v8/test/cctest/interpreter/test-interpreter.cc
Dan Elphick bf9e3e4de8 Reland "Reland "[compiler] Don't collect source positions for the top frame""
This is a reland of f2e652264d

Nothing has changed but
https://chromium-review.googlesource.com/c/v8/v8/+/1585269 has been rolled
back due to v8:9234.

Original change's description:
> Reland "[compiler] Don't collect source positions for the top frame"
>
> Fixed crashes by adding missing call to EnsureSourcePositionsAvailable,
> which requires clearing and restoring the pending exception.
>
> > While most source positions were not collected even throwing exceptions,
> > the top frame still was always collected as it was used to initialize
> > the JSMessageObject. This skips even that frame, by storing the
> > SharedFunctionInfo and bytecode offset in the JSMessageObject allowing
> > it to lazily evaluate the actual source position.
> >
> > Also adds tests to test-api.cc that test each of the source position
> > functions in isolation to ensure that they don't rely on previous
> > invocations to call the source collection function.
> >
> > Since no source positions are now collected at the point when an
> > exception is thrown, the mjsunit/stack-traces-overflow now passes again
> > with the flag enabled. (cctest/test-cpu-profiler/Inlining2 is now the
> > only failure).
>
> Bug: v8:8510
> Change-Id: Ifa5fe31d3db34a6c6d6a9cef3d646ad620dabd81
> Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1601270
> Commit-Queue: Dan Elphick <delphick@chromium.org>
> Reviewed-by: Ulan Degenbaev <ulan@chromium.org>
> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org>
> Cr-Commit-Position: refs/heads/master@{#61372}

TBR=ulan@chromium.org

Bug: v8:8510
Change-Id: Iaa9e376f90d10c0f25d1bcc352808363e4ea8b4d
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1605946
Reviewed-by: Dan Elphick <delphick@chromium.org>
Reviewed-by: Ulan Degenbaev <ulan@chromium.org>
Reviewed-by: Ross McIlroy <rmcilroy@chromium.org>
Commit-Queue: Dan Elphick <delphick@chromium.org>
Cr-Commit-Position: refs/heads/master@{#61418}
2019-05-10 15:56:44 +00:00

5260 lines
198 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <tuple>
#include "src/v8.h"
#include "src/api-inl.h"
#include "src/base/overflowing-math.h"
#include "src/compiler.h"
#include "src/execution.h"
#include "src/handles.h"
#include "src/hash-seed-inl.h"
#include "src/heap/heap-inl.h"
#include "src/interpreter/bytecode-array-builder.h"
#include "src/interpreter/bytecode-array-iterator.h"
#include "src/interpreter/bytecode-flags.h"
#include "src/interpreter/bytecode-label.h"
#include "src/interpreter/interpreter.h"
#include "src/objects-inl.h"
#include "src/objects/heap-number-inl.h"
#include "src/objects/smi.h"
#include "test/cctest/cctest.h"
#include "test/cctest/interpreter/interpreter-tester.h"
#include "test/cctest/test-feedback-vector.h"
namespace v8 {
namespace internal {
namespace interpreter {
static int GetIndex(FeedbackSlot slot) {
return FeedbackVector::GetIndex(slot);
}
using ToBooleanMode = BytecodeArrayBuilder::ToBooleanMode;
TEST(InterpreterReturn) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
Handle<Object> undefined_value = isolate->factory()->undefined_value();
BytecodeArrayBuilder builder(zone, 1, 0);
builder.Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array);
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK(return_val.is_identical_to(undefined_value));
}
TEST(InterpreterLoadUndefined) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
Handle<Object> undefined_value = isolate->factory()->undefined_value();
BytecodeArrayBuilder builder(zone, 1, 0);
builder.LoadUndefined().Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array);
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK(return_val.is_identical_to(undefined_value));
}
TEST(InterpreterLoadNull) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
Handle<Object> null_value = isolate->factory()->null_value();
BytecodeArrayBuilder builder(zone, 1, 0);
builder.LoadNull().Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array);
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK(return_val.is_identical_to(null_value));
}
TEST(InterpreterLoadTheHole) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
Handle<Object> the_hole_value = isolate->factory()->the_hole_value();
BytecodeArrayBuilder builder(zone, 1, 0);
builder.LoadTheHole().Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array);
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK(return_val.is_identical_to(the_hole_value));
}
TEST(InterpreterLoadTrue) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
Handle<Object> true_value = isolate->factory()->true_value();
BytecodeArrayBuilder builder(zone, 1, 0);
builder.LoadTrue().Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array);
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK(return_val.is_identical_to(true_value));
}
TEST(InterpreterLoadFalse) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
Handle<Object> false_value = isolate->factory()->false_value();
BytecodeArrayBuilder builder(zone, 1, 0);
builder.LoadFalse().Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array);
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK(return_val.is_identical_to(false_value));
}
TEST(InterpreterLoadLiteral) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
// Small Smis.
for (int i = -128; i < 128; i++) {
BytecodeArrayBuilder builder(zone, 1, 0);
builder.LoadLiteral(Smi::FromInt(i)).Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array);
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(i));
}
// Large Smis.
{
BytecodeArrayBuilder builder(zone, 1, 0);
builder.LoadLiteral(Smi::FromInt(0x12345678)).Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array);
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(0x12345678));
}
// Heap numbers.
{
AstValueFactory ast_factory(zone, isolate->ast_string_constants(),
HashSeed(isolate));
BytecodeArrayBuilder builder(zone, 1, 0);
builder.LoadLiteral(-2.1e19).Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array);
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK_EQ(i::HeapNumber::cast(*return_val)->value(), -2.1e19);
}
// Strings.
{
AstValueFactory ast_factory(zone, isolate->ast_string_constants(),
HashSeed(isolate));
BytecodeArrayBuilder builder(zone, 1, 0);
const AstRawString* raw_string = ast_factory.GetOneByteString("String");
builder.LoadLiteral(raw_string).Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array);
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK(i::String::cast(*return_val)->Equals(*raw_string->string()));
}
}
TEST(InterpreterLoadStoreRegisters) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
Handle<Object> true_value = isolate->factory()->true_value();
for (int i = 0; i <= kMaxInt8; i++) {
BytecodeArrayBuilder builder(zone, 1, i + 1);
Register reg(i);
builder.LoadTrue()
.StoreAccumulatorInRegister(reg)
.LoadFalse()
.LoadAccumulatorWithRegister(reg)
.Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array);
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK(return_val.is_identical_to(true_value));
}
}
static const Token::Value kShiftOperators[] = {
Token::Value::SHL, Token::Value::SAR, Token::Value::SHR};
static const Token::Value kArithmeticOperators[] = {
Token::Value::BIT_OR, Token::Value::BIT_XOR, Token::Value::BIT_AND,
Token::Value::SHL, Token::Value::SAR, Token::Value::SHR,
Token::Value::ADD, Token::Value::SUB, Token::Value::MUL,
Token::Value::DIV, Token::Value::MOD};
static double BinaryOpC(Token::Value op, double lhs, double rhs) {
switch (op) {
case Token::Value::ADD:
return lhs + rhs;
case Token::Value::SUB:
return lhs - rhs;
case Token::Value::MUL:
return lhs * rhs;
case Token::Value::DIV:
return base::Divide(lhs, rhs);
case Token::Value::MOD:
return Modulo(lhs, rhs);
case Token::Value::BIT_OR:
return (v8::internal::DoubleToInt32(lhs) |
v8::internal::DoubleToInt32(rhs));
case Token::Value::BIT_XOR:
return (v8::internal::DoubleToInt32(lhs) ^
v8::internal::DoubleToInt32(rhs));
case Token::Value::BIT_AND:
return (v8::internal::DoubleToInt32(lhs) &
v8::internal::DoubleToInt32(rhs));
case Token::Value::SHL: {
return base::ShlWithWraparound(DoubleToInt32(lhs), DoubleToInt32(rhs));
}
case Token::Value::SAR: {
int32_t val = v8::internal::DoubleToInt32(lhs);
uint32_t count = v8::internal::DoubleToUint32(rhs) & 0x1F;
int32_t result = val >> count;
return result;
}
case Token::Value::SHR: {
uint32_t val = v8::internal::DoubleToUint32(lhs);
uint32_t count = v8::internal::DoubleToUint32(rhs) & 0x1F;
uint32_t result = val >> count;
return result;
}
default:
UNREACHABLE();
}
}
TEST(InterpreterShiftOpsSmi) {
int lhs_inputs[] = {0, -17, -182, 1073741823, -1};
int rhs_inputs[] = {5, 2, 1, -1, -2, 0, 31, 32, -32, 64, 37};
for (size_t l = 0; l < arraysize(lhs_inputs); l++) {
for (size_t r = 0; r < arraysize(rhs_inputs); r++) {
for (size_t o = 0; o < arraysize(kShiftOperators); o++) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
Factory* factory = isolate->factory();
FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 1, 1, &feedback_spec);
FeedbackSlot slot = feedback_spec.AddBinaryOpICSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
Register reg(0);
int lhs = lhs_inputs[l];
int rhs = rhs_inputs[r];
builder.LoadLiteral(Smi::FromInt(lhs))
.StoreAccumulatorInRegister(reg)
.LoadLiteral(Smi::FromInt(rhs))
.BinaryOperation(kShiftOperators[o], reg, GetIndex(slot))
.Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<>();
Handle<Object> return_value = callable().ToHandleChecked();
Handle<Object> expected_value =
factory->NewNumber(BinaryOpC(kShiftOperators[o], lhs, rhs));
CHECK(return_value->SameValue(*expected_value));
}
}
}
}
TEST(InterpreterBinaryOpsSmi) {
int lhs_inputs[] = {3266, 1024, 0, -17, -18000};
int rhs_inputs[] = {3266, 5, 4, 3, 2, 1, -1, -2};
for (size_t l = 0; l < arraysize(lhs_inputs); l++) {
for (size_t r = 0; r < arraysize(rhs_inputs); r++) {
for (size_t o = 0; o < arraysize(kArithmeticOperators); o++) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
Factory* factory = isolate->factory();
FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 1, 1, &feedback_spec);
FeedbackSlot slot = feedback_spec.AddBinaryOpICSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
Register reg(0);
int lhs = lhs_inputs[l];
int rhs = rhs_inputs[r];
builder.LoadLiteral(Smi::FromInt(lhs))
.StoreAccumulatorInRegister(reg)
.LoadLiteral(Smi::FromInt(rhs))
.BinaryOperation(kArithmeticOperators[o], reg, GetIndex(slot))
.Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<>();
Handle<Object> return_value = callable().ToHandleChecked();
Handle<Object> expected_value =
factory->NewNumber(BinaryOpC(kArithmeticOperators[o], lhs, rhs));
CHECK(return_value->SameValue(*expected_value));
}
}
}
}
TEST(InterpreterBinaryOpsHeapNumber) {
double lhs_inputs[] = {3266.101, 1024.12, 0.01, -17.99, -18000.833, 9.1e17};
double rhs_inputs[] = {3266.101, 5.999, 4.778, 3.331, 2.643,
1.1, -1.8, -2.9, 8.3e-27};
for (size_t l = 0; l < arraysize(lhs_inputs); l++) {
for (size_t r = 0; r < arraysize(rhs_inputs); r++) {
for (size_t o = 0; o < arraysize(kArithmeticOperators); o++) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
Factory* factory = isolate->factory();
FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 1, 1, &feedback_spec);
FeedbackSlot slot = feedback_spec.AddBinaryOpICSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
Register reg(0);
double lhs = lhs_inputs[l];
double rhs = rhs_inputs[r];
builder.LoadLiteral(lhs)
.StoreAccumulatorInRegister(reg)
.LoadLiteral(rhs)
.BinaryOperation(kArithmeticOperators[o], reg, GetIndex(slot))
.Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<>();
Handle<Object> return_value = callable().ToHandleChecked();
Handle<Object> expected_value =
factory->NewNumber(BinaryOpC(kArithmeticOperators[o], lhs, rhs));
CHECK(return_value->SameValue(*expected_value));
}
}
}
}
TEST(InterpreterBinaryOpsBigInt) {
// This test only checks that the recorded type feedback is kBigInt.
AstBigInt inputs[] = {AstBigInt("1"), AstBigInt("-42"), AstBigInt("0xFFFF")};
for (size_t l = 0; l < arraysize(inputs); l++) {
for (size_t r = 0; r < arraysize(inputs); r++) {
for (size_t o = 0; o < arraysize(kArithmeticOperators); o++) {
// Skip over unsigned right shift.
if (kArithmeticOperators[o] == Token::Value::SHR) continue;
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 1, 1, &feedback_spec);
FeedbackSlot slot = feedback_spec.AddBinaryOpICSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
Register reg(0);
auto lhs = inputs[l];
auto rhs = inputs[r];
builder.LoadLiteral(lhs)
.StoreAccumulatorInRegister(reg)
.LoadLiteral(rhs)
.BinaryOperation(kArithmeticOperators[o], reg, GetIndex(slot))
.Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<>();
Handle<Object> return_value = callable().ToHandleChecked();
CHECK(return_value->IsBigInt());
if (tester.HasFeedbackMetadata()) {
MaybeObject feedback = callable.vector()->Get(slot);
CHECK(feedback->IsSmi());
CHECK_EQ(BinaryOperationFeedback::kBigInt, feedback->ToSmi().value());
}
}
}
}
}
namespace {
struct LiteralForTest {
enum Type { kString, kHeapNumber, kSmi, kTrue, kFalse, kUndefined, kNull };
explicit LiteralForTest(const AstRawString* string)
: type(kString), string(string) {}
explicit LiteralForTest(double number) : type(kHeapNumber), number(number) {}
explicit LiteralForTest(int smi) : type(kSmi), smi(smi) {}
explicit LiteralForTest(Type type) : type(type) {}
Type type;
union {
const AstRawString* string;
double number;
int smi;
};
};
void LoadLiteralForTest(BytecodeArrayBuilder* builder,
const LiteralForTest& value) {
switch (value.type) {
case LiteralForTest::kString:
builder->LoadLiteral(value.string);
return;
case LiteralForTest::kHeapNumber:
builder->LoadLiteral(value.number);
return;
case LiteralForTest::kSmi:
builder->LoadLiteral(Smi::FromInt(value.smi));
return;
case LiteralForTest::kTrue:
builder->LoadTrue();
return;
case LiteralForTest::kFalse:
builder->LoadFalse();
return;
case LiteralForTest::kUndefined:
builder->LoadUndefined();
return;
case LiteralForTest::kNull:
builder->LoadNull();
return;
}
UNREACHABLE();
}
} // anonymous namespace
TEST(InterpreterStringAdd) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
Factory* factory = isolate->factory();
AstValueFactory ast_factory(zone, isolate->ast_string_constants(),
HashSeed(isolate));
struct TestCase {
const AstRawString* lhs;
LiteralForTest rhs;
Handle<Object> expected_value;
int32_t expected_feedback;
} test_cases[] = {
{ast_factory.GetOneByteString("a"),
LiteralForTest(ast_factory.GetOneByteString("b")),
factory->NewStringFromStaticChars("ab"),
BinaryOperationFeedback::kString},
{ast_factory.GetOneByteString("aaaaaa"),
LiteralForTest(ast_factory.GetOneByteString("b")),
factory->NewStringFromStaticChars("aaaaaab"),
BinaryOperationFeedback::kString},
{ast_factory.GetOneByteString("aaa"),
LiteralForTest(ast_factory.GetOneByteString("bbbbb")),
factory->NewStringFromStaticChars("aaabbbbb"),
BinaryOperationFeedback::kString},
{ast_factory.GetOneByteString(""),
LiteralForTest(ast_factory.GetOneByteString("b")),
factory->NewStringFromStaticChars("b"),
BinaryOperationFeedback::kString},
{ast_factory.GetOneByteString("a"),
LiteralForTest(ast_factory.GetOneByteString("")),
factory->NewStringFromStaticChars("a"),
BinaryOperationFeedback::kString},
{ast_factory.GetOneByteString("1.11"), LiteralForTest(2.5),
factory->NewStringFromStaticChars("1.112.5"),
BinaryOperationFeedback::kAny},
{ast_factory.GetOneByteString("-1.11"), LiteralForTest(2.56),
factory->NewStringFromStaticChars("-1.112.56"),
BinaryOperationFeedback::kAny},
{ast_factory.GetOneByteString(""), LiteralForTest(2.5),
factory->NewStringFromStaticChars("2.5"), BinaryOperationFeedback::kAny},
};
for (size_t i = 0; i < arraysize(test_cases); i++) {
FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 1, 1, &feedback_spec);
FeedbackSlot slot = feedback_spec.AddBinaryOpICSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
Register reg(0);
builder.LoadLiteral(test_cases[i].lhs).StoreAccumulatorInRegister(reg);
LoadLiteralForTest(&builder, test_cases[i].rhs);
builder.BinaryOperation(Token::Value::ADD, reg, GetIndex(slot)).Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<>();
Handle<Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*test_cases[i].expected_value));
if (tester.HasFeedbackMetadata()) {
MaybeObject feedback = callable.vector()->Get(slot);
CHECK(feedback->IsSmi());
CHECK_EQ(test_cases[i].expected_feedback, feedback->ToSmi().value());
}
}
}
TEST(InterpreterParameter1) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
BytecodeArrayBuilder builder(zone, 1, 0);
builder.LoadAccumulatorWithRegister(builder.Receiver()).Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array);
auto callable = tester.GetCallable<Handle<Object>>();
// Check for heap objects.
Handle<Object> true_value = isolate->factory()->true_value();
Handle<Object> return_val = callable(true_value).ToHandleChecked();
CHECK(return_val.is_identical_to(true_value));
// Check for Smis.
return_val = callable(Handle<Smi>(Smi::FromInt(3), handles.main_isolate()))
.ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(3));
}
TEST(InterpreterParameter8) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
AstValueFactory ast_factory(zone, isolate->ast_string_constants(),
HashSeed(isolate));
FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 8, 0, &feedback_spec);
FeedbackSlot slot = feedback_spec.AddBinaryOpICSlot();
FeedbackSlot slot1 = feedback_spec.AddBinaryOpICSlot();
FeedbackSlot slot2 = feedback_spec.AddBinaryOpICSlot();
FeedbackSlot slot3 = feedback_spec.AddBinaryOpICSlot();
FeedbackSlot slot4 = feedback_spec.AddBinaryOpICSlot();
FeedbackSlot slot5 = feedback_spec.AddBinaryOpICSlot();
FeedbackSlot slot6 = feedback_spec.AddBinaryOpICSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
builder.LoadAccumulatorWithRegister(builder.Receiver())
.BinaryOperation(Token::Value::ADD, builder.Parameter(0), GetIndex(slot))
.BinaryOperation(Token::Value::ADD, builder.Parameter(1), GetIndex(slot1))
.BinaryOperation(Token::Value::ADD, builder.Parameter(2), GetIndex(slot2))
.BinaryOperation(Token::Value::ADD, builder.Parameter(3), GetIndex(slot3))
.BinaryOperation(Token::Value::ADD, builder.Parameter(4), GetIndex(slot4))
.BinaryOperation(Token::Value::ADD, builder.Parameter(5), GetIndex(slot5))
.BinaryOperation(Token::Value::ADD, builder.Parameter(6), GetIndex(slot6))
.Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
typedef Handle<Object> H;
auto callable = tester.GetCallable<H, H, H, H, H, H, H, H>();
Handle<Smi> arg1 = Handle<Smi>(Smi::FromInt(1), handles.main_isolate());
Handle<Smi> arg2 = Handle<Smi>(Smi::FromInt(2), handles.main_isolate());
Handle<Smi> arg3 = Handle<Smi>(Smi::FromInt(3), handles.main_isolate());
Handle<Smi> arg4 = Handle<Smi>(Smi::FromInt(4), handles.main_isolate());
Handle<Smi> arg5 = Handle<Smi>(Smi::FromInt(5), handles.main_isolate());
Handle<Smi> arg6 = Handle<Smi>(Smi::FromInt(6), handles.main_isolate());
Handle<Smi> arg7 = Handle<Smi>(Smi::FromInt(7), handles.main_isolate());
Handle<Smi> arg8 = Handle<Smi>(Smi::FromInt(8), handles.main_isolate());
// Check for Smis.
Handle<Object> return_val =
callable(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8)
.ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(36));
}
TEST(InterpreterBinaryOpTypeFeedback) {
if (FLAG_lite_mode) return;
HandleAndZoneScope handles;
i::Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
AstValueFactory ast_factory(zone, isolate->ast_string_constants(),
HashSeed(isolate));
struct BinaryOpExpectation {
Token::Value op;
LiteralForTest arg1;
LiteralForTest arg2;
Handle<Object> result;
int32_t feedback;
};
BinaryOpExpectation const kTestCases[] = {
// ADD
{Token::Value::ADD, LiteralForTest(2), LiteralForTest(3),
Handle<Smi>(Smi::FromInt(5), isolate),
BinaryOperationFeedback::kSignedSmall},
{Token::Value::ADD, LiteralForTest(Smi::kMaxValue), LiteralForTest(1),
isolate->factory()->NewHeapNumber(Smi::kMaxValue + 1.0),
BinaryOperationFeedback::kNumber},
{Token::Value::ADD, LiteralForTest(3.1415), LiteralForTest(3),
isolate->factory()->NewHeapNumber(3.1415 + 3),
BinaryOperationFeedback::kNumber},
{Token::Value::ADD, LiteralForTest(3.1415), LiteralForTest(1.4142),
isolate->factory()->NewHeapNumber(3.1415 + 1.4142),
BinaryOperationFeedback::kNumber},
{Token::Value::ADD, LiteralForTest(ast_factory.GetOneByteString("foo")),
LiteralForTest(ast_factory.GetOneByteString("bar")),
isolate->factory()->NewStringFromAsciiChecked("foobar"),
BinaryOperationFeedback::kString},
{Token::Value::ADD, LiteralForTest(2),
LiteralForTest(ast_factory.GetOneByteString("2")),
isolate->factory()->NewStringFromAsciiChecked("22"),
BinaryOperationFeedback::kAny},
// SUB
{Token::Value::SUB, LiteralForTest(2), LiteralForTest(3),
Handle<Smi>(Smi::FromInt(-1), isolate),
BinaryOperationFeedback::kSignedSmall},
{Token::Value::SUB, LiteralForTest(Smi::kMinValue), LiteralForTest(1),
isolate->factory()->NewHeapNumber(Smi::kMinValue - 1.0),
BinaryOperationFeedback::kNumber},
{Token::Value::SUB, LiteralForTest(3.1415), LiteralForTest(3),
isolate->factory()->NewHeapNumber(3.1415 - 3),
BinaryOperationFeedback::kNumber},
{Token::Value::SUB, LiteralForTest(3.1415), LiteralForTest(1.4142),
isolate->factory()->NewHeapNumber(3.1415 - 1.4142),
BinaryOperationFeedback::kNumber},
{Token::Value::SUB, LiteralForTest(2),
LiteralForTest(ast_factory.GetOneByteString("1")),
Handle<Smi>(Smi::FromInt(1), isolate), BinaryOperationFeedback::kAny},
// MUL
{Token::Value::MUL, LiteralForTest(2), LiteralForTest(3),
Handle<Smi>(Smi::FromInt(6), isolate),
BinaryOperationFeedback::kSignedSmall},
{Token::Value::MUL, LiteralForTest(Smi::kMinValue), LiteralForTest(2),
isolate->factory()->NewHeapNumber(Smi::kMinValue * 2.0),
BinaryOperationFeedback::kNumber},
{Token::Value::MUL, LiteralForTest(3.1415), LiteralForTest(3),
isolate->factory()->NewHeapNumber(3 * 3.1415),
BinaryOperationFeedback::kNumber},
{Token::Value::MUL, LiteralForTest(3.1415), LiteralForTest(1.4142),
isolate->factory()->NewHeapNumber(3.1415 * 1.4142),
BinaryOperationFeedback::kNumber},
{Token::Value::MUL, LiteralForTest(2),
LiteralForTest(ast_factory.GetOneByteString("1")),
Handle<Smi>(Smi::FromInt(2), isolate), BinaryOperationFeedback::kAny},
// DIV
{Token::Value::DIV, LiteralForTest(6), LiteralForTest(3),
Handle<Smi>(Smi::FromInt(2), isolate),
BinaryOperationFeedback::kSignedSmall},
{Token::Value::DIV, LiteralForTest(3), LiteralForTest(2),
isolate->factory()->NewHeapNumber(3.0 / 2.0),
BinaryOperationFeedback::kSignedSmallInputs},
{Token::Value::DIV, LiteralForTest(3.1415), LiteralForTest(3),
isolate->factory()->NewHeapNumber(3.1415 / 3),
BinaryOperationFeedback::kNumber},
{Token::Value::DIV, LiteralForTest(3.1415),
LiteralForTest(-std::numeric_limits<double>::infinity()),
isolate->factory()->NewHeapNumber(-0.0),
BinaryOperationFeedback::kNumber},
{Token::Value::DIV, LiteralForTest(2),
LiteralForTest(ast_factory.GetOneByteString("1")),
Handle<Smi>(Smi::FromInt(2), isolate), BinaryOperationFeedback::kAny},
// MOD
{Token::Value::MOD, LiteralForTest(5), LiteralForTest(3),
Handle<Smi>(Smi::FromInt(2), isolate),
BinaryOperationFeedback::kSignedSmall},
{Token::Value::MOD, LiteralForTest(-4), LiteralForTest(2),
isolate->factory()->NewHeapNumber(-0.0),
BinaryOperationFeedback::kNumber},
{Token::Value::MOD, LiteralForTest(3.1415), LiteralForTest(3),
isolate->factory()->NewHeapNumber(fmod(3.1415, 3.0)),
BinaryOperationFeedback::kNumber},
{Token::Value::MOD, LiteralForTest(-3.1415), LiteralForTest(-1.4142),
isolate->factory()->NewHeapNumber(fmod(-3.1415, -1.4142)),
BinaryOperationFeedback::kNumber},
{Token::Value::MOD, LiteralForTest(3),
LiteralForTest(ast_factory.GetOneByteString("-2")),
Handle<Smi>(Smi::FromInt(1), isolate), BinaryOperationFeedback::kAny}};
for (const BinaryOpExpectation& test_case : kTestCases) {
i::FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 1, 1, &feedback_spec);
i::FeedbackSlot slot0 = feedback_spec.AddBinaryOpICSlot();
Handle<i::FeedbackMetadata> metadata =
i::NewFeedbackMetadata(isolate, &feedback_spec);
Register reg(0);
LoadLiteralForTest(&builder, test_case.arg1);
builder.StoreAccumulatorInRegister(reg);
LoadLiteralForTest(&builder, test_case.arg2);
builder.BinaryOperation(test_case.op, reg, GetIndex(slot0)).Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
MaybeObject feedback0 = callable.vector()->Get(slot0);
CHECK(feedback0->IsSmi());
CHECK_EQ(test_case.feedback, feedback0->ToSmi().value());
CHECK(Object::Equals(isolate, test_case.result, return_val).ToChecked());
}
}
TEST(InterpreterBinaryOpSmiTypeFeedback) {
if (FLAG_lite_mode) return;
HandleAndZoneScope handles;
i::Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
AstValueFactory ast_factory(zone, isolate->ast_string_constants(),
HashSeed(isolate));
struct BinaryOpExpectation {
Token::Value op;
LiteralForTest arg1;
int32_t arg2;
Handle<Object> result;
int32_t feedback;
};
BinaryOpExpectation const kTestCases[] = {
// ADD
{Token::Value::ADD, LiteralForTest(2), 42,
Handle<Smi>(Smi::FromInt(44), isolate),
BinaryOperationFeedback::kSignedSmall},
{Token::Value::ADD, LiteralForTest(2), Smi::kMaxValue,
isolate->factory()->NewHeapNumber(Smi::kMaxValue + 2.0),
BinaryOperationFeedback::kNumber},
{Token::Value::ADD, LiteralForTest(3.1415), 2,
isolate->factory()->NewHeapNumber(3.1415 + 2.0),
BinaryOperationFeedback::kNumber},
{Token::Value::ADD, LiteralForTest(ast_factory.GetOneByteString("2")), 2,
isolate->factory()->NewStringFromAsciiChecked("22"),
BinaryOperationFeedback::kAny},
// SUB
{Token::Value::SUB, LiteralForTest(2), 42,
Handle<Smi>(Smi::FromInt(-40), isolate),
BinaryOperationFeedback::kSignedSmall},
{Token::Value::SUB, LiteralForTest(Smi::kMinValue), 1,
isolate->factory()->NewHeapNumber(Smi::kMinValue - 1.0),
BinaryOperationFeedback::kNumber},
{Token::Value::SUB, LiteralForTest(3.1415), 2,
isolate->factory()->NewHeapNumber(3.1415 - 2.0),
BinaryOperationFeedback::kNumber},
{Token::Value::SUB, LiteralForTest(ast_factory.GetOneByteString("2")), 2,
Handle<Smi>(Smi::zero(), isolate), BinaryOperationFeedback::kAny},
// BIT_OR
{Token::Value::BIT_OR, LiteralForTest(4), 1,
Handle<Smi>(Smi::FromInt(5), isolate),
BinaryOperationFeedback::kSignedSmall},
{Token::Value::BIT_OR, LiteralForTest(3.1415), 8,
Handle<Smi>(Smi::FromInt(11), isolate),
BinaryOperationFeedback::kNumber},
{Token::Value::BIT_OR, LiteralForTest(ast_factory.GetOneByteString("2")),
1, Handle<Smi>(Smi::FromInt(3), isolate), BinaryOperationFeedback::kAny},
// BIT_AND
{Token::Value::BIT_AND, LiteralForTest(3), 1,
Handle<Smi>(Smi::FromInt(1), isolate),
BinaryOperationFeedback::kSignedSmall},
{Token::Value::BIT_AND, LiteralForTest(3.1415), 2,
Handle<Smi>(Smi::FromInt(2), isolate), BinaryOperationFeedback::kNumber},
{Token::Value::BIT_AND, LiteralForTest(ast_factory.GetOneByteString("2")),
1, Handle<Smi>(Smi::zero(), isolate), BinaryOperationFeedback::kAny},
// SHL
{Token::Value::SHL, LiteralForTest(3), 1,
Handle<Smi>(Smi::FromInt(6), isolate),
BinaryOperationFeedback::kSignedSmall},
{Token::Value::SHL, LiteralForTest(3.1415), 2,
Handle<Smi>(Smi::FromInt(12), isolate),
BinaryOperationFeedback::kNumber},
{Token::Value::SHL, LiteralForTest(ast_factory.GetOneByteString("2")), 1,
Handle<Smi>(Smi::FromInt(4), isolate), BinaryOperationFeedback::kAny},
// SAR
{Token::Value::SAR, LiteralForTest(3), 1,
Handle<Smi>(Smi::FromInt(1), isolate),
BinaryOperationFeedback::kSignedSmall},
{Token::Value::SAR, LiteralForTest(3.1415), 2,
Handle<Smi>(Smi::zero(), isolate), BinaryOperationFeedback::kNumber},
{Token::Value::SAR, LiteralForTest(ast_factory.GetOneByteString("2")), 1,
Handle<Smi>(Smi::FromInt(1), isolate), BinaryOperationFeedback::kAny}};
for (const BinaryOpExpectation& test_case : kTestCases) {
i::FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 1, 1, &feedback_spec);
i::FeedbackSlot slot0 = feedback_spec.AddBinaryOpICSlot();
Handle<i::FeedbackMetadata> metadata =
i::NewFeedbackMetadata(isolate, &feedback_spec);
Register reg(0);
LoadLiteralForTest(&builder, test_case.arg1);
builder.StoreAccumulatorInRegister(reg)
.LoadLiteral(Smi::FromInt(test_case.arg2))
.BinaryOperation(test_case.op, reg, GetIndex(slot0))
.Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
MaybeObject feedback0 = callable.vector()->Get(slot0);
CHECK(feedback0->IsSmi());
CHECK_EQ(test_case.feedback, feedback0->ToSmi().value());
CHECK(Object::Equals(isolate, test_case.result, return_val).ToChecked());
}
}
TEST(InterpreterUnaryOpFeedback) {
if (FLAG_lite_mode) return;
HandleAndZoneScope handles;
i::Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
Handle<Smi> smi_one = Handle<Smi>(Smi::FromInt(1), isolate);
Handle<Smi> smi_max = Handle<Smi>(Smi::FromInt(Smi::kMaxValue), isolate);
Handle<Smi> smi_min = Handle<Smi>(Smi::FromInt(Smi::kMinValue), isolate);
Handle<HeapNumber> number = isolate->factory()->NewHeapNumber(2.1);
Handle<BigInt> bigint =
BigInt::FromNumber(isolate, smi_max).ToHandleChecked();
Handle<String> str = isolate->factory()->NewStringFromAsciiChecked("42");
struct TestCase {
Token::Value op;
Handle<Smi> smi_feedback_value;
Handle<Smi> smi_to_number_feedback_value;
Handle<HeapNumber> number_feedback_value;
Handle<BigInt> bigint_feedback_value;
Handle<Object> any_feedback_value;
};
TestCase const kTestCases[] = {
// Testing ADD and BIT_NOT would require generalizing the test setup.
{Token::Value::SUB, smi_one, smi_min, number, bigint, str},
{Token::Value::INC, smi_one, smi_max, number, bigint, str},
{Token::Value::DEC, smi_one, smi_min, number, bigint, str}};
for (TestCase const& test_case : kTestCases) {
i::FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 5, 0, &feedback_spec);
i::FeedbackSlot slot0 = feedback_spec.AddBinaryOpICSlot();
i::FeedbackSlot slot1 = feedback_spec.AddBinaryOpICSlot();
i::FeedbackSlot slot2 = feedback_spec.AddBinaryOpICSlot();
i::FeedbackSlot slot3 = feedback_spec.AddBinaryOpICSlot();
i::FeedbackSlot slot4 = feedback_spec.AddBinaryOpICSlot();
Handle<i::FeedbackMetadata> metadata =
i::NewFeedbackMetadata(isolate, &feedback_spec);
builder.LoadAccumulatorWithRegister(builder.Receiver())
.UnaryOperation(test_case.op, GetIndex(slot0))
.LoadAccumulatorWithRegister(builder.Parameter(0))
.UnaryOperation(test_case.op, GetIndex(slot1))
.LoadAccumulatorWithRegister(builder.Parameter(1))
.UnaryOperation(test_case.op, GetIndex(slot2))
.LoadAccumulatorWithRegister(builder.Parameter(2))
.UnaryOperation(test_case.op, GetIndex(slot3))
.LoadAccumulatorWithRegister(builder.Parameter(3))
.UnaryOperation(test_case.op, GetIndex(slot4))
.Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
typedef Handle<Object> H;
auto callable = tester.GetCallable<H, H, H, H, H>();
Handle<Object> return_val =
callable(test_case.smi_feedback_value,
test_case.smi_to_number_feedback_value,
test_case.number_feedback_value,
test_case.bigint_feedback_value, test_case.any_feedback_value)
.ToHandleChecked();
USE(return_val);
MaybeObject feedback0 = callable.vector()->Get(slot0);
CHECK(feedback0->IsSmi());
CHECK_EQ(BinaryOperationFeedback::kSignedSmall, feedback0->ToSmi().value());
MaybeObject feedback1 = callable.vector()->Get(slot1);
CHECK(feedback1->IsSmi());
CHECK_EQ(BinaryOperationFeedback::kNumber, feedback1->ToSmi().value());
MaybeObject feedback2 = callable.vector()->Get(slot2);
CHECK(feedback2->IsSmi());
CHECK_EQ(BinaryOperationFeedback::kNumber, feedback2->ToSmi().value());
MaybeObject feedback3 = callable.vector()->Get(slot3);
CHECK(feedback3->IsSmi());
CHECK_EQ(BinaryOperationFeedback::kBigInt, feedback3->ToSmi().value());
MaybeObject feedback4 = callable.vector()->Get(slot4);
CHECK(feedback4->IsSmi());
CHECK_EQ(BinaryOperationFeedback::kAny, feedback4->ToSmi().value());
}
}
TEST(InterpreterBitwiseTypeFeedback) {
if (FLAG_lite_mode) return;
HandleAndZoneScope handles;
i::Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
const Token::Value kBitwiseBinaryOperators[] = {
Token::Value::BIT_OR, Token::Value::BIT_XOR, Token::Value::BIT_AND,
Token::Value::SHL, Token::Value::SHR, Token::Value::SAR};
for (Token::Value op : kBitwiseBinaryOperators) {
i::FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 4, 0, &feedback_spec);
i::FeedbackSlot slot0 = feedback_spec.AddBinaryOpICSlot();
i::FeedbackSlot slot1 = feedback_spec.AddBinaryOpICSlot();
i::FeedbackSlot slot2 = feedback_spec.AddBinaryOpICSlot();
Handle<i::FeedbackMetadata> metadata =
i::NewFeedbackMetadata(isolate, &feedback_spec);
builder.LoadAccumulatorWithRegister(builder.Receiver())
.BinaryOperation(op, builder.Parameter(0), GetIndex(slot0))
.BinaryOperation(op, builder.Parameter(1), GetIndex(slot1))
.BinaryOperation(op, builder.Parameter(2), GetIndex(slot2))
.Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
typedef Handle<Object> H;
auto callable = tester.GetCallable<H, H, H, H>();
Handle<Smi> arg1 = Handle<Smi>(Smi::FromInt(2), isolate);
Handle<Smi> arg2 = Handle<Smi>(Smi::FromInt(2), isolate);
Handle<HeapNumber> arg3 = isolate->factory()->NewHeapNumber(2.2);
Handle<String> arg4 = isolate->factory()->NewStringFromAsciiChecked("2");
Handle<Object> return_val =
callable(arg1, arg2, arg3, arg4).ToHandleChecked();
USE(return_val);
MaybeObject feedback0 = callable.vector()->Get(slot0);
CHECK(feedback0->IsSmi());
CHECK_EQ(BinaryOperationFeedback::kSignedSmall, feedback0->ToSmi().value());
MaybeObject feedback1 = callable.vector()->Get(slot1);
CHECK(feedback1->IsSmi());
CHECK_EQ(BinaryOperationFeedback::kNumber, feedback1->ToSmi().value());
MaybeObject feedback2 = callable.vector()->Get(slot2);
CHECK(feedback2->IsSmi());
CHECK_EQ(BinaryOperationFeedback::kAny, feedback2->ToSmi().value());
}
}
TEST(InterpreterParameter1Assign) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
BytecodeArrayBuilder builder(zone, 1, 0);
builder.LoadLiteral(Smi::FromInt(5))
.StoreAccumulatorInRegister(builder.Receiver())
.LoadAccumulatorWithRegister(builder.Receiver())
.Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array);
auto callable = tester.GetCallable<Handle<Object>>();
Handle<Object> return_val =
callable(Handle<Smi>(Smi::FromInt(3), handles.main_isolate()))
.ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(5));
}
TEST(InterpreterLoadGlobal) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
// Test loading a global.
std::string source(
"var global = 321;\n"
"function " + InterpreterTester::function_name() + "() {\n"
" return global;\n"
"}");
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(321));
}
TEST(InterpreterStoreGlobal) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
// Test storing to a global.
std::string source(
"var global = 321;\n"
"function " + InterpreterTester::function_name() + "() {\n"
" global = 999;\n"
"}");
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
callable().ToHandleChecked();
Handle<i::String> name = factory->InternalizeUtf8String("global");
Handle<i::Object> global_obj =
Object::GetProperty(isolate, isolate->global_object(), name)
.ToHandleChecked();
CHECK_EQ(Smi::cast(*global_obj), Smi::FromInt(999));
}
TEST(InterpreterCallGlobal) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
// Test calling a global function.
std::string source(
"function g_add(a, b) { return a + b; }\n"
"function " + InterpreterTester::function_name() + "() {\n"
" return g_add(5, 10);\n"
"}");
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(15));
}
TEST(InterpreterLoadUnallocated) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
// Test loading an unallocated global.
std::string source(
"unallocated = 123;\n"
"function " + InterpreterTester::function_name() + "() {\n"
" return unallocated;\n"
"}");
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(123));
}
TEST(InterpreterStoreUnallocated) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
// Test storing to an unallocated global.
std::string source(
"unallocated = 321;\n"
"function " + InterpreterTester::function_name() + "() {\n"
" unallocated = 999;\n"
"}");
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
callable().ToHandleChecked();
Handle<i::String> name = factory->InternalizeUtf8String("unallocated");
Handle<i::Object> global_obj =
Object::GetProperty(isolate, isolate->global_object(), name)
.ToHandleChecked();
CHECK_EQ(Smi::cast(*global_obj), Smi::FromInt(999));
}
TEST(InterpreterLoadNamedProperty) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
AstValueFactory ast_factory(zone, isolate->ast_string_constants(),
HashSeed(isolate));
FeedbackVectorSpec feedback_spec(zone);
FeedbackSlot slot = feedback_spec.AddLoadICSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
const AstRawString* name = ast_factory.GetOneByteString("val");
BytecodeArrayBuilder builder(zone, 1, 0, &feedback_spec);
builder.LoadNamedProperty(builder.Receiver(), name, GetIndex(slot)).Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<Handle<Object>>();
Handle<Object> object = InterpreterTester::NewObject("({ val : 123 })");
// Test IC miss.
Handle<Object> return_val = callable(object).ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(123));
// Test transition to monomorphic IC.
return_val = callable(object).ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(123));
// Test transition to polymorphic IC.
Handle<Object> object2 =
InterpreterTester::NewObject("({ val : 456, other : 123 })");
return_val = callable(object2).ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(456));
// Test transition to megamorphic IC.
Handle<Object> object3 =
InterpreterTester::NewObject("({ val : 789, val2 : 123 })");
callable(object3).ToHandleChecked();
Handle<Object> object4 =
InterpreterTester::NewObject("({ val : 789, val3 : 123 })");
callable(object4).ToHandleChecked();
Handle<Object> object5 =
InterpreterTester::NewObject("({ val : 789, val4 : 123 })");
return_val = callable(object5).ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(789));
}
TEST(InterpreterLoadKeyedProperty) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
AstValueFactory ast_factory(zone, isolate->ast_string_constants(),
HashSeed(isolate));
FeedbackVectorSpec feedback_spec(zone);
FeedbackSlot slot = feedback_spec.AddKeyedLoadICSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
const AstRawString* key = ast_factory.GetOneByteString("key");
BytecodeArrayBuilder builder(zone, 1, 1, &feedback_spec);
builder.LoadLiteral(key)
.LoadKeyedProperty(builder.Receiver(), GetIndex(slot))
.Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<Handle<Object>>();
Handle<Object> object = InterpreterTester::NewObject("({ key : 123 })");
// Test IC miss.
Handle<Object> return_val = callable(object).ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(123));
// Test transition to monomorphic IC.
return_val = callable(object).ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(123));
// Test transition to megamorphic IC.
Handle<Object> object3 =
InterpreterTester::NewObject("({ key : 789, val2 : 123 })");
return_val = callable(object3).ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(789));
}
TEST(InterpreterStoreNamedProperty) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
AstValueFactory ast_factory(zone, isolate->ast_string_constants(),
HashSeed(isolate));
FeedbackVectorSpec feedback_spec(zone);
FeedbackSlot slot = feedback_spec.AddStoreICSlot(LanguageMode::kStrict);
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
const AstRawString* name = ast_factory.GetOneByteString("val");
BytecodeArrayBuilder builder(zone, 1, 0, &feedback_spec);
builder.LoadLiteral(Smi::FromInt(999))
.StoreNamedProperty(builder.Receiver(), name, GetIndex(slot),
LanguageMode::kStrict)
.Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<Handle<Object>>();
Handle<Object> object = InterpreterTester::NewObject("({ val : 123 })");
// Test IC miss.
Handle<Object> result;
callable(object).ToHandleChecked();
CHECK(Runtime::GetObjectProperty(isolate, object, name->string())
.ToHandle(&result));
CHECK_EQ(Smi::cast(*result), Smi::FromInt(999));
// Test transition to monomorphic IC.
callable(object).ToHandleChecked();
CHECK(Runtime::GetObjectProperty(isolate, object, name->string())
.ToHandle(&result));
CHECK_EQ(Smi::cast(*result), Smi::FromInt(999));
// Test transition to polymorphic IC.
Handle<Object> object2 =
InterpreterTester::NewObject("({ val : 456, other : 123 })");
callable(object2).ToHandleChecked();
CHECK(Runtime::GetObjectProperty(isolate, object2, name->string())
.ToHandle(&result));
CHECK_EQ(Smi::cast(*result), Smi::FromInt(999));
// Test transition to megamorphic IC.
Handle<Object> object3 =
InterpreterTester::NewObject("({ val : 789, val2 : 123 })");
callable(object3).ToHandleChecked();
Handle<Object> object4 =
InterpreterTester::NewObject("({ val : 789, val3 : 123 })");
callable(object4).ToHandleChecked();
Handle<Object> object5 =
InterpreterTester::NewObject("({ val : 789, val4 : 123 })");
callable(object5).ToHandleChecked();
CHECK(Runtime::GetObjectProperty(isolate, object5, name->string())
.ToHandle(&result));
CHECK_EQ(Smi::cast(*result), Smi::FromInt(999));
}
TEST(InterpreterStoreKeyedProperty) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
AstValueFactory ast_factory(zone, isolate->ast_string_constants(),
HashSeed(isolate));
FeedbackVectorSpec feedback_spec(zone);
FeedbackSlot slot = feedback_spec.AddKeyedStoreICSlot(LanguageMode::kSloppy);
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
const AstRawString* name = ast_factory.GetOneByteString("val");
BytecodeArrayBuilder builder(zone, 1, 1, &feedback_spec);
builder.LoadLiteral(name)
.StoreAccumulatorInRegister(Register(0))
.LoadLiteral(Smi::FromInt(999))
.StoreKeyedProperty(builder.Receiver(), Register(0), GetIndex(slot),
i::LanguageMode::kSloppy)
.Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<Handle<Object>>();
Handle<Object> object = InterpreterTester::NewObject("({ val : 123 })");
// Test IC miss.
Handle<Object> result;
callable(object).ToHandleChecked();
CHECK(Runtime::GetObjectProperty(isolate, object, name->string())
.ToHandle(&result));
CHECK_EQ(Smi::cast(*result), Smi::FromInt(999));
// Test transition to monomorphic IC.
callable(object).ToHandleChecked();
CHECK(Runtime::GetObjectProperty(isolate, object, name->string())
.ToHandle(&result));
CHECK_EQ(Smi::cast(*result), Smi::FromInt(999));
// Test transition to megamorphic IC.
Handle<Object> object2 =
InterpreterTester::NewObject("({ val : 456, other : 123 })");
callable(object2).ToHandleChecked();
CHECK(Runtime::GetObjectProperty(isolate, object2, name->string())
.ToHandle(&result));
CHECK_EQ(Smi::cast(*result), Smi::FromInt(999));
}
TEST(InterpreterCall) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
Factory* factory = isolate->factory();
AstValueFactory ast_factory(zone, isolate->ast_string_constants(),
HashSeed(isolate));
FeedbackVectorSpec feedback_spec(zone);
FeedbackSlot slot = feedback_spec.AddLoadICSlot();
FeedbackSlot call_slot = feedback_spec.AddCallICSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
int slot_index = GetIndex(slot);
int call_slot_index = -1;
call_slot_index = GetIndex(call_slot);
const AstRawString* name = ast_factory.GetOneByteString("func");
// Check with no args.
{
BytecodeArrayBuilder builder(zone, 1, 1, &feedback_spec);
Register reg = builder.register_allocator()->NewRegister();
RegisterList args = builder.register_allocator()->NewRegisterList(1);
builder.LoadNamedProperty(builder.Receiver(), name, slot_index)
.StoreAccumulatorInRegister(reg)
.MoveRegister(builder.Receiver(), args[0]);
builder.CallProperty(reg, args, call_slot_index);
builder.Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<Handle<Object>>();
Handle<Object> object = InterpreterTester::NewObject(
"new (function Obj() { this.func = function() { return 0x265; }})()");
Handle<Object> return_val = callable(object).ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(0x265));
}
// Check that receiver is passed properly.
{
BytecodeArrayBuilder builder(zone, 1, 1, &feedback_spec);
Register reg = builder.register_allocator()->NewRegister();
RegisterList args = builder.register_allocator()->NewRegisterList(1);
builder.LoadNamedProperty(builder.Receiver(), name, slot_index)
.StoreAccumulatorInRegister(reg)
.MoveRegister(builder.Receiver(), args[0]);
builder.CallProperty(reg, args, call_slot_index);
builder.Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<Handle<Object>>();
Handle<Object> object = InterpreterTester::NewObject(
"new (function Obj() {"
" this.val = 1234;"
" this.func = function() { return this.val; };"
"})()");
Handle<Object> return_val = callable(object).ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(1234));
}
// Check with two parameters (+ receiver).
{
BytecodeArrayBuilder builder(zone, 1, 4, &feedback_spec);
Register reg = builder.register_allocator()->NewRegister();
RegisterList args = builder.register_allocator()->NewRegisterList(3);
builder.LoadNamedProperty(builder.Receiver(), name, slot_index)
.StoreAccumulatorInRegister(reg)
.LoadAccumulatorWithRegister(builder.Receiver())
.StoreAccumulatorInRegister(args[0])
.LoadLiteral(Smi::FromInt(51))
.StoreAccumulatorInRegister(args[1])
.LoadLiteral(Smi::FromInt(11))
.StoreAccumulatorInRegister(args[2]);
builder.CallProperty(reg, args, call_slot_index);
builder.Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<Handle<Object>>();
Handle<Object> object = InterpreterTester::NewObject(
"new (function Obj() { "
" this.func = function(a, b) { return a - b; }"
"})()");
Handle<Object> return_val = callable(object).ToHandleChecked();
CHECK(return_val->SameValue(Smi::FromInt(40)));
}
// Check with 10 parameters (+ receiver).
{
BytecodeArrayBuilder builder(zone, 1, 12, &feedback_spec);
Register reg = builder.register_allocator()->NewRegister();
RegisterList args = builder.register_allocator()->NewRegisterList(11);
builder.LoadNamedProperty(builder.Receiver(), name, slot_index)
.StoreAccumulatorInRegister(reg)
.LoadAccumulatorWithRegister(builder.Receiver())
.StoreAccumulatorInRegister(args[0])
.LoadLiteral(ast_factory.GetOneByteString("a"))
.StoreAccumulatorInRegister(args[1])
.LoadLiteral(ast_factory.GetOneByteString("b"))
.StoreAccumulatorInRegister(args[2])
.LoadLiteral(ast_factory.GetOneByteString("c"))
.StoreAccumulatorInRegister(args[3])
.LoadLiteral(ast_factory.GetOneByteString("d"))
.StoreAccumulatorInRegister(args[4])
.LoadLiteral(ast_factory.GetOneByteString("e"))
.StoreAccumulatorInRegister(args[5])
.LoadLiteral(ast_factory.GetOneByteString("f"))
.StoreAccumulatorInRegister(args[6])
.LoadLiteral(ast_factory.GetOneByteString("g"))
.StoreAccumulatorInRegister(args[7])
.LoadLiteral(ast_factory.GetOneByteString("h"))
.StoreAccumulatorInRegister(args[8])
.LoadLiteral(ast_factory.GetOneByteString("i"))
.StoreAccumulatorInRegister(args[9])
.LoadLiteral(ast_factory.GetOneByteString("j"))
.StoreAccumulatorInRegister(args[10]);
builder.CallProperty(reg, args, call_slot_index);
builder.Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<Handle<Object>>();
Handle<Object> object = InterpreterTester::NewObject(
"new (function Obj() { "
" this.prefix = \"prefix_\";"
" this.func = function(a, b, c, d, e, f, g, h, i, j) {"
" return this.prefix + a + b + c + d + e + f + g + h + i + j;"
" }"
"})()");
Handle<Object> return_val = callable(object).ToHandleChecked();
Handle<i::String> expected =
factory->NewStringFromAsciiChecked("prefix_abcdefghij");
CHECK(i::String::cast(*return_val)->Equals(*expected));
}
}
static BytecodeArrayBuilder& SetRegister(BytecodeArrayBuilder& builder,
Register reg, int value,
Register scratch) {
return builder.StoreAccumulatorInRegister(scratch)
.LoadLiteral(Smi::FromInt(value))
.StoreAccumulatorInRegister(reg)
.LoadAccumulatorWithRegister(scratch);
}
static BytecodeArrayBuilder& IncrementRegister(BytecodeArrayBuilder& builder,
Register reg, int value,
Register scratch,
int slot_index) {
return builder.StoreAccumulatorInRegister(scratch)
.LoadLiteral(Smi::FromInt(value))
.BinaryOperation(Token::Value::ADD, reg, slot_index)
.StoreAccumulatorInRegister(reg)
.LoadAccumulatorWithRegister(scratch);
}
TEST(InterpreterJumps) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 1, 2, &feedback_spec);
FeedbackSlot slot = feedback_spec.AddBinaryOpICSlot();
FeedbackSlot slot1 = feedback_spec.AddBinaryOpICSlot();
FeedbackSlot slot2 = feedback_spec.AddBinaryOpICSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
Register reg(0), scratch(1);
BytecodeLoopHeader loop_header;
BytecodeLabel label[2];
builder.LoadLiteral(Smi::zero())
.StoreAccumulatorInRegister(reg)
.Jump(&label[0]);
SetRegister(builder, reg, 1024, scratch).Bind(&loop_header);
IncrementRegister(builder, reg, 1, scratch, GetIndex(slot)).Jump(&label[1]);
SetRegister(builder, reg, 2048, scratch).Bind(&label[0]);
IncrementRegister(builder, reg, 2, scratch, GetIndex(slot1))
.JumpLoop(&loop_header, 0);
SetRegister(builder, reg, 4096, scratch).Bind(&label[1]);
IncrementRegister(builder, reg, 4, scratch, GetIndex(slot2))
.LoadAccumulatorWithRegister(reg)
.Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<>();
Handle<Object> return_value = callable().ToHandleChecked();
CHECK_EQ(Smi::ToInt(*return_value), 7);
}
TEST(InterpreterConditionalJumps) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 1, 2, &feedback_spec);
FeedbackSlot slot = feedback_spec.AddBinaryOpICSlot();
FeedbackSlot slot1 = feedback_spec.AddBinaryOpICSlot();
FeedbackSlot slot2 = feedback_spec.AddBinaryOpICSlot();
FeedbackSlot slot3 = feedback_spec.AddBinaryOpICSlot();
FeedbackSlot slot4 = feedback_spec.AddBinaryOpICSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
Register reg(0), scratch(1);
BytecodeLabel label[2];
BytecodeLabel done, done1;
builder.LoadLiteral(Smi::zero())
.StoreAccumulatorInRegister(reg)
.LoadFalse()
.JumpIfFalse(ToBooleanMode::kAlreadyBoolean, &label[0]);
IncrementRegister(builder, reg, 1024, scratch, GetIndex(slot))
.Bind(&label[0])
.LoadTrue()
.JumpIfFalse(ToBooleanMode::kAlreadyBoolean, &done);
IncrementRegister(builder, reg, 1, scratch, GetIndex(slot1))
.LoadTrue()
.JumpIfTrue(ToBooleanMode::kAlreadyBoolean, &label[1]);
IncrementRegister(builder, reg, 2048, scratch, GetIndex(slot2))
.Bind(&label[1]);
IncrementRegister(builder, reg, 2, scratch, GetIndex(slot3))
.LoadFalse()
.JumpIfTrue(ToBooleanMode::kAlreadyBoolean, &done1);
IncrementRegister(builder, reg, 4, scratch, GetIndex(slot4))
.LoadAccumulatorWithRegister(reg)
.Bind(&done)
.Bind(&done1)
.Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<>();
Handle<Object> return_value = callable().ToHandleChecked();
CHECK_EQ(Smi::ToInt(*return_value), 7);
}
TEST(InterpreterConditionalJumps2) {
// TODO(oth): Add tests for all conditional jumps near and far.
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 1, 2, &feedback_spec);
FeedbackSlot slot = feedback_spec.AddBinaryOpICSlot();
FeedbackSlot slot1 = feedback_spec.AddBinaryOpICSlot();
FeedbackSlot slot2 = feedback_spec.AddBinaryOpICSlot();
FeedbackSlot slot3 = feedback_spec.AddBinaryOpICSlot();
FeedbackSlot slot4 = feedback_spec.AddBinaryOpICSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
Register reg(0), scratch(1);
BytecodeLabel label[2];
BytecodeLabel done, done1;
builder.LoadLiteral(Smi::zero())
.StoreAccumulatorInRegister(reg)
.LoadFalse()
.JumpIfFalse(ToBooleanMode::kAlreadyBoolean, &label[0]);
IncrementRegister(builder, reg, 1024, scratch, GetIndex(slot))
.Bind(&label[0])
.LoadTrue()
.JumpIfFalse(ToBooleanMode::kAlreadyBoolean, &done);
IncrementRegister(builder, reg, 1, scratch, GetIndex(slot1))
.LoadTrue()
.JumpIfTrue(ToBooleanMode::kAlreadyBoolean, &label[1]);
IncrementRegister(builder, reg, 2048, scratch, GetIndex(slot2))
.Bind(&label[1]);
IncrementRegister(builder, reg, 2, scratch, GetIndex(slot3))
.LoadFalse()
.JumpIfTrue(ToBooleanMode::kAlreadyBoolean, &done1);
IncrementRegister(builder, reg, 4, scratch, GetIndex(slot4))
.LoadAccumulatorWithRegister(reg)
.Bind(&done)
.Bind(&done1)
.Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<>();
Handle<Object> return_value = callable().ToHandleChecked();
CHECK_EQ(Smi::ToInt(*return_value), 7);
}
TEST(InterpreterJumpConstantWith16BitOperand) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
AstValueFactory ast_factory(zone, isolate->ast_string_constants(),
HashSeed(isolate));
FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 1, 257, &feedback_spec);
FeedbackSlot slot = feedback_spec.AddBinaryOpICSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
Register reg(0), scratch(256);
BytecodeLabel done, fake;
builder.LoadLiteral(Smi::zero());
builder.StoreAccumulatorInRegister(reg);
// Conditional jump to the fake label, to force both basic blocks to be live.
builder.JumpIfTrue(ToBooleanMode::kConvertToBoolean, &fake);
// Consume all 8-bit operands
for (int i = 1; i <= 256; i++) {
builder.LoadLiteral(i + 0.5);
builder.BinaryOperation(Token::Value::ADD, reg, GetIndex(slot));
builder.StoreAccumulatorInRegister(reg);
}
builder.Jump(&done);
// Emit more than 16-bit immediate operands worth of code to jump over.
builder.Bind(&fake);
for (int i = 0; i < 6600; i++) {
builder.LoadLiteral(Smi::zero()); // 1-byte
builder.BinaryOperation(Token::Value::ADD, scratch,
GetIndex(slot)); // 6-bytes
builder.StoreAccumulatorInRegister(scratch); // 4-bytes
builder.MoveRegister(scratch, reg); // 6-bytes
}
builder.Bind(&done);
builder.LoadAccumulatorWithRegister(reg);
builder.Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
BytecodeArrayIterator iterator(bytecode_array);
bool found_16bit_constant_jump = false;
while (!iterator.done()) {
if (iterator.current_bytecode() == Bytecode::kJumpConstant &&
iterator.current_operand_scale() == OperandScale::kDouble) {
found_16bit_constant_jump = true;
break;
}
iterator.Advance();
}
CHECK(found_16bit_constant_jump);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<>();
Handle<Object> return_value = callable().ToHandleChecked();
CHECK_EQ(Handle<HeapNumber>::cast(return_value)->value(),
256.0 / 2 * (1.5 + 256.5));
}
TEST(InterpreterJumpWith32BitOperand) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
AstValueFactory ast_factory(zone, isolate->ast_string_constants(),
HashSeed(isolate));
BytecodeArrayBuilder builder(zone, 1, 1);
Register reg(0);
BytecodeLabel done;
builder.LoadLiteral(Smi::zero());
builder.StoreAccumulatorInRegister(reg);
// Consume all 16-bit constant pool entries. Make sure to use doubles so that
// the jump can't re-use an integer.
for (int i = 1; i <= 65536; i++) {
builder.LoadLiteral(i + 0.5);
}
builder.Jump(&done);
builder.LoadLiteral(Smi::zero());
builder.Bind(&done);
builder.Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
BytecodeArrayIterator iterator(bytecode_array);
bool found_32bit_jump = false;
while (!iterator.done()) {
if (iterator.current_bytecode() == Bytecode::kJump &&
iterator.current_operand_scale() == OperandScale::kQuadruple) {
found_32bit_jump = true;
break;
}
iterator.Advance();
}
CHECK(found_32bit_jump);
InterpreterTester tester(isolate, bytecode_array);
auto callable = tester.GetCallable<>();
Handle<Object> return_value = callable().ToHandleChecked();
CHECK_EQ(Handle<HeapNumber>::cast(return_value)->value(), 65536.5);
}
static const Token::Value kComparisonTypes[] = {
Token::Value::EQ, Token::Value::EQ_STRICT, Token::Value::LT,
Token::Value::LTE, Token::Value::GT, Token::Value::GTE};
template <typename T>
bool CompareC(Token::Value op, T lhs, T rhs, bool types_differed = false) {
switch (op) {
case Token::Value::EQ:
return lhs == rhs;
case Token::Value::NE:
return lhs != rhs;
case Token::Value::EQ_STRICT:
return (lhs == rhs) && !types_differed;
case Token::Value::NE_STRICT:
return (lhs != rhs) || types_differed;
case Token::Value::LT:
return lhs < rhs;
case Token::Value::LTE:
return lhs <= rhs;
case Token::Value::GT:
return lhs > rhs;
case Token::Value::GTE:
return lhs >= rhs;
default:
UNREACHABLE();
}
}
TEST(InterpreterSmiComparisons) {
// NB Constants cover 31-bit space.
int inputs[] = {v8::internal::kMinInt / 2,
v8::internal::kMinInt / 4,
-108733832,
-999,
-42,
-2,
-1,
0,
+1,
+2,
42,
12345678,
v8::internal::kMaxInt / 4,
v8::internal::kMaxInt / 2};
for (size_t c = 0; c < arraysize(kComparisonTypes); c++) {
Token::Value comparison = kComparisonTypes[c];
for (size_t i = 0; i < arraysize(inputs); i++) {
for (size_t j = 0; j < arraysize(inputs); j++) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 1, 1, &feedback_spec);
FeedbackSlot slot = feedback_spec.AddCompareICSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
Register r0(0);
builder.LoadLiteral(Smi::FromInt(inputs[i]))
.StoreAccumulatorInRegister(r0)
.LoadLiteral(Smi::FromInt(inputs[j]))
.CompareOperation(comparison, r0, GetIndex(slot))
.Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<>();
Handle<Object> return_value = callable().ToHandleChecked();
CHECK(return_value->IsBoolean());
CHECK_EQ(return_value->BooleanValue(isolate),
CompareC(comparison, inputs[i], inputs[j]));
if (tester.HasFeedbackMetadata()) {
MaybeObject feedback = callable.vector()->Get(slot);
CHECK(feedback->IsSmi());
CHECK_EQ(CompareOperationFeedback::kSignedSmall,
feedback->ToSmi().value());
}
}
}
}
}
TEST(InterpreterHeapNumberComparisons) {
double inputs[] = {std::numeric_limits<double>::min(),
std::numeric_limits<double>::max(),
-0.001,
0.01,
0.1000001,
1e99,
-1e-99};
for (size_t c = 0; c < arraysize(kComparisonTypes); c++) {
Token::Value comparison = kComparisonTypes[c];
for (size_t i = 0; i < arraysize(inputs); i++) {
for (size_t j = 0; j < arraysize(inputs); j++) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
AstValueFactory ast_factory(zone, isolate->ast_string_constants(),
HashSeed(isolate));
FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 1, 1, &feedback_spec);
FeedbackSlot slot = feedback_spec.AddCompareICSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
Register r0(0);
builder.LoadLiteral(inputs[i])
.StoreAccumulatorInRegister(r0)
.LoadLiteral(inputs[j])
.CompareOperation(comparison, r0, GetIndex(slot))
.Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<>();
Handle<Object> return_value = callable().ToHandleChecked();
CHECK(return_value->IsBoolean());
CHECK_EQ(return_value->BooleanValue(isolate),
CompareC(comparison, inputs[i], inputs[j]));
if (tester.HasFeedbackMetadata()) {
MaybeObject feedback = callable.vector()->Get(slot);
CHECK(feedback->IsSmi());
CHECK_EQ(CompareOperationFeedback::kNumber,
feedback->ToSmi().value());
}
}
}
}
}
TEST(InterpreterBigIntComparisons) {
// This test only checks that the recorded type feedback is kBigInt.
AstBigInt inputs[] = {AstBigInt("0"), AstBigInt("-42"),
AstBigInt("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF")};
for (size_t c = 0; c < arraysize(kComparisonTypes); c++) {
Token::Value comparison = kComparisonTypes[c];
for (size_t i = 0; i < arraysize(inputs); i++) {
for (size_t j = 0; j < arraysize(inputs); j++) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
AstValueFactory ast_factory(zone, isolate->ast_string_constants(),
HashSeed(isolate));
FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 1, 1, &feedback_spec);
FeedbackSlot slot = feedback_spec.AddCompareICSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
Register r0(0);
builder.LoadLiteral(inputs[i])
.StoreAccumulatorInRegister(r0)
.LoadLiteral(inputs[j])
.CompareOperation(comparison, r0, GetIndex(slot))
.Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<>();
Handle<Object> return_value = callable().ToHandleChecked();
CHECK(return_value->IsBoolean());
if (tester.HasFeedbackMetadata()) {
MaybeObject feedback = callable.vector()->Get(slot);
CHECK(feedback->IsSmi());
CHECK_EQ(CompareOperationFeedback::kBigInt,
feedback->ToSmi().value());
}
}
}
}
}
TEST(InterpreterStringComparisons) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
std::string inputs[] = {"A", "abc", "z", "", "Foo!", "Foo"};
for (size_t c = 0; c < arraysize(kComparisonTypes); c++) {
Token::Value comparison = kComparisonTypes[c];
for (size_t i = 0; i < arraysize(inputs); i++) {
for (size_t j = 0; j < arraysize(inputs); j++) {
AstValueFactory ast_factory(zone, isolate->ast_string_constants(),
HashSeed(isolate));
CanonicalHandleScope canonical(isolate);
const char* lhs = inputs[i].c_str();
const char* rhs = inputs[j].c_str();
FeedbackVectorSpec feedback_spec(zone);
FeedbackSlot slot = feedback_spec.AddCompareICSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
BytecodeArrayBuilder builder(zone, 1, 1, &feedback_spec);
Register r0(0);
builder.LoadLiteral(ast_factory.GetOneByteString(lhs))
.StoreAccumulatorInRegister(r0)
.LoadLiteral(ast_factory.GetOneByteString(rhs))
.CompareOperation(comparison, r0, GetIndex(slot))
.Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<>();
Handle<Object> return_value = callable().ToHandleChecked();
CHECK(return_value->IsBoolean());
CHECK_EQ(return_value->BooleanValue(isolate),
CompareC(comparison, inputs[i], inputs[j]));
if (tester.HasFeedbackMetadata()) {
MaybeObject feedback = callable.vector()->Get(slot);
CHECK(feedback->IsSmi());
int const expected_feedback =
Token::IsOrderedRelationalCompareOp(comparison)
? CompareOperationFeedback::kString
: CompareOperationFeedback::kInternalizedString;
CHECK_EQ(expected_feedback, feedback->ToSmi().value());
}
}
}
}
}
static void LoadStringAndAddSpace(BytecodeArrayBuilder* builder,
AstValueFactory* ast_factory,
const char* cstr,
FeedbackSlot string_add_slot) {
Register string_reg = builder->register_allocator()->NewRegister();
(*builder)
.LoadLiteral(ast_factory->GetOneByteString(cstr))
.StoreAccumulatorInRegister(string_reg)
.LoadLiteral(ast_factory->GetOneByteString(" "))
.BinaryOperation(Token::Value::ADD, string_reg,
GetIndex(string_add_slot));
}
TEST(InterpreterMixedComparisons) {
// This test compares a HeapNumber with a String. The latter is
// convertible to a HeapNumber so comparison will be between numeric
// values except for the strict comparisons where no conversion is
// performed.
const char* inputs[] = {"-1.77", "-40.333", "0.01", "55.77e50", "2.01"};
enum WhichSideString { kLhsIsString, kRhsIsString };
enum StringType { kInternalizedStringConstant, kComputedString };
for (size_t c = 0; c < arraysize(kComparisonTypes); c++) {
Token::Value comparison = kComparisonTypes[c];
for (size_t i = 0; i < arraysize(inputs); i++) {
for (size_t j = 0; j < arraysize(inputs); j++) {
// We test the case where either the lhs or the rhs is a string...
for (WhichSideString which_side : {kLhsIsString, kRhsIsString}) {
// ... and the case when the string is internalized or computed.
for (StringType string_type :
{kInternalizedStringConstant, kComputedString}) {
const char* lhs_cstr = inputs[i];
const char* rhs_cstr = inputs[j];
double lhs = StringToDouble(lhs_cstr, ConversionFlags::NO_FLAGS);
double rhs = StringToDouble(rhs_cstr, ConversionFlags::NO_FLAGS);
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
AstValueFactory ast_factory(zone, isolate->ast_string_constants(),
HashSeed(isolate));
FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 1, 0, &feedback_spec);
FeedbackSlot string_add_slot = feedback_spec.AddBinaryOpICSlot();
FeedbackSlot slot = feedback_spec.AddCompareICSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
// lhs is in a register, rhs is in the accumulator.
Register lhs_reg = builder.register_allocator()->NewRegister();
if (which_side == kRhsIsString) {
// Comparison with HeapNumber on the lhs and String on the rhs.
builder.LoadLiteral(lhs).StoreAccumulatorInRegister(lhs_reg);
if (string_type == kInternalizedStringConstant) {
// rhs string is internalized.
builder.LoadLiteral(ast_factory.GetOneByteString(rhs_cstr));
} else {
CHECK_EQ(string_type, kComputedString);
// rhs string is not internalized (append a space to the end).
LoadStringAndAddSpace(&builder, &ast_factory, rhs_cstr,
string_add_slot);
}
break;
} else {
CHECK_EQ(which_side, kLhsIsString);
// Comparison with String on the lhs and HeapNumber on the rhs.
if (string_type == kInternalizedStringConstant) {
// lhs string is internalized
builder.LoadLiteral(ast_factory.GetOneByteString(lhs_cstr));
} else {
CHECK_EQ(string_type, kComputedString);
// lhs string is not internalized (append a space to the end).
LoadStringAndAddSpace(&builder, &ast_factory, lhs_cstr,
string_add_slot);
}
builder.StoreAccumulatorInRegister(lhs_reg);
builder.LoadLiteral(rhs);
}
builder.CompareOperation(comparison, lhs_reg, GetIndex(slot))
.Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array =
builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<>();
Handle<Object> return_value = callable().ToHandleChecked();
CHECK(return_value->IsBoolean());
CHECK_EQ(return_value->BooleanValue(isolate),
CompareC(comparison, lhs, rhs, true));
if (tester.HasFeedbackMetadata()) {
MaybeObject feedback = callable.vector()->Get(slot);
CHECK(feedback->IsSmi());
// Comparison with a number and string collects kAny feedback.
CHECK_EQ(CompareOperationFeedback::kAny,
feedback->ToSmi().value());
}
}
}
}
}
}
}
TEST(InterpreterStrictNotEqual) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
const char* code_snippet =
"function f(lhs, rhs) {\n"
" return lhs !== rhs;\n"
"}\n"
"f(0, 0);\n";
InterpreterTester tester(isolate, code_snippet);
auto callable = tester.GetCallable<Handle<Object>, Handle<Object>>();
// Test passing different types.
const char* inputs[] = {"-1.77", "-40.333", "0.01", "55.77e5", "2.01"};
for (size_t i = 0; i < arraysize(inputs); i++) {
for (size_t j = 0; j < arraysize(inputs); j++) {
double lhs = StringToDouble(inputs[i], ConversionFlags::NO_FLAGS);
double rhs = StringToDouble(inputs[j], ConversionFlags::NO_FLAGS);
Handle<Object> lhs_obj = factory->NewNumber(lhs);
Handle<Object> rhs_obj = factory->NewStringFromAsciiChecked(inputs[j]);
Handle<Object> return_value =
callable(lhs_obj, rhs_obj).ToHandleChecked();
CHECK(return_value->IsBoolean());
CHECK_EQ(return_value->BooleanValue(isolate),
CompareC(Token::Value::NE_STRICT, lhs, rhs, true));
}
}
// Test passing string types.
const char* inputs_str[] = {"A", "abc", "z", "", "Foo!", "Foo"};
for (size_t i = 0; i < arraysize(inputs_str); i++) {
for (size_t j = 0; j < arraysize(inputs_str); j++) {
Handle<Object> lhs_obj =
factory->NewStringFromAsciiChecked(inputs_str[i]);
Handle<Object> rhs_obj =
factory->NewStringFromAsciiChecked(inputs_str[j]);
Handle<Object> return_value =
callable(lhs_obj, rhs_obj).ToHandleChecked();
CHECK(return_value->IsBoolean());
CHECK_EQ(return_value->BooleanValue(isolate),
CompareC(Token::Value::NE_STRICT, inputs_str[i], inputs_str[j]));
}
}
// Test passing doubles.
double inputs_number[] = {std::numeric_limits<double>::min(),
std::numeric_limits<double>::max(),
-0.001,
0.01,
0.1000001,
1e99,
-1e-99};
for (size_t i = 0; i < arraysize(inputs_number); i++) {
for (size_t j = 0; j < arraysize(inputs_number); j++) {
Handle<Object> lhs_obj = factory->NewNumber(inputs_number[i]);
Handle<Object> rhs_obj = factory->NewNumber(inputs_number[j]);
Handle<Object> return_value =
callable(lhs_obj, rhs_obj).ToHandleChecked();
CHECK(return_value->IsBoolean());
CHECK_EQ(return_value->BooleanValue(isolate),
CompareC(Token::Value::NE_STRICT, inputs_number[i],
inputs_number[j]));
}
}
}
TEST(InterpreterCompareTypeOf) {
typedef TestTypeOfFlags::LiteralFlag LiteralFlag;
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
Zone* zone = handles.main_zone();
std::pair<Handle<Object>, LiteralFlag> inputs[] = {
{handle(Smi::FromInt(24), isolate), LiteralFlag::kNumber},
{factory->NewNumber(2.5), LiteralFlag::kNumber},
{factory->NewStringFromAsciiChecked("foo"), LiteralFlag::kString},
{factory
->NewConsString(factory->NewStringFromAsciiChecked("foo"),
factory->NewStringFromAsciiChecked("bar"))
.ToHandleChecked(),
LiteralFlag::kString},
{factory->prototype_string(), LiteralFlag::kString},
{factory->NewSymbol(), LiteralFlag::kSymbol},
{factory->true_value(), LiteralFlag::kBoolean},
{factory->false_value(), LiteralFlag::kBoolean},
{factory->undefined_value(), LiteralFlag::kUndefined},
{InterpreterTester::NewObject(
"(function() { return function() {}; })();"),
LiteralFlag::kFunction},
{InterpreterTester::NewObject("new Object();"), LiteralFlag::kObject},
{factory->null_value(), LiteralFlag::kObject},
};
const LiteralFlag kLiterals[] = {
#define LITERAL_FLAG(name, _) LiteralFlag::k##name,
TYPEOF_LITERAL_LIST(LITERAL_FLAG)
#undef LITERAL_FLAG
};
for (size_t l = 0; l < arraysize(kLiterals); l++) {
LiteralFlag literal_flag = kLiterals[l];
if (literal_flag == LiteralFlag::kOther) continue;
BytecodeArrayBuilder builder(zone, 1, 0);
builder.LoadAccumulatorWithRegister(builder.Receiver())
.CompareTypeOf(kLiterals[l])
.Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array);
auto callable = tester.GetCallable<Handle<Object>>();
for (size_t i = 0; i < arraysize(inputs); i++) {
Handle<Object> return_value = callable(inputs[i].first).ToHandleChecked();
CHECK(return_value->IsBoolean());
CHECK_EQ(return_value->BooleanValue(isolate),
inputs[i].second == literal_flag);
}
}
}
TEST(InterpreterInstanceOf) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
Factory* factory = isolate->factory();
Handle<i::String> name = factory->NewStringFromAsciiChecked("cons");
Handle<i::JSFunction> func = factory->NewFunctionForTest(name);
Handle<i::JSObject> instance = factory->NewJSObject(func);
Handle<i::Object> other = factory->NewNumber(3.3333);
Handle<i::Object> cases[] = {Handle<i::Object>::cast(instance), other};
for (size_t i = 0; i < arraysize(cases); i++) {
bool expected_value = (i == 0);
FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 1, 1, &feedback_spec);
Register r0(0);
size_t case_entry = builder.AllocateDeferredConstantPoolEntry();
builder.SetDeferredConstantPoolEntry(case_entry, cases[i]);
builder.LoadConstantPoolEntry(case_entry).StoreAccumulatorInRegister(r0);
FeedbackSlot slot = feedback_spec.AddInstanceOfSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
size_t func_entry = builder.AllocateDeferredConstantPoolEntry();
builder.SetDeferredConstantPoolEntry(func_entry, func);
builder.LoadConstantPoolEntry(func_entry)
.CompareOperation(Token::Value::INSTANCEOF, r0, GetIndex(slot))
.Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<>();
Handle<Object> return_value = callable().ToHandleChecked();
CHECK(return_value->IsBoolean());
CHECK_EQ(return_value->BooleanValue(isolate), expected_value);
}
}
TEST(InterpreterTestIn) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
Factory* factory = isolate->factory();
AstValueFactory ast_factory(zone, isolate->ast_string_constants(),
HashSeed(isolate));
// Allocate an array
Handle<i::JSArray> array =
factory->NewJSArray(0, i::ElementsKind::PACKED_SMI_ELEMENTS);
// Check for these properties on the array object
const char* properties[] = {"length", "fuzzle", "x", "0"};
for (size_t i = 0; i < arraysize(properties); i++) {
bool expected_value = (i == 0);
FeedbackVectorSpec feedback_spec(zone);
BytecodeArrayBuilder builder(zone, 1, 1, &feedback_spec);
Register r0(0);
builder.LoadLiteral(ast_factory.GetOneByteString(properties[i]))
.StoreAccumulatorInRegister(r0);
FeedbackSlot slot = feedback_spec.AddKeyedHasICSlot();
Handle<i::FeedbackMetadata> metadata =
NewFeedbackMetadata(isolate, &feedback_spec);
size_t array_entry = builder.AllocateDeferredConstantPoolEntry();
builder.SetDeferredConstantPoolEntry(array_entry, array);
builder.LoadConstantPoolEntry(array_entry)
.CompareOperation(Token::Value::IN, r0, GetIndex(slot))
.Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array, metadata);
auto callable = tester.GetCallable<>();
Handle<Object> return_value = callable().ToHandleChecked();
CHECK(return_value->IsBoolean());
CHECK_EQ(return_value->BooleanValue(isolate), expected_value);
}
}
TEST(InterpreterUnaryNot) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
for (size_t i = 1; i < 10; i++) {
bool expected_value = ((i & 1) == 1);
BytecodeArrayBuilder builder(zone, 1, 0);
Register r0(0);
builder.LoadFalse();
for (size_t j = 0; j < i; j++) {
builder.LogicalNot(ToBooleanMode::kAlreadyBoolean);
}
builder.Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array);
auto callable = tester.GetCallable<>();
Handle<Object> return_value = callable().ToHandleChecked();
CHECK(return_value->IsBoolean());
CHECK_EQ(return_value->BooleanValue(isolate), expected_value);
}
}
TEST(InterpreterUnaryNotNonBoolean) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
AstValueFactory ast_factory(zone, isolate->ast_string_constants(),
HashSeed(isolate));
std::pair<LiteralForTest, bool> object_type_tuples[] = {
std::make_pair(LiteralForTest(LiteralForTest::kUndefined), true),
std::make_pair(LiteralForTest(LiteralForTest::kNull), true),
std::make_pair(LiteralForTest(LiteralForTest::kFalse), true),
std::make_pair(LiteralForTest(LiteralForTest::kTrue), false),
std::make_pair(LiteralForTest(9.1), false),
std::make_pair(LiteralForTest(0), true),
std::make_pair(LiteralForTest(ast_factory.GetOneByteString("hello")),
false),
std::make_pair(LiteralForTest(ast_factory.GetOneByteString("")), true),
};
for (size_t i = 0; i < arraysize(object_type_tuples); i++) {
BytecodeArrayBuilder builder(zone, 1, 0);
Register r0(0);
LoadLiteralForTest(&builder, object_type_tuples[i].first);
builder.LogicalNot(ToBooleanMode::kConvertToBoolean).Return();
ast_factory.Internalize(isolate);
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array);
auto callable = tester.GetCallable<>();
Handle<Object> return_value = callable().ToHandleChecked();
CHECK(return_value->IsBoolean());
CHECK_EQ(return_value->BooleanValue(isolate), object_type_tuples[i].second);
}
}
TEST(InterpreterTypeof) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::pair<const char*, const char*> typeof_vals[] = {
std::make_pair("return typeof undefined;", "undefined"),
std::make_pair("return typeof null;", "object"),
std::make_pair("return typeof true;", "boolean"),
std::make_pair("return typeof false;", "boolean"),
std::make_pair("return typeof 9.1;", "number"),
std::make_pair("return typeof 7771;", "number"),
std::make_pair("return typeof 'hello';", "string"),
std::make_pair("return typeof global_unallocated;", "undefined"),
};
for (size_t i = 0; i < arraysize(typeof_vals); i++) {
std::string source(InterpreterTester::SourceForBody(typeof_vals[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<v8::internal::String> return_value =
Handle<v8::internal::String>::cast(callable().ToHandleChecked());
auto actual = return_value->ToCString();
CHECK_EQ(strcmp(&actual[0], typeof_vals[i].second), 0);
}
}
TEST(InterpreterCallRuntime) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
BytecodeArrayBuilder builder(zone, 1, 2);
RegisterList args = builder.register_allocator()->NewRegisterList(2);
builder.LoadLiteral(Smi::FromInt(15))
.StoreAccumulatorInRegister(args[0])
.LoadLiteral(Smi::FromInt(40))
.StoreAccumulatorInRegister(args[1])
.CallRuntime(Runtime::kAdd, args)
.Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array);
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(55));
}
TEST(InterpreterInvokeIntrinsic) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Zone* zone = handles.main_zone();
BytecodeArrayBuilder builder(zone, 1, 2);
builder.LoadLiteral(Smi::FromInt(15))
.StoreAccumulatorInRegister(Register(0))
.CallRuntime(Runtime::kInlineIsArray, Register(0))
.Return();
Handle<BytecodeArray> bytecode_array = builder.ToBytecodeArray(isolate);
InterpreterTester tester(isolate, bytecode_array);
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK(return_val->IsBoolean());
CHECK_EQ(return_val->BooleanValue(isolate), false);
}
TEST(InterpreterFunctionLiteral) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
// Test calling a function literal.
std::string source(
"function " + InterpreterTester::function_name() + "(a) {\n"
" return (function(x){ return x + 2; })(a);\n"
"}");
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<Handle<Object>>();
Handle<i::Object> return_val = callable(
Handle<Smi>(Smi::FromInt(3), handles.main_isolate())).ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(5));
}
TEST(InterpreterRegExpLiterals) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> literals[] = {
std::make_pair("return /abd/.exec('cccabbdd');\n",
factory->null_value()),
std::make_pair("return /ab+d/.exec('cccabbdd')[0];\n",
factory->NewStringFromStaticChars("abbd")),
std::make_pair("return /AbC/i.exec('ssaBC')[0];\n",
factory->NewStringFromStaticChars("aBC")),
std::make_pair("return 'ssaBC'.match(/AbC/i)[0];\n",
factory->NewStringFromStaticChars("aBC")),
std::make_pair("return 'ssaBCtAbC'.match(/(AbC)/gi)[1];\n",
factory->NewStringFromStaticChars("AbC")),
};
for (size_t i = 0; i < arraysize(literals); i++) {
std::string source(InterpreterTester::SourceForBody(literals[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*literals[i].second));
}
}
TEST(InterpreterArrayLiterals) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> literals[] = {
std::make_pair("return [][0];\n",
factory->undefined_value()),
std::make_pair("return [1, 3, 2][1];\n",
handle(Smi::FromInt(3), isolate)),
std::make_pair("return ['a', 'b', 'c'][2];\n",
factory->NewStringFromStaticChars("c")),
std::make_pair("var a = 100; return [a, a + 1, a + 2, a + 3][2];\n",
handle(Smi::FromInt(102), isolate)),
std::make_pair("return [[1, 2, 3], ['a', 'b', 'c']][1][0];\n",
factory->NewStringFromStaticChars("a")),
std::make_pair("var t = 't'; return [[t, t + 'est'], [1 + t]][0][1];\n",
factory->NewStringFromStaticChars("test"))
};
for (size_t i = 0; i < arraysize(literals); i++) {
std::string source(InterpreterTester::SourceForBody(literals[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*literals[i].second));
}
}
TEST(InterpreterObjectLiterals) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> literals[] = {
std::make_pair("return { }.name;",
factory->undefined_value()),
std::make_pair("return { name: 'string', val: 9.2 }.name;",
factory->NewStringFromStaticChars("string")),
std::make_pair("var a = 15; return { name: 'string', val: a }.val;",
handle(Smi::FromInt(15), isolate)),
std::make_pair("var a = 5; return { val: a, val: a + 1 }.val;",
handle(Smi::FromInt(6), isolate)),
std::make_pair("return { func: function() { return 'test' } }.func();",
factory->NewStringFromStaticChars("test")),
std::make_pair("return { func(a) { return a + 'st'; } }.func('te');",
factory->NewStringFromStaticChars("test")),
std::make_pair("return { get a() { return 22; } }.a;",
handle(Smi::FromInt(22), isolate)),
std::make_pair("var a = { get b() { return this.x + 't'; },\n"
" set b(val) { this.x = val + 's' } };\n"
"a.b = 'te';\n"
"return a.b;",
factory->NewStringFromStaticChars("test")),
std::make_pair("var a = 123; return { 1: a }[1];",
handle(Smi::FromInt(123), isolate)),
std::make_pair("return Object.getPrototypeOf({ __proto__: null });",
factory->null_value()),
std::make_pair("var a = 'test'; return { [a]: 1 }.test;",
handle(Smi::FromInt(1), isolate)),
std::make_pair("var a = 'test'; return { b: a, [a]: a + 'ing' }['test']",
factory->NewStringFromStaticChars("testing")),
std::make_pair("var a = 'proto_str';\n"
"var b = { [a]: 1, __proto__: { var : a } };\n"
"return Object.getPrototypeOf(b).var",
factory->NewStringFromStaticChars("proto_str")),
std::make_pair("var n = 'name';\n"
"return { [n]: 'val', get a() { return 987 } }['a'];",
handle(Smi::FromInt(987), isolate)),
};
for (size_t i = 0; i < arraysize(literals); i++) {
std::string source(InterpreterTester::SourceForBody(literals[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*literals[i].second));
}
}
TEST(InterpreterConstruct) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::string source(
"function counter() { this.count = 0; }\n"
"function " +
InterpreterTester::function_name() +
"() {\n"
" var c = new counter();\n"
" return c.count;\n"
"}");
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::kZero);
}
TEST(InterpreterConstructWithArgument) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::string source(
"function counter(arg0) { this.count = 17; this.x = arg0; }\n"
"function " +
InterpreterTester::function_name() +
"() {\n"
" var c = new counter(3);\n"
" return c.x;\n"
"}");
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(3));
}
TEST(InterpreterConstructWithArguments) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::string source(
"function counter(arg0, arg1) {\n"
" this.count = 7; this.x = arg0; this.y = arg1;\n"
"}\n"
"function " +
InterpreterTester::function_name() +
"() {\n"
" var c = new counter(3, 5);\n"
" return c.count + c.x + c.y;\n"
"}");
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(15));
}
TEST(InterpreterContextVariables) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::ostringstream unique_vars;
for (int i = 0; i < 250; i++) {
unique_vars << "var a" << i << " = 0;";
}
std::pair<std::string, Handle<Object>> context_vars[] = {
std::make_pair("var a; (function() { a = 1; })(); return a;",
handle(Smi::FromInt(1), isolate)),
std::make_pair("var a = 10; (function() { a; })(); return a;",
handle(Smi::FromInt(10), isolate)),
std::make_pair("var a = 20; var b = 30;\n"
"return (function() { return a + b; })();",
handle(Smi::FromInt(50), isolate)),
std::make_pair("'use strict'; let a = 1;\n"
"{ let b = 2; return (function() { return a + b; })(); }",
handle(Smi::FromInt(3), isolate)),
std::make_pair("'use strict'; let a = 10;\n"
"{ let b = 20; var c = function() { [a, b] };\n"
" return a + b; }",
handle(Smi::FromInt(30), isolate)),
std::make_pair("'use strict';" + unique_vars.str() +
"eval(); var b = 100; return b;",
handle(Smi::FromInt(100), isolate)),
};
for (size_t i = 0; i < arraysize(context_vars); i++) {
std::string source(
InterpreterTester::SourceForBody(context_vars[i].first.c_str()));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*context_vars[i].second));
}
}
TEST(InterpreterContextParameters) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::pair<const char*, Handle<Object>> context_params[] = {
std::make_pair("return (function() { return arg1; })();",
handle(Smi::FromInt(1), isolate)),
std::make_pair("(function() { arg1 = 4; })(); return arg1;",
handle(Smi::FromInt(4), isolate)),
std::make_pair("(function() { arg3 = arg2 - arg1; })(); return arg3;",
handle(Smi::FromInt(1), isolate)),
};
for (size_t i = 0; i < arraysize(context_params); i++) {
std::string source = "function " + InterpreterTester::function_name() +
"(arg1, arg2, arg3) {" + context_params[i].first + "}";
InterpreterTester tester(isolate, source.c_str());
auto callable =
tester.GetCallable<Handle<Object>, Handle<Object>, Handle<Object>>();
Handle<Object> a1 = handle(Smi::FromInt(1), isolate);
Handle<Object> a2 = handle(Smi::FromInt(2), isolate);
Handle<Object> a3 = handle(Smi::FromInt(3), isolate);
Handle<i::Object> return_value = callable(a1, a2, a3).ToHandleChecked();
CHECK(return_value->SameValue(*context_params[i].second));
}
}
TEST(InterpreterOuterContextVariables) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::pair<const char*, Handle<Object>> context_vars[] = {
std::make_pair("return outerVar * innerArg;",
handle(Smi::FromInt(200), isolate)),
std::make_pair("outerVar = innerArg; return outerVar",
handle(Smi::FromInt(20), isolate)),
};
std::string header(
"function Outer() {"
" var outerVar = 10;"
" function Inner(innerArg) {"
" this.innerFunc = function() { ");
std::string footer(
" }}"
" this.getInnerFunc = function() { return new Inner(20).innerFunc; }"
"}"
"var f = new Outer().getInnerFunc();");
for (size_t i = 0; i < arraysize(context_vars); i++) {
std::string source = header + context_vars[i].first + footer;
InterpreterTester tester(isolate, source.c_str(), "*");
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*context_vars[i].second));
}
}
TEST(InterpreterComma) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> literals[] = {
std::make_pair("var a; return 0, a;\n", factory->undefined_value()),
std::make_pair("return 'a', 2.2, 3;\n",
handle(Smi::FromInt(3), isolate)),
std::make_pair("return 'a', 'b', 'c';\n",
factory->NewStringFromStaticChars("c")),
std::make_pair("return 3.2, 2.3, 4.5;\n", factory->NewNumber(4.5)),
std::make_pair("var a = 10; return b = a, b = b+1;\n",
handle(Smi::FromInt(11), isolate)),
std::make_pair("var a = 10; return b = a, b = b+1, b + 10;\n",
handle(Smi::FromInt(21), isolate))};
for (size_t i = 0; i < arraysize(literals); i++) {
std::string source(InterpreterTester::SourceForBody(literals[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*literals[i].second));
}
}
TEST(InterpreterLogicalOr) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> literals[] = {
std::make_pair("var a, b; return a || b;\n", factory->undefined_value()),
std::make_pair("var a, b = 10; return a || b;\n",
handle(Smi::FromInt(10), isolate)),
std::make_pair("var a = '0', b = 10; return a || b;\n",
factory->NewStringFromStaticChars("0")),
std::make_pair("return 0 || 3.2;\n", factory->NewNumber(3.2)),
std::make_pair("return 'a' || 0;\n",
factory->NewStringFromStaticChars("a")),
std::make_pair("var a = '0', b = 10; return (a == 0) || b;\n",
factory->true_value())};
for (size_t i = 0; i < arraysize(literals); i++) {
std::string source(InterpreterTester::SourceForBody(literals[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*literals[i].second));
}
}
TEST(InterpreterLogicalAnd) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> literals[] = {
std::make_pair("var a, b = 10; return a && b;\n",
factory->undefined_value()),
std::make_pair("var a = 0, b = 10; return a && b / a;\n",
handle(Smi::kZero, isolate)),
std::make_pair("var a = '0', b = 10; return a && b;\n",
handle(Smi::FromInt(10), isolate)),
std::make_pair("return 0.0 && 3.2;\n", handle(Smi::kZero, isolate)),
std::make_pair("return 'a' && 'b';\n",
factory->NewStringFromStaticChars("b")),
std::make_pair("return 'a' && 0 || 'b', 'c';\n",
factory->NewStringFromStaticChars("c")),
std::make_pair("var x = 1, y = 3; return x && 0 + 1 || y;\n",
handle(Smi::FromInt(1), isolate)),
std::make_pair("var x = 1, y = 3; return (x == 1) && (3 == 3) || y;\n",
factory->true_value())};
for (size_t i = 0; i < arraysize(literals); i++) {
std::string source(InterpreterTester::SourceForBody(literals[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*literals[i].second));
}
}
TEST(InterpreterTryCatch) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::pair<const char*, Handle<Object>> catches[] = {
std::make_pair("var a = 1; try { a = 2 } catch(e) { a = 3 }; return a;",
handle(Smi::FromInt(2), isolate)),
std::make_pair("var a; try { undef.x } catch(e) { a = 2 }; return a;",
handle(Smi::FromInt(2), isolate)),
std::make_pair("var a; try { throw 1 } catch(e) { a = e + 2 }; return a;",
handle(Smi::FromInt(3), isolate)),
std::make_pair("var a; try { throw 1 } catch(e) { a = e + 2 };"
" try { throw a } catch(e) { a = e + 3 }; return a;",
handle(Smi::FromInt(6), isolate)),
};
for (size_t i = 0; i < arraysize(catches); i++) {
std::string source(InterpreterTester::SourceForBody(catches[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*catches[i].second));
}
}
TEST(InterpreterTryFinally) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> finallies[] = {
std::make_pair(
"var a = 1; try { a = a + 1; } finally { a = a + 2; }; return a;",
factory->NewStringFromStaticChars("R4")),
std::make_pair(
"var a = 1; try { a = 2; return 23; } finally { a = 3 }; return a;",
factory->NewStringFromStaticChars("R23")),
std::make_pair(
"var a = 1; try { a = 2; throw 23; } finally { a = 3 }; return a;",
factory->NewStringFromStaticChars("E23")),
std::make_pair(
"var a = 1; try { a = 2; throw 23; } finally { return a; };",
factory->NewStringFromStaticChars("R2")),
std::make_pair(
"var a = 1; try { a = 2; throw 23; } finally { throw 42; };",
factory->NewStringFromStaticChars("E42")),
std::make_pair("var a = 1; for (var i = 10; i < 20; i += 5) {"
" try { a = 2; break; } finally { a = 3; }"
"} return a + i;",
factory->NewStringFromStaticChars("R13")),
std::make_pair("var a = 1; for (var i = 10; i < 20; i += 5) {"
" try { a = 2; continue; } finally { a = 3; }"
"} return a + i;",
factory->NewStringFromStaticChars("R23")),
std::make_pair("var a = 1; try { a = 2;"
" try { a = 3; throw 23; } finally { a = 4; }"
"} catch(e) { a = a + e; } return a;",
factory->NewStringFromStaticChars("R27")),
std::make_pair("var func_name;"
"function tcf2(a) {"
" try { throw new Error('boom');} "
" catch(e) {return 153; } "
" finally {func_name = tcf2.name;}"
"}"
"tcf2();"
"return func_name;",
factory->NewStringFromStaticChars("Rtcf2")),
};
const char* try_wrapper =
"(function() { try { return 'R' + f() } catch(e) { return 'E' + e }})()";
for (size_t i = 0; i < arraysize(finallies); i++) {
std::string source(InterpreterTester::SourceForBody(finallies[i].first));
InterpreterTester tester(isolate, source.c_str());
tester.GetCallable<>();
Handle<Object> wrapped = v8::Utils::OpenHandle(*CompileRun(try_wrapper));
CHECK(wrapped->SameValue(*finallies[i].second));
}
}
TEST(InterpreterThrow) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> throws[] = {
std::make_pair("throw undefined;\n",
factory->undefined_value()),
std::make_pair("throw 1;\n",
handle(Smi::FromInt(1), isolate)),
std::make_pair("throw 'Error';\n",
factory->NewStringFromStaticChars("Error")),
std::make_pair("var a = true; if (a) { throw 'Error'; }\n",
factory->NewStringFromStaticChars("Error")),
std::make_pair("var a = false; if (a) { throw 'Error'; }\n",
factory->undefined_value()),
std::make_pair("throw 'Error1'; throw 'Error2'\n",
factory->NewStringFromStaticChars("Error1")),
};
const char* try_wrapper =
"(function() { try { f(); } catch(e) { return e; }})()";
for (size_t i = 0; i < arraysize(throws); i++) {
std::string source(InterpreterTester::SourceForBody(throws[i].first));
InterpreterTester tester(isolate, source.c_str());
tester.GetCallable<>();
Handle<Object> thrown_obj = v8::Utils::OpenHandle(*CompileRun(try_wrapper));
CHECK(thrown_obj->SameValue(*throws[i].second));
}
}
TEST(InterpreterCountOperators) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> count_ops[] = {
std::make_pair("var a = 1; return ++a;",
handle(Smi::FromInt(2), isolate)),
std::make_pair("var a = 1; return a++;",
handle(Smi::FromInt(1), isolate)),
std::make_pair("var a = 5; return --a;",
handle(Smi::FromInt(4), isolate)),
std::make_pair("var a = 5; return a--;",
handle(Smi::FromInt(5), isolate)),
std::make_pair("var a = 5.2; return --a;", factory->NewHeapNumber(4.2)),
std::make_pair("var a = 'string'; return ++a;", factory->nan_value()),
std::make_pair("var a = 'string'; return a--;", factory->nan_value()),
std::make_pair("var a = true; return ++a;",
handle(Smi::FromInt(2), isolate)),
std::make_pair("var a = false; return a--;", handle(Smi::kZero, isolate)),
std::make_pair("var a = { val: 11 }; return ++a.val;",
handle(Smi::FromInt(12), isolate)),
std::make_pair("var a = { val: 11 }; return a.val--;",
handle(Smi::FromInt(11), isolate)),
std::make_pair("var a = { val: 11 }; return ++a.val;",
handle(Smi::FromInt(12), isolate)),
std::make_pair("var name = 'val'; var a = { val: 22 }; return --a[name];",
handle(Smi::FromInt(21), isolate)),
std::make_pair("var name = 'val'; var a = { val: 22 }; return a[name]++;",
handle(Smi::FromInt(22), isolate)),
std::make_pair("var a = 1; (function() { a = 2 })(); return ++a;",
handle(Smi::FromInt(3), isolate)),
std::make_pair("var a = 1; (function() { a = 2 })(); return a--;",
handle(Smi::FromInt(2), isolate)),
std::make_pair("var i = 5; while(i--) {}; return i;",
handle(Smi::FromInt(-1), isolate)),
std::make_pair("var i = 1; if(i--) { return 1; } else { return 2; };",
handle(Smi::FromInt(1), isolate)),
std::make_pair("var i = -2; do {} while(i++) {}; return i;",
handle(Smi::FromInt(1), isolate)),
std::make_pair("var i = -1; for(; i++; ) {}; return i",
handle(Smi::FromInt(1), isolate)),
std::make_pair("var i = 20; switch(i++) {\n"
" case 20: return 1;\n"
" default: return 2;\n"
"}",
handle(Smi::FromInt(1), isolate)),
};
for (size_t i = 0; i < arraysize(count_ops); i++) {
std::string source(InterpreterTester::SourceForBody(count_ops[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*count_ops[i].second));
}
}
TEST(InterpreterGlobalCountOperators) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::pair<const char*, Handle<Object>> count_ops[] = {
std::make_pair("var global = 100;function f(){ return ++global; }",
handle(Smi::FromInt(101), isolate)),
std::make_pair("var global = 100; function f(){ return --global; }",
handle(Smi::FromInt(99), isolate)),
std::make_pair("var global = 100; function f(){ return global++; }",
handle(Smi::FromInt(100), isolate)),
std::make_pair("unallocated = 200; function f(){ return ++unallocated; }",
handle(Smi::FromInt(201), isolate)),
std::make_pair("unallocated = 200; function f(){ return --unallocated; }",
handle(Smi::FromInt(199), isolate)),
std::make_pair("unallocated = 200; function f(){ return unallocated++; }",
handle(Smi::FromInt(200), isolate)),
};
for (size_t i = 0; i < arraysize(count_ops); i++) {
InterpreterTester tester(isolate, count_ops[i].first);
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*count_ops[i].second));
}
}
TEST(InterpreterCompoundExpressions) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> compound_expr[] = {
std::make_pair("var a = 1; a += 2; return a;",
Handle<Object>(Smi::FromInt(3), isolate)),
std::make_pair("var a = 10; a /= 2; return a;",
Handle<Object>(Smi::FromInt(5), isolate)),
std::make_pair("var a = 'test'; a += 'ing'; return a;",
factory->NewStringFromStaticChars("testing")),
std::make_pair("var a = { val: 2 }; a.val *= 2; return a.val;",
Handle<Object>(Smi::FromInt(4), isolate)),
std::make_pair("var a = 1; (function f() { a = 2; })(); a += 24;"
"return a;",
Handle<Object>(Smi::FromInt(26), isolate)),
};
for (size_t i = 0; i < arraysize(compound_expr); i++) {
std::string source(
InterpreterTester::SourceForBody(compound_expr[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*compound_expr[i].second));
}
}
TEST(InterpreterGlobalCompoundExpressions) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::pair<const char*, Handle<Object>> compound_expr[2] = {
std::make_pair("var global = 100;"
"function f() { global += 20; return global; }",
Handle<Object>(Smi::FromInt(120), isolate)),
std::make_pair("unallocated = 100;"
"function f() { unallocated -= 20; return unallocated; }",
Handle<Object>(Smi::FromInt(80), isolate)),
};
for (size_t i = 0; i < arraysize(compound_expr); i++) {
InterpreterTester tester(isolate, compound_expr[i].first);
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*compound_expr[i].second));
}
}
TEST(InterpreterCreateArguments) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, int> create_args[] = {
std::make_pair("function f() { return arguments[0]; }", 0),
std::make_pair("function f(a) { return arguments[0]; }", 0),
std::make_pair("function f() { return arguments[2]; }", 2),
std::make_pair("function f(a) { return arguments[2]; }", 2),
std::make_pair("function f(a, b, c, d) { return arguments[2]; }", 2),
std::make_pair("function f(a) {"
"'use strict'; return arguments[0]; }",
0),
std::make_pair("function f(a, b, c, d) {"
"'use strict'; return arguments[2]; }",
2),
// Check arguments are mapped in sloppy mode and unmapped in strict.
std::make_pair("function f(a, b, c, d) {"
" c = b; return arguments[2]; }",
1),
std::make_pair("function f(a, b, c, d) {"
" 'use strict'; c = b; return arguments[2]; }",
2),
// Check arguments for duplicate parameters in sloppy mode.
std::make_pair("function f(a, a, b) { return arguments[1]; }", 1),
// check rest parameters
std::make_pair("function f(...restArray) { return restArray[0]; }", 0),
std::make_pair("function f(a, ...restArray) { return restArray[0]; }", 1),
std::make_pair("function f(a, ...restArray) { return arguments[0]; }", 0),
std::make_pair("function f(a, ...restArray) { return arguments[1]; }", 1),
std::make_pair("function f(a, ...restArray) { return restArray[1]; }", 2),
std::make_pair("function f(a, ...arguments) { return arguments[0]; }", 1),
std::make_pair("function f(a, b, ...restArray) { return restArray[0]; }",
2),
};
// Test passing no arguments.
for (size_t i = 0; i < arraysize(create_args); i++) {
InterpreterTester tester(isolate, create_args[i].first);
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK(return_val.is_identical_to(factory->undefined_value()));
}
// Test passing one argument.
for (size_t i = 0; i < arraysize(create_args); i++) {
InterpreterTester tester(isolate, create_args[i].first);
auto callable = tester.GetCallable<Handle<Object>>();
Handle<Object> return_val =
callable(handle(Smi::FromInt(40), isolate)).ToHandleChecked();
if (create_args[i].second == 0) {
CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(40));
} else {
CHECK(return_val.is_identical_to(factory->undefined_value()));
}
}
// Test passing three argument.
for (size_t i = 0; i < arraysize(create_args); i++) {
Handle<Object> args[3] = {
handle(Smi::FromInt(40), isolate),
handle(Smi::FromInt(60), isolate),
handle(Smi::FromInt(80), isolate),
};
InterpreterTester tester(isolate, create_args[i].first);
auto callable =
tester.GetCallable<Handle<Object>, Handle<Object>, Handle<Object>>();
Handle<Object> return_val =
callable(args[0], args[1], args[2]).ToHandleChecked();
CHECK(return_val->SameValue(*args[create_args[i].second]));
}
}
TEST(InterpreterConditional) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::pair<const char*, Handle<Object>> conditional[] = {
std::make_pair("return true ? 2 : 3;",
handle(Smi::FromInt(2), isolate)),
std::make_pair("return false ? 2 : 3;",
handle(Smi::FromInt(3), isolate)),
std::make_pair("var a = 1; return a ? 20 : 30;",
handle(Smi::FromInt(20), isolate)),
std::make_pair("var a = 1; return a ? 20 : 30;",
handle(Smi::FromInt(20), isolate)),
std::make_pair("var a = 'string'; return a ? 20 : 30;",
handle(Smi::FromInt(20), isolate)),
std::make_pair("var a = undefined; return a ? 20 : 30;",
handle(Smi::FromInt(30), isolate)),
std::make_pair("return 1 ? 2 ? 3 : 4 : 5;",
handle(Smi::FromInt(3), isolate)),
std::make_pair("return 0 ? 2 ? 3 : 4 : 5;",
handle(Smi::FromInt(5), isolate)),
};
for (size_t i = 0; i < arraysize(conditional); i++) {
std::string source(InterpreterTester::SourceForBody(conditional[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*conditional[i].second));
}
}
TEST(InterpreterDelete) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
// Tests for delete for local variables that work both in strict
// and sloppy modes
std::pair<const char*, Handle<Object>> test_delete[] = {
std::make_pair(
"var a = { x:10, y:'abc', z:30.2}; delete a.x; return a.x;\n",
factory->undefined_value()),
std::make_pair(
"var b = { x:10, y:'abc', z:30.2}; delete b.x; return b.y;\n",
factory->NewStringFromStaticChars("abc")),
std::make_pair("var c = { x:10, y:'abc', z:30.2}; var d = c; delete d.x; "
"return c.x;\n",
factory->undefined_value()),
std::make_pair("var e = { x:10, y:'abc', z:30.2}; var g = e; delete g.x; "
"return e.y;\n",
factory->NewStringFromStaticChars("abc")),
std::make_pair("var a = { x:10, y:'abc', z:30.2};\n"
"var b = a;"
"delete b.x;"
"return b.x;\n",
factory->undefined_value()),
std::make_pair("var a = {1:10};\n"
"(function f1() {return a;});"
"return delete a[1];",
factory->ToBoolean(true)),
std::make_pair("return delete this;", factory->ToBoolean(true)),
std::make_pair("return delete 'test';", factory->ToBoolean(true))};
// Test delete in sloppy mode
for (size_t i = 0; i < arraysize(test_delete); i++) {
std::string source(InterpreterTester::SourceForBody(test_delete[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*test_delete[i].second));
}
// Test delete in strict mode
for (size_t i = 0; i < arraysize(test_delete); i++) {
std::string strict_test =
"'use strict'; " + std::string(test_delete[i].first);
std::string source(InterpreterTester::SourceForBody(strict_test.c_str()));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*test_delete[i].second));
}
}
TEST(InterpreterDeleteSloppyUnqualifiedIdentifier) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
// These tests generate a syntax error for strict mode. We don't
// test for it here.
std::pair<const char*, Handle<Object>> test_delete[] = {
std::make_pair("var sloppy_a = { x:10, y:'abc'};\n"
"var sloppy_b = delete sloppy_a;\n"
"if (delete sloppy_a) {\n"
" return undefined;\n"
"} else {\n"
" return sloppy_a.x;\n"
"}\n",
Handle<Object>(Smi::FromInt(10), isolate)),
// TODO(mythria) When try-catch is implemented change the tests to check
// if delete actually deletes
std::make_pair("sloppy_a = { x:10, y:'abc'};\n"
"var sloppy_b = delete sloppy_a;\n"
// "try{return a.x;} catch(e) {return b;}\n"
"return sloppy_b;",
factory->ToBoolean(true)),
std::make_pair("sloppy_a = { x:10, y:'abc'};\n"
"var sloppy_b = delete sloppy_c;\n"
"return sloppy_b;",
factory->ToBoolean(true))};
for (size_t i = 0; i < arraysize(test_delete); i++) {
std::string source(InterpreterTester::SourceForBody(test_delete[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*test_delete[i].second));
}
}
TEST(InterpreterGlobalDelete) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> test_global_delete[] = {
std::make_pair("var a = { x:10, y:'abc', z:30.2 };\n"
"function f() {\n"
" delete a.x;\n"
" return a.x;\n"
"}\n"
"f();\n",
factory->undefined_value()),
std::make_pair("var b = {1:10, 2:'abc', 3:30.2 };\n"
"function f() {\n"
" delete b[2];\n"
" return b[1];\n"
" }\n"
"f();\n",
Handle<Object>(Smi::FromInt(10), isolate)),
std::make_pair("var c = { x:10, y:'abc', z:30.2 };\n"
"function f() {\n"
" var d = c;\n"
" delete d.y;\n"
" return d.x;\n"
"}\n"
"f();\n",
Handle<Object>(Smi::FromInt(10), isolate)),
std::make_pair("e = { x:10, y:'abc' };\n"
"function f() {\n"
" return delete e;\n"
"}\n"
"f();\n",
factory->ToBoolean(true)),
std::make_pair("var g = { x:10, y:'abc' };\n"
"function f() {\n"
" return delete g;\n"
"}\n"
"f();\n",
factory->ToBoolean(false)),
std::make_pair("function f() {\n"
" var obj = {h:10, f1() {return delete this;}};\n"
" return obj.f1();\n"
"}\n"
"f();",
factory->ToBoolean(true)),
std::make_pair("function f() {\n"
" var obj = {h:10,\n"
" f1() {\n"
" 'use strict';\n"
" return delete this.h;}};\n"
" return obj.f1();\n"
"}\n"
"f();",
factory->ToBoolean(true))};
for (size_t i = 0; i < arraysize(test_global_delete); i++) {
InterpreterTester tester(isolate, test_global_delete[i].first);
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*test_global_delete[i].second));
}
}
TEST(InterpreterBasicLoops) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> loops[] = {
std::make_pair("var a = 10; var b = 1;\n"
"while (a) {\n"
" b = b * 2;\n"
" a = a - 1;\n"
"};\n"
"return b;\n",
factory->NewHeapNumber(1024)),
std::make_pair("var a = 1; var b = 1;\n"
"do {\n"
" b = b * 2;\n"
" --a;\n"
"} while(a);\n"
"return b;\n",
handle(Smi::FromInt(2), isolate)),
std::make_pair("var b = 1;\n"
"for ( var a = 10; a; a--) {\n"
" b *= 2;\n"
"}\n"
"return b;",
factory->NewHeapNumber(1024)),
std::make_pair("var a = 10; var b = 1;\n"
"while (a > 0) {\n"
" b = b * 2;\n"
" a = a - 1;\n"
"};\n"
"return b;\n",
factory->NewHeapNumber(1024)),
std::make_pair("var a = 1; var b = 1;\n"
"do {\n"
" b = b * 2;\n"
" --a;\n"
"} while(a);\n"
"return b;\n",
handle(Smi::FromInt(2), isolate)),
std::make_pair("var b = 1;\n"
"for ( var a = 10; a > 0; a--) {\n"
" b *= 2;\n"
"}\n"
"return b;",
factory->NewHeapNumber(1024)),
std::make_pair("var a = 10; var b = 1;\n"
"while (false) {\n"
" b = b * 2;\n"
" a = a - 1;\n"
"}\n"
"return b;\n",
Handle<Object>(Smi::FromInt(1), isolate)),
std::make_pair("var a = 10; var b = 1;\n"
"while (true) {\n"
" b = b * 2;\n"
" a = a - 1;\n"
" if (a == 0) break;"
" continue;"
"}\n"
"return b;\n",
factory->NewHeapNumber(1024)),
std::make_pair("var a = 10; var b = 1;\n"
"do {\n"
" b = b * 2;\n"
" a = a - 1;\n"
" if (a == 0) break;"
"} while(true);\n"
"return b;\n",
factory->NewHeapNumber(1024)),
std::make_pair("var a = 10; var b = 1;\n"
"do {\n"
" b = b * 2;\n"
" a = a - 1;\n"
" if (a == 0) break;"
"} while(false);\n"
"return b;\n",
Handle<Object>(Smi::FromInt(2), isolate)),
std::make_pair("var a = 10; var b = 1;\n"
"for ( a = 1, b = 30; false; ) {\n"
" b = b * 2;\n"
"}\n"
"return b;\n",
Handle<Object>(Smi::FromInt(30), isolate))};
for (size_t i = 0; i < arraysize(loops); i++) {
std::string source(InterpreterTester::SourceForBody(loops[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*loops[i].second));
}
}
TEST(InterpreterForIn) {
std::pair<const char*, int> for_in_samples[] = {
{"var r = -1;\n"
"for (var a in null) { r = a; }\n"
"return r;\n",
-1},
{"var r = -1;\n"
"for (var a in undefined) { r = a; }\n"
"return r;\n",
-1},
{"var r = 0;\n"
"for (var a in [0,6,7,9]) { r = r + (1 << a); }\n"
"return r;\n",
0xF},
{"var r = 0;\n"
"for (var a in [0,6,7,9]) { r = r + (1 << a); }\n"
"var r = 0;\n"
"for (var a in [0,6,7,9]) { r = r + (1 << a); }\n"
"return r;\n",
0xF},
{"var r = 0;\n"
"for (var a in 'foobar') { r = r + (1 << a); }\n"
"return r;\n",
0x3F},
{"var r = 0;\n"
"for (var a in {1:0, 10:1, 100:2, 1000:3}) {\n"
" r = r + Number(a);\n"
" }\n"
" return r;\n",
1111},
{"var r = 0;\n"
"var data = {1:0, 10:1, 100:2, 1000:3};\n"
"for (var a in data) {\n"
" if (a == 1) delete data[1];\n"
" r = r + Number(a);\n"
" }\n"
" return r;\n",
1111},
{"var r = 0;\n"
"var data = {1:0, 10:1, 100:2, 1000:3};\n"
"for (var a in data) {\n"
" if (a == 10) delete data[100];\n"
" r = r + Number(a);\n"
" }\n"
" return r;\n",
1011},
{"var r = 0;\n"
"var data = {1:0, 10:1, 100:2, 1000:3};\n"
"for (var a in data) {\n"
" if (a == 10) data[10000] = 4;\n"
" r = r + Number(a);\n"
" }\n"
" return r;\n",
1111},
{"var r = 0;\n"
"var input = 'foobar';\n"
"for (var a in input) {\n"
" if (input[a] == 'b') break;\n"
" r = r + (1 << a);\n"
"}\n"
"return r;\n",
0x7},
{"var r = 0;\n"
"var input = 'foobar';\n"
"for (var a in input) {\n"
" if (input[a] == 'b') continue;\n"
" r = r + (1 << a);\n"
"}\n"
"return r;\n",
0x37},
{"var r = 0;\n"
"var data = {1:0, 10:1, 100:2, 1000:3};\n"
"for (var a in data) {\n"
" if (a == 10) {\n"
" data[10000] = 4;\n"
" }\n"
" r = r + Number(a);\n"
"}\n"
"return r;\n",
1111},
{"var r = [ 3 ];\n"
"var data = {1:0, 10:1, 100:2, 1000:3};\n"
"for (r[10] in data) {\n"
"}\n"
"return Number(r[10]);\n",
1000},
{"var r = [ 3 ];\n"
"var data = {1:0, 10:1, 100:2, 1000:3};\n"
"for (r['100'] in data) {\n"
"}\n"
"return Number(r['100']);\n",
1000},
{"var obj = {}\n"
"var descObj = new Boolean(false);\n"
"var accessed = 0;\n"
"descObj.enumerable = true;\n"
"Object.defineProperties(obj, { prop:descObj });\n"
"for (var p in obj) {\n"
" if (p === 'prop') { accessed = 1; }\n"
"}\n"
"return accessed;",
1},
{"var appointment = {};\n"
"Object.defineProperty(appointment, 'startTime', {\n"
" value: 1001,\n"
" writable: false,\n"
" enumerable: false,\n"
" configurable: true\n"
"});\n"
"Object.defineProperty(appointment, 'name', {\n"
" value: 'NAME',\n"
" writable: false,\n"
" enumerable: false,\n"
" configurable: true\n"
"});\n"
"var meeting = Object.create(appointment);\n"
"Object.defineProperty(meeting, 'conferenceCall', {\n"
" value: 'In-person meeting',\n"
" writable: false,\n"
" enumerable: false,\n"
" configurable: true\n"
"});\n"
"\n"
"var teamMeeting = Object.create(meeting);\n"
"\n"
"var flags = 0;\n"
"for (var p in teamMeeting) {\n"
" if (p === 'startTime') {\n"
" flags |= 1;\n"
" }\n"
" if (p === 'name') {\n"
" flags |= 2;\n"
" }\n"
" if (p === 'conferenceCall') {\n"
" flags |= 4;\n"
" }\n"
"}\n"
"\n"
"var hasOwnProperty = !teamMeeting.hasOwnProperty('name') &&\n"
" !teamMeeting.hasOwnProperty('startTime') &&\n"
" !teamMeeting.hasOwnProperty('conferenceCall');\n"
"if (!hasOwnProperty) {\n"
" flags |= 8;\n"
"}\n"
"return flags;\n",
0},
{"var data = {x:23, y:34};\n"
" var result = 0;\n"
"var o = {};\n"
"var arr = [o];\n"
"for (arr[0].p in data)\n" // This is to test if value is loaded
" result += data[arr[0].p];\n" // back from accumulator before storing
"return result;\n", // named properties.
57},
{"var data = {x:23, y:34};\n"
"var result = 0;\n"
"var o = {};\n"
"var i = 0;\n"
"for (o[i++] in data)\n" // This is to test if value is loaded
" result += data[o[i-1]];\n" // back from accumulator before
"return result;\n", // storing keyed properties.
57}};
// Two passes are made for this test. On the first, 8-bit register
// operands are employed, and on the 16-bit register operands are
// used.
for (int pass = 0; pass < 2; pass++) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::ostringstream wide_os;
if (pass == 1) {
for (int i = 0; i < 200; i++) {
wide_os << "var local" << i << " = 0;\n";
}
}
for (size_t i = 0; i < arraysize(for_in_samples); i++) {
std::ostringstream body_os;
body_os << wide_os.str() << for_in_samples[i].first;
std::string body(body_os.str());
std::string function = InterpreterTester::SourceForBody(body.c_str());
InterpreterTester tester(isolate, function.c_str());
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK_EQ(Handle<Smi>::cast(return_val)->value(),
for_in_samples[i].second);
}
}
}
TEST(InterpreterForOf) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> for_of[] = {
{"function f() {\n"
" var r = 0;\n"
" for (var a of [0,6,7,9]) { r += a; }\n"
" return r;\n"
"}",
handle(Smi::FromInt(22), isolate)},
{"function f() {\n"
" var r = '';\n"
" for (var a of 'foobar') { r = a + r; }\n"
" return r;\n"
"}",
factory->NewStringFromStaticChars("raboof")},
{"function f() {\n"
" var a = [1, 2, 3];\n"
" a.name = 4;\n"
" var r = 0;\n"
" for (var x of a) { r += x; }\n"
" return r;\n"
"}",
handle(Smi::FromInt(6), isolate)},
{"function f() {\n"
" var r = '';\n"
" var data = [1, 2, 3]; \n"
" for (a of data) { delete data[0]; r += a; } return r; }",
factory->NewStringFromStaticChars("123")},
{"function f() {\n"
" var r = '';\n"
" var data = [1, 2, 3]; \n"
" for (a of data) { delete data[2]; r += a; } return r; }",
factory->NewStringFromStaticChars("12undefined")},
{"function f() {\n"
" var r = '';\n"
" var data = [1, 2, 3]; \n"
" for (a of data) { delete data; r += a; } return r; }",
factory->NewStringFromStaticChars("123")},
{"function f() {\n"
" var r = '';\n"
" var input = 'foobar';\n"
" for (var a of input) {\n"
" if (a == 'b') break;\n"
" r += a;\n"
" }\n"
" return r;\n"
"}",
factory->NewStringFromStaticChars("foo")},
{"function f() {\n"
" var r = '';\n"
" var input = 'foobar';\n"
" for (var a of input) {\n"
" if (a == 'b') continue;\n"
" r += a;\n"
" }\n"
" return r;\n"
"}",
factory->NewStringFromStaticChars("fooar")},
{"function f() {\n"
" var r = '';\n"
" var data = [1, 2, 3, 4]; \n"
" for (a of data) { data[2] = 567; r += a; }\n"
" return r;\n"
"}",
factory->NewStringFromStaticChars("125674")},
{"function f() {\n"
" var r = '';\n"
" var data = [1, 2, 3, 4]; \n"
" for (a of data) { data[4] = 567; r += a; }\n"
" return r;\n"
"}",
factory->NewStringFromStaticChars("1234567")},
{"function f() {\n"
" var r = '';\n"
" var data = [1, 2, 3, 4]; \n"
" for (a of data) { data[5] = 567; r += a; }\n"
" return r;\n"
"}",
factory->NewStringFromStaticChars("1234undefined567")},
{"function f() {\n"
" var r = '';\n"
" var obj = new Object();\n"
" obj[Symbol.iterator] = function() { return {\n"
" index: 3,\n"
" data: ['a', 'b', 'c', 'd'],"
" next: function() {"
" return {"
" done: this.index == -1,\n"
" value: this.index < 0 ? undefined : this.data[this.index--]\n"
" }\n"
" }\n"
" }}\n"
" for (a of obj) { r += a }\n"
" return r;\n"
"}",
factory->NewStringFromStaticChars("dcba")},
};
for (size_t i = 0; i < arraysize(for_of); i++) {
InterpreterTester tester(isolate, for_of[i].first);
auto callable = tester.GetCallable<>();
Handle<Object> return_val = callable().ToHandleChecked();
CHECK(return_val->SameValue(*for_of[i].second));
}
}
TEST(InterpreterSwitch) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> switch_ops[] = {
std::make_pair("var a = 1;\n"
"switch(a) {\n"
" case 1: return 2;\n"
" case 2: return 3;\n"
"}\n",
handle(Smi::FromInt(2), isolate)),
std::make_pair("var a = 1;\n"
"switch(a) {\n"
" case 2: a = 2; break;\n"
" case 1: a = 3; break;\n"
"}\n"
"return a;",
handle(Smi::FromInt(3), isolate)),
std::make_pair("var a = 1;\n"
"switch(a) {\n"
" case 1: a = 2; // fall-through\n"
" case 2: a = 3; break;\n"
"}\n"
"return a;",
handle(Smi::FromInt(3), isolate)),
std::make_pair("var a = 100;\n"
"switch(a) {\n"
" case 1: return 100;\n"
" case 2: return 200;\n"
"}\n"
"return undefined;",
factory->undefined_value()),
std::make_pair("var a = 100;\n"
"switch(a) {\n"
" case 1: return 100;\n"
" case 2: return 200;\n"
" default: return 300;\n"
"}\n"
"return undefined;",
handle(Smi::FromInt(300), isolate)),
std::make_pair("var a = 100;\n"
"switch(typeof(a)) {\n"
" case 'string': return 1;\n"
" case 'number': return 2;\n"
" default: return 3;\n"
"}\n",
handle(Smi::FromInt(2), isolate)),
std::make_pair("var a = 100;\n"
"switch(a) {\n"
" case a += 20: return 1;\n"
" case a -= 10: return 2;\n"
" case a -= 10: return 3;\n"
" default: return 3;\n"
"}\n",
handle(Smi::FromInt(3), isolate)),
std::make_pair("var a = 1;\n"
"switch(a) {\n"
" case 1: \n"
" switch(a + 1) {\n"
" case 2 : a += 1; break;\n"
" default : a += 2; break;\n"
" } // fall-through\n"
" case 2: a += 3;\n"
"}\n"
"return a;",
handle(Smi::FromInt(5), isolate)),
};
for (size_t i = 0; i < arraysize(switch_ops); i++) {
std::string source(InterpreterTester::SourceForBody(switch_ops[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*switch_ops[i].second));
}
}
TEST(InterpreterSloppyThis) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> sloppy_this[] = {
std::make_pair("var global_val = 100;\n"
"function f() { return this.global_val; }\n",
handle(Smi::FromInt(100), isolate)),
std::make_pair("var global_val = 110;\n"
"function g() { return this.global_val; };"
"function f() { return g(); }\n",
handle(Smi::FromInt(110), isolate)),
std::make_pair("var global_val = 110;\n"
"function g() { return this.global_val };"
"function f() { 'use strict'; return g(); }\n",
handle(Smi::FromInt(110), isolate)),
std::make_pair("function f() { 'use strict'; return this; }\n",
factory->undefined_value()),
std::make_pair("function g() { 'use strict'; return this; };"
"function f() { return g(); }\n",
factory->undefined_value()),
};
for (size_t i = 0; i < arraysize(sloppy_this); i++) {
InterpreterTester tester(isolate, sloppy_this[i].first);
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*sloppy_this[i].second));
}
}
TEST(InterpreterThisFunction) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
InterpreterTester tester(isolate,
"var f;\n f = function f() { return f.name; }");
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*factory->NewStringFromStaticChars("f")));
}
TEST(InterpreterNewTarget) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
// TODO(rmcilroy): Add tests that we get the original constructor for
// superclass constructors once we have class support.
InterpreterTester tester(isolate, "function f() { this.a = new.target; }");
auto callable = tester.GetCallable<>();
callable().ToHandleChecked();
Handle<Object> new_target_name = v8::Utils::OpenHandle(
*CompileRun("(function() { return (new f()).a.name; })();"));
CHECK(new_target_name->SameValue(*factory->NewStringFromStaticChars("f")));
}
TEST(InterpreterAssignmentInExpressions) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::pair<const char*, int> samples[] = {
{"function f() {\n"
" var x = 7;\n"
" var y = x + (x = 1) + (x = 2);\n"
" return y;\n"
"}",
10},
{"function f() {\n"
" var x = 7;\n"
" var y = x + (x = 1) + (x = 2);\n"
" return x;\n"
"}",
2},
{"function f() {\n"
" var x = 55;\n"
" x = x + (x = 100) + (x = 101);\n"
" return x;\n"
"}",
256},
{"function f() {\n"
" var x = 7;\n"
" return ++x + x + x++;\n"
"}",
24},
{"function f() {\n"
" var x = 7;\n"
" var y = 1 + ++x + x + x++;\n"
" return x;\n"
"}",
9},
{"function f() {\n"
" var x = 7;\n"
" var y = ++x + x + x++;\n"
" return x;\n"
"}",
9},
{"function f() {\n"
" var x = 7, y = 100, z = 1000;\n"
" return x + (x += 3) + y + (y *= 10) + (z *= 7) + z;\n"
"}",
15117},
{"function f() {\n"
" var inner = function (x) { return x + (x = 2) + (x = 4) + x; };\n"
" return inner(1);\n"
"}",
11},
{"function f() {\n"
" var x = 1, y = 2;\n"
" x = x + (x = 3) + y + (y = 4), y = y + (y = 5) + y + x;\n"
" return x + y;\n"
"}",
10 + 24},
{"function f() {\n"
" var x = 0;\n"
" var y = x | (x = 1) | (x = 2);\n"
" return x;\n"
"}",
2},
{"function f() {\n"
" var x = 0;\n"
" var y = x || (x = 1);\n"
" return x;\n"
"}",
1},
{"function f() {\n"
" var x = 1;\n"
" var y = x && (x = 2) && (x = 3);\n"
" return x;\n"
"}",
3},
{"function f() {\n"
" var x = 1;\n"
" var y = x || (x = 2);\n"
" return x;\n"
"}",
1},
{"function f() {\n"
" var x = 1;\n"
" x = (x << (x = 3)) | (x = 16);\n"
" return x;\n"
"}",
24},
{"function f() {\n"
" var r = 7;\n"
" var s = 11;\n"
" var t = 13;\n"
" var u = r + s + t + (r = 10) + (s = 20) +"
" (t = (r + s)) + r + s + t;\n"
" return r + s + t + u;\n"
"}",
211},
{"function f() {\n"
" var r = 7;\n"
" var s = 11;\n"
" var t = 13;\n"
" return r > (3 * s * (s = 1)) ? (t + (t += 1)) : (r + (r = 4));\n"
"}",
11},
{"function f() {\n"
" var r = 7;\n"
" var s = 11;\n"
" var t = 13;\n"
" return r > (3 * s * (s = 0)) ? (t + (t += 1)) : (r + (r = 4));\n"
"}",
27},
{"function f() {\n"
" var r = 7;\n"
" var s = 11;\n"
" var t = 13;\n"
" return (r + (r = 5)) > s ? r : t;\n"
"}",
5},
{"function f(a) {\n"
" return a + (arguments[0] = 10);\n"
"}",
50},
{"function f(a) {\n"
" return a + (arguments[0] = 10) + a;\n"
"}",
60},
{"function f(a) {\n"
" return a + (arguments[0] = 10) + arguments[0];\n"
"}",
60},
};
const int arg_value = 40;
for (size_t i = 0; i < arraysize(samples); i++) {
InterpreterTester tester(isolate, samples[i].first);
auto callable = tester.GetCallable<Handle<Object>>();
Handle<Object> return_val =
callable(handle(Smi::FromInt(arg_value), handles.main_isolate()))
.ToHandleChecked();
CHECK_EQ(Handle<Smi>::cast(return_val)->value(), samples[i].second);
}
}
TEST(InterpreterToName) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> to_name_tests[] = {
{"var a = 'val'; var obj = {[a] : 10}; return obj.val;",
factory->NewNumberFromInt(10)},
{"var a = 20; var obj = {[a] : 10}; return obj['20'];",
factory->NewNumberFromInt(10)},
{"var a = 20; var obj = {[a] : 10}; return obj[20];",
factory->NewNumberFromInt(10)},
{"var a = {val:23}; var obj = {[a] : 10}; return obj[a];",
factory->NewNumberFromInt(10)},
{"var a = {val:23}; var obj = {[a] : 10};\n"
"return obj['[object Object]'];",
factory->NewNumberFromInt(10)},
{"var a = {toString : function() { return 'x'}};\n"
"var obj = {[a] : 10};\n"
"return obj.x;",
factory->NewNumberFromInt(10)},
{"var a = {valueOf : function() { return 'x'}};\n"
"var obj = {[a] : 10};\n"
"return obj.x;",
factory->undefined_value()},
{"var a = {[Symbol.toPrimitive] : function() { return 'x'}};\n"
"var obj = {[a] : 10};\n"
"return obj.x;",
factory->NewNumberFromInt(10)},
};
for (size_t i = 0; i < arraysize(to_name_tests); i++) {
std::string source(
InterpreterTester::SourceForBody(to_name_tests[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*to_name_tests[i].second));
}
}
TEST(TemporaryRegisterAllocation) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> reg_tests[] = {
{"function add(a, b, c) {"
" return a + b + c;"
"}"
"function f() {"
" var a = 10, b = 10;"
" return add(a, b++, b);"
"}",
factory->NewNumberFromInt(31)},
{"function add(a, b, c, d) {"
" return a + b + c + d;"
"}"
"function f() {"
" var x = 10, y = 20, z = 30;"
" return x + add(x, (y= x++), x, z);"
"}",
factory->NewNumberFromInt(71)},
};
for (size_t i = 0; i < arraysize(reg_tests); i++) {
InterpreterTester tester(isolate, reg_tests[i].first);
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*reg_tests[i].second));
}
}
TEST(InterpreterLookupSlot) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
// TODO(mythria): Add more tests when we have support for eval/with.
const char* function_prologue = "var f;"
"var x = 1;"
"function f1() {"
" eval(\"function t() {";
const char* function_epilogue = " }; f = t;\");"
"}"
"f1();";
std::pair<const char*, Handle<Object>> lookup_slot[] = {
{"return x;", handle(Smi::FromInt(1), isolate)},
{"return typeof x;", factory->NewStringFromStaticChars("number")},
{"return typeof dummy;", factory->NewStringFromStaticChars("undefined")},
{"x = 10; return x;", handle(Smi::FromInt(10), isolate)},
{"'use strict'; x = 20; return x;", handle(Smi::FromInt(20), isolate)},
};
for (size_t i = 0; i < arraysize(lookup_slot); i++) {
std::string script = std::string(function_prologue) +
std::string(lookup_slot[i].first) +
std::string(function_epilogue);
InterpreterTester tester(isolate, script.c_str(), "t");
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*lookup_slot[i].second));
}
}
TEST(InterpreterLookupContextSlot) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
const char* inner_function_prologue = "function inner() {";
const char* inner_function_epilogue = "};";
const char* outer_function_epilogue = "return inner();";
std::tuple<const char*, const char*, Handle<Object>> lookup_slot[] = {
// Eval in inner context.
std::make_tuple("var x = 0;", "eval(''); return x;",
handle(Smi::kZero, isolate)),
std::make_tuple("var x = 0;", "eval('var x = 1'); return x;",
handle(Smi::FromInt(1), isolate)),
std::make_tuple("var x = 0;",
"'use strict'; eval('var x = 1'); return x;",
handle(Smi::kZero, isolate)),
// Eval in outer context.
std::make_tuple("var x = 0; eval('');", "return x;",
handle(Smi::kZero, isolate)),
std::make_tuple("var x = 0; eval('var x = 1');", "return x;",
handle(Smi::FromInt(1), isolate)),
std::make_tuple("'use strict'; var x = 0; eval('var x = 1');",
"return x;", handle(Smi::kZero, isolate)),
};
for (size_t i = 0; i < arraysize(lookup_slot); i++) {
std::string body = std::string(std::get<0>(lookup_slot[i])) +
std::string(inner_function_prologue) +
std::string(std::get<1>(lookup_slot[i])) +
std::string(inner_function_epilogue) +
std::string(outer_function_epilogue);
std::string script = InterpreterTester::SourceForBody(body.c_str());
InterpreterTester tester(isolate, script.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*std::get<2>(lookup_slot[i])));
}
}
TEST(InterpreterLookupGlobalSlot) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
const char* inner_function_prologue = "function inner() {";
const char* inner_function_epilogue = "};";
const char* outer_function_epilogue = "return inner();";
std::tuple<const char*, const char*, Handle<Object>> lookup_slot[] = {
// Eval in inner context.
std::make_tuple("x = 0;", "eval(''); return x;",
handle(Smi::kZero, isolate)),
std::make_tuple("x = 0;", "eval('var x = 1'); return x;",
handle(Smi::FromInt(1), isolate)),
std::make_tuple("x = 0;", "'use strict'; eval('var x = 1'); return x;",
handle(Smi::kZero, isolate)),
// Eval in outer context.
std::make_tuple("x = 0; eval('');", "return x;",
handle(Smi::kZero, isolate)),
std::make_tuple("x = 0; eval('var x = 1');", "return x;",
handle(Smi::FromInt(1), isolate)),
std::make_tuple("'use strict'; x = 0; eval('var x = 1');", "return x;",
handle(Smi::kZero, isolate)),
};
for (size_t i = 0; i < arraysize(lookup_slot); i++) {
std::string body = std::string(std::get<0>(lookup_slot[i])) +
std::string(inner_function_prologue) +
std::string(std::get<1>(lookup_slot[i])) +
std::string(inner_function_epilogue) +
std::string(outer_function_epilogue);
std::string script = InterpreterTester::SourceForBody(body.c_str());
InterpreterTester tester(isolate, script.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*std::get<2>(lookup_slot[i])));
}
}
TEST(InterpreterCallLookupSlot) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::pair<const char*, Handle<Object>> call_lookup[] = {
{"g = function(){ return 2 }; eval(''); return g();",
handle(Smi::FromInt(2), isolate)},
{"g = function(){ return 2 }; eval('g = function() {return 3}');\n"
"return g();",
handle(Smi::FromInt(3), isolate)},
{"g = { x: function(){ return this.y }, y: 20 };\n"
"eval('g = { x: g.x, y: 30 }');\n"
"return g.x();",
handle(Smi::FromInt(30), isolate)},
};
for (size_t i = 0; i < arraysize(call_lookup); i++) {
std::string source(InterpreterTester::SourceForBody(call_lookup[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*call_lookup[i].second));
}
}
TEST(InterpreterLookupSlotWide) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
const char* function_prologue =
"var f;"
"var x = 1;"
"function f1() {"
" eval(\"function t() {";
const char* function_epilogue =
" }; f = t;\");"
"}"
"f1();";
std::ostringstream str;
str << "var y = 2.3;";
for (int i = 1; i < 256; i++) {
str << "y = " << 2.3 + i << ";";
}
std::string init_function_body = str.str();
std::pair<std::string, Handle<Object>> lookup_slot[] = {
{init_function_body + "return x;", handle(Smi::FromInt(1), isolate)},
{init_function_body + "return typeof x;",
factory->NewStringFromStaticChars("number")},
{init_function_body + "return x = 10;",
handle(Smi::FromInt(10), isolate)},
{"'use strict';" + init_function_body + "x = 20; return x;",
handle(Smi::FromInt(20), isolate)},
};
for (size_t i = 0; i < arraysize(lookup_slot); i++) {
std::string script = std::string(function_prologue) + lookup_slot[i].first +
std::string(function_epilogue);
InterpreterTester tester(isolate, script.c_str(), "t");
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*lookup_slot[i].second));
}
}
TEST(InterpreterDeleteLookupSlot) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
// TODO(mythria): Add more tests when we have support for eval/with.
const char* function_prologue = "var f;"
"var x = 1;"
"y = 10;"
"var obj = {val:10};"
"var z = 30;"
"function f1() {"
" var z = 20;"
" eval(\"function t() {";
const char* function_epilogue = " }; f = t;\");"
"}"
"f1();";
std::pair<const char*, Handle<Object>> delete_lookup_slot[] = {
{"return delete x;", factory->false_value()},
{"return delete y;", factory->true_value()},
{"return delete z;", factory->false_value()},
{"return delete obj.val;", factory->true_value()},
{"'use strict'; return delete obj.val;", factory->true_value()},
};
for (size_t i = 0; i < arraysize(delete_lookup_slot); i++) {
std::string script = std::string(function_prologue) +
std::string(delete_lookup_slot[i].first) +
std::string(function_epilogue);
InterpreterTester tester(isolate, script.c_str(), "t");
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*delete_lookup_slot[i].second));
}
}
TEST(JumpWithConstantsAndWideConstants) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
const int kStep = 13;
for (int constants = 11; constants < 256 + 3 * kStep; constants += kStep) {
std::ostringstream filler_os;
// Generate a string that consumes constant pool entries and
// spread out branch distances in script below.
for (int i = 0; i < constants; i++) {
filler_os << "var x_ = 'x_" << i << "';\n";
}
std::string filler(filler_os.str());
std::ostringstream script_os;
script_os << "function " << InterpreterTester::function_name() << "(a) {\n";
script_os << " " << filler;
script_os << " for (var i = a; i < 2; i++) {\n";
script_os << " " << filler;
script_os << " if (i == 0) { " << filler << "i = 10; continue; }\n";
script_os << " else if (i == a) { " << filler << "i = 12; break; }\n";
script_os << " else { " << filler << " }\n";
script_os << " }\n";
script_os << " return i;\n";
script_os << "}\n";
std::string script(script_os.str());
for (int a = 0; a < 3; a++) {
InterpreterTester tester(isolate, script.c_str());
auto callable = tester.GetCallable<Handle<Object>>();
Handle<Object> argument = factory->NewNumberFromInt(a);
Handle<Object> return_val = callable(argument).ToHandleChecked();
static const int results[] = {11, 12, 2};
CHECK_EQ(Handle<Smi>::cast(return_val)->value(), results[a]);
}
}
}
TEST(InterpreterEval) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> eval[] = {
{"return eval('1;');", handle(Smi::FromInt(1), isolate)},
{"return eval('100 * 20;');", handle(Smi::FromInt(2000), isolate)},
{"var x = 10; return eval('x + 20;');",
handle(Smi::FromInt(30), isolate)},
{"var x = 10; eval('x = 33;'); return x;",
handle(Smi::FromInt(33), isolate)},
{"'use strict'; var x = 20; var z = 0;\n"
"eval('var x = 33; z = x;'); return x + z;",
handle(Smi::FromInt(53), isolate)},
{"eval('var x = 33;'); eval('var y = x + 20'); return x + y;",
handle(Smi::FromInt(86), isolate)},
{"var x = 1; eval('for(i = 0; i < 10; i++) x = x + 1;'); return x",
handle(Smi::FromInt(11), isolate)},
{"var x = 10; eval('var x = 20;'); return x;",
handle(Smi::FromInt(20), isolate)},
{"var x = 1; eval('\"use strict\"; var x = 2;'); return x;",
handle(Smi::FromInt(1), isolate)},
{"'use strict'; var x = 1; eval('var x = 2;'); return x;",
handle(Smi::FromInt(1), isolate)},
{"var x = 10; eval('x + 20;'); return typeof x;",
factory->NewStringFromStaticChars("number")},
{"eval('var y = 10;'); return typeof unallocated;",
factory->NewStringFromStaticChars("undefined")},
{"'use strict'; eval('var y = 10;'); return typeof unallocated;",
factory->NewStringFromStaticChars("undefined")},
{"eval('var x = 10;'); return typeof x;",
factory->NewStringFromStaticChars("number")},
{"var x = {}; eval('var x = 10;'); return typeof x;",
factory->NewStringFromStaticChars("number")},
{"'use strict'; var x = {}; eval('var x = 10;'); return typeof x;",
factory->NewStringFromStaticChars("object")},
};
for (size_t i = 0; i < arraysize(eval); i++) {
std::string source(InterpreterTester::SourceForBody(eval[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*eval[i].second));
}
}
TEST(InterpreterEvalParams) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::pair<const char*, Handle<Object>> eval_params[] = {
{"var x = 10; return eval('x + p1;');",
handle(Smi::FromInt(30), isolate)},
{"var x = 10; eval('p1 = x;'); return p1;",
handle(Smi::FromInt(10), isolate)},
{"var a = 10;"
"function inner() { return eval('a + p1;');}"
"return inner();",
handle(Smi::FromInt(30), isolate)},
};
for (size_t i = 0; i < arraysize(eval_params); i++) {
std::string source = "function " + InterpreterTester::function_name() +
"(p1) {" + eval_params[i].first + "}";
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<Handle<Object>>();
Handle<i::Object> return_value =
callable(handle(Smi::FromInt(20), isolate)).ToHandleChecked();
CHECK(return_value->SameValue(*eval_params[i].second));
}
}
TEST(InterpreterEvalGlobal) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> eval_global[] = {
{"function add_global() { eval('function test() { z = 33; }; test()'); };"
"function f() { add_global(); return z; }; f();",
handle(Smi::FromInt(33), isolate)},
{"function add_global() {\n"
" eval('\"use strict\"; function test() { y = 33; };"
" try { test() } catch(e) {}');\n"
"}\n"
"function f() { add_global(); return typeof y; } f();",
factory->NewStringFromStaticChars("undefined")},
};
for (size_t i = 0; i < arraysize(eval_global); i++) {
InterpreterTester tester(isolate, eval_global[i].first, "test");
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*eval_global[i].second));
}
}
TEST(InterpreterEvalVariableDecl) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> eval_global[] = {
{"function f() { eval('var x = 10; x++;'); return x; }",
handle(Smi::FromInt(11), isolate)},
{"function f() { var x = 20; eval('var x = 10; x++;'); return x; }",
handle(Smi::FromInt(11), isolate)},
{"function f() {"
" var x = 20;"
" eval('\"use strict\"; var x = 10; x++;');"
" return x; }",
handle(Smi::FromInt(20), isolate)},
{"function f() {"
" var y = 30;"
" eval('var x = {1:20}; x[2]=y;');"
" return x[2]; }",
handle(Smi::FromInt(30), isolate)},
{"function f() {"
" eval('var x = {name:\"test\"};');"
" return x.name; }",
factory->NewStringFromStaticChars("test")},
{"function f() {"
" eval('var x = [{name:\"test\"}, {type:\"cc\"}];');"
" return x[1].type+x[0].name; }",
factory->NewStringFromStaticChars("cctest")},
{"function f() {\n"
" var x = 3;\n"
" var get_eval_x;\n"
" eval('\"use strict\"; "
" var x = 20; "
" get_eval_x = function func() {return x;};');\n"
" return get_eval_x() + x;\n"
"}",
handle(Smi::FromInt(23), isolate)},
// TODO(mythria): Add tests with const declarations.
};
for (size_t i = 0; i < arraysize(eval_global); i++) {
InterpreterTester tester(isolate, eval_global[i].first, "*");
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*eval_global[i].second));
}
}
TEST(InterpreterEvalFunctionDecl) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::pair<const char*, Handle<Object>> eval_func_decl[] = {
{"function f() {\n"
" var x = 3;\n"
" eval('var x = 20;"
" function get_x() {return x;};');\n"
" return get_x() + x;\n"
"}",
handle(Smi::FromInt(40), isolate)},
};
for (size_t i = 0; i < arraysize(eval_func_decl); i++) {
InterpreterTester tester(isolate, eval_func_decl[i].first, "*");
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*eval_func_decl[i].second));
}
}
TEST(InterpreterWideRegisterArithmetic) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
static const size_t kMaxRegisterForTest = 150;
std::ostringstream os;
os << "function " << InterpreterTester::function_name() << "(arg) {\n";
os << " var retval = -77;\n";
for (size_t i = 0; i < kMaxRegisterForTest; i++) {
os << " var x" << i << " = " << i << ";\n";
}
for (size_t i = 0; i < kMaxRegisterForTest / 2; i++) {
size_t j = kMaxRegisterForTest - i - 1;
os << " var tmp = x" << j << ";\n";
os << " var x" << j << " = x" << i << ";\n";
os << " var x" << i << " = tmp;\n";
}
for (size_t i = 0; i < kMaxRegisterForTest / 2; i++) {
size_t j = kMaxRegisterForTest - i - 1;
os << " var tmp = x" << j << ";\n";
os << " var x" << j << " = x" << i << ";\n";
os << " var x" << i << " = tmp;\n";
}
for (size_t i = 0; i < kMaxRegisterForTest; i++) {
os << " if (arg == " << i << ") {\n" //
<< " retval = x" << i << ";\n" //
<< " }\n"; //
}
os << " return retval;\n";
os << "}\n";
std::string source = os.str();
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<Handle<Object>>();
for (size_t i = 0; i < kMaxRegisterForTest; i++) {
Handle<Object> arg = handle(Smi::FromInt(static_cast<int>(i)), isolate);
Handle<Object> return_value = callable(arg).ToHandleChecked();
CHECK(return_value->SameValue(*arg));
}
}
TEST(InterpreterCallWideRegisters) {
static const int kPeriod = 25;
static const int kLength = 512;
static const int kStartChar = 65;
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
for (int pass = 0; pass < 3; pass += 1) {
std::ostringstream os;
for (int i = 0; i < pass * 97; i += 1) {
os << "var x" << i << " = " << i << "\n";
}
os << "return String.fromCharCode(";
os << kStartChar;
for (int i = 1; i < kLength; i += 1) {
os << "," << kStartChar + (i % kPeriod);
}
os << ");";
std::string source = InterpreterTester::SourceForBody(os.str().c_str());
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable();
Handle<Object> return_val = callable().ToHandleChecked();
Handle<String> return_string = Handle<String>::cast(return_val);
CHECK_EQ(return_string->length(), kLength);
for (int i = 0; i < kLength; i += 1) {
CHECK_EQ(return_string->Get(i), 65 + (i % kPeriod));
}
}
}
TEST(InterpreterWideParametersPickOne) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
static const int kParameterCount = 130;
for (int parameter = 0; parameter < 10; parameter++) {
std::ostringstream os;
os << "function " << InterpreterTester::function_name() << "(arg) {\n";
os << " function selector(i";
for (int i = 0; i < kParameterCount; i++) {
os << ","
<< "a" << i;
}
os << ") {\n";
os << " return a" << parameter << ";\n";
os << " };\n";
os << " return selector(arg";
for (int i = 0; i < kParameterCount; i++) {
os << "," << i;
}
os << ");";
os << "}\n";
std::string source = os.str();
InterpreterTester tester(isolate, source.c_str(), "*");
auto callable = tester.GetCallable<Handle<Object>>();
Handle<Object> arg = handle(Smi::FromInt(0xAA55), isolate);
Handle<Object> return_value = callable(arg).ToHandleChecked();
Handle<Smi> actual = Handle<Smi>::cast(return_value);
CHECK_EQ(actual->value(), parameter);
}
}
TEST(InterpreterWideParametersSummation) {
static int kParameterCount = 200;
static int kBaseValue = 17000;
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::ostringstream os;
os << "function " << InterpreterTester::function_name() << "(arg) {\n";
os << " function summation(i";
for (int i = 0; i < kParameterCount; i++) {
os << ","
<< "a" << i;
}
os << ") {\n";
os << " var sum = " << kBaseValue << ";\n";
os << " switch(i) {\n";
for (int i = 0; i < kParameterCount; i++) {
int j = kParameterCount - i - 1;
os << " case " << j << ": sum += a" << j << ";\n";
}
os << " }\n";
os << " return sum;\n";
os << " };\n";
os << " return summation(arg";
for (int i = 0; i < kParameterCount; i++) {
os << "," << i;
}
os << ");";
os << "}\n";
std::string source = os.str();
InterpreterTester tester(isolate, source.c_str(), "*");
auto callable = tester.GetCallable<Handle<Object>>();
for (int i = 0; i < kParameterCount; i++) {
Handle<Object> arg = handle(Smi::FromInt(i), isolate);
Handle<Object> return_value = callable(arg).ToHandleChecked();
int expected = kBaseValue + i * (i + 1) / 2;
Handle<Smi> actual = Handle<Smi>::cast(return_value);
CHECK_EQ(actual->value(), expected);
}
}
TEST(InterpreterWithStatement) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::pair<const char*, Handle<Object>> with_stmt[] = {
{"with({x:42}) return x;", handle(Smi::FromInt(42), isolate)},
{"with({}) { var y = 10; return y;}", handle(Smi::FromInt(10), isolate)},
{"var y = {x:42};"
" function inner() {"
" var x = 20;"
" with(y) return x;"
"}"
"return inner();",
handle(Smi::FromInt(42), isolate)},
{"var y = {x:42};"
" function inner(o) {"
" var x = 20;"
" with(o) return x;"
"}"
"return inner(y);",
handle(Smi::FromInt(42), isolate)},
};
for (size_t i = 0; i < arraysize(with_stmt); i++) {
std::string source(InterpreterTester::SourceForBody(with_stmt[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*with_stmt[i].second));
}
}
TEST(InterpreterClassLiterals) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::pair<const char*, Handle<Object>> examples[] = {
{"class C {\n"
" constructor(x) { this.x_ = x; }\n"
" method() { return this.x_; }\n"
"}\n"
"return new C(99).method();",
handle(Smi::FromInt(99), isolate)},
{"class C {\n"
" constructor(x) { this.x_ = x; }\n"
" static static_method(x) { return x; }\n"
"}\n"
"return C.static_method(101);",
handle(Smi::FromInt(101), isolate)},
{"class C {\n"
" get x() { return 102; }\n"
"}\n"
"return new C().x",
handle(Smi::FromInt(102), isolate)},
{"class C {\n"
" static get x() { return 103; }\n"
"}\n"
"return C.x",
handle(Smi::FromInt(103), isolate)},
{"class C {\n"
" constructor() { this.x_ = 0; }"
" set x(value) { this.x_ = value; }\n"
" get x() { return this.x_; }\n"
"}\n"
"var c = new C();"
"c.x = 104;"
"return c.x;",
handle(Smi::FromInt(104), isolate)},
{"var x = 0;"
"class C {\n"
" static set x(value) { x = value; }\n"
" static get x() { return x; }\n"
"}\n"
"C.x = 105;"
"return C.x;",
handle(Smi::FromInt(105), isolate)},
{"var method = 'f';"
"class C {\n"
" [method]() { return 106; }\n"
"}\n"
"return new C().f();",
handle(Smi::FromInt(106), isolate)},
};
for (size_t i = 0; i < arraysize(examples); ++i) {
std::string source(InterpreterTester::SourceForBody(examples[i].first));
InterpreterTester tester(isolate, source.c_str(), "*");
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*examples[i].second));
}
}
TEST(InterpreterClassAndSuperClass) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::pair<const char*, Handle<Object>> examples[] = {
{"class A {\n"
" constructor(x) { this.x_ = x; }\n"
" method() { return this.x_; }\n"
"}\n"
"class B extends A {\n"
" constructor(x, y) { super(x); this.y_ = y; }\n"
" method() { return super.method() + 1; }\n"
"}\n"
"return new B(998, 0).method();\n",
handle(Smi::FromInt(999), isolate)},
{"class A {\n"
" constructor() { this.x_ = 2; this.y_ = 3; }\n"
"}\n"
"class B extends A {\n"
" constructor() { super(); }"
" method() { this.x_++; this.y_++; return this.x_ + this.y_; }\n"
"}\n"
"return new B().method();\n",
handle(Smi::FromInt(7), isolate)},
{"var calls = 0;\n"
"class B {}\n"
"B.prototype.x = 42;\n"
"class C extends B {\n"
" constructor() {\n"
" super();\n"
" calls++;\n"
" }\n"
"}\n"
"new C;\n"
"return calls;\n",
handle(Smi::FromInt(1), isolate)},
{"class A {\n"
" method() { return 1; }\n"
" get x() { return 2; }\n"
"}\n"
"class B extends A {\n"
" method() { return super.x === 2 ? super.method() : -1; }\n"
"}\n"
"return new B().method();\n",
handle(Smi::FromInt(1), isolate)},
{"var object = { setY(v) { super.y = v; }};\n"
"object.setY(10);\n"
"return object.y;\n",
handle(Smi::FromInt(10), isolate)},
};
for (size_t i = 0; i < arraysize(examples); ++i) {
std::string source(InterpreterTester::SourceForBody(examples[i].first));
InterpreterTester tester(isolate, source.c_str(), "*");
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*examples[i].second));
}
}
TEST(InterpreterConstDeclaration) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> const_decl[] = {
{"const x = 3; return x;", handle(Smi::FromInt(3), isolate)},
{"let x = 10; x = x + 20; return x;", handle(Smi::FromInt(30), isolate)},
{"let x = 10; x = 20; return x;", handle(Smi::FromInt(20), isolate)},
{"let x; x = 20; return x;", handle(Smi::FromInt(20), isolate)},
{"let x; return x;", factory->undefined_value()},
{"var x = 10; { let x = 30; } return x;",
handle(Smi::FromInt(10), isolate)},
{"let x = 10; { let x = 20; } return x;",
handle(Smi::FromInt(10), isolate)},
{"var x = 10; eval('let x = 20;'); return x;",
handle(Smi::FromInt(10), isolate)},
{"var x = 10; eval('const x = 20;'); return x;",
handle(Smi::FromInt(10), isolate)},
{"var x = 10; { const x = 20; } return x;",
handle(Smi::FromInt(10), isolate)},
{"var x = 10; { const x = 20; return x;} return -1;",
handle(Smi::FromInt(20), isolate)},
{"var a = 10;\n"
"for (var i = 0; i < 10; ++i) {\n"
" const x = i;\n" // const declarations are block scoped.
" a = a + x;\n"
"}\n"
"return a;\n",
handle(Smi::FromInt(55), isolate)},
};
// Tests for sloppy mode.
for (size_t i = 0; i < arraysize(const_decl); i++) {
std::string source(InterpreterTester::SourceForBody(const_decl[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*const_decl[i].second));
}
// Tests for strict mode.
for (size_t i = 0; i < arraysize(const_decl); i++) {
std::string strict_body =
"'use strict'; " + std::string(const_decl[i].first);
std::string source(InterpreterTester::SourceForBody(strict_body.c_str()));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*const_decl[i].second));
}
}
TEST(InterpreterConstDeclarationLookupSlots) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> const_decl[] = {
{"const x = 3; function f1() {return x;}; return x;",
handle(Smi::FromInt(3), isolate)},
{"let x = 10; x = x + 20; function f1() {return x;}; return x;",
handle(Smi::FromInt(30), isolate)},
{"let x; x = 20; function f1() {return x;}; return x;",
handle(Smi::FromInt(20), isolate)},
{"let x; function f1() {return x;}; return x;",
factory->undefined_value()},
};
// Tests for sloppy mode.
for (size_t i = 0; i < arraysize(const_decl); i++) {
std::string source(InterpreterTester::SourceForBody(const_decl[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*const_decl[i].second));
}
// Tests for strict mode.
for (size_t i = 0; i < arraysize(const_decl); i++) {
std::string strict_body =
"'use strict'; " + std::string(const_decl[i].first);
std::string source(InterpreterTester::SourceForBody(strict_body.c_str()));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*const_decl[i].second));
}
}
TEST(InterpreterConstInLookupContextChain) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
const char* prologue =
"function OuterMost() {\n"
" const outerConst = 10;\n"
" let outerLet = 20;\n"
" function Outer() {\n"
" function Inner() {\n"
" this.innerFunc = function() { ";
const char* epilogue =
" }\n"
" }\n"
" this.getInnerFunc ="
" function() {return new Inner().innerFunc;}\n"
" }\n"
" this.getOuterFunc ="
" function() {return new Outer().getInnerFunc();}"
"}\n"
"var f = new OuterMost().getOuterFunc();\n"
"f();\n";
std::pair<const char*, Handle<Object>> const_decl[] = {
{"return outerConst;", handle(Smi::FromInt(10), isolate)},
{"return outerLet;", handle(Smi::FromInt(20), isolate)},
{"outerLet = 30; return outerLet;", handle(Smi::FromInt(30), isolate)},
{"var outerLet = 40; return outerLet;",
handle(Smi::FromInt(40), isolate)},
{"var outerConst = 50; return outerConst;",
handle(Smi::FromInt(50), isolate)},
{"try { outerConst = 30 } catch(e) { return -1; }",
handle(Smi::FromInt(-1), isolate)}};
for (size_t i = 0; i < arraysize(const_decl); i++) {
std::string script = std::string(prologue) +
std::string(const_decl[i].first) +
std::string(epilogue);
InterpreterTester tester(isolate, script.c_str(), "*");
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*const_decl[i].second));
}
}
TEST(InterpreterIllegalConstDeclaration) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
std::pair<const char*, const char*> const_decl[] = {
{"const x = x = 10 + 3; return x;",
"Uncaught ReferenceError: Cannot access 'x' before initialization"},
{"const x = 10; x = 20; return x;",
"Uncaught TypeError: Assignment to constant variable."},
{"const x = 10; { x = 20; } return x;",
"Uncaught TypeError: Assignment to constant variable."},
{"const x = 10; eval('x = 20;'); return x;",
"Uncaught TypeError: Assignment to constant variable."},
{"let x = x + 10; return x;",
"Uncaught ReferenceError: Cannot access 'x' before initialization"},
{"'use strict'; (function f1() { f1 = 123; })() ",
"Uncaught TypeError: Assignment to constant variable."},
};
// Tests for sloppy mode.
for (size_t i = 0; i < arraysize(const_decl); i++) {
std::string source(InterpreterTester::SourceForBody(const_decl[i].first));
InterpreterTester tester(isolate, source.c_str());
v8::Local<v8::String> message = tester.CheckThrowsReturnMessage()->Get();
v8::Local<v8::String> expected_string = v8_str(const_decl[i].second);
CHECK(
message->Equals(CcTest::isolate()->GetCurrentContext(), expected_string)
.FromJust());
}
// Tests for strict mode.
for (size_t i = 0; i < arraysize(const_decl); i++) {
std::string strict_body =
"'use strict'; " + std::string(const_decl[i].first);
std::string source(InterpreterTester::SourceForBody(strict_body.c_str()));
InterpreterTester tester(isolate, source.c_str());
v8::Local<v8::String> message = tester.CheckThrowsReturnMessage()->Get();
v8::Local<v8::String> expected_string = v8_str(const_decl[i].second);
CHECK(
message->Equals(CcTest::isolate()->GetCurrentContext(), expected_string)
.FromJust());
}
}
TEST(InterpreterGenerators) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Factory* factory = isolate->factory();
std::pair<const char*, Handle<Object>> tests[] = {
{"function* f() { }; return f().next().value",
factory->undefined_value()},
{"function* f() { yield 42 }; return f().next().value",
factory->NewNumberFromInt(42)},
{"function* f() { for (let x of [42]) yield x}; return f().next().value",
factory->NewNumberFromInt(42)},
};
for (size_t i = 0; i < arraysize(tests); i++) {
std::string source(InterpreterTester::SourceForBody(tests[i].first));
InterpreterTester tester(isolate, source.c_str());
auto callable = tester.GetCallable<>();
Handle<i::Object> return_value = callable().ToHandleChecked();
CHECK(return_value->SameValue(*tests[i].second));
}
}
#ifndef V8_TARGET_ARCH_ARM
TEST(InterpreterWithNativeStack) {
i::FLAG_interpreted_frames_native_stack = true;
HandleAndZoneScope handles;
i::Isolate* isolate = handles.main_isolate();
const char* source_text =
"function testInterpreterWithNativeStack(a,b) { return a + b };";
i::Handle<i::Object> o = v8::Utils::OpenHandle(*v8_compile(source_text));
i::Handle<i::JSFunction> f = i::Handle<i::JSFunction>::cast(o);
CHECK(f->shared()->HasBytecodeArray());
i::Code code = f->shared()->GetCode();
i::Handle<i::Code> interpreter_entry_trampoline =
BUILTIN_CODE(isolate, InterpreterEntryTrampoline);
CHECK(code->IsCode());
CHECK(code->is_interpreter_trampoline_builtin());
CHECK_NE(code->address(), interpreter_entry_trampoline->address());
}
#endif // V8_TARGET_ARCH_ARM
TEST(InterpreterGetBytecodeHandler) {
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
Interpreter* interpreter = isolate->interpreter();
// Test that single-width bytecode handlers deserializer correctly.
Code wide_handler =
interpreter->GetBytecodeHandler(Bytecode::kWide, OperandScale::kSingle);
CHECK_EQ(wide_handler->builtin_index(), Builtins::kWideHandler);
Code add_handler =
interpreter->GetBytecodeHandler(Bytecode::kAdd, OperandScale::kSingle);
CHECK_EQ(add_handler->builtin_index(), Builtins::kAddHandler);
// Test that double-width bytecode handlers deserializer correctly, including
// an illegal bytecode handler since there is no Wide.Wide handler.
Code wide_wide_handler =
interpreter->GetBytecodeHandler(Bytecode::kWide, OperandScale::kDouble);
CHECK_EQ(wide_wide_handler->builtin_index(), Builtins::kIllegalHandler);
Code add_wide_handler =
interpreter->GetBytecodeHandler(Bytecode::kAdd, OperandScale::kDouble);
CHECK_EQ(add_wide_handler->builtin_index(), Builtins::kAddWideHandler);
}
TEST(InterpreterCollectSourcePositions) {
FLAG_enable_lazy_source_positions = true;
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
const char* source =
"(function () {\n"
" return 1;\n"
"})";
Handle<JSFunction> function = Handle<JSFunction>::cast(v8::Utils::OpenHandle(
*v8::Local<v8::Function>::Cast(CompileRun(source))));
Handle<SharedFunctionInfo> sfi = handle(function->shared(), isolate);
Handle<BytecodeArray> bytecode_array =
handle(sfi->GetBytecodeArray(), isolate);
CHECK(!bytecode_array->HasSourcePositionTable());
Compiler::CollectSourcePositions(isolate, sfi);
ByteArray source_position_table = bytecode_array->SourcePositionTable();
CHECK(bytecode_array->HasSourcePositionTable());
CHECK_GT(source_position_table->length(), 0);
}
TEST(InterpreterCollectSourcePositions_StackOverflow) {
FLAG_enable_lazy_source_positions = true;
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
const char* source =
"(function () {\n"
" return 1;\n"
"})";
Handle<JSFunction> function = Handle<JSFunction>::cast(v8::Utils::OpenHandle(
*v8::Local<v8::Function>::Cast(CompileRun(source))));
Handle<SharedFunctionInfo> sfi = handle(function->shared(), isolate);
Handle<BytecodeArray> bytecode_array =
handle(sfi->GetBytecodeArray(), isolate);
CHECK(!bytecode_array->HasSourcePositionTable());
// Make the stack limit the same as the current position so recompilation
// overflows.
uint64_t previous_limit = isolate->stack_guard()->real_climit();
isolate->stack_guard()->SetStackLimit(GetCurrentStackPosition());
Compiler::CollectSourcePositions(isolate, sfi);
// Stack overflowed so source position table can be returned but is empty.
ByteArray source_position_table = bytecode_array->SourcePositionTable();
CHECK(!bytecode_array->HasSourcePositionTable());
CHECK_EQ(source_position_table->length(), 0);
// Reset the stack limit and try again.
isolate->stack_guard()->SetStackLimit(previous_limit);
Compiler::CollectSourcePositions(isolate, sfi);
source_position_table = bytecode_array->SourcePositionTable();
CHECK(bytecode_array->HasSourcePositionTable());
CHECK_GT(source_position_table->length(), 0);
}
TEST(InterpreterCollectSourcePositions_ThrowFrom1stFrame) {
FLAG_enable_lazy_source_positions = true;
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
const char* source =
R"javascript(
(function () {
throw new Error();
});
)javascript";
Handle<JSFunction> function = Handle<JSFunction>::cast(v8::Utils::OpenHandle(
*v8::Local<v8::Function>::Cast(CompileRun(source))));
Handle<SharedFunctionInfo> sfi = handle(function->shared(), isolate);
// This is the bytecode for the top-level iife.
Handle<BytecodeArray> bytecode_array =
handle(sfi->GetBytecodeArray(), isolate);
CHECK(!bytecode_array->HasSourcePositionTable());
{
v8::TryCatch try_catch(CcTest::isolate());
MaybeHandle<Object> result = Execution::Call(
isolate, function, ReadOnlyRoots(isolate).undefined_value_handle(), 0,
nullptr);
CHECK(result.is_null());
CHECK(try_catch.HasCaught());
}
// The exception was caught but source positions were not retrieved from it so
// there should be no source position table.
CHECK(!bytecode_array->HasSourcePositionTable());
}
TEST(InterpreterCollectSourcePositions_ThrowFrom2ndFrame) {
FLAG_enable_lazy_source_positions = true;
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
const char* source =
R"javascript(
(function () {
(function () {
throw new Error();
})();
});
)javascript";
Handle<JSFunction> function = Handle<JSFunction>::cast(v8::Utils::OpenHandle(
*v8::Local<v8::Function>::Cast(CompileRun(source))));
Handle<SharedFunctionInfo> sfi = handle(function->shared(), isolate);
// This is the bytecode for the top-level iife.
Handle<BytecodeArray> bytecode_array =
handle(sfi->GetBytecodeArray(), isolate);
CHECK(!bytecode_array->HasSourcePositionTable());
{
v8::TryCatch try_catch(CcTest::isolate());
MaybeHandle<Object> result = Execution::Call(
isolate, function, ReadOnlyRoots(isolate).undefined_value_handle(), 0,
nullptr);
CHECK(result.is_null());
CHECK(try_catch.HasCaught());
}
// The exception was caught but source positions were not retrieved from it so
// there should be no source position table.
CHECK(!bytecode_array->HasSourcePositionTable());
}
namespace {
void CheckStringEqual(const char* expected_ptr, Handle<Object> actual_handle) {
v8::String::Utf8Value utf8(
v8::Isolate::GetCurrent(),
v8::Utils::ToLocal(Handle<String>::cast(actual_handle)));
std::string expected(expected_ptr);
std::string actual(*utf8);
CHECK_EQ(expected, actual);
}
} // namespace
TEST(InterpreterCollectSourcePositions_GenerateStackTrace) {
FLAG_enable_lazy_source_positions = true;
HandleAndZoneScope handles;
Isolate* isolate = handles.main_isolate();
const char* source =
R"javascript(
(function () {
try {
throw new Error();
} catch (e) {
return e.stack;
}
});
)javascript";
Handle<JSFunction> function = Handle<JSFunction>::cast(v8::Utils::OpenHandle(
*v8::Local<v8::Function>::Cast(CompileRun(source))));
Handle<SharedFunctionInfo> sfi = handle(function->shared(), isolate);
Handle<BytecodeArray> bytecode_array =
handle(sfi->GetBytecodeArray(), isolate);
CHECK(!bytecode_array->HasSourcePositionTable());
{
Handle<Object> result =
Execution::Call(isolate, function,
ReadOnlyRoots(isolate).undefined_value_handle(), 0,
nullptr)
.ToHandleChecked();
CheckStringEqual("Error\n at <anonymous>:4:17", result);
}
CHECK(bytecode_array->HasSourcePositionTable());
ByteArray source_position_table = bytecode_array->SourcePositionTable();
CHECK_GT(source_position_table->length(), 0);
}
} // namespace interpreter
} // namespace internal
} // namespace v8