v8/src/rewriter.cc
antonm@chromium.org fae90d4f32 Make closures optimizable by Crankshaft compiler.
Currently only closures which only read from the context are supported.

Review URL: http://codereview.chromium.org/5753005

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@6340 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-01-17 08:11:03 +00:00

1024 lines
27 KiB
C++

// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "rewriter.h"
#include "ast.h"
#include "compiler.h"
#include "scopes.h"
namespace v8 {
namespace internal {
class AstOptimizer: public AstVisitor {
public:
explicit AstOptimizer() : has_function_literal_(false) {}
void Optimize(ZoneList<Statement*>* statements);
private:
// Used for loop condition analysis. Cleared before visiting a loop
// condition, set when a function literal is visited.
bool has_function_literal_;
// Helpers
void OptimizeArguments(ZoneList<Expression*>* arguments);
// Node visitors.
#define DEF_VISIT(type) \
virtual void Visit##type(type* node);
AST_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
DISALLOW_COPY_AND_ASSIGN(AstOptimizer);
};
void AstOptimizer::Optimize(ZoneList<Statement*>* statements) {
int len = statements->length();
for (int i = 0; i < len; i++) {
Visit(statements->at(i));
}
}
void AstOptimizer::OptimizeArguments(ZoneList<Expression*>* arguments) {
for (int i = 0; i < arguments->length(); i++) {
Visit(arguments->at(i));
}
}
void AstOptimizer::VisitBlock(Block* node) {
Optimize(node->statements());
}
void AstOptimizer::VisitExpressionStatement(ExpressionStatement* node) {
node->expression()->set_no_negative_zero(true);
Visit(node->expression());
}
void AstOptimizer::VisitIfStatement(IfStatement* node) {
node->condition()->set_no_negative_zero(true);
Visit(node->condition());
Visit(node->then_statement());
if (node->HasElseStatement()) {
Visit(node->else_statement());
}
}
void AstOptimizer::VisitDoWhileStatement(DoWhileStatement* node) {
node->cond()->set_no_negative_zero(true);
Visit(node->cond());
Visit(node->body());
}
void AstOptimizer::VisitWhileStatement(WhileStatement* node) {
has_function_literal_ = false;
node->cond()->set_no_negative_zero(true);
Visit(node->cond());
node->set_may_have_function_literal(has_function_literal_);
Visit(node->body());
}
void AstOptimizer::VisitForStatement(ForStatement* node) {
if (node->init() != NULL) {
Visit(node->init());
}
if (node->cond() != NULL) {
has_function_literal_ = false;
node->cond()->set_no_negative_zero(true);
Visit(node->cond());
node->set_may_have_function_literal(has_function_literal_);
}
Visit(node->body());
if (node->next() != NULL) {
Visit(node->next());
}
}
void AstOptimizer::VisitForInStatement(ForInStatement* node) {
Visit(node->each());
Visit(node->enumerable());
Visit(node->body());
}
void AstOptimizer::VisitTryCatchStatement(TryCatchStatement* node) {
Visit(node->try_block());
Visit(node->catch_var());
Visit(node->catch_block());
}
void AstOptimizer::VisitTryFinallyStatement(TryFinallyStatement* node) {
Visit(node->try_block());
Visit(node->finally_block());
}
void AstOptimizer::VisitSwitchStatement(SwitchStatement* node) {
node->tag()->set_no_negative_zero(true);
Visit(node->tag());
for (int i = 0; i < node->cases()->length(); i++) {
CaseClause* clause = node->cases()->at(i);
if (!clause->is_default()) {
Visit(clause->label());
}
Optimize(clause->statements());
}
}
void AstOptimizer::VisitContinueStatement(ContinueStatement* node) {
USE(node);
}
void AstOptimizer::VisitBreakStatement(BreakStatement* node) {
USE(node);
}
void AstOptimizer::VisitDeclaration(Declaration* node) {
// Will not be reached by the current optimizations.
USE(node);
}
void AstOptimizer::VisitEmptyStatement(EmptyStatement* node) {
USE(node);
}
void AstOptimizer::VisitReturnStatement(ReturnStatement* node) {
Visit(node->expression());
}
void AstOptimizer::VisitWithEnterStatement(WithEnterStatement* node) {
Visit(node->expression());
}
void AstOptimizer::VisitWithExitStatement(WithExitStatement* node) {
USE(node);
}
void AstOptimizer::VisitDebuggerStatement(DebuggerStatement* node) {
USE(node);
}
void AstOptimizer::VisitFunctionLiteral(FunctionLiteral* node) {
has_function_literal_ = true;
}
void AstOptimizer::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* node) {
USE(node);
}
void AstOptimizer::VisitConditional(Conditional* node) {
node->condition()->set_no_negative_zero(true);
Visit(node->condition());
Visit(node->then_expression());
Visit(node->else_expression());
}
void AstOptimizer::VisitVariableProxy(VariableProxy* node) {
Variable* var = node->AsVariable();
if (var != NULL) {
if (var->type()->IsKnown()) {
node->type()->CopyFrom(var->type());
} else if (node->type()->IsLikelySmi()) {
var->type()->SetAsLikelySmi();
}
if (FLAG_safe_int32_compiler) {
if (var->IsStackAllocated() &&
!var->is_arguments() &&
var->mode() != Variable::CONST) {
node->set_side_effect_free(true);
}
}
}
}
void AstOptimizer::VisitLiteral(Literal* node) {
Handle<Object> literal = node->handle();
if (literal->IsSmi()) {
node->type()->SetAsLikelySmi();
node->set_side_effect_free(true);
} else if (literal->IsHeapNumber()) {
if (node->to_int32()) {
// Any HeapNumber has an int32 value if it is the input to a bit op.
node->set_side_effect_free(true);
} else {
double double_value = HeapNumber::cast(*literal)->value();
int32_t int32_value = DoubleToInt32(double_value);
node->set_side_effect_free(double_value == int32_value);
}
}
}
void AstOptimizer::VisitRegExpLiteral(RegExpLiteral* node) {
USE(node);
}
void AstOptimizer::VisitArrayLiteral(ArrayLiteral* node) {
for (int i = 0; i < node->values()->length(); i++) {
Visit(node->values()->at(i));
}
}
void AstOptimizer::VisitObjectLiteral(ObjectLiteral* node) {
for (int i = 0; i < node->properties()->length(); i++) {
Visit(node->properties()->at(i)->key());
Visit(node->properties()->at(i)->value());
}
}
void AstOptimizer::VisitCatchExtensionObject(CatchExtensionObject* node) {
Visit(node->key());
Visit(node->value());
}
void AstOptimizer::VisitAssignment(Assignment* node) {
switch (node->op()) {
case Token::INIT_VAR:
case Token::INIT_CONST:
case Token::ASSIGN:
// No type can be infered from the general assignment.
break;
case Token::ASSIGN_BIT_OR:
case Token::ASSIGN_BIT_XOR:
case Token::ASSIGN_BIT_AND:
case Token::ASSIGN_SHL:
case Token::ASSIGN_SAR:
case Token::ASSIGN_SHR:
node->type()->SetAsLikelySmiIfUnknown();
node->target()->type()->SetAsLikelySmiIfUnknown();
node->value()->type()->SetAsLikelySmiIfUnknown();
node->value()->set_to_int32(true);
node->value()->set_no_negative_zero(true);
break;
case Token::ASSIGN_ADD:
case Token::ASSIGN_SUB:
case Token::ASSIGN_MUL:
case Token::ASSIGN_DIV:
case Token::ASSIGN_MOD:
if (node->type()->IsLikelySmi()) {
node->target()->type()->SetAsLikelySmiIfUnknown();
node->value()->type()->SetAsLikelySmiIfUnknown();
}
break;
default:
UNREACHABLE();
break;
}
Visit(node->target());
Visit(node->value());
switch (node->op()) {
case Token::INIT_VAR:
case Token::INIT_CONST:
case Token::ASSIGN:
// Pure assignment copies the type from the value.
node->type()->CopyFrom(node->value()->type());
break;
case Token::ASSIGN_BIT_OR:
case Token::ASSIGN_BIT_XOR:
case Token::ASSIGN_BIT_AND:
case Token::ASSIGN_SHL:
case Token::ASSIGN_SAR:
case Token::ASSIGN_SHR:
// Should have been setup above already.
break;
case Token::ASSIGN_ADD:
case Token::ASSIGN_SUB:
case Token::ASSIGN_MUL:
case Token::ASSIGN_DIV:
case Token::ASSIGN_MOD:
if (node->type()->IsUnknown()) {
if (node->target()->type()->IsLikelySmi() ||
node->value()->type()->IsLikelySmi()) {
node->type()->SetAsLikelySmi();
}
}
break;
default:
UNREACHABLE();
break;
}
// Since this is an assignment. We have to propagate this node's type to the
// variable.
VariableProxy* proxy = node->target()->AsVariableProxy();
if (proxy != NULL) {
Variable* var = proxy->AsVariable();
if (var != NULL) {
StaticType* var_type = var->type();
if (var_type->IsUnknown()) {
var_type->CopyFrom(node->type());
} else if (var_type->IsLikelySmi()) {
// We do not reset likely types to Unknown.
}
}
}
}
void AstOptimizer::VisitThrow(Throw* node) {
Visit(node->exception());
}
void AstOptimizer::VisitProperty(Property* node) {
node->key()->set_no_negative_zero(true);
Visit(node->obj());
Visit(node->key());
}
void AstOptimizer::VisitCall(Call* node) {
Visit(node->expression());
OptimizeArguments(node->arguments());
}
void AstOptimizer::VisitCallNew(CallNew* node) {
Visit(node->expression());
OptimizeArguments(node->arguments());
}
void AstOptimizer::VisitCallRuntime(CallRuntime* node) {
OptimizeArguments(node->arguments());
}
void AstOptimizer::VisitUnaryOperation(UnaryOperation* node) {
if (node->op() == Token::ADD || node->op() == Token::SUB) {
node->expression()->set_no_negative_zero(node->no_negative_zero());
} else {
node->expression()->set_no_negative_zero(true);
}
Visit(node->expression());
if (FLAG_safe_int32_compiler) {
switch (node->op()) {
case Token::BIT_NOT:
node->expression()->set_no_negative_zero(true);
node->expression()->set_to_int32(true);
// Fall through.
case Token::ADD:
case Token::SUB:
node->set_side_effect_free(node->expression()->side_effect_free());
break;
case Token::NOT:
case Token::DELETE:
case Token::TYPEOF:
case Token::VOID:
break;
default:
UNREACHABLE();
break;
}
} else if (node->op() == Token::BIT_NOT) {
node->expression()->set_to_int32(true);
}
}
void AstOptimizer::VisitIncrementOperation(IncrementOperation* node) {
UNREACHABLE();
}
void AstOptimizer::VisitCountOperation(CountOperation* node) {
// Count operations assume that they work on Smis.
node->expression()->set_no_negative_zero(node->is_prefix() ?
true :
node->no_negative_zero());
node->type()->SetAsLikelySmiIfUnknown();
node->expression()->type()->SetAsLikelySmiIfUnknown();
Visit(node->expression());
}
static bool CouldBeNegativeZero(AstNode* node) {
Literal* literal = node->AsLiteral();
if (literal != NULL) {
Handle<Object> handle = literal->handle();
if (handle->IsString() || handle->IsSmi()) {
return false;
} else if (handle->IsHeapNumber()) {
double double_value = HeapNumber::cast(*handle)->value();
if (double_value != 0) {
return false;
}
}
}
BinaryOperation* binary = node->AsBinaryOperation();
if (binary != NULL && Token::IsBitOp(binary->op())) {
return false;
}
return true;
}
static bool CouldBePositiveZero(AstNode* node) {
Literal* literal = node->AsLiteral();
if (literal != NULL) {
Handle<Object> handle = literal->handle();
if (handle->IsSmi()) {
if (Smi::cast(*handle) != Smi::FromInt(0)) {
return false;
}
} else if (handle->IsHeapNumber()) {
// Heap number literal can't be +0, because that's a Smi.
return false;
}
}
return true;
}
void AstOptimizer::VisitBinaryOperation(BinaryOperation* node) {
// Depending on the operation we can propagate this node's type down the
// AST nodes.
Token::Value op = node->op();
switch (op) {
case Token::COMMA:
case Token::OR:
node->left()->set_no_negative_zero(true);
node->right()->set_no_negative_zero(node->no_negative_zero());
break;
case Token::AND:
node->left()->set_no_negative_zero(node->no_negative_zero());
node->right()->set_no_negative_zero(node->no_negative_zero());
break;
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND:
case Token::SHL:
case Token::SAR:
case Token::SHR:
node->type()->SetAsLikelySmiIfUnknown();
node->left()->type()->SetAsLikelySmiIfUnknown();
node->right()->type()->SetAsLikelySmiIfUnknown();
node->left()->set_to_int32(true);
node->right()->set_to_int32(true);
node->left()->set_no_negative_zero(true);
node->right()->set_no_negative_zero(true);
break;
case Token::MUL: {
VariableProxy* lvar_proxy = node->left()->AsVariableProxy();
VariableProxy* rvar_proxy = node->right()->AsVariableProxy();
if (lvar_proxy != NULL && rvar_proxy != NULL) {
Variable* lvar = lvar_proxy->AsVariable();
Variable* rvar = rvar_proxy->AsVariable();
if (lvar != NULL && rvar != NULL) {
if (lvar->mode() == Variable::VAR && rvar->mode() == Variable::VAR) {
Slot* lslot = lvar->AsSlot();
Slot* rslot = rvar->AsSlot();
if (lslot->type() == rslot->type() &&
(lslot->type() == Slot::PARAMETER ||
lslot->type() == Slot::LOCAL) &&
lslot->index() == rslot->index()) {
// A number squared doesn't give negative zero.
node->set_no_negative_zero(true);
}
}
}
}
}
case Token::ADD:
case Token::SUB:
case Token::DIV:
case Token::MOD: {
if (node->type()->IsLikelySmi()) {
node->left()->type()->SetAsLikelySmiIfUnknown();
node->right()->type()->SetAsLikelySmiIfUnknown();
}
if (op == Token::ADD && (!CouldBeNegativeZero(node->left()) ||
!CouldBeNegativeZero(node->right()))) {
node->left()->set_no_negative_zero(true);
node->right()->set_no_negative_zero(true);
} else if (op == Token::SUB && (!CouldBeNegativeZero(node->left()) ||
!CouldBePositiveZero(node->right()))) {
node->left()->set_no_negative_zero(true);
node->right()->set_no_negative_zero(true);
} else {
node->left()->set_no_negative_zero(node->no_negative_zero());
node->right()->set_no_negative_zero(node->no_negative_zero());
}
if (node->op() == Token::DIV) {
node->right()->set_no_negative_zero(false);
} else if (node->op() == Token::MOD) {
node->right()->set_no_negative_zero(true);
}
break;
}
default:
UNREACHABLE();
break;
}
Visit(node->left());
Visit(node->right());
// After visiting the operand nodes we have to check if this node's type
// can be updated. If it does, then we can push that information down
// towards the leaves again if the new information is an upgrade over the
// previous type of the operand nodes.
if (node->type()->IsUnknown()) {
if (node->left()->type()->IsLikelySmi() ||
node->right()->type()->IsLikelySmi()) {
node->type()->SetAsLikelySmi();
}
if (node->type()->IsLikelySmi()) {
// The type of this node changed to LIKELY_SMI. Propagate this knowledge
// down through the nodes.
if (node->left()->type()->IsUnknown()) {
node->left()->type()->SetAsLikelySmi();
Visit(node->left());
}
if (node->right()->type()->IsUnknown()) {
node->right()->type()->SetAsLikelySmi();
Visit(node->right());
}
}
}
if (FLAG_safe_int32_compiler) {
switch (node->op()) {
case Token::COMMA:
case Token::OR:
case Token::AND:
break;
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND:
case Token::SHL:
case Token::SAR:
case Token::SHR:
// Add one to the number of bit operations in this expression.
node->set_num_bit_ops(1);
// Fall through.
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD:
node->set_side_effect_free(node->left()->side_effect_free() &&
node->right()->side_effect_free());
node->set_num_bit_ops(node->num_bit_ops() +
node->left()->num_bit_ops() +
node->right()->num_bit_ops());
if (!node->no_negative_zero() && node->op() == Token::MUL) {
node->set_side_effect_free(false);
}
break;
default:
UNREACHABLE();
break;
}
}
}
void AstOptimizer::VisitCompareOperation(CompareOperation* node) {
if (node->type()->IsKnown()) {
// Propagate useful information down towards the leaves.
node->left()->type()->SetAsLikelySmiIfUnknown();
node->right()->type()->SetAsLikelySmiIfUnknown();
}
node->left()->set_no_negative_zero(true);
// Only [[HasInstance]] has the right argument passed unchanged to it.
node->right()->set_no_negative_zero(true);
Visit(node->left());
Visit(node->right());
// After visiting the operand nodes we have to check if this node's type
// can be updated. If it does, then we can push that information down
// towards the leaves again if the new information is an upgrade over the
// previous type of the operand nodes.
if (node->type()->IsUnknown()) {
if (node->left()->type()->IsLikelySmi() ||
node->right()->type()->IsLikelySmi()) {
node->type()->SetAsLikelySmi();
}
if (node->type()->IsLikelySmi()) {
// The type of this node changed to LIKELY_SMI. Propagate this knowledge
// down through the nodes.
if (node->left()->type()->IsUnknown()) {
node->left()->type()->SetAsLikelySmi();
Visit(node->left());
}
if (node->right()->type()->IsUnknown()) {
node->right()->type()->SetAsLikelySmi();
Visit(node->right());
}
}
}
}
void AstOptimizer::VisitCompareToNull(CompareToNull* node) {
Visit(node->expression());
}
void AstOptimizer::VisitThisFunction(ThisFunction* node) {
USE(node);
}
class Processor: public AstVisitor {
public:
explicit Processor(Variable* result)
: result_(result),
result_assigned_(false),
is_set_(false),
in_try_(false) {
}
void Process(ZoneList<Statement*>* statements);
bool result_assigned() const { return result_assigned_; }
private:
Variable* result_;
// We are not tracking result usage via the result_'s use
// counts (we leave the accurate computation to the
// usage analyzer). Instead we simple remember if
// there was ever an assignment to result_.
bool result_assigned_;
// To avoid storing to .result all the time, we eliminate some of
// the stores by keeping track of whether or not we're sure .result
// will be overwritten anyway. This is a bit more tricky than what I
// was hoping for
bool is_set_;
bool in_try_;
Expression* SetResult(Expression* value) {
result_assigned_ = true;
VariableProxy* result_proxy = new VariableProxy(result_);
return new Assignment(Token::ASSIGN, result_proxy, value,
RelocInfo::kNoPosition);
}
// Node visitors.
#define DEF_VISIT(type) \
virtual void Visit##type(type* node);
AST_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
void VisitIterationStatement(IterationStatement* stmt);
};
void Processor::Process(ZoneList<Statement*>* statements) {
for (int i = statements->length() - 1; i >= 0; --i) {
Visit(statements->at(i));
}
}
void Processor::VisitBlock(Block* node) {
// An initializer block is the rewritten form of a variable declaration
// with initialization expressions. The initializer block contains the
// list of assignments corresponding to the initialization expressions.
// While unclear from the spec (ECMA-262, 3rd., 12.2), the value of
// a variable declaration with initialization expression is 'undefined'
// with some JS VMs: For instance, using smjs, print(eval('var x = 7'))
// returns 'undefined'. To obtain the same behavior with v8, we need
// to prevent rewriting in that case.
if (!node->is_initializer_block()) Process(node->statements());
}
void Processor::VisitExpressionStatement(ExpressionStatement* node) {
// Rewrite : <x>; -> .result = <x>;
if (!is_set_) {
node->set_expression(SetResult(node->expression()));
if (!in_try_) is_set_ = true;
}
}
void Processor::VisitIfStatement(IfStatement* node) {
// Rewrite both then and else parts (reversed).
bool save = is_set_;
Visit(node->else_statement());
bool set_after_then = is_set_;
is_set_ = save;
Visit(node->then_statement());
is_set_ = is_set_ && set_after_then;
}
void Processor::VisitIterationStatement(IterationStatement* node) {
// Rewrite the body.
bool set_after_loop = is_set_;
Visit(node->body());
is_set_ = is_set_ && set_after_loop;
}
void Processor::VisitDoWhileStatement(DoWhileStatement* node) {
VisitIterationStatement(node);
}
void Processor::VisitWhileStatement(WhileStatement* node) {
VisitIterationStatement(node);
}
void Processor::VisitForStatement(ForStatement* node) {
VisitIterationStatement(node);
}
void Processor::VisitForInStatement(ForInStatement* node) {
VisitIterationStatement(node);
}
void Processor::VisitTryCatchStatement(TryCatchStatement* node) {
// Rewrite both try and catch blocks (reversed order).
bool set_after_catch = is_set_;
Visit(node->catch_block());
is_set_ = is_set_ && set_after_catch;
bool save = in_try_;
in_try_ = true;
Visit(node->try_block());
in_try_ = save;
}
void Processor::VisitTryFinallyStatement(TryFinallyStatement* node) {
// Rewrite both try and finally block (reversed order).
Visit(node->finally_block());
bool save = in_try_;
in_try_ = true;
Visit(node->try_block());
in_try_ = save;
}
void Processor::VisitSwitchStatement(SwitchStatement* node) {
// Rewrite statements in all case clauses in reversed order.
ZoneList<CaseClause*>* clauses = node->cases();
bool set_after_switch = is_set_;
for (int i = clauses->length() - 1; i >= 0; --i) {
CaseClause* clause = clauses->at(i);
Process(clause->statements());
}
is_set_ = is_set_ && set_after_switch;
}
void Processor::VisitContinueStatement(ContinueStatement* node) {
is_set_ = false;
}
void Processor::VisitBreakStatement(BreakStatement* node) {
is_set_ = false;
}
// Do nothing:
void Processor::VisitDeclaration(Declaration* node) {}
void Processor::VisitEmptyStatement(EmptyStatement* node) {}
void Processor::VisitReturnStatement(ReturnStatement* node) {}
void Processor::VisitWithEnterStatement(WithEnterStatement* node) {}
void Processor::VisitWithExitStatement(WithExitStatement* node) {}
void Processor::VisitDebuggerStatement(DebuggerStatement* node) {}
// Expressions are never visited yet.
void Processor::VisitFunctionLiteral(FunctionLiteral* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitConditional(Conditional* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitVariableProxy(VariableProxy* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitLiteral(Literal* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitRegExpLiteral(RegExpLiteral* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitArrayLiteral(ArrayLiteral* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitObjectLiteral(ObjectLiteral* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitCatchExtensionObject(CatchExtensionObject* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitAssignment(Assignment* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitThrow(Throw* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitProperty(Property* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitCall(Call* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitCallNew(CallNew* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitCallRuntime(CallRuntime* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitUnaryOperation(UnaryOperation* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitIncrementOperation(IncrementOperation* node) {
UNREACHABLE();
}
void Processor::VisitCountOperation(CountOperation* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitBinaryOperation(BinaryOperation* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitCompareOperation(CompareOperation* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitCompareToNull(CompareToNull* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitThisFunction(ThisFunction* node) {
USE(node);
UNREACHABLE();
}
// Assumes code has been parsed and scopes have been analyzed. Mutates the
// AST, so the AST should not continue to be used in the case of failure.
bool Rewriter::Rewrite(CompilationInfo* info) {
FunctionLiteral* function = info->function();
ASSERT(function != NULL);
Scope* scope = function->scope();
ASSERT(scope != NULL);
if (scope->is_function_scope()) return true;
ZoneList<Statement*>* body = function->body();
if (!body->is_empty()) {
Variable* result = scope->NewTemporary(Factory::result_symbol());
Processor processor(result);
processor.Process(body);
if (processor.HasStackOverflow()) return false;
if (processor.result_assigned()) {
VariableProxy* result_proxy = new VariableProxy(result);
body->Add(new ReturnStatement(result_proxy));
}
}
return true;
}
// Assumes code has been parsed and scopes have been analyzed. Mutates the
// AST, so the AST should not continue to be used in the case of failure.
bool Rewriter::Analyze(CompilationInfo* info) {
FunctionLiteral* function = info->function();
ASSERT(function != NULL && function->scope() != NULL);
ZoneList<Statement*>* body = function->body();
if (FLAG_optimize_ast && !body->is_empty()) {
AstOptimizer optimizer;
optimizer.Optimize(body);
if (optimizer.HasStackOverflow()) return false;
}
return true;
}
} } // namespace v8::internal