(value));
|
|
Address entry = value->entry();
|
|
WRITE_INTPTR_FIELD(this, kCodeEntryOffset, reinterpret_cast<intptr_t>(entry));
|
|
}
|
|
|
|
|
|
void JSFunction::ReplaceCode(Code* code) {
|
|
bool was_optimized = IsOptimized();
|
|
bool is_optimized = code->kind() == Code::OPTIMIZED_FUNCTION;
|
|
|
|
set_code(code);
|
|
|
|
// Add/remove the function from the list of optimized functions for this
|
|
// context based on the state change.
|
|
if (!was_optimized && is_optimized) {
|
|
context()->native_context()->AddOptimizedFunction(this);
|
|
}
|
|
if (was_optimized && !is_optimized) {
|
|
context()->native_context()->RemoveOptimizedFunction(this);
|
|
}
|
|
}
|
|
|
|
|
|
Context* JSFunction::context() {
|
|
return Context::cast(READ_FIELD(this, kContextOffset));
|
|
}
|
|
|
|
|
|
void JSFunction::set_context(Object* value) {
|
|
ASSERT(value->IsUndefined() || value->IsContext());
|
|
WRITE_FIELD(this, kContextOffset, value);
|
|
WRITE_BARRIER(GetHeap(), this, kContextOffset, value);
|
|
}
|
|
|
|
ACCESSORS(JSFunction, prototype_or_initial_map, Object,
|
|
kPrototypeOrInitialMapOffset)
|
|
|
|
|
|
Map* JSFunction::initial_map() {
|
|
return Map::cast(prototype_or_initial_map());
|
|
}
|
|
|
|
|
|
void JSFunction::set_initial_map(Map* value) {
|
|
set_prototype_or_initial_map(value);
|
|
}
|
|
|
|
|
|
bool JSFunction::has_initial_map() {
|
|
return prototype_or_initial_map()->IsMap();
|
|
}
|
|
|
|
|
|
bool JSFunction::has_instance_prototype() {
|
|
return has_initial_map() || !prototype_or_initial_map()->IsTheHole();
|
|
}
|
|
|
|
|
|
bool JSFunction::has_prototype() {
|
|
return map()->has_non_instance_prototype() || has_instance_prototype();
|
|
}
|
|
|
|
|
|
Object* JSFunction::instance_prototype() {
|
|
ASSERT(has_instance_prototype());
|
|
if (has_initial_map()) return initial_map()->prototype();
|
|
// When there is no initial map and the prototype is a JSObject, the
|
|
// initial map field is used for the prototype field.
|
|
return prototype_or_initial_map();
|
|
}
|
|
|
|
|
|
Object* JSFunction::prototype() {
|
|
ASSERT(has_prototype());
|
|
// If the function's prototype property has been set to a non-JSObject
|
|
// value, that value is stored in the constructor field of the map.
|
|
if (map()->has_non_instance_prototype()) return map()->constructor();
|
|
return instance_prototype();
|
|
}
|
|
|
|
|
|
bool JSFunction::should_have_prototype() {
|
|
return map()->function_with_prototype();
|
|
}
|
|
|
|
|
|
bool JSFunction::is_compiled() {
|
|
return code() != GetIsolate()->builtins()->builtin(Builtins::kLazyCompile);
|
|
}
|
|
|
|
|
|
FixedArray* JSFunction::literals() {
|
|
ASSERT(!shared()->bound());
|
|
return literals_or_bindings();
|
|
}
|
|
|
|
|
|
void JSFunction::set_literals(FixedArray* literals) {
|
|
ASSERT(!shared()->bound());
|
|
set_literals_or_bindings(literals);
|
|
}
|
|
|
|
|
|
FixedArray* JSFunction::function_bindings() {
|
|
ASSERT(shared()->bound());
|
|
return literals_or_bindings();
|
|
}
|
|
|
|
|
|
void JSFunction::set_function_bindings(FixedArray* bindings) {
|
|
ASSERT(shared()->bound());
|
|
// Bound function literal may be initialized to the empty fixed array
|
|
// before the bindings are set.
|
|
ASSERT(bindings == GetHeap()->empty_fixed_array() ||
|
|
bindings->map() == GetHeap()->fixed_cow_array_map());
|
|
set_literals_or_bindings(bindings);
|
|
}
|
|
|
|
|
|
int JSFunction::NumberOfLiterals() {
|
|
ASSERT(!shared()->bound());
|
|
return literals()->length();
|
|
}
|
|
|
|
|
|
Object* JSBuiltinsObject::javascript_builtin(Builtins::JavaScript id) {
|
|
ASSERT(id < kJSBuiltinsCount); // id is unsigned.
|
|
return READ_FIELD(this, OffsetOfFunctionWithId(id));
|
|
}
|
|
|
|
|
|
void JSBuiltinsObject::set_javascript_builtin(Builtins::JavaScript id,
|
|
Object* value) {
|
|
ASSERT(id < kJSBuiltinsCount); // id is unsigned.
|
|
WRITE_FIELD(this, OffsetOfFunctionWithId(id), value);
|
|
WRITE_BARRIER(GetHeap(), this, OffsetOfFunctionWithId(id), value);
|
|
}
|
|
|
|
|
|
Code* JSBuiltinsObject::javascript_builtin_code(Builtins::JavaScript id) {
|
|
ASSERT(id < kJSBuiltinsCount); // id is unsigned.
|
|
return Code::cast(READ_FIELD(this, OffsetOfCodeWithId(id)));
|
|
}
|
|
|
|
|
|
void JSBuiltinsObject::set_javascript_builtin_code(Builtins::JavaScript id,
|
|
Code* value) {
|
|
ASSERT(id < kJSBuiltinsCount); // id is unsigned.
|
|
WRITE_FIELD(this, OffsetOfCodeWithId(id), value);
|
|
ASSERT(!HEAP->InNewSpace(value));
|
|
}
|
|
|
|
|
|
ACCESSORS(JSProxy, handler, Object, kHandlerOffset)
|
|
ACCESSORS(JSProxy, hash, Object, kHashOffset)
|
|
ACCESSORS(JSFunctionProxy, call_trap, Object, kCallTrapOffset)
|
|
ACCESSORS(JSFunctionProxy, construct_trap, Object, kConstructTrapOffset)
|
|
|
|
|
|
void JSProxy::InitializeBody(int object_size, Object* value) {
|
|
ASSERT(!value->IsHeapObject() || !GetHeap()->InNewSpace(value));
|
|
for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
|
|
WRITE_FIELD(this, offset, value);
|
|
}
|
|
}
|
|
|
|
|
|
ACCESSORS(JSSet, table, Object, kTableOffset)
|
|
ACCESSORS(JSMap, table, Object, kTableOffset)
|
|
ACCESSORS(JSWeakMap, table, Object, kTableOffset)
|
|
ACCESSORS(JSWeakMap, next, Object, kNextOffset)
|
|
|
|
|
|
Address Foreign::foreign_address() {
|
|
return AddressFrom<Address>(READ_INTPTR_FIELD(this, kForeignAddressOffset));
|
|
}
|
|
|
|
|
|
void Foreign::set_foreign_address(Address value) {
|
|
WRITE_INTPTR_FIELD(this, kForeignAddressOffset, OffsetFrom(value));
|
|
}
|
|
|
|
|
|
ACCESSORS(JSGeneratorObject, function, JSFunction, kFunctionOffset)
|
|
ACCESSORS(JSGeneratorObject, context, Context, kContextOffset)
|
|
ACCESSORS(JSGeneratorObject, receiver, Object, kReceiverOffset)
|
|
SMI_ACCESSORS(JSGeneratorObject, continuation, kContinuationOffset)
|
|
ACCESSORS(JSGeneratorObject, operand_stack, FixedArray, kOperandStackOffset)
|
|
SMI_ACCESSORS(JSGeneratorObject, stack_handler_index, kStackHandlerIndexOffset)
|
|
|
|
|
|
JSGeneratorObject* JSGeneratorObject::cast(Object* obj) {
|
|
ASSERT(obj->IsJSGeneratorObject());
|
|
ASSERT(HeapObject::cast(obj)->Size() == JSGeneratorObject::kSize);
|
|
return reinterpret_cast<JSGeneratorObject*>(obj);
|
|
}
|
|
|
|
|
|
ACCESSORS(JSModule, context, Object, kContextOffset)
|
|
ACCESSORS(JSModule, scope_info, ScopeInfo, kScopeInfoOffset)
|
|
|
|
|
|
JSModule* JSModule::cast(Object* obj) {
|
|
ASSERT(obj->IsJSModule());
|
|
ASSERT(HeapObject::cast(obj)->Size() == JSModule::kSize);
|
|
return reinterpret_cast<JSModule*>(obj);
|
|
}
|
|
|
|
|
|
ACCESSORS(JSValue, value, Object, kValueOffset)
|
|
|
|
|
|
JSValue* JSValue::cast(Object* obj) {
|
|
ASSERT(obj->IsJSValue());
|
|
ASSERT(HeapObject::cast(obj)->Size() == JSValue::kSize);
|
|
return reinterpret_cast<JSValue*>(obj);
|
|
}
|
|
|
|
|
|
ACCESSORS(JSDate, value, Object, kValueOffset)
|
|
ACCESSORS(JSDate, cache_stamp, Object, kCacheStampOffset)
|
|
ACCESSORS(JSDate, year, Object, kYearOffset)
|
|
ACCESSORS(JSDate, month, Object, kMonthOffset)
|
|
ACCESSORS(JSDate, day, Object, kDayOffset)
|
|
ACCESSORS(JSDate, weekday, Object, kWeekdayOffset)
|
|
ACCESSORS(JSDate, hour, Object, kHourOffset)
|
|
ACCESSORS(JSDate, min, Object, kMinOffset)
|
|
ACCESSORS(JSDate, sec, Object, kSecOffset)
|
|
|
|
|
|
JSDate* JSDate::cast(Object* obj) {
|
|
ASSERT(obj->IsJSDate());
|
|
ASSERT(HeapObject::cast(obj)->Size() == JSDate::kSize);
|
|
return reinterpret_cast<JSDate*>(obj);
|
|
}
|
|
|
|
|
|
ACCESSORS(JSMessageObject, type, String, kTypeOffset)
|
|
ACCESSORS(JSMessageObject, arguments, JSArray, kArgumentsOffset)
|
|
ACCESSORS(JSMessageObject, script, Object, kScriptOffset)
|
|
ACCESSORS(JSMessageObject, stack_trace, Object, kStackTraceOffset)
|
|
ACCESSORS(JSMessageObject, stack_frames, Object, kStackFramesOffset)
|
|
SMI_ACCESSORS(JSMessageObject, start_position, kStartPositionOffset)
|
|
SMI_ACCESSORS(JSMessageObject, end_position, kEndPositionOffset)
|
|
|
|
|
|
JSMessageObject* JSMessageObject::cast(Object* obj) {
|
|
ASSERT(obj->IsJSMessageObject());
|
|
ASSERT(HeapObject::cast(obj)->Size() == JSMessageObject::kSize);
|
|
return reinterpret_cast<JSMessageObject*>(obj);
|
|
}
|
|
|
|
|
|
INT_ACCESSORS(Code, instruction_size, kInstructionSizeOffset)
|
|
INT_ACCESSORS(Code, prologue_offset, kPrologueOffset)
|
|
ACCESSORS(Code, relocation_info, ByteArray, kRelocationInfoOffset)
|
|
ACCESSORS(Code, handler_table, FixedArray, kHandlerTableOffset)
|
|
ACCESSORS(Code, deoptimization_data, FixedArray, kDeoptimizationDataOffset)
|
|
|
|
|
|
// Type feedback slot: type_feedback_info for FUNCTIONs, stub_info for STUBs.
|
|
void Code::InitializeTypeFeedbackInfoNoWriteBarrier(Object* value) {
|
|
WRITE_FIELD(this, kTypeFeedbackInfoOffset, value);
|
|
}
|
|
|
|
|
|
Object* Code::type_feedback_info() {
|
|
ASSERT(kind() == FUNCTION);
|
|
return Object::cast(READ_FIELD(this, kTypeFeedbackInfoOffset));
|
|
}
|
|
|
|
|
|
void Code::set_type_feedback_info(Object* value, WriteBarrierMode mode) {
|
|
ASSERT(kind() == FUNCTION);
|
|
WRITE_FIELD(this, kTypeFeedbackInfoOffset, value);
|
|
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kTypeFeedbackInfoOffset,
|
|
value, mode);
|
|
}
|
|
|
|
|
|
int Code::stub_info() {
|
|
ASSERT(kind() == COMPARE_IC || kind() == COMPARE_NIL_IC ||
|
|
kind() == BINARY_OP_IC || kind() == LOAD_IC);
|
|
Object* value = READ_FIELD(this, kTypeFeedbackInfoOffset);
|
|
return Smi::cast(value)->value();
|
|
}
|
|
|
|
|
|
void Code::set_stub_info(int value) {
|
|
ASSERT(kind() == COMPARE_IC ||
|
|
kind() == COMPARE_NIL_IC ||
|
|
kind() == BINARY_OP_IC ||
|
|
kind() == STUB ||
|
|
kind() == LOAD_IC ||
|
|
kind() == KEYED_LOAD_IC ||
|
|
kind() == STORE_IC ||
|
|
kind() == KEYED_STORE_IC);
|
|
WRITE_FIELD(this, kTypeFeedbackInfoOffset, Smi::FromInt(value));
|
|
}
|
|
|
|
|
|
void Code::set_deoptimizing_functions(Object* value) {
|
|
ASSERT(kind() == OPTIMIZED_FUNCTION);
|
|
WRITE_FIELD(this, kTypeFeedbackInfoOffset, value);
|
|
}
|
|
|
|
|
|
Object* Code::deoptimizing_functions() {
|
|
ASSERT(kind() == OPTIMIZED_FUNCTION);
|
|
return Object::cast(READ_FIELD(this, kTypeFeedbackInfoOffset));
|
|
}
|
|
|
|
|
|
ACCESSORS(Code, gc_metadata, Object, kGCMetadataOffset)
|
|
INT_ACCESSORS(Code, ic_age, kICAgeOffset)
|
|
|
|
|
|
byte* Code::instruction_start() {
|
|
return FIELD_ADDR(this, kHeaderSize);
|
|
}
|
|
|
|
|
|
byte* Code::instruction_end() {
|
|
return instruction_start() + instruction_size();
|
|
}
|
|
|
|
|
|
int Code::body_size() {
|
|
return RoundUp(instruction_size(), kObjectAlignment);
|
|
}
|
|
|
|
|
|
ByteArray* Code::unchecked_relocation_info() {
|
|
return reinterpret_cast<ByteArray*>(READ_FIELD(this, kRelocationInfoOffset));
|
|
}
|
|
|
|
|
|
byte* Code::relocation_start() {
|
|
return unchecked_relocation_info()->GetDataStartAddress();
|
|
}
|
|
|
|
|
|
int Code::relocation_size() {
|
|
return unchecked_relocation_info()->length();
|
|
}
|
|
|
|
|
|
byte* Code::entry() {
|
|
return instruction_start();
|
|
}
|
|
|
|
|
|
bool Code::contains(byte* inner_pointer) {
|
|
return (address() <= inner_pointer) && (inner_pointer <= address() + Size());
|
|
}
|
|
|
|
|
|
ACCESSORS(JSArray, length, Object, kLengthOffset)
|
|
|
|
|
|
void* JSArrayBuffer::backing_store() {
|
|
intptr_t ptr = READ_INTPTR_FIELD(this, kBackingStoreOffset);
|
|
return reinterpret_cast<void*>(ptr);
|
|
}
|
|
|
|
|
|
void JSArrayBuffer::set_backing_store(void* value, WriteBarrierMode mode) {
|
|
intptr_t ptr = reinterpret_cast<intptr_t>(value);
|
|
WRITE_INTPTR_FIELD(this, kBackingStoreOffset, ptr);
|
|
}
|
|
|
|
|
|
ACCESSORS(JSArrayBuffer, byte_length, Object, kByteLengthOffset)
|
|
ACCESSORS_TO_SMI(JSArrayBuffer, flag, kFlagOffset)
|
|
|
|
|
|
bool JSArrayBuffer::is_external() {
|
|
return BooleanBit::get(flag(), kIsExternalBit);
|
|
}
|
|
|
|
|
|
void JSArrayBuffer::set_is_external(bool value) {
|
|
set_flag(BooleanBit::set(flag(), kIsExternalBit, value));
|
|
}
|
|
|
|
|
|
ACCESSORS(JSArrayBuffer, weak_next, Object, kWeakNextOffset)
|
|
ACCESSORS(JSArrayBuffer, weak_first_view, Object, kWeakFirstViewOffset)
|
|
|
|
|
|
ACCESSORS(JSArrayBufferView, buffer, Object, kBufferOffset)
|
|
ACCESSORS(JSArrayBufferView, byte_offset, Object, kByteOffsetOffset)
|
|
ACCESSORS(JSArrayBufferView, byte_length, Object, kByteLengthOffset)
|
|
ACCESSORS(JSArrayBufferView, weak_next, Object, kWeakNextOffset)
|
|
ACCESSORS(JSTypedArray, length, Object, kLengthOffset)
|
|
|
|
ACCESSORS(JSRegExp, data, Object, kDataOffset)
|
|
|
|
|
|
JSRegExp::Type JSRegExp::TypeTag() {
|
|
Object* data = this->data();
|
|
if (data->IsUndefined()) return JSRegExp::NOT_COMPILED;
|
|
Smi* smi = Smi::cast(FixedArray::cast(data)->get(kTagIndex));
|
|
return static_cast<JSRegExp::Type>(smi->value());
|
|
}
|
|
|
|
|
|
int JSRegExp::CaptureCount() {
|
|
switch (TypeTag()) {
|
|
case ATOM:
|
|
return 0;
|
|
case IRREGEXP:
|
|
return Smi::cast(DataAt(kIrregexpCaptureCountIndex))->value();
|
|
default:
|
|
UNREACHABLE();
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
|
|
JSRegExp::Flags JSRegExp::GetFlags() {
|
|
ASSERT(this->data()->IsFixedArray());
|
|
Object* data = this->data();
|
|
Smi* smi = Smi::cast(FixedArray::cast(data)->get(kFlagsIndex));
|
|
return Flags(smi->value());
|
|
}
|
|
|
|
|
|
String* JSRegExp::Pattern() {
|
|
ASSERT(this->data()->IsFixedArray());
|
|
Object* data = this->data();
|
|
String* pattern= String::cast(FixedArray::cast(data)->get(kSourceIndex));
|
|
return pattern;
|
|
}
|
|
|
|
|
|
Object* JSRegExp::DataAt(int index) {
|
|
ASSERT(TypeTag() != NOT_COMPILED);
|
|
return FixedArray::cast(data())->get(index);
|
|
}
|
|
|
|
|
|
void JSRegExp::SetDataAt(int index, Object* value) {
|
|
ASSERT(TypeTag() != NOT_COMPILED);
|
|
ASSERT(index >= kDataIndex); // Only implementation data can be set this way.
|
|
FixedArray::cast(data())->set(index, value);
|
|
}
|
|
|
|
|
|
ElementsKind JSObject::GetElementsKind() {
|
|
ElementsKind kind = map()->elements_kind();
|
|
#if DEBUG
|
|
FixedArrayBase* fixed_array =
|
|
reinterpret_cast<FixedArrayBase*>(READ_FIELD(this, kElementsOffset));
|
|
Map* map = fixed_array->map();
|
|
ASSERT((IsFastSmiOrObjectElementsKind(kind) &&
|
|
(map == GetHeap()->fixed_array_map() ||
|
|
map == GetHeap()->fixed_cow_array_map())) ||
|
|
(IsFastDoubleElementsKind(kind) &&
|
|
(fixed_array->IsFixedDoubleArray() ||
|
|
fixed_array == GetHeap()->empty_fixed_array())) ||
|
|
(kind == DICTIONARY_ELEMENTS &&
|
|
fixed_array->IsFixedArray() &&
|
|
fixed_array->IsDictionary()) ||
|
|
(kind > DICTIONARY_ELEMENTS));
|
|
ASSERT((kind != NON_STRICT_ARGUMENTS_ELEMENTS) ||
|
|
(elements()->IsFixedArray() && elements()->length() >= 2));
|
|
#endif
|
|
return kind;
|
|
}
|
|
|
|
|
|
ElementsAccessor* JSObject::GetElementsAccessor() {
|
|
return ElementsAccessor::ForKind(GetElementsKind());
|
|
}
|
|
|
|
|
|
bool JSObject::HasFastObjectElements() {
|
|
return IsFastObjectElementsKind(GetElementsKind());
|
|
}
|
|
|
|
|
|
bool JSObject::HasFastSmiElements() {
|
|
return IsFastSmiElementsKind(GetElementsKind());
|
|
}
|
|
|
|
|
|
bool JSObject::HasFastSmiOrObjectElements() {
|
|
return IsFastSmiOrObjectElementsKind(GetElementsKind());
|
|
}
|
|
|
|
|
|
bool JSObject::HasFastDoubleElements() {
|
|
return IsFastDoubleElementsKind(GetElementsKind());
|
|
}
|
|
|
|
|
|
bool JSObject::HasFastHoleyElements() {
|
|
return IsFastHoleyElementsKind(GetElementsKind());
|
|
}
|
|
|
|
|
|
bool JSObject::HasFastElements() {
|
|
return IsFastElementsKind(GetElementsKind());
|
|
}
|
|
|
|
|
|
bool JSObject::HasDictionaryElements() {
|
|
return GetElementsKind() == DICTIONARY_ELEMENTS;
|
|
}
|
|
|
|
|
|
bool JSObject::HasNonStrictArgumentsElements() {
|
|
return GetElementsKind() == NON_STRICT_ARGUMENTS_ELEMENTS;
|
|
}
|
|
|
|
|
|
bool JSObject::HasExternalArrayElements() {
|
|
HeapObject* array = elements();
|
|
ASSERT(array != NULL);
|
|
return array->IsExternalArray();
|
|
}
|
|
|
|
|
|
#define EXTERNAL_ELEMENTS_CHECK(name, type) \
|
|
bool JSObject::HasExternal##name##Elements() { \
|
|
HeapObject* array = elements(); \
|
|
ASSERT(array != NULL); \
|
|
if (!array->IsHeapObject()) \
|
|
return false; \
|
|
return array->map()->instance_type() == type; \
|
|
}
|
|
|
|
|
|
EXTERNAL_ELEMENTS_CHECK(Byte, EXTERNAL_BYTE_ARRAY_TYPE)
|
|
EXTERNAL_ELEMENTS_CHECK(UnsignedByte, EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE)
|
|
EXTERNAL_ELEMENTS_CHECK(Short, EXTERNAL_SHORT_ARRAY_TYPE)
|
|
EXTERNAL_ELEMENTS_CHECK(UnsignedShort,
|
|
EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE)
|
|
EXTERNAL_ELEMENTS_CHECK(Int, EXTERNAL_INT_ARRAY_TYPE)
|
|
EXTERNAL_ELEMENTS_CHECK(UnsignedInt,
|
|
EXTERNAL_UNSIGNED_INT_ARRAY_TYPE)
|
|
EXTERNAL_ELEMENTS_CHECK(Float,
|
|
EXTERNAL_FLOAT_ARRAY_TYPE)
|
|
EXTERNAL_ELEMENTS_CHECK(Double,
|
|
EXTERNAL_DOUBLE_ARRAY_TYPE)
|
|
EXTERNAL_ELEMENTS_CHECK(Pixel, EXTERNAL_PIXEL_ARRAY_TYPE)
|
|
|
|
|
|
bool JSObject::HasNamedInterceptor() {
|
|
return map()->has_named_interceptor();
|
|
}
|
|
|
|
|
|
bool JSObject::HasIndexedInterceptor() {
|
|
return map()->has_indexed_interceptor();
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::EnsureWritableFastElements() {
|
|
ASSERT(HasFastSmiOrObjectElements());
|
|
FixedArray* elems = FixedArray::cast(elements());
|
|
Isolate* isolate = GetIsolate();
|
|
if (elems->map() != isolate->heap()->fixed_cow_array_map()) return elems;
|
|
Object* writable_elems;
|
|
{ MaybeObject* maybe_writable_elems = isolate->heap()->CopyFixedArrayWithMap(
|
|
elems, isolate->heap()->fixed_array_map());
|
|
if (!maybe_writable_elems->ToObject(&writable_elems)) {
|
|
return maybe_writable_elems;
|
|
}
|
|
}
|
|
set_elements(FixedArray::cast(writable_elems));
|
|
isolate->counters()->cow_arrays_converted()->Increment();
|
|
return writable_elems;
|
|
}
|
|
|
|
|
|
NameDictionary* JSObject::property_dictionary() {
|
|
ASSERT(!HasFastProperties());
|
|
return NameDictionary::cast(properties());
|
|
}
|
|
|
|
|
|
SeededNumberDictionary* JSObject::element_dictionary() {
|
|
ASSERT(HasDictionaryElements());
|
|
return SeededNumberDictionary::cast(elements());
|
|
}
|
|
|
|
|
|
bool Name::IsHashFieldComputed(uint32_t field) {
|
|
return (field & kHashNotComputedMask) == 0;
|
|
}
|
|
|
|
|
|
bool Name::HasHashCode() {
|
|
return IsHashFieldComputed(hash_field());
|
|
}
|
|
|
|
|
|
uint32_t Name::Hash() {
|
|
// Fast case: has hash code already been computed?
|
|
uint32_t field = hash_field();
|
|
if (IsHashFieldComputed(field)) return field >> kHashShift;
|
|
// Slow case: compute hash code and set it. Has to be a string.
|
|
return String::cast(this)->ComputeAndSetHash();
|
|
}
|
|
|
|
|
|
StringHasher::StringHasher(int length, uint32_t seed)
|
|
: length_(length),
|
|
raw_running_hash_(seed),
|
|
array_index_(0),
|
|
is_array_index_(0 < length_ && length_ <= String::kMaxArrayIndexSize),
|
|
is_first_char_(true) {
|
|
ASSERT(FLAG_randomize_hashes || raw_running_hash_ == 0);
|
|
}
|
|
|
|
|
|
bool StringHasher::has_trivial_hash() {
|
|
return length_ > String::kMaxHashCalcLength;
|
|
}
|
|
|
|
|
|
uint32_t StringHasher::AddCharacterCore(uint32_t running_hash, uint16_t c) {
|
|
running_hash += c;
|
|
running_hash += (running_hash << 10);
|
|
running_hash ^= (running_hash >> 6);
|
|
return running_hash;
|
|
}
|
|
|
|
|
|
uint32_t StringHasher::GetHashCore(uint32_t running_hash) {
|
|
running_hash += (running_hash << 3);
|
|
running_hash ^= (running_hash >> 11);
|
|
running_hash += (running_hash << 15);
|
|
if ((running_hash & String::kHashBitMask) == 0) {
|
|
return kZeroHash;
|
|
}
|
|
return running_hash;
|
|
}
|
|
|
|
|
|
void StringHasher::AddCharacter(uint16_t c) {
|
|
// Use the Jenkins one-at-a-time hash function to update the hash
|
|
// for the given character.
|
|
raw_running_hash_ = AddCharacterCore(raw_running_hash_, c);
|
|
}
|
|
|
|
|
|
bool StringHasher::UpdateIndex(uint16_t c) {
|
|
ASSERT(is_array_index_);
|
|
if (c < '0' || c > '9') {
|
|
is_array_index_ = false;
|
|
return false;
|
|
}
|
|
int d = c - '0';
|
|
if (is_first_char_) {
|
|
is_first_char_ = false;
|
|
if (c == '0' && length_ > 1) {
|
|
is_array_index_ = false;
|
|
return false;
|
|
}
|
|
}
|
|
if (array_index_ > 429496729U - ((d + 2) >> 3)) {
|
|
is_array_index_ = false;
|
|
return false;
|
|
}
|
|
array_index_ = array_index_ * 10 + d;
|
|
return true;
|
|
}
|
|
|
|
|
|
template<typename Char>
|
|
inline void StringHasher::AddCharacters(const Char* chars, int length) {
|
|
ASSERT(sizeof(Char) == 1 || sizeof(Char) == 2);
|
|
int i = 0;
|
|
if (is_array_index_) {
|
|
for (; i < length; i++) {
|
|
AddCharacter(chars[i]);
|
|
if (!UpdateIndex(chars[i])) {
|
|
i++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for (; i < length; i++) {
|
|
ASSERT(!is_array_index_);
|
|
AddCharacter(chars[i]);
|
|
}
|
|
}
|
|
|
|
|
|
template <typename schar>
|
|
uint32_t StringHasher::HashSequentialString(const schar* chars,
|
|
int length,
|
|
uint32_t seed) {
|
|
StringHasher hasher(length, seed);
|
|
if (!hasher.has_trivial_hash()) hasher.AddCharacters(chars, length);
|
|
return hasher.GetHashField();
|
|
}
|
|
|
|
|
|
bool Name::AsArrayIndex(uint32_t* index) {
|
|
return IsString() && String::cast(this)->AsArrayIndex(index);
|
|
}
|
|
|
|
|
|
bool String::AsArrayIndex(uint32_t* index) {
|
|
uint32_t field = hash_field();
|
|
if (IsHashFieldComputed(field) && (field & kIsNotArrayIndexMask)) {
|
|
return false;
|
|
}
|
|
return SlowAsArrayIndex(index);
|
|
}
|
|
|
|
|
|
Object* JSReceiver::GetPrototype() {
|
|
return map()->prototype();
|
|
}
|
|
|
|
|
|
Object* JSReceiver::GetConstructor() {
|
|
return map()->constructor();
|
|
}
|
|
|
|
|
|
bool JSReceiver::HasProperty(Name* name) {
|
|
if (IsJSProxy()) {
|
|
return JSProxy::cast(this)->HasPropertyWithHandler(name);
|
|
}
|
|
return GetPropertyAttribute(name) != ABSENT;
|
|
}
|
|
|
|
|
|
bool JSReceiver::HasLocalProperty(Name* name) {
|
|
if (IsJSProxy()) {
|
|
return JSProxy::cast(this)->HasPropertyWithHandler(name);
|
|
}
|
|
return GetLocalPropertyAttribute(name) != ABSENT;
|
|
}
|
|
|
|
|
|
PropertyAttributes JSReceiver::GetPropertyAttribute(Name* key) {
|
|
uint32_t index;
|
|
if (IsJSObject() && key->AsArrayIndex(&index)) {
|
|
return GetElementAttribute(index);
|
|
}
|
|
return GetPropertyAttributeWithReceiver(this, key);
|
|
}
|
|
|
|
|
|
PropertyAttributes JSReceiver::GetElementAttribute(uint32_t index) {
|
|
if (IsJSProxy()) {
|
|
return JSProxy::cast(this)->GetElementAttributeWithHandler(this, index);
|
|
}
|
|
return JSObject::cast(this)->GetElementAttributeWithReceiver(
|
|
this, index, true);
|
|
}
|
|
|
|
|
|
// TODO(504): this may be useful in other places too where JSGlobalProxy
|
|
// is used.
|
|
Object* JSObject::BypassGlobalProxy() {
|
|
if (IsJSGlobalProxy()) {
|
|
Object* proto = GetPrototype();
|
|
if (proto->IsNull()) return GetHeap()->undefined_value();
|
|
ASSERT(proto->IsJSGlobalObject());
|
|
return proto;
|
|
}
|
|
return this;
|
|
}
|
|
|
|
|
|
MaybeObject* JSReceiver::GetIdentityHash(CreationFlag flag) {
|
|
return IsJSProxy()
|
|
? JSProxy::cast(this)->GetIdentityHash(flag)
|
|
: JSObject::cast(this)->GetIdentityHash(flag);
|
|
}
|
|
|
|
|
|
bool JSReceiver::HasElement(uint32_t index) {
|
|
if (IsJSProxy()) {
|
|
return JSProxy::cast(this)->HasElementWithHandler(index);
|
|
}
|
|
return JSObject::cast(this)->GetElementAttributeWithReceiver(
|
|
this, index, true) != ABSENT;
|
|
}
|
|
|
|
|
|
bool JSReceiver::HasLocalElement(uint32_t index) {
|
|
if (IsJSProxy()) {
|
|
return JSProxy::cast(this)->HasElementWithHandler(index);
|
|
}
|
|
return JSObject::cast(this)->GetElementAttributeWithReceiver(
|
|
this, index, false) != ABSENT;
|
|
}
|
|
|
|
|
|
PropertyAttributes JSReceiver::GetLocalElementAttribute(uint32_t index) {
|
|
if (IsJSProxy()) {
|
|
return JSProxy::cast(this)->GetElementAttributeWithHandler(this, index);
|
|
}
|
|
return JSObject::cast(this)->GetElementAttributeWithReceiver(
|
|
this, index, false);
|
|
}
|
|
|
|
|
|
bool AccessorInfo::all_can_read() {
|
|
return BooleanBit::get(flag(), kAllCanReadBit);
|
|
}
|
|
|
|
|
|
void AccessorInfo::set_all_can_read(bool value) {
|
|
set_flag(BooleanBit::set(flag(), kAllCanReadBit, value));
|
|
}
|
|
|
|
|
|
bool AccessorInfo::all_can_write() {
|
|
return BooleanBit::get(flag(), kAllCanWriteBit);
|
|
}
|
|
|
|
|
|
void AccessorInfo::set_all_can_write(bool value) {
|
|
set_flag(BooleanBit::set(flag(), kAllCanWriteBit, value));
|
|
}
|
|
|
|
|
|
bool AccessorInfo::prohibits_overwriting() {
|
|
return BooleanBit::get(flag(), kProhibitsOverwritingBit);
|
|
}
|
|
|
|
|
|
void AccessorInfo::set_prohibits_overwriting(bool value) {
|
|
set_flag(BooleanBit::set(flag(), kProhibitsOverwritingBit, value));
|
|
}
|
|
|
|
|
|
PropertyAttributes AccessorInfo::property_attributes() {
|
|
return AttributesField::decode(static_cast<uint32_t>(flag()->value()));
|
|
}
|
|
|
|
|
|
void AccessorInfo::set_property_attributes(PropertyAttributes attributes) {
|
|
set_flag(Smi::FromInt(AttributesField::update(flag()->value(), attributes)));
|
|
}
|
|
|
|
|
|
bool AccessorInfo::IsCompatibleReceiver(Object* receiver) {
|
|
Object* function_template = expected_receiver_type();
|
|
if (!function_template->IsFunctionTemplateInfo()) return true;
|
|
return receiver->IsInstanceOf(FunctionTemplateInfo::cast(function_template));
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
void Dictionary<Shape, Key>::SetEntry(int entry,
|
|
Object* key,
|
|
Object* value) {
|
|
SetEntry(entry, key, value, PropertyDetails(Smi::FromInt(0)));
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
void Dictionary<Shape, Key>::SetEntry(int entry,
|
|
Object* key,
|
|
Object* value,
|
|
PropertyDetails details) {
|
|
ASSERT(!key->IsName() ||
|
|
details.IsDeleted() ||
|
|
details.dictionary_index() > 0);
|
|
int index = HashTable<Shape, Key>::EntryToIndex(entry);
|
|
DisallowHeapAllocation no_gc;
|
|
WriteBarrierMode mode = FixedArray::GetWriteBarrierMode(no_gc);
|
|
FixedArray::set(index, key, mode);
|
|
FixedArray::set(index+1, value, mode);
|
|
FixedArray::set(index+2, details.AsSmi());
|
|
}
|
|
|
|
|
|
bool NumberDictionaryShape::IsMatch(uint32_t key, Object* other) {
|
|
ASSERT(other->IsNumber());
|
|
return key == static_cast<uint32_t>(other->Number());
|
|
}
|
|
|
|
|
|
uint32_t UnseededNumberDictionaryShape::Hash(uint32_t key) {
|
|
return ComputeIntegerHash(key, 0);
|
|
}
|
|
|
|
|
|
uint32_t UnseededNumberDictionaryShape::HashForObject(uint32_t key,
|
|
Object* other) {
|
|
ASSERT(other->IsNumber());
|
|
return ComputeIntegerHash(static_cast<uint32_t>(other->Number()), 0);
|
|
}
|
|
|
|
uint32_t SeededNumberDictionaryShape::SeededHash(uint32_t key, uint32_t seed) {
|
|
return ComputeIntegerHash(key, seed);
|
|
}
|
|
|
|
uint32_t SeededNumberDictionaryShape::SeededHashForObject(uint32_t key,
|
|
uint32_t seed,
|
|
Object* other) {
|
|
ASSERT(other->IsNumber());
|
|
return ComputeIntegerHash(static_cast<uint32_t>(other->Number()), seed);
|
|
}
|
|
|
|
MaybeObject* NumberDictionaryShape::AsObject(Heap* heap, uint32_t key) {
|
|
return heap->NumberFromUint32(key);
|
|
}
|
|
|
|
|
|
bool NameDictionaryShape::IsMatch(Name* key, Object* other) {
|
|
// We know that all entries in a hash table had their hash keys created.
|
|
// Use that knowledge to have fast failure.
|
|
if (key->Hash() != Name::cast(other)->Hash()) return false;
|
|
return key->Equals(Name::cast(other));
|
|
}
|
|
|
|
|
|
uint32_t NameDictionaryShape::Hash(Name* key) {
|
|
return key->Hash();
|
|
}
|
|
|
|
|
|
uint32_t NameDictionaryShape::HashForObject(Name* key, Object* other) {
|
|
return Name::cast(other)->Hash();
|
|
}
|
|
|
|
|
|
MaybeObject* NameDictionaryShape::AsObject(Heap* heap, Name* key) {
|
|
return key;
|
|
}
|
|
|
|
|
|
template <int entrysize>
|
|
bool ObjectHashTableShape<entrysize>::IsMatch(Object* key, Object* other) {
|
|
return key->SameValue(other);
|
|
}
|
|
|
|
|
|
template <int entrysize>
|
|
uint32_t ObjectHashTableShape<entrysize>::Hash(Object* key) {
|
|
MaybeObject* maybe_hash = key->GetHash(OMIT_CREATION);
|
|
return Smi::cast(maybe_hash->ToObjectChecked())->value();
|
|
}
|
|
|
|
|
|
template <int entrysize>
|
|
uint32_t ObjectHashTableShape<entrysize>::HashForObject(Object* key,
|
|
Object* other) {
|
|
MaybeObject* maybe_hash = other->GetHash(OMIT_CREATION);
|
|
return Smi::cast(maybe_hash->ToObjectChecked())->value();
|
|
}
|
|
|
|
|
|
template <int entrysize>
|
|
MaybeObject* ObjectHashTableShape<entrysize>::AsObject(Heap* heap,
|
|
Object* key) {
|
|
return key;
|
|
}
|
|
|
|
|
|
void Map::ClearCodeCache(Heap* heap) {
|
|
// No write barrier is needed since empty_fixed_array is not in new space.
|
|
// Please note this function is used during marking:
|
|
// - MarkCompactCollector::MarkUnmarkedObject
|
|
// - IncrementalMarking::Step
|
|
ASSERT(!heap->InNewSpace(heap->empty_fixed_array()));
|
|
WRITE_FIELD(this, kCodeCacheOffset, heap->empty_fixed_array());
|
|
}
|
|
|
|
|
|
void JSArray::EnsureSize(int required_size) {
|
|
ASSERT(HasFastSmiOrObjectElements());
|
|
FixedArray* elts = FixedArray::cast(elements());
|
|
const int kArraySizeThatFitsComfortablyInNewSpace = 128;
|
|
if (elts->length() < required_size) {
|
|
// Doubling in size would be overkill, but leave some slack to avoid
|
|
// constantly growing.
|
|
Expand(required_size + (required_size >> 3));
|
|
// It's a performance benefit to keep a frequently used array in new-space.
|
|
} else if (!GetHeap()->new_space()->Contains(elts) &&
|
|
required_size < kArraySizeThatFitsComfortablyInNewSpace) {
|
|
// Expand will allocate a new backing store in new space even if the size
|
|
// we asked for isn't larger than what we had before.
|
|
Expand(required_size);
|
|
}
|
|
}
|
|
|
|
|
|
void JSArray::set_length(Smi* length) {
|
|
// Don't need a write barrier for a Smi.
|
|
set_length(static_cast<Object*>(length), SKIP_WRITE_BARRIER);
|
|
}
|
|
|
|
|
|
bool JSArray::AllowsSetElementsLength() {
|
|
bool result = elements()->IsFixedArray() || elements()->IsFixedDoubleArray();
|
|
ASSERT(result == !HasExternalArrayElements());
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* JSArray::SetContent(FixedArrayBase* storage) {
|
|
MaybeObject* maybe_result = EnsureCanContainElements(
|
|
storage, storage->length(), ALLOW_COPIED_DOUBLE_ELEMENTS);
|
|
if (maybe_result->IsFailure()) return maybe_result;
|
|
ASSERT((storage->map() == GetHeap()->fixed_double_array_map() &&
|
|
IsFastDoubleElementsKind(GetElementsKind())) ||
|
|
((storage->map() != GetHeap()->fixed_double_array_map()) &&
|
|
(IsFastObjectElementsKind(GetElementsKind()) ||
|
|
(IsFastSmiElementsKind(GetElementsKind()) &&
|
|
FixedArray::cast(storage)->ContainsOnlySmisOrHoles()))));
|
|
set_elements(storage);
|
|
set_length(Smi::FromInt(storage->length()));
|
|
return this;
|
|
}
|
|
|
|
|
|
MaybeObject* FixedArray::Copy() {
|
|
if (length() == 0) return this;
|
|
return GetHeap()->CopyFixedArray(this);
|
|
}
|
|
|
|
|
|
MaybeObject* FixedDoubleArray::Copy() {
|
|
if (length() == 0) return this;
|
|
return GetHeap()->CopyFixedDoubleArray(this);
|
|
}
|
|
|
|
|
|
void TypeFeedbackCells::SetAstId(int index, TypeFeedbackId id) {
|
|
set(1 + index * 2, Smi::FromInt(id.ToInt()));
|
|
}
|
|
|
|
|
|
TypeFeedbackId TypeFeedbackCells::AstId(int index) {
|
|
return TypeFeedbackId(Smi::cast(get(1 + index * 2))->value());
|
|
}
|
|
|
|
|
|
void TypeFeedbackCells::SetCell(int index, Cell* cell) {
|
|
set(index * 2, cell);
|
|
}
|
|
|
|
|
|
Cell* TypeFeedbackCells::GetCell(int index) {
|
|
return Cell::cast(get(index * 2));
|
|
}
|
|
|
|
|
|
Handle<Object> TypeFeedbackCells::UninitializedSentinel(Isolate* isolate) {
|
|
return isolate->factory()->the_hole_value();
|
|
}
|
|
|
|
|
|
Handle<Object> TypeFeedbackCells::MegamorphicSentinel(Isolate* isolate) {
|
|
return isolate->factory()->undefined_value();
|
|
}
|
|
|
|
|
|
Handle<Object> TypeFeedbackCells::MonomorphicArraySentinel(Isolate* isolate,
|
|
ElementsKind elements_kind) {
|
|
return Handle<Object>(Smi::FromInt(static_cast<int>(elements_kind)), isolate);
|
|
}
|
|
|
|
|
|
Object* TypeFeedbackCells::RawUninitializedSentinel(Heap* heap) {
|
|
return heap->the_hole_value();
|
|
}
|
|
|
|
|
|
int TypeFeedbackInfo::ic_total_count() {
|
|
int current = Smi::cast(READ_FIELD(this, kStorage1Offset))->value();
|
|
return ICTotalCountField::decode(current);
|
|
}
|
|
|
|
|
|
void TypeFeedbackInfo::set_ic_total_count(int count) {
|
|
int value = Smi::cast(READ_FIELD(this, kStorage1Offset))->value();
|
|
value = ICTotalCountField::update(value,
|
|
ICTotalCountField::decode(count));
|
|
WRITE_FIELD(this, kStorage1Offset, Smi::FromInt(value));
|
|
}
|
|
|
|
|
|
int TypeFeedbackInfo::ic_with_type_info_count() {
|
|
int current = Smi::cast(READ_FIELD(this, kStorage2Offset))->value();
|
|
return ICsWithTypeInfoCountField::decode(current);
|
|
}
|
|
|
|
|
|
void TypeFeedbackInfo::change_ic_with_type_info_count(int delta) {
|
|
int value = Smi::cast(READ_FIELD(this, kStorage2Offset))->value();
|
|
int new_count = ICsWithTypeInfoCountField::decode(value) + delta;
|
|
// We can get negative count here when the type-feedback info is
|
|
// shared between two code objects. The can only happen when
|
|
// the debugger made a shallow copy of code object (see Heap::CopyCode).
|
|
// Since we do not optimize when the debugger is active, we can skip
|
|
// this counter update.
|
|
if (new_count >= 0) {
|
|
new_count &= ICsWithTypeInfoCountField::kMask;
|
|
value = ICsWithTypeInfoCountField::update(value, new_count);
|
|
WRITE_FIELD(this, kStorage2Offset, Smi::FromInt(value));
|
|
}
|
|
}
|
|
|
|
|
|
void TypeFeedbackInfo::initialize_storage() {
|
|
WRITE_FIELD(this, kStorage1Offset, Smi::FromInt(0));
|
|
WRITE_FIELD(this, kStorage2Offset, Smi::FromInt(0));
|
|
}
|
|
|
|
|
|
void TypeFeedbackInfo::change_own_type_change_checksum() {
|
|
int value = Smi::cast(READ_FIELD(this, kStorage1Offset))->value();
|
|
int checksum = OwnTypeChangeChecksum::decode(value);
|
|
checksum = (checksum + 1) % (1 << kTypeChangeChecksumBits);
|
|
value = OwnTypeChangeChecksum::update(value, checksum);
|
|
// Ensure packed bit field is in Smi range.
|
|
if (value > Smi::kMaxValue) value |= Smi::kMinValue;
|
|
if (value < Smi::kMinValue) value &= ~Smi::kMinValue;
|
|
WRITE_FIELD(this, kStorage1Offset, Smi::FromInt(value));
|
|
}
|
|
|
|
|
|
void TypeFeedbackInfo::set_inlined_type_change_checksum(int checksum) {
|
|
int value = Smi::cast(READ_FIELD(this, kStorage2Offset))->value();
|
|
int mask = (1 << kTypeChangeChecksumBits) - 1;
|
|
value = InlinedTypeChangeChecksum::update(value, checksum & mask);
|
|
// Ensure packed bit field is in Smi range.
|
|
if (value > Smi::kMaxValue) value |= Smi::kMinValue;
|
|
if (value < Smi::kMinValue) value &= ~Smi::kMinValue;
|
|
WRITE_FIELD(this, kStorage2Offset, Smi::FromInt(value));
|
|
}
|
|
|
|
|
|
int TypeFeedbackInfo::own_type_change_checksum() {
|
|
int value = Smi::cast(READ_FIELD(this, kStorage1Offset))->value();
|
|
return OwnTypeChangeChecksum::decode(value);
|
|
}
|
|
|
|
|
|
bool TypeFeedbackInfo::matches_inlined_type_change_checksum(int checksum) {
|
|
int value = Smi::cast(READ_FIELD(this, kStorage2Offset))->value();
|
|
int mask = (1 << kTypeChangeChecksumBits) - 1;
|
|
return InlinedTypeChangeChecksum::decode(value) == (checksum & mask);
|
|
}
|
|
|
|
|
|
ACCESSORS(TypeFeedbackInfo, type_feedback_cells, TypeFeedbackCells,
|
|
kTypeFeedbackCellsOffset)
|
|
|
|
|
|
SMI_ACCESSORS(AliasedArgumentsEntry, aliased_context_slot, kAliasedContextSlot)
|
|
|
|
|
|
Relocatable::Relocatable(Isolate* isolate) {
|
|
ASSERT(isolate == Isolate::Current());
|
|
isolate_ = isolate;
|
|
prev_ = isolate->relocatable_top();
|
|
isolate->set_relocatable_top(this);
|
|
}
|
|
|
|
|
|
Relocatable::~Relocatable() {
|
|
ASSERT(isolate_ == Isolate::Current());
|
|
ASSERT_EQ(isolate_->relocatable_top(), this);
|
|
isolate_->set_relocatable_top(prev_);
|
|
}
|
|
|
|
|
|
int JSObject::BodyDescriptor::SizeOf(Map* map, HeapObject* object) {
|
|
return map->instance_size();
|
|
}
|
|
|
|
|
|
void Foreign::ForeignIterateBody(ObjectVisitor* v) {
|
|
v->VisitExternalReference(
|
|
reinterpret_cast<Address*>(FIELD_ADDR(this, kForeignAddressOffset)));
|
|
}
|
|
|
|
|
|
template<typename StaticVisitor>
|
|
void Foreign::ForeignIterateBody() {
|
|
StaticVisitor::VisitExternalReference(
|
|
reinterpret_cast<Address*>(FIELD_ADDR(this, kForeignAddressOffset)));
|
|
}
|
|
|
|
|
|
void ExternalAsciiString::ExternalAsciiStringIterateBody(ObjectVisitor* v) {
|
|
typedef v8::String::ExternalAsciiStringResource Resource;
|
|
v->VisitExternalAsciiString(
|
|
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
|
|
}
|
|
|
|
|
|
template<typename StaticVisitor>
|
|
void ExternalAsciiString::ExternalAsciiStringIterateBody() {
|
|
typedef v8::String::ExternalAsciiStringResource Resource;
|
|
StaticVisitor::VisitExternalAsciiString(
|
|
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
|
|
}
|
|
|
|
|
|
void ExternalTwoByteString::ExternalTwoByteStringIterateBody(ObjectVisitor* v) {
|
|
typedef v8::String::ExternalStringResource Resource;
|
|
v->VisitExternalTwoByteString(
|
|
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
|
|
}
|
|
|
|
|
|
template<typename StaticVisitor>
|
|
void ExternalTwoByteString::ExternalTwoByteStringIterateBody() {
|
|
typedef v8::String::ExternalStringResource Resource;
|
|
StaticVisitor::VisitExternalTwoByteString(
|
|
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
|
|
}
|
|
|
|
|
|
template<int start_offset, int end_offset, int size>
|
|
void FixedBodyDescriptor<start_offset, end_offset, size>::IterateBody(
|
|
HeapObject* obj,
|
|
ObjectVisitor* v) {
|
|
v->VisitPointers(HeapObject::RawField(obj, start_offset),
|
|
HeapObject::RawField(obj, end_offset));
|
|
}
|
|
|
|
|
|
template<int start_offset>
|
|
void FlexibleBodyDescriptor<start_offset>::IterateBody(HeapObject* obj,
|
|
int object_size,
|
|
ObjectVisitor* v) {
|
|
v->VisitPointers(HeapObject::RawField(obj, start_offset),
|
|
HeapObject::RawField(obj, object_size));
|
|
}
|
|
|
|
|
|
#undef TYPE_CHECKER
|
|
#undef CAST_ACCESSOR
|
|
#undef INT_ACCESSORS
|
|
#undef ACCESSORS
|
|
#undef ACCESSORS_TO_SMI
|
|
#undef SMI_ACCESSORS
|
|
#undef BOOL_GETTER
|
|
#undef BOOL_ACCESSORS
|
|
#undef FIELD_ADDR
|
|
#undef READ_FIELD
|
|
#undef WRITE_FIELD
|
|
#undef WRITE_BARRIER
|
|
#undef CONDITIONAL_WRITE_BARRIER
|
|
#undef READ_DOUBLE_FIELD
|
|
#undef WRITE_DOUBLE_FIELD
|
|
#undef READ_INT_FIELD
|
|
#undef WRITE_INT_FIELD
|
|
#undef READ_INTPTR_FIELD
|
|
#undef WRITE_INTPTR_FIELD
|
|
#undef READ_UINT32_FIELD
|
|
#undef WRITE_UINT32_FIELD
|
|
#undef READ_SHORT_FIELD
|
|
#undef WRITE_SHORT_FIELD
|
|
#undef READ_BYTE_FIELD
|
|
#undef WRITE_BYTE_FIELD
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_OBJECTS_INL_H_
|