v8/test/cctest/test-parsing.cc

2576 lines
80 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "v8.h"
#include "cctest.h"
#include "compiler.h"
#include "execution.h"
#include "isolate.h"
#include "objects.h"
#include "parser.h"
#include "preparser.h"
#include "scanner-character-streams.h"
#include "token.h"
#include "utils.h"
TEST(ScanKeywords) {
struct KeywordToken {
const char* keyword;
i::Token::Value token;
};
static const KeywordToken keywords[] = {
#define KEYWORD(t, s, d) { s, i::Token::t },
TOKEN_LIST(IGNORE_TOKEN, KEYWORD)
#undef KEYWORD
{ NULL, i::Token::IDENTIFIER }
};
KeywordToken key_token;
i::UnicodeCache unicode_cache;
i::byte buffer[32];
for (int i = 0; (key_token = keywords[i]).keyword != NULL; i++) {
const i::byte* keyword =
reinterpret_cast<const i::byte*>(key_token.keyword);
int length = i::StrLength(key_token.keyword);
CHECK(static_cast<int>(sizeof(buffer)) >= length);
{
i::Utf8ToUtf16CharacterStream stream(keyword, length);
i::Scanner scanner(&unicode_cache);
// The scanner should parse Harmony keywords for this test.
scanner.SetHarmonyScoping(true);
scanner.SetHarmonyModules(true);
scanner.Initialize(&stream);
CHECK_EQ(key_token.token, scanner.Next());
CHECK_EQ(i::Token::EOS, scanner.Next());
}
// Removing characters will make keyword matching fail.
{
i::Utf8ToUtf16CharacterStream stream(keyword, length - 1);
i::Scanner scanner(&unicode_cache);
scanner.Initialize(&stream);
CHECK_EQ(i::Token::IDENTIFIER, scanner.Next());
CHECK_EQ(i::Token::EOS, scanner.Next());
}
// Adding characters will make keyword matching fail.
static const char chars_to_append[] = { 'z', '0', '_' };
for (int j = 0; j < static_cast<int>(ARRAY_SIZE(chars_to_append)); ++j) {
i::OS::MemMove(buffer, keyword, length);
buffer[length] = chars_to_append[j];
i::Utf8ToUtf16CharacterStream stream(buffer, length + 1);
i::Scanner scanner(&unicode_cache);
scanner.Initialize(&stream);
CHECK_EQ(i::Token::IDENTIFIER, scanner.Next());
CHECK_EQ(i::Token::EOS, scanner.Next());
}
// Replacing characters will make keyword matching fail.
{
i::OS::MemMove(buffer, keyword, length);
buffer[length - 1] = '_';
i::Utf8ToUtf16CharacterStream stream(buffer, length);
i::Scanner scanner(&unicode_cache);
scanner.Initialize(&stream);
CHECK_EQ(i::Token::IDENTIFIER, scanner.Next());
CHECK_EQ(i::Token::EOS, scanner.Next());
}
}
}
TEST(ScanHTMLEndComments) {
v8::V8::Initialize();
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope handles(isolate);
// Regression test. See:
// http://code.google.com/p/chromium/issues/detail?id=53548
// Tests that --> is correctly interpreted as comment-to-end-of-line if there
// is only whitespace before it on the line (with comments considered as
// whitespace, even a multiline-comment containing a newline).
// This was not the case if it occurred before the first real token
// in the input.
const char* tests[] = {
// Before first real token.
"--> is eol-comment\nvar y = 37;\n",
"\n --> is eol-comment\nvar y = 37;\n",
"/* precomment */ --> is eol-comment\nvar y = 37;\n",
"\n/* precomment */ --> is eol-comment\nvar y = 37;\n",
// After first real token.
"var x = 42;\n--> is eol-comment\nvar y = 37;\n",
"var x = 42;\n/* precomment */ --> is eol-comment\nvar y = 37;\n",
NULL
};
const char* fail_tests[] = {
"x --> is eol-comment\nvar y = 37;\n",
"\"\\n\" --> is eol-comment\nvar y = 37;\n",
"x/* precomment */ --> is eol-comment\nvar y = 37;\n",
"x/* precomment\n */ --> is eol-comment\nvar y = 37;\n",
"var x = 42; --> is eol-comment\nvar y = 37;\n",
"var x = 42; /* precomment\n */ --> is eol-comment\nvar y = 37;\n",
NULL
};
// Parser/Scanner needs a stack limit.
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
uintptr_t stack_limit = CcTest::i_isolate()->stack_guard()->real_climit();
for (int i = 0; tests[i]; i++) {
const i::byte* source =
reinterpret_cast<const i::byte*>(tests[i]);
i::Utf8ToUtf16CharacterStream stream(source, i::StrLength(tests[i]));
i::CompleteParserRecorder log;
i::Scanner scanner(CcTest::i_isolate()->unicode_cache());
scanner.Initialize(&stream);
i::PreParser preparser(&scanner, &log, stack_limit);
preparser.set_allow_lazy(true);
i::PreParser::PreParseResult result = preparser.PreParseProgram();
CHECK_EQ(i::PreParser::kPreParseSuccess, result);
i::ScriptData data(log.ExtractData());
CHECK(!data.has_error());
}
for (int i = 0; fail_tests[i]; i++) {
const i::byte* source =
reinterpret_cast<const i::byte*>(fail_tests[i]);
i::Utf8ToUtf16CharacterStream stream(source, i::StrLength(fail_tests[i]));
i::CompleteParserRecorder log;
i::Scanner scanner(CcTest::i_isolate()->unicode_cache());
scanner.Initialize(&stream);
i::PreParser preparser(&scanner, &log, stack_limit);
preparser.set_allow_lazy(true);
i::PreParser::PreParseResult result = preparser.PreParseProgram();
// Even in the case of a syntax error, kPreParseSuccess is returned.
CHECK_EQ(i::PreParser::kPreParseSuccess, result);
i::ScriptData data(log.ExtractData());
CHECK(data.has_error());
}
}
class ScriptResource : public v8::String::ExternalAsciiStringResource {
public:
ScriptResource(const char* data, size_t length)
: data_(data), length_(length) { }
const char* data() const { return data_; }
size_t length() const { return length_; }
private:
const char* data_;
size_t length_;
};
TEST(UsingCachedData) {
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope handles(isolate);
v8::Local<v8::Context> context = v8::Context::New(isolate);
v8::Context::Scope context_scope(context);
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
// Source containing functions that might be lazily compiled and all types
// of symbols (string, propertyName, regexp).
const char* source =
"var x = 42;"
"function foo(a) { return function nolazy(b) { return a + b; } }"
"function bar(a) { if (a) return function lazy(b) { return b; } }"
"var z = {'string': 'string literal', bareword: 'propertyName', "
" 42: 'number literal', for: 'keyword as propertyName', "
" f\\u006fr: 'keyword propertyname with escape'};"
"var v = /RegExp Literal/;"
"var w = /RegExp Literal\\u0020With Escape/gin;"
"var y = { get getter() { return 42; }, "
" set setter(v) { this.value = v; }};";
int source_length = i::StrLength(source);
// ScriptResource will be deleted when the corresponding String is GCd.
v8::ScriptCompiler::Source script_source(v8::String::NewExternal(
isolate, new ScriptResource(source, source_length)));
i::FLAG_min_preparse_length = 0;
v8::ScriptCompiler::Compile(isolate, &script_source,
v8::ScriptCompiler::kProduceDataToCache);
CHECK(script_source.GetCachedData());
// Compile the script again, using the cached data.
bool lazy_flag = i::FLAG_lazy;
i::FLAG_lazy = true;
v8::ScriptCompiler::Compile(isolate, &script_source);
i::FLAG_lazy = false;
v8::ScriptCompiler::CompileUnbound(isolate, &script_source);
i::FLAG_lazy = lazy_flag;
}
TEST(PreparseFunctionDataIsUsed) {
// This tests that we actually do use the function data generated by the
// preparser.
// Make preparsing work for short scripts.
i::FLAG_min_preparse_length = 0;
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope handles(isolate);
v8::Local<v8::Context> context = v8::Context::New(isolate);
v8::Context::Scope context_scope(context);
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
const char* good_code =
"function this_is_lazy() { var a; } function foo() { return 25; } foo();";
// Insert a syntax error inside the lazy function.
const char* bad_code =
"function this_is_lazy() { if ( } function foo() { return 25; } foo();";
v8::ScriptCompiler::Source good_source(v8_str(good_code));
v8::ScriptCompiler::Compile(isolate, &good_source,
v8::ScriptCompiler::kProduceDataToCache);
const v8::ScriptCompiler::CachedData* cached_data =
good_source.GetCachedData();
CHECK(cached_data->data != NULL);
CHECK_GT(cached_data->length, 0);
// Now compile the erroneous code with the good preparse data. If the preparse
// data is used, the lazy function is skipped and it should compile fine.
v8::ScriptCompiler::Source bad_source(
v8_str(bad_code), new v8::ScriptCompiler::CachedData(
cached_data->data, cached_data->length));
v8::Local<v8::Value> result =
v8::ScriptCompiler::Compile(isolate, &bad_source)->Run();
CHECK(result->IsInt32());
CHECK_EQ(25, result->Int32Value());
}
TEST(PreparseSymbolDataIsUsed) {
// This tests that we actually do use the symbol data generated by the
// preparser.
// Only do one compilation pass in this test (otherwise we will parse the
// source code again without preparse data and it will fail).
i::FLAG_crankshaft = false;
// Make preparsing work for short scripts.
i::FLAG_min_preparse_length = 0;
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope handles(isolate);
v8::Local<v8::Context> context = v8::Context::New(isolate);
v8::Context::Scope context_scope(context);
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
// Note that the ( before function makes the function not lazily compiled.
const char* good_code =
"(function weird() { var foo = 26; return foo; })()";
// Insert an undefined identifier. If the preparser data is used, the symbol
// stream is used instead, and this identifier resolves to "foo".
const char* bad_code =
"(function weird() { var foo = 26; return wut; })()";
v8::ScriptCompiler::Source good_source(v8_str(good_code));
v8::ScriptCompiler::Compile(isolate, &good_source,
v8::ScriptCompiler::kProduceDataToCache);
const v8::ScriptCompiler::CachedData* cached_data =
good_source.GetCachedData();
CHECK(cached_data->data != NULL);
CHECK_GT(cached_data->length, 0);
// Now compile the erroneous code with the good preparse data. If the preparse
// data is used, we will see a second occurrence of "foo" instead of the
// unknown "wut".
v8::ScriptCompiler::Source bad_source(
v8_str(bad_code), new v8::ScriptCompiler::CachedData(
cached_data->data, cached_data->length));
v8::Local<v8::Value> result =
v8::ScriptCompiler::Compile(isolate, &bad_source)->Run();
CHECK(result->IsInt32());
CHECK_EQ(26, result->Int32Value());
}
TEST(StandAlonePreParser) {
v8::V8::Initialize();
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
const char* programs[] = {
"{label: 42}",
"var x = 42;",
"function foo(x, y) { return x + y; }",
"%ArgleBargle(glop);",
"var x = new new Function('this.x = 42');",
NULL
};
uintptr_t stack_limit = CcTest::i_isolate()->stack_guard()->real_climit();
for (int i = 0; programs[i]; i++) {
const char* program = programs[i];
i::Utf8ToUtf16CharacterStream stream(
reinterpret_cast<const i::byte*>(program),
static_cast<unsigned>(strlen(program)));
i::CompleteParserRecorder log;
i::Scanner scanner(CcTest::i_isolate()->unicode_cache());
scanner.Initialize(&stream);
i::PreParser preparser(&scanner, &log, stack_limit);
preparser.set_allow_lazy(true);
preparser.set_allow_natives_syntax(true);
i::PreParser::PreParseResult result = preparser.PreParseProgram();
CHECK_EQ(i::PreParser::kPreParseSuccess, result);
i::ScriptData data(log.ExtractData());
CHECK(!data.has_error());
}
}
TEST(StandAlonePreParserNoNatives) {
v8::V8::Initialize();
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
const char* programs[] = {
"%ArgleBargle(glop);",
"var x = %_IsSmi(42);",
NULL
};
uintptr_t stack_limit = CcTest::i_isolate()->stack_guard()->real_climit();
for (int i = 0; programs[i]; i++) {
const char* program = programs[i];
i::Utf8ToUtf16CharacterStream stream(
reinterpret_cast<const i::byte*>(program),
static_cast<unsigned>(strlen(program)));
i::CompleteParserRecorder log;
i::Scanner scanner(CcTest::i_isolate()->unicode_cache());
scanner.Initialize(&stream);
// Preparser defaults to disallowing natives syntax.
i::PreParser preparser(&scanner, &log, stack_limit);
preparser.set_allow_lazy(true);
i::PreParser::PreParseResult result = preparser.PreParseProgram();
CHECK_EQ(i::PreParser::kPreParseSuccess, result);
i::ScriptData data(log.ExtractData());
// Data contains syntax error.
CHECK(data.has_error());
}
}
TEST(PreparsingObjectLiterals) {
// Regression test for a bug where the symbol stream produced by PreParser
// didn't match what Parser wanted to consume.
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope handles(isolate);
v8::Local<v8::Context> context = v8::Context::New(isolate);
v8::Context::Scope context_scope(context);
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
{
const char* source = "var myo = {if: \"foo\"}; myo.if;";
v8::Local<v8::Value> result = PreCompileCompileRun(source);
CHECK(result->IsString());
v8::String::Utf8Value utf8(result);
CHECK_EQ("foo", *utf8);
}
{
const char* source = "var myo = {\"bar\": \"foo\"}; myo[\"bar\"];";
v8::Local<v8::Value> result = PreCompileCompileRun(source);
CHECK(result->IsString());
v8::String::Utf8Value utf8(result);
CHECK_EQ("foo", *utf8);
}
{
const char* source = "var myo = {1: \"foo\"}; myo[1];";
v8::Local<v8::Value> result = PreCompileCompileRun(source);
CHECK(result->IsString());
v8::String::Utf8Value utf8(result);
CHECK_EQ("foo", *utf8);
}
}
namespace v8 {
namespace internal {
struct CompleteParserRecorderFriend {
static void FakeWritingSymbolIdInPreParseData(CompleteParserRecorder* log,
int number) {
log->WriteNumber(number);
if (log->symbol_id_ < number + 1) {
log->symbol_id_ = number + 1;
}
}
};
}
}
TEST(StoringNumbersInPreParseData) {
// Symbol IDs are split into chunks of 7 bits for storing. This is a
// regression test for a bug where a symbol id was incorrectly stored if some
// of the chunks in the middle were all zeros.
typedef i::CompleteParserRecorderFriend F;
i::CompleteParserRecorder log;
for (int i = 0; i < 18; ++i) {
F::FakeWritingSymbolIdInPreParseData(&log, 1 << i);
}
for (int i = 1; i < 18; ++i) {
F::FakeWritingSymbolIdInPreParseData(&log, (1 << i) + 1);
}
for (int i = 6; i < 18; ++i) {
F::FakeWritingSymbolIdInPreParseData(&log, (3 << i) + (5 << (i - 6)));
}
i::Vector<unsigned> store = log.ExtractData();
i::ScriptData script_data(store);
script_data.Initialize();
// Check that we get the same symbols back.
for (int i = 0; i < 18; ++i) {
CHECK_EQ(1 << i, script_data.GetSymbolIdentifier());
}
for (int i = 1; i < 18; ++i) {
CHECK_EQ((1 << i) + 1, script_data.GetSymbolIdentifier());
}
for (int i = 6; i < 18; ++i) {
CHECK_EQ((3 << i) + (5 << (i - 6)), script_data.GetSymbolIdentifier());
}
}
TEST(RegressChromium62639) {
v8::V8::Initialize();
i::Isolate* isolate = CcTest::i_isolate();
int marker;
isolate->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
const char* program = "var x = 'something';\n"
"escape: function() {}";
// Fails parsing expecting an identifier after "function".
// Before fix, didn't check *ok after Expect(Token::Identifier, ok),
// and then used the invalid currently scanned literal. This always
// failed in debug mode, and sometimes crashed in release mode.
i::Utf8ToUtf16CharacterStream stream(
reinterpret_cast<const i::byte*>(program),
static_cast<unsigned>(strlen(program)));
i::CompleteParserRecorder log;
i::Scanner scanner(CcTest::i_isolate()->unicode_cache());
scanner.Initialize(&stream);
i::PreParser preparser(&scanner, &log,
CcTest::i_isolate()->stack_guard()->real_climit());
preparser.set_allow_lazy(true);
i::PreParser::PreParseResult result = preparser.PreParseProgram();
// Even in the case of a syntax error, kPreParseSuccess is returned.
CHECK_EQ(i::PreParser::kPreParseSuccess, result);
i::ScriptData data(log.ExtractData());
CHECK(data.has_error());
}
TEST(Regress928) {
v8::V8::Initialize();
i::Isolate* isolate = CcTest::i_isolate();
i::Factory* factory = isolate->factory();
// Preparsing didn't consider the catch clause of a try statement
// as with-content, which made it assume that a function inside
// the block could be lazily compiled, and an extra, unexpected,
// entry was added to the data.
int marker;
isolate->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
const char* program =
"try { } catch (e) { var foo = function () { /* first */ } }"
"var bar = function () { /* second */ }";
v8::HandleScope handles(CcTest::isolate());
i::Handle<i::String> source = factory->NewStringFromAsciiChecked(program);
i::GenericStringUtf16CharacterStream stream(source, 0, source->length());
i::CompleteParserRecorder log;
i::Scanner scanner(CcTest::i_isolate()->unicode_cache());
scanner.Initialize(&stream);
i::PreParser preparser(&scanner, &log,
CcTest::i_isolate()->stack_guard()->real_climit());
preparser.set_allow_lazy(true);
i::PreParser::PreParseResult result = preparser.PreParseProgram();
CHECK_EQ(i::PreParser::kPreParseSuccess, result);
i::ScriptData data(log.ExtractData());
CHECK(!data.has_error());
data.Initialize();
int first_function =
static_cast<int>(strstr(program, "function") - program);
int first_lbrace = first_function + i::StrLength("function () ");
CHECK_EQ('{', program[first_lbrace]);
i::FunctionEntry entry1 = data.GetFunctionEntry(first_lbrace);
CHECK(!entry1.is_valid());
int second_function =
static_cast<int>(strstr(program + first_lbrace, "function") - program);
int second_lbrace =
second_function + i::StrLength("function () ");
CHECK_EQ('{', program[second_lbrace]);
i::FunctionEntry entry2 = data.GetFunctionEntry(second_lbrace);
CHECK(entry2.is_valid());
CHECK_EQ('}', program[entry2.end_pos() - 1]);
}
TEST(PreParseOverflow) {
v8::V8::Initialize();
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
size_t kProgramSize = 1024 * 1024;
i::SmartArrayPointer<char> program(i::NewArray<char>(kProgramSize + 1));
memset(program.get(), '(', kProgramSize);
program[kProgramSize] = '\0';
uintptr_t stack_limit = CcTest::i_isolate()->stack_guard()->real_climit();
i::Utf8ToUtf16CharacterStream stream(
reinterpret_cast<const i::byte*>(program.get()),
static_cast<unsigned>(kProgramSize));
i::CompleteParserRecorder log;
i::Scanner scanner(CcTest::i_isolate()->unicode_cache());
scanner.Initialize(&stream);
i::PreParser preparser(&scanner, &log, stack_limit);
preparser.set_allow_lazy(true);
i::PreParser::PreParseResult result = preparser.PreParseProgram();
CHECK_EQ(i::PreParser::kPreParseStackOverflow, result);
}
class TestExternalResource: public v8::String::ExternalStringResource {
public:
explicit TestExternalResource(uint16_t* data, int length)
: data_(data), length_(static_cast<size_t>(length)) { }
~TestExternalResource() { }
const uint16_t* data() const {
return data_;
}
size_t length() const {
return length_;
}
private:
uint16_t* data_;
size_t length_;
};
#define CHECK_EQU(v1, v2) CHECK_EQ(static_cast<int>(v1), static_cast<int>(v2))
void TestCharacterStream(const char* ascii_source,
unsigned length,
unsigned start = 0,
unsigned end = 0) {
if (end == 0) end = length;
unsigned sub_length = end - start;
i::Isolate* isolate = CcTest::i_isolate();
i::Factory* factory = isolate->factory();
i::HandleScope test_scope(isolate);
i::SmartArrayPointer<i::uc16> uc16_buffer(new i::uc16[length]);
for (unsigned i = 0; i < length; i++) {
uc16_buffer[i] = static_cast<i::uc16>(ascii_source[i]);
}
i::Vector<const char> ascii_vector(ascii_source, static_cast<int>(length));
i::Handle<i::String> ascii_string =
factory->NewStringFromAscii(ascii_vector).ToHandleChecked();
TestExternalResource resource(uc16_buffer.get(), length);
i::Handle<i::String> uc16_string(
factory->NewExternalStringFromTwoByte(&resource).ToHandleChecked());
i::ExternalTwoByteStringUtf16CharacterStream uc16_stream(
i::Handle<i::ExternalTwoByteString>::cast(uc16_string), start, end);
i::GenericStringUtf16CharacterStream string_stream(ascii_string, start, end);
i::Utf8ToUtf16CharacterStream utf8_stream(
reinterpret_cast<const i::byte*>(ascii_source), end);
utf8_stream.SeekForward(start);
unsigned i = start;
while (i < end) {
// Read streams one char at a time
CHECK_EQU(i, uc16_stream.pos());
CHECK_EQU(i, string_stream.pos());
CHECK_EQU(i, utf8_stream.pos());
int32_t c0 = ascii_source[i];
int32_t c1 = uc16_stream.Advance();
int32_t c2 = string_stream.Advance();
int32_t c3 = utf8_stream.Advance();
i++;
CHECK_EQ(c0, c1);
CHECK_EQ(c0, c2);
CHECK_EQ(c0, c3);
CHECK_EQU(i, uc16_stream.pos());
CHECK_EQU(i, string_stream.pos());
CHECK_EQU(i, utf8_stream.pos());
}
while (i > start + sub_length / 4) {
// Pushback, re-read, pushback again.
int32_t c0 = ascii_source[i - 1];
CHECK_EQU(i, uc16_stream.pos());
CHECK_EQU(i, string_stream.pos());
CHECK_EQU(i, utf8_stream.pos());
uc16_stream.PushBack(c0);
string_stream.PushBack(c0);
utf8_stream.PushBack(c0);
i--;
CHECK_EQU(i, uc16_stream.pos());
CHECK_EQU(i, string_stream.pos());
CHECK_EQU(i, utf8_stream.pos());
int32_t c1 = uc16_stream.Advance();
int32_t c2 = string_stream.Advance();
int32_t c3 = utf8_stream.Advance();
i++;
CHECK_EQU(i, uc16_stream.pos());
CHECK_EQU(i, string_stream.pos());
CHECK_EQU(i, utf8_stream.pos());
CHECK_EQ(c0, c1);
CHECK_EQ(c0, c2);
CHECK_EQ(c0, c3);
uc16_stream.PushBack(c0);
string_stream.PushBack(c0);
utf8_stream.PushBack(c0);
i--;
CHECK_EQU(i, uc16_stream.pos());
CHECK_EQU(i, string_stream.pos());
CHECK_EQU(i, utf8_stream.pos());
}
unsigned halfway = start + sub_length / 2;
uc16_stream.SeekForward(halfway - i);
string_stream.SeekForward(halfway - i);
utf8_stream.SeekForward(halfway - i);
i = halfway;
CHECK_EQU(i, uc16_stream.pos());
CHECK_EQU(i, string_stream.pos());
CHECK_EQU(i, utf8_stream.pos());
while (i < end) {
// Read streams one char at a time
CHECK_EQU(i, uc16_stream.pos());
CHECK_EQU(i, string_stream.pos());
CHECK_EQU(i, utf8_stream.pos());
int32_t c0 = ascii_source[i];
int32_t c1 = uc16_stream.Advance();
int32_t c2 = string_stream.Advance();
int32_t c3 = utf8_stream.Advance();
i++;
CHECK_EQ(c0, c1);
CHECK_EQ(c0, c2);
CHECK_EQ(c0, c3);
CHECK_EQU(i, uc16_stream.pos());
CHECK_EQU(i, string_stream.pos());
CHECK_EQU(i, utf8_stream.pos());
}
int32_t c1 = uc16_stream.Advance();
int32_t c2 = string_stream.Advance();
int32_t c3 = utf8_stream.Advance();
CHECK_LT(c1, 0);
CHECK_LT(c2, 0);
CHECK_LT(c3, 0);
}
TEST(CharacterStreams) {
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope handles(isolate);
v8::Local<v8::Context> context = v8::Context::New(isolate);
v8::Context::Scope context_scope(context);
TestCharacterStream("abc\0\n\r\x7f", 7);
static const unsigned kBigStringSize = 4096;
char buffer[kBigStringSize + 1];
for (unsigned i = 0; i < kBigStringSize; i++) {
buffer[i] = static_cast<char>(i & 0x7f);
}
TestCharacterStream(buffer, kBigStringSize);
TestCharacterStream(buffer, kBigStringSize, 576, 3298);
TestCharacterStream("\0", 1);
TestCharacterStream("", 0);
}
TEST(Utf8CharacterStream) {
static const unsigned kMaxUC16CharU = unibrow::Utf8::kMaxThreeByteChar;
static const int kMaxUC16Char = static_cast<int>(kMaxUC16CharU);
static const int kAllUtf8CharsSize =
(unibrow::Utf8::kMaxOneByteChar + 1) +
(unibrow::Utf8::kMaxTwoByteChar - unibrow::Utf8::kMaxOneByteChar) * 2 +
(unibrow::Utf8::kMaxThreeByteChar - unibrow::Utf8::kMaxTwoByteChar) * 3;
static const unsigned kAllUtf8CharsSizeU =
static_cast<unsigned>(kAllUtf8CharsSize);
char buffer[kAllUtf8CharsSizeU];
unsigned cursor = 0;
for (int i = 0; i <= kMaxUC16Char; i++) {
cursor += unibrow::Utf8::Encode(buffer + cursor,
i,
unibrow::Utf16::kNoPreviousCharacter);
}
ASSERT(cursor == kAllUtf8CharsSizeU);
i::Utf8ToUtf16CharacterStream stream(reinterpret_cast<const i::byte*>(buffer),
kAllUtf8CharsSizeU);
for (int i = 0; i <= kMaxUC16Char; i++) {
CHECK_EQU(i, stream.pos());
int32_t c = stream.Advance();
CHECK_EQ(i, c);
CHECK_EQU(i + 1, stream.pos());
}
for (int i = kMaxUC16Char; i >= 0; i--) {
CHECK_EQU(i + 1, stream.pos());
stream.PushBack(i);
CHECK_EQU(i, stream.pos());
}
int i = 0;
while (stream.pos() < kMaxUC16CharU) {
CHECK_EQU(i, stream.pos());
unsigned progress = stream.SeekForward(12);
i += progress;
int32_t c = stream.Advance();
if (i <= kMaxUC16Char) {
CHECK_EQ(i, c);
} else {
CHECK_EQ(-1, c);
}
i += 1;
CHECK_EQU(i, stream.pos());
}
}
#undef CHECK_EQU
void TestStreamScanner(i::Utf16CharacterStream* stream,
i::Token::Value* expected_tokens,
int skip_pos = 0, // Zero means not skipping.
int skip_to = 0) {
i::Scanner scanner(CcTest::i_isolate()->unicode_cache());
scanner.Initialize(stream);
int i = 0;
do {
i::Token::Value expected = expected_tokens[i];
i::Token::Value actual = scanner.Next();
CHECK_EQ(i::Token::String(expected), i::Token::String(actual));
if (scanner.location().end_pos == skip_pos) {
scanner.SeekForward(skip_to);
}
i++;
} while (expected_tokens[i] != i::Token::ILLEGAL);
}
TEST(StreamScanner) {
v8::V8::Initialize();
const char* str1 = "{ foo get for : */ <- \n\n /*foo*/ bib";
i::Utf8ToUtf16CharacterStream stream1(reinterpret_cast<const i::byte*>(str1),
static_cast<unsigned>(strlen(str1)));
i::Token::Value expectations1[] = {
i::Token::LBRACE,
i::Token::IDENTIFIER,
i::Token::IDENTIFIER,
i::Token::FOR,
i::Token::COLON,
i::Token::MUL,
i::Token::DIV,
i::Token::LT,
i::Token::SUB,
i::Token::IDENTIFIER,
i::Token::EOS,
i::Token::ILLEGAL
};
TestStreamScanner(&stream1, expectations1, 0, 0);
const char* str2 = "case default const {THIS\nPART\nSKIPPED} do";
i::Utf8ToUtf16CharacterStream stream2(reinterpret_cast<const i::byte*>(str2),
static_cast<unsigned>(strlen(str2)));
i::Token::Value expectations2[] = {
i::Token::CASE,
i::Token::DEFAULT,
i::Token::CONST,
i::Token::LBRACE,
// Skipped part here
i::Token::RBRACE,
i::Token::DO,
i::Token::EOS,
i::Token::ILLEGAL
};
ASSERT_EQ('{', str2[19]);
ASSERT_EQ('}', str2[37]);
TestStreamScanner(&stream2, expectations2, 20, 37);
const char* str3 = "{}}}}";
i::Token::Value expectations3[] = {
i::Token::LBRACE,
i::Token::RBRACE,
i::Token::RBRACE,
i::Token::RBRACE,
i::Token::RBRACE,
i::Token::EOS,
i::Token::ILLEGAL
};
// Skip zero-four RBRACEs.
for (int i = 0; i <= 4; i++) {
expectations3[6 - i] = i::Token::ILLEGAL;
expectations3[5 - i] = i::Token::EOS;
i::Utf8ToUtf16CharacterStream stream3(
reinterpret_cast<const i::byte*>(str3),
static_cast<unsigned>(strlen(str3)));
TestStreamScanner(&stream3, expectations3, 1, 1 + i);
}
}
void TestScanRegExp(const char* re_source, const char* expected) {
i::Utf8ToUtf16CharacterStream stream(
reinterpret_cast<const i::byte*>(re_source),
static_cast<unsigned>(strlen(re_source)));
i::HandleScope scope(CcTest::i_isolate());
i::Scanner scanner(CcTest::i_isolate()->unicode_cache());
scanner.Initialize(&stream);
i::Token::Value start = scanner.peek();
CHECK(start == i::Token::DIV || start == i::Token::ASSIGN_DIV);
CHECK(scanner.ScanRegExpPattern(start == i::Token::ASSIGN_DIV));
scanner.Next(); // Current token is now the regexp literal.
i::Handle<i::String> val =
scanner.AllocateInternalizedString(CcTest::i_isolate());
i::DisallowHeapAllocation no_alloc;
i::String::FlatContent content = val->GetFlatContent();
CHECK(content.IsAscii());
i::Vector<const uint8_t> actual = content.ToOneByteVector();
for (int i = 0; i < actual.length(); i++) {
CHECK_NE('\0', expected[i]);
CHECK_EQ(expected[i], actual[i]);
}
}
TEST(RegExpScanning) {
v8::V8::Initialize();
// RegExp token with added garbage at the end. The scanner should only
// scan the RegExp until the terminating slash just before "flipperwald".
TestScanRegExp("/b/flipperwald", "b");
// Incomplete escape sequences doesn't hide the terminating slash.
TestScanRegExp("/\\x/flipperwald", "\\x");
TestScanRegExp("/\\u/flipperwald", "\\u");
TestScanRegExp("/\\u1/flipperwald", "\\u1");
TestScanRegExp("/\\u12/flipperwald", "\\u12");
TestScanRegExp("/\\u123/flipperwald", "\\u123");
TestScanRegExp("/\\c/flipperwald", "\\c");
TestScanRegExp("/\\c//flipperwald", "\\c");
// Slashes inside character classes are not terminating.
TestScanRegExp("/[/]/flipperwald", "[/]");
TestScanRegExp("/[\\s-/]/flipperwald", "[\\s-/]");
// Incomplete escape sequences inside a character class doesn't hide
// the end of the character class.
TestScanRegExp("/[\\c/]/flipperwald", "[\\c/]");
TestScanRegExp("/[\\c]/flipperwald", "[\\c]");
TestScanRegExp("/[\\x]/flipperwald", "[\\x]");
TestScanRegExp("/[\\x1]/flipperwald", "[\\x1]");
TestScanRegExp("/[\\u]/flipperwald", "[\\u]");
TestScanRegExp("/[\\u1]/flipperwald", "[\\u1]");
TestScanRegExp("/[\\u12]/flipperwald", "[\\u12]");
TestScanRegExp("/[\\u123]/flipperwald", "[\\u123]");
// Escaped ']'s wont end the character class.
TestScanRegExp("/[\\]/]/flipperwald", "[\\]/]");
// Escaped slashes are not terminating.
TestScanRegExp("/\\//flipperwald", "\\/");
// Starting with '=' works too.
TestScanRegExp("/=/", "=");
TestScanRegExp("/=?/", "=?");
}
static int Utf8LengthHelper(const char* s) {
int len = i::StrLength(s);
int character_length = len;
for (int i = 0; i < len; i++) {
unsigned char c = s[i];
int input_offset = 0;
int output_adjust = 0;
if (c > 0x7f) {
if (c < 0xc0) continue;
if (c >= 0xf0) {
if (c >= 0xf8) {
// 5 and 6 byte UTF-8 sequences turn into a kBadChar for each UTF-8
// byte.
continue; // Handle first UTF-8 byte.
}
if ((c & 7) == 0 && ((s[i + 1] & 0x30) == 0)) {
// This 4 byte sequence could have been coded as a 3 byte sequence.
// Record a single kBadChar for the first byte and continue.
continue;
}
input_offset = 3;
// 4 bytes of UTF-8 turn into 2 UTF-16 code units.
character_length -= 2;
} else if (c >= 0xe0) {
if ((c & 0xf) == 0 && ((s[i + 1] & 0x20) == 0)) {
// This 3 byte sequence could have been coded as a 2 byte sequence.
// Record a single kBadChar for the first byte and continue.
continue;
}
input_offset = 2;
// 3 bytes of UTF-8 turn into 1 UTF-16 code unit.
output_adjust = 2;
} else {
if ((c & 0x1e) == 0) {
// This 2 byte sequence could have been coded as a 1 byte sequence.
// Record a single kBadChar for the first byte and continue.
continue;
}
input_offset = 1;
// 2 bytes of UTF-8 turn into 1 UTF-16 code unit.
output_adjust = 1;
}
bool bad = false;
for (int j = 1; j <= input_offset; j++) {
if ((s[i + j] & 0xc0) != 0x80) {
// Bad UTF-8 sequence turns the first in the sequence into kBadChar,
// which is a single UTF-16 code unit.
bad = true;
break;
}
}
if (!bad) {
i += input_offset;
character_length -= output_adjust;
}
}
}
return character_length;
}
TEST(ScopePositions) {
v8::internal::FLAG_harmony_scoping = true;
// Test the parser for correctly setting the start and end positions
// of a scope. We check the scope positions of exactly one scope
// nested in the global scope of a program. 'inner source' is the
// source code that determines the part of the source belonging
// to the nested scope. 'outer_prefix' and 'outer_suffix' are
// parts of the source that belong to the global scope.
struct SourceData {
const char* outer_prefix;
const char* inner_source;
const char* outer_suffix;
i::ScopeType scope_type;
i::StrictMode strict_mode;
};
const SourceData source_data[] = {
{ " with ({}) ", "{ block; }", " more;", i::WITH_SCOPE, i::SLOPPY },
{ " with ({}) ", "{ block; }", "; more;", i::WITH_SCOPE, i::SLOPPY },
{ " with ({}) ", "{\n"
" block;\n"
" }", "\n"
" more;", i::WITH_SCOPE, i::SLOPPY },
{ " with ({}) ", "statement;", " more;", i::WITH_SCOPE, i::SLOPPY },
{ " with ({}) ", "statement", "\n"
" more;", i::WITH_SCOPE, i::SLOPPY },
{ " with ({})\n"
" ", "statement;", "\n"
" more;", i::WITH_SCOPE, i::SLOPPY },
{ " try {} catch ", "(e) { block; }", " more;",
i::CATCH_SCOPE, i::SLOPPY },
{ " try {} catch ", "(e) { block; }", "; more;",
i::CATCH_SCOPE, i::SLOPPY },
{ " try {} catch ", "(e) {\n"
" block;\n"
" }", "\n"
" more;", i::CATCH_SCOPE, i::SLOPPY },
{ " try {} catch ", "(e) { block; }", " finally { block; } more;",
i::CATCH_SCOPE, i::SLOPPY },
{ " start;\n"
" ", "{ let block; }", " more;", i::BLOCK_SCOPE, i::STRICT },
{ " start;\n"
" ", "{ let block; }", "; more;", i::BLOCK_SCOPE, i::STRICT },
{ " start;\n"
" ", "{\n"
" let block;\n"
" }", "\n"
" more;", i::BLOCK_SCOPE, i::STRICT },
{ " start;\n"
" function fun", "(a,b) { infunction; }", " more;",
i::FUNCTION_SCOPE, i::SLOPPY },
{ " start;\n"
" function fun", "(a,b) {\n"
" infunction;\n"
" }", "\n"
" more;", i::FUNCTION_SCOPE, i::SLOPPY },
{ " (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
{ " for ", "(let x = 1 ; x < 10; ++ x) { block; }", " more;",
i::BLOCK_SCOPE, i::STRICT },
{ " for ", "(let x = 1 ; x < 10; ++ x) { block; }", "; more;",
i::BLOCK_SCOPE, i::STRICT },
{ " for ", "(let x = 1 ; x < 10; ++ x) {\n"
" block;\n"
" }", "\n"
" more;", i::BLOCK_SCOPE, i::STRICT },
{ " for ", "(let x = 1 ; x < 10; ++ x) statement;", " more;",
i::BLOCK_SCOPE, i::STRICT },
{ " for ", "(let x = 1 ; x < 10; ++ x) statement", "\n"
" more;", i::BLOCK_SCOPE, i::STRICT },
{ " for ", "(let x = 1 ; x < 10; ++ x)\n"
" statement;", "\n"
" more;", i::BLOCK_SCOPE, i::STRICT },
{ " for ", "(let x in {}) { block; }", " more;",
i::BLOCK_SCOPE, i::STRICT },
{ " for ", "(let x in {}) { block; }", "; more;",
i::BLOCK_SCOPE, i::STRICT },
{ " for ", "(let x in {}) {\n"
" block;\n"
" }", "\n"
" more;", i::BLOCK_SCOPE, i::STRICT },
{ " for ", "(let x in {}) statement;", " more;",
i::BLOCK_SCOPE, i::STRICT },
{ " for ", "(let x in {}) statement", "\n"
" more;", i::BLOCK_SCOPE, i::STRICT },
{ " for ", "(let x in {})\n"
" statement;", "\n"
" more;", i::BLOCK_SCOPE, i::STRICT },
// Check that 6-byte and 4-byte encodings of UTF-8 strings do not throw
// the preparser off in terms of byte offsets.
// 6 byte encoding.
{ " 'foo\355\240\201\355\260\211';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// 4 byte encoding.
{ " 'foo\360\220\220\212';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// 3 byte encoding of \u0fff.
{ " 'foo\340\277\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Broken 6 byte encoding with missing last byte.
{ " 'foo\355\240\201\355\211';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Broken 3 byte encoding of \u0fff with missing last byte.
{ " 'foo\340\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Broken 3 byte encoding of \u0fff with missing 2 last bytes.
{ " 'foo\340';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Broken 3 byte encoding of \u00ff should be a 2 byte encoding.
{ " 'foo\340\203\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Broken 3 byte encoding of \u007f should be a 2 byte encoding.
{ " 'foo\340\201\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Unpaired lead surrogate.
{ " 'foo\355\240\201';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Unpaired lead surrogate where following code point is a 3 byte sequence.
{ " 'foo\355\240\201\340\277\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Unpaired lead surrogate where following code point is a 4 byte encoding
// of a trail surrogate.
{ " 'foo\355\240\201\360\215\260\211';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Unpaired trail surrogate.
{ " 'foo\355\260\211';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// 2 byte encoding of \u00ff.
{ " 'foo\303\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Broken 2 byte encoding of \u00ff with missing last byte.
{ " 'foo\303';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Broken 2 byte encoding of \u007f should be a 1 byte encoding.
{ " 'foo\301\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Illegal 5 byte encoding.
{ " 'foo\370\277\277\277\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Illegal 6 byte encoding.
{ " 'foo\374\277\277\277\277\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Illegal 0xfe byte
{ " 'foo\376\277\277\277\277\277\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Illegal 0xff byte
{ " 'foo\377\277\277\277\277\277\277\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
{ " 'foo';\n"
" (function fun", "(a,b) { 'bar\355\240\201\355\260\213'; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
{ " 'foo';\n"
" (function fun", "(a,b) { 'bar\360\220\220\214'; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
{ NULL, NULL, NULL, i::EVAL_SCOPE, i::SLOPPY }
};
i::Isolate* isolate = CcTest::i_isolate();
i::Factory* factory = isolate->factory();
v8::HandleScope handles(CcTest::isolate());
v8::Handle<v8::Context> context = v8::Context::New(CcTest::isolate());
v8::Context::Scope context_scope(context);
int marker;
isolate->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
for (int i = 0; source_data[i].outer_prefix; i++) {
int kPrefixLen = Utf8LengthHelper(source_data[i].outer_prefix);
int kInnerLen = Utf8LengthHelper(source_data[i].inner_source);
int kSuffixLen = Utf8LengthHelper(source_data[i].outer_suffix);
int kPrefixByteLen = i::StrLength(source_data[i].outer_prefix);
int kInnerByteLen = i::StrLength(source_data[i].inner_source);
int kSuffixByteLen = i::StrLength(source_data[i].outer_suffix);
int kProgramSize = kPrefixLen + kInnerLen + kSuffixLen;
int kProgramByteSize = kPrefixByteLen + kInnerByteLen + kSuffixByteLen;
i::ScopedVector<char> program(kProgramByteSize + 1);
i::OS::SNPrintF(program, "%s%s%s",
source_data[i].outer_prefix,
source_data[i].inner_source,
source_data[i].outer_suffix);
// Parse program source.
i::Handle<i::String> source = factory->NewStringFromUtf8(
i::CStrVector(program.start())).ToHandleChecked();
CHECK_EQ(source->length(), kProgramSize);
i::Handle<i::Script> script = factory->NewScript(source);
i::CompilationInfoWithZone info(script);
i::Parser parser(&info);
parser.set_allow_lazy(true);
parser.set_allow_harmony_scoping(true);
info.MarkAsGlobal();
info.SetStrictMode(source_data[i].strict_mode);
parser.Parse();
CHECK(info.function() != NULL);
// Check scope types and positions.
i::Scope* scope = info.function()->scope();
CHECK(scope->is_global_scope());
CHECK_EQ(scope->start_position(), 0);
CHECK_EQ(scope->end_position(), kProgramSize);
CHECK_EQ(scope->inner_scopes()->length(), 1);
i::Scope* inner_scope = scope->inner_scopes()->at(0);
CHECK_EQ(inner_scope->scope_type(), source_data[i].scope_type);
CHECK_EQ(inner_scope->start_position(), kPrefixLen);
// The end position of a token is one position after the last
// character belonging to that token.
CHECK_EQ(inner_scope->end_position(), kPrefixLen + kInnerLen);
}
}
i::Handle<i::String> FormatMessage(i::ScriptData* data) {
i::Isolate* isolate = CcTest::i_isolate();
i::Factory* factory = isolate->factory();
const char* message = data->BuildMessage();
i::Handle<i::String> format = v8::Utils::OpenHandle(
*v8::String::NewFromUtf8(CcTest::isolate(), message));
i::Vector<const char*> args = data->BuildArgs();
i::Handle<i::JSArray> args_array = factory->NewJSArray(args.length());
for (int i = 0; i < args.length(); i++) {
i::JSArray::SetElement(
args_array, i, v8::Utils::OpenHandle(*v8::String::NewFromUtf8(
CcTest::isolate(), args[i])),
NONE, i::SLOPPY).Check();
}
i::Handle<i::JSObject> builtins(isolate->js_builtins_object());
i::Handle<i::Object> format_fun = i::Object::GetProperty(
isolate, builtins, "FormatMessage").ToHandleChecked();
i::Handle<i::Object> arg_handles[] = { format, args_array };
i::Handle<i::Object> result = i::Execution::Call(
isolate, format_fun, builtins, 2, arg_handles).ToHandleChecked();
CHECK(result->IsString());
for (int i = 0; i < args.length(); i++) {
i::DeleteArray(args[i]);
}
i::DeleteArray(args.start());
i::DeleteArray(message);
return i::Handle<i::String>::cast(result);
}
enum ParserFlag {
kAllowLazy,
kAllowNativesSyntax,
kAllowHarmonyScoping,
kAllowModules,
kAllowGenerators,
kAllowForOf,
kAllowHarmonyNumericLiterals
};
enum ParserSyncTestResult {
kSuccessOrError,
kSuccess,
kError
};
template <typename Traits>
void SetParserFlags(i::ParserBase<Traits>* parser,
i::EnumSet<ParserFlag> flags) {
parser->set_allow_lazy(flags.Contains(kAllowLazy));
parser->set_allow_natives_syntax(flags.Contains(kAllowNativesSyntax));
parser->set_allow_harmony_scoping(flags.Contains(kAllowHarmonyScoping));
parser->set_allow_modules(flags.Contains(kAllowModules));
parser->set_allow_generators(flags.Contains(kAllowGenerators));
parser->set_allow_for_of(flags.Contains(kAllowForOf));
parser->set_allow_harmony_numeric_literals(
flags.Contains(kAllowHarmonyNumericLiterals));
}
void TestParserSyncWithFlags(i::Handle<i::String> source,
i::EnumSet<ParserFlag> flags,
ParserSyncTestResult result) {
i::Isolate* isolate = CcTest::i_isolate();
i::Factory* factory = isolate->factory();
uintptr_t stack_limit = isolate->stack_guard()->real_climit();
// Preparse the data.
i::CompleteParserRecorder log;
{
i::Scanner scanner(isolate->unicode_cache());
i::GenericStringUtf16CharacterStream stream(source, 0, source->length());
i::PreParser preparser(&scanner, &log, stack_limit);
SetParserFlags(&preparser, flags);
scanner.Initialize(&stream);
i::PreParser::PreParseResult result = preparser.PreParseProgram();
CHECK_EQ(i::PreParser::kPreParseSuccess, result);
}
i::ScriptData data(log.ExtractData());
// Parse the data
i::FunctionLiteral* function;
{
i::Handle<i::Script> script = factory->NewScript(source);
i::CompilationInfoWithZone info(script);
i::Parser parser(&info);
SetParserFlags(&parser, flags);
info.MarkAsGlobal();
parser.Parse();
function = info.function();
}
// Check that preparsing fails iff parsing fails.
if (function == NULL) {
// Extract exception from the parser.
CHECK(isolate->has_pending_exception());
i::Handle<i::JSObject> exception_handle(
i::JSObject::cast(isolate->pending_exception()));
i::Handle<i::String> message_string =
i::Handle<i::String>::cast(i::Object::GetProperty(
isolate, exception_handle, "message").ToHandleChecked());
if (result == kSuccess) {
i::OS::Print(
"Parser failed on:\n"
"\t%s\n"
"with error:\n"
"\t%s\n"
"However, we expected no error.",
source->ToCString().get(), message_string->ToCString().get());
CHECK(false);
}
if (!data.has_error()) {
i::OS::Print(
"Parser failed on:\n"
"\t%s\n"
"with error:\n"
"\t%s\n"
"However, the preparser succeeded",
source->ToCString().get(), message_string->ToCString().get());
CHECK(false);
}
// Check that preparser and parser produce the same error.
i::Handle<i::String> preparser_message = FormatMessage(&data);
if (!i::String::Equals(message_string, preparser_message)) {
i::OS::Print(
"Expected parser and preparser to produce the same error on:\n"
"\t%s\n"
"However, found the following error messages\n"
"\tparser: %s\n"
"\tpreparser: %s\n",
source->ToCString().get(),
message_string->ToCString().get(),
preparser_message->ToCString().get());
CHECK(false);
}
} else if (data.has_error()) {
i::OS::Print(
"Preparser failed on:\n"
"\t%s\n"
"with error:\n"
"\t%s\n"
"However, the parser succeeded",
source->ToCString().get(), FormatMessage(&data)->ToCString().get());
CHECK(false);
} else if (result == kError) {
i::OS::Print(
"Expected error on:\n"
"\t%s\n"
"However, parser and preparser succeeded",
source->ToCString().get());
CHECK(false);
}
}
void TestParserSync(const char* source,
const ParserFlag* flag_list,
size_t flag_list_length,
ParserSyncTestResult result = kSuccessOrError) {
i::Handle<i::String> str =
CcTest::i_isolate()->factory()->NewStringFromAsciiChecked(source);
for (int bits = 0; bits < (1 << flag_list_length); bits++) {
i::EnumSet<ParserFlag> flags;
for (size_t flag_index = 0; flag_index < flag_list_length; flag_index++) {
if ((bits & (1 << flag_index)) != 0) flags.Add(flag_list[flag_index]);
}
TestParserSyncWithFlags(str, flags, result);
}
}
TEST(ParserSync) {
const char* context_data[][2] = {
{ "", "" },
{ "{", "}" },
{ "if (true) ", " else {}" },
{ "if (true) {} else ", "" },
{ "if (true) ", "" },
{ "do ", " while (false)" },
{ "while (false) ", "" },
{ "for (;;) ", "" },
{ "with ({})", "" },
{ "switch (12) { case 12: ", "}" },
{ "switch (12) { default: ", "}" },
{ "switch (12) { ", "case 12: }" },
{ "label2: ", "" },
{ NULL, NULL }
};
const char* statement_data[] = {
"{}",
"var x",
"var x = 1",
"const x",
"const x = 1",
";",
"12",
"if (false) {} else ;",
"if (false) {} else {}",
"if (false) {} else 12",
"if (false) ;"
"if (false) {}",
"if (false) 12",
"do {} while (false)",
"for (;;) ;",
"for (;;) {}",
"for (;;) 12",
"continue",
"continue label",
"continue\nlabel",
"break",
"break label",
"break\nlabel",
// TODO(marja): activate once parsing 'return' is merged into ParserBase.
// "return",
// "return 12",
// "return\n12",
"with ({}) ;",
"with ({}) {}",
"with ({}) 12",
"switch ({}) { default: }"
"label3: "
"throw",
"throw 12",
"throw\n12",
"try {} catch(e) {}",
"try {} finally {}",
"try {} catch(e) {} finally {}",
"debugger",
NULL
};
const char* termination_data[] = {
"",
";",
"\n",
";\n",
"\n;",
NULL
};
v8::HandleScope handles(CcTest::isolate());
v8::Handle<v8::Context> context = v8::Context::New(CcTest::isolate());
v8::Context::Scope context_scope(context);
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
static const ParserFlag flags1[] = {
kAllowLazy, kAllowHarmonyScoping, kAllowModules, kAllowGenerators,
kAllowForOf
};
for (int i = 0; context_data[i][0] != NULL; ++i) {
for (int j = 0; statement_data[j] != NULL; ++j) {
for (int k = 0; termination_data[k] != NULL; ++k) {
int kPrefixLen = i::StrLength(context_data[i][0]);
int kStatementLen = i::StrLength(statement_data[j]);
int kTerminationLen = i::StrLength(termination_data[k]);
int kSuffixLen = i::StrLength(context_data[i][1]);
int kProgramSize = kPrefixLen + kStatementLen + kTerminationLen
+ kSuffixLen + i::StrLength("label: for (;;) { }");
// Plug the source code pieces together.
i::ScopedVector<char> program(kProgramSize + 1);
int length = i::OS::SNPrintF(program,
"label: for (;;) { %s%s%s%s }",
context_data[i][0],
statement_data[j],
termination_data[k],
context_data[i][1]);
CHECK(length == kProgramSize);
TestParserSync(program.start(), flags1, ARRAY_SIZE(flags1));
}
}
}
// Neither Harmony numeric literals nor our natives syntax have any
// interaction with the flags above, so test these separately to reduce
// the combinatorial explosion.
static const ParserFlag flags2[] = { kAllowHarmonyNumericLiterals };
TestParserSync("0o1234", flags2, ARRAY_SIZE(flags2));
TestParserSync("0b1011", flags2, ARRAY_SIZE(flags2));
static const ParserFlag flags3[] = { kAllowNativesSyntax };
TestParserSync("%DebugPrint(123)", flags3, ARRAY_SIZE(flags3));
}
TEST(StrictOctal) {
// Test that syntax error caused by octal literal is reported correctly as
// such (issue 2220).
v8::V8::Initialize();
v8::HandleScope scope(CcTest::isolate());
v8::Context::Scope context_scope(
v8::Context::New(CcTest::isolate()));
v8::TryCatch try_catch;
const char* script =
"\"use strict\"; \n"
"a = function() { \n"
" b = function() { \n"
" 01; \n"
" }; \n"
"}; \n";
v8::Script::Compile(v8::String::NewFromUtf8(CcTest::isolate(), script));
CHECK(try_catch.HasCaught());
v8::String::Utf8Value exception(try_catch.Exception());
CHECK_EQ("SyntaxError: Octal literals are not allowed in strict mode.",
*exception);
}
void RunParserSyncTest(const char* context_data[][2],
const char* statement_data[],
ParserSyncTestResult result,
const ParserFlag* flags = NULL,
int flags_len = 0) {
v8::HandleScope handles(CcTest::isolate());
v8::Handle<v8::Context> context = v8::Context::New(CcTest::isolate());
v8::Context::Scope context_scope(context);
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
static const ParserFlag default_flags[] = {
kAllowLazy, kAllowHarmonyScoping, kAllowModules, kAllowGenerators,
kAllowForOf, kAllowNativesSyntax
};
if (!flags) {
flags = default_flags;
flags_len = ARRAY_SIZE(default_flags);
}
for (int i = 0; context_data[i][0] != NULL; ++i) {
for (int j = 0; statement_data[j] != NULL; ++j) {
int kPrefixLen = i::StrLength(context_data[i][0]);
int kStatementLen = i::StrLength(statement_data[j]);
int kSuffixLen = i::StrLength(context_data[i][1]);
int kProgramSize = kPrefixLen + kStatementLen + kSuffixLen;
// Plug the source code pieces together.
i::ScopedVector<char> program(kProgramSize + 1);
int length = i::OS::SNPrintF(program,
"%s%s%s",
context_data[i][0],
statement_data[j],
context_data[i][1]);
CHECK(length == kProgramSize);
TestParserSync(program.start(),
flags,
flags_len,
result);
}
}
}
TEST(ErrorsEvalAndArguments) {
// Tests that both preparsing and parsing produce the right kind of errors for
// using "eval" and "arguments" as identifiers. Without the strict mode, it's
// ok to use "eval" or "arguments" as identifiers. With the strict mode, it
// isn't.
const char* context_data[][2] = {
{ "\"use strict\";", "" },
{ "var eval; function test_func() {\"use strict\"; ", "}"},
{ NULL, NULL }
};
const char* statement_data[] = {
"var eval;",
"var arguments",
"var foo, eval;",
"var foo, arguments;",
"try { } catch (eval) { }",
"try { } catch (arguments) { }",
"function eval() { }",
"function arguments() { }",
"function foo(eval) { }",
"function foo(arguments) { }",
"function foo(bar, eval) { }",
"function foo(bar, arguments) { }",
"eval = 1;",
"arguments = 1;",
"var foo = eval = 1;",
"var foo = arguments = 1;",
"++eval;",
"++arguments;",
"eval++;",
"arguments++;",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsEvalAndArgumentsSloppy) {
// Tests that both preparsing and parsing accept "eval" and "arguments" as
// identifiers when needed.
const char* context_data[][2] = {
{ "", "" },
{ "function test_func() {", "}"},
{ NULL, NULL }
};
const char* statement_data[] = {
"var eval;",
"var arguments",
"var foo, eval;",
"var foo, arguments;",
"try { } catch (eval) { }",
"try { } catch (arguments) { }",
"function eval() { }",
"function arguments() { }",
"function foo(eval) { }",
"function foo(arguments) { }",
"function foo(bar, eval) { }",
"function foo(bar, arguments) { }",
"eval = 1;",
"arguments = 1;",
"var foo = eval = 1;",
"var foo = arguments = 1;",
"++eval;",
"++arguments;",
"eval++;",
"arguments++;",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(NoErrorsEvalAndArgumentsStrict) {
const char* context_data[][2] = {
{ "\"use strict\";", "" },
{ "function test_func() { \"use strict\";", "}" },
{ NULL, NULL }
};
const char* statement_data[] = {
"eval;",
"arguments;",
"var foo = eval;",
"var foo = arguments;",
"var foo = { eval: 1 };",
"var foo = { arguments: 1 };",
"var foo = { }; foo.eval = {};",
"var foo = { }; foo.arguments = {};",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(ErrorsFutureStrictReservedWords) {
// Tests that both preparsing and parsing produce the right kind of errors for
// using future strict reserved words as identifiers. Without the strict mode,
// it's ok to use future strict reserved words as identifiers. With the strict
// mode, it isn't.
const char* context_data[][2] = {
{ "\"use strict\";", "" },
{ "function test_func() {\"use strict\"; ", "}"},
{ NULL, NULL }
};
const char* statement_data[] = {
"var interface;",
"var foo, interface;",
"try { } catch (interface) { }",
"function interface() { }",
"function foo(interface) { }",
"function foo(bar, interface) { }",
"interface = 1;",
"var foo = interface = 1;",
"++interface;",
"interface++;",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsFutureStrictReservedWords) {
const char* context_data[][2] = {
{ "", "" },
{ "function test_func() {", "}"},
{ NULL, NULL }
};
const char* statement_data[] = {
"var interface;",
"var foo, interface;",
"try { } catch (interface) { }",
"function interface() { }",
"function foo(interface) { }",
"function foo(bar, interface) { }",
"interface = 1;",
"var foo = interface = 1;",
"++interface;",
"interface++;",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(ErrorsReservedWords) {
// Tests that both preparsing and parsing produce the right kind of errors for
// using future reserved words as identifiers. These tests don't depend on the
// strict mode.
const char* context_data[][2] = {
{ "", "" },
{ "\"use strict\";", "" },
{ "var eval; function test_func() {", "}"},
{ "var eval; function test_func() {\"use strict\"; ", "}"},
{ NULL, NULL }
};
const char* statement_data[] = {
"var super;",
"var foo, super;",
"try { } catch (super) { }",
"function super() { }",
"function foo(super) { }",
"function foo(bar, super) { }",
"super = 1;",
"var foo = super = 1;",
"++super;",
"super++;",
"function foo super",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsYieldSloppy) {
// In sloppy mode, it's okay to use "yield" as identifier, *except* inside a
// generator (see next test).
const char* context_data[][2] = {
{ "", "" },
{ "function is_not_gen() {", "}" },
{ NULL, NULL }
};
const char* statement_data[] = {
"var yield;",
"var foo, yield;",
"try { } catch (yield) { }",
"function yield() { }",
"function foo(yield) { }",
"function foo(bar, yield) { }",
"yield = 1;",
"var foo = yield = 1;",
"++yield;",
"yield++;",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(ErrorsYieldSloppyGenerator) {
const char* context_data[][2] = {
{ "function * is_gen() {", "}" },
{ NULL, NULL }
};
const char* statement_data[] = {
"var yield;",
"var foo, yield;",
"try { } catch (yield) { }",
"function yield() { }",
// BUG: These should not be allowed, but they are (if kAllowGenerators is
// set)
// "function foo(yield) { }",
// "function foo(bar, yield) { }",
"yield = 1;",
"var foo = yield = 1;",
"++yield;",
"yield++;",
NULL
};
// If generators are not allowed, the error will be produced at the '*' token,
// so this test works both with and without the kAllowGenerators flag.
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(ErrorsYieldStrict) {
const char* context_data[][2] = {
{ "\"use strict\";", "" },
{ "\"use strict\"; function is_not_gen() {", "}" },
{ "function test_func() {\"use strict\"; ", "}"},
{ NULL, NULL }
};
const char* statement_data[] = {
"var yield;",
"var foo, yield;",
"try { } catch (yield) { }",
"function yield() { }",
"function foo(yield) { }",
"function foo(bar, yield) { }",
"yield = 1;",
"var foo = yield = 1;",
"++yield;",
"yield++;",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(ErrorsYield) {
const char* context_data[][2] = {
{ "function * is_gen() {", "}" },
{ NULL, NULL }
};
const char* statement_data[] = {
"yield 2;", // this is legal inside generator
"yield * 2;", // this is legal inside generator
NULL
};
// Here we cannot assert that there is no error, since there will be without
// the kAllowGenerators flag. However, we test that Parser and PreParser
// produce the same errors.
RunParserSyncTest(context_data, statement_data, kSuccessOrError);
}
TEST(ErrorsNameOfStrictFunction) {
// Tests that illegal tokens as names of a strict function produce the correct
// errors.
const char* context_data[][2] = {
{ "", ""},
{ "\"use strict\";", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"function eval() {\"use strict\";}",
"function arguments() {\"use strict\";}",
"function interface() {\"use strict\";}",
"function yield() {\"use strict\";}",
// Future reserved words are always illegal
"function super() { }",
"function super() {\"use strict\";}",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsNameOfStrictFunction) {
const char* context_data[][2] = {
{ "", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"function eval() { }",
"function arguments() { }",
"function interface() { }",
"function yield() { }",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(ErrorsIllegalWordsAsLabelsSloppy) {
// Using future reserved words as labels is always an error.
const char* context_data[][2] = {
{ "", ""},
{ "function test_func() {", "}" },
{ NULL, NULL }
};
const char* statement_data[] = {
"super: while(true) { break super; }",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(ErrorsIllegalWordsAsLabelsStrict) {
// Tests that illegal tokens as labels produce the correct errors.
const char* context_data[][2] = {
{ "\"use strict\";", "" },
{ "function test_func() {\"use strict\"; ", "}"},
{ NULL, NULL }
};
const char* statement_data[] = {
"super: while(true) { break super; }",
"interface: while(true) { break interface; }",
"yield: while(true) { break yield; }",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsIllegalWordsAsLabels) {
// Using eval and arguments as labels is legal even in strict mode.
const char* context_data[][2] = {
{ "", ""},
{ "function test_func() {", "}" },
{ "\"use strict\";", "" },
{ "\"use strict\"; function test_func() {", "}" },
{ NULL, NULL }
};
const char* statement_data[] = {
"mylabel: while(true) { break mylabel; }",
"eval: while(true) { break eval; }",
"arguments: while(true) { break arguments; }",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(ErrorsParenthesizedLabels) {
// Parenthesized identifiers shouldn't be recognized as labels.
const char* context_data[][2] = {
{ "", ""},
{ "function test_func() {", "}" },
{ NULL, NULL }
};
const char* statement_data[] = {
"(mylabel): while(true) { break mylabel; }",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsParenthesizedDirectivePrologue) {
// Parenthesized directive prologue shouldn't be recognized.
const char* context_data[][2] = {
{ "", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"(\"use strict\"); var eval;",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(ErrorsNotAnIdentifierName) {
const char* context_data[][2] = {
{ "", ""},
{ "\"use strict\";", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"var foo = {}; foo.{;",
"var foo = {}; foo.};",
"var foo = {}; foo.=;",
"var foo = {}; foo.888;",
"var foo = {}; foo.-;",
"var foo = {}; foo.--;",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsIdentifierNames) {
// Keywords etc. are valid as property names.
const char* context_data[][2] = {
{ "", ""},
{ "\"use strict\";", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"var foo = {}; foo.if;",
"var foo = {}; foo.yield;",
"var foo = {}; foo.super;",
"var foo = {}; foo.interface;",
"var foo = {}; foo.eval;",
"var foo = {}; foo.arguments;",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(DontRegressPreParserDataSizes) {
// These tests make sure that Parser doesn't start producing less "preparse
// data" (data which the embedder can cache).
v8::V8::Initialize();
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope handles(isolate);
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
struct TestCase {
const char* program;
int symbols;
int functions;
} test_cases[] = {
// Labels and variables are recorded as symbols.
{"{label: 42}", 1, 0}, {"{label: 42; label2: 43}", 2, 0},
{"var x = 42;", 1, 0}, {"var x = 42, y = 43;", 2, 0},
{"var x = {y: 1};", 2, 0},
{"var x = {}; x.y = 1", 2, 0},
// "get" is recorded as a symbol too.
{"var x = {get foo(){} };", 3, 1},
// When keywords are used as identifiers, they're logged as symbols, too:
{"var x = {if: 1};", 2, 0},
{"var x = {}; x.if = 1", 2, 0},
{"var x = {get if(){} };", 3, 1},
// Functions
{"function foo() {}", 1, 1}, {"function foo() {} function bar() {}", 2, 2},
// Labels, variables and functions insize lazy functions are not recorded.
{"function lazy() { var a, b, c; }", 1, 1},
{"function lazy() { a: 1; b: 2; c: 3; }", 1, 1},
{"function lazy() { function a() {} function b() {} function c() {} }", 1,
1},
{NULL, 0, 0}
};
for (int i = 0; test_cases[i].program; i++) {
const char* program = test_cases[i].program;
i::Factory* factory = CcTest::i_isolate()->factory();
i::Handle<i::String> source =
factory->NewStringFromUtf8(i::CStrVector(program)).ToHandleChecked();
i::Handle<i::Script> script = factory->NewScript(source);
i::CompilationInfoWithZone info(script);
i::ScriptData* data = NULL;
info.SetCachedData(&data, i::PRODUCE_CACHED_DATA);
i::Parser::Parse(&info, true);
CHECK(data);
CHECK(!data->HasError());
if (data->symbol_count() != test_cases[i].symbols) {
i::OS::Print(
"Expected preparse data for program:\n"
"\t%s\n"
"to contain %d symbols, however, received %d symbols.\n",
program, test_cases[i].symbols, data->symbol_count());
CHECK(false);
}
if (data->function_count() != test_cases[i].functions) {
i::OS::Print(
"Expected preparse data for program:\n"
"\t%s\n"
"to contain %d functions, however, received %d functions.\n",
program, test_cases[i].functions,
data->function_count());
CHECK(false);
}
}
}
TEST(FunctionDeclaresItselfStrict) {
// Tests that we produce the right kinds of errors when a function declares
// itself strict (we cannot produce there errors as soon as we see the
// offending identifiers, because we don't know at that point whether the
// function is strict or not).
const char* context_data[][2] = {
{"function eval() {", "}"},
{"function arguments() {", "}"},
{"function yield() {", "}"},
{"function interface() {", "}"},
{"function foo(eval) {", "}"},
{"function foo(arguments) {", "}"},
{"function foo(yield) {", "}"},
{"function foo(interface) {", "}"},
{"function foo(bar, eval) {", "}"},
{"function foo(bar, arguments) {", "}"},
{"function foo(bar, yield) {", "}"},
{"function foo(bar, interface) {", "}"},
{"function foo(bar, bar) {", "}"},
{ NULL, NULL }
};
const char* strict_statement_data[] = {
"\"use strict\";",
NULL
};
const char* non_strict_statement_data[] = {
";",
NULL
};
RunParserSyncTest(context_data, strict_statement_data, kError);
RunParserSyncTest(context_data, non_strict_statement_data, kSuccess);
}
TEST(ErrorsTryWithoutCatchOrFinally) {
const char* context_data[][2] = {
{"", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"try { }",
"try { } foo();",
"try { } catch (e) foo();",
"try { } catch { }",
"try { } finally foo();",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsTryCatchFinally) {
const char* context_data[][2] = {
{"", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"try { } catch (e) { }",
"try { } catch (e) { } finally { }",
"try { } finally { }",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(ErrorsRegexpLiteral) {
const char* context_data[][2] = {
{"var r = ", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"/unterminated",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsRegexpLiteral) {
const char* context_data[][2] = {
{"var r = ", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"/foo/",
"/foo/g",
"/foo/whatever", // This is an error but not detected by the parser.
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(Intrinsics) {
const char* context_data[][2] = {
{"", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"%someintrinsic(arg)",
NULL
};
// Parsing will fail or succeed depending on whether we allow natives syntax
// or not.
RunParserSyncTest(context_data, statement_data, kSuccessOrError);
}
TEST(NoErrorsNewExpression) {
const char* context_data[][2] = {
{"", ""},
{"var f =", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"new foo",
"new foo();",
"new foo(1);",
"new foo(1, 2);",
// The first () will be processed as a part of the NewExpression and the
// second () will be processed as part of LeftHandSideExpression.
"new foo()();",
// The first () will be processed as a part of the inner NewExpression and
// the second () will be processed as a part of the outer NewExpression.
"new new foo()();",
"new foo.bar;",
"new foo.bar();",
"new foo.bar.baz;",
"new foo.bar().baz;",
"new foo[bar];",
"new foo[bar]();",
"new foo[bar][baz];",
"new foo[bar]()[baz];",
"new foo[bar].baz(baz)()[bar].baz;",
"new \"foo\"", // Runtime error
"new 1", // Runtime error
// This even runs:
"(new new Function(\"this.x = 1\")).x;",
"new new Test_Two(String, 2).v(0123).length;",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(ErrorsNewExpression) {
const char* context_data[][2] = {
{"", ""},
{"var f =", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"new foo bar",
"new ) foo",
"new ++foo",
"new foo ++",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(StrictObjectLiteralChecking) {
const char* strict_context_data[][2] = {
{"\"use strict\"; var myobject = {", "};"},
{ NULL, NULL }
};
const char* non_strict_context_data[][2] = {
{"var myobject = {", "};"},
{ NULL, NULL }
};
// These are only errors in strict mode.
const char* statement_data[] = {
"foo: 1, foo: 2",
"\"foo\": 1, \"foo\": 2",
"foo: 1, \"foo\": 2",
"1: 1, 1: 2",
"1: 1, \"1\": 2",
"get: 1, get: 2", // Not a getter for real, just a property called get.
"set: 1, set: 2", // Not a setter for real, just a property called set.
NULL
};
RunParserSyncTest(non_strict_context_data, statement_data, kSuccess);
RunParserSyncTest(strict_context_data, statement_data, kError);
}
TEST(ErrorsObjectLiteralChecking) {
const char* context_data[][2] = {
{"\"use strict\"; var myobject = {", "};"},
{"var myobject = {", "};"},
{ NULL, NULL }
};
const char* statement_data[] = {
"foo: 1, get foo() {}",
"foo: 1, set foo() {}",
"\"foo\": 1, get \"foo\"() {}",
"\"foo\": 1, set \"foo\"() {}",
"1: 1, get 1() {}",
"1: 1, set 1() {}",
// It's counter-intuitive, but these collide too (even in classic
// mode). Note that we can have "foo" and foo as properties in classic mode,
// but we cannot have "foo" and get foo, or foo and get "foo".
"foo: 1, get \"foo\"() {}",
"foo: 1, set \"foo\"() {}",
"\"foo\": 1, get foo() {}",
"\"foo\": 1, set foo() {}",
"1: 1, get \"1\"() {}",
"1: 1, set \"1\"() {}",
"\"1\": 1, get 1() {}"
"\"1\": 1, set 1() {}"
// Parsing FunctionLiteral for getter or setter fails
"get foo( +",
"get foo() \"error\"",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsObjectLiteralChecking) {
const char* context_data[][2] = {
{"var myobject = {", "};"},
{"\"use strict\"; var myobject = {", "};"},
{ NULL, NULL }
};
const char* statement_data[] = {
"foo: 1, bar: 2",
"\"foo\": 1, \"bar\": 2",
"1: 1, 2: 2",
// Syntax: IdentifierName ':' AssignmentExpression
"foo: bar = 5 + baz",
// Syntax: 'get' (IdentifierName | String | Number) FunctionLiteral
"get foo() {}",
"get \"foo\"() {}",
"get 1() {}",
// Syntax: 'set' (IdentifierName | String | Number) FunctionLiteral
"set foo() {}",
"set \"foo\"() {}",
"set 1() {}",
// Non-colliding getters and setters -> no errors
"foo: 1, get bar() {}",
"foo: 1, set bar(b) {}",
"\"foo\": 1, get \"bar\"() {}",
"\"foo\": 1, set \"bar\"() {}",
"1: 1, get 2() {}",
"1: 1, set 2() {}",
// Weird number of parameters -> no errors
"get bar() {}, set bar() {}",
"get bar(x) {}, set bar(x) {}",
"get bar(x, y) {}, set bar(x, y) {}",
// Keywords, future reserved and strict future reserved are also allowed as
// property names.
"if: 4",
"interface: 5",
"super: 6",
"eval: 7",
"arguments: 8",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(TooManyArguments) {
const char* context_data[][2] = {
{"foo(", "0)"},
{ NULL, NULL }
};
using v8::internal::Code;
char statement[Code::kMaxArguments * 2 + 1];
for (int i = 0; i < Code::kMaxArguments; ++i) {
statement[2 * i] = '0';
statement[2 * i + 1] = ',';
}
statement[Code::kMaxArguments * 2] = 0;
const char* statement_data[] = {
statement,
NULL
};
// The test is quite slow, so run it with a reduced set of flags.
static const ParserFlag empty_flags[] = {kAllowLazy};
RunParserSyncTest(context_data, statement_data, kError, empty_flags, 1);
}
TEST(StrictDelete) {
// "delete <Identifier>" is not allowed in strict mode.
const char* strict_context_data[][2] = {
{"\"use strict\"; ", ""},
{ NULL, NULL }
};
const char* sloppy_context_data[][2] = {
{"", ""},
{ NULL, NULL }
};
// These are errors in the strict mode.
const char* sloppy_statement_data[] = {
"delete foo;",
"delete foo + 1;",
"delete (foo);",
"delete eval;",
"delete interface;",
NULL
};
// These are always OK
const char* good_statement_data[] = {
"delete this;",
"delete 1;",
"delete 1 + 2;",
"delete foo();",
"delete foo.bar;",
"delete foo[bar];",
"delete foo--;",
"delete --foo;",
"delete new foo();",
"delete new foo(bar);",
NULL
};
// These are always errors
const char* bad_statement_data[] = {
"delete if;",
NULL
};
RunParserSyncTest(strict_context_data, sloppy_statement_data, kError);
RunParserSyncTest(sloppy_context_data, sloppy_statement_data, kSuccess);
RunParserSyncTest(strict_context_data, good_statement_data, kSuccess);
RunParserSyncTest(sloppy_context_data, good_statement_data, kSuccess);
RunParserSyncTest(strict_context_data, bad_statement_data, kError);
RunParserSyncTest(sloppy_context_data, bad_statement_data, kError);
}
TEST(InvalidLeftHandSide) {
const char* assignment_context_data[][2] = {
{"", " = 1;"},
{"\"use strict\"; ", " = 1;"},
{ NULL, NULL }
};
const char* prefix_context_data[][2] = {
{"++", ";"},
{"\"use strict\"; ++", ";"},
{NULL, NULL},
};
const char* postfix_context_data[][2] = {
{"", "++;"},
{"\"use strict\"; ", "++;"},
{ NULL, NULL }
};
// Good left hand sides for assigment or prefix / postfix operations.
const char* good_statement_data[] = {
"foo",
"foo.bar",
"foo[bar]",
"foo()[bar]",
"foo().bar",
"this.foo",
"this[foo]",
"new foo()[bar]",
"new foo().bar",
"foo()",
"foo(bar)",
"foo[bar]()",
"foo.bar()",
"this()",
"this.foo()",
"this[foo].bar()",
"this.foo[foo].bar(this)(bar)[foo]()",
NULL
};
// Bad left hand sides for assigment or prefix / postfix operations.
const char* bad_statement_data_common[] = {
"2",
"new foo",
"new foo()",
"null",
"if", // Unexpected token
"{x: 1}", // Unexpected token
"this",
"\"bar\"",
"(foo + bar)",
"new new foo()[bar]", // means: new (new foo()[bar])
"new new foo().bar", // means: new (new foo()[bar])
NULL
};
// These are not okay for assignment, but okay for prefix / postix.
const char* bad_statement_data_for_assignment[] = {
"++foo",
"foo++",
"foo + bar",
NULL
};
RunParserSyncTest(assignment_context_data, good_statement_data, kSuccess);
RunParserSyncTest(assignment_context_data, bad_statement_data_common, kError);
RunParserSyncTest(assignment_context_data, bad_statement_data_for_assignment,
kError);
RunParserSyncTest(prefix_context_data, good_statement_data, kSuccess);
RunParserSyncTest(prefix_context_data, bad_statement_data_common, kError);
RunParserSyncTest(postfix_context_data, good_statement_data, kSuccess);
RunParserSyncTest(postfix_context_data, bad_statement_data_common, kError);
}