v8/test/cctest/wasm/test-run-wasm-module.cc
Manos Koukoutos 1c39569e2e [wasm-gc] Change reference type encoding to match proposal spec
Bug: v8:7748
Change-Id: I9af885e4c33541a8e065082ae7f07804bd11807a
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2252190
Commit-Queue: Manos Koukoutos <manoskouk@chromium.org>
Reviewed-by: Jakob Kummerow <jkummerow@chromium.org>
Cr-Commit-Position: refs/heads/master@{#68443}
2020-06-19 17:47:17 +00:00

1103 lines
38 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdlib.h>
#include <string.h>
#include "src/api/api-inl.h"
#include "src/objects/objects-inl.h"
#include "src/snapshot/code-serializer.h"
#include "src/utils/version.h"
#include "src/wasm/module-decoder.h"
#include "src/wasm/wasm-engine.h"
#include "src/wasm/wasm-module-builder.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-objects-inl.h"
#include "src/wasm/wasm-opcodes.h"
#include "test/cctest/cctest.h"
#include "test/common/wasm/flag-utils.h"
#include "test/common/wasm/test-signatures.h"
#include "test/common/wasm/wasm-macro-gen.h"
#include "test/common/wasm/wasm-module-runner.h"
namespace v8 {
namespace internal {
namespace wasm {
namespace test_run_wasm_module {
using base::ReadLittleEndianValue;
using base::WriteLittleEndianValue;
using testing::CompileAndInstantiateForTesting;
namespace {
void Cleanup(Isolate* isolate = CcTest::InitIsolateOnce()) {
// By sending a low memory notifications, we will try hard to collect all
// garbage and will therefore also invoke all weak callbacks of actually
// unreachable persistent handles.
reinterpret_cast<v8::Isolate*>(isolate)->LowMemoryNotification();
}
void TestModule(Zone* zone, WasmModuleBuilder* builder,
int32_t expected_result) {
ZoneBuffer buffer(zone);
builder->WriteTo(&buffer);
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
testing::SetupIsolateForWasmModule(isolate);
int32_t result =
testing::CompileAndRunWasmModule(isolate, buffer.begin(), buffer.end());
CHECK_EQ(expected_result, result);
}
void TestModuleException(Zone* zone, WasmModuleBuilder* builder) {
ZoneBuffer buffer(zone);
builder->WriteTo(&buffer);
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
testing::SetupIsolateForWasmModule(isolate);
v8::TryCatch try_catch(reinterpret_cast<v8::Isolate*>(isolate));
testing::CompileAndRunWasmModule(isolate, buffer.begin(), buffer.end());
CHECK(try_catch.HasCaught());
isolate->clear_pending_exception();
}
void ExportAsMain(WasmFunctionBuilder* f) {
f->builder()->AddExport(CStrVector("main"), f);
}
#define EMIT_CODE_WITH_END(f, code) \
do { \
f->EmitCode(code, sizeof(code)); \
f->Emit(kExprEnd); \
} while (false)
} // namespace
TEST(Run_WasmModule_Return114) {
{
static const int32_t kReturnValue = 114;
TestSignatures sigs;
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
WasmFunctionBuilder* f = builder->AddFunction(sigs.i_v());
ExportAsMain(f);
byte code[] = {WASM_I32V_2(kReturnValue)};
EMIT_CODE_WITH_END(f, code);
TestModule(&zone, builder, kReturnValue);
}
Cleanup();
}
TEST(Run_WasmModule_CompilationHintsLazy) {
if (!FLAG_wasm_tier_up || !FLAG_liftoff) return;
{
EXPERIMENTAL_FLAG_SCOPE(compilation_hints);
static const int32_t kReturnValue = 114;
TestSignatures sigs;
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
// Build module with one lazy function.
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
WasmFunctionBuilder* f = builder->AddFunction(sigs.i_v());
ExportAsMain(f);
byte code[] = {WASM_I32V_2(kReturnValue)};
EMIT_CODE_WITH_END(f, code);
f->SetCompilationHint(WasmCompilationHintStrategy::kLazy,
WasmCompilationHintTier::kBaseline,
WasmCompilationHintTier::kOptimized);
// Compile module. No function is actually compiled as the function is lazy.
ZoneBuffer buffer(&zone);
builder->WriteTo(&buffer);
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
testing::SetupIsolateForWasmModule(isolate);
ErrorThrower thrower(isolate, "CompileAndRunWasmModule");
MaybeHandle<WasmModuleObject> module = testing::CompileForTesting(
isolate, &thrower, ModuleWireBytes(buffer.begin(), buffer.end()));
CHECK(!module.is_null());
// Lazy function was not invoked and therefore not compiled yet.
static const int kFuncIndex = 0;
NativeModule* native_module = module.ToHandleChecked()->native_module();
CHECK(!native_module->HasCode(kFuncIndex));
auto* compilation_state = native_module->compilation_state();
CHECK(compilation_state->baseline_compilation_finished());
// Instantiate and invoke function.
MaybeHandle<WasmInstanceObject> instance =
isolate->wasm_engine()->SyncInstantiate(
isolate, &thrower, module.ToHandleChecked(), {}, {});
CHECK(!instance.is_null());
int32_t result = testing::RunWasmModuleForTesting(
isolate, instance.ToHandleChecked(), 0, nullptr);
CHECK_EQ(kReturnValue, result);
// Lazy function was invoked and therefore compiled.
CHECK(native_module->HasCode(kFuncIndex));
WasmCodeRefScope code_ref_scope;
ExecutionTier actual_tier = native_module->GetCode(kFuncIndex)->tier();
static_assert(ExecutionTier::kInterpreter < ExecutionTier::kLiftoff &&
ExecutionTier::kLiftoff < ExecutionTier::kTurbofan,
"Assume an order on execution tiers");
ExecutionTier baseline_tier = ExecutionTier::kLiftoff;
CHECK_LE(baseline_tier, actual_tier);
CHECK(compilation_state->baseline_compilation_finished());
}
Cleanup();
}
TEST(Run_WasmModule_CompilationHintsNoTiering) {
if (!FLAG_wasm_tier_up || !FLAG_liftoff) return;
{
EXPERIMENTAL_FLAG_SCOPE(compilation_hints);
static const int32_t kReturnValue = 114;
TestSignatures sigs;
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
// Build module with regularly compiled function (no tiering).
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
WasmFunctionBuilder* f = builder->AddFunction(sigs.i_v());
ExportAsMain(f);
byte code[] = {WASM_I32V_2(kReturnValue)};
EMIT_CODE_WITH_END(f, code);
f->SetCompilationHint(WasmCompilationHintStrategy::kEager,
WasmCompilationHintTier::kBaseline,
WasmCompilationHintTier::kBaseline);
// Compile module.
ZoneBuffer buffer(&zone);
builder->WriteTo(&buffer);
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
testing::SetupIsolateForWasmModule(isolate);
ErrorThrower thrower(isolate, "CompileAndRunWasmModule");
MaybeHandle<WasmModuleObject> module = testing::CompileForTesting(
isolate, &thrower, ModuleWireBytes(buffer.begin(), buffer.end()));
CHECK(!module.is_null());
// Synchronous compilation finished and no tiering units were initialized.
static const int kFuncIndex = 0;
NativeModule* native_module = module.ToHandleChecked()->native_module();
CHECK(native_module->HasCode(kFuncIndex));
ExecutionTier expected_tier = ExecutionTier::kLiftoff;
WasmCodeRefScope code_ref_scope;
ExecutionTier actual_tier = native_module->GetCode(kFuncIndex)->tier();
CHECK_EQ(expected_tier, actual_tier);
auto* compilation_state = native_module->compilation_state();
CHECK(compilation_state->baseline_compilation_finished());
CHECK(compilation_state->top_tier_compilation_finished());
}
Cleanup();
}
TEST(Run_WasmModule_CompilationHintsTierUp) {
if (!FLAG_wasm_tier_up || !FLAG_liftoff) return;
{
EXPERIMENTAL_FLAG_SCOPE(compilation_hints);
static const int32_t kReturnValue = 114;
TestSignatures sigs;
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
// Build module with tiering compilation hint.
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
WasmFunctionBuilder* f = builder->AddFunction(sigs.i_v());
ExportAsMain(f);
byte code[] = {WASM_I32V_2(kReturnValue)};
EMIT_CODE_WITH_END(f, code);
f->SetCompilationHint(WasmCompilationHintStrategy::kEager,
WasmCompilationHintTier::kBaseline,
WasmCompilationHintTier::kOptimized);
// Compile module.
ZoneBuffer buffer(&zone);
builder->WriteTo(&buffer);
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
testing::SetupIsolateForWasmModule(isolate);
ErrorThrower thrower(isolate, "CompileAndRunWasmModule");
MaybeHandle<WasmModuleObject> module = testing::CompileForTesting(
isolate, &thrower, ModuleWireBytes(buffer.begin(), buffer.end()));
CHECK(!module.is_null());
// Expect baseline or top tier code.
static const int kFuncIndex = 0;
NativeModule* native_module = module.ToHandleChecked()->native_module();
auto* compilation_state = native_module->compilation_state();
static_assert(ExecutionTier::kInterpreter < ExecutionTier::kLiftoff &&
ExecutionTier::kLiftoff < ExecutionTier::kTurbofan,
"Assume an order on execution tiers");
ExecutionTier baseline_tier = ExecutionTier::kLiftoff;
{
CHECK(native_module->HasCode(kFuncIndex));
WasmCodeRefScope code_ref_scope;
ExecutionTier actual_tier = native_module->GetCode(kFuncIndex)->tier();
CHECK_LE(baseline_tier, actual_tier);
CHECK(compilation_state->baseline_compilation_finished());
}
// Busy wait for top tier compilation to finish.
while (!compilation_state->top_tier_compilation_finished()) {
}
// Expect top tier code.
ExecutionTier top_tier = ExecutionTier::kTurbofan;
{
CHECK(native_module->HasCode(kFuncIndex));
WasmCodeRefScope code_ref_scope;
ExecutionTier actual_tier = native_module->GetCode(kFuncIndex)->tier();
CHECK_EQ(top_tier, actual_tier);
CHECK(compilation_state->baseline_compilation_finished());
CHECK(compilation_state->top_tier_compilation_finished());
}
}
Cleanup();
}
TEST(Run_WasmModule_CompilationHintsLazyBaselineEagerTopTier) {
if (!FLAG_wasm_tier_up || !FLAG_liftoff) return;
{
EXPERIMENTAL_FLAG_SCOPE(compilation_hints);
static const int32_t kReturnValue = 114;
TestSignatures sigs;
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
// Build module with tiering compilation hint.
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
WasmFunctionBuilder* f = builder->AddFunction(sigs.i_v());
ExportAsMain(f);
byte code[] = {WASM_I32V_2(kReturnValue)};
EMIT_CODE_WITH_END(f, code);
f->SetCompilationHint(
WasmCompilationHintStrategy::kLazyBaselineEagerTopTier,
WasmCompilationHintTier::kBaseline,
WasmCompilationHintTier::kOptimized);
// Compile module.
ZoneBuffer buffer(&zone);
builder->WriteTo(&buffer);
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
testing::SetupIsolateForWasmModule(isolate);
ErrorThrower thrower(isolate, "CompileAndRunWasmModule");
MaybeHandle<WasmModuleObject> module = testing::CompileForTesting(
isolate, &thrower, ModuleWireBytes(buffer.begin(), buffer.end()));
CHECK(!module.is_null());
NativeModule* native_module = module.ToHandleChecked()->native_module();
auto* compilation_state = native_module->compilation_state();
// Busy wait for top tier compilation to finish.
while (!compilation_state->top_tier_compilation_finished()) {
}
// Expect top tier code.
static_assert(ExecutionTier::kInterpreter < ExecutionTier::kLiftoff &&
ExecutionTier::kLiftoff < ExecutionTier::kTurbofan,
"Assume an order on execution tiers");
static const int kFuncIndex = 0;
ExecutionTier top_tier = ExecutionTier::kTurbofan;
{
CHECK(native_module->HasCode(kFuncIndex));
WasmCodeRefScope code_ref_scope;
ExecutionTier actual_tier = native_module->GetCode(kFuncIndex)->tier();
CHECK_EQ(top_tier, actual_tier);
CHECK(compilation_state->baseline_compilation_finished());
CHECK(compilation_state->top_tier_compilation_finished());
}
}
Cleanup();
}
TEST(Run_WasmModule_CallAdd) {
{
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
TestSignatures sigs;
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
WasmFunctionBuilder* f1 = builder->AddFunction(sigs.i_ii());
uint16_t param1 = 0;
uint16_t param2 = 1;
byte code1[] = {
WASM_I32_ADD(WASM_GET_LOCAL(param1), WASM_GET_LOCAL(param2))};
EMIT_CODE_WITH_END(f1, code1);
WasmFunctionBuilder* f2 = builder->AddFunction(sigs.i_v());
ExportAsMain(f2);
byte code2[] = {
WASM_CALL_FUNCTION(f1->func_index(), WASM_I32V_2(77), WASM_I32V_1(22))};
EMIT_CODE_WITH_END(f2, code2);
TestModule(&zone, builder, 99);
}
Cleanup();
}
TEST(Run_WasmModule_ReadLoadedDataSegment) {
{
static const byte kDataSegmentDest0 = 12;
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
TestSignatures sigs;
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
WasmFunctionBuilder* f = builder->AddFunction(sigs.i_v());
ExportAsMain(f);
byte code[] = {
WASM_LOAD_MEM(MachineType::Int32(), WASM_I32V_1(kDataSegmentDest0))};
EMIT_CODE_WITH_END(f, code);
byte data[] = {0xAA, 0xBB, 0xCC, 0xDD};
builder->AddDataSegment(data, sizeof(data), kDataSegmentDest0);
TestModule(&zone, builder, 0xDDCCBBAA);
}
Cleanup();
}
TEST(Run_WasmModule_CheckMemoryIsZero) {
{
static const int kCheckSize = 16 * 1024;
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
TestSignatures sigs;
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
WasmFunctionBuilder* f = builder->AddFunction(sigs.i_v());
uint16_t localIndex = f->AddLocal(kWasmI32);
ExportAsMain(f);
byte code[] = {WASM_BLOCK_I(
WASM_WHILE(
WASM_I32_LTS(WASM_GET_LOCAL(localIndex), WASM_I32V_3(kCheckSize)),
WASM_IF_ELSE(
WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(localIndex)),
WASM_BRV(3, WASM_I32V_1(-1)),
WASM_INC_LOCAL_BY(localIndex, 4))),
WASM_I32V_1(11))};
EMIT_CODE_WITH_END(f, code);
TestModule(&zone, builder, 11);
}
Cleanup();
}
TEST(Run_WasmModule_CallMain_recursive) {
{
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
TestSignatures sigs;
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
WasmFunctionBuilder* f = builder->AddFunction(sigs.i_v());
uint16_t localIndex = f->AddLocal(kWasmI32);
ExportAsMain(f);
byte code[] = {
WASM_SET_LOCAL(localIndex,
WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)),
WASM_IF_ELSE_I(WASM_I32_LTS(WASM_GET_LOCAL(localIndex), WASM_I32V_1(5)),
WASM_SEQ(WASM_STORE_MEM(MachineType::Int32(), WASM_ZERO,
WASM_INC_LOCAL(localIndex)),
WASM_CALL_FUNCTION0(0)),
WASM_I32V_1(55))};
EMIT_CODE_WITH_END(f, code);
TestModule(&zone, builder, 55);
}
Cleanup();
}
TEST(Run_WasmModule_Global) {
{
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
TestSignatures sigs;
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
uint32_t global1 = builder->AddGlobal(kWasmI32);
uint32_t global2 = builder->AddGlobal(kWasmI32);
WasmFunctionBuilder* f1 = builder->AddFunction(sigs.i_v());
byte code1[] = {
WASM_I32_ADD(WASM_GET_GLOBAL(global1), WASM_GET_GLOBAL(global2))};
EMIT_CODE_WITH_END(f1, code1);
WasmFunctionBuilder* f2 = builder->AddFunction(sigs.i_v());
ExportAsMain(f2);
byte code2[] = {WASM_SET_GLOBAL(global1, WASM_I32V_1(56)),
WASM_SET_GLOBAL(global2, WASM_I32V_1(41)),
WASM_RETURN1(WASM_CALL_FUNCTION0(f1->func_index()))};
EMIT_CODE_WITH_END(f2, code2);
TestModule(&zone, builder, 97);
}
Cleanup();
}
TEST(MemorySize) {
{
// Initial memory size is 16, see wasm-module-builder.cc
static const int kExpectedValue = 16;
TestSignatures sigs;
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
WasmFunctionBuilder* f = builder->AddFunction(sigs.i_v());
ExportAsMain(f);
byte code[] = {WASM_MEMORY_SIZE};
EMIT_CODE_WITH_END(f, code);
TestModule(&zone, builder, kExpectedValue);
}
Cleanup();
}
TEST(Run_WasmModule_MemSize_GrowMem) {
{
// Initial memory size = 16 + MemoryGrow(10)
static const int kExpectedValue = 26;
TestSignatures sigs;
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
WasmFunctionBuilder* f = builder->AddFunction(sigs.i_v());
ExportAsMain(f);
byte code[] = {WASM_GROW_MEMORY(WASM_I32V_1(10)), WASM_DROP,
WASM_MEMORY_SIZE};
EMIT_CODE_WITH_END(f, code);
TestModule(&zone, builder, kExpectedValue);
}
Cleanup();
}
TEST(MemoryGrowZero) {
{
// Initial memory size is 16, see wasm-module-builder.cc
static const int kExpectedValue = 16;
TestSignatures sigs;
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
WasmFunctionBuilder* f = builder->AddFunction(sigs.i_v());
ExportAsMain(f);
byte code[] = {WASM_GROW_MEMORY(WASM_I32V(0))};
EMIT_CODE_WITH_END(f, code);
TestModule(&zone, builder, kExpectedValue);
}
Cleanup();
}
class InterruptThread : public v8::base::Thread {
public:
explicit InterruptThread(Isolate* isolate, int32_t* memory)
: Thread(Options("TestInterruptLoop")),
isolate_(isolate),
memory_(memory) {}
static void OnInterrupt(v8::Isolate* isolate, void* data) {
int32_t* m = reinterpret_cast<int32_t*>(data);
// Set the interrupt location to 0 to break the loop in {TestInterruptLoop}.
Address ptr = reinterpret_cast<Address>(&m[interrupt_location_]);
WriteLittleEndianValue<int32_t>(ptr, interrupt_value_);
}
void Run() override {
// Wait for the main thread to write the signal value.
int32_t val = 0;
do {
val = memory_[0];
val = ReadLittleEndianValue<int32_t>(reinterpret_cast<Address>(&val));
} while (val != signal_value_);
isolate_->RequestInterrupt(&OnInterrupt, const_cast<int32_t*>(memory_));
}
Isolate* isolate_;
volatile int32_t* memory_;
static const int32_t interrupt_location_ = 10;
static const int32_t interrupt_value_ = 154;
static const int32_t signal_value_ = 1221;
};
TEST(TestInterruptLoop) {
{
// Do not dump the module of this test because it contains an infinite loop.
if (FLAG_dump_wasm_module) return;
// This test tests that WebAssembly loops can be interrupted, i.e. that if
// an
// InterruptCallback is registered by {Isolate::RequestInterrupt}, then the
// InterruptCallback is eventually called even if a loop in WebAssembly code
// is executed.
// Test setup:
// The main thread executes a WebAssembly function with a loop. In the loop
// {signal_value_} is written to memory to signal a helper thread that the
// main thread reached the loop in the WebAssembly program. When the helper
// thread reads {signal_value_} from memory, it registers the
// InterruptCallback. Upon exeution, the InterruptCallback write into the
// WebAssemblyMemory to end the loop in the WebAssembly program.
TestSignatures sigs;
Isolate* isolate = CcTest::InitIsolateOnce();
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
WasmFunctionBuilder* f = builder->AddFunction(sigs.i_v());
ExportAsMain(f);
byte code[] = {
WASM_LOOP(
WASM_IFB(WASM_NOT(WASM_LOAD_MEM(
MachineType::Int32(),
WASM_I32V(InterruptThread::interrupt_location_ * 4))),
WASM_STORE_MEM(MachineType::Int32(), WASM_ZERO,
WASM_I32V(InterruptThread::signal_value_)),
WASM_BR(1))),
WASM_I32V(121)};
EMIT_CODE_WITH_END(f, code);
ZoneBuffer buffer(&zone);
builder->WriteTo(&buffer);
HandleScope scope(isolate);
testing::SetupIsolateForWasmModule(isolate);
ErrorThrower thrower(isolate, "Test");
const Handle<WasmInstanceObject> instance =
CompileAndInstantiateForTesting(
isolate, &thrower, ModuleWireBytes(buffer.begin(), buffer.end()))
.ToHandleChecked();
Handle<JSArrayBuffer> memory(instance->memory_object().array_buffer(),
isolate);
int32_t* memory_array = reinterpret_cast<int32_t*>(memory->backing_store());
InterruptThread thread(isolate, memory_array);
CHECK(thread.Start());
testing::RunWasmModuleForTesting(isolate, instance, 0, nullptr);
Address address = reinterpret_cast<Address>(
&memory_array[InterruptThread::interrupt_location_]);
CHECK_EQ(InterruptThread::interrupt_value_,
ReadLittleEndianValue<int32_t>(address));
}
Cleanup();
}
TEST(Run_WasmModule_MemoryGrowInIf) {
{
TestSignatures sigs;
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
WasmFunctionBuilder* f = builder->AddFunction(sigs.i_v());
ExportAsMain(f);
byte code[] = {WASM_IF_ELSE_I(WASM_I32V(0), WASM_GROW_MEMORY(WASM_I32V(1)),
WASM_I32V(12))};
EMIT_CODE_WITH_END(f, code);
TestModule(&zone, builder, 12);
}
Cleanup();
}
TEST(Run_WasmModule_GrowMemOobOffset) {
{
static const int kPageSize = 0x10000;
// Initial memory size = 16 + MemoryGrow(10)
static const int index = kPageSize * 17 + 4;
int value = 0xACED;
TestSignatures sigs;
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
WasmFunctionBuilder* f = builder->AddFunction(sigs.i_v());
ExportAsMain(f);
byte code[] = {WASM_GROW_MEMORY(WASM_I32V_1(1)),
WASM_STORE_MEM(MachineType::Int32(), WASM_I32V(index),
WASM_I32V(value))};
EMIT_CODE_WITH_END(f, code);
TestModuleException(&zone, builder);
}
Cleanup();
}
TEST(Run_WasmModule_GrowMemOobFixedIndex) {
{
static const int kPageSize = 0x10000;
// Initial memory size = 16 + MemoryGrow(10)
static const int index = kPageSize * 26 + 4;
int value = 0xACED;
TestSignatures sigs;
Isolate* isolate = CcTest::InitIsolateOnce();
Zone zone(isolate->allocator(), ZONE_NAME);
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
WasmFunctionBuilder* f = builder->AddFunction(sigs.i_i());
ExportAsMain(f);
byte code[] = {WASM_GROW_MEMORY(WASM_GET_LOCAL(0)), WASM_DROP,
WASM_STORE_MEM(MachineType::Int32(), WASM_I32V(index),
WASM_I32V(value)),
WASM_LOAD_MEM(MachineType::Int32(), WASM_I32V(index))};
EMIT_CODE_WITH_END(f, code);
HandleScope scope(isolate);
ZoneBuffer buffer(&zone);
builder->WriteTo(&buffer);
testing::SetupIsolateForWasmModule(isolate);
ErrorThrower thrower(isolate, "Test");
Handle<WasmInstanceObject> instance =
CompileAndInstantiateForTesting(
isolate, &thrower, ModuleWireBytes(buffer.begin(), buffer.end()))
.ToHandleChecked();
// Initial memory size is 16 pages, should trap till index > MemSize on
// consecutive GrowMem calls
for (uint32_t i = 1; i < 5; i++) {
Handle<Object> params[1] = {Handle<Object>(Smi::FromInt(i), isolate)};
v8::TryCatch try_catch(reinterpret_cast<v8::Isolate*>(isolate));
testing::RunWasmModuleForTesting(isolate, instance, 1, params);
CHECK(try_catch.HasCaught());
isolate->clear_pending_exception();
}
Handle<Object> params[1] = {Handle<Object>(Smi::FromInt(1), isolate)};
int32_t result =
testing::RunWasmModuleForTesting(isolate, instance, 1, params);
CHECK_EQ(0xACED, result);
}
Cleanup();
}
TEST(Run_WasmModule_GrowMemOobVariableIndex) {
{
static const int kPageSize = 0x10000;
int value = 0xACED;
TestSignatures sigs;
Isolate* isolate = CcTest::InitIsolateOnce();
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
WasmFunctionBuilder* f = builder->AddFunction(sigs.i_i());
ExportAsMain(f);
byte code[] = {WASM_GROW_MEMORY(WASM_I32V_1(1)), WASM_DROP,
WASM_STORE_MEM(MachineType::Int32(), WASM_GET_LOCAL(0),
WASM_I32V(value)),
WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0))};
EMIT_CODE_WITH_END(f, code);
HandleScope scope(isolate);
ZoneBuffer buffer(&zone);
builder->WriteTo(&buffer);
testing::SetupIsolateForWasmModule(isolate);
ErrorThrower thrower(isolate, "Test");
Handle<WasmInstanceObject> instance =
CompileAndInstantiateForTesting(
isolate, &thrower, ModuleWireBytes(buffer.begin(), buffer.end()))
.ToHandleChecked();
// Initial memory size is 16 pages, should trap till index > MemSize on
// consecutive GrowMem calls
for (int i = 1; i < 5; i++) {
Handle<Object> params[1] = {
Handle<Object>(Smi::FromInt((16 + i) * kPageSize - 3), isolate)};
v8::TryCatch try_catch(reinterpret_cast<v8::Isolate*>(isolate));
testing::RunWasmModuleForTesting(isolate, instance, 1, params);
CHECK(try_catch.HasCaught());
isolate->clear_pending_exception();
}
for (int i = 1; i < 5; i++) {
Handle<Object> params[1] = {
Handle<Object>(Smi::FromInt((20 + i) * kPageSize - 4), isolate)};
int32_t result =
testing::RunWasmModuleForTesting(isolate, instance, 1, params);
CHECK_EQ(0xACED, result);
}
v8::TryCatch try_catch(reinterpret_cast<v8::Isolate*>(isolate));
Handle<Object> params[1] = {
Handle<Object>(Smi::FromInt(25 * kPageSize), isolate)};
testing::RunWasmModuleForTesting(isolate, instance, 1, params);
CHECK(try_catch.HasCaught());
isolate->clear_pending_exception();
}
Cleanup();
}
TEST(Run_WasmModule_Global_init) {
{
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
TestSignatures sigs;
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
uint32_t global1 =
builder->AddGlobal(kWasmI32, false, WasmInitExpr(777777));
uint32_t global2 =
builder->AddGlobal(kWasmI32, false, WasmInitExpr(222222));
WasmFunctionBuilder* f1 = builder->AddFunction(sigs.i_v());
byte code[] = {
WASM_I32_ADD(WASM_GET_GLOBAL(global1), WASM_GET_GLOBAL(global2))};
EMIT_CODE_WITH_END(f1, code);
ExportAsMain(f1);
TestModule(&zone, builder, 999999);
}
Cleanup();
}
template <typename CType>
static void RunWasmModuleGlobalInitTest(ValueType type, CType expected) {
{
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
TestSignatures sigs;
ValueType types[] = {type};
FunctionSig sig(1, 0, types);
for (int padding = 0; padding < 5; padding++) {
// Test with a simple initializer
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
for (int i = 0; i < padding; i++) { // pad global before
builder->AddGlobal(kWasmI32, false, WasmInitExpr(i + 20000));
}
uint32_t global = builder->AddGlobal(type, false, WasmInitExpr(expected));
for (int i = 0; i < padding; i++) { // pad global after
builder->AddGlobal(kWasmI32, false, WasmInitExpr(i + 30000));
}
WasmFunctionBuilder* f1 = builder->AddFunction(&sig);
byte code[] = {WASM_GET_GLOBAL(global)};
EMIT_CODE_WITH_END(f1, code);
ExportAsMain(f1);
TestModule(&zone, builder, expected);
}
}
Cleanup();
}
TEST(Run_WasmModule_Global_i32) {
RunWasmModuleGlobalInitTest<int32_t>(kWasmI32, -983489);
RunWasmModuleGlobalInitTest<int32_t>(kWasmI32, 11223344);
}
TEST(Run_WasmModule_Global_f32) {
RunWasmModuleGlobalInitTest<float>(kWasmF32, -983.9f);
RunWasmModuleGlobalInitTest<float>(kWasmF32, 1122.99f);
}
TEST(Run_WasmModule_Global_f64) {
RunWasmModuleGlobalInitTest<double>(kWasmF64, -833.9);
RunWasmModuleGlobalInitTest<double>(kWasmF64, 86374.25);
}
TEST(InitDataAtTheUpperLimit) {
{
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
testing::SetupIsolateForWasmModule(isolate);
ErrorThrower thrower(isolate, "Run_WasmModule_InitDataAtTheUpperLimit");
const byte data[] = {
WASM_MODULE_HEADER, // --
kMemorySectionCode, // --
U32V_1(4), // section size
ENTRY_COUNT(1), // --
kHasMaximumFlag, // --
1, // initial size
2, // maximum size
kDataSectionCode, // --
U32V_1(9), // section size
ENTRY_COUNT(1), // --
0, // linear memory index
WASM_I32V_3(0xFFFF), // destination offset
kExprEnd,
U32V_1(1), // source size
'c' // data bytes
};
CompileAndInstantiateForTesting(
isolate, &thrower, ModuleWireBytes(data, data + arraysize(data)));
if (thrower.error()) {
thrower.Reify()->Print();
FATAL("compile or instantiate error");
}
}
Cleanup();
}
TEST(EmptyMemoryNonEmptyDataSegment) {
{
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
testing::SetupIsolateForWasmModule(isolate);
ErrorThrower thrower(isolate, "Run_WasmModule_InitDataAtTheUpperLimit");
const byte data[] = {
WASM_MODULE_HEADER, // --
kMemorySectionCode, // --
U32V_1(4), // section size
ENTRY_COUNT(1), // --
kHasMaximumFlag, // --
0, // initial size
0, // maximum size
kDataSectionCode, // --
U32V_1(7), // section size
ENTRY_COUNT(1), // --
0, // linear memory index
WASM_I32V_1(8), // destination offset
kExprEnd,
U32V_1(1), // source size
'c' // data bytes
};
CompileAndInstantiateForTesting(
isolate, &thrower, ModuleWireBytes(data, data + arraysize(data)));
// It should not be possible to instantiate this module.
CHECK(thrower.error());
}
Cleanup();
}
TEST(EmptyMemoryEmptyDataSegment) {
{
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
testing::SetupIsolateForWasmModule(isolate);
ErrorThrower thrower(isolate, "Run_WasmModule_InitDataAtTheUpperLimit");
const byte data[] = {
WASM_MODULE_HEADER, // --
kMemorySectionCode, // --
U32V_1(4), // section size
ENTRY_COUNT(1), // --
kHasMaximumFlag, // --
0, // initial size
0, // maximum size
kDataSectionCode, // --
U32V_1(6), // section size
ENTRY_COUNT(1), // --
0, // linear memory index
WASM_I32V_1(0), // destination offset
kExprEnd,
U32V_1(0), // source size
};
CompileAndInstantiateForTesting(
isolate, &thrower, ModuleWireBytes(data, data + arraysize(data)));
// It should be possible to instantiate this module.
CHECK(!thrower.error());
}
Cleanup();
}
TEST(MemoryWithOOBEmptyDataSegment) {
{
FlagScope<bool> no_bulk_memory(
&v8::internal::FLAG_experimental_wasm_bulk_memory, false);
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
testing::SetupIsolateForWasmModule(isolate);
ErrorThrower thrower(isolate, "Run_WasmModule_InitDataAtTheUpperLimit");
const byte data[] = {
WASM_MODULE_HEADER, // --
kMemorySectionCode, // --
U32V_1(4), // section size
ENTRY_COUNT(1), // --
kHasMaximumFlag, // --
1, // initial size
1, // maximum size
kDataSectionCode, // --
U32V_1(9), // section size
ENTRY_COUNT(1), // --
0, // linear memory index
WASM_I32V_4(0x2468ACE), // destination offset
kExprEnd,
U32V_1(0), // source size
};
CompileAndInstantiateForTesting(
isolate, &thrower, ModuleWireBytes(data, data + arraysize(data)));
// It should not be possible to instantiate this module.
CHECK(thrower.error());
}
Cleanup();
}
TEST(GcStructIdsPass) {
{
EXPERIMENTAL_FLAG_SCOPE(gc);
EXPERIMENTAL_FLAG_SCOPE(reftypes);
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
testing::SetupIsolateForWasmModule(isolate);
ErrorThrower thrower(isolate, "GcStructIdsPass");
const byte data[] = {
WASM_MODULE_HEADER, // --
kTypeSectionCode, // --
U32V_1(23), // Section size
U32V_1(3), // type count
kWasmStructTypeCode, // index 0 = struct(i32, type(0), type(1))
U32V_1(3), // field count
kLocalI32, // field 0
U32V_1(1), // mutability
kLocalOptRef, // field 1
U32V_1(0), // --
U32V_1(1), // mutability
kLocalOptRef, // field 2
U32V_1(1), // --
U32V_1(1), // mutability
kWasmStructTypeCode, // index 1 = struct(type(0), type(2))
U32V_1(2), // field count
kLocalOptRef, // field 0
U32V_1(0), // --
U32V_1(1), // mutability
kLocalOptRef, // field 1
U32V_1(2), // --
U32V_1(1), // mutability
kWasmArrayTypeCode, // index 2 = array(type(0))
kLocalOptRef, // element type
U32V_1(0), // --
U32V_1(1) // mutability
};
CompileAndInstantiateForTesting(
isolate, &thrower, ModuleWireBytes(data, data + arraysize(data)));
// This module is valid.
if (thrower.error()) {
FATAL("%s", thrower.error_msg());
}
}
Cleanup();
}
TEST(GcTypeIdsUndefinedIndex) {
{
EXPERIMENTAL_FLAG_SCOPE(gc);
EXPERIMENTAL_FLAG_SCOPE(reftypes);
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
testing::SetupIsolateForWasmModule(isolate);
ErrorThrower thrower(isolate, "GcTypeIdsUndefinedIndex");
const byte data[] = {
WASM_MODULE_HEADER, // --
kTypeSectionCode, // --
U32V_1(6), // Section size
U32V_1(1), // type count
kWasmStructTypeCode, // index 0 = struct(type(1))
U32V_1(1), // field count
kLocalOptRef, // field 0
U32V_1(1), // --
U32V_1(1) // mutability
};
CompileAndInstantiateForTesting(
isolate, &thrower, ModuleWireBytes(data, data + arraysize(data)));
// There should be an error reflecting an undeclared index.
CHECK(thrower.error());
CHECK_NE(std::string(thrower.error_msg())
.find("reference to undeclared struct/array"),
std::string::npos);
}
Cleanup();
}
TEST(GcTypeIdsIllegalIndex) {
{
EXPERIMENTAL_FLAG_SCOPE(gc);
EXPERIMENTAL_FLAG_SCOPE(reftypes);
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
testing::SetupIsolateForWasmModule(isolate);
ErrorThrower thrower(isolate, "GcTypeIdsIllegalIndex");
const byte data[] = {
WASM_MODULE_HEADER, // --
kTypeSectionCode, // --
U32V_1(11), // Section size
U32V_1(2), // type count
kWasmStructTypeCode, // index 0 = struct(type(1))
U32V_1(1), // field count
kLocalOptRef, // field 0
U32V_1(1), // --
U32V_1(1), // mutability
kWasmFunctionTypeCode, // index 1 = int32 -> int32
U32V_1(1), // param count
kLocalI32, // param 0
U32V_1(1), // returns count
kLocalI32 // return 0
};
CompileAndInstantiateForTesting(
isolate, &thrower, ModuleWireBytes(data, data + arraysize(data)));
// There should be an error reflecting an invalid index.
CHECK(thrower.error());
CHECK_NE(std::string(thrower.error_msg())
.find("cannot build reference to function type index"),
std::string::npos);
}
Cleanup();
}
TEST(GcTypeIdsFunSigIllegalIndex) {
{
EXPERIMENTAL_FLAG_SCOPE(gc);
EXPERIMENTAL_FLAG_SCOPE(reftypes);
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
testing::SetupIsolateForWasmModule(isolate);
ErrorThrower thrower(isolate, "GcTypeIdsFumSigIllegalIndex");
const byte data[] = {
WASM_MODULE_HEADER, // --
kTypeSectionCode, // --
U32V_1(7), // Section size
U32V_1(1), // type count
kWasmFunctionTypeCode, // index 0 = int32 -> int32
U32V_1(1), // param count
kLocalI32, // param 0
U32V_1(1), // returns count
kLocalOptRef, // return 0
U32V_1(0) // --
};
CompileAndInstantiateForTesting(
isolate, &thrower, ModuleWireBytes(data, data + arraysize(data)));
// There should be an error reflecting an invalid index.
CHECK(thrower.error());
CHECK_NE(std::string(thrower.error_msg())
.find("cannot build reference to function type index"),
std::string::npos);
}
Cleanup();
}
#undef EMIT_CODE_WITH_END
} // namespace test_run_wasm_module
} // namespace wasm
} // namespace internal
} // namespace v8