v8/test/mjsunit/asm/embenchen/fasta.js
bmeurer@chromium.org 24d288cb8a Fix copyright headers.
R=machenbach@chromium.org

Review URL: https://codereview.chromium.org/720793002

Cr-Commit-Position: refs/heads/master@{#25295}
git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@25295 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-11-12 13:29:57 +00:00

8606 lines
290 KiB
JavaScript

var EXPECTED_OUTPUT =
'GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGA\n' +
'TCACCTGAGGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTGAAACCCCGTCTCTACT\n' +
'AAAAATACAAAAATTAGCCGGGCGTGGTGGCGCGCGCCTGTAATCCCAGCTACTCGGGAG\n' +
'GCTGAGGCAGGAGAATCGCTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCCGAGATCGCG\n' +
'CCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCCGTCTCAAAAAGGCCGGGCGCGGT\n' +
'GGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACCTGAGGTCA\n' +
'GGAGTTCGAGACCAGCCTGGCCAACATGGTGAAACCCCGTCTCTACTAAAAATACAAAAA\n' +
'TTAGCCGGGCGTGGTGGCGCGCGCCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGAG\n' +
'AATCGCTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCA\n' +
'GCCTGGGCGA\n';
var Module = {
arguments: [1],
print: function(x) {Module.printBuffer += x + '\n';},
preRun: [function() {Module.printBuffer = ''}],
postRun: [function() {
assertEquals(EXPECTED_OUTPUT, Module.printBuffer);
}],
};
// The Module object: Our interface to the outside world. We import
// and export values on it, and do the work to get that through
// closure compiler if necessary. There are various ways Module can be used:
// 1. Not defined. We create it here
// 2. A function parameter, function(Module) { ..generated code.. }
// 3. pre-run appended it, var Module = {}; ..generated code..
// 4. External script tag defines var Module.
// We need to do an eval in order to handle the closure compiler
// case, where this code here is minified but Module was defined
// elsewhere (e.g. case 4 above). We also need to check if Module
// already exists (e.g. case 3 above).
// Note that if you want to run closure, and also to use Module
// after the generated code, you will need to define var Module = {};
// before the code. Then that object will be used in the code, and you
// can continue to use Module afterwards as well.
var Module;
if (!Module) Module = (typeof Module !== 'undefined' ? Module : null) || {};
// Sometimes an existing Module object exists with properties
// meant to overwrite the default module functionality. Here
// we collect those properties and reapply _after_ we configure
// the current environment's defaults to avoid having to be so
// defensive during initialization.
var moduleOverrides = {};
for (var key in Module) {
if (Module.hasOwnProperty(key)) {
moduleOverrides[key] = Module[key];
}
}
// The environment setup code below is customized to use Module.
// *** Environment setup code ***
var ENVIRONMENT_IS_NODE = typeof process === 'object' && typeof require === 'function';
var ENVIRONMENT_IS_WEB = typeof window === 'object';
var ENVIRONMENT_IS_WORKER = typeof importScripts === 'function';
var ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER;
if (ENVIRONMENT_IS_NODE) {
// Expose functionality in the same simple way that the shells work
// Note that we pollute the global namespace here, otherwise we break in node
if (!Module['print']) Module['print'] = function print(x) {
process['stdout'].write(x + '\n');
};
if (!Module['printErr']) Module['printErr'] = function printErr(x) {
process['stderr'].write(x + '\n');
};
var nodeFS = require('fs');
var nodePath = require('path');
Module['read'] = function read(filename, binary) {
filename = nodePath['normalize'](filename);
var ret = nodeFS['readFileSync'](filename);
// The path is absolute if the normalized version is the same as the resolved.
if (!ret && filename != nodePath['resolve'](filename)) {
filename = path.join(__dirname, '..', 'src', filename);
ret = nodeFS['readFileSync'](filename);
}
if (ret && !binary) ret = ret.toString();
return ret;
};
Module['readBinary'] = function readBinary(filename) { return Module['read'](filename, true) };
Module['load'] = function load(f) {
globalEval(read(f));
};
Module['arguments'] = process['argv'].slice(2);
module['exports'] = Module;
}
else if (ENVIRONMENT_IS_SHELL) {
if (!Module['print']) Module['print'] = print;
if (typeof printErr != 'undefined') Module['printErr'] = printErr; // not present in v8 or older sm
if (typeof read != 'undefined') {
Module['read'] = read;
} else {
Module['read'] = function read() { throw 'no read() available (jsc?)' };
}
Module['readBinary'] = function readBinary(f) {
return read(f, 'binary');
};
if (typeof scriptArgs != 'undefined') {
Module['arguments'] = scriptArgs;
} else if (typeof arguments != 'undefined') {
Module['arguments'] = arguments;
}
this['Module'] = Module;
eval("if (typeof gc === 'function' && gc.toString().indexOf('[native code]') > 0) var gc = undefined"); // wipe out the SpiderMonkey shell 'gc' function, which can confuse closure (uses it as a minified name, and it is then initted to a non-falsey value unexpectedly)
}
else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) {
Module['read'] = function read(url) {
var xhr = new XMLHttpRequest();
xhr.open('GET', url, false);
xhr.send(null);
return xhr.responseText;
};
if (typeof arguments != 'undefined') {
Module['arguments'] = arguments;
}
if (typeof console !== 'undefined') {
if (!Module['print']) Module['print'] = function print(x) {
console.log(x);
};
if (!Module['printErr']) Module['printErr'] = function printErr(x) {
console.log(x);
};
} else {
// Probably a worker, and without console.log. We can do very little here...
var TRY_USE_DUMP = false;
if (!Module['print']) Module['print'] = (TRY_USE_DUMP && (typeof(dump) !== "undefined") ? (function(x) {
dump(x);
}) : (function(x) {
// self.postMessage(x); // enable this if you want stdout to be sent as messages
}));
}
if (ENVIRONMENT_IS_WEB) {
window['Module'] = Module;
} else {
Module['load'] = importScripts;
}
}
else {
// Unreachable because SHELL is dependant on the others
throw 'Unknown runtime environment. Where are we?';
}
function globalEval(x) {
eval.call(null, x);
}
if (!Module['load'] == 'undefined' && Module['read']) {
Module['load'] = function load(f) {
globalEval(Module['read'](f));
};
}
if (!Module['print']) {
Module['print'] = function(){};
}
if (!Module['printErr']) {
Module['printErr'] = Module['print'];
}
if (!Module['arguments']) {
Module['arguments'] = [];
}
// *** Environment setup code ***
// Closure helpers
Module.print = Module['print'];
Module.printErr = Module['printErr'];
// Callbacks
Module['preRun'] = [];
Module['postRun'] = [];
// Merge back in the overrides
for (var key in moduleOverrides) {
if (moduleOverrides.hasOwnProperty(key)) {
Module[key] = moduleOverrides[key];
}
}
// === Auto-generated preamble library stuff ===
//========================================
// Runtime code shared with compiler
//========================================
var Runtime = {
stackSave: function () {
return STACKTOP;
},
stackRestore: function (stackTop) {
STACKTOP = stackTop;
},
forceAlign: function (target, quantum) {
quantum = quantum || 4;
if (quantum == 1) return target;
if (isNumber(target) && isNumber(quantum)) {
return Math.ceil(target/quantum)*quantum;
} else if (isNumber(quantum) && isPowerOfTwo(quantum)) {
return '(((' +target + ')+' + (quantum-1) + ')&' + -quantum + ')';
}
return 'Math.ceil((' + target + ')/' + quantum + ')*' + quantum;
},
isNumberType: function (type) {
return type in Runtime.INT_TYPES || type in Runtime.FLOAT_TYPES;
},
isPointerType: function isPointerType(type) {
return type[type.length-1] == '*';
},
isStructType: function isStructType(type) {
if (isPointerType(type)) return false;
if (isArrayType(type)) return true;
if (/<?\{ ?[^}]* ?\}>?/.test(type)) return true; // { i32, i8 } etc. - anonymous struct types
// See comment in isStructPointerType()
return type[0] == '%';
},
INT_TYPES: {"i1":0,"i8":0,"i16":0,"i32":0,"i64":0},
FLOAT_TYPES: {"float":0,"double":0},
or64: function (x, y) {
var l = (x | 0) | (y | 0);
var h = (Math.round(x / 4294967296) | Math.round(y / 4294967296)) * 4294967296;
return l + h;
},
and64: function (x, y) {
var l = (x | 0) & (y | 0);
var h = (Math.round(x / 4294967296) & Math.round(y / 4294967296)) * 4294967296;
return l + h;
},
xor64: function (x, y) {
var l = (x | 0) ^ (y | 0);
var h = (Math.round(x / 4294967296) ^ Math.round(y / 4294967296)) * 4294967296;
return l + h;
},
getNativeTypeSize: function (type) {
switch (type) {
case 'i1': case 'i8': return 1;
case 'i16': return 2;
case 'i32': return 4;
case 'i64': return 8;
case 'float': return 4;
case 'double': return 8;
default: {
if (type[type.length-1] === '*') {
return Runtime.QUANTUM_SIZE; // A pointer
} else if (type[0] === 'i') {
var bits = parseInt(type.substr(1));
assert(bits % 8 === 0);
return bits/8;
} else {
return 0;
}
}
}
},
getNativeFieldSize: function (type) {
return Math.max(Runtime.getNativeTypeSize(type), Runtime.QUANTUM_SIZE);
},
dedup: function dedup(items, ident) {
var seen = {};
if (ident) {
return items.filter(function(item) {
if (seen[item[ident]]) return false;
seen[item[ident]] = true;
return true;
});
} else {
return items.filter(function(item) {
if (seen[item]) return false;
seen[item] = true;
return true;
});
}
},
set: function set() {
var args = typeof arguments[0] === 'object' ? arguments[0] : arguments;
var ret = {};
for (var i = 0; i < args.length; i++) {
ret[args[i]] = 0;
}
return ret;
},
STACK_ALIGN: 8,
getAlignSize: function (type, size, vararg) {
// we align i64s and doubles on 64-bit boundaries, unlike x86
if (!vararg && (type == 'i64' || type == 'double')) return 8;
if (!type) return Math.min(size, 8); // align structures internally to 64 bits
return Math.min(size || (type ? Runtime.getNativeFieldSize(type) : 0), Runtime.QUANTUM_SIZE);
},
calculateStructAlignment: function calculateStructAlignment(type) {
type.flatSize = 0;
type.alignSize = 0;
var diffs = [];
var prev = -1;
var index = 0;
type.flatIndexes = type.fields.map(function(field) {
index++;
var size, alignSize;
if (Runtime.isNumberType(field) || Runtime.isPointerType(field)) {
size = Runtime.getNativeTypeSize(field); // pack char; char; in structs, also char[X]s.
alignSize = Runtime.getAlignSize(field, size);
} else if (Runtime.isStructType(field)) {
if (field[1] === '0') {
// this is [0 x something]. When inside another structure like here, it must be at the end,
// and it adds no size
// XXX this happens in java-nbody for example... assert(index === type.fields.length, 'zero-length in the middle!');
size = 0;
if (Types.types[field]) {
alignSize = Runtime.getAlignSize(null, Types.types[field].alignSize);
} else {
alignSize = type.alignSize || QUANTUM_SIZE;
}
} else {
size = Types.types[field].flatSize;
alignSize = Runtime.getAlignSize(null, Types.types[field].alignSize);
}
} else if (field[0] == 'b') {
// bN, large number field, like a [N x i8]
size = field.substr(1)|0;
alignSize = 1;
} else if (field[0] === '<') {
// vector type
size = alignSize = Types.types[field].flatSize; // fully aligned
} else if (field[0] === 'i') {
// illegal integer field, that could not be legalized because it is an internal structure field
// it is ok to have such fields, if we just use them as markers of field size and nothing more complex
size = alignSize = parseInt(field.substr(1))/8;
assert(size % 1 === 0, 'cannot handle non-byte-size field ' + field);
} else {
assert(false, 'invalid type for calculateStructAlignment');
}
if (type.packed) alignSize = 1;
type.alignSize = Math.max(type.alignSize, alignSize);
var curr = Runtime.alignMemory(type.flatSize, alignSize); // if necessary, place this on aligned memory
type.flatSize = curr + size;
if (prev >= 0) {
diffs.push(curr-prev);
}
prev = curr;
return curr;
});
if (type.name_ && type.name_[0] === '[') {
// arrays have 2 elements, so we get the proper difference. then we scale here. that way we avoid
// allocating a potentially huge array for [999999 x i8] etc.
type.flatSize = parseInt(type.name_.substr(1))*type.flatSize/2;
}
type.flatSize = Runtime.alignMemory(type.flatSize, type.alignSize);
if (diffs.length == 0) {
type.flatFactor = type.flatSize;
} else if (Runtime.dedup(diffs).length == 1) {
type.flatFactor = diffs[0];
}
type.needsFlattening = (type.flatFactor != 1);
return type.flatIndexes;
},
generateStructInfo: function (struct, typeName, offset) {
var type, alignment;
if (typeName) {
offset = offset || 0;
type = (typeof Types === 'undefined' ? Runtime.typeInfo : Types.types)[typeName];
if (!type) return null;
if (type.fields.length != struct.length) {
printErr('Number of named fields must match the type for ' + typeName + ': possibly duplicate struct names. Cannot return structInfo');
return null;
}
alignment = type.flatIndexes;
} else {
var type = { fields: struct.map(function(item) { return item[0] }) };
alignment = Runtime.calculateStructAlignment(type);
}
var ret = {
__size__: type.flatSize
};
if (typeName) {
struct.forEach(function(item, i) {
if (typeof item === 'string') {
ret[item] = alignment[i] + offset;
} else {
// embedded struct
var key;
for (var k in item) key = k;
ret[key] = Runtime.generateStructInfo(item[key], type.fields[i], alignment[i]);
}
});
} else {
struct.forEach(function(item, i) {
ret[item[1]] = alignment[i];
});
}
return ret;
},
dynCall: function (sig, ptr, args) {
if (args && args.length) {
if (!args.splice) args = Array.prototype.slice.call(args);
args.splice(0, 0, ptr);
return Module['dynCall_' + sig].apply(null, args);
} else {
return Module['dynCall_' + sig].call(null, ptr);
}
},
functionPointers: [],
addFunction: function (func) {
for (var i = 0; i < Runtime.functionPointers.length; i++) {
if (!Runtime.functionPointers[i]) {
Runtime.functionPointers[i] = func;
return 2*(1 + i);
}
}
throw 'Finished up all reserved function pointers. Use a higher value for RESERVED_FUNCTION_POINTERS.';
},
removeFunction: function (index) {
Runtime.functionPointers[(index-2)/2] = null;
},
getAsmConst: function (code, numArgs) {
// code is a constant string on the heap, so we can cache these
if (!Runtime.asmConstCache) Runtime.asmConstCache = {};
var func = Runtime.asmConstCache[code];
if (func) return func;
var args = [];
for (var i = 0; i < numArgs; i++) {
args.push(String.fromCharCode(36) + i); // $0, $1 etc
}
var source = Pointer_stringify(code);
if (source[0] === '"') {
// tolerate EM_ASM("..code..") even though EM_ASM(..code..) is correct
if (source.indexOf('"', 1) === source.length-1) {
source = source.substr(1, source.length-2);
} else {
// something invalid happened, e.g. EM_ASM("..code($0)..", input)
abort('invalid EM_ASM input |' + source + '|. Please use EM_ASM(..code..) (no quotes) or EM_ASM({ ..code($0).. }, input) (to input values)');
}
}
try {
var evalled = eval('(function(' + args.join(',') + '){ ' + source + ' })'); // new Function does not allow upvars in node
} catch(e) {
Module.printErr('error in executing inline EM_ASM code: ' + e + ' on: \n\n' + source + '\n\nwith args |' + args + '| (make sure to use the right one out of EM_ASM, EM_ASM_ARGS, etc.)');
throw e;
}
return Runtime.asmConstCache[code] = evalled;
},
warnOnce: function (text) {
if (!Runtime.warnOnce.shown) Runtime.warnOnce.shown = {};
if (!Runtime.warnOnce.shown[text]) {
Runtime.warnOnce.shown[text] = 1;
Module.printErr(text);
}
},
funcWrappers: {},
getFuncWrapper: function (func, sig) {
assert(sig);
if (!Runtime.funcWrappers[func]) {
Runtime.funcWrappers[func] = function dynCall_wrapper() {
return Runtime.dynCall(sig, func, arguments);
};
}
return Runtime.funcWrappers[func];
},
UTF8Processor: function () {
var buffer = [];
var needed = 0;
this.processCChar = function (code) {
code = code & 0xFF;
if (buffer.length == 0) {
if ((code & 0x80) == 0x00) { // 0xxxxxxx
return String.fromCharCode(code);
}
buffer.push(code);
if ((code & 0xE0) == 0xC0) { // 110xxxxx
needed = 1;
} else if ((code & 0xF0) == 0xE0) { // 1110xxxx
needed = 2;
} else { // 11110xxx
needed = 3;
}
return '';
}
if (needed) {
buffer.push(code);
needed--;
if (needed > 0) return '';
}
var c1 = buffer[0];
var c2 = buffer[1];
var c3 = buffer[2];
var c4 = buffer[3];
var ret;
if (buffer.length == 2) {
ret = String.fromCharCode(((c1 & 0x1F) << 6) | (c2 & 0x3F));
} else if (buffer.length == 3) {
ret = String.fromCharCode(((c1 & 0x0F) << 12) | ((c2 & 0x3F) << 6) | (c3 & 0x3F));
} else {
// http://mathiasbynens.be/notes/javascript-encoding#surrogate-formulae
var codePoint = ((c1 & 0x07) << 18) | ((c2 & 0x3F) << 12) |
((c3 & 0x3F) << 6) | (c4 & 0x3F);
ret = String.fromCharCode(
Math.floor((codePoint - 0x10000) / 0x400) + 0xD800,
(codePoint - 0x10000) % 0x400 + 0xDC00);
}
buffer.length = 0;
return ret;
}
this.processJSString = function processJSString(string) {
/* TODO: use TextEncoder when present,
var encoder = new TextEncoder();
encoder['encoding'] = "utf-8";
var utf8Array = encoder['encode'](aMsg.data);
*/
string = unescape(encodeURIComponent(string));
var ret = [];
for (var i = 0; i < string.length; i++) {
ret.push(string.charCodeAt(i));
}
return ret;
}
},
getCompilerSetting: function (name) {
throw 'You must build with -s RETAIN_COMPILER_SETTINGS=1 for Runtime.getCompilerSetting or emscripten_get_compiler_setting to work';
},
stackAlloc: function (size) { var ret = STACKTOP;STACKTOP = (STACKTOP + size)|0;STACKTOP = (((STACKTOP)+7)&-8); return ret; },
staticAlloc: function (size) { var ret = STATICTOP;STATICTOP = (STATICTOP + size)|0;STATICTOP = (((STATICTOP)+7)&-8); return ret; },
dynamicAlloc: function (size) { var ret = DYNAMICTOP;DYNAMICTOP = (DYNAMICTOP + size)|0;DYNAMICTOP = (((DYNAMICTOP)+7)&-8); if (DYNAMICTOP >= TOTAL_MEMORY) enlargeMemory();; return ret; },
alignMemory: function (size,quantum) { var ret = size = Math.ceil((size)/(quantum ? quantum : 8))*(quantum ? quantum : 8); return ret; },
makeBigInt: function (low,high,unsigned) { var ret = (unsigned ? ((+((low>>>0)))+((+((high>>>0)))*(+4294967296))) : ((+((low>>>0)))+((+((high|0)))*(+4294967296)))); return ret; },
GLOBAL_BASE: 8,
QUANTUM_SIZE: 4,
__dummy__: 0
}
Module['Runtime'] = Runtime;
//========================================
// Runtime essentials
//========================================
var __THREW__ = 0; // Used in checking for thrown exceptions.
var ABORT = false; // whether we are quitting the application. no code should run after this. set in exit() and abort()
var EXITSTATUS = 0;
var undef = 0;
// tempInt is used for 32-bit signed values or smaller. tempBigInt is used
// for 32-bit unsigned values or more than 32 bits. TODO: audit all uses of tempInt
var tempValue, tempInt, tempBigInt, tempInt2, tempBigInt2, tempPair, tempBigIntI, tempBigIntR, tempBigIntS, tempBigIntP, tempBigIntD, tempDouble, tempFloat;
var tempI64, tempI64b;
var tempRet0, tempRet1, tempRet2, tempRet3, tempRet4, tempRet5, tempRet6, tempRet7, tempRet8, tempRet9;
function assert(condition, text) {
if (!condition) {
abort('Assertion failed: ' + text);
}
}
var globalScope = this;
// C calling interface. A convenient way to call C functions (in C files, or
// defined with extern "C").
//
// Note: LLVM optimizations can inline and remove functions, after which you will not be
// able to call them. Closure can also do so. To avoid that, add your function to
// the exports using something like
//
// -s EXPORTED_FUNCTIONS='["_main", "_myfunc"]'
//
// @param ident The name of the C function (note that C++ functions will be name-mangled - use extern "C")
// @param returnType The return type of the function, one of the JS types 'number', 'string' or 'array' (use 'number' for any C pointer, and
// 'array' for JavaScript arrays and typed arrays; note that arrays are 8-bit).
// @param argTypes An array of the types of arguments for the function (if there are no arguments, this can be ommitted). Types are as in returnType,
// except that 'array' is not possible (there is no way for us to know the length of the array)
// @param args An array of the arguments to the function, as native JS values (as in returnType)
// Note that string arguments will be stored on the stack (the JS string will become a C string on the stack).
// @return The return value, as a native JS value (as in returnType)
function ccall(ident, returnType, argTypes, args) {
return ccallFunc(getCFunc(ident), returnType, argTypes, args);
}
Module["ccall"] = ccall;
// Returns the C function with a specified identifier (for C++, you need to do manual name mangling)
function getCFunc(ident) {
try {
var func = Module['_' + ident]; // closure exported function
if (!func) func = eval('_' + ident); // explicit lookup
} catch(e) {
}
assert(func, 'Cannot call unknown function ' + ident + ' (perhaps LLVM optimizations or closure removed it?)');
return func;
}
// Internal function that does a C call using a function, not an identifier
function ccallFunc(func, returnType, argTypes, args) {
var stack = 0;
function toC(value, type) {
if (type == 'string') {
if (value === null || value === undefined || value === 0) return 0; // null string
value = intArrayFromString(value);
type = 'array';
}
if (type == 'array') {
if (!stack) stack = Runtime.stackSave();
var ret = Runtime.stackAlloc(value.length);
writeArrayToMemory(value, ret);
return ret;
}
return value;
}
function fromC(value, type) {
if (type == 'string') {
return Pointer_stringify(value);
}
assert(type != 'array');
return value;
}
var i = 0;
var cArgs = args ? args.map(function(arg) {
return toC(arg, argTypes[i++]);
}) : [];
var ret = fromC(func.apply(null, cArgs), returnType);
if (stack) Runtime.stackRestore(stack);
return ret;
}
// Returns a native JS wrapper for a C function. This is similar to ccall, but
// returns a function you can call repeatedly in a normal way. For example:
//
// var my_function = cwrap('my_c_function', 'number', ['number', 'number']);
// alert(my_function(5, 22));
// alert(my_function(99, 12));
//
function cwrap(ident, returnType, argTypes) {
var func = getCFunc(ident);
return function() {
return ccallFunc(func, returnType, argTypes, Array.prototype.slice.call(arguments));
}
}
Module["cwrap"] = cwrap;
// Sets a value in memory in a dynamic way at run-time. Uses the
// type data. This is the same as makeSetValue, except that
// makeSetValue is done at compile-time and generates the needed
// code then, whereas this function picks the right code at
// run-time.
// Note that setValue and getValue only do *aligned* writes and reads!
// Note that ccall uses JS types as for defining types, while setValue and
// getValue need LLVM types ('i8', 'i32') - this is a lower-level operation
function setValue(ptr, value, type, noSafe) {
type = type || 'i8';
if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit
switch(type) {
case 'i1': HEAP8[(ptr)]=value; break;
case 'i8': HEAP8[(ptr)]=value; break;
case 'i16': HEAP16[((ptr)>>1)]=value; break;
case 'i32': HEAP32[((ptr)>>2)]=value; break;
case 'i64': (tempI64 = [value>>>0,(tempDouble=value,(+(Math_abs(tempDouble))) >= (+1) ? (tempDouble > (+0) ? ((Math_min((+(Math_floor((tempDouble)/(+4294967296)))), (+4294967295)))|0)>>>0 : (~~((+(Math_ceil((tempDouble - +(((~~(tempDouble)))>>>0))/(+4294967296))))))>>>0) : 0)],HEAP32[((ptr)>>2)]=tempI64[0],HEAP32[(((ptr)+(4))>>2)]=tempI64[1]); break;
case 'float': HEAPF32[((ptr)>>2)]=value; break;
case 'double': HEAPF64[((ptr)>>3)]=value; break;
default: abort('invalid type for setValue: ' + type);
}
}
Module['setValue'] = setValue;
// Parallel to setValue.
function getValue(ptr, type, noSafe) {
type = type || 'i8';
if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit
switch(type) {
case 'i1': return HEAP8[(ptr)];
case 'i8': return HEAP8[(ptr)];
case 'i16': return HEAP16[((ptr)>>1)];
case 'i32': return HEAP32[((ptr)>>2)];
case 'i64': return HEAP32[((ptr)>>2)];
case 'float': return HEAPF32[((ptr)>>2)];
case 'double': return HEAPF64[((ptr)>>3)];
default: abort('invalid type for setValue: ' + type);
}
return null;
}
Module['getValue'] = getValue;
var ALLOC_NORMAL = 0; // Tries to use _malloc()
var ALLOC_STACK = 1; // Lives for the duration of the current function call
var ALLOC_STATIC = 2; // Cannot be freed
var ALLOC_DYNAMIC = 3; // Cannot be freed except through sbrk
var ALLOC_NONE = 4; // Do not allocate
Module['ALLOC_NORMAL'] = ALLOC_NORMAL;
Module['ALLOC_STACK'] = ALLOC_STACK;
Module['ALLOC_STATIC'] = ALLOC_STATIC;
Module['ALLOC_DYNAMIC'] = ALLOC_DYNAMIC;
Module['ALLOC_NONE'] = ALLOC_NONE;
// allocate(): This is for internal use. You can use it yourself as well, but the interface
// is a little tricky (see docs right below). The reason is that it is optimized
// for multiple syntaxes to save space in generated code. So you should
// normally not use allocate(), and instead allocate memory using _malloc(),
// initialize it with setValue(), and so forth.
// @slab: An array of data, or a number. If a number, then the size of the block to allocate,
// in *bytes* (note that this is sometimes confusing: the next parameter does not
// affect this!)
// @types: Either an array of types, one for each byte (or 0 if no type at that position),
// or a single type which is used for the entire block. This only matters if there
// is initial data - if @slab is a number, then this does not matter at all and is
// ignored.
// @allocator: How to allocate memory, see ALLOC_*
function allocate(slab, types, allocator, ptr) {
var zeroinit, size;
if (typeof slab === 'number') {
zeroinit = true;
size = slab;
} else {
zeroinit = false;
size = slab.length;
}
var singleType = typeof types === 'string' ? types : null;
var ret;
if (allocator == ALLOC_NONE) {
ret = ptr;
} else {
ret = [_malloc, Runtime.stackAlloc, Runtime.staticAlloc, Runtime.dynamicAlloc][allocator === undefined ? ALLOC_STATIC : allocator](Math.max(size, singleType ? 1 : types.length));
}
if (zeroinit) {
var ptr = ret, stop;
assert((ret & 3) == 0);
stop = ret + (size & ~3);
for (; ptr < stop; ptr += 4) {
HEAP32[((ptr)>>2)]=0;
}
stop = ret + size;
while (ptr < stop) {
HEAP8[((ptr++)|0)]=0;
}
return ret;
}
if (singleType === 'i8') {
if (slab.subarray || slab.slice) {
HEAPU8.set(slab, ret);
} else {
HEAPU8.set(new Uint8Array(slab), ret);
}
return ret;
}
var i = 0, type, typeSize, previousType;
while (i < size) {
var curr = slab[i];
if (typeof curr === 'function') {
curr = Runtime.getFunctionIndex(curr);
}
type = singleType || types[i];
if (type === 0) {
i++;
continue;
}
if (type == 'i64') type = 'i32'; // special case: we have one i32 here, and one i32 later
setValue(ret+i, curr, type);
// no need to look up size unless type changes, so cache it
if (previousType !== type) {
typeSize = Runtime.getNativeTypeSize(type);
previousType = type;
}
i += typeSize;
}
return ret;
}
Module['allocate'] = allocate;
function Pointer_stringify(ptr, /* optional */ length) {
// TODO: use TextDecoder
// Find the length, and check for UTF while doing so
var hasUtf = false;
var t;
var i = 0;
while (1) {
t = HEAPU8[(((ptr)+(i))|0)];
if (t >= 128) hasUtf = true;
else if (t == 0 && !length) break;
i++;
if (length && i == length) break;
}
if (!length) length = i;
var ret = '';
if (!hasUtf) {
var MAX_CHUNK = 1024; // split up into chunks, because .apply on a huge string can overflow the stack
var curr;
while (length > 0) {
curr = String.fromCharCode.apply(String, HEAPU8.subarray(ptr, ptr + Math.min(length, MAX_CHUNK)));
ret = ret ? ret + curr : curr;
ptr += MAX_CHUNK;
length -= MAX_CHUNK;
}
return ret;
}
var utf8 = new Runtime.UTF8Processor();
for (i = 0; i < length; i++) {
t = HEAPU8[(((ptr)+(i))|0)];
ret += utf8.processCChar(t);
}
return ret;
}
Module['Pointer_stringify'] = Pointer_stringify;
// Given a pointer 'ptr' to a null-terminated UTF16LE-encoded string in the emscripten HEAP, returns
// a copy of that string as a Javascript String object.
function UTF16ToString(ptr) {
var i = 0;
var str = '';
while (1) {
var codeUnit = HEAP16[(((ptr)+(i*2))>>1)];
if (codeUnit == 0)
return str;
++i;
// fromCharCode constructs a character from a UTF-16 code unit, so we can pass the UTF16 string right through.
str += String.fromCharCode(codeUnit);
}
}
Module['UTF16ToString'] = UTF16ToString;
// Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr',
// null-terminated and encoded in UTF16LE form. The copy will require at most (str.length*2+1)*2 bytes of space in the HEAP.
function stringToUTF16(str, outPtr) {
for(var i = 0; i < str.length; ++i) {
// charCodeAt returns a UTF-16 encoded code unit, so it can be directly written to the HEAP.
var codeUnit = str.charCodeAt(i); // possibly a lead surrogate
HEAP16[(((outPtr)+(i*2))>>1)]=codeUnit;
}
// Null-terminate the pointer to the HEAP.
HEAP16[(((outPtr)+(str.length*2))>>1)]=0;
}
Module['stringToUTF16'] = stringToUTF16;
// Given a pointer 'ptr' to a null-terminated UTF32LE-encoded string in the emscripten HEAP, returns
// a copy of that string as a Javascript String object.
function UTF32ToString(ptr) {
var i = 0;
var str = '';
while (1) {
var utf32 = HEAP32[(((ptr)+(i*4))>>2)];
if (utf32 == 0)
return str;
++i;
// Gotcha: fromCharCode constructs a character from a UTF-16 encoded code (pair), not from a Unicode code point! So encode the code point to UTF-16 for constructing.
if (utf32 >= 0x10000) {
var ch = utf32 - 0x10000;
str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF));
} else {
str += String.fromCharCode(utf32);
}
}
}
Module['UTF32ToString'] = UTF32ToString;
// Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr',
// null-terminated and encoded in UTF32LE form. The copy will require at most (str.length+1)*4 bytes of space in the HEAP,
// but can use less, since str.length does not return the number of characters in the string, but the number of UTF-16 code units in the string.
function stringToUTF32(str, outPtr) {
var iChar = 0;
for(var iCodeUnit = 0; iCodeUnit < str.length; ++iCodeUnit) {
// Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! We must decode the string to UTF-32 to the heap.
var codeUnit = str.charCodeAt(iCodeUnit); // possibly a lead surrogate
if (codeUnit >= 0xD800 && codeUnit <= 0xDFFF) {
var trailSurrogate = str.charCodeAt(++iCodeUnit);
codeUnit = 0x10000 + ((codeUnit & 0x3FF) << 10) | (trailSurrogate & 0x3FF);
}
HEAP32[(((outPtr)+(iChar*4))>>2)]=codeUnit;
++iChar;
}
// Null-terminate the pointer to the HEAP.
HEAP32[(((outPtr)+(iChar*4))>>2)]=0;
}
Module['stringToUTF32'] = stringToUTF32;
function demangle(func) {
var i = 3;
// params, etc.
var basicTypes = {
'v': 'void',
'b': 'bool',
'c': 'char',
's': 'short',
'i': 'int',
'l': 'long',
'f': 'float',
'd': 'double',
'w': 'wchar_t',
'a': 'signed char',
'h': 'unsigned char',
't': 'unsigned short',
'j': 'unsigned int',
'm': 'unsigned long',
'x': 'long long',
'y': 'unsigned long long',
'z': '...'
};
var subs = [];
var first = true;
function dump(x) {
//return;
if (x) Module.print(x);
Module.print(func);
var pre = '';
for (var a = 0; a < i; a++) pre += ' ';
Module.print (pre + '^');
}
function parseNested() {
i++;
if (func[i] === 'K') i++; // ignore const
var parts = [];
while (func[i] !== 'E') {
if (func[i] === 'S') { // substitution
i++;
var next = func.indexOf('_', i);
var num = func.substring(i, next) || 0;
parts.push(subs[num] || '?');
i = next+1;
continue;
}
if (func[i] === 'C') { // constructor
parts.push(parts[parts.length-1]);
i += 2;
continue;
}
var size = parseInt(func.substr(i));
var pre = size.toString().length;
if (!size || !pre) { i--; break; } // counter i++ below us
var curr = func.substr(i + pre, size);
parts.push(curr);
subs.push(curr);
i += pre + size;
}
i++; // skip E
return parts;
}
function parse(rawList, limit, allowVoid) { // main parser
limit = limit || Infinity;
var ret = '', list = [];
function flushList() {
return '(' + list.join(', ') + ')';
}
var name;
if (func[i] === 'N') {
// namespaced N-E
name = parseNested().join('::');
limit--;
if (limit === 0) return rawList ? [name] : name;
} else {
// not namespaced
if (func[i] === 'K' || (first && func[i] === 'L')) i++; // ignore const and first 'L'
var size = parseInt(func.substr(i));
if (size) {
var pre = size.toString().length;
name = func.substr(i + pre, size);
i += pre + size;
}
}
first = false;
if (func[i] === 'I') {
i++;
var iList = parse(true);
var iRet = parse(true, 1, true);
ret += iRet[0] + ' ' + name + '<' + iList.join(', ') + '>';
} else {
ret = name;
}
paramLoop: while (i < func.length && limit-- > 0) {
//dump('paramLoop');
var c = func[i++];
if (c in basicTypes) {
list.push(basicTypes[c]);
} else {
switch (c) {
case 'P': list.push(parse(true, 1, true)[0] + '*'); break; // pointer
case 'R': list.push(parse(true, 1, true)[0] + '&'); break; // reference
case 'L': { // literal
i++; // skip basic type
var end = func.indexOf('E', i);
var size = end - i;
list.push(func.substr(i, size));
i += size + 2; // size + 'EE'
break;
}
case 'A': { // array
var size = parseInt(func.substr(i));
i += size.toString().length;
if (func[i] !== '_') throw '?';
i++; // skip _
list.push(parse(true, 1, true)[0] + ' [' + size + ']');
break;
}
case 'E': break paramLoop;
default: ret += '?' + c; break paramLoop;
}
}
}
if (!allowVoid && list.length === 1 && list[0] === 'void') list = []; // avoid (void)
if (rawList) {
if (ret) {
list.push(ret + '?');
}
return list;
} else {
return ret + flushList();
}
}
try {
// Special-case the entry point, since its name differs from other name mangling.
if (func == 'Object._main' || func == '_main') {
return 'main()';
}
if (typeof func === 'number') func = Pointer_stringify(func);
if (func[0] !== '_') return func;
if (func[1] !== '_') return func; // C function
if (func[2] !== 'Z') return func;
switch (func[3]) {
case 'n': return 'operator new()';
case 'd': return 'operator delete()';
}
return parse();
} catch(e) {
return func;
}
}
function demangleAll(text) {
return text.replace(/__Z[\w\d_]+/g, function(x) { var y = demangle(x); return x === y ? x : (x + ' [' + y + ']') });
}
function stackTrace() {
var stack = new Error().stack;
return stack ? demangleAll(stack) : '(no stack trace available)'; // Stack trace is not available at least on IE10 and Safari 6.
}
// Memory management
var PAGE_SIZE = 4096;
function alignMemoryPage(x) {
return (x+4095)&-4096;
}
var HEAP;
var HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64;
var STATIC_BASE = 0, STATICTOP = 0, staticSealed = false; // static area
var STACK_BASE = 0, STACKTOP = 0, STACK_MAX = 0; // stack area
var DYNAMIC_BASE = 0, DYNAMICTOP = 0; // dynamic area handled by sbrk
function enlargeMemory() {
abort('Cannot enlarge memory arrays. Either (1) compile with -s TOTAL_MEMORY=X with X higher than the current value ' + TOTAL_MEMORY + ', (2) compile with ALLOW_MEMORY_GROWTH which adjusts the size at runtime but prevents some optimizations, or (3) set Module.TOTAL_MEMORY before the program runs.');
}
var TOTAL_STACK = Module['TOTAL_STACK'] || 5242880;
var TOTAL_MEMORY = Module['TOTAL_MEMORY'] || 134217728;
var FAST_MEMORY = Module['FAST_MEMORY'] || 2097152;
var totalMemory = 4096;
while (totalMemory < TOTAL_MEMORY || totalMemory < 2*TOTAL_STACK) {
if (totalMemory < 16*1024*1024) {
totalMemory *= 2;
} else {
totalMemory += 16*1024*1024
}
}
if (totalMemory !== TOTAL_MEMORY) {
Module.printErr('increasing TOTAL_MEMORY to ' + totalMemory + ' to be more reasonable');
TOTAL_MEMORY = totalMemory;
}
// Initialize the runtime's memory
// check for full engine support (use string 'subarray' to avoid closure compiler confusion)
assert(typeof Int32Array !== 'undefined' && typeof Float64Array !== 'undefined' && !!(new Int32Array(1)['subarray']) && !!(new Int32Array(1)['set']),
'JS engine does not provide full typed array support');
var buffer = new ArrayBuffer(TOTAL_MEMORY);
HEAP8 = new Int8Array(buffer);
HEAP16 = new Int16Array(buffer);
HEAP32 = new Int32Array(buffer);
HEAPU8 = new Uint8Array(buffer);
HEAPU16 = new Uint16Array(buffer);
HEAPU32 = new Uint32Array(buffer);
HEAPF32 = new Float32Array(buffer);
HEAPF64 = new Float64Array(buffer);
// Endianness check (note: assumes compiler arch was little-endian)
HEAP32[0] = 255;
assert(HEAPU8[0] === 255 && HEAPU8[3] === 0, 'Typed arrays 2 must be run on a little-endian system');
Module['HEAP'] = HEAP;
Module['HEAP8'] = HEAP8;
Module['HEAP16'] = HEAP16;
Module['HEAP32'] = HEAP32;
Module['HEAPU8'] = HEAPU8;
Module['HEAPU16'] = HEAPU16;
Module['HEAPU32'] = HEAPU32;
Module['HEAPF32'] = HEAPF32;
Module['HEAPF64'] = HEAPF64;
function callRuntimeCallbacks(callbacks) {
while(callbacks.length > 0) {
var callback = callbacks.shift();
if (typeof callback == 'function') {
callback();
continue;
}
var func = callback.func;
if (typeof func === 'number') {
if (callback.arg === undefined) {
Runtime.dynCall('v', func);
} else {
Runtime.dynCall('vi', func, [callback.arg]);
}
} else {
func(callback.arg === undefined ? null : callback.arg);
}
}
}
var __ATPRERUN__ = []; // functions called before the runtime is initialized
var __ATINIT__ = []; // functions called during startup
var __ATMAIN__ = []; // functions called when main() is to be run
var __ATEXIT__ = []; // functions called during shutdown
var __ATPOSTRUN__ = []; // functions called after the runtime has exited
var runtimeInitialized = false;
function preRun() {
// compatibility - merge in anything from Module['preRun'] at this time
if (Module['preRun']) {
if (typeof Module['preRun'] == 'function') Module['preRun'] = [Module['preRun']];
while (Module['preRun'].length) {
addOnPreRun(Module['preRun'].shift());
}
}
callRuntimeCallbacks(__ATPRERUN__);
}
function ensureInitRuntime() {
if (runtimeInitialized) return;
runtimeInitialized = true;
callRuntimeCallbacks(__ATINIT__);
}
function preMain() {
callRuntimeCallbacks(__ATMAIN__);
}
function exitRuntime() {
callRuntimeCallbacks(__ATEXIT__);
}
function postRun() {
// compatibility - merge in anything from Module['postRun'] at this time
if (Module['postRun']) {
if (typeof Module['postRun'] == 'function') Module['postRun'] = [Module['postRun']];
while (Module['postRun'].length) {
addOnPostRun(Module['postRun'].shift());
}
}
callRuntimeCallbacks(__ATPOSTRUN__);
}
function addOnPreRun(cb) {
__ATPRERUN__.unshift(cb);
}
Module['addOnPreRun'] = Module.addOnPreRun = addOnPreRun;
function addOnInit(cb) {
__ATINIT__.unshift(cb);
}
Module['addOnInit'] = Module.addOnInit = addOnInit;
function addOnPreMain(cb) {
__ATMAIN__.unshift(cb);
}
Module['addOnPreMain'] = Module.addOnPreMain = addOnPreMain;
function addOnExit(cb) {
__ATEXIT__.unshift(cb);
}
Module['addOnExit'] = Module.addOnExit = addOnExit;
function addOnPostRun(cb) {
__ATPOSTRUN__.unshift(cb);
}
Module['addOnPostRun'] = Module.addOnPostRun = addOnPostRun;
// Tools
// This processes a JS string into a C-line array of numbers, 0-terminated.
// For LLVM-originating strings, see parser.js:parseLLVMString function
function intArrayFromString(stringy, dontAddNull, length /* optional */) {
var ret = (new Runtime.UTF8Processor()).processJSString(stringy);
if (length) {
ret.length = length;
}
if (!dontAddNull) {
ret.push(0);
}
return ret;
}
Module['intArrayFromString'] = intArrayFromString;
function intArrayToString(array) {
var ret = [];
for (var i = 0; i < array.length; i++) {
var chr = array[i];
if (chr > 0xFF) {
chr &= 0xFF;
}
ret.push(String.fromCharCode(chr));
}
return ret.join('');
}
Module['intArrayToString'] = intArrayToString;
// Write a Javascript array to somewhere in the heap
function writeStringToMemory(string, buffer, dontAddNull) {
var array = intArrayFromString(string, dontAddNull);
var i = 0;
while (i < array.length) {
var chr = array[i];
HEAP8[(((buffer)+(i))|0)]=chr;
i = i + 1;
}
}
Module['writeStringToMemory'] = writeStringToMemory;
function writeArrayToMemory(array, buffer) {
for (var i = 0; i < array.length; i++) {
HEAP8[(((buffer)+(i))|0)]=array[i];
}
}
Module['writeArrayToMemory'] = writeArrayToMemory;
function writeAsciiToMemory(str, buffer, dontAddNull) {
for (var i = 0; i < str.length; i++) {
HEAP8[(((buffer)+(i))|0)]=str.charCodeAt(i);
}
if (!dontAddNull) HEAP8[(((buffer)+(str.length))|0)]=0;
}
Module['writeAsciiToMemory'] = writeAsciiToMemory;
function unSign(value, bits, ignore) {
if (value >= 0) {
return value;
}
return bits <= 32 ? 2*Math.abs(1 << (bits-1)) + value // Need some trickery, since if bits == 32, we are right at the limit of the bits JS uses in bitshifts
: Math.pow(2, bits) + value;
}
function reSign(value, bits, ignore) {
if (value <= 0) {
return value;
}
var half = bits <= 32 ? Math.abs(1 << (bits-1)) // abs is needed if bits == 32
: Math.pow(2, bits-1);
if (value >= half && (bits <= 32 || value > half)) { // for huge values, we can hit the precision limit and always get true here. so don't do that
// but, in general there is no perfect solution here. With 64-bit ints, we get rounding and errors
// TODO: In i64 mode 1, resign the two parts separately and safely
value = -2*half + value; // Cannot bitshift half, as it may be at the limit of the bits JS uses in bitshifts
}
return value;
}
// check for imul support, and also for correctness ( https://bugs.webkit.org/show_bug.cgi?id=126345 )
if (!Math['imul'] || Math['imul'](0xffffffff, 5) !== -5) Math['imul'] = function imul(a, b) {
var ah = a >>> 16;
var al = a & 0xffff;
var bh = b >>> 16;
var bl = b & 0xffff;
return (al*bl + ((ah*bl + al*bh) << 16))|0;
};
Math.imul = Math['imul'];
var Math_abs = Math.abs;
var Math_cos = Math.cos;
var Math_sin = Math.sin;
var Math_tan = Math.tan;
var Math_acos = Math.acos;
var Math_asin = Math.asin;
var Math_atan = Math.atan;
var Math_atan2 = Math.atan2;
var Math_exp = Math.exp;
var Math_log = Math.log;
var Math_sqrt = Math.sqrt;
var Math_ceil = Math.ceil;
var Math_floor = Math.floor;
var Math_pow = Math.pow;
var Math_imul = Math.imul;
var Math_fround = Math.fround;
var Math_min = Math.min;
// A counter of dependencies for calling run(). If we need to
// do asynchronous work before running, increment this and
// decrement it. Incrementing must happen in a place like
// PRE_RUN_ADDITIONS (used by emcc to add file preloading).
// Note that you can add dependencies in preRun, even though
// it happens right before run - run will be postponed until
// the dependencies are met.
var runDependencies = 0;
var runDependencyWatcher = null;
var dependenciesFulfilled = null; // overridden to take different actions when all run dependencies are fulfilled
function addRunDependency(id) {
runDependencies++;
if (Module['monitorRunDependencies']) {
Module['monitorRunDependencies'](runDependencies);
}
}
Module['addRunDependency'] = addRunDependency;
function removeRunDependency(id) {
runDependencies--;
if (Module['monitorRunDependencies']) {
Module['monitorRunDependencies'](runDependencies);
}
if (runDependencies == 0) {
if (runDependencyWatcher !== null) {
clearInterval(runDependencyWatcher);
runDependencyWatcher = null;
}
if (dependenciesFulfilled) {
var callback = dependenciesFulfilled;
dependenciesFulfilled = null;
callback(); // can add another dependenciesFulfilled
}
}
}
Module['removeRunDependency'] = removeRunDependency;
Module["preloadedImages"] = {}; // maps url to image data
Module["preloadedAudios"] = {}; // maps url to audio data
var memoryInitializer = null;
// === Body ===
STATIC_BASE = 8;
STATICTOP = STATIC_BASE + Runtime.alignMemory(1155);
/* global initializers */ __ATINIT__.push();
/* memory initializer */ allocate([38,2,0,0,0,0,0,0,42,0,0,0,0,0,0,0,97,0,0,0,113,61,138,62,0,0,0,0,99,0,0,0,143,194,245,61,0,0,0,0,103,0,0,0,143,194,245,61,0,0,0,0,116,0,0,0,113,61,138,62,0,0,0,0,66,0,0,0,10,215,163,60,0,0,0,0,68,0,0,0,10,215,163,60,0,0,0,0,72,0,0,0,10,215,163,60,0,0,0,0,75,0,0,0,10,215,163,60,0,0,0,0,77,0,0,0,10,215,163,60,0,0,0,0,78,0,0,0,10,215,163,60,0,0,0,0,82,0,0,0,10,215,163,60,0,0,0,0,83,0,0,0,10,215,163,60,0,0,0,0,86,0,0,0,10,215,163,60,0,0,0,0,87,0,0,0,10,215,163,60,0,0,0,0,89,0,0,0,10,215,163,60,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,97,0,0,0,233,28,155,62,0,0,0,0,99,0,0,0,114,189,74,62,0,0,0,0,103,0,0,0,215,73,74,62,0,0,0,0,116,0,0,0,114,95,154,62,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,101,114,114,111,114,58,32,37,100,10,0,0,0,0,0,0,71,71,67,67,71,71,71,67,71,67,71,71,84,71,71,67,84,67,65,67,71,67,67,84,71,84,65,65,84,67,67,67,65,71,67,65,67,84,84,84,71,71,71,65,71,71,67,67,71,65,71,71,67,71,71,71,67,71,71,65,84,67,65,67,67,84,71,65,71,71,84,67,65,71,71,65,71,84,84,67,71,65,71,65,67,67,65,71,67,67,84,71,71,67,67,65,65,67,65,84,71,71,84,71,65,65,65,67,67,67,67,71,84,67,84,67,84,65,67,84,65,65,65,65,65,84,65,67,65,65,65,65,65,84,84,65,71,67,67,71,71,71,67,71,84,71,71,84,71,71,67,71,67,71,67,71,67,67,84,71,84,65,65,84,67,67,67,65,71,67,84,65,67,84,67,71,71,71,65,71,71,67,84,71,65,71,71,67,65,71,71,65,71,65,65,84,67,71,67,84,84,71,65,65,67,67,67,71,71,71,65,71,71,67,71,71,65,71,71,84,84,71,67,65,71,84,71,65,71,67,67,71,65,71,65,84,67,71,67,71,67,67,65,67,84,71,67,65,67,84,67,67,65,71,67,67,84,71,71,71,67,71,65,67,65,71,65,71,67,71,65,71,65,67,84,67,67,71,84,67,84,67,65,65,65,65,65,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,120,4,0,0,1,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,115,116,100,58,58,98,97,100,95,97,108,108,111,99,0,0,83,116,57,98,97,100,95,97,108,108,111,99,0,0,0,0,8,0,0,0,104,4,0,0,0,0,0,0,0,0,0,0], "i8", ALLOC_NONE, Runtime.GLOBAL_BASE);
var tempDoublePtr = Runtime.alignMemory(allocate(12, "i8", ALLOC_STATIC), 8);
assert(tempDoublePtr % 8 == 0);
function copyTempFloat(ptr) { // functions, because inlining this code increases code size too much
HEAP8[tempDoublePtr] = HEAP8[ptr];
HEAP8[tempDoublePtr+1] = HEAP8[ptr+1];
HEAP8[tempDoublePtr+2] = HEAP8[ptr+2];
HEAP8[tempDoublePtr+3] = HEAP8[ptr+3];
}
function copyTempDouble(ptr) {
HEAP8[tempDoublePtr] = HEAP8[ptr];
HEAP8[tempDoublePtr+1] = HEAP8[ptr+1];
HEAP8[tempDoublePtr+2] = HEAP8[ptr+2];
HEAP8[tempDoublePtr+3] = HEAP8[ptr+3];
HEAP8[tempDoublePtr+4] = HEAP8[ptr+4];
HEAP8[tempDoublePtr+5] = HEAP8[ptr+5];
HEAP8[tempDoublePtr+6] = HEAP8[ptr+6];
HEAP8[tempDoublePtr+7] = HEAP8[ptr+7];
}
var ___errno_state=0;function ___setErrNo(value) {
// For convenient setting and returning of errno.
HEAP32[((___errno_state)>>2)]=value;
return value;
}
var ERRNO_CODES={EPERM:1,ENOENT:2,ESRCH:3,EINTR:4,EIO:5,ENXIO:6,E2BIG:7,ENOEXEC:8,EBADF:9,ECHILD:10,EAGAIN:11,EWOULDBLOCK:11,ENOMEM:12,EACCES:13,EFAULT:14,ENOTBLK:15,EBUSY:16,EEXIST:17,EXDEV:18,ENODEV:19,ENOTDIR:20,EISDIR:21,EINVAL:22,ENFILE:23,EMFILE:24,ENOTTY:25,ETXTBSY:26,EFBIG:27,ENOSPC:28,ESPIPE:29,EROFS:30,EMLINK:31,EPIPE:32,EDOM:33,ERANGE:34,ENOMSG:42,EIDRM:43,ECHRNG:44,EL2NSYNC:45,EL3HLT:46,EL3RST:47,ELNRNG:48,EUNATCH:49,ENOCSI:50,EL2HLT:51,EDEADLK:35,ENOLCK:37,EBADE:52,EBADR:53,EXFULL:54,ENOANO:55,EBADRQC:56,EBADSLT:57,EDEADLOCK:35,EBFONT:59,ENOSTR:60,ENODATA:61,ETIME:62,ENOSR:63,ENONET:64,ENOPKG:65,EREMOTE:66,ENOLINK:67,EADV:68,ESRMNT:69,ECOMM:70,EPROTO:71,EMULTIHOP:72,EDOTDOT:73,EBADMSG:74,ENOTUNIQ:76,EBADFD:77,EREMCHG:78,ELIBACC:79,ELIBBAD:80,ELIBSCN:81,ELIBMAX:82,ELIBEXEC:83,ENOSYS:38,ENOTEMPTY:39,ENAMETOOLONG:36,ELOOP:40,EOPNOTSUPP:95,EPFNOSUPPORT:96,ECONNRESET:104,ENOBUFS:105,EAFNOSUPPORT:97,EPROTOTYPE:91,ENOTSOCK:88,ENOPROTOOPT:92,ESHUTDOWN:108,ECONNREFUSED:111,EADDRINUSE:98,ECONNABORTED:103,ENETUNREACH:101,ENETDOWN:100,ETIMEDOUT:110,EHOSTDOWN:112,EHOSTUNREACH:113,EINPROGRESS:115,EALREADY:114,EDESTADDRREQ:89,EMSGSIZE:90,EPROTONOSUPPORT:93,ESOCKTNOSUPPORT:94,EADDRNOTAVAIL:99,ENETRESET:102,EISCONN:106,ENOTCONN:107,ETOOMANYREFS:109,EUSERS:87,EDQUOT:122,ESTALE:116,ENOTSUP:95,ENOMEDIUM:123,EILSEQ:84,EOVERFLOW:75,ECANCELED:125,ENOTRECOVERABLE:131,EOWNERDEAD:130,ESTRPIPE:86};function _sysconf(name) {
// long sysconf(int name);
// http://pubs.opengroup.org/onlinepubs/009695399/functions/sysconf.html
switch(name) {
case 30: return PAGE_SIZE;
case 132:
case 133:
case 12:
case 137:
case 138:
case 15:
case 235:
case 16:
case 17:
case 18:
case 19:
case 20:
case 149:
case 13:
case 10:
case 236:
case 153:
case 9:
case 21:
case 22:
case 159:
case 154:
case 14:
case 77:
case 78:
case 139:
case 80:
case 81:
case 79:
case 82:
case 68:
case 67:
case 164:
case 11:
case 29:
case 47:
case 48:
case 95:
case 52:
case 51:
case 46:
return 200809;
case 27:
case 246:
case 127:
case 128:
case 23:
case 24:
case 160:
case 161:
case 181:
case 182:
case 242:
case 183:
case 184:
case 243:
case 244:
case 245:
case 165:
case 178:
case 179:
case 49:
case 50:
case 168:
case 169:
case 175:
case 170:
case 171:
case 172:
case 97:
case 76:
case 32:
case 173:
case 35:
return -1;
case 176:
case 177:
case 7:
case 155:
case 8:
case 157:
case 125:
case 126:
case 92:
case 93:
case 129:
case 130:
case 131:
case 94:
case 91:
return 1;
case 74:
case 60:
case 69:
case 70:
case 4:
return 1024;
case 31:
case 42:
case 72:
return 32;
case 87:
case 26:
case 33:
return 2147483647;
case 34:
case 1:
return 47839;
case 38:
case 36:
return 99;
case 43:
case 37:
return 2048;
case 0: return 2097152;
case 3: return 65536;
case 28: return 32768;
case 44: return 32767;
case 75: return 16384;
case 39: return 1000;
case 89: return 700;
case 71: return 256;
case 40: return 255;
case 2: return 100;
case 180: return 64;
case 25: return 20;
case 5: return 16;
case 6: return 6;
case 73: return 4;
case 84: return 1;
}
___setErrNo(ERRNO_CODES.EINVAL);
return -1;
}
function __ZSt18uncaught_exceptionv() { // std::uncaught_exception()
return !!__ZSt18uncaught_exceptionv.uncaught_exception;
}
function ___cxa_is_number_type(type) {
var isNumber = false;
try { if (type == __ZTIi) isNumber = true } catch(e){}
try { if (type == __ZTIj) isNumber = true } catch(e){}
try { if (type == __ZTIl) isNumber = true } catch(e){}
try { if (type == __ZTIm) isNumber = true } catch(e){}
try { if (type == __ZTIx) isNumber = true } catch(e){}
try { if (type == __ZTIy) isNumber = true } catch(e){}
try { if (type == __ZTIf) isNumber = true } catch(e){}
try { if (type == __ZTId) isNumber = true } catch(e){}
try { if (type == __ZTIe) isNumber = true } catch(e){}
try { if (type == __ZTIc) isNumber = true } catch(e){}
try { if (type == __ZTIa) isNumber = true } catch(e){}
try { if (type == __ZTIh) isNumber = true } catch(e){}
try { if (type == __ZTIs) isNumber = true } catch(e){}
try { if (type == __ZTIt) isNumber = true } catch(e){}
return isNumber;
}function ___cxa_does_inherit(definiteType, possibilityType, possibility) {
if (possibility == 0) return false;
if (possibilityType == 0 || possibilityType == definiteType)
return true;
var possibility_type_info;
if (___cxa_is_number_type(possibilityType)) {
possibility_type_info = possibilityType;
} else {
var possibility_type_infoAddr = HEAP32[((possibilityType)>>2)] - 8;
possibility_type_info = HEAP32[((possibility_type_infoAddr)>>2)];
}
switch (possibility_type_info) {
case 0: // possibility is a pointer
// See if definite type is a pointer
var definite_type_infoAddr = HEAP32[((definiteType)>>2)] - 8;
var definite_type_info = HEAP32[((definite_type_infoAddr)>>2)];
if (definite_type_info == 0) {
// Also a pointer; compare base types of pointers
var defPointerBaseAddr = definiteType+8;
var defPointerBaseType = HEAP32[((defPointerBaseAddr)>>2)];
var possPointerBaseAddr = possibilityType+8;
var possPointerBaseType = HEAP32[((possPointerBaseAddr)>>2)];
return ___cxa_does_inherit(defPointerBaseType, possPointerBaseType, possibility);
} else
return false; // one pointer and one non-pointer
case 1: // class with no base class
return false;
case 2: // class with base class
var parentTypeAddr = possibilityType + 8;
var parentType = HEAP32[((parentTypeAddr)>>2)];
return ___cxa_does_inherit(definiteType, parentType, possibility);
default:
return false; // some unencountered type
}
}
var ___cxa_last_thrown_exception=0;function ___resumeException(ptr) {
if (!___cxa_last_thrown_exception) { ___cxa_last_thrown_exception = ptr; }
throw ptr + " - Exception catching is disabled, this exception cannot be caught. Compile with -s DISABLE_EXCEPTION_CATCHING=0 or DISABLE_EXCEPTION_CATCHING=2 to catch.";
}
var ___cxa_exception_header_size=8;function ___cxa_find_matching_catch(thrown, throwntype) {
if (thrown == -1) thrown = ___cxa_last_thrown_exception;
header = thrown - ___cxa_exception_header_size;
if (throwntype == -1) throwntype = HEAP32[((header)>>2)];
var typeArray = Array.prototype.slice.call(arguments, 2);
// If throwntype is a pointer, this means a pointer has been
// thrown. When a pointer is thrown, actually what's thrown
// is a pointer to the pointer. We'll dereference it.
if (throwntype != 0 && !___cxa_is_number_type(throwntype)) {
var throwntypeInfoAddr= HEAP32[((throwntype)>>2)] - 8;
var throwntypeInfo= HEAP32[((throwntypeInfoAddr)>>2)];
if (throwntypeInfo == 0)
thrown = HEAP32[((thrown)>>2)];
}
// The different catch blocks are denoted by different types.
// Due to inheritance, those types may not precisely match the
// type of the thrown object. Find one which matches, and
// return the type of the catch block which should be called.
for (var i = 0; i < typeArray.length; i++) {
if (___cxa_does_inherit(typeArray[i], throwntype, thrown))
return ((asm["setTempRet0"](typeArray[i]),thrown)|0);
}
// Shouldn't happen unless we have bogus data in typeArray
// or encounter a type for which emscripten doesn't have suitable
// typeinfo defined. Best-efforts match just in case.
return ((asm["setTempRet0"](throwntype),thrown)|0);
}function ___cxa_throw(ptr, type, destructor) {
if (!___cxa_throw.initialized) {
try {
HEAP32[((__ZTVN10__cxxabiv119__pointer_type_infoE)>>2)]=0; // Workaround for libcxxabi integration bug
} catch(e){}
try {
HEAP32[((__ZTVN10__cxxabiv117__class_type_infoE)>>2)]=1; // Workaround for libcxxabi integration bug
} catch(e){}
try {
HEAP32[((__ZTVN10__cxxabiv120__si_class_type_infoE)>>2)]=2; // Workaround for libcxxabi integration bug
} catch(e){}
___cxa_throw.initialized = true;
}
var header = ptr - ___cxa_exception_header_size;
HEAP32[((header)>>2)]=type;
HEAP32[(((header)+(4))>>2)]=destructor;
___cxa_last_thrown_exception = ptr;
if (!("uncaught_exception" in __ZSt18uncaught_exceptionv)) {
__ZSt18uncaught_exceptionv.uncaught_exception = 1;
} else {
__ZSt18uncaught_exceptionv.uncaught_exception++;
}
throw ptr + " - Exception catching is disabled, this exception cannot be caught. Compile with -s DISABLE_EXCEPTION_CATCHING=0 or DISABLE_EXCEPTION_CATCHING=2 to catch.";
}
Module["_memset"] = _memset;
function _abort() {
Module['abort']();
}
var ERRNO_MESSAGES={0:"Success",1:"Not super-user",2:"No such file or directory",3:"No such process",4:"Interrupted system call",5:"I/O error",6:"No such device or address",7:"Arg list too long",8:"Exec format error",9:"Bad file number",10:"No children",11:"No more processes",12:"Not enough core",13:"Permission denied",14:"Bad address",15:"Block device required",16:"Mount device busy",17:"File exists",18:"Cross-device link",19:"No such device",20:"Not a directory",21:"Is a directory",22:"Invalid argument",23:"Too many open files in system",24:"Too many open files",25:"Not a typewriter",26:"Text file busy",27:"File too large",28:"No space left on device",29:"Illegal seek",30:"Read only file system",31:"Too many links",32:"Broken pipe",33:"Math arg out of domain of func",34:"Math result not representable",35:"File locking deadlock error",36:"File or path name too long",37:"No record locks available",38:"Function not implemented",39:"Directory not empty",40:"Too many symbolic links",42:"No message of desired type",43:"Identifier removed",44:"Channel number out of range",45:"Level 2 not synchronized",46:"Level 3 halted",47:"Level 3 reset",48:"Link number out of range",49:"Protocol driver not attached",50:"No CSI structure available",51:"Level 2 halted",52:"Invalid exchange",53:"Invalid request descriptor",54:"Exchange full",55:"No anode",56:"Invalid request code",57:"Invalid slot",59:"Bad font file fmt",60:"Device not a stream",61:"No data (for no delay io)",62:"Timer expired",63:"Out of streams resources",64:"Machine is not on the network",65:"Package not installed",66:"The object is remote",67:"The link has been severed",68:"Advertise error",69:"Srmount error",70:"Communication error on send",71:"Protocol error",72:"Multihop attempted",73:"Cross mount point (not really error)",74:"Trying to read unreadable message",75:"Value too large for defined data type",76:"Given log. name not unique",77:"f.d. invalid for this operation",78:"Remote address changed",79:"Can access a needed shared lib",80:"Accessing a corrupted shared lib",81:".lib section in a.out corrupted",82:"Attempting to link in too many libs",83:"Attempting to exec a shared library",84:"Illegal byte sequence",86:"Streams pipe error",87:"Too many users",88:"Socket operation on non-socket",89:"Destination address required",90:"Message too long",91:"Protocol wrong type for socket",92:"Protocol not available",93:"Unknown protocol",94:"Socket type not supported",95:"Not supported",96:"Protocol family not supported",97:"Address family not supported by protocol family",98:"Address already in use",99:"Address not available",100:"Network interface is not configured",101:"Network is unreachable",102:"Connection reset by network",103:"Connection aborted",104:"Connection reset by peer",105:"No buffer space available",106:"Socket is already connected",107:"Socket is not connected",108:"Can't send after socket shutdown",109:"Too many references",110:"Connection timed out",111:"Connection refused",112:"Host is down",113:"Host is unreachable",114:"Socket already connected",115:"Connection already in progress",116:"Stale file handle",122:"Quota exceeded",123:"No medium (in tape drive)",125:"Operation canceled",130:"Previous owner died",131:"State not recoverable"};
var PATH={splitPath:function (filename) {
var splitPathRe = /^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;
return splitPathRe.exec(filename).slice(1);
},normalizeArray:function (parts, allowAboveRoot) {
// if the path tries to go above the root, `up` ends up > 0
var up = 0;
for (var i = parts.length - 1; i >= 0; i--) {
var last = parts[i];
if (last === '.') {
parts.splice(i, 1);
} else if (last === '..') {
parts.splice(i, 1);
up++;
} else if (up) {
parts.splice(i, 1);
up--;
}
}
// if the path is allowed to go above the root, restore leading ..s
if (allowAboveRoot) {
for (; up--; up) {
parts.unshift('..');
}
}
return parts;
},normalize:function (path) {
var isAbsolute = path.charAt(0) === '/',
trailingSlash = path.substr(-1) === '/';
// Normalize the path
path = PATH.normalizeArray(path.split('/').filter(function(p) {
return !!p;
}), !isAbsolute).join('/');
if (!path && !isAbsolute) {
path = '.';
}
if (path && trailingSlash) {
path += '/';
}
return (isAbsolute ? '/' : '') + path;
},dirname:function (path) {
var result = PATH.splitPath(path),
root = result[0],
dir = result[1];
if (!root && !dir) {
// No dirname whatsoever
return '.';
}
if (dir) {
// It has a dirname, strip trailing slash
dir = dir.substr(0, dir.length - 1);
}
return root + dir;
},basename:function (path) {
// EMSCRIPTEN return '/'' for '/', not an empty string
if (path === '/') return '/';
var lastSlash = path.lastIndexOf('/');
if (lastSlash === -1) return path;
return path.substr(lastSlash+1);
},extname:function (path) {
return PATH.splitPath(path)[3];
},join:function () {
var paths = Array.prototype.slice.call(arguments, 0);
return PATH.normalize(paths.join('/'));
},join2:function (l, r) {
return PATH.normalize(l + '/' + r);
},resolve:function () {
var resolvedPath = '',
resolvedAbsolute = false;
for (var i = arguments.length - 1; i >= -1 && !resolvedAbsolute; i--) {
var path = (i >= 0) ? arguments[i] : FS.cwd();
// Skip empty and invalid entries
if (typeof path !== 'string') {
throw new TypeError('Arguments to path.resolve must be strings');
} else if (!path) {
continue;
}
resolvedPath = path + '/' + resolvedPath;
resolvedAbsolute = path.charAt(0) === '/';
}
// At this point the path should be resolved to a full absolute path, but
// handle relative paths to be safe (might happen when process.cwd() fails)
resolvedPath = PATH.normalizeArray(resolvedPath.split('/').filter(function(p) {
return !!p;
}), !resolvedAbsolute).join('/');
return ((resolvedAbsolute ? '/' : '') + resolvedPath) || '.';
},relative:function (from, to) {
from = PATH.resolve(from).substr(1);
to = PATH.resolve(to).substr(1);
function trim(arr) {
var start = 0;
for (; start < arr.length; start++) {
if (arr[start] !== '') break;
}
var end = arr.length - 1;
for (; end >= 0; end--) {
if (arr[end] !== '') break;
}
if (start > end) return [];
return arr.slice(start, end - start + 1);
}
var fromParts = trim(from.split('/'));
var toParts = trim(to.split('/'));
var length = Math.min(fromParts.length, toParts.length);
var samePartsLength = length;
for (var i = 0; i < length; i++) {
if (fromParts[i] !== toParts[i]) {
samePartsLength = i;
break;
}
}
var outputParts = [];
for (var i = samePartsLength; i < fromParts.length; i++) {
outputParts.push('..');
}
outputParts = outputParts.concat(toParts.slice(samePartsLength));
return outputParts.join('/');
}};
var TTY={ttys:[],init:function () {
// https://github.com/kripken/emscripten/pull/1555
// if (ENVIRONMENT_IS_NODE) {
// // currently, FS.init does not distinguish if process.stdin is a file or TTY
// // device, it always assumes it's a TTY device. because of this, we're forcing
// // process.stdin to UTF8 encoding to at least make stdin reading compatible
// // with text files until FS.init can be refactored.
// process['stdin']['setEncoding']('utf8');
// }
},shutdown:function () {
// https://github.com/kripken/emscripten/pull/1555
// if (ENVIRONMENT_IS_NODE) {
// // inolen: any idea as to why node -e 'process.stdin.read()' wouldn't exit immediately (with process.stdin being a tty)?
// // isaacs: because now it's reading from the stream, you've expressed interest in it, so that read() kicks off a _read() which creates a ReadReq operation
// // inolen: I thought read() in that case was a synchronous operation that just grabbed some amount of buffered data if it exists?
// // isaacs: it is. but it also triggers a _read() call, which calls readStart() on the handle
// // isaacs: do process.stdin.pause() and i'd think it'd probably close the pending call
// process['stdin']['pause']();
// }
},register:function (dev, ops) {
TTY.ttys[dev] = { input: [], output: [], ops: ops };
FS.registerDevice(dev, TTY.stream_ops);
},stream_ops:{open:function (stream) {
var tty = TTY.ttys[stream.node.rdev];
if (!tty) {
throw new FS.ErrnoError(ERRNO_CODES.ENODEV);
}
stream.tty = tty;
stream.seekable = false;
},close:function (stream) {
// flush any pending line data
if (stream.tty.output.length) {
stream.tty.ops.put_char(stream.tty, 10);
}
},read:function (stream, buffer, offset, length, pos /* ignored */) {
if (!stream.tty || !stream.tty.ops.get_char) {
throw new FS.ErrnoError(ERRNO_CODES.ENXIO);
}
var bytesRead = 0;
for (var i = 0; i < length; i++) {
var result;
try {
result = stream.tty.ops.get_char(stream.tty);
} catch (e) {
throw new FS.ErrnoError(ERRNO_CODES.EIO);
}
if (result === undefined && bytesRead === 0) {
throw new FS.ErrnoError(ERRNO_CODES.EAGAIN);
}
if (result === null || result === undefined) break;
bytesRead++;
buffer[offset+i] = result;
}
if (bytesRead) {
stream.node.timestamp = Date.now();
}
return bytesRead;
},write:function (stream, buffer, offset, length, pos) {
if (!stream.tty || !stream.tty.ops.put_char) {
throw new FS.ErrnoError(ERRNO_CODES.ENXIO);
}
for (var i = 0; i < length; i++) {
try {
stream.tty.ops.put_char(stream.tty, buffer[offset+i]);
} catch (e) {
throw new FS.ErrnoError(ERRNO_CODES.EIO);
}
}
if (length) {
stream.node.timestamp = Date.now();
}
return i;
}},default_tty_ops:{get_char:function (tty) {
if (!tty.input.length) {
var result = null;
if (ENVIRONMENT_IS_NODE) {
result = process['stdin']['read']();
if (!result) {
if (process['stdin']['_readableState'] && process['stdin']['_readableState']['ended']) {
return null; // EOF
}
return undefined; // no data available
}
} else if (typeof window != 'undefined' &&
typeof window.prompt == 'function') {
// Browser.
result = window.prompt('Input: '); // returns null on cancel
if (result !== null) {
result += '\n';
}
} else if (typeof readline == 'function') {
// Command line.
result = readline();
if (result !== null) {
result += '\n';
}
}
if (!result) {
return null;
}
tty.input = intArrayFromString(result, true);
}
return tty.input.shift();
},put_char:function (tty, val) {
if (val === null || val === 10) {
Module['print'](tty.output.join(''));
tty.output = [];
} else {
tty.output.push(TTY.utf8.processCChar(val));
}
}},default_tty1_ops:{put_char:function (tty, val) {
if (val === null || val === 10) {
Module['printErr'](tty.output.join(''));
tty.output = [];
} else {
tty.output.push(TTY.utf8.processCChar(val));
}
}}};
var MEMFS={ops_table:null,CONTENT_OWNING:1,CONTENT_FLEXIBLE:2,CONTENT_FIXED:3,mount:function (mount) {
return MEMFS.createNode(null, '/', 16384 | 511 /* 0777 */, 0);
},createNode:function (parent, name, mode, dev) {
if (FS.isBlkdev(mode) || FS.isFIFO(mode)) {
// no supported
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
if (!MEMFS.ops_table) {
MEMFS.ops_table = {
dir: {
node: {
getattr: MEMFS.node_ops.getattr,
setattr: MEMFS.node_ops.setattr,
lookup: MEMFS.node_ops.lookup,
mknod: MEMFS.node_ops.mknod,
rename: MEMFS.node_ops.rename,
unlink: MEMFS.node_ops.unlink,
rmdir: MEMFS.node_ops.rmdir,
readdir: MEMFS.node_ops.readdir,
symlink: MEMFS.node_ops.symlink
},
stream: {
llseek: MEMFS.stream_ops.llseek
}
},
file: {
node: {
getattr: MEMFS.node_ops.getattr,
setattr: MEMFS.node_ops.setattr
},
stream: {
llseek: MEMFS.stream_ops.llseek,
read: MEMFS.stream_ops.read,
write: MEMFS.stream_ops.write,
allocate: MEMFS.stream_ops.allocate,
mmap: MEMFS.stream_ops.mmap
}
},
link: {
node: {
getattr: MEMFS.node_ops.getattr,
setattr: MEMFS.node_ops.setattr,
readlink: MEMFS.node_ops.readlink
},
stream: {}
},
chrdev: {
node: {
getattr: MEMFS.node_ops.getattr,
setattr: MEMFS.node_ops.setattr
},
stream: FS.chrdev_stream_ops
},
};
}
var node = FS.createNode(parent, name, mode, dev);
if (FS.isDir(node.mode)) {
node.node_ops = MEMFS.ops_table.dir.node;
node.stream_ops = MEMFS.ops_table.dir.stream;
node.contents = {};
} else if (FS.isFile(node.mode)) {
node.node_ops = MEMFS.ops_table.file.node;
node.stream_ops = MEMFS.ops_table.file.stream;
node.contents = [];
node.contentMode = MEMFS.CONTENT_FLEXIBLE;
} else if (FS.isLink(node.mode)) {
node.node_ops = MEMFS.ops_table.link.node;
node.stream_ops = MEMFS.ops_table.link.stream;
} else if (FS.isChrdev(node.mode)) {
node.node_ops = MEMFS.ops_table.chrdev.node;
node.stream_ops = MEMFS.ops_table.chrdev.stream;
}
node.timestamp = Date.now();
// add the new node to the parent
if (parent) {
parent.contents[name] = node;
}
return node;
},ensureFlexible:function (node) {
if (node.contentMode !== MEMFS.CONTENT_FLEXIBLE) {
var contents = node.contents;
node.contents = Array.prototype.slice.call(contents);
node.contentMode = MEMFS.CONTENT_FLEXIBLE;
}
},node_ops:{getattr:function (node) {
var attr = {};
// device numbers reuse inode numbers.
attr.dev = FS.isChrdev(node.mode) ? node.id : 1;
attr.ino = node.id;
attr.mode = node.mode;
attr.nlink = 1;
attr.uid = 0;
attr.gid = 0;
attr.rdev = node.rdev;
if (FS.isDir(node.mode)) {
attr.size = 4096;
} else if (FS.isFile(node.mode)) {
attr.size = node.contents.length;
} else if (FS.isLink(node.mode)) {
attr.size = node.link.length;
} else {
attr.size = 0;
}
attr.atime = new Date(node.timestamp);
attr.mtime = new Date(node.timestamp);
attr.ctime = new Date(node.timestamp);
// NOTE: In our implementation, st_blocks = Math.ceil(st_size/st_blksize),
// but this is not required by the standard.
attr.blksize = 4096;
attr.blocks = Math.ceil(attr.size / attr.blksize);
return attr;
},setattr:function (node, attr) {
if (attr.mode !== undefined) {
node.mode = attr.mode;
}
if (attr.timestamp !== undefined) {
node.timestamp = attr.timestamp;
}
if (attr.size !== undefined) {
MEMFS.ensureFlexible(node);
var contents = node.contents;
if (attr.size < contents.length) contents.length = attr.size;
else while (attr.size > contents.length) contents.push(0);
}
},lookup:function (parent, name) {
throw FS.genericErrors[ERRNO_CODES.ENOENT];
},mknod:function (parent, name, mode, dev) {
return MEMFS.createNode(parent, name, mode, dev);
},rename:function (old_node, new_dir, new_name) {
// if we're overwriting a directory at new_name, make sure it's empty.
if (FS.isDir(old_node.mode)) {
var new_node;
try {
new_node = FS.lookupNode(new_dir, new_name);
} catch (e) {
}
if (new_node) {
for (var i in new_node.contents) {
throw new FS.ErrnoError(ERRNO_CODES.ENOTEMPTY);
}
}
}
// do the internal rewiring
delete old_node.parent.contents[old_node.name];
old_node.name = new_name;
new_dir.contents[new_name] = old_node;
old_node.parent = new_dir;
},unlink:function (parent, name) {
delete parent.contents[name];
},rmdir:function (parent, name) {
var node = FS.lookupNode(parent, name);
for (var i in node.contents) {
throw new FS.ErrnoError(ERRNO_CODES.ENOTEMPTY);
}
delete parent.contents[name];
},readdir:function (node) {
var entries = ['.', '..']
for (var key in node.contents) {
if (!node.contents.hasOwnProperty(key)) {
continue;
}
entries.push(key);
}
return entries;
},symlink:function (parent, newname, oldpath) {
var node = MEMFS.createNode(parent, newname, 511 /* 0777 */ | 40960, 0);
node.link = oldpath;
return node;
},readlink:function (node) {
if (!FS.isLink(node.mode)) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
return node.link;
}},stream_ops:{read:function (stream, buffer, offset, length, position) {
var contents = stream.node.contents;
if (position >= contents.length)
return 0;
var size = Math.min(contents.length - position, length);
assert(size >= 0);
if (size > 8 && contents.subarray) { // non-trivial, and typed array
buffer.set(contents.subarray(position, position + size), offset);
} else
{
for (var i = 0; i < size; i++) {
buffer[offset + i] = contents[position + i];
}
}
return size;
},write:function (stream, buffer, offset, length, position, canOwn) {
var node = stream.node;
node.timestamp = Date.now();
var contents = node.contents;
if (length && contents.length === 0 && position === 0 && buffer.subarray) {
// just replace it with the new data
if (canOwn && offset === 0) {
node.contents = buffer; // this could be a subarray of Emscripten HEAP, or allocated from some other source.
node.contentMode = (buffer.buffer === HEAP8.buffer) ? MEMFS.CONTENT_OWNING : MEMFS.CONTENT_FIXED;
} else {
node.contents = new Uint8Array(buffer.subarray(offset, offset+length));
node.contentMode = MEMFS.CONTENT_FIXED;
}
return length;
}
MEMFS.ensureFlexible(node);
var contents = node.contents;
while (contents.length < position) contents.push(0);
for (var i = 0; i < length; i++) {
contents[position + i] = buffer[offset + i];
}
return length;
},llseek:function (stream, offset, whence) {
var position = offset;
if (whence === 1) { // SEEK_CUR.
position += stream.position;
} else if (whence === 2) { // SEEK_END.
if (FS.isFile(stream.node.mode)) {
position += stream.node.contents.length;
}
}
if (position < 0) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
stream.ungotten = [];
stream.position = position;
return position;
},allocate:function (stream, offset, length) {
MEMFS.ensureFlexible(stream.node);
var contents = stream.node.contents;
var limit = offset + length;
while (limit > contents.length) contents.push(0);
},mmap:function (stream, buffer, offset, length, position, prot, flags) {
if (!FS.isFile(stream.node.mode)) {
throw new FS.ErrnoError(ERRNO_CODES.ENODEV);
}
var ptr;
var allocated;
var contents = stream.node.contents;
// Only make a new copy when MAP_PRIVATE is specified.
if ( !(flags & 2) &&
(contents.buffer === buffer || contents.buffer === buffer.buffer) ) {
// We can't emulate MAP_SHARED when the file is not backed by the buffer
// we're mapping to (e.g. the HEAP buffer).
allocated = false;
ptr = contents.byteOffset;
} else {
// Try to avoid unnecessary slices.
if (position > 0 || position + length < contents.length) {
if (contents.subarray) {
contents = contents.subarray(position, position + length);
} else {
contents = Array.prototype.slice.call(contents, position, position + length);
}
}
allocated = true;
ptr = _malloc(length);
if (!ptr) {
throw new FS.ErrnoError(ERRNO_CODES.ENOMEM);
}
buffer.set(contents, ptr);
}
return { ptr: ptr, allocated: allocated };
}}};
var IDBFS={dbs:{},indexedDB:function () {
return window.indexedDB || window.mozIndexedDB || window.webkitIndexedDB || window.msIndexedDB;
},DB_VERSION:21,DB_STORE_NAME:"FILE_DATA",mount:function (mount) {
// reuse all of the core MEMFS functionality
return MEMFS.mount.apply(null, arguments);
},syncfs:function (mount, populate, callback) {
IDBFS.getLocalSet(mount, function(err, local) {
if (err) return callback(err);
IDBFS.getRemoteSet(mount, function(err, remote) {
if (err) return callback(err);
var src = populate ? remote : local;
var dst = populate ? local : remote;
IDBFS.reconcile(src, dst, callback);
});
});
},getDB:function (name, callback) {
// check the cache first
var db = IDBFS.dbs[name];
if (db) {
return callback(null, db);
}
var req;
try {
req = IDBFS.indexedDB().open(name, IDBFS.DB_VERSION);
} catch (e) {
return callback(e);
}
req.onupgradeneeded = function(e) {
var db = e.target.result;
var transaction = e.target.transaction;
var fileStore;
if (db.objectStoreNames.contains(IDBFS.DB_STORE_NAME)) {
fileStore = transaction.objectStore(IDBFS.DB_STORE_NAME);
} else {
fileStore = db.createObjectStore(IDBFS.DB_STORE_NAME);
}
fileStore.createIndex('timestamp', 'timestamp', { unique: false });
};
req.onsuccess = function() {
db = req.result;
// add to the cache
IDBFS.dbs[name] = db;
callback(null, db);
};
req.onerror = function() {
callback(this.error);
};
},getLocalSet:function (mount, callback) {
var entries = {};
function isRealDir(p) {
return p !== '.' && p !== '..';
};
function toAbsolute(root) {
return function(p) {
return PATH.join2(root, p);
}
};
var check = FS.readdir(mount.mountpoint).filter(isRealDir).map(toAbsolute(mount.mountpoint));
while (check.length) {
var path = check.pop();
var stat;
try {
stat = FS.stat(path);
} catch (e) {
return callback(e);
}
if (FS.isDir(stat.mode)) {
check.push.apply(check, FS.readdir(path).filter(isRealDir).map(toAbsolute(path)));
}
entries[path] = { timestamp: stat.mtime };
}
return callback(null, { type: 'local', entries: entries });
},getRemoteSet:function (mount, callback) {
var entries = {};
IDBFS.getDB(mount.mountpoint, function(err, db) {
if (err) return callback(err);
var transaction = db.transaction([IDBFS.DB_STORE_NAME], 'readonly');
transaction.onerror = function() { callback(this.error); };
var store = transaction.objectStore(IDBFS.DB_STORE_NAME);
var index = store.index('timestamp');
index.openKeyCursor().onsuccess = function(event) {
var cursor = event.target.result;
if (!cursor) {
return callback(null, { type: 'remote', db: db, entries: entries });
}
entries[cursor.primaryKey] = { timestamp: cursor.key };
cursor.continue();
};
});
},loadLocalEntry:function (path, callback) {
var stat, node;
try {
var lookup = FS.lookupPath(path);
node = lookup.node;
stat = FS.stat(path);
} catch (e) {
return callback(e);
}
if (FS.isDir(stat.mode)) {
return callback(null, { timestamp: stat.mtime, mode: stat.mode });
} else if (FS.isFile(stat.mode)) {
return callback(null, { timestamp: stat.mtime, mode: stat.mode, contents: node.contents });
} else {
return callback(new Error('node type not supported'));
}
},storeLocalEntry:function (path, entry, callback) {
try {
if (FS.isDir(entry.mode)) {
FS.mkdir(path, entry.mode);
} else if (FS.isFile(entry.mode)) {
FS.writeFile(path, entry.contents, { encoding: 'binary', canOwn: true });
} else {
return callback(new Error('node type not supported'));
}
FS.utime(path, entry.timestamp, entry.timestamp);
} catch (e) {
return callback(e);
}
callback(null);
},removeLocalEntry:function (path, callback) {
try {
var lookup = FS.lookupPath(path);
var stat = FS.stat(path);
if (FS.isDir(stat.mode)) {
FS.rmdir(path);
} else if (FS.isFile(stat.mode)) {
FS.unlink(path);
}
} catch (e) {
return callback(e);
}
callback(null);
},loadRemoteEntry:function (store, path, callback) {
var req = store.get(path);
req.onsuccess = function(event) { callback(null, event.target.result); };
req.onerror = function() { callback(this.error); };
},storeRemoteEntry:function (store, path, entry, callback) {
var req = store.put(entry, path);
req.onsuccess = function() { callback(null); };
req.onerror = function() { callback(this.error); };
},removeRemoteEntry:function (store, path, callback) {
var req = store.delete(path);
req.onsuccess = function() { callback(null); };
req.onerror = function() { callback(this.error); };
},reconcile:function (src, dst, callback) {
var total = 0;
var create = [];
Object.keys(src.entries).forEach(function (key) {
var e = src.entries[key];
var e2 = dst.entries[key];
if (!e2 || e.timestamp > e2.timestamp) {
create.push(key);
total++;
}
});
var remove = [];
Object.keys(dst.entries).forEach(function (key) {
var e = dst.entries[key];
var e2 = src.entries[key];
if (!e2) {
remove.push(key);
total++;
}
});
if (!total) {
return callback(null);
}
var errored = false;
var completed = 0;
var db = src.type === 'remote' ? src.db : dst.db;
var transaction = db.transaction([IDBFS.DB_STORE_NAME], 'readwrite');
var store = transaction.objectStore(IDBFS.DB_STORE_NAME);
function done(err) {
if (err) {
if (!done.errored) {
done.errored = true;
return callback(err);
}
return;
}
if (++completed >= total) {
return callback(null);
}
};
transaction.onerror = function() { done(this.error); };
// sort paths in ascending order so directory entries are created
// before the files inside them
create.sort().forEach(function (path) {
if (dst.type === 'local') {
IDBFS.loadRemoteEntry(store, path, function (err, entry) {
if (err) return done(err);
IDBFS.storeLocalEntry(path, entry, done);
});
} else {
IDBFS.loadLocalEntry(path, function (err, entry) {
if (err) return done(err);
IDBFS.storeRemoteEntry(store, path, entry, done);
});
}
});
// sort paths in descending order so files are deleted before their
// parent directories
remove.sort().reverse().forEach(function(path) {
if (dst.type === 'local') {
IDBFS.removeLocalEntry(path, done);
} else {
IDBFS.removeRemoteEntry(store, path, done);
}
});
}};
var NODEFS={isWindows:false,staticInit:function () {
NODEFS.isWindows = !!process.platform.match(/^win/);
},mount:function (mount) {
assert(ENVIRONMENT_IS_NODE);
return NODEFS.createNode(null, '/', NODEFS.getMode(mount.opts.root), 0);
},createNode:function (parent, name, mode, dev) {
if (!FS.isDir(mode) && !FS.isFile(mode) && !FS.isLink(mode)) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
var node = FS.createNode(parent, name, mode);
node.node_ops = NODEFS.node_ops;
node.stream_ops = NODEFS.stream_ops;
return node;
},getMode:function (path) {
var stat;
try {
stat = fs.lstatSync(path);
if (NODEFS.isWindows) {
// On Windows, directories return permission bits 'rw-rw-rw-', even though they have 'rwxrwxrwx', so
// propagate write bits to execute bits.
stat.mode = stat.mode | ((stat.mode & 146) >> 1);
}
} catch (e) {
if (!e.code) throw e;
throw new FS.ErrnoError(ERRNO_CODES[e.code]);
}
return stat.mode;
},realPath:function (node) {
var parts = [];
while (node.parent !== node) {
parts.push(node.name);
node = node.parent;
}
parts.push(node.mount.opts.root);
parts.reverse();
return PATH.join.apply(null, parts);
},flagsToPermissionStringMap:{0:"r",1:"r+",2:"r+",64:"r",65:"r+",66:"r+",129:"rx+",193:"rx+",514:"w+",577:"w",578:"w+",705:"wx",706:"wx+",1024:"a",1025:"a",1026:"a+",1089:"a",1090:"a+",1153:"ax",1154:"ax+",1217:"ax",1218:"ax+",4096:"rs",4098:"rs+"},flagsToPermissionString:function (flags) {
if (flags in NODEFS.flagsToPermissionStringMap) {
return NODEFS.flagsToPermissionStringMap[flags];
} else {
return flags;
}
},node_ops:{getattr:function (node) {
var path = NODEFS.realPath(node);
var stat;
try {
stat = fs.lstatSync(path);
} catch (e) {
if (!e.code) throw e;
throw new FS.ErrnoError(ERRNO_CODES[e.code]);
}
// node.js v0.10.20 doesn't report blksize and blocks on Windows. Fake them with default blksize of 4096.
// See http://support.microsoft.com/kb/140365
if (NODEFS.isWindows && !stat.blksize) {
stat.blksize = 4096;
}
if (NODEFS.isWindows && !stat.blocks) {
stat.blocks = (stat.size+stat.blksize-1)/stat.blksize|0;
}
return {
dev: stat.dev,
ino: stat.ino,
mode: stat.mode,
nlink: stat.nlink,
uid: stat.uid,
gid: stat.gid,
rdev: stat.rdev,
size: stat.size,
atime: stat.atime,
mtime: stat.mtime,
ctime: stat.ctime,
blksize: stat.blksize,
blocks: stat.blocks
};
},setattr:function (node, attr) {
var path = NODEFS.realPath(node);
try {
if (attr.mode !== undefined) {
fs.chmodSync(path, attr.mode);
// update the common node structure mode as well
node.mode = attr.mode;
}
if (attr.timestamp !== undefined) {
var date = new Date(attr.timestamp);
fs.utimesSync(path, date, date);
}
if (attr.size !== undefined) {
fs.truncateSync(path, attr.size);
}
} catch (e) {
if (!e.code) throw e;
throw new FS.ErrnoError(ERRNO_CODES[e.code]);
}
},lookup:function (parent, name) {
var path = PATH.join2(NODEFS.realPath(parent), name);
var mode = NODEFS.getMode(path);
return NODEFS.createNode(parent, name, mode);
},mknod:function (parent, name, mode, dev) {
var node = NODEFS.createNode(parent, name, mode, dev);
// create the backing node for this in the fs root as well
var path = NODEFS.realPath(node);
try {
if (FS.isDir(node.mode)) {
fs.mkdirSync(path, node.mode);
} else {
fs.writeFileSync(path, '', { mode: node.mode });
}
} catch (e) {
if (!e.code) throw e;
throw new FS.ErrnoError(ERRNO_CODES[e.code]);
}
return node;
},rename:function (oldNode, newDir, newName) {
var oldPath = NODEFS.realPath(oldNode);
var newPath = PATH.join2(NODEFS.realPath(newDir), newName);
try {
fs.renameSync(oldPath, newPath);
} catch (e) {
if (!e.code) throw e;
throw new FS.ErrnoError(ERRNO_CODES[e.code]);
}
},unlink:function (parent, name) {
var path = PATH.join2(NODEFS.realPath(parent), name);
try {
fs.unlinkSync(path);
} catch (e) {
if (!e.code) throw e;
throw new FS.ErrnoError(ERRNO_CODES[e.code]);
}
},rmdir:function (parent, name) {
var path = PATH.join2(NODEFS.realPath(parent), name);
try {
fs.rmdirSync(path);
} catch (e) {
if (!e.code) throw e;
throw new FS.ErrnoError(ERRNO_CODES[e.code]);
}
},readdir:function (node) {
var path = NODEFS.realPath(node);
try {
return fs.readdirSync(path);
} catch (e) {
if (!e.code) throw e;
throw new FS.ErrnoError(ERRNO_CODES[e.code]);
}
},symlink:function (parent, newName, oldPath) {
var newPath = PATH.join2(NODEFS.realPath(parent), newName);
try {
fs.symlinkSync(oldPath, newPath);
} catch (e) {
if (!e.code) throw e;
throw new FS.ErrnoError(ERRNO_CODES[e.code]);
}
},readlink:function (node) {
var path = NODEFS.realPath(node);
try {
return fs.readlinkSync(path);
} catch (e) {
if (!e.code) throw e;
throw new FS.ErrnoError(ERRNO_CODES[e.code]);
}
}},stream_ops:{open:function (stream) {
var path = NODEFS.realPath(stream.node);
try {
if (FS.isFile(stream.node.mode)) {
stream.nfd = fs.openSync(path, NODEFS.flagsToPermissionString(stream.flags));
}
} catch (e) {
if (!e.code) throw e;
throw new FS.ErrnoError(ERRNO_CODES[e.code]);
}
},close:function (stream) {
try {
if (FS.isFile(stream.node.mode) && stream.nfd) {
fs.closeSync(stream.nfd);
}
} catch (e) {
if (!e.code) throw e;
throw new FS.ErrnoError(ERRNO_CODES[e.code]);
}
},read:function (stream, buffer, offset, length, position) {
// FIXME this is terrible.
var nbuffer = new Buffer(length);
var res;
try {
res = fs.readSync(stream.nfd, nbuffer, 0, length, position);
} catch (e) {
throw new FS.ErrnoError(ERRNO_CODES[e.code]);
}
if (res > 0) {
for (var i = 0; i < res; i++) {
buffer[offset + i] = nbuffer[i];
}
}
return res;
},write:function (stream, buffer, offset, length, position) {
// FIXME this is terrible.
var nbuffer = new Buffer(buffer.subarray(offset, offset + length));
var res;
try {
res = fs.writeSync(stream.nfd, nbuffer, 0, length, position);
} catch (e) {
throw new FS.ErrnoError(ERRNO_CODES[e.code]);
}
return res;
},llseek:function (stream, offset, whence) {
var position = offset;
if (whence === 1) { // SEEK_CUR.
position += stream.position;
} else if (whence === 2) { // SEEK_END.
if (FS.isFile(stream.node.mode)) {
try {
var stat = fs.fstatSync(stream.nfd);
position += stat.size;
} catch (e) {
throw new FS.ErrnoError(ERRNO_CODES[e.code]);
}
}
}
if (position < 0) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
stream.position = position;
return position;
}}};
var _stdin=allocate(1, "i32*", ALLOC_STATIC);
var _stdout=allocate(1, "i32*", ALLOC_STATIC);
var _stderr=allocate(1, "i32*", ALLOC_STATIC);
function _fflush(stream) {
// int fflush(FILE *stream);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/fflush.html
// we don't currently perform any user-space buffering of data
}var FS={root:null,mounts:[],devices:[null],streams:[],nextInode:1,nameTable:null,currentPath:"/",initialized:false,ignorePermissions:true,ErrnoError:null,genericErrors:{},handleFSError:function (e) {
if (!(e instanceof FS.ErrnoError)) throw e + ' : ' + stackTrace();
return ___setErrNo(e.errno);
},lookupPath:function (path, opts) {
path = PATH.resolve(FS.cwd(), path);
opts = opts || {};
var defaults = {
follow_mount: true,
recurse_count: 0
};
for (var key in defaults) {
if (opts[key] === undefined) {
opts[key] = defaults[key];
}
}
if (opts.recurse_count > 8) { // max recursive lookup of 8
throw new FS.ErrnoError(ERRNO_CODES.ELOOP);
}
// split the path
var parts = PATH.normalizeArray(path.split('/').filter(function(p) {
return !!p;
}), false);
// start at the root
var current = FS.root;
var current_path = '/';
for (var i = 0; i < parts.length; i++) {
var islast = (i === parts.length-1);
if (islast && opts.parent) {
// stop resolving
break;
}
current = FS.lookupNode(current, parts[i]);
current_path = PATH.join2(current_path, parts[i]);
// jump to the mount's root node if this is a mountpoint
if (FS.isMountpoint(current)) {
if (!islast || (islast && opts.follow_mount)) {
current = current.mounted.root;
}
}
// by default, lookupPath will not follow a symlink if it is the final path component.
// setting opts.follow = true will override this behavior.
if (!islast || opts.follow) {
var count = 0;
while (FS.isLink(current.mode)) {
var link = FS.readlink(current_path);
current_path = PATH.resolve(PATH.dirname(current_path), link);
var lookup = FS.lookupPath(current_path, { recurse_count: opts.recurse_count });
current = lookup.node;
if (count++ > 40) { // limit max consecutive symlinks to 40 (SYMLOOP_MAX).
throw new FS.ErrnoError(ERRNO_CODES.ELOOP);
}
}
}
}
return { path: current_path, node: current };
},getPath:function (node) {
var path;
while (true) {
if (FS.isRoot(node)) {
var mount = node.mount.mountpoint;
if (!path) return mount;
return mount[mount.length-1] !== '/' ? mount + '/' + path : mount + path;
}
path = path ? node.name + '/' + path : node.name;
node = node.parent;
}
},hashName:function (parentid, name) {
var hash = 0;
for (var i = 0; i < name.length; i++) {
hash = ((hash << 5) - hash + name.charCodeAt(i)) | 0;
}
return ((parentid + hash) >>> 0) % FS.nameTable.length;
},hashAddNode:function (node) {
var hash = FS.hashName(node.parent.id, node.name);
node.name_next = FS.nameTable[hash];
FS.nameTable[hash] = node;
},hashRemoveNode:function (node) {
var hash = FS.hashName(node.parent.id, node.name);
if (FS.nameTable[hash] === node) {
FS.nameTable[hash] = node.name_next;
} else {
var current = FS.nameTable[hash];
while (current) {
if (current.name_next === node) {
current.name_next = node.name_next;
break;
}
current = current.name_next;
}
}
},lookupNode:function (parent, name) {
var err = FS.mayLookup(parent);
if (err) {
throw new FS.ErrnoError(err);
}
var hash = FS.hashName(parent.id, name);
for (var node = FS.nameTable[hash]; node; node = node.name_next) {
var nodeName = node.name;
if (node.parent.id === parent.id && nodeName === name) {
return node;
}
}
// if we failed to find it in the cache, call into the VFS
return FS.lookup(parent, name);
},createNode:function (parent, name, mode, rdev) {
if (!FS.FSNode) {
FS.FSNode = function(parent, name, mode, rdev) {
if (!parent) {
parent = this; // root node sets parent to itself
}
this.parent = parent;
this.mount = parent.mount;
this.mounted = null;
this.id = FS.nextInode++;
this.name = name;
this.mode = mode;
this.node_ops = {};
this.stream_ops = {};
this.rdev = rdev;
};
FS.FSNode.prototype = {};
// compatibility
var readMode = 292 | 73;
var writeMode = 146;
// NOTE we must use Object.defineProperties instead of individual calls to
// Object.defineProperty in order to make closure compiler happy
Object.defineProperties(FS.FSNode.prototype, {
read: {
get: function() { return (this.mode & readMode) === readMode; },
set: function(val) { val ? this.mode |= readMode : this.mode &= ~readMode; }
},
write: {
get: function() { return (this.mode & writeMode) === writeMode; },
set: function(val) { val ? this.mode |= writeMode : this.mode &= ~writeMode; }
},
isFolder: {
get: function() { return FS.isDir(this.mode); },
},
isDevice: {
get: function() { return FS.isChrdev(this.mode); },
},
});
}
var node = new FS.FSNode(parent, name, mode, rdev);
FS.hashAddNode(node);
return node;
},destroyNode:function (node) {
FS.hashRemoveNode(node);
},isRoot:function (node) {
return node === node.parent;
},isMountpoint:function (node) {
return !!node.mounted;
},isFile:function (mode) {
return (mode & 61440) === 32768;
},isDir:function (mode) {
return (mode & 61440) === 16384;
},isLink:function (mode) {
return (mode & 61440) === 40960;
},isChrdev:function (mode) {
return (mode & 61440) === 8192;
},isBlkdev:function (mode) {
return (mode & 61440) === 24576;
},isFIFO:function (mode) {
return (mode & 61440) === 4096;
},isSocket:function (mode) {
return (mode & 49152) === 49152;
},flagModes:{"r":0,"rs":1052672,"r+":2,"w":577,"wx":705,"xw":705,"w+":578,"wx+":706,"xw+":706,"a":1089,"ax":1217,"xa":1217,"a+":1090,"ax+":1218,"xa+":1218},modeStringToFlags:function (str) {
var flags = FS.flagModes[str];
if (typeof flags === 'undefined') {
throw new Error('Unknown file open mode: ' + str);
}
return flags;
},flagsToPermissionString:function (flag) {
var accmode = flag & 2097155;
var perms = ['r', 'w', 'rw'][accmode];
if ((flag & 512)) {
perms += 'w';
}
return perms;
},nodePermissions:function (node, perms) {
if (FS.ignorePermissions) {
return 0;
}
// return 0 if any user, group or owner bits are set.
if (perms.indexOf('r') !== -1 && !(node.mode & 292)) {
return ERRNO_CODES.EACCES;
} else if (perms.indexOf('w') !== -1 && !(node.mode & 146)) {
return ERRNO_CODES.EACCES;
} else if (perms.indexOf('x') !== -1 && !(node.mode & 73)) {
return ERRNO_CODES.EACCES;
}
return 0;
},mayLookup:function (dir) {
return FS.nodePermissions(dir, 'x');
},mayCreate:function (dir, name) {
try {
var node = FS.lookupNode(dir, name);
return ERRNO_CODES.EEXIST;
} catch (e) {
}
return FS.nodePermissions(dir, 'wx');
},mayDelete:function (dir, name, isdir) {
var node;
try {
node = FS.lookupNode(dir, name);
} catch (e) {
return e.errno;
}
var err = FS.nodePermissions(dir, 'wx');
if (err) {
return err;
}
if (isdir) {
if (!FS.isDir(node.mode)) {
return ERRNO_CODES.ENOTDIR;
}
if (FS.isRoot(node) || FS.getPath(node) === FS.cwd()) {
return ERRNO_CODES.EBUSY;
}
} else {
if (FS.isDir(node.mode)) {
return ERRNO_CODES.EISDIR;
}
}
return 0;
},mayOpen:function (node, flags) {
if (!node) {
return ERRNO_CODES.ENOENT;
}
if (FS.isLink(node.mode)) {
return ERRNO_CODES.ELOOP;
} else if (FS.isDir(node.mode)) {
if ((flags & 2097155) !== 0 || // opening for write
(flags & 512)) {
return ERRNO_CODES.EISDIR;
}
}
return FS.nodePermissions(node, FS.flagsToPermissionString(flags));
},MAX_OPEN_FDS:4096,nextfd:function (fd_start, fd_end) {
fd_start = fd_start || 0;
fd_end = fd_end || FS.MAX_OPEN_FDS;
for (var fd = fd_start; fd <= fd_end; fd++) {
if (!FS.streams[fd]) {
return fd;
}
}
throw new FS.ErrnoError(ERRNO_CODES.EMFILE);
},getStream:function (fd) {
return FS.streams[fd];
},createStream:function (stream, fd_start, fd_end) {
if (!FS.FSStream) {
FS.FSStream = function(){};
FS.FSStream.prototype = {};
// compatibility
Object.defineProperties(FS.FSStream.prototype, {
object: {
get: function() { return this.node; },
set: function(val) { this.node = val; }
},
isRead: {
get: function() { return (this.flags & 2097155) !== 1; }
},
isWrite: {
get: function() { return (this.flags & 2097155) !== 0; }
},
isAppend: {
get: function() { return (this.flags & 1024); }
}
});
}
if (0) {
// reuse the object
stream.__proto__ = FS.FSStream.prototype;
} else {
var newStream = new FS.FSStream();
for (var p in stream) {
newStream[p] = stream[p];
}
stream = newStream;
}
var fd = FS.nextfd(fd_start, fd_end);
stream.fd = fd;
FS.streams[fd] = stream;
return stream;
},closeStream:function (fd) {
FS.streams[fd] = null;
},getStreamFromPtr:function (ptr) {
return FS.streams[ptr - 1];
},getPtrForStream:function (stream) {
return stream ? stream.fd + 1 : 0;
},chrdev_stream_ops:{open:function (stream) {
var device = FS.getDevice(stream.node.rdev);
// override node's stream ops with the device's
stream.stream_ops = device.stream_ops;
// forward the open call
if (stream.stream_ops.open) {
stream.stream_ops.open(stream);
}
},llseek:function () {
throw new FS.ErrnoError(ERRNO_CODES.ESPIPE);
}},major:function (dev) {
return ((dev) >> 8);
},minor:function (dev) {
return ((dev) & 0xff);
},makedev:function (ma, mi) {
return ((ma) << 8 | (mi));
},registerDevice:function (dev, ops) {
FS.devices[dev] = { stream_ops: ops };
},getDevice:function (dev) {
return FS.devices[dev];
},getMounts:function (mount) {
var mounts = [];
var check = [mount];
while (check.length) {
var m = check.pop();
mounts.push(m);
check.push.apply(check, m.mounts);
}
return mounts;
},syncfs:function (populate, callback) {
if (typeof(populate) === 'function') {
callback = populate;
populate = false;
}
var mounts = FS.getMounts(FS.root.mount);
var completed = 0;
function done(err) {
if (err) {
if (!done.errored) {
done.errored = true;
return callback(err);
}
return;
}
if (++completed >= mounts.length) {
callback(null);
}
};
// sync all mounts
mounts.forEach(function (mount) {
if (!mount.type.syncfs) {
return done(null);
}
mount.type.syncfs(mount, populate, done);
});
},mount:function (type, opts, mountpoint) {
var root = mountpoint === '/';
var pseudo = !mountpoint;
var node;
if (root && FS.root) {
throw new FS.ErrnoError(ERRNO_CODES.EBUSY);
} else if (!root && !pseudo) {
var lookup = FS.lookupPath(mountpoint, { follow_mount: false });
mountpoint = lookup.path; // use the absolute path
node = lookup.node;
if (FS.isMountpoint(node)) {
throw new FS.ErrnoError(ERRNO_CODES.EBUSY);
}
if (!FS.isDir(node.mode)) {
throw new FS.ErrnoError(ERRNO_CODES.ENOTDIR);
}
}
var mount = {
type: type,
opts: opts,
mountpoint: mountpoint,
mounts: []
};
// create a root node for the fs
var mountRoot = type.mount(mount);
mountRoot.mount = mount;
mount.root = mountRoot;
if (root) {
FS.root = mountRoot;
} else if (node) {
// set as a mountpoint
node.mounted = mount;
// add the new mount to the current mount's children
if (node.mount) {
node.mount.mounts.push(mount);
}
}
return mountRoot;
},unmount:function (mountpoint) {
var lookup = FS.lookupPath(mountpoint, { follow_mount: false });
if (!FS.isMountpoint(lookup.node)) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
// destroy the nodes for this mount, and all its child mounts
var node = lookup.node;
var mount = node.mounted;
var mounts = FS.getMounts(mount);
Object.keys(FS.nameTable).forEach(function (hash) {
var current = FS.nameTable[hash];
while (current) {
var next = current.name_next;
if (mounts.indexOf(current.mount) !== -1) {
FS.destroyNode(current);
}
current = next;
}
});
// no longer a mountpoint
node.mounted = null;
// remove this mount from the child mounts
var idx = node.mount.mounts.indexOf(mount);
assert(idx !== -1);
node.mount.mounts.splice(idx, 1);
},lookup:function (parent, name) {
return parent.node_ops.lookup(parent, name);
},mknod:function (path, mode, dev) {
var lookup = FS.lookupPath(path, { parent: true });
var parent = lookup.node;
var name = PATH.basename(path);
var err = FS.mayCreate(parent, name);
if (err) {
throw new FS.ErrnoError(err);
}
if (!parent.node_ops.mknod) {
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
return parent.node_ops.mknod(parent, name, mode, dev);
},create:function (path, mode) {
mode = mode !== undefined ? mode : 438 /* 0666 */;
mode &= 4095;
mode |= 32768;
return FS.mknod(path, mode, 0);
},mkdir:function (path, mode) {
mode = mode !== undefined ? mode : 511 /* 0777 */;
mode &= 511 | 512;
mode |= 16384;
return FS.mknod(path, mode, 0);
},mkdev:function (path, mode, dev) {
if (typeof(dev) === 'undefined') {
dev = mode;
mode = 438 /* 0666 */;
}
mode |= 8192;
return FS.mknod(path, mode, dev);
},symlink:function (oldpath, newpath) {
var lookup = FS.lookupPath(newpath, { parent: true });
var parent = lookup.node;
var newname = PATH.basename(newpath);
var err = FS.mayCreate(parent, newname);
if (err) {
throw new FS.ErrnoError(err);
}
if (!parent.node_ops.symlink) {
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
return parent.node_ops.symlink(parent, newname, oldpath);
},rename:function (old_path, new_path) {
var old_dirname = PATH.dirname(old_path);
var new_dirname = PATH.dirname(new_path);
var old_name = PATH.basename(old_path);
var new_name = PATH.basename(new_path);
// parents must exist
var lookup, old_dir, new_dir;
try {
lookup = FS.lookupPath(old_path, { parent: true });
old_dir = lookup.node;
lookup = FS.lookupPath(new_path, { parent: true });
new_dir = lookup.node;
} catch (e) {
throw new FS.ErrnoError(ERRNO_CODES.EBUSY);
}
// need to be part of the same mount
if (old_dir.mount !== new_dir.mount) {
throw new FS.ErrnoError(ERRNO_CODES.EXDEV);
}
// source must exist
var old_node = FS.lookupNode(old_dir, old_name);
// old path should not be an ancestor of the new path
var relative = PATH.relative(old_path, new_dirname);
if (relative.charAt(0) !== '.') {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
// new path should not be an ancestor of the old path
relative = PATH.relative(new_path, old_dirname);
if (relative.charAt(0) !== '.') {
throw new FS.ErrnoError(ERRNO_CODES.ENOTEMPTY);
}
// see if the new path already exists
var new_node;
try {
new_node = FS.lookupNode(new_dir, new_name);
} catch (e) {
// not fatal
}
// early out if nothing needs to change
if (old_node === new_node) {
return;
}
// we'll need to delete the old entry
var isdir = FS.isDir(old_node.mode);
var err = FS.mayDelete(old_dir, old_name, isdir);
if (err) {
throw new FS.ErrnoError(err);
}
// need delete permissions if we'll be overwriting.
// need create permissions if new doesn't already exist.
err = new_node ?
FS.mayDelete(new_dir, new_name, isdir) :
FS.mayCreate(new_dir, new_name);
if (err) {
throw new FS.ErrnoError(err);
}
if (!old_dir.node_ops.rename) {
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
if (FS.isMountpoint(old_node) || (new_node && FS.isMountpoint(new_node))) {
throw new FS.ErrnoError(ERRNO_CODES.EBUSY);
}
// if we are going to change the parent, check write permissions
if (new_dir !== old_dir) {
err = FS.nodePermissions(old_dir, 'w');
if (err) {
throw new FS.ErrnoError(err);
}
}
// remove the node from the lookup hash
FS.hashRemoveNode(old_node);
// do the underlying fs rename
try {
old_dir.node_ops.rename(old_node, new_dir, new_name);
} catch (e) {
throw e;
} finally {
// add the node back to the hash (in case node_ops.rename
// changed its name)
FS.hashAddNode(old_node);
}
},rmdir:function (path) {
var lookup = FS.lookupPath(path, { parent: true });
var parent = lookup.node;
var name = PATH.basename(path);
var node = FS.lookupNode(parent, name);
var err = FS.mayDelete(parent, name, true);
if (err) {
throw new FS.ErrnoError(err);
}
if (!parent.node_ops.rmdir) {
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
if (FS.isMountpoint(node)) {
throw new FS.ErrnoError(ERRNO_CODES.EBUSY);
}
parent.node_ops.rmdir(parent, name);
FS.destroyNode(node);
},readdir:function (path) {
var lookup = FS.lookupPath(path, { follow: true });
var node = lookup.node;
if (!node.node_ops.readdir) {
throw new FS.ErrnoError(ERRNO_CODES.ENOTDIR);
}
return node.node_ops.readdir(node);
},unlink:function (path) {
var lookup = FS.lookupPath(path, { parent: true });
var parent = lookup.node;
var name = PATH.basename(path);
var node = FS.lookupNode(parent, name);
var err = FS.mayDelete(parent, name, false);
if (err) {
// POSIX says unlink should set EPERM, not EISDIR
if (err === ERRNO_CODES.EISDIR) err = ERRNO_CODES.EPERM;
throw new FS.ErrnoError(err);
}
if (!parent.node_ops.unlink) {
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
if (FS.isMountpoint(node)) {
throw new FS.ErrnoError(ERRNO_CODES.EBUSY);
}
parent.node_ops.unlink(parent, name);
FS.destroyNode(node);
},readlink:function (path) {
var lookup = FS.lookupPath(path);
var link = lookup.node;
if (!link.node_ops.readlink) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
return link.node_ops.readlink(link);
},stat:function (path, dontFollow) {
var lookup = FS.lookupPath(path, { follow: !dontFollow });
var node = lookup.node;
if (!node.node_ops.getattr) {
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
return node.node_ops.getattr(node);
},lstat:function (path) {
return FS.stat(path, true);
},chmod:function (path, mode, dontFollow) {
var node;
if (typeof path === 'string') {
var lookup = FS.lookupPath(path, { follow: !dontFollow });
node = lookup.node;
} else {
node = path;
}
if (!node.node_ops.setattr) {
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
node.node_ops.setattr(node, {
mode: (mode & 4095) | (node.mode & ~4095),
timestamp: Date.now()
});
},lchmod:function (path, mode) {
FS.chmod(path, mode, true);
},fchmod:function (fd, mode) {
var stream = FS.getStream(fd);
if (!stream) {
throw new FS.ErrnoError(ERRNO_CODES.EBADF);
}
FS.chmod(stream.node, mode);
},chown:function (path, uid, gid, dontFollow) {
var node;
if (typeof path === 'string') {
var lookup = FS.lookupPath(path, { follow: !dontFollow });
node = lookup.node;
} else {
node = path;
}
if (!node.node_ops.setattr) {
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
node.node_ops.setattr(node, {
timestamp: Date.now()
// we ignore the uid / gid for now
});
},lchown:function (path, uid, gid) {
FS.chown(path, uid, gid, true);
},fchown:function (fd, uid, gid) {
var stream = FS.getStream(fd);
if (!stream) {
throw new FS.ErrnoError(ERRNO_CODES.EBADF);
}
FS.chown(stream.node, uid, gid);
},truncate:function (path, len) {
if (len < 0) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
var node;
if (typeof path === 'string') {
var lookup = FS.lookupPath(path, { follow: true });
node = lookup.node;
} else {
node = path;
}
if (!node.node_ops.setattr) {
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
if (FS.isDir(node.mode)) {
throw new FS.ErrnoError(ERRNO_CODES.EISDIR);
}
if (!FS.isFile(node.mode)) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
var err = FS.nodePermissions(node, 'w');
if (err) {
throw new FS.ErrnoError(err);
}
node.node_ops.setattr(node, {
size: len,
timestamp: Date.now()
});
},ftruncate:function (fd, len) {
var stream = FS.getStream(fd);
if (!stream) {
throw new FS.ErrnoError(ERRNO_CODES.EBADF);
}
if ((stream.flags & 2097155) === 0) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
FS.truncate(stream.node, len);
},utime:function (path, atime, mtime) {
var lookup = FS.lookupPath(path, { follow: true });
var node = lookup.node;
node.node_ops.setattr(node, {
timestamp: Math.max(atime, mtime)
});
},open:function (path, flags, mode, fd_start, fd_end) {
flags = typeof flags === 'string' ? FS.modeStringToFlags(flags) : flags;
mode = typeof mode === 'undefined' ? 438 /* 0666 */ : mode;
if ((flags & 64)) {
mode = (mode & 4095) | 32768;
} else {
mode = 0;
}
var node;
if (typeof path === 'object') {
node = path;
} else {
path = PATH.normalize(path);
try {
var lookup = FS.lookupPath(path, {
follow: !(flags & 131072)
});
node = lookup.node;
} catch (e) {
// ignore
}
}
// perhaps we need to create the node
if ((flags & 64)) {
if (node) {
// if O_CREAT and O_EXCL are set, error out if the node already exists
if ((flags & 128)) {
throw new FS.ErrnoError(ERRNO_CODES.EEXIST);
}
} else {
// node doesn't exist, try to create it
node = FS.mknod(path, mode, 0);
}
}
if (!node) {
throw new FS.ErrnoError(ERRNO_CODES.ENOENT);
}
// can't truncate a device
if (FS.isChrdev(node.mode)) {
flags &= ~512;
}
// check permissions
var err = FS.mayOpen(node, flags);
if (err) {
throw new FS.ErrnoError(err);
}
// do truncation if necessary
if ((flags & 512)) {
FS.truncate(node, 0);
}
// we've already handled these, don't pass down to the underlying vfs
flags &= ~(128 | 512);
// register the stream with the filesystem
var stream = FS.createStream({
node: node,
path: FS.getPath(node), // we want the absolute path to the node
flags: flags,
seekable: true,
position: 0,
stream_ops: node.stream_ops,
// used by the file family libc calls (fopen, fwrite, ferror, etc.)
ungotten: [],
error: false
}, fd_start, fd_end);
// call the new stream's open function
if (stream.stream_ops.open) {
stream.stream_ops.open(stream);
}
if (Module['logReadFiles'] && !(flags & 1)) {
if (!FS.readFiles) FS.readFiles = {};
if (!(path in FS.readFiles)) {
FS.readFiles[path] = 1;
Module['printErr']('read file: ' + path);
}
}
return stream;
},close:function (stream) {
try {
if (stream.stream_ops.close) {
stream.stream_ops.close(stream);
}
} catch (e) {
throw e;
} finally {
FS.closeStream(stream.fd);
}
},llseek:function (stream, offset, whence) {
if (!stream.seekable || !stream.stream_ops.llseek) {
throw new FS.ErrnoError(ERRNO_CODES.ESPIPE);
}
return stream.stream_ops.llseek(stream, offset, whence);
},read:function (stream, buffer, offset, length, position) {
if (length < 0 || position < 0) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
if ((stream.flags & 2097155) === 1) {
throw new FS.ErrnoError(ERRNO_CODES.EBADF);
}
if (FS.isDir(stream.node.mode)) {
throw new FS.ErrnoError(ERRNO_CODES.EISDIR);
}
if (!stream.stream_ops.read) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
var seeking = true;
if (typeof position === 'undefined') {
position = stream.position;
seeking = false;
} else if (!stream.seekable) {
throw new FS.ErrnoError(ERRNO_CODES.ESPIPE);
}
var bytesRead = stream.stream_ops.read(stream, buffer, offset, length, position);
if (!seeking) stream.position += bytesRead;
return bytesRead;
},write:function (stream, buffer, offset, length, position, canOwn) {
if (length < 0 || position < 0) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
if ((stream.flags & 2097155) === 0) {
throw new FS.ErrnoError(ERRNO_CODES.EBADF);
}
if (FS.isDir(stream.node.mode)) {
throw new FS.ErrnoError(ERRNO_CODES.EISDIR);
}
if (!stream.stream_ops.write) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
var seeking = true;
if (typeof position === 'undefined') {
position = stream.position;
seeking = false;
} else if (!stream.seekable) {
throw new FS.ErrnoError(ERRNO_CODES.ESPIPE);
}
if (stream.flags & 1024) {
// seek to the end before writing in append mode
FS.llseek(stream, 0, 2);
}
var bytesWritten = stream.stream_ops.write(stream, buffer, offset, length, position, canOwn);
if (!seeking) stream.position += bytesWritten;
return bytesWritten;
},allocate:function (stream, offset, length) {
if (offset < 0 || length <= 0) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
if ((stream.flags & 2097155) === 0) {
throw new FS.ErrnoError(ERRNO_CODES.EBADF);
}
if (!FS.isFile(stream.node.mode) && !FS.isDir(node.mode)) {
throw new FS.ErrnoError(ERRNO_CODES.ENODEV);
}
if (!stream.stream_ops.allocate) {
throw new FS.ErrnoError(ERRNO_CODES.EOPNOTSUPP);
}
stream.stream_ops.allocate(stream, offset, length);
},mmap:function (stream, buffer, offset, length, position, prot, flags) {
// TODO if PROT is PROT_WRITE, make sure we have write access
if ((stream.flags & 2097155) === 1) {
throw new FS.ErrnoError(ERRNO_CODES.EACCES);
}
if (!stream.stream_ops.mmap) {
throw new FS.ErrnoError(ERRNO_CODES.ENODEV);
}
return stream.stream_ops.mmap(stream, buffer, offset, length, position, prot, flags);
},ioctl:function (stream, cmd, arg) {
if (!stream.stream_ops.ioctl) {
throw new FS.ErrnoError(ERRNO_CODES.ENOTTY);
}
return stream.stream_ops.ioctl(stream, cmd, arg);
},readFile:function (path, opts) {
opts = opts || {};
opts.flags = opts.flags || 'r';
opts.encoding = opts.encoding || 'binary';
if (opts.encoding !== 'utf8' && opts.encoding !== 'binary') {
throw new Error('Invalid encoding type "' + opts.encoding + '"');
}
var ret;
var stream = FS.open(path, opts.flags);
var stat = FS.stat(path);
var length = stat.size;
var buf = new Uint8Array(length);
FS.read(stream, buf, 0, length, 0);
if (opts.encoding === 'utf8') {
ret = '';
var utf8 = new Runtime.UTF8Processor();
for (var i = 0; i < length; i++) {
ret += utf8.processCChar(buf[i]);
}
} else if (opts.encoding === 'binary') {
ret = buf;
}
FS.close(stream);
return ret;
},writeFile:function (path, data, opts) {
opts = opts || {};
opts.flags = opts.flags || 'w';
opts.encoding = opts.encoding || 'utf8';
if (opts.encoding !== 'utf8' && opts.encoding !== 'binary') {
throw new Error('Invalid encoding type "' + opts.encoding + '"');
}
var stream = FS.open(path, opts.flags, opts.mode);
if (opts.encoding === 'utf8') {
var utf8 = new Runtime.UTF8Processor();
var buf = new Uint8Array(utf8.processJSString(data));
FS.write(stream, buf, 0, buf.length, 0, opts.canOwn);
} else if (opts.encoding === 'binary') {
FS.write(stream, data, 0, data.length, 0, opts.canOwn);
}
FS.close(stream);
},cwd:function () {
return FS.currentPath;
},chdir:function (path) {
var lookup = FS.lookupPath(path, { follow: true });
if (!FS.isDir(lookup.node.mode)) {
throw new FS.ErrnoError(ERRNO_CODES.ENOTDIR);
}
var err = FS.nodePermissions(lookup.node, 'x');
if (err) {
throw new FS.ErrnoError(err);
}
FS.currentPath = lookup.path;
},createDefaultDirectories:function () {
FS.mkdir('/tmp');
},createDefaultDevices:function () {
// create /dev
FS.mkdir('/dev');
// setup /dev/null
FS.registerDevice(FS.makedev(1, 3), {
read: function() { return 0; },
write: function() { return 0; }
});
FS.mkdev('/dev/null', FS.makedev(1, 3));
// setup /dev/tty and /dev/tty1
// stderr needs to print output using Module['printErr']
// so we register a second tty just for it.
TTY.register(FS.makedev(5, 0), TTY.default_tty_ops);
TTY.register(FS.makedev(6, 0), TTY.default_tty1_ops);
FS.mkdev('/dev/tty', FS.makedev(5, 0));
FS.mkdev('/dev/tty1', FS.makedev(6, 0));
// we're not going to emulate the actual shm device,
// just create the tmp dirs that reside in it commonly
FS.mkdir('/dev/shm');
FS.mkdir('/dev/shm/tmp');
},createStandardStreams:function () {
// TODO deprecate the old functionality of a single
// input / output callback and that utilizes FS.createDevice
// and instead require a unique set of stream ops
// by default, we symlink the standard streams to the
// default tty devices. however, if the standard streams
// have been overwritten we create a unique device for
// them instead.
if (Module['stdin']) {
FS.createDevice('/dev', 'stdin', Module['stdin']);
} else {
FS.symlink('/dev/tty', '/dev/stdin');
}
if (Module['stdout']) {
FS.createDevice('/dev', 'stdout', null, Module['stdout']);
} else {
FS.symlink('/dev/tty', '/dev/stdout');
}
if (Module['stderr']) {
FS.createDevice('/dev', 'stderr', null, Module['stderr']);
} else {
FS.symlink('/dev/tty1', '/dev/stderr');
}
// open default streams for the stdin, stdout and stderr devices
var stdin = FS.open('/dev/stdin', 'r');
HEAP32[((_stdin)>>2)]=FS.getPtrForStream(stdin);
assert(stdin.fd === 0, 'invalid handle for stdin (' + stdin.fd + ')');
var stdout = FS.open('/dev/stdout', 'w');
HEAP32[((_stdout)>>2)]=FS.getPtrForStream(stdout);
assert(stdout.fd === 1, 'invalid handle for stdout (' + stdout.fd + ')');
var stderr = FS.open('/dev/stderr', 'w');
HEAP32[((_stderr)>>2)]=FS.getPtrForStream(stderr);
assert(stderr.fd === 2, 'invalid handle for stderr (' + stderr.fd + ')');
},ensureErrnoError:function () {
if (FS.ErrnoError) return;
FS.ErrnoError = function ErrnoError(errno) {
this.errno = errno;
for (var key in ERRNO_CODES) {
if (ERRNO_CODES[key] === errno) {
this.code = key;
break;
}
}
this.message = ERRNO_MESSAGES[errno];
};
FS.ErrnoError.prototype = new Error();
FS.ErrnoError.prototype.constructor = FS.ErrnoError;
// Some errors may happen quite a bit, to avoid overhead we reuse them (and suffer a lack of stack info)
[ERRNO_CODES.ENOENT].forEach(function(code) {
FS.genericErrors[code] = new FS.ErrnoError(code);
FS.genericErrors[code].stack = '<generic error, no stack>';
});
},staticInit:function () {
FS.ensureErrnoError();
FS.nameTable = new Array(4096);
FS.mount(MEMFS, {}, '/');
FS.createDefaultDirectories();
FS.createDefaultDevices();
},init:function (input, output, error) {
assert(!FS.init.initialized, 'FS.init was previously called. If you want to initialize later with custom parameters, remove any earlier calls (note that one is automatically added to the generated code)');
FS.init.initialized = true;
FS.ensureErrnoError();
// Allow Module.stdin etc. to provide defaults, if none explicitly passed to us here
Module['stdin'] = input || Module['stdin'];
Module['stdout'] = output || Module['stdout'];
Module['stderr'] = error || Module['stderr'];
FS.createStandardStreams();
},quit:function () {
FS.init.initialized = false;
for (var i = 0; i < FS.streams.length; i++) {
var stream = FS.streams[i];
if (!stream) {
continue;
}
FS.close(stream);
}
},getMode:function (canRead, canWrite) {
var mode = 0;
if (canRead) mode |= 292 | 73;
if (canWrite) mode |= 146;
return mode;
},joinPath:function (parts, forceRelative) {
var path = PATH.join.apply(null, parts);
if (forceRelative && path[0] == '/') path = path.substr(1);
return path;
},absolutePath:function (relative, base) {
return PATH.resolve(base, relative);
},standardizePath:function (path) {
return PATH.normalize(path);
},findObject:function (path, dontResolveLastLink) {
var ret = FS.analyzePath(path, dontResolveLastLink);
if (ret.exists) {
return ret.object;
} else {
___setErrNo(ret.error);
return null;
}
},analyzePath:function (path, dontResolveLastLink) {
// operate from within the context of the symlink's target
try {
var lookup = FS.lookupPath(path, { follow: !dontResolveLastLink });
path = lookup.path;
} catch (e) {
}
var ret = {
isRoot: false, exists: false, error: 0, name: null, path: null, object: null,
parentExists: false, parentPath: null, parentObject: null
};
try {
var lookup = FS.lookupPath(path, { parent: true });
ret.parentExists = true;
ret.parentPath = lookup.path;
ret.parentObject = lookup.node;
ret.name = PATH.basename(path);
lookup = FS.lookupPath(path, { follow: !dontResolveLastLink });
ret.exists = true;
ret.path = lookup.path;
ret.object = lookup.node;
ret.name = lookup.node.name;
ret.isRoot = lookup.path === '/';
} catch (e) {
ret.error = e.errno;
};
return ret;
},createFolder:function (parent, name, canRead, canWrite) {
var path = PATH.join2(typeof parent === 'string' ? parent : FS.getPath(parent), name);
var mode = FS.getMode(canRead, canWrite);
return FS.mkdir(path, mode);
},createPath:function (parent, path, canRead, canWrite) {
parent = typeof parent === 'string' ? parent : FS.getPath(parent);
var parts = path.split('/').reverse();
while (parts.length) {
var part = parts.pop();
if (!part) continue;
var current = PATH.join2(parent, part);
try {
FS.mkdir(current);
} catch (e) {
// ignore EEXIST
}
parent = current;
}
return current;
},createFile:function (parent, name, properties, canRead, canWrite) {
var path = PATH.join2(typeof parent === 'string' ? parent : FS.getPath(parent), name);
var mode = FS.getMode(canRead, canWrite);
return FS.create(path, mode);
},createDataFile:function (parent, name, data, canRead, canWrite, canOwn) {
var path = name ? PATH.join2(typeof parent === 'string' ? parent : FS.getPath(parent), name) : parent;
var mode = FS.getMode(canRead, canWrite);
var node = FS.create(path, mode);
if (data) {
if (typeof data === 'string') {
var arr = new Array(data.length);
for (var i = 0, len = data.length; i < len; ++i) arr[i] = data.charCodeAt(i);
data = arr;
}
// make sure we can write to the file
FS.chmod(node, mode | 146);
var stream = FS.open(node, 'w');
FS.write(stream, data, 0, data.length, 0, canOwn);
FS.close(stream);
FS.chmod(node, mode);
}
return node;
},createDevice:function (parent, name, input, output) {
var path = PATH.join2(typeof parent === 'string' ? parent : FS.getPath(parent), name);
var mode = FS.getMode(!!input, !!output);
if (!FS.createDevice.major) FS.createDevice.major = 64;
var dev = FS.makedev(FS.createDevice.major++, 0);
// Create a fake device that a set of stream ops to emulate
// the old behavior.
FS.registerDevice(dev, {
open: function(stream) {
stream.seekable = false;
},
close: function(stream) {
// flush any pending line data
if (output && output.buffer && output.buffer.length) {
output(10);
}
},
read: function(stream, buffer, offset, length, pos /* ignored */) {
var bytesRead = 0;
for (var i = 0; i < length; i++) {
var result;
try {
result = input();
} catch (e) {
throw new FS.ErrnoError(ERRNO_CODES.EIO);
}
if (result === undefined && bytesRead === 0) {
throw new FS.ErrnoError(ERRNO_CODES.EAGAIN);
}
if (result === null || result === undefined) break;
bytesRead++;
buffer[offset+i] = result;
}
if (bytesRead) {
stream.node.timestamp = Date.now();
}
return bytesRead;
},
write: function(stream, buffer, offset, length, pos) {
for (var i = 0; i < length; i++) {
try {
output(buffer[offset+i]);
} catch (e) {
throw new FS.ErrnoError(ERRNO_CODES.EIO);
}
}
if (length) {
stream.node.timestamp = Date.now();
}
return i;
}
});
return FS.mkdev(path, mode, dev);
},createLink:function (parent, name, target, canRead, canWrite) {
var path = PATH.join2(typeof parent === 'string' ? parent : FS.getPath(parent), name);
return FS.symlink(target, path);
},forceLoadFile:function (obj) {
if (obj.isDevice || obj.isFolder || obj.link || obj.contents) return true;
var success = true;
if (typeof XMLHttpRequest !== 'undefined') {
throw new Error("Lazy loading should have been performed (contents set) in createLazyFile, but it was not. Lazy loading only works in web workers. Use --embed-file or --preload-file in emcc on the main thread.");
} else if (Module['read']) {
// Command-line.
try {
// WARNING: Can't read binary files in V8's d8 or tracemonkey's js, as
// read() will try to parse UTF8.
obj.contents = intArrayFromString(Module['read'](obj.url), true);
} catch (e) {
success = false;
}
} else {
throw new Error('Cannot load without read() or XMLHttpRequest.');
}
if (!success) ___setErrNo(ERRNO_CODES.EIO);
return success;
},createLazyFile:function (parent, name, url, canRead, canWrite) {
// Lazy chunked Uint8Array (implements get and length from Uint8Array). Actual getting is abstracted away for eventual reuse.
function LazyUint8Array() {
this.lengthKnown = false;
this.chunks = []; // Loaded chunks. Index is the chunk number
}
LazyUint8Array.prototype.get = function LazyUint8Array_get(idx) {
if (idx > this.length-1 || idx < 0) {
return undefined;
}
var chunkOffset = idx % this.chunkSize;
var chunkNum = Math.floor(idx / this.chunkSize);
return this.getter(chunkNum)[chunkOffset];
}
LazyUint8Array.prototype.setDataGetter = function LazyUint8Array_setDataGetter(getter) {
this.getter = getter;
}
LazyUint8Array.prototype.cacheLength = function LazyUint8Array_cacheLength() {
// Find length
var xhr = new XMLHttpRequest();
xhr.open('HEAD', url, false);
xhr.send(null);
if (!(xhr.status >= 200 && xhr.status < 300 || xhr.status === 304)) throw new Error("Couldn't load " + url + ". Status: " + xhr.status);
var datalength = Number(xhr.getResponseHeader("Content-length"));
var header;
var hasByteServing = (header = xhr.getResponseHeader("Accept-Ranges")) && header === "bytes";
var chunkSize = 1024*1024; // Chunk size in bytes
if (!hasByteServing) chunkSize = datalength;
// Function to get a range from the remote URL.
var doXHR = (function(from, to) {
if (from > to) throw new Error("invalid range (" + from + ", " + to + ") or no bytes requested!");
if (to > datalength-1) throw new Error("only " + datalength + " bytes available! programmer error!");
// TODO: Use mozResponseArrayBuffer, responseStream, etc. if available.
var xhr = new XMLHttpRequest();
xhr.open('GET', url, false);
if (datalength !== chunkSize) xhr.setRequestHeader("Range", "bytes=" + from + "-" + to);
// Some hints to the browser that we want binary data.
if (typeof Uint8Array != 'undefined') xhr.responseType = 'arraybuffer';
if (xhr.overrideMimeType) {
xhr.overrideMimeType('text/plain; charset=x-user-defined');
}
xhr.send(null);
if (!(xhr.status >= 200 && xhr.status < 300 || xhr.status === 304)) throw new Error("Couldn't load " + url + ". Status: " + xhr.status);
if (xhr.response !== undefined) {
return new Uint8Array(xhr.response || []);
} else {
return intArrayFromString(xhr.responseText || '', true);
}
});
var lazyArray = this;
lazyArray.setDataGetter(function(chunkNum) {
var start = chunkNum * chunkSize;
var end = (chunkNum+1) * chunkSize - 1; // including this byte
end = Math.min(end, datalength-1); // if datalength-1 is selected, this is the last block
if (typeof(lazyArray.chunks[chunkNum]) === "undefined") {
lazyArray.chunks[chunkNum] = doXHR(start, end);
}
if (typeof(lazyArray.chunks[chunkNum]) === "undefined") throw new Error("doXHR failed!");
return lazyArray.chunks[chunkNum];
});
this._length = datalength;
this._chunkSize = chunkSize;
this.lengthKnown = true;
}
if (typeof XMLHttpRequest !== 'undefined') {
if (!ENVIRONMENT_IS_WORKER) throw 'Cannot do synchronous binary XHRs outside webworkers in modern browsers. Use --embed-file or --preload-file in emcc';
var lazyArray = new LazyUint8Array();
Object.defineProperty(lazyArray, "length", {
get: function() {
if(!this.lengthKnown) {
this.cacheLength();
}
return this._length;
}
});
Object.defineProperty(lazyArray, "chunkSize", {
get: function() {
if(!this.lengthKnown) {
this.cacheLength();
}
return this._chunkSize;
}
});
var properties = { isDevice: false, contents: lazyArray };
} else {
var properties = { isDevice: false, url: url };
}
var node = FS.createFile(parent, name, properties, canRead, canWrite);
// This is a total hack, but I want to get this lazy file code out of the
// core of MEMFS. If we want to keep this lazy file concept I feel it should
// be its own thin LAZYFS proxying calls to MEMFS.
if (properties.contents) {
node.contents = properties.contents;
} else if (properties.url) {
node.contents = null;
node.url = properties.url;
}
// override each stream op with one that tries to force load the lazy file first
var stream_ops = {};
var keys = Object.keys(node.stream_ops);
keys.forEach(function(key) {
var fn = node.stream_ops[key];
stream_ops[key] = function forceLoadLazyFile() {
if (!FS.forceLoadFile(node)) {
throw new FS.ErrnoError(ERRNO_CODES.EIO);
}
return fn.apply(null, arguments);
};
});
// use a custom read function
stream_ops.read = function stream_ops_read(stream, buffer, offset, length, position) {
if (!FS.forceLoadFile(node)) {
throw new FS.ErrnoError(ERRNO_CODES.EIO);
}
var contents = stream.node.contents;
if (position >= contents.length)
return 0;
var size = Math.min(contents.length - position, length);
assert(size >= 0);
if (contents.slice) { // normal array
for (var i = 0; i < size; i++) {
buffer[offset + i] = contents[position + i];
}
} else {
for (var i = 0; i < size; i++) { // LazyUint8Array from sync binary XHR
buffer[offset + i] = contents.get(position + i);
}
}
return size;
};
node.stream_ops = stream_ops;
return node;
},createPreloadedFile:function (parent, name, url, canRead, canWrite, onload, onerror, dontCreateFile, canOwn) {
Browser.init();
// TODO we should allow people to just pass in a complete filename instead
// of parent and name being that we just join them anyways
var fullname = name ? PATH.resolve(PATH.join2(parent, name)) : parent;
function processData(byteArray) {
function finish(byteArray) {
if (!dontCreateFile) {
FS.createDataFile(parent, name, byteArray, canRead, canWrite, canOwn);
}
if (onload) onload();
removeRunDependency('cp ' + fullname);
}
var handled = false;
Module['preloadPlugins'].forEach(function(plugin) {
if (handled) return;
if (plugin['canHandle'](fullname)) {
plugin['handle'](byteArray, fullname, finish, function() {
if (onerror) onerror();
removeRunDependency('cp ' + fullname);
});
handled = true;
}
});
if (!handled) finish(byteArray);
}
addRunDependency('cp ' + fullname);
if (typeof url == 'string') {
Browser.asyncLoad(url, function(byteArray) {
processData(byteArray);
}, onerror);
} else {
processData(url);
}
},indexedDB:function () {
return window.indexedDB || window.mozIndexedDB || window.webkitIndexedDB || window.msIndexedDB;
},DB_NAME:function () {
return 'EM_FS_' + window.location.pathname;
},DB_VERSION:20,DB_STORE_NAME:"FILE_DATA",saveFilesToDB:function (paths, onload, onerror) {
onload = onload || function(){};
onerror = onerror || function(){};
var indexedDB = FS.indexedDB();
try {
var openRequest = indexedDB.open(FS.DB_NAME(), FS.DB_VERSION);
} catch (e) {
return onerror(e);
}
openRequest.onupgradeneeded = function openRequest_onupgradeneeded() {
console.log('creating db');
var db = openRequest.result;
db.createObjectStore(FS.DB_STORE_NAME);
};
openRequest.onsuccess = function openRequest_onsuccess() {
var db = openRequest.result;
var transaction = db.transaction([FS.DB_STORE_NAME], 'readwrite');
var files = transaction.objectStore(FS.DB_STORE_NAME);
var ok = 0, fail = 0, total = paths.length;
function finish() {
if (fail == 0) onload(); else onerror();
}
paths.forEach(function(path) {
var putRequest = files.put(FS.analyzePath(path).object.contents, path);
putRequest.onsuccess = function putRequest_onsuccess() { ok++; if (ok + fail == total) finish() };
putRequest.onerror = function putRequest_onerror() { fail++; if (ok + fail == total) finish() };
});
transaction.onerror = onerror;
};
openRequest.onerror = onerror;
},loadFilesFromDB:function (paths, onload, onerror) {
onload = onload || function(){};
onerror = onerror || function(){};
var indexedDB = FS.indexedDB();
try {
var openRequest = indexedDB.open(FS.DB_NAME(), FS.DB_VERSION);
} catch (e) {
return onerror(e);
}
openRequest.onupgradeneeded = onerror; // no database to load from
openRequest.onsuccess = function openRequest_onsuccess() {
var db = openRequest.result;
try {
var transaction = db.transaction([FS.DB_STORE_NAME], 'readonly');
} catch(e) {
onerror(e);
return;
}
var files = transaction.objectStore(FS.DB_STORE_NAME);
var ok = 0, fail = 0, total = paths.length;
function finish() {
if (fail == 0) onload(); else onerror();
}
paths.forEach(function(path) {
var getRequest = files.get(path);
getRequest.onsuccess = function getRequest_onsuccess() {
if (FS.analyzePath(path).exists) {
FS.unlink(path);
}
FS.createDataFile(PATH.dirname(path), PATH.basename(path), getRequest.result, true, true, true);
ok++;
if (ok + fail == total) finish();
};
getRequest.onerror = function getRequest_onerror() { fail++; if (ok + fail == total) finish() };
});
transaction.onerror = onerror;
};
openRequest.onerror = onerror;
}};
function _mkport() { throw 'TODO' }var SOCKFS={mount:function (mount) {
return FS.createNode(null, '/', 16384 | 511 /* 0777 */, 0);
},createSocket:function (family, type, protocol) {
var streaming = type == 1;
if (protocol) {
assert(streaming == (protocol == 6)); // if SOCK_STREAM, must be tcp
}
// create our internal socket structure
var sock = {
family: family,
type: type,
protocol: protocol,
server: null,
peers: {},
pending: [],
recv_queue: [],
sock_ops: SOCKFS.websocket_sock_ops
};
// create the filesystem node to store the socket structure
var name = SOCKFS.nextname();
var node = FS.createNode(SOCKFS.root, name, 49152, 0);
node.sock = sock;
// and the wrapping stream that enables library functions such
// as read and write to indirectly interact with the socket
var stream = FS.createStream({
path: name,
node: node,
flags: FS.modeStringToFlags('r+'),
seekable: false,
stream_ops: SOCKFS.stream_ops
});
// map the new stream to the socket structure (sockets have a 1:1
// relationship with a stream)
sock.stream = stream;
return sock;
},getSocket:function (fd) {
var stream = FS.getStream(fd);
if (!stream || !FS.isSocket(stream.node.mode)) {
return null;
}
return stream.node.sock;
},stream_ops:{poll:function (stream) {
var sock = stream.node.sock;
return sock.sock_ops.poll(sock);
},ioctl:function (stream, request, varargs) {
var sock = stream.node.sock;
return sock.sock_ops.ioctl(sock, request, varargs);
},read:function (stream, buffer, offset, length, position /* ignored */) {
var sock = stream.node.sock;
var msg = sock.sock_ops.recvmsg(sock, length);
if (!msg) {
// socket is closed
return 0;
}
buffer.set(msg.buffer, offset);
return msg.buffer.length;
},write:function (stream, buffer, offset, length, position /* ignored */) {
var sock = stream.node.sock;
return sock.sock_ops.sendmsg(sock, buffer, offset, length);
},close:function (stream) {
var sock = stream.node.sock;
sock.sock_ops.close(sock);
}},nextname:function () {
if (!SOCKFS.nextname.current) {
SOCKFS.nextname.current = 0;
}
return 'socket[' + (SOCKFS.nextname.current++) + ']';
},websocket_sock_ops:{createPeer:function (sock, addr, port) {
var ws;
if (typeof addr === 'object') {
ws = addr;
addr = null;
port = null;
}
if (ws) {
// for sockets that've already connected (e.g. we're the server)
// we can inspect the _socket property for the address
if (ws._socket) {
addr = ws._socket.remoteAddress;
port = ws._socket.remotePort;
}
// if we're just now initializing a connection to the remote,
// inspect the url property
else {
var result = /ws[s]?:\/\/([^:]+):(\d+)/.exec(ws.url);
if (!result) {
throw new Error('WebSocket URL must be in the format ws(s)://address:port');
}
addr = result[1];
port = parseInt(result[2], 10);
}
} else {
// create the actual websocket object and connect
try {
// runtimeConfig gets set to true if WebSocket runtime configuration is available.
var runtimeConfig = (Module['websocket'] && ('object' === typeof Module['websocket']));
// The default value is 'ws://' the replace is needed because the compiler replaces "//" comments with '#'
// comments without checking context, so we'd end up with ws:#, the replace swaps the "#" for "//" again.
var url = 'ws:#'.replace('#', '//');
if (runtimeConfig) {
if ('string' === typeof Module['websocket']['url']) {
url = Module['websocket']['url']; // Fetch runtime WebSocket URL config.
}
}
if (url === 'ws://' || url === 'wss://') { // Is the supplied URL config just a prefix, if so complete it.
url = url + addr + ':' + port;
}
// Make the WebSocket subprotocol (Sec-WebSocket-Protocol) default to binary if no configuration is set.
var subProtocols = 'binary'; // The default value is 'binary'
if (runtimeConfig) {
if ('string' === typeof Module['websocket']['subprotocol']) {
subProtocols = Module['websocket']['subprotocol']; // Fetch runtime WebSocket subprotocol config.
}
}
// The regex trims the string (removes spaces at the beginning and end, then splits the string by
// <any space>,<any space> into an Array. Whitespace removal is important for Websockify and ws.
subProtocols = subProtocols.replace(/^ +| +$/g,"").split(/ *, */);
// The node ws library API for specifying optional subprotocol is slightly different than the browser's.
var opts = ENVIRONMENT_IS_NODE ? {'protocol': subProtocols.toString()} : subProtocols;
// If node we use the ws library.
var WebSocket = ENVIRONMENT_IS_NODE ? require('ws') : window['WebSocket'];
ws = new WebSocket(url, opts);
ws.binaryType = 'arraybuffer';
} catch (e) {
throw new FS.ErrnoError(ERRNO_CODES.EHOSTUNREACH);
}
}
var peer = {
addr: addr,
port: port,
socket: ws,
dgram_send_queue: []
};
SOCKFS.websocket_sock_ops.addPeer(sock, peer);
SOCKFS.websocket_sock_ops.handlePeerEvents(sock, peer);
// if this is a bound dgram socket, send the port number first to allow
// us to override the ephemeral port reported to us by remotePort on the
// remote end.
if (sock.type === 2 && typeof sock.sport !== 'undefined') {
peer.dgram_send_queue.push(new Uint8Array([
255, 255, 255, 255,
'p'.charCodeAt(0), 'o'.charCodeAt(0), 'r'.charCodeAt(0), 't'.charCodeAt(0),
((sock.sport & 0xff00) >> 8) , (sock.sport & 0xff)
]));
}
return peer;
},getPeer:function (sock, addr, port) {
return sock.peers[addr + ':' + port];
},addPeer:function (sock, peer) {
sock.peers[peer.addr + ':' + peer.port] = peer;
},removePeer:function (sock, peer) {
delete sock.peers[peer.addr + ':' + peer.port];
},handlePeerEvents:function (sock, peer) {
var first = true;
var handleOpen = function () {
try {
var queued = peer.dgram_send_queue.shift();
while (queued) {
peer.socket.send(queued);
queued = peer.dgram_send_queue.shift();
}
} catch (e) {
// not much we can do here in the way of proper error handling as we've already
// lied and said this data was sent. shut it down.
peer.socket.close();
}
};
function handleMessage(data) {
assert(typeof data !== 'string' && data.byteLength !== undefined); // must receive an ArrayBuffer
data = new Uint8Array(data); // make a typed array view on the array buffer
// if this is the port message, override the peer's port with it
var wasfirst = first;
first = false;
if (wasfirst &&
data.length === 10 &&
data[0] === 255 && data[1] === 255 && data[2] === 255 && data[3] === 255 &&
data[4] === 'p'.charCodeAt(0) && data[5] === 'o'.charCodeAt(0) && data[6] === 'r'.charCodeAt(0) && data[7] === 't'.charCodeAt(0)) {
// update the peer's port and it's key in the peer map
var newport = ((data[8] << 8) | data[9]);
SOCKFS.websocket_sock_ops.removePeer(sock, peer);
peer.port = newport;
SOCKFS.websocket_sock_ops.addPeer(sock, peer);
return;
}
sock.recv_queue.push({ addr: peer.addr, port: peer.port, data: data });
};
if (ENVIRONMENT_IS_NODE) {
peer.socket.on('open', handleOpen);
peer.socket.on('message', function(data, flags) {
if (!flags.binary) {
return;
}
handleMessage((new Uint8Array(data)).buffer); // copy from node Buffer -> ArrayBuffer
});
peer.socket.on('error', function() {
// don't throw
});
} else {
peer.socket.onopen = handleOpen;
peer.socket.onmessage = function peer_socket_onmessage(event) {
handleMessage(event.data);
};
}
},poll:function (sock) {
if (sock.type === 1 && sock.server) {
// listen sockets should only say they're available for reading
// if there are pending clients.
return sock.pending.length ? (64 | 1) : 0;
}
var mask = 0;
var dest = sock.type === 1 ? // we only care about the socket state for connection-based sockets
SOCKFS.websocket_sock_ops.getPeer(sock, sock.daddr, sock.dport) :
null;
if (sock.recv_queue.length ||
!dest || // connection-less sockets are always ready to read
(dest && dest.socket.readyState === dest.socket.CLOSING) ||
(dest && dest.socket.readyState === dest.socket.CLOSED)) { // let recv return 0 once closed
mask |= (64 | 1);
}
if (!dest || // connection-less sockets are always ready to write
(dest && dest.socket.readyState === dest.socket.OPEN)) {
mask |= 4;
}
if ((dest && dest.socket.readyState === dest.socket.CLOSING) ||
(dest && dest.socket.readyState === dest.socket.CLOSED)) {
mask |= 16;
}
return mask;
},ioctl:function (sock, request, arg) {
switch (request) {
case 21531:
var bytes = 0;
if (sock.recv_queue.length) {
bytes = sock.recv_queue[0].data.length;
}
HEAP32[((arg)>>2)]=bytes;
return 0;
default:
return ERRNO_CODES.EINVAL;
}
},close:function (sock) {
// if we've spawned a listen server, close it
if (sock.server) {
try {
sock.server.close();
} catch (e) {
}
sock.server = null;
}
// close any peer connections
var peers = Object.keys(sock.peers);
for (var i = 0; i < peers.length; i++) {
var peer = sock.peers[peers[i]];
try {
peer.socket.close();
} catch (e) {
}
SOCKFS.websocket_sock_ops.removePeer(sock, peer);
}
return 0;
},bind:function (sock, addr, port) {
if (typeof sock.saddr !== 'undefined' || typeof sock.sport !== 'undefined') {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL); // already bound
}
sock.saddr = addr;
sock.sport = port || _mkport();
// in order to emulate dgram sockets, we need to launch a listen server when
// binding on a connection-less socket
// note: this is only required on the server side
if (sock.type === 2) {
// close the existing server if it exists
if (sock.server) {
sock.server.close();
sock.server = null;
}
// swallow error operation not supported error that occurs when binding in the
// browser where this isn't supported
try {
sock.sock_ops.listen(sock, 0);
} catch (e) {
if (!(e instanceof FS.ErrnoError)) throw e;
if (e.errno !== ERRNO_CODES.EOPNOTSUPP) throw e;
}
}
},connect:function (sock, addr, port) {
if (sock.server) {
throw new FS.ErrnoError(ERRNO_CODS.EOPNOTSUPP);
}
// TODO autobind
// if (!sock.addr && sock.type == 2) {
// }
// early out if we're already connected / in the middle of connecting
if (typeof sock.daddr !== 'undefined' && typeof sock.dport !== 'undefined') {
var dest = SOCKFS.websocket_sock_ops.getPeer(sock, sock.daddr, sock.dport);
if (dest) {
if (dest.socket.readyState === dest.socket.CONNECTING) {
throw new FS.ErrnoError(ERRNO_CODES.EALREADY);
} else {
throw new FS.ErrnoError(ERRNO_CODES.EISCONN);
}
}
}
// add the socket to our peer list and set our
// destination address / port to match
var peer = SOCKFS.websocket_sock_ops.createPeer(sock, addr, port);
sock.daddr = peer.addr;
sock.dport = peer.port;
// always "fail" in non-blocking mode
throw new FS.ErrnoError(ERRNO_CODES.EINPROGRESS);
},listen:function (sock, backlog) {
if (!ENVIRONMENT_IS_NODE) {
throw new FS.ErrnoError(ERRNO_CODES.EOPNOTSUPP);
}
if (sock.server) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL); // already listening
}
var WebSocketServer = require('ws').Server;
var host = sock.saddr;
sock.server = new WebSocketServer({
host: host,
port: sock.sport
// TODO support backlog
});
sock.server.on('connection', function(ws) {
if (sock.type === 1) {
var newsock = SOCKFS.createSocket(sock.family, sock.type, sock.protocol);
// create a peer on the new socket
var peer = SOCKFS.websocket_sock_ops.createPeer(newsock, ws);
newsock.daddr = peer.addr;
newsock.dport = peer.port;
// push to queue for accept to pick up
sock.pending.push(newsock);
} else {
// create a peer on the listen socket so calling sendto
// with the listen socket and an address will resolve
// to the correct client
SOCKFS.websocket_sock_ops.createPeer(sock, ws);
}
});
sock.server.on('closed', function() {
sock.server = null;
});
sock.server.on('error', function() {
// don't throw
});
},accept:function (listensock) {
if (!listensock.server) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
var newsock = listensock.pending.shift();
newsock.stream.flags = listensock.stream.flags;
return newsock;
},getname:function (sock, peer) {
var addr, port;
if (peer) {
if (sock.daddr === undefined || sock.dport === undefined) {
throw new FS.ErrnoError(ERRNO_CODES.ENOTCONN);
}
addr = sock.daddr;
port = sock.dport;
} else {
// TODO saddr and sport will be set for bind()'d UDP sockets, but what
// should we be returning for TCP sockets that've been connect()'d?
addr = sock.saddr || 0;
port = sock.sport || 0;
}
return { addr: addr, port: port };
},sendmsg:function (sock, buffer, offset, length, addr, port) {
if (sock.type === 2) {
// connection-less sockets will honor the message address,
// and otherwise fall back to the bound destination address
if (addr === undefined || port === undefined) {
addr = sock.daddr;
port = sock.dport;
}
// if there was no address to fall back to, error out
if (addr === undefined || port === undefined) {
throw new FS.ErrnoError(ERRNO_CODES.EDESTADDRREQ);
}
} else {
// connection-based sockets will only use the bound
addr = sock.daddr;
port = sock.dport;
}
// find the peer for the destination address
var dest = SOCKFS.websocket_sock_ops.getPeer(sock, addr, port);
// early out if not connected with a connection-based socket
if (sock.type === 1) {
if (!dest || dest.socket.readyState === dest.socket.CLOSING || dest.socket.readyState === dest.socket.CLOSED) {
throw new FS.ErrnoError(ERRNO_CODES.ENOTCONN);
} else if (dest.socket.readyState === dest.socket.CONNECTING) {
throw new FS.ErrnoError(ERRNO_CODES.EAGAIN);
}
}
// create a copy of the incoming data to send, as the WebSocket API
// doesn't work entirely with an ArrayBufferView, it'll just send
// the entire underlying buffer
var data;
if (buffer instanceof Array || buffer instanceof ArrayBuffer) {
data = buffer.slice(offset, offset + length);
} else { // ArrayBufferView
data = buffer.buffer.slice(buffer.byteOffset + offset, buffer.byteOffset + offset + length);
}
// if we're emulating a connection-less dgram socket and don't have
// a cached connection, queue the buffer to send upon connect and
// lie, saying the data was sent now.
if (sock.type === 2) {
if (!dest || dest.socket.readyState !== dest.socket.OPEN) {
// if we're not connected, open a new connection
if (!dest || dest.socket.readyState === dest.socket.CLOSING || dest.socket.readyState === dest.socket.CLOSED) {
dest = SOCKFS.websocket_sock_ops.createPeer(sock, addr, port);
}
dest.dgram_send_queue.push(data);
return length;
}
}
try {
// send the actual data
dest.socket.send(data);
return length;
} catch (e) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
},recvmsg:function (sock, length) {
// http://pubs.opengroup.org/onlinepubs/7908799/xns/recvmsg.html
if (sock.type === 1 && sock.server) {
// tcp servers should not be recv()'ing on the listen socket
throw new FS.ErrnoError(ERRNO_CODES.ENOTCONN);
}
var queued = sock.recv_queue.shift();
if (!queued) {
if (sock.type === 1) {
var dest = SOCKFS.websocket_sock_ops.getPeer(sock, sock.daddr, sock.dport);
if (!dest) {
// if we have a destination address but are not connected, error out
throw new FS.ErrnoError(ERRNO_CODES.ENOTCONN);
}
else if (dest.socket.readyState === dest.socket.CLOSING || dest.socket.readyState === dest.socket.CLOSED) {
// return null if the socket has closed
return null;
}
else {
// else, our socket is in a valid state but truly has nothing available
throw new FS.ErrnoError(ERRNO_CODES.EAGAIN);
}
} else {
throw new FS.ErrnoError(ERRNO_CODES.EAGAIN);
}
}
// queued.data will be an ArrayBuffer if it's unadulterated, but if it's
// requeued TCP data it'll be an ArrayBufferView
var queuedLength = queued.data.byteLength || queued.data.length;
var queuedOffset = queued.data.byteOffset || 0;
var queuedBuffer = queued.data.buffer || queued.data;
var bytesRead = Math.min(length, queuedLength);
var res = {
buffer: new Uint8Array(queuedBuffer, queuedOffset, bytesRead),
addr: queued.addr,
port: queued.port
};
// push back any unread data for TCP connections
if (sock.type === 1 && bytesRead < queuedLength) {
var bytesRemaining = queuedLength - bytesRead;
queued.data = new Uint8Array(queuedBuffer, queuedOffset + bytesRead, bytesRemaining);
sock.recv_queue.unshift(queued);
}
return res;
}}};function _send(fd, buf, len, flags) {
var sock = SOCKFS.getSocket(fd);
if (!sock) {
___setErrNo(ERRNO_CODES.EBADF);
return -1;
}
// TODO honor flags
return _write(fd, buf, len);
}
function _pwrite(fildes, buf, nbyte, offset) {
// ssize_t pwrite(int fildes, const void *buf, size_t nbyte, off_t offset);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/write.html
var stream = FS.getStream(fildes);
if (!stream) {
___setErrNo(ERRNO_CODES.EBADF);
return -1;
}
try {
var slab = HEAP8;
return FS.write(stream, slab, buf, nbyte, offset);
} catch (e) {
FS.handleFSError(e);
return -1;
}
}function _write(fildes, buf, nbyte) {
// ssize_t write(int fildes, const void *buf, size_t nbyte);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/write.html
var stream = FS.getStream(fildes);
if (!stream) {
___setErrNo(ERRNO_CODES.EBADF);
return -1;
}
try {
var slab = HEAP8;
return FS.write(stream, slab, buf, nbyte);
} catch (e) {
FS.handleFSError(e);
return -1;
}
}
function _fileno(stream) {
// int fileno(FILE *stream);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/fileno.html
stream = FS.getStreamFromPtr(stream);
if (!stream) return -1;
return stream.fd;
}function _fwrite(ptr, size, nitems, stream) {
// size_t fwrite(const void *restrict ptr, size_t size, size_t nitems, FILE *restrict stream);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/fwrite.html
var bytesToWrite = nitems * size;
if (bytesToWrite == 0) return 0;
var fd = _fileno(stream);
var bytesWritten = _write(fd, ptr, bytesToWrite);
if (bytesWritten == -1) {
var streamObj = FS.getStreamFromPtr(stream);
if (streamObj) streamObj.error = true;
return 0;
} else {
return Math.floor(bytesWritten / size);
}
}
Module["_strlen"] = _strlen;
function __reallyNegative(x) {
return x < 0 || (x === 0 && (1/x) === -Infinity);
}function __formatString(format, varargs) {
var textIndex = format;
var argIndex = 0;
function getNextArg(type) {
// NOTE: Explicitly ignoring type safety. Otherwise this fails:
// int x = 4; printf("%c\n", (char)x);
var ret;
if (type === 'double') {
ret = HEAPF64[(((varargs)+(argIndex))>>3)];
} else if (type == 'i64') {
ret = [HEAP32[(((varargs)+(argIndex))>>2)],
HEAP32[(((varargs)+(argIndex+4))>>2)]];
} else {
type = 'i32'; // varargs are always i32, i64, or double
ret = HEAP32[(((varargs)+(argIndex))>>2)];
}
argIndex += Runtime.getNativeFieldSize(type);
return ret;
}
var ret = [];
var curr, next, currArg;
while(1) {
var startTextIndex = textIndex;
curr = HEAP8[(textIndex)];
if (curr === 0) break;
next = HEAP8[((textIndex+1)|0)];
if (curr == 37) {
// Handle flags.
var flagAlwaysSigned = false;
var flagLeftAlign = false;
var flagAlternative = false;
var flagZeroPad = false;
var flagPadSign = false;
flagsLoop: while (1) {
switch (next) {
case 43:
flagAlwaysSigned = true;
break;
case 45:
flagLeftAlign = true;
break;
case 35:
flagAlternative = true;
break;
case 48:
if (flagZeroPad) {
break flagsLoop;
} else {
flagZeroPad = true;
break;
}
case 32:
flagPadSign = true;
break;
default:
break flagsLoop;
}
textIndex++;
next = HEAP8[((textIndex+1)|0)];
}
// Handle width.
var width = 0;
if (next == 42) {
width = getNextArg('i32');
textIndex++;
next = HEAP8[((textIndex+1)|0)];
} else {
while (next >= 48 && next <= 57) {
width = width * 10 + (next - 48);
textIndex++;
next = HEAP8[((textIndex+1)|0)];
}
}
// Handle precision.
var precisionSet = false, precision = -1;
if (next == 46) {
precision = 0;
precisionSet = true;
textIndex++;
next = HEAP8[((textIndex+1)|0)];
if (next == 42) {
precision = getNextArg('i32');
textIndex++;
} else {
while(1) {
var precisionChr = HEAP8[((textIndex+1)|0)];
if (precisionChr < 48 ||
precisionChr > 57) break;
precision = precision * 10 + (precisionChr - 48);
textIndex++;
}
}
next = HEAP8[((textIndex+1)|0)];
}
if (precision < 0) {
precision = 6; // Standard default.
precisionSet = false;
}
// Handle integer sizes. WARNING: These assume a 32-bit architecture!
var argSize;
switch (String.fromCharCode(next)) {
case 'h':
var nextNext = HEAP8[((textIndex+2)|0)];
if (nextNext == 104) {
textIndex++;
argSize = 1; // char (actually i32 in varargs)
} else {
argSize = 2; // short (actually i32 in varargs)
}
break;
case 'l':
var nextNext = HEAP8[((textIndex+2)|0)];
if (nextNext == 108) {
textIndex++;
argSize = 8; // long long
} else {
argSize = 4; // long
}
break;
case 'L': // long long
case 'q': // int64_t
case 'j': // intmax_t
argSize = 8;
break;
case 'z': // size_t
case 't': // ptrdiff_t
case 'I': // signed ptrdiff_t or unsigned size_t
argSize = 4;
break;
default:
argSize = null;
}
if (argSize) textIndex++;
next = HEAP8[((textIndex+1)|0)];
// Handle type specifier.
switch (String.fromCharCode(next)) {
case 'd': case 'i': case 'u': case 'o': case 'x': case 'X': case 'p': {
// Integer.
var signed = next == 100 || next == 105;
argSize = argSize || 4;
var currArg = getNextArg('i' + (argSize * 8));
var argText;
// Flatten i64-1 [low, high] into a (slightly rounded) double
if (argSize == 8) {
currArg = Runtime.makeBigInt(currArg[0], currArg[1], next == 117);
}
// Truncate to requested size.
if (argSize <= 4) {
var limit = Math.pow(256, argSize) - 1;
currArg = (signed ? reSign : unSign)(currArg & limit, argSize * 8);
}
// Format the number.
var currAbsArg = Math.abs(currArg);
var prefix = '';
if (next == 100 || next == 105) {
argText = reSign(currArg, 8 * argSize, 1).toString(10);
} else if (next == 117) {
argText = unSign(currArg, 8 * argSize, 1).toString(10);
currArg = Math.abs(currArg);
} else if (next == 111) {
argText = (flagAlternative ? '0' : '') + currAbsArg.toString(8);
} else if (next == 120 || next == 88) {
prefix = (flagAlternative && currArg != 0) ? '0x' : '';
if (currArg < 0) {
// Represent negative numbers in hex as 2's complement.
currArg = -currArg;
argText = (currAbsArg - 1).toString(16);
var buffer = [];
for (var i = 0; i < argText.length; i++) {
buffer.push((0xF - parseInt(argText[i], 16)).toString(16));
}
argText = buffer.join('');
while (argText.length < argSize * 2) argText = 'f' + argText;
} else {
argText = currAbsArg.toString(16);
}
if (next == 88) {
prefix = prefix.toUpperCase();
argText = argText.toUpperCase();
}
} else if (next == 112) {
if (currAbsArg === 0) {
argText = '(nil)';
} else {
prefix = '0x';
argText = currAbsArg.toString(16);
}
}
if (precisionSet) {
while (argText.length < precision) {
argText = '0' + argText;
}
}
// Add sign if needed
if (currArg >= 0) {
if (flagAlwaysSigned) {
prefix = '+' + prefix;
} else if (flagPadSign) {
prefix = ' ' + prefix;
}
}
// Move sign to prefix so we zero-pad after the sign
if (argText.charAt(0) == '-') {
prefix = '-' + prefix;
argText = argText.substr(1);
}
// Add padding.
while (prefix.length + argText.length < width) {
if (flagLeftAlign) {
argText += ' ';
} else {
if (flagZeroPad) {
argText = '0' + argText;
} else {
prefix = ' ' + prefix;
}
}
}
// Insert the result into the buffer.
argText = prefix + argText;
argText.split('').forEach(function(chr) {
ret.push(chr.charCodeAt(0));
});
break;
}
case 'f': case 'F': case 'e': case 'E': case 'g': case 'G': {
// Float.
var currArg = getNextArg('double');
var argText;
if (isNaN(currArg)) {
argText = 'nan';
flagZeroPad = false;
} else if (!isFinite(currArg)) {
argText = (currArg < 0 ? '-' : '') + 'inf';
flagZeroPad = false;
} else {
var isGeneral = false;
var effectivePrecision = Math.min(precision, 20);
// Convert g/G to f/F or e/E, as per:
// http://pubs.opengroup.org/onlinepubs/9699919799/functions/printf.html
if (next == 103 || next == 71) {
isGeneral = true;
precision = precision || 1;
var exponent = parseInt(currArg.toExponential(effectivePrecision).split('e')[1], 10);
if (precision > exponent && exponent >= -4) {
next = ((next == 103) ? 'f' : 'F').charCodeAt(0);
precision -= exponent + 1;
} else {
next = ((next == 103) ? 'e' : 'E').charCodeAt(0);
precision--;
}
effectivePrecision = Math.min(precision, 20);
}
if (next == 101 || next == 69) {
argText = currArg.toExponential(effectivePrecision);
// Make sure the exponent has at least 2 digits.
if (/[eE][-+]\d$/.test(argText)) {
argText = argText.slice(0, -1) + '0' + argText.slice(-1);
}
} else if (next == 102 || next == 70) {
argText = currArg.toFixed(effectivePrecision);
if (currArg === 0 && __reallyNegative(currArg)) {
argText = '-' + argText;
}
}
var parts = argText.split('e');
if (isGeneral && !flagAlternative) {
// Discard trailing zeros and periods.
while (parts[0].length > 1 && parts[0].indexOf('.') != -1 &&
(parts[0].slice(-1) == '0' || parts[0].slice(-1) == '.')) {
parts[0] = parts[0].slice(0, -1);
}
} else {
// Make sure we have a period in alternative mode.
if (flagAlternative && argText.indexOf('.') == -1) parts[0] += '.';
// Zero pad until required precision.
while (precision > effectivePrecision++) parts[0] += '0';
}
argText = parts[0] + (parts.length > 1 ? 'e' + parts[1] : '');
// Capitalize 'E' if needed.
if (next == 69) argText = argText.toUpperCase();
// Add sign.
if (currArg >= 0) {
if (flagAlwaysSigned) {
argText = '+' + argText;
} else if (flagPadSign) {
argText = ' ' + argText;
}
}
}
// Add padding.
while (argText.length < width) {
if (flagLeftAlign) {
argText += ' ';
} else {
if (flagZeroPad && (argText[0] == '-' || argText[0] == '+')) {
argText = argText[0] + '0' + argText.slice(1);
} else {
argText = (flagZeroPad ? '0' : ' ') + argText;
}
}
}
// Adjust case.
if (next < 97) argText = argText.toUpperCase();
// Insert the result into the buffer.
argText.split('').forEach(function(chr) {
ret.push(chr.charCodeAt(0));
});
break;
}
case 's': {
// String.
var arg = getNextArg('i8*');
var argLength = arg ? _strlen(arg) : '(null)'.length;
if (precisionSet) argLength = Math.min(argLength, precision);
if (!flagLeftAlign) {
while (argLength < width--) {
ret.push(32);
}
}
if (arg) {
for (var i = 0; i < argLength; i++) {
ret.push(HEAPU8[((arg++)|0)]);
}
} else {
ret = ret.concat(intArrayFromString('(null)'.substr(0, argLength), true));
}
if (flagLeftAlign) {
while (argLength < width--) {
ret.push(32);
}
}
break;
}
case 'c': {
// Character.
if (flagLeftAlign) ret.push(getNextArg('i8'));
while (--width > 0) {
ret.push(32);
}
if (!flagLeftAlign) ret.push(getNextArg('i8'));
break;
}
case 'n': {
// Write the length written so far to the next parameter.
var ptr = getNextArg('i32*');
HEAP32[((ptr)>>2)]=ret.length;
break;
}
case '%': {
// Literal percent sign.
ret.push(curr);
break;
}
default: {
// Unknown specifiers remain untouched.
for (var i = startTextIndex; i < textIndex + 2; i++) {
ret.push(HEAP8[(i)]);
}
}
}
textIndex += 2;
// TODO: Support a/A (hex float) and m (last error) specifiers.
// TODO: Support %1${specifier} for arg selection.
} else {
ret.push(curr);
textIndex += 1;
}
}
return ret;
}function _fprintf(stream, format, varargs) {
// int fprintf(FILE *restrict stream, const char *restrict format, ...);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/printf.html
var result = __formatString(format, varargs);
var stack = Runtime.stackSave();
var ret = _fwrite(allocate(result, 'i8', ALLOC_STACK), 1, result.length, stream);
Runtime.stackRestore(stack);
return ret;
}function _printf(format, varargs) {
// int printf(const char *restrict format, ...);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/printf.html
var stdout = HEAP32[((_stdout)>>2)];
return _fprintf(stdout, format, varargs);
}
function _emscripten_memcpy_big(dest, src, num) {
HEAPU8.set(HEAPU8.subarray(src, src+num), dest);
return dest;
}
Module["_memcpy"] = _memcpy;
function _fputs(s, stream) {
// int fputs(const char *restrict s, FILE *restrict stream);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/fputs.html
var fd = _fileno(stream);
return _write(fd, s, _strlen(s));
}
function _fputc(c, stream) {
// int fputc(int c, FILE *stream);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/fputc.html
var chr = unSign(c & 0xFF);
HEAP8[((_fputc.ret)|0)]=chr;
var fd = _fileno(stream);
var ret = _write(fd, _fputc.ret, 1);
if (ret == -1) {
var streamObj = FS.getStreamFromPtr(stream);
if (streamObj) streamObj.error = true;
return -1;
} else {
return chr;
}
}function _puts(s) {
// int puts(const char *s);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/puts.html
// NOTE: puts() always writes an extra newline.
var stdout = HEAP32[((_stdout)>>2)];
var ret = _fputs(s, stdout);
if (ret < 0) {
return ret;
} else {
var newlineRet = _fputc(10, stdout);
return (newlineRet < 0) ? -1 : ret + 1;
}
}
function _sbrk(bytes) {
// Implement a Linux-like 'memory area' for our 'process'.
// Changes the size of the memory area by |bytes|; returns the
// address of the previous top ('break') of the memory area
// We control the "dynamic" memory - DYNAMIC_BASE to DYNAMICTOP
var self = _sbrk;
if (!self.called) {
DYNAMICTOP = alignMemoryPage(DYNAMICTOP); // make sure we start out aligned
self.called = true;
assert(Runtime.dynamicAlloc);
self.alloc = Runtime.dynamicAlloc;
Runtime.dynamicAlloc = function() { abort('cannot dynamically allocate, sbrk now has control') };
}
var ret = DYNAMICTOP;
if (bytes != 0) self.alloc(bytes);
return ret; // Previous break location.
}
function ___errno_location() {
return ___errno_state;
}
function __ZNSt9exceptionD2Ev() {}
var Browser={mainLoop:{scheduler:null,method:"",shouldPause:false,paused:false,queue:[],pause:function () {
Browser.mainLoop.shouldPause = true;
},resume:function () {
if (Browser.mainLoop.paused) {
Browser.mainLoop.paused = false;
Browser.mainLoop.scheduler();
}
Browser.mainLoop.shouldPause = false;
},updateStatus:function () {
if (Module['setStatus']) {
var message = Module['statusMessage'] || 'Please wait...';
var remaining = Browser.mainLoop.remainingBlockers;
var expected = Browser.mainLoop.expectedBlockers;
if (remaining) {
if (remaining < expected) {
Module['setStatus'](message + ' (' + (expected - remaining) + '/' + expected + ')');
} else {
Module['setStatus'](message);
}
} else {
Module['setStatus']('');
}
}
}},isFullScreen:false,pointerLock:false,moduleContextCreatedCallbacks:[],workers:[],init:function () {
if (!Module["preloadPlugins"]) Module["preloadPlugins"] = []; // needs to exist even in workers
if (Browser.initted || ENVIRONMENT_IS_WORKER) return;
Browser.initted = true;
try {
new Blob();
Browser.hasBlobConstructor = true;
} catch(e) {
Browser.hasBlobConstructor = false;
console.log("warning: no blob constructor, cannot create blobs with mimetypes");
}
Browser.BlobBuilder = typeof MozBlobBuilder != "undefined" ? MozBlobBuilder : (typeof WebKitBlobBuilder != "undefined" ? WebKitBlobBuilder : (!Browser.hasBlobConstructor ? console.log("warning: no BlobBuilder") : null));
Browser.URLObject = typeof window != "undefined" ? (window.URL ? window.URL : window.webkitURL) : undefined;
if (!Module.noImageDecoding && typeof Browser.URLObject === 'undefined') {
console.log("warning: Browser does not support creating object URLs. Built-in browser image decoding will not be available.");
Module.noImageDecoding = true;
}
// Support for plugins that can process preloaded files. You can add more of these to
// your app by creating and appending to Module.preloadPlugins.
//
// Each plugin is asked if it can handle a file based on the file's name. If it can,
// it is given the file's raw data. When it is done, it calls a callback with the file's
// (possibly modified) data. For example, a plugin might decompress a file, or it
// might create some side data structure for use later (like an Image element, etc.).
var imagePlugin = {};
imagePlugin['canHandle'] = function imagePlugin_canHandle(name) {
return !Module.noImageDecoding && /\.(jpg|jpeg|png|bmp)$/i.test(name);
};
imagePlugin['handle'] = function imagePlugin_handle(byteArray, name, onload, onerror) {
var b = null;
if (Browser.hasBlobConstructor) {
try {
b = new Blob([byteArray], { type: Browser.getMimetype(name) });
if (b.size !== byteArray.length) { // Safari bug #118630
// Safari's Blob can only take an ArrayBuffer
b = new Blob([(new Uint8Array(byteArray)).buffer], { type: Browser.getMimetype(name) });
}
} catch(e) {
Runtime.warnOnce('Blob constructor present but fails: ' + e + '; falling back to blob builder');
}
}
if (!b) {
var bb = new Browser.BlobBuilder();
bb.append((new Uint8Array(byteArray)).buffer); // we need to pass a buffer, and must copy the array to get the right data range
b = bb.getBlob();
}
var url = Browser.URLObject.createObjectURL(b);
var img = new Image();
img.onload = function img_onload() {
assert(img.complete, 'Image ' + name + ' could not be decoded');
var canvas = document.createElement('canvas');
canvas.width = img.width;
canvas.height = img.height;
var ctx = canvas.getContext('2d');
ctx.drawImage(img, 0, 0);
Module["preloadedImages"][name] = canvas;
Browser.URLObject.revokeObjectURL(url);
if (onload) onload(byteArray);
};
img.onerror = function img_onerror(event) {
console.log('Image ' + url + ' could not be decoded');
if (onerror) onerror();
};
img.src = url;
};
Module['preloadPlugins'].push(imagePlugin);
var audioPlugin = {};
audioPlugin['canHandle'] = function audioPlugin_canHandle(name) {
return !Module.noAudioDecoding && name.substr(-4) in { '.ogg': 1, '.wav': 1, '.mp3': 1 };
};
audioPlugin['handle'] = function audioPlugin_handle(byteArray, name, onload, onerror) {
var done = false;
function finish(audio) {
if (done) return;
done = true;
Module["preloadedAudios"][name] = audio;
if (onload) onload(byteArray);
}
function fail() {
if (done) return;
done = true;
Module["preloadedAudios"][name] = new Audio(); // empty shim
if (onerror) onerror();
}
if (Browser.hasBlobConstructor) {
try {
var b = new Blob([byteArray], { type: Browser.getMimetype(name) });
} catch(e) {
return fail();
}
var url = Browser.URLObject.createObjectURL(b); // XXX we never revoke this!
var audio = new Audio();
audio.addEventListener('canplaythrough', function() { finish(audio) }, false); // use addEventListener due to chromium bug 124926
audio.onerror = function audio_onerror(event) {
if (done) return;
console.log('warning: browser could not fully decode audio ' + name + ', trying slower base64 approach');
function encode64(data) {
var BASE = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';
var PAD = '=';
var ret = '';
var leftchar = 0;
var leftbits = 0;
for (var i = 0; i < data.length; i++) {
leftchar = (leftchar << 8) | data[i];
leftbits += 8;
while (leftbits >= 6) {
var curr = (leftchar >> (leftbits-6)) & 0x3f;
leftbits -= 6;
ret += BASE[curr];
}
}
if (leftbits == 2) {
ret += BASE[(leftchar&3) << 4];
ret += PAD + PAD;
} else if (leftbits == 4) {
ret += BASE[(leftchar&0xf) << 2];
ret += PAD;
}
return ret;
}
audio.src = 'data:audio/x-' + name.substr(-3) + ';base64,' + encode64(byteArray);
finish(audio); // we don't wait for confirmation this worked - but it's worth trying
};
audio.src = url;
// workaround for chrome bug 124926 - we do not always get oncanplaythrough or onerror
Browser.safeSetTimeout(function() {
finish(audio); // try to use it even though it is not necessarily ready to play
}, 10000);
} else {
return fail();
}
};
Module['preloadPlugins'].push(audioPlugin);
// Canvas event setup
var canvas = Module['canvas'];
// forced aspect ratio can be enabled by defining 'forcedAspectRatio' on Module
// Module['forcedAspectRatio'] = 4 / 3;
canvas.requestPointerLock = canvas['requestPointerLock'] ||
canvas['mozRequestPointerLock'] ||
canvas['webkitRequestPointerLock'] ||
canvas['msRequestPointerLock'] ||
function(){};
canvas.exitPointerLock = document['exitPointerLock'] ||
document['mozExitPointerLock'] ||
document['webkitExitPointerLock'] ||
document['msExitPointerLock'] ||
function(){}; // no-op if function does not exist
canvas.exitPointerLock = canvas.exitPointerLock.bind(document);
function pointerLockChange() {
Browser.pointerLock = document['pointerLockElement'] === canvas ||
document['mozPointerLockElement'] === canvas ||
document['webkitPointerLockElement'] === canvas ||
document['msPointerLockElement'] === canvas;
}
document.addEventListener('pointerlockchange', pointerLockChange, false);
document.addEventListener('mozpointerlockchange', pointerLockChange, false);
document.addEventListener('webkitpointerlockchange', pointerLockChange, false);
document.addEventListener('mspointerlockchange', pointerLockChange, false);
if (Module['elementPointerLock']) {
canvas.addEventListener("click", function(ev) {
if (!Browser.pointerLock && canvas.requestPointerLock) {
canvas.requestPointerLock();
ev.preventDefault();
}
}, false);
}
},createContext:function (canvas, useWebGL, setInModule, webGLContextAttributes) {
var ctx;
var errorInfo = '?';
function onContextCreationError(event) {
errorInfo = event.statusMessage || errorInfo;
}
try {
if (useWebGL) {
var contextAttributes = {
antialias: false,
alpha: false
};
if (webGLContextAttributes) {
for (var attribute in webGLContextAttributes) {
contextAttributes[attribute] = webGLContextAttributes[attribute];
}
}
canvas.addEventListener('webglcontextcreationerror', onContextCreationError, false);
try {
['experimental-webgl', 'webgl'].some(function(webglId) {
return ctx = canvas.getContext(webglId, contextAttributes);
});
} finally {
canvas.removeEventListener('webglcontextcreationerror', onContextCreationError, false);
}
} else {
ctx = canvas.getContext('2d');
}
if (!ctx) throw ':(';
} catch (e) {
Module.print('Could not create canvas: ' + [errorInfo, e]);
return null;
}
if (useWebGL) {
// Set the background of the WebGL canvas to black
canvas.style.backgroundColor = "black";
// Warn on context loss
canvas.addEventListener('webglcontextlost', function(event) {
alert('WebGL context lost. You will need to reload the page.');
}, false);
}
if (setInModule) {
GLctx = Module.ctx = ctx;
Module.useWebGL = useWebGL;
Browser.moduleContextCreatedCallbacks.forEach(function(callback) { callback() });
Browser.init();
}
return ctx;
},destroyContext:function (canvas, useWebGL, setInModule) {},fullScreenHandlersInstalled:false,lockPointer:undefined,resizeCanvas:undefined,requestFullScreen:function (lockPointer, resizeCanvas) {
Browser.lockPointer = lockPointer;
Browser.resizeCanvas = resizeCanvas;
if (typeof Browser.lockPointer === 'undefined') Browser.lockPointer = true;
if (typeof Browser.resizeCanvas === 'undefined') Browser.resizeCanvas = false;
var canvas = Module['canvas'];
function fullScreenChange() {
Browser.isFullScreen = false;
var canvasContainer = canvas.parentNode;
if ((document['webkitFullScreenElement'] || document['webkitFullscreenElement'] ||
document['mozFullScreenElement'] || document['mozFullscreenElement'] ||
document['fullScreenElement'] || document['fullscreenElement'] ||
document['msFullScreenElement'] || document['msFullscreenElement'] ||
document['webkitCurrentFullScreenElement']) === canvasContainer) {
canvas.cancelFullScreen = document['cancelFullScreen'] ||
document['mozCancelFullScreen'] ||
document['webkitCancelFullScreen'] ||
document['msExitFullscreen'] ||
document['exitFullscreen'] ||
function() {};
canvas.cancelFullScreen = canvas.cancelFullScreen.bind(document);
if (Browser.lockPointer) canvas.requestPointerLock();
Browser.isFullScreen = true;
if (Browser.resizeCanvas) Browser.setFullScreenCanvasSize();
} else {
// remove the full screen specific parent of the canvas again to restore the HTML structure from before going full screen
canvasContainer.parentNode.insertBefore(canvas, canvasContainer);
canvasContainer.parentNode.removeChild(canvasContainer);
if (Browser.resizeCanvas) Browser.setWindowedCanvasSize();
}
if (Module['onFullScreen']) Module['onFullScreen'](Browser.isFullScreen);
Browser.updateCanvasDimensions(canvas);
}
if (!Browser.fullScreenHandlersInstalled) {
Browser.fullScreenHandlersInstalled = true;
document.addEventListener('fullscreenchange', fullScreenChange, false);
document.addEventListener('mozfullscreenchange', fullScreenChange, false);
document.addEventListener('webkitfullscreenchange', fullScreenChange, false);
document.addEventListener('MSFullscreenChange', fullScreenChange, false);
}
// create a new parent to ensure the canvas has no siblings. this allows browsers to optimize full screen performance when its parent is the full screen root
var canvasContainer = document.createElement("div");
canvas.parentNode.insertBefore(canvasContainer, canvas);
canvasContainer.appendChild(canvas);
// use parent of canvas as full screen root to allow aspect ratio correction (Firefox stretches the root to screen size)
canvasContainer.requestFullScreen = canvasContainer['requestFullScreen'] ||
canvasContainer['mozRequestFullScreen'] ||
canvasContainer['msRequestFullscreen'] ||
(canvasContainer['webkitRequestFullScreen'] ? function() { canvasContainer['webkitRequestFullScreen'](Element['ALLOW_KEYBOARD_INPUT']) } : null);
canvasContainer.requestFullScreen();
},requestAnimationFrame:function requestAnimationFrame(func) {
if (typeof window === 'undefined') { // Provide fallback to setTimeout if window is undefined (e.g. in Node.js)
setTimeout(func, 1000/60);
} else {
if (!window.requestAnimationFrame) {
window.requestAnimationFrame = window['requestAnimationFrame'] ||
window['mozRequestAnimationFrame'] ||
window['webkitRequestAnimationFrame'] ||
window['msRequestAnimationFrame'] ||
window['oRequestAnimationFrame'] ||
window['setTimeout'];
}
window.requestAnimationFrame(func);
}
},safeCallback:function (func) {
return function() {
if (!ABORT) return func.apply(null, arguments);
};
},safeRequestAnimationFrame:function (func) {
return Browser.requestAnimationFrame(function() {
if (!ABORT) func();
});
},safeSetTimeout:function (func, timeout) {
return setTimeout(function() {
if (!ABORT) func();
}, timeout);
},safeSetInterval:function (func, timeout) {
return setInterval(function() {
if (!ABORT) func();
}, timeout);
},getMimetype:function (name) {
return {
'jpg': 'image/jpeg',
'jpeg': 'image/jpeg',
'png': 'image/png',
'bmp': 'image/bmp',
'ogg': 'audio/ogg',
'wav': 'audio/wav',
'mp3': 'audio/mpeg'
}[name.substr(name.lastIndexOf('.')+1)];
},getUserMedia:function (func) {
if(!window.getUserMedia) {
window.getUserMedia = navigator['getUserMedia'] ||
navigator['mozGetUserMedia'];
}
window.getUserMedia(func);
},getMovementX:function (event) {
return event['movementX'] ||
event['mozMovementX'] ||
event['webkitMovementX'] ||
0;
},getMovementY:function (event) {
return event['movementY'] ||
event['mozMovementY'] ||
event['webkitMovementY'] ||
0;
},getMouseWheelDelta:function (event) {
return Math.max(-1, Math.min(1, event.type === 'DOMMouseScroll' ? event.detail : -event.wheelDelta));
},mouseX:0,mouseY:0,mouseMovementX:0,mouseMovementY:0,calculateMouseEvent:function (event) { // event should be mousemove, mousedown or mouseup
if (Browser.pointerLock) {
// When the pointer is locked, calculate the coordinates
// based on the movement of the mouse.
// Workaround for Firefox bug 764498
if (event.type != 'mousemove' &&
('mozMovementX' in event)) {
Browser.mouseMovementX = Browser.mouseMovementY = 0;
} else {
Browser.mouseMovementX = Browser.getMovementX(event);
Browser.mouseMovementY = Browser.getMovementY(event);
}
// check if SDL is available
if (typeof SDL != "undefined") {
Browser.mouseX = SDL.mouseX + Browser.mouseMovementX;
Browser.mouseY = SDL.mouseY + Browser.mouseMovementY;
} else {
// just add the mouse delta to the current absolut mouse position
// FIXME: ideally this should be clamped against the canvas size and zero
Browser.mouseX += Browser.mouseMovementX;
Browser.mouseY += Browser.mouseMovementY;
}
} else {
// Otherwise, calculate the movement based on the changes
// in the coordinates.
var rect = Module["canvas"].getBoundingClientRect();
var x, y;
// Neither .scrollX or .pageXOffset are defined in a spec, but
// we prefer .scrollX because it is currently in a spec draft.
// (see: http://www.w3.org/TR/2013/WD-cssom-view-20131217/)
var scrollX = ((typeof window.scrollX !== 'undefined') ? window.scrollX : window.pageXOffset);
var scrollY = ((typeof window.scrollY !== 'undefined') ? window.scrollY : window.pageYOffset);
if (event.type == 'touchstart' ||
event.type == 'touchend' ||
event.type == 'touchmove') {
var t = event.touches.item(0);
if (t) {
x = t.pageX - (scrollX + rect.left);
y = t.pageY - (scrollY + rect.top);
} else {
return;
}
} else {
x = event.pageX - (scrollX + rect.left);
y = event.pageY - (scrollY + rect.top);
}
// the canvas might be CSS-scaled compared to its backbuffer;
// SDL-using content will want mouse coordinates in terms
// of backbuffer units.
var cw = Module["canvas"].width;
var ch = Module["canvas"].height;
x = x * (cw / rect.width);
y = y * (ch / rect.height);
Browser.mouseMovementX = x - Browser.mouseX;
Browser.mouseMovementY = y - Browser.mouseY;
Browser.mouseX = x;
Browser.mouseY = y;
}
},xhrLoad:function (url, onload, onerror) {
var xhr = new XMLHttpRequest();
xhr.open('GET', url, true);
xhr.responseType = 'arraybuffer';
xhr.onload = function xhr_onload() {
if (xhr.status == 200 || (xhr.status == 0 && xhr.response)) { // file URLs can return 0
onload(xhr.response);
} else {
onerror();
}
};
xhr.onerror = onerror;
xhr.send(null);
},asyncLoad:function (url, onload, onerror, noRunDep) {
Browser.xhrLoad(url, function(arrayBuffer) {
assert(arrayBuffer, 'Loading data file "' + url + '" failed (no arrayBuffer).');
onload(new Uint8Array(arrayBuffer));
if (!noRunDep) removeRunDependency('al ' + url);
}, function(event) {
if (onerror) {
onerror();
} else {
throw 'Loading data file "' + url + '" failed.';
}
});
if (!noRunDep) addRunDependency('al ' + url);
},resizeListeners:[],updateResizeListeners:function () {
var canvas = Module['canvas'];
Browser.resizeListeners.forEach(function(listener) {
listener(canvas.width, canvas.height);
});
},setCanvasSize:function (width, height, noUpdates) {
var canvas = Module['canvas'];
Browser.updateCanvasDimensions(canvas, width, height);
if (!noUpdates) Browser.updateResizeListeners();
},windowedWidth:0,windowedHeight:0,setFullScreenCanvasSize:function () {
// check if SDL is available
if (typeof SDL != "undefined") {
var flags = HEAPU32[((SDL.screen+Runtime.QUANTUM_SIZE*0)>>2)];
flags = flags | 0x00800000; // set SDL_FULLSCREEN flag
HEAP32[((SDL.screen+Runtime.QUANTUM_SIZE*0)>>2)]=flags
}
Browser.updateResizeListeners();
},setWindowedCanvasSize:function () {
// check if SDL is available
if (typeof SDL != "undefined") {
var flags = HEAPU32[((SDL.screen+Runtime.QUANTUM_SIZE*0)>>2)];
flags = flags & ~0x00800000; // clear SDL_FULLSCREEN flag
HEAP32[((SDL.screen+Runtime.QUANTUM_SIZE*0)>>2)]=flags
}
Browser.updateResizeListeners();
},updateCanvasDimensions:function (canvas, wNative, hNative) {
if (wNative && hNative) {
canvas.widthNative = wNative;
canvas.heightNative = hNative;
} else {
wNative = canvas.widthNative;
hNative = canvas.heightNative;
}
var w = wNative;
var h = hNative;
if (Module['forcedAspectRatio'] && Module['forcedAspectRatio'] > 0) {
if (w/h < Module['forcedAspectRatio']) {
w = Math.round(h * Module['forcedAspectRatio']);
} else {
h = Math.round(w / Module['forcedAspectRatio']);
}
}
if (((document['webkitFullScreenElement'] || document['webkitFullscreenElement'] ||
document['mozFullScreenElement'] || document['mozFullscreenElement'] ||
document['fullScreenElement'] || document['fullscreenElement'] ||
document['msFullScreenElement'] || document['msFullscreenElement'] ||
document['webkitCurrentFullScreenElement']) === canvas.parentNode) && (typeof screen != 'undefined')) {
var factor = Math.min(screen.width / w, screen.height / h);
w = Math.round(w * factor);
h = Math.round(h * factor);
}
if (Browser.resizeCanvas) {
if (canvas.width != w) canvas.width = w;
if (canvas.height != h) canvas.height = h;
if (typeof canvas.style != 'undefined') {
canvas.style.removeProperty( "width");
canvas.style.removeProperty("height");
}
} else {
if (canvas.width != wNative) canvas.width = wNative;
if (canvas.height != hNative) canvas.height = hNative;
if (typeof canvas.style != 'undefined') {
if (w != wNative || h != hNative) {
canvas.style.setProperty( "width", w + "px", "important");
canvas.style.setProperty("height", h + "px", "important");
} else {
canvas.style.removeProperty( "width");
canvas.style.removeProperty("height");
}
}
}
}};
function _time(ptr) {
var ret = Math.floor(Date.now()/1000);
if (ptr) {
HEAP32[((ptr)>>2)]=ret;
}
return ret;
}
function _malloc(bytes) {
/* Over-allocate to make sure it is byte-aligned by 8.
* This will leak memory, but this is only the dummy
* implementation (replaced by dlmalloc normally) so
* not an issue.
*/
var ptr = Runtime.dynamicAlloc(bytes + 8);
return (ptr+8) & 0xFFFFFFF8;
}
Module["_malloc"] = _malloc;function ___cxa_allocate_exception(size) {
var ptr = _malloc(size + ___cxa_exception_header_size);
return ptr + ___cxa_exception_header_size;
}
var __ZTISt9exception=allocate([allocate([1,0,0,0,0,0,0], "i8", ALLOC_STATIC)+8, 0], "i32", ALLOC_STATIC);
function __ZTVN10__cxxabiv120__si_class_type_infoE() {
Module['printErr']('missing function: _ZTVN10__cxxabiv120__si_class_type_infoE'); abort(-1);
}
___errno_state = Runtime.staticAlloc(4); HEAP32[((___errno_state)>>2)]=0;
FS.staticInit();__ATINIT__.unshift({ func: function() { if (!Module["noFSInit"] && !FS.init.initialized) FS.init() } });__ATMAIN__.push({ func: function() { FS.ignorePermissions = false } });__ATEXIT__.push({ func: function() { FS.quit() } });Module["FS_createFolder"] = FS.createFolder;Module["FS_createPath"] = FS.createPath;Module["FS_createDataFile"] = FS.createDataFile;Module["FS_createPreloadedFile"] = FS.createPreloadedFile;Module["FS_createLazyFile"] = FS.createLazyFile;Module["FS_createLink"] = FS.createLink;Module["FS_createDevice"] = FS.createDevice;
__ATINIT__.unshift({ func: function() { TTY.init() } });__ATEXIT__.push({ func: function() { TTY.shutdown() } });TTY.utf8 = new Runtime.UTF8Processor();
if (ENVIRONMENT_IS_NODE) { var fs = require("fs"); NODEFS.staticInit(); }
__ATINIT__.push({ func: function() { SOCKFS.root = FS.mount(SOCKFS, {}, null); } });
_fputc.ret = allocate([0], "i8", ALLOC_STATIC);
Module["requestFullScreen"] = function Module_requestFullScreen(lockPointer, resizeCanvas) { Browser.requestFullScreen(lockPointer, resizeCanvas) };
Module["requestAnimationFrame"] = function Module_requestAnimationFrame(func) { Browser.requestAnimationFrame(func) };
Module["setCanvasSize"] = function Module_setCanvasSize(width, height, noUpdates) { Browser.setCanvasSize(width, height, noUpdates) };
Module["pauseMainLoop"] = function Module_pauseMainLoop() { Browser.mainLoop.pause() };
Module["resumeMainLoop"] = function Module_resumeMainLoop() { Browser.mainLoop.resume() };
Module["getUserMedia"] = function Module_getUserMedia() { Browser.getUserMedia() }
STACK_BASE = STACKTOP = Runtime.alignMemory(STATICTOP);
staticSealed = true; // seal the static portion of memory
STACK_MAX = STACK_BASE + 5242880;
DYNAMIC_BASE = DYNAMICTOP = Runtime.alignMemory(STACK_MAX);
assert(DYNAMIC_BASE < TOTAL_MEMORY, "TOTAL_MEMORY not big enough for stack");
var Math_min = Math.min;
function invoke_ii(index,a1) {
try {
return Module["dynCall_ii"](index,a1);
} catch(e) {
if (typeof e !== 'number' && e !== 'longjmp') throw e;
asm["setThrew"](1, 0);
}
}
function invoke_vi(index,a1) {
try {
Module["dynCall_vi"](index,a1);
} catch(e) {
if (typeof e !== 'number' && e !== 'longjmp') throw e;
asm["setThrew"](1, 0);
}
}
function invoke_v(index) {
try {
Module["dynCall_v"](index);
} catch(e) {
if (typeof e !== 'number' && e !== 'longjmp') throw e;
asm["setThrew"](1, 0);
}
}
function asmPrintInt(x, y) {
Module.print('int ' + x + ',' + y);// + ' ' + new Error().stack);
}
function asmPrintFloat(x, y) {
Module.print('float ' + x + ',' + y);// + ' ' + new Error().stack);
}
// EMSCRIPTEN_START_ASM
var asm = (function(global, env, buffer) {
'use asm';
var HEAP8 = new global.Int8Array(buffer);
var HEAP16 = new global.Int16Array(buffer);
var HEAP32 = new global.Int32Array(buffer);
var HEAPU8 = new global.Uint8Array(buffer);
var HEAPU16 = new global.Uint16Array(buffer);
var HEAPU32 = new global.Uint32Array(buffer);
var HEAPF32 = new global.Float32Array(buffer);
var HEAPF64 = new global.Float64Array(buffer);
var STACKTOP=env.STACKTOP|0;
var STACK_MAX=env.STACK_MAX|0;
var tempDoublePtr=env.tempDoublePtr|0;
var ABORT=env.ABORT|0;
var __ZTISt9exception=env.__ZTISt9exception|0;
var __ZTVN10__cxxabiv120__si_class_type_infoE=env.__ZTVN10__cxxabiv120__si_class_type_infoE|0;
var __THREW__ = 0;
var threwValue = 0;
var setjmpId = 0;
var undef = 0;
var nan = +env.NaN, inf = +env.Infinity;
var tempInt = 0, tempBigInt = 0, tempBigIntP = 0, tempBigIntS = 0, tempBigIntR = 0.0, tempBigIntI = 0, tempBigIntD = 0, tempValue = 0, tempDouble = 0.0;
var tempRet0 = 0;
var tempRet1 = 0;
var tempRet2 = 0;
var tempRet3 = 0;
var tempRet4 = 0;
var tempRet5 = 0;
var tempRet6 = 0;
var tempRet7 = 0;
var tempRet8 = 0;
var tempRet9 = 0;
var Math_floor=global.Math.floor;
var Math_abs=global.Math.abs;
var Math_sqrt=global.Math.sqrt;
var Math_pow=global.Math.pow;
var Math_cos=global.Math.cos;
var Math_sin=global.Math.sin;
var Math_tan=global.Math.tan;
var Math_acos=global.Math.acos;
var Math_asin=global.Math.asin;
var Math_atan=global.Math.atan;
var Math_atan2=global.Math.atan2;
var Math_exp=global.Math.exp;
var Math_log=global.Math.log;
var Math_ceil=global.Math.ceil;
var Math_imul=global.Math.imul;
var abort=env.abort;
var assert=env.assert;
var asmPrintInt=env.asmPrintInt;
var asmPrintFloat=env.asmPrintFloat;
var Math_min=env.min;
var invoke_ii=env.invoke_ii;
var invoke_vi=env.invoke_vi;
var invoke_v=env.invoke_v;
var _send=env._send;
var ___setErrNo=env.___setErrNo;
var ___cxa_is_number_type=env.___cxa_is_number_type;
var ___cxa_allocate_exception=env.___cxa_allocate_exception;
var ___cxa_find_matching_catch=env.___cxa_find_matching_catch;
var _fflush=env._fflush;
var _time=env._time;
var _pwrite=env._pwrite;
var __reallyNegative=env.__reallyNegative;
var _sbrk=env._sbrk;
var _emscripten_memcpy_big=env._emscripten_memcpy_big;
var _fileno=env._fileno;
var ___resumeException=env.___resumeException;
var __ZSt18uncaught_exceptionv=env.__ZSt18uncaught_exceptionv;
var _sysconf=env._sysconf;
var _puts=env._puts;
var _mkport=env._mkport;
var _write=env._write;
var ___errno_location=env.___errno_location;
var __ZNSt9exceptionD2Ev=env.__ZNSt9exceptionD2Ev;
var _fputc=env._fputc;
var ___cxa_throw=env.___cxa_throw;
var _abort=env._abort;
var _fwrite=env._fwrite;
var ___cxa_does_inherit=env.___cxa_does_inherit;
var _fprintf=env._fprintf;
var __formatString=env.__formatString;
var _fputs=env._fputs;
var _printf=env._printf;
var tempFloat = 0.0;
// EMSCRIPTEN_START_FUNCS
function _malloc(i12) {
i12 = i12 | 0;
var i1 = 0, i2 = 0, i3 = 0, i4 = 0, i5 = 0, i6 = 0, i7 = 0, i8 = 0, i9 = 0, i10 = 0, i11 = 0, i13 = 0, i14 = 0, i15 = 0, i16 = 0, i17 = 0, i18 = 0, i19 = 0, i20 = 0, i21 = 0, i22 = 0, i23 = 0, i24 = 0, i25 = 0, i26 = 0, i27 = 0, i28 = 0, i29 = 0, i30 = 0, i31 = 0, i32 = 0;
i1 = STACKTOP;
do {
if (i12 >>> 0 < 245) {
if (i12 >>> 0 < 11) {
i12 = 16;
} else {
i12 = i12 + 11 & -8;
}
i20 = i12 >>> 3;
i18 = HEAP32[146] | 0;
i21 = i18 >>> i20;
if ((i21 & 3 | 0) != 0) {
i6 = (i21 & 1 ^ 1) + i20 | 0;
i5 = i6 << 1;
i3 = 624 + (i5 << 2) | 0;
i5 = 624 + (i5 + 2 << 2) | 0;
i7 = HEAP32[i5 >> 2] | 0;
i2 = i7 + 8 | 0;
i4 = HEAP32[i2 >> 2] | 0;
do {
if ((i3 | 0) != (i4 | 0)) {
if (i4 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
}
i8 = i4 + 12 | 0;
if ((HEAP32[i8 >> 2] | 0) == (i7 | 0)) {
HEAP32[i8 >> 2] = i3;
HEAP32[i5 >> 2] = i4;
break;
} else {
_abort();
}
} else {
HEAP32[146] = i18 & ~(1 << i6);
}
} while (0);
i32 = i6 << 3;
HEAP32[i7 + 4 >> 2] = i32 | 3;
i32 = i7 + (i32 | 4) | 0;
HEAP32[i32 >> 2] = HEAP32[i32 >> 2] | 1;
i32 = i2;
STACKTOP = i1;
return i32 | 0;
}
if (i12 >>> 0 > (HEAP32[592 >> 2] | 0) >>> 0) {
if ((i21 | 0) != 0) {
i7 = 2 << i20;
i7 = i21 << i20 & (i7 | 0 - i7);
i7 = (i7 & 0 - i7) + -1 | 0;
i2 = i7 >>> 12 & 16;
i7 = i7 >>> i2;
i6 = i7 >>> 5 & 8;
i7 = i7 >>> i6;
i5 = i7 >>> 2 & 4;
i7 = i7 >>> i5;
i4 = i7 >>> 1 & 2;
i7 = i7 >>> i4;
i3 = i7 >>> 1 & 1;
i3 = (i6 | i2 | i5 | i4 | i3) + (i7 >>> i3) | 0;
i7 = i3 << 1;
i4 = 624 + (i7 << 2) | 0;
i7 = 624 + (i7 + 2 << 2) | 0;
i5 = HEAP32[i7 >> 2] | 0;
i2 = i5 + 8 | 0;
i6 = HEAP32[i2 >> 2] | 0;
do {
if ((i4 | 0) != (i6 | 0)) {
if (i6 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
}
i8 = i6 + 12 | 0;
if ((HEAP32[i8 >> 2] | 0) == (i5 | 0)) {
HEAP32[i8 >> 2] = i4;
HEAP32[i7 >> 2] = i6;
break;
} else {
_abort();
}
} else {
HEAP32[146] = i18 & ~(1 << i3);
}
} while (0);
i6 = i3 << 3;
i4 = i6 - i12 | 0;
HEAP32[i5 + 4 >> 2] = i12 | 3;
i3 = i5 + i12 | 0;
HEAP32[i5 + (i12 | 4) >> 2] = i4 | 1;
HEAP32[i5 + i6 >> 2] = i4;
i6 = HEAP32[592 >> 2] | 0;
if ((i6 | 0) != 0) {
i5 = HEAP32[604 >> 2] | 0;
i8 = i6 >>> 3;
i9 = i8 << 1;
i6 = 624 + (i9 << 2) | 0;
i7 = HEAP32[146] | 0;
i8 = 1 << i8;
if ((i7 & i8 | 0) != 0) {
i7 = 624 + (i9 + 2 << 2) | 0;
i8 = HEAP32[i7 >> 2] | 0;
if (i8 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
i28 = i7;
i27 = i8;
}
} else {
HEAP32[146] = i7 | i8;
i28 = 624 + (i9 + 2 << 2) | 0;
i27 = i6;
}
HEAP32[i28 >> 2] = i5;
HEAP32[i27 + 12 >> 2] = i5;
HEAP32[i5 + 8 >> 2] = i27;
HEAP32[i5 + 12 >> 2] = i6;
}
HEAP32[592 >> 2] = i4;
HEAP32[604 >> 2] = i3;
i32 = i2;
STACKTOP = i1;
return i32 | 0;
}
i18 = HEAP32[588 >> 2] | 0;
if ((i18 | 0) != 0) {
i2 = (i18 & 0 - i18) + -1 | 0;
i31 = i2 >>> 12 & 16;
i2 = i2 >>> i31;
i30 = i2 >>> 5 & 8;
i2 = i2 >>> i30;
i32 = i2 >>> 2 & 4;
i2 = i2 >>> i32;
i6 = i2 >>> 1 & 2;
i2 = i2 >>> i6;
i3 = i2 >>> 1 & 1;
i3 = HEAP32[888 + ((i30 | i31 | i32 | i6 | i3) + (i2 >>> i3) << 2) >> 2] | 0;
i2 = (HEAP32[i3 + 4 >> 2] & -8) - i12 | 0;
i6 = i3;
while (1) {
i5 = HEAP32[i6 + 16 >> 2] | 0;
if ((i5 | 0) == 0) {
i5 = HEAP32[i6 + 20 >> 2] | 0;
if ((i5 | 0) == 0) {
break;
}
}
i6 = (HEAP32[i5 + 4 >> 2] & -8) - i12 | 0;
i4 = i6 >>> 0 < i2 >>> 0;
i2 = i4 ? i6 : i2;
i6 = i5;
i3 = i4 ? i5 : i3;
}
i6 = HEAP32[600 >> 2] | 0;
if (i3 >>> 0 < i6 >>> 0) {
_abort();
}
i4 = i3 + i12 | 0;
if (!(i3 >>> 0 < i4 >>> 0)) {
_abort();
}
i5 = HEAP32[i3 + 24 >> 2] | 0;
i7 = HEAP32[i3 + 12 >> 2] | 0;
do {
if ((i7 | 0) == (i3 | 0)) {
i8 = i3 + 20 | 0;
i7 = HEAP32[i8 >> 2] | 0;
if ((i7 | 0) == 0) {
i8 = i3 + 16 | 0;
i7 = HEAP32[i8 >> 2] | 0;
if ((i7 | 0) == 0) {
i26 = 0;
break;
}
}
while (1) {
i10 = i7 + 20 | 0;
i9 = HEAP32[i10 >> 2] | 0;
if ((i9 | 0) != 0) {
i7 = i9;
i8 = i10;
continue;
}
i10 = i7 + 16 | 0;
i9 = HEAP32[i10 >> 2] | 0;
if ((i9 | 0) == 0) {
break;
} else {
i7 = i9;
i8 = i10;
}
}
if (i8 >>> 0 < i6 >>> 0) {
_abort();
} else {
HEAP32[i8 >> 2] = 0;
i26 = i7;
break;
}
} else {
i8 = HEAP32[i3 + 8 >> 2] | 0;
if (i8 >>> 0 < i6 >>> 0) {
_abort();
}
i6 = i8 + 12 | 0;
if ((HEAP32[i6 >> 2] | 0) != (i3 | 0)) {
_abort();
}
i9 = i7 + 8 | 0;
if ((HEAP32[i9 >> 2] | 0) == (i3 | 0)) {
HEAP32[i6 >> 2] = i7;
HEAP32[i9 >> 2] = i8;
i26 = i7;
break;
} else {
_abort();
}
}
} while (0);
do {
if ((i5 | 0) != 0) {
i7 = HEAP32[i3 + 28 >> 2] | 0;
i6 = 888 + (i7 << 2) | 0;
if ((i3 | 0) == (HEAP32[i6 >> 2] | 0)) {
HEAP32[i6 >> 2] = i26;
if ((i26 | 0) == 0) {
HEAP32[588 >> 2] = HEAP32[588 >> 2] & ~(1 << i7);
break;
}
} else {
if (i5 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
}
i6 = i5 + 16 | 0;
if ((HEAP32[i6 >> 2] | 0) == (i3 | 0)) {
HEAP32[i6 >> 2] = i26;
} else {
HEAP32[i5 + 20 >> 2] = i26;
}
if ((i26 | 0) == 0) {
break;
}
}
if (i26 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
}
HEAP32[i26 + 24 >> 2] = i5;
i5 = HEAP32[i3 + 16 >> 2] | 0;
do {
if ((i5 | 0) != 0) {
if (i5 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
HEAP32[i26 + 16 >> 2] = i5;
HEAP32[i5 + 24 >> 2] = i26;
break;
}
}
} while (0);
i5 = HEAP32[i3 + 20 >> 2] | 0;
if ((i5 | 0) != 0) {
if (i5 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
HEAP32[i26 + 20 >> 2] = i5;
HEAP32[i5 + 24 >> 2] = i26;
break;
}
}
}
} while (0);
if (i2 >>> 0 < 16) {
i32 = i2 + i12 | 0;
HEAP32[i3 + 4 >> 2] = i32 | 3;
i32 = i3 + (i32 + 4) | 0;
HEAP32[i32 >> 2] = HEAP32[i32 >> 2] | 1;
} else {
HEAP32[i3 + 4 >> 2] = i12 | 3;
HEAP32[i3 + (i12 | 4) >> 2] = i2 | 1;
HEAP32[i3 + (i2 + i12) >> 2] = i2;
i6 = HEAP32[592 >> 2] | 0;
if ((i6 | 0) != 0) {
i5 = HEAP32[604 >> 2] | 0;
i8 = i6 >>> 3;
i9 = i8 << 1;
i6 = 624 + (i9 << 2) | 0;
i7 = HEAP32[146] | 0;
i8 = 1 << i8;
if ((i7 & i8 | 0) != 0) {
i7 = 624 + (i9 + 2 << 2) | 0;
i8 = HEAP32[i7 >> 2] | 0;
if (i8 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
i25 = i7;
i24 = i8;
}
} else {
HEAP32[146] = i7 | i8;
i25 = 624 + (i9 + 2 << 2) | 0;
i24 = i6;
}
HEAP32[i25 >> 2] = i5;
HEAP32[i24 + 12 >> 2] = i5;
HEAP32[i5 + 8 >> 2] = i24;
HEAP32[i5 + 12 >> 2] = i6;
}
HEAP32[592 >> 2] = i2;
HEAP32[604 >> 2] = i4;
}
i32 = i3 + 8 | 0;
STACKTOP = i1;
return i32 | 0;
}
}
} else {
if (!(i12 >>> 0 > 4294967231)) {
i24 = i12 + 11 | 0;
i12 = i24 & -8;
i26 = HEAP32[588 >> 2] | 0;
if ((i26 | 0) != 0) {
i25 = 0 - i12 | 0;
i24 = i24 >>> 8;
if ((i24 | 0) != 0) {
if (i12 >>> 0 > 16777215) {
i27 = 31;
} else {
i31 = (i24 + 1048320 | 0) >>> 16 & 8;
i32 = i24 << i31;
i30 = (i32 + 520192 | 0) >>> 16 & 4;
i32 = i32 << i30;
i27 = (i32 + 245760 | 0) >>> 16 & 2;
i27 = 14 - (i30 | i31 | i27) + (i32 << i27 >>> 15) | 0;
i27 = i12 >>> (i27 + 7 | 0) & 1 | i27 << 1;
}
} else {
i27 = 0;
}
i30 = HEAP32[888 + (i27 << 2) >> 2] | 0;
L126 : do {
if ((i30 | 0) == 0) {
i29 = 0;
i24 = 0;
} else {
if ((i27 | 0) == 31) {
i24 = 0;
} else {
i24 = 25 - (i27 >>> 1) | 0;
}
i29 = 0;
i28 = i12 << i24;
i24 = 0;
while (1) {
i32 = HEAP32[i30 + 4 >> 2] & -8;
i31 = i32 - i12 | 0;
if (i31 >>> 0 < i25 >>> 0) {
if ((i32 | 0) == (i12 | 0)) {
i25 = i31;
i29 = i30;
i24 = i30;
break L126;
} else {
i25 = i31;
i24 = i30;
}
}
i31 = HEAP32[i30 + 20 >> 2] | 0;
i30 = HEAP32[i30 + (i28 >>> 31 << 2) + 16 >> 2] | 0;
i29 = (i31 | 0) == 0 | (i31 | 0) == (i30 | 0) ? i29 : i31;
if ((i30 | 0) == 0) {
break;
} else {
i28 = i28 << 1;
}
}
}
} while (0);
if ((i29 | 0) == 0 & (i24 | 0) == 0) {
i32 = 2 << i27;
i26 = i26 & (i32 | 0 - i32);
if ((i26 | 0) == 0) {
break;
}
i32 = (i26 & 0 - i26) + -1 | 0;
i28 = i32 >>> 12 & 16;
i32 = i32 >>> i28;
i27 = i32 >>> 5 & 8;
i32 = i32 >>> i27;
i30 = i32 >>> 2 & 4;
i32 = i32 >>> i30;
i31 = i32 >>> 1 & 2;
i32 = i32 >>> i31;
i29 = i32 >>> 1 & 1;
i29 = HEAP32[888 + ((i27 | i28 | i30 | i31 | i29) + (i32 >>> i29) << 2) >> 2] | 0;
}
if ((i29 | 0) != 0) {
while (1) {
i27 = (HEAP32[i29 + 4 >> 2] & -8) - i12 | 0;
i26 = i27 >>> 0 < i25 >>> 0;
i25 = i26 ? i27 : i25;
i24 = i26 ? i29 : i24;
i26 = HEAP32[i29 + 16 >> 2] | 0;
if ((i26 | 0) != 0) {
i29 = i26;
continue;
}
i29 = HEAP32[i29 + 20 >> 2] | 0;
if ((i29 | 0) == 0) {
break;
}
}
}
if ((i24 | 0) != 0 ? i25 >>> 0 < ((HEAP32[592 >> 2] | 0) - i12 | 0) >>> 0 : 0) {
i4 = HEAP32[600 >> 2] | 0;
if (i24 >>> 0 < i4 >>> 0) {
_abort();
}
i2 = i24 + i12 | 0;
if (!(i24 >>> 0 < i2 >>> 0)) {
_abort();
}
i3 = HEAP32[i24 + 24 >> 2] | 0;
i6 = HEAP32[i24 + 12 >> 2] | 0;
do {
if ((i6 | 0) == (i24 | 0)) {
i6 = i24 + 20 | 0;
i5 = HEAP32[i6 >> 2] | 0;
if ((i5 | 0) == 0) {
i6 = i24 + 16 | 0;
i5 = HEAP32[i6 >> 2] | 0;
if ((i5 | 0) == 0) {
i22 = 0;
break;
}
}
while (1) {
i8 = i5 + 20 | 0;
i7 = HEAP32[i8 >> 2] | 0;
if ((i7 | 0) != 0) {
i5 = i7;
i6 = i8;
continue;
}
i7 = i5 + 16 | 0;
i8 = HEAP32[i7 >> 2] | 0;
if ((i8 | 0) == 0) {
break;
} else {
i5 = i8;
i6 = i7;
}
}
if (i6 >>> 0 < i4 >>> 0) {
_abort();
} else {
HEAP32[i6 >> 2] = 0;
i22 = i5;
break;
}
} else {
i5 = HEAP32[i24 + 8 >> 2] | 0;
if (i5 >>> 0 < i4 >>> 0) {
_abort();
}
i7 = i5 + 12 | 0;
if ((HEAP32[i7 >> 2] | 0) != (i24 | 0)) {
_abort();
}
i4 = i6 + 8 | 0;
if ((HEAP32[i4 >> 2] | 0) == (i24 | 0)) {
HEAP32[i7 >> 2] = i6;
HEAP32[i4 >> 2] = i5;
i22 = i6;
break;
} else {
_abort();
}
}
} while (0);
do {
if ((i3 | 0) != 0) {
i4 = HEAP32[i24 + 28 >> 2] | 0;
i5 = 888 + (i4 << 2) | 0;
if ((i24 | 0) == (HEAP32[i5 >> 2] | 0)) {
HEAP32[i5 >> 2] = i22;
if ((i22 | 0) == 0) {
HEAP32[588 >> 2] = HEAP32[588 >> 2] & ~(1 << i4);
break;
}
} else {
if (i3 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
}
i4 = i3 + 16 | 0;
if ((HEAP32[i4 >> 2] | 0) == (i24 | 0)) {
HEAP32[i4 >> 2] = i22;
} else {
HEAP32[i3 + 20 >> 2] = i22;
}
if ((i22 | 0) == 0) {
break;
}
}
if (i22 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
}
HEAP32[i22 + 24 >> 2] = i3;
i3 = HEAP32[i24 + 16 >> 2] | 0;
do {
if ((i3 | 0) != 0) {
if (i3 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
HEAP32[i22 + 16 >> 2] = i3;
HEAP32[i3 + 24 >> 2] = i22;
break;
}
}
} while (0);
i3 = HEAP32[i24 + 20 >> 2] | 0;
if ((i3 | 0) != 0) {
if (i3 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
HEAP32[i22 + 20 >> 2] = i3;
HEAP32[i3 + 24 >> 2] = i22;
break;
}
}
}
} while (0);
L204 : do {
if (!(i25 >>> 0 < 16)) {
HEAP32[i24 + 4 >> 2] = i12 | 3;
HEAP32[i24 + (i12 | 4) >> 2] = i25 | 1;
HEAP32[i24 + (i25 + i12) >> 2] = i25;
i4 = i25 >>> 3;
if (i25 >>> 0 < 256) {
i6 = i4 << 1;
i3 = 624 + (i6 << 2) | 0;
i5 = HEAP32[146] | 0;
i4 = 1 << i4;
if ((i5 & i4 | 0) != 0) {
i5 = 624 + (i6 + 2 << 2) | 0;
i4 = HEAP32[i5 >> 2] | 0;
if (i4 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
i21 = i5;
i20 = i4;
}
} else {
HEAP32[146] = i5 | i4;
i21 = 624 + (i6 + 2 << 2) | 0;
i20 = i3;
}
HEAP32[i21 >> 2] = i2;
HEAP32[i20 + 12 >> 2] = i2;
HEAP32[i24 + (i12 + 8) >> 2] = i20;
HEAP32[i24 + (i12 + 12) >> 2] = i3;
break;
}
i3 = i25 >>> 8;
if ((i3 | 0) != 0) {
if (i25 >>> 0 > 16777215) {
i3 = 31;
} else {
i31 = (i3 + 1048320 | 0) >>> 16 & 8;
i32 = i3 << i31;
i30 = (i32 + 520192 | 0) >>> 16 & 4;
i32 = i32 << i30;
i3 = (i32 + 245760 | 0) >>> 16 & 2;
i3 = 14 - (i30 | i31 | i3) + (i32 << i3 >>> 15) | 0;
i3 = i25 >>> (i3 + 7 | 0) & 1 | i3 << 1;
}
} else {
i3 = 0;
}
i6 = 888 + (i3 << 2) | 0;
HEAP32[i24 + (i12 + 28) >> 2] = i3;
HEAP32[i24 + (i12 + 20) >> 2] = 0;
HEAP32[i24 + (i12 + 16) >> 2] = 0;
i4 = HEAP32[588 >> 2] | 0;
i5 = 1 << i3;
if ((i4 & i5 | 0) == 0) {
HEAP32[588 >> 2] = i4 | i5;
HEAP32[i6 >> 2] = i2;
HEAP32[i24 + (i12 + 24) >> 2] = i6;
HEAP32[i24 + (i12 + 12) >> 2] = i2;
HEAP32[i24 + (i12 + 8) >> 2] = i2;
break;
}
i4 = HEAP32[i6 >> 2] | 0;
if ((i3 | 0) == 31) {
i3 = 0;
} else {
i3 = 25 - (i3 >>> 1) | 0;
}
L225 : do {
if ((HEAP32[i4 + 4 >> 2] & -8 | 0) != (i25 | 0)) {
i3 = i25 << i3;
while (1) {
i6 = i4 + (i3 >>> 31 << 2) + 16 | 0;
i5 = HEAP32[i6 >> 2] | 0;
if ((i5 | 0) == 0) {
break;
}
if ((HEAP32[i5 + 4 >> 2] & -8 | 0) == (i25 | 0)) {
i18 = i5;
break L225;
} else {
i3 = i3 << 1;
i4 = i5;
}
}
if (i6 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
HEAP32[i6 >> 2] = i2;
HEAP32[i24 + (i12 + 24) >> 2] = i4;
HEAP32[i24 + (i12 + 12) >> 2] = i2;
HEAP32[i24 + (i12 + 8) >> 2] = i2;
break L204;
}
} else {
i18 = i4;
}
} while (0);
i4 = i18 + 8 | 0;
i3 = HEAP32[i4 >> 2] | 0;
i5 = HEAP32[600 >> 2] | 0;
if (i18 >>> 0 < i5 >>> 0) {
_abort();
}
if (i3 >>> 0 < i5 >>> 0) {
_abort();
} else {
HEAP32[i3 + 12 >> 2] = i2;
HEAP32[i4 >> 2] = i2;
HEAP32[i24 + (i12 + 8) >> 2] = i3;
HEAP32[i24 + (i12 + 12) >> 2] = i18;
HEAP32[i24 + (i12 + 24) >> 2] = 0;
break;
}
} else {
i32 = i25 + i12 | 0;
HEAP32[i24 + 4 >> 2] = i32 | 3;
i32 = i24 + (i32 + 4) | 0;
HEAP32[i32 >> 2] = HEAP32[i32 >> 2] | 1;
}
} while (0);
i32 = i24 + 8 | 0;
STACKTOP = i1;
return i32 | 0;
}
}
} else {
i12 = -1;
}
}
} while (0);
i18 = HEAP32[592 >> 2] | 0;
if (!(i12 >>> 0 > i18 >>> 0)) {
i3 = i18 - i12 | 0;
i2 = HEAP32[604 >> 2] | 0;
if (i3 >>> 0 > 15) {
HEAP32[604 >> 2] = i2 + i12;
HEAP32[592 >> 2] = i3;
HEAP32[i2 + (i12 + 4) >> 2] = i3 | 1;
HEAP32[i2 + i18 >> 2] = i3;
HEAP32[i2 + 4 >> 2] = i12 | 3;
} else {
HEAP32[592 >> 2] = 0;
HEAP32[604 >> 2] = 0;
HEAP32[i2 + 4 >> 2] = i18 | 3;
i32 = i2 + (i18 + 4) | 0;
HEAP32[i32 >> 2] = HEAP32[i32 >> 2] | 1;
}
i32 = i2 + 8 | 0;
STACKTOP = i1;
return i32 | 0;
}
i18 = HEAP32[596 >> 2] | 0;
if (i12 >>> 0 < i18 >>> 0) {
i31 = i18 - i12 | 0;
HEAP32[596 >> 2] = i31;
i32 = HEAP32[608 >> 2] | 0;
HEAP32[608 >> 2] = i32 + i12;
HEAP32[i32 + (i12 + 4) >> 2] = i31 | 1;
HEAP32[i32 + 4 >> 2] = i12 | 3;
i32 = i32 + 8 | 0;
STACKTOP = i1;
return i32 | 0;
}
do {
if ((HEAP32[264] | 0) == 0) {
i18 = _sysconf(30) | 0;
if ((i18 + -1 & i18 | 0) == 0) {
HEAP32[1064 >> 2] = i18;
HEAP32[1060 >> 2] = i18;
HEAP32[1068 >> 2] = -1;
HEAP32[1072 >> 2] = -1;
HEAP32[1076 >> 2] = 0;
HEAP32[1028 >> 2] = 0;
HEAP32[264] = (_time(0) | 0) & -16 ^ 1431655768;
break;
} else {
_abort();
}
}
} while (0);
i20 = i12 + 48 | 0;
i25 = HEAP32[1064 >> 2] | 0;
i21 = i12 + 47 | 0;
i22 = i25 + i21 | 0;
i25 = 0 - i25 | 0;
i18 = i22 & i25;
if (!(i18 >>> 0 > i12 >>> 0)) {
i32 = 0;
STACKTOP = i1;
return i32 | 0;
}
i24 = HEAP32[1024 >> 2] | 0;
if ((i24 | 0) != 0 ? (i31 = HEAP32[1016 >> 2] | 0, i32 = i31 + i18 | 0, i32 >>> 0 <= i31 >>> 0 | i32 >>> 0 > i24 >>> 0) : 0) {
i32 = 0;
STACKTOP = i1;
return i32 | 0;
}
L269 : do {
if ((HEAP32[1028 >> 2] & 4 | 0) == 0) {
i26 = HEAP32[608 >> 2] | 0;
L271 : do {
if ((i26 | 0) != 0) {
i24 = 1032 | 0;
while (1) {
i27 = HEAP32[i24 >> 2] | 0;
if (!(i27 >>> 0 > i26 >>> 0) ? (i23 = i24 + 4 | 0, (i27 + (HEAP32[i23 >> 2] | 0) | 0) >>> 0 > i26 >>> 0) : 0) {
break;
}
i24 = HEAP32[i24 + 8 >> 2] | 0;
if ((i24 | 0) == 0) {
i13 = 182;
break L271;
}
}
if ((i24 | 0) != 0) {
i25 = i22 - (HEAP32[596 >> 2] | 0) & i25;
if (i25 >>> 0 < 2147483647) {
i13 = _sbrk(i25 | 0) | 0;
i26 = (i13 | 0) == ((HEAP32[i24 >> 2] | 0) + (HEAP32[i23 >> 2] | 0) | 0);
i22 = i13;
i24 = i25;
i23 = i26 ? i13 : -1;
i25 = i26 ? i25 : 0;
i13 = 191;
} else {
i25 = 0;
}
} else {
i13 = 182;
}
} else {
i13 = 182;
}
} while (0);
do {
if ((i13 | 0) == 182) {
i23 = _sbrk(0) | 0;
if ((i23 | 0) != (-1 | 0)) {
i24 = i23;
i22 = HEAP32[1060 >> 2] | 0;
i25 = i22 + -1 | 0;
if ((i25 & i24 | 0) == 0) {
i25 = i18;
} else {
i25 = i18 - i24 + (i25 + i24 & 0 - i22) | 0;
}
i24 = HEAP32[1016 >> 2] | 0;
i26 = i24 + i25 | 0;
if (i25 >>> 0 > i12 >>> 0 & i25 >>> 0 < 2147483647) {
i22 = HEAP32[1024 >> 2] | 0;
if ((i22 | 0) != 0 ? i26 >>> 0 <= i24 >>> 0 | i26 >>> 0 > i22 >>> 0 : 0) {
i25 = 0;
break;
}
i22 = _sbrk(i25 | 0) | 0;
i13 = (i22 | 0) == (i23 | 0);
i24 = i25;
i23 = i13 ? i23 : -1;
i25 = i13 ? i25 : 0;
i13 = 191;
} else {
i25 = 0;
}
} else {
i25 = 0;
}
}
} while (0);
L291 : do {
if ((i13 | 0) == 191) {
i13 = 0 - i24 | 0;
if ((i23 | 0) != (-1 | 0)) {
i17 = i23;
i14 = i25;
i13 = 202;
break L269;
}
do {
if ((i22 | 0) != (-1 | 0) & i24 >>> 0 < 2147483647 & i24 >>> 0 < i20 >>> 0 ? (i19 = HEAP32[1064 >> 2] | 0, i19 = i21 - i24 + i19 & 0 - i19, i19 >>> 0 < 2147483647) : 0) {
if ((_sbrk(i19 | 0) | 0) == (-1 | 0)) {
_sbrk(i13 | 0) | 0;
break L291;
} else {
i24 = i19 + i24 | 0;
break;
}
}
} while (0);
if ((i22 | 0) != (-1 | 0)) {
i17 = i22;
i14 = i24;
i13 = 202;
break L269;
}
}
} while (0);
HEAP32[1028 >> 2] = HEAP32[1028 >> 2] | 4;
i13 = 199;
} else {
i25 = 0;
i13 = 199;
}
} while (0);
if ((((i13 | 0) == 199 ? i18 >>> 0 < 2147483647 : 0) ? (i17 = _sbrk(i18 | 0) | 0, i16 = _sbrk(0) | 0, (i16 | 0) != (-1 | 0) & (i17 | 0) != (-1 | 0) & i17 >>> 0 < i16 >>> 0) : 0) ? (i15 = i16 - i17 | 0, i14 = i15 >>> 0 > (i12 + 40 | 0) >>> 0, i14) : 0) {
i14 = i14 ? i15 : i25;
i13 = 202;
}
if ((i13 | 0) == 202) {
i15 = (HEAP32[1016 >> 2] | 0) + i14 | 0;
HEAP32[1016 >> 2] = i15;
if (i15 >>> 0 > (HEAP32[1020 >> 2] | 0) >>> 0) {
HEAP32[1020 >> 2] = i15;
}
i15 = HEAP32[608 >> 2] | 0;
L311 : do {
if ((i15 | 0) != 0) {
i21 = 1032 | 0;
while (1) {
i16 = HEAP32[i21 >> 2] | 0;
i19 = i21 + 4 | 0;
i20 = HEAP32[i19 >> 2] | 0;
if ((i17 | 0) == (i16 + i20 | 0)) {
i13 = 214;
break;
}
i18 = HEAP32[i21 + 8 >> 2] | 0;
if ((i18 | 0) == 0) {
break;
} else {
i21 = i18;
}
}
if (((i13 | 0) == 214 ? (HEAP32[i21 + 12 >> 2] & 8 | 0) == 0 : 0) ? i15 >>> 0 >= i16 >>> 0 & i15 >>> 0 < i17 >>> 0 : 0) {
HEAP32[i19 >> 2] = i20 + i14;
i2 = (HEAP32[596 >> 2] | 0) + i14 | 0;
i3 = i15 + 8 | 0;
if ((i3 & 7 | 0) == 0) {
i3 = 0;
} else {
i3 = 0 - i3 & 7;
}
i32 = i2 - i3 | 0;
HEAP32[608 >> 2] = i15 + i3;
HEAP32[596 >> 2] = i32;
HEAP32[i15 + (i3 + 4) >> 2] = i32 | 1;
HEAP32[i15 + (i2 + 4) >> 2] = 40;
HEAP32[612 >> 2] = HEAP32[1072 >> 2];
break;
}
if (i17 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
HEAP32[600 >> 2] = i17;
}
i19 = i17 + i14 | 0;
i16 = 1032 | 0;
while (1) {
if ((HEAP32[i16 >> 2] | 0) == (i19 | 0)) {
i13 = 224;
break;
}
i18 = HEAP32[i16 + 8 >> 2] | 0;
if ((i18 | 0) == 0) {
break;
} else {
i16 = i18;
}
}
if ((i13 | 0) == 224 ? (HEAP32[i16 + 12 >> 2] & 8 | 0) == 0 : 0) {
HEAP32[i16 >> 2] = i17;
i6 = i16 + 4 | 0;
HEAP32[i6 >> 2] = (HEAP32[i6 >> 2] | 0) + i14;
i6 = i17 + 8 | 0;
if ((i6 & 7 | 0) == 0) {
i6 = 0;
} else {
i6 = 0 - i6 & 7;
}
i7 = i17 + (i14 + 8) | 0;
if ((i7 & 7 | 0) == 0) {
i13 = 0;
} else {
i13 = 0 - i7 & 7;
}
i15 = i17 + (i13 + i14) | 0;
i8 = i6 + i12 | 0;
i7 = i17 + i8 | 0;
i10 = i15 - (i17 + i6) - i12 | 0;
HEAP32[i17 + (i6 + 4) >> 2] = i12 | 3;
L348 : do {
if ((i15 | 0) != (HEAP32[608 >> 2] | 0)) {
if ((i15 | 0) == (HEAP32[604 >> 2] | 0)) {
i32 = (HEAP32[592 >> 2] | 0) + i10 | 0;
HEAP32[592 >> 2] = i32;
HEAP32[604 >> 2] = i7;
HEAP32[i17 + (i8 + 4) >> 2] = i32 | 1;
HEAP32[i17 + (i32 + i8) >> 2] = i32;
break;
}
i12 = i14 + 4 | 0;
i18 = HEAP32[i17 + (i12 + i13) >> 2] | 0;
if ((i18 & 3 | 0) == 1) {
i11 = i18 & -8;
i16 = i18 >>> 3;
do {
if (!(i18 >>> 0 < 256)) {
i9 = HEAP32[i17 + ((i13 | 24) + i14) >> 2] | 0;
i19 = HEAP32[i17 + (i14 + 12 + i13) >> 2] | 0;
do {
if ((i19 | 0) == (i15 | 0)) {
i19 = i13 | 16;
i18 = i17 + (i12 + i19) | 0;
i16 = HEAP32[i18 >> 2] | 0;
if ((i16 | 0) == 0) {
i18 = i17 + (i19 + i14) | 0;
i16 = HEAP32[i18 >> 2] | 0;
if ((i16 | 0) == 0) {
i5 = 0;
break;
}
}
while (1) {
i20 = i16 + 20 | 0;
i19 = HEAP32[i20 >> 2] | 0;
if ((i19 | 0) != 0) {
i16 = i19;
i18 = i20;
continue;
}
i19 = i16 + 16 | 0;
i20 = HEAP32[i19 >> 2] | 0;
if ((i20 | 0) == 0) {
break;
} else {
i16 = i20;
i18 = i19;
}
}
if (i18 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
HEAP32[i18 >> 2] = 0;
i5 = i16;
break;
}
} else {
i18 = HEAP32[i17 + ((i13 | 8) + i14) >> 2] | 0;
if (i18 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
}
i16 = i18 + 12 | 0;
if ((HEAP32[i16 >> 2] | 0) != (i15 | 0)) {
_abort();
}
i20 = i19 + 8 | 0;
if ((HEAP32[i20 >> 2] | 0) == (i15 | 0)) {
HEAP32[i16 >> 2] = i19;
HEAP32[i20 >> 2] = i18;
i5 = i19;
break;
} else {
_abort();
}
}
} while (0);
if ((i9 | 0) != 0) {
i16 = HEAP32[i17 + (i14 + 28 + i13) >> 2] | 0;
i18 = 888 + (i16 << 2) | 0;
if ((i15 | 0) == (HEAP32[i18 >> 2] | 0)) {
HEAP32[i18 >> 2] = i5;
if ((i5 | 0) == 0) {
HEAP32[588 >> 2] = HEAP32[588 >> 2] & ~(1 << i16);
break;
}
} else {
if (i9 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
}
i16 = i9 + 16 | 0;
if ((HEAP32[i16 >> 2] | 0) == (i15 | 0)) {
HEAP32[i16 >> 2] = i5;
} else {
HEAP32[i9 + 20 >> 2] = i5;
}
if ((i5 | 0) == 0) {
break;
}
}
if (i5 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
}
HEAP32[i5 + 24 >> 2] = i9;
i15 = i13 | 16;
i9 = HEAP32[i17 + (i15 + i14) >> 2] | 0;
do {
if ((i9 | 0) != 0) {
if (i9 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
HEAP32[i5 + 16 >> 2] = i9;
HEAP32[i9 + 24 >> 2] = i5;
break;
}
}
} while (0);
i9 = HEAP32[i17 + (i12 + i15) >> 2] | 0;
if ((i9 | 0) != 0) {
if (i9 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
HEAP32[i5 + 20 >> 2] = i9;
HEAP32[i9 + 24 >> 2] = i5;
break;
}
}
}
} else {
i5 = HEAP32[i17 + ((i13 | 8) + i14) >> 2] | 0;
i12 = HEAP32[i17 + (i14 + 12 + i13) >> 2] | 0;
i18 = 624 + (i16 << 1 << 2) | 0;
if ((i5 | 0) != (i18 | 0)) {
if (i5 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
}
if ((HEAP32[i5 + 12 >> 2] | 0) != (i15 | 0)) {
_abort();
}
}
if ((i12 | 0) == (i5 | 0)) {
HEAP32[146] = HEAP32[146] & ~(1 << i16);
break;
}
if ((i12 | 0) != (i18 | 0)) {
if (i12 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
}
i16 = i12 + 8 | 0;
if ((HEAP32[i16 >> 2] | 0) == (i15 | 0)) {
i9 = i16;
} else {
_abort();
}
} else {
i9 = i12 + 8 | 0;
}
HEAP32[i5 + 12 >> 2] = i12;
HEAP32[i9 >> 2] = i5;
}
} while (0);
i15 = i17 + ((i11 | i13) + i14) | 0;
i10 = i11 + i10 | 0;
}
i5 = i15 + 4 | 0;
HEAP32[i5 >> 2] = HEAP32[i5 >> 2] & -2;
HEAP32[i17 + (i8 + 4) >> 2] = i10 | 1;
HEAP32[i17 + (i10 + i8) >> 2] = i10;
i5 = i10 >>> 3;
if (i10 >>> 0 < 256) {
i10 = i5 << 1;
i2 = 624 + (i10 << 2) | 0;
i9 = HEAP32[146] | 0;
i5 = 1 << i5;
if ((i9 & i5 | 0) != 0) {
i9 = 624 + (i10 + 2 << 2) | 0;
i5 = HEAP32[i9 >> 2] | 0;
if (i5 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
i3 = i9;
i4 = i5;
}
} else {
HEAP32[146] = i9 | i5;
i3 = 624 + (i10 + 2 << 2) | 0;
i4 = i2;
}
HEAP32[i3 >> 2] = i7;
HEAP32[i4 + 12 >> 2] = i7;
HEAP32[i17 + (i8 + 8) >> 2] = i4;
HEAP32[i17 + (i8 + 12) >> 2] = i2;
break;
}
i3 = i10 >>> 8;
if ((i3 | 0) != 0) {
if (i10 >>> 0 > 16777215) {
i3 = 31;
} else {
i31 = (i3 + 1048320 | 0) >>> 16 & 8;
i32 = i3 << i31;
i30 = (i32 + 520192 | 0) >>> 16 & 4;
i32 = i32 << i30;
i3 = (i32 + 245760 | 0) >>> 16 & 2;
i3 = 14 - (i30 | i31 | i3) + (i32 << i3 >>> 15) | 0;
i3 = i10 >>> (i3 + 7 | 0) & 1 | i3 << 1;
}
} else {
i3 = 0;
}
i4 = 888 + (i3 << 2) | 0;
HEAP32[i17 + (i8 + 28) >> 2] = i3;
HEAP32[i17 + (i8 + 20) >> 2] = 0;
HEAP32[i17 + (i8 + 16) >> 2] = 0;
i9 = HEAP32[588 >> 2] | 0;
i5 = 1 << i3;
if ((i9 & i5 | 0) == 0) {
HEAP32[588 >> 2] = i9 | i5;
HEAP32[i4 >> 2] = i7;
HEAP32[i17 + (i8 + 24) >> 2] = i4;
HEAP32[i17 + (i8 + 12) >> 2] = i7;
HEAP32[i17 + (i8 + 8) >> 2] = i7;
break;
}
i4 = HEAP32[i4 >> 2] | 0;
if ((i3 | 0) == 31) {
i3 = 0;
} else {
i3 = 25 - (i3 >>> 1) | 0;
}
L444 : do {
if ((HEAP32[i4 + 4 >> 2] & -8 | 0) != (i10 | 0)) {
i3 = i10 << i3;
while (1) {
i5 = i4 + (i3 >>> 31 << 2) + 16 | 0;
i9 = HEAP32[i5 >> 2] | 0;
if ((i9 | 0) == 0) {
break;
}
if ((HEAP32[i9 + 4 >> 2] & -8 | 0) == (i10 | 0)) {
i2 = i9;
break L444;
} else {
i3 = i3 << 1;
i4 = i9;
}
}
if (i5 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
HEAP32[i5 >> 2] = i7;
HEAP32[i17 + (i8 + 24) >> 2] = i4;
HEAP32[i17 + (i8 + 12) >> 2] = i7;
HEAP32[i17 + (i8 + 8) >> 2] = i7;
break L348;
}
} else {
i2 = i4;
}
} while (0);
i4 = i2 + 8 | 0;
i3 = HEAP32[i4 >> 2] | 0;
i5 = HEAP32[600 >> 2] | 0;
if (i2 >>> 0 < i5 >>> 0) {
_abort();
}
if (i3 >>> 0 < i5 >>> 0) {
_abort();
} else {
HEAP32[i3 + 12 >> 2] = i7;
HEAP32[i4 >> 2] = i7;
HEAP32[i17 + (i8 + 8) >> 2] = i3;
HEAP32[i17 + (i8 + 12) >> 2] = i2;
HEAP32[i17 + (i8 + 24) >> 2] = 0;
break;
}
} else {
i32 = (HEAP32[596 >> 2] | 0) + i10 | 0;
HEAP32[596 >> 2] = i32;
HEAP32[608 >> 2] = i7;
HEAP32[i17 + (i8 + 4) >> 2] = i32 | 1;
}
} while (0);
i32 = i17 + (i6 | 8) | 0;
STACKTOP = i1;
return i32 | 0;
}
i3 = 1032 | 0;
while (1) {
i2 = HEAP32[i3 >> 2] | 0;
if (!(i2 >>> 0 > i15 >>> 0) ? (i11 = HEAP32[i3 + 4 >> 2] | 0, i10 = i2 + i11 | 0, i10 >>> 0 > i15 >>> 0) : 0) {
break;
}
i3 = HEAP32[i3 + 8 >> 2] | 0;
}
i3 = i2 + (i11 + -39) | 0;
if ((i3 & 7 | 0) == 0) {
i3 = 0;
} else {
i3 = 0 - i3 & 7;
}
i2 = i2 + (i11 + -47 + i3) | 0;
i2 = i2 >>> 0 < (i15 + 16 | 0) >>> 0 ? i15 : i2;
i3 = i2 + 8 | 0;
i4 = i17 + 8 | 0;
if ((i4 & 7 | 0) == 0) {
i4 = 0;
} else {
i4 = 0 - i4 & 7;
}
i32 = i14 + -40 - i4 | 0;
HEAP32[608 >> 2] = i17 + i4;
HEAP32[596 >> 2] = i32;
HEAP32[i17 + (i4 + 4) >> 2] = i32 | 1;
HEAP32[i17 + (i14 + -36) >> 2] = 40;
HEAP32[612 >> 2] = HEAP32[1072 >> 2];
HEAP32[i2 + 4 >> 2] = 27;
HEAP32[i3 + 0 >> 2] = HEAP32[1032 >> 2];
HEAP32[i3 + 4 >> 2] = HEAP32[1036 >> 2];
HEAP32[i3 + 8 >> 2] = HEAP32[1040 >> 2];
HEAP32[i3 + 12 >> 2] = HEAP32[1044 >> 2];
HEAP32[1032 >> 2] = i17;
HEAP32[1036 >> 2] = i14;
HEAP32[1044 >> 2] = 0;
HEAP32[1040 >> 2] = i3;
i4 = i2 + 28 | 0;
HEAP32[i4 >> 2] = 7;
if ((i2 + 32 | 0) >>> 0 < i10 >>> 0) {
while (1) {
i3 = i4 + 4 | 0;
HEAP32[i3 >> 2] = 7;
if ((i4 + 8 | 0) >>> 0 < i10 >>> 0) {
i4 = i3;
} else {
break;
}
}
}
if ((i2 | 0) != (i15 | 0)) {
i2 = i2 - i15 | 0;
i3 = i15 + (i2 + 4) | 0;
HEAP32[i3 >> 2] = HEAP32[i3 >> 2] & -2;
HEAP32[i15 + 4 >> 2] = i2 | 1;
HEAP32[i15 + i2 >> 2] = i2;
i3 = i2 >>> 3;
if (i2 >>> 0 < 256) {
i4 = i3 << 1;
i2 = 624 + (i4 << 2) | 0;
i5 = HEAP32[146] | 0;
i3 = 1 << i3;
if ((i5 & i3 | 0) != 0) {
i4 = 624 + (i4 + 2 << 2) | 0;
i3 = HEAP32[i4 >> 2] | 0;
if (i3 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
i7 = i4;
i8 = i3;
}
} else {
HEAP32[146] = i5 | i3;
i7 = 624 + (i4 + 2 << 2) | 0;
i8 = i2;
}
HEAP32[i7 >> 2] = i15;
HEAP32[i8 + 12 >> 2] = i15;
HEAP32[i15 + 8 >> 2] = i8;
HEAP32[i15 + 12 >> 2] = i2;
break;
}
i3 = i2 >>> 8;
if ((i3 | 0) != 0) {
if (i2 >>> 0 > 16777215) {
i3 = 31;
} else {
i31 = (i3 + 1048320 | 0) >>> 16 & 8;
i32 = i3 << i31;
i30 = (i32 + 520192 | 0) >>> 16 & 4;
i32 = i32 << i30;
i3 = (i32 + 245760 | 0) >>> 16 & 2;
i3 = 14 - (i30 | i31 | i3) + (i32 << i3 >>> 15) | 0;
i3 = i2 >>> (i3 + 7 | 0) & 1 | i3 << 1;
}
} else {
i3 = 0;
}
i7 = 888 + (i3 << 2) | 0;
HEAP32[i15 + 28 >> 2] = i3;
HEAP32[i15 + 20 >> 2] = 0;
HEAP32[i15 + 16 >> 2] = 0;
i4 = HEAP32[588 >> 2] | 0;
i5 = 1 << i3;
if ((i4 & i5 | 0) == 0) {
HEAP32[588 >> 2] = i4 | i5;
HEAP32[i7 >> 2] = i15;
HEAP32[i15 + 24 >> 2] = i7;
HEAP32[i15 + 12 >> 2] = i15;
HEAP32[i15 + 8 >> 2] = i15;
break;
}
i4 = HEAP32[i7 >> 2] | 0;
if ((i3 | 0) == 31) {
i3 = 0;
} else {
i3 = 25 - (i3 >>> 1) | 0;
}
L499 : do {
if ((HEAP32[i4 + 4 >> 2] & -8 | 0) != (i2 | 0)) {
i3 = i2 << i3;
while (1) {
i7 = i4 + (i3 >>> 31 << 2) + 16 | 0;
i5 = HEAP32[i7 >> 2] | 0;
if ((i5 | 0) == 0) {
break;
}
if ((HEAP32[i5 + 4 >> 2] & -8 | 0) == (i2 | 0)) {
i6 = i5;
break L499;
} else {
i3 = i3 << 1;
i4 = i5;
}
}
if (i7 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
HEAP32[i7 >> 2] = i15;
HEAP32[i15 + 24 >> 2] = i4;
HEAP32[i15 + 12 >> 2] = i15;
HEAP32[i15 + 8 >> 2] = i15;
break L311;
}
} else {
i6 = i4;
}
} while (0);
i4 = i6 + 8 | 0;
i3 = HEAP32[i4 >> 2] | 0;
i2 = HEAP32[600 >> 2] | 0;
if (i6 >>> 0 < i2 >>> 0) {
_abort();
}
if (i3 >>> 0 < i2 >>> 0) {
_abort();
} else {
HEAP32[i3 + 12 >> 2] = i15;
HEAP32[i4 >> 2] = i15;
HEAP32[i15 + 8 >> 2] = i3;
HEAP32[i15 + 12 >> 2] = i6;
HEAP32[i15 + 24 >> 2] = 0;
break;
}
}
} else {
i32 = HEAP32[600 >> 2] | 0;
if ((i32 | 0) == 0 | i17 >>> 0 < i32 >>> 0) {
HEAP32[600 >> 2] = i17;
}
HEAP32[1032 >> 2] = i17;
HEAP32[1036 >> 2] = i14;
HEAP32[1044 >> 2] = 0;
HEAP32[620 >> 2] = HEAP32[264];
HEAP32[616 >> 2] = -1;
i2 = 0;
do {
i32 = i2 << 1;
i31 = 624 + (i32 << 2) | 0;
HEAP32[624 + (i32 + 3 << 2) >> 2] = i31;
HEAP32[624 + (i32 + 2 << 2) >> 2] = i31;
i2 = i2 + 1 | 0;
} while ((i2 | 0) != 32);
i2 = i17 + 8 | 0;
if ((i2 & 7 | 0) == 0) {
i2 = 0;
} else {
i2 = 0 - i2 & 7;
}
i32 = i14 + -40 - i2 | 0;
HEAP32[608 >> 2] = i17 + i2;
HEAP32[596 >> 2] = i32;
HEAP32[i17 + (i2 + 4) >> 2] = i32 | 1;
HEAP32[i17 + (i14 + -36) >> 2] = 40;
HEAP32[612 >> 2] = HEAP32[1072 >> 2];
}
} while (0);
i2 = HEAP32[596 >> 2] | 0;
if (i2 >>> 0 > i12 >>> 0) {
i31 = i2 - i12 | 0;
HEAP32[596 >> 2] = i31;
i32 = HEAP32[608 >> 2] | 0;
HEAP32[608 >> 2] = i32 + i12;
HEAP32[i32 + (i12 + 4) >> 2] = i31 | 1;
HEAP32[i32 + 4 >> 2] = i12 | 3;
i32 = i32 + 8 | 0;
STACKTOP = i1;
return i32 | 0;
}
}
HEAP32[(___errno_location() | 0) >> 2] = 12;
i32 = 0;
STACKTOP = i1;
return i32 | 0;
}
function _free(i7) {
i7 = i7 | 0;
var i1 = 0, i2 = 0, i3 = 0, i4 = 0, i5 = 0, i6 = 0, i8 = 0, i9 = 0, i10 = 0, i11 = 0, i12 = 0, i13 = 0, i14 = 0, i15 = 0, i16 = 0, i17 = 0, i18 = 0, i19 = 0, i20 = 0, i21 = 0;
i1 = STACKTOP;
if ((i7 | 0) == 0) {
STACKTOP = i1;
return;
}
i15 = i7 + -8 | 0;
i16 = HEAP32[600 >> 2] | 0;
if (i15 >>> 0 < i16 >>> 0) {
_abort();
}
i13 = HEAP32[i7 + -4 >> 2] | 0;
i12 = i13 & 3;
if ((i12 | 0) == 1) {
_abort();
}
i8 = i13 & -8;
i6 = i7 + (i8 + -8) | 0;
do {
if ((i13 & 1 | 0) == 0) {
i19 = HEAP32[i15 >> 2] | 0;
if ((i12 | 0) == 0) {
STACKTOP = i1;
return;
}
i15 = -8 - i19 | 0;
i13 = i7 + i15 | 0;
i12 = i19 + i8 | 0;
if (i13 >>> 0 < i16 >>> 0) {
_abort();
}
if ((i13 | 0) == (HEAP32[604 >> 2] | 0)) {
i2 = i7 + (i8 + -4) | 0;
if ((HEAP32[i2 >> 2] & 3 | 0) != 3) {
i2 = i13;
i11 = i12;
break;
}
HEAP32[592 >> 2] = i12;
HEAP32[i2 >> 2] = HEAP32[i2 >> 2] & -2;
HEAP32[i7 + (i15 + 4) >> 2] = i12 | 1;
HEAP32[i6 >> 2] = i12;
STACKTOP = i1;
return;
}
i18 = i19 >>> 3;
if (i19 >>> 0 < 256) {
i2 = HEAP32[i7 + (i15 + 8) >> 2] | 0;
i11 = HEAP32[i7 + (i15 + 12) >> 2] | 0;
i14 = 624 + (i18 << 1 << 2) | 0;
if ((i2 | 0) != (i14 | 0)) {
if (i2 >>> 0 < i16 >>> 0) {
_abort();
}
if ((HEAP32[i2 + 12 >> 2] | 0) != (i13 | 0)) {
_abort();
}
}
if ((i11 | 0) == (i2 | 0)) {
HEAP32[146] = HEAP32[146] & ~(1 << i18);
i2 = i13;
i11 = i12;
break;
}
if ((i11 | 0) != (i14 | 0)) {
if (i11 >>> 0 < i16 >>> 0) {
_abort();
}
i14 = i11 + 8 | 0;
if ((HEAP32[i14 >> 2] | 0) == (i13 | 0)) {
i17 = i14;
} else {
_abort();
}
} else {
i17 = i11 + 8 | 0;
}
HEAP32[i2 + 12 >> 2] = i11;
HEAP32[i17 >> 2] = i2;
i2 = i13;
i11 = i12;
break;
}
i17 = HEAP32[i7 + (i15 + 24) >> 2] | 0;
i18 = HEAP32[i7 + (i15 + 12) >> 2] | 0;
do {
if ((i18 | 0) == (i13 | 0)) {
i19 = i7 + (i15 + 20) | 0;
i18 = HEAP32[i19 >> 2] | 0;
if ((i18 | 0) == 0) {
i19 = i7 + (i15 + 16) | 0;
i18 = HEAP32[i19 >> 2] | 0;
if ((i18 | 0) == 0) {
i14 = 0;
break;
}
}
while (1) {
i21 = i18 + 20 | 0;
i20 = HEAP32[i21 >> 2] | 0;
if ((i20 | 0) != 0) {
i18 = i20;
i19 = i21;
continue;
}
i20 = i18 + 16 | 0;
i21 = HEAP32[i20 >> 2] | 0;
if ((i21 | 0) == 0) {
break;
} else {
i18 = i21;
i19 = i20;
}
}
if (i19 >>> 0 < i16 >>> 0) {
_abort();
} else {
HEAP32[i19 >> 2] = 0;
i14 = i18;
break;
}
} else {
i19 = HEAP32[i7 + (i15 + 8) >> 2] | 0;
if (i19 >>> 0 < i16 >>> 0) {
_abort();
}
i16 = i19 + 12 | 0;
if ((HEAP32[i16 >> 2] | 0) != (i13 | 0)) {
_abort();
}
i20 = i18 + 8 | 0;
if ((HEAP32[i20 >> 2] | 0) == (i13 | 0)) {
HEAP32[i16 >> 2] = i18;
HEAP32[i20 >> 2] = i19;
i14 = i18;
break;
} else {
_abort();
}
}
} while (0);
if ((i17 | 0) != 0) {
i18 = HEAP32[i7 + (i15 + 28) >> 2] | 0;
i16 = 888 + (i18 << 2) | 0;
if ((i13 | 0) == (HEAP32[i16 >> 2] | 0)) {
HEAP32[i16 >> 2] = i14;
if ((i14 | 0) == 0) {
HEAP32[588 >> 2] = HEAP32[588 >> 2] & ~(1 << i18);
i2 = i13;
i11 = i12;
break;
}
} else {
if (i17 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
}
i16 = i17 + 16 | 0;
if ((HEAP32[i16 >> 2] | 0) == (i13 | 0)) {
HEAP32[i16 >> 2] = i14;
} else {
HEAP32[i17 + 20 >> 2] = i14;
}
if ((i14 | 0) == 0) {
i2 = i13;
i11 = i12;
break;
}
}
if (i14 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
}
HEAP32[i14 + 24 >> 2] = i17;
i16 = HEAP32[i7 + (i15 + 16) >> 2] | 0;
do {
if ((i16 | 0) != 0) {
if (i16 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
HEAP32[i14 + 16 >> 2] = i16;
HEAP32[i16 + 24 >> 2] = i14;
break;
}
}
} while (0);
i15 = HEAP32[i7 + (i15 + 20) >> 2] | 0;
if ((i15 | 0) != 0) {
if (i15 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
HEAP32[i14 + 20 >> 2] = i15;
HEAP32[i15 + 24 >> 2] = i14;
i2 = i13;
i11 = i12;
break;
}
} else {
i2 = i13;
i11 = i12;
}
} else {
i2 = i13;
i11 = i12;
}
} else {
i2 = i15;
i11 = i8;
}
} while (0);
if (!(i2 >>> 0 < i6 >>> 0)) {
_abort();
}
i12 = i7 + (i8 + -4) | 0;
i13 = HEAP32[i12 >> 2] | 0;
if ((i13 & 1 | 0) == 0) {
_abort();
}
if ((i13 & 2 | 0) == 0) {
if ((i6 | 0) == (HEAP32[608 >> 2] | 0)) {
i21 = (HEAP32[596 >> 2] | 0) + i11 | 0;
HEAP32[596 >> 2] = i21;
HEAP32[608 >> 2] = i2;
HEAP32[i2 + 4 >> 2] = i21 | 1;
if ((i2 | 0) != (HEAP32[604 >> 2] | 0)) {
STACKTOP = i1;
return;
}
HEAP32[604 >> 2] = 0;
HEAP32[592 >> 2] = 0;
STACKTOP = i1;
return;
}
if ((i6 | 0) == (HEAP32[604 >> 2] | 0)) {
i21 = (HEAP32[592 >> 2] | 0) + i11 | 0;
HEAP32[592 >> 2] = i21;
HEAP32[604 >> 2] = i2;
HEAP32[i2 + 4 >> 2] = i21 | 1;
HEAP32[i2 + i21 >> 2] = i21;
STACKTOP = i1;
return;
}
i11 = (i13 & -8) + i11 | 0;
i12 = i13 >>> 3;
do {
if (!(i13 >>> 0 < 256)) {
i10 = HEAP32[i7 + (i8 + 16) >> 2] | 0;
i15 = HEAP32[i7 + (i8 | 4) >> 2] | 0;
do {
if ((i15 | 0) == (i6 | 0)) {
i13 = i7 + (i8 + 12) | 0;
i12 = HEAP32[i13 >> 2] | 0;
if ((i12 | 0) == 0) {
i13 = i7 + (i8 + 8) | 0;
i12 = HEAP32[i13 >> 2] | 0;
if ((i12 | 0) == 0) {
i9 = 0;
break;
}
}
while (1) {
i14 = i12 + 20 | 0;
i15 = HEAP32[i14 >> 2] | 0;
if ((i15 | 0) != 0) {
i12 = i15;
i13 = i14;
continue;
}
i14 = i12 + 16 | 0;
i15 = HEAP32[i14 >> 2] | 0;
if ((i15 | 0) == 0) {
break;
} else {
i12 = i15;
i13 = i14;
}
}
if (i13 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
HEAP32[i13 >> 2] = 0;
i9 = i12;
break;
}
} else {
i13 = HEAP32[i7 + i8 >> 2] | 0;
if (i13 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
}
i14 = i13 + 12 | 0;
if ((HEAP32[i14 >> 2] | 0) != (i6 | 0)) {
_abort();
}
i12 = i15 + 8 | 0;
if ((HEAP32[i12 >> 2] | 0) == (i6 | 0)) {
HEAP32[i14 >> 2] = i15;
HEAP32[i12 >> 2] = i13;
i9 = i15;
break;
} else {
_abort();
}
}
} while (0);
if ((i10 | 0) != 0) {
i12 = HEAP32[i7 + (i8 + 20) >> 2] | 0;
i13 = 888 + (i12 << 2) | 0;
if ((i6 | 0) == (HEAP32[i13 >> 2] | 0)) {
HEAP32[i13 >> 2] = i9;
if ((i9 | 0) == 0) {
HEAP32[588 >> 2] = HEAP32[588 >> 2] & ~(1 << i12);
break;
}
} else {
if (i10 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
}
i12 = i10 + 16 | 0;
if ((HEAP32[i12 >> 2] | 0) == (i6 | 0)) {
HEAP32[i12 >> 2] = i9;
} else {
HEAP32[i10 + 20 >> 2] = i9;
}
if ((i9 | 0) == 0) {
break;
}
}
if (i9 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
}
HEAP32[i9 + 24 >> 2] = i10;
i6 = HEAP32[i7 + (i8 + 8) >> 2] | 0;
do {
if ((i6 | 0) != 0) {
if (i6 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
HEAP32[i9 + 16 >> 2] = i6;
HEAP32[i6 + 24 >> 2] = i9;
break;
}
}
} while (0);
i6 = HEAP32[i7 + (i8 + 12) >> 2] | 0;
if ((i6 | 0) != 0) {
if (i6 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
HEAP32[i9 + 20 >> 2] = i6;
HEAP32[i6 + 24 >> 2] = i9;
break;
}
}
}
} else {
i9 = HEAP32[i7 + i8 >> 2] | 0;
i7 = HEAP32[i7 + (i8 | 4) >> 2] | 0;
i8 = 624 + (i12 << 1 << 2) | 0;
if ((i9 | 0) != (i8 | 0)) {
if (i9 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
}
if ((HEAP32[i9 + 12 >> 2] | 0) != (i6 | 0)) {
_abort();
}
}
if ((i7 | 0) == (i9 | 0)) {
HEAP32[146] = HEAP32[146] & ~(1 << i12);
break;
}
if ((i7 | 0) != (i8 | 0)) {
if (i7 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
}
i8 = i7 + 8 | 0;
if ((HEAP32[i8 >> 2] | 0) == (i6 | 0)) {
i10 = i8;
} else {
_abort();
}
} else {
i10 = i7 + 8 | 0;
}
HEAP32[i9 + 12 >> 2] = i7;
HEAP32[i10 >> 2] = i9;
}
} while (0);
HEAP32[i2 + 4 >> 2] = i11 | 1;
HEAP32[i2 + i11 >> 2] = i11;
if ((i2 | 0) == (HEAP32[604 >> 2] | 0)) {
HEAP32[592 >> 2] = i11;
STACKTOP = i1;
return;
}
} else {
HEAP32[i12 >> 2] = i13 & -2;
HEAP32[i2 + 4 >> 2] = i11 | 1;
HEAP32[i2 + i11 >> 2] = i11;
}
i6 = i11 >>> 3;
if (i11 >>> 0 < 256) {
i7 = i6 << 1;
i3 = 624 + (i7 << 2) | 0;
i8 = HEAP32[146] | 0;
i6 = 1 << i6;
if ((i8 & i6 | 0) != 0) {
i6 = 624 + (i7 + 2 << 2) | 0;
i7 = HEAP32[i6 >> 2] | 0;
if (i7 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
i4 = i6;
i5 = i7;
}
} else {
HEAP32[146] = i8 | i6;
i4 = 624 + (i7 + 2 << 2) | 0;
i5 = i3;
}
HEAP32[i4 >> 2] = i2;
HEAP32[i5 + 12 >> 2] = i2;
HEAP32[i2 + 8 >> 2] = i5;
HEAP32[i2 + 12 >> 2] = i3;
STACKTOP = i1;
return;
}
i4 = i11 >>> 8;
if ((i4 | 0) != 0) {
if (i11 >>> 0 > 16777215) {
i4 = 31;
} else {
i20 = (i4 + 1048320 | 0) >>> 16 & 8;
i21 = i4 << i20;
i19 = (i21 + 520192 | 0) >>> 16 & 4;
i21 = i21 << i19;
i4 = (i21 + 245760 | 0) >>> 16 & 2;
i4 = 14 - (i19 | i20 | i4) + (i21 << i4 >>> 15) | 0;
i4 = i11 >>> (i4 + 7 | 0) & 1 | i4 << 1;
}
} else {
i4 = 0;
}
i5 = 888 + (i4 << 2) | 0;
HEAP32[i2 + 28 >> 2] = i4;
HEAP32[i2 + 20 >> 2] = 0;
HEAP32[i2 + 16 >> 2] = 0;
i7 = HEAP32[588 >> 2] | 0;
i6 = 1 << i4;
L199 : do {
if ((i7 & i6 | 0) != 0) {
i5 = HEAP32[i5 >> 2] | 0;
if ((i4 | 0) == 31) {
i4 = 0;
} else {
i4 = 25 - (i4 >>> 1) | 0;
}
L204 : do {
if ((HEAP32[i5 + 4 >> 2] & -8 | 0) != (i11 | 0)) {
i4 = i11 << i4;
i7 = i5;
while (1) {
i6 = i7 + (i4 >>> 31 << 2) + 16 | 0;
i5 = HEAP32[i6 >> 2] | 0;
if ((i5 | 0) == 0) {
break;
}
if ((HEAP32[i5 + 4 >> 2] & -8 | 0) == (i11 | 0)) {
i3 = i5;
break L204;
} else {
i4 = i4 << 1;
i7 = i5;
}
}
if (i6 >>> 0 < (HEAP32[600 >> 2] | 0) >>> 0) {
_abort();
} else {
HEAP32[i6 >> 2] = i2;
HEAP32[i2 + 24 >> 2] = i7;
HEAP32[i2 + 12 >> 2] = i2;
HEAP32[i2 + 8 >> 2] = i2;
break L199;
}
} else {
i3 = i5;
}
} while (0);
i5 = i3 + 8 | 0;
i4 = HEAP32[i5 >> 2] | 0;
i6 = HEAP32[600 >> 2] | 0;
if (i3 >>> 0 < i6 >>> 0) {
_abort();
}
if (i4 >>> 0 < i6 >>> 0) {
_abort();
} else {
HEAP32[i4 + 12 >> 2] = i2;
HEAP32[i5 >> 2] = i2;
HEAP32[i2 + 8 >> 2] = i4;
HEAP32[i2 + 12 >> 2] = i3;
HEAP32[i2 + 24 >> 2] = 0;
break;
}
} else {
HEAP32[588 >> 2] = i7 | i6;
HEAP32[i5 >> 2] = i2;
HEAP32[i2 + 24 >> 2] = i5;
HEAP32[i2 + 12 >> 2] = i2;
HEAP32[i2 + 8 >> 2] = i2;
}
} while (0);
i21 = (HEAP32[616 >> 2] | 0) + -1 | 0;
HEAP32[616 >> 2] = i21;
if ((i21 | 0) == 0) {
i2 = 1040 | 0;
} else {
STACKTOP = i1;
return;
}
while (1) {
i2 = HEAP32[i2 >> 2] | 0;
if ((i2 | 0) == 0) {
break;
} else {
i2 = i2 + 8 | 0;
}
}
HEAP32[616 >> 2] = -1;
STACKTOP = i1;
return;
}
function _main(i7, i8) {
i7 = i7 | 0;
i8 = i8 | 0;
var i1 = 0, i2 = 0, i3 = 0, i4 = 0, i5 = 0, i6 = 0, d9 = 0.0, d10 = 0.0;
i2 = STACKTOP;
STACKTOP = STACKTOP + 4272 | 0;
i3 = i2;
i5 = i2 + 4248 | 0;
i4 = i2 + 2128 | 0;
i1 = i2 + 8 | 0;
L1 : do {
if ((i7 | 0) > 1) {
i7 = HEAP8[HEAP32[i8 + 4 >> 2] | 0] | 0;
switch (i7 | 0) {
case 50:
{
i3 = 95e5;
break L1;
}
case 51:
{
i6 = 4;
break L1;
}
case 52:
{
i3 = 95e6;
break L1;
}
case 53:
{
i3 = 19e7;
break L1;
}
case 49:
{
i3 = 95e4;
break L1;
}
case 48:
{
i8 = 0;
STACKTOP = i2;
return i8 | 0;
}
default:
{
HEAP32[i3 >> 2] = i7 + -48;
_printf(280, i3 | 0) | 0;
i8 = -1;
STACKTOP = i2;
return i8 | 0;
}
}
} else {
i6 = 4;
}
} while (0);
if ((i6 | 0) == 4) {
i3 = 19e6;
}
HEAP32[i5 + 8 >> 2] = 0;
HEAP32[i5 + 4 >> 2] = 287;
i8 = __Znaj(347) | 0;
HEAP32[i5 >> 2] = i8;
_memcpy(i8 | 0, 296, 287) | 0;
i8 = i8 + 287 | 0;
i7 = 296 | 0;
i6 = i8 + 60 | 0;
do {
HEAP8[i8] = HEAP8[i7] | 0;
i8 = i8 + 1 | 0;
i7 = i7 + 1 | 0;
} while ((i8 | 0) < (i6 | 0));
i7 = i3 << 1;
while (1) {
i6 = i7 >>> 0 < 60 ? i7 : 60;
__ZN14RotatingString5writeEj(i5, i6);
if ((i7 | 0) == (i6 | 0)) {
break;
} else {
i7 = i7 - i6 | 0;
}
}
i5 = HEAP32[i5 >> 2] | 0;
if ((i5 | 0) != 0) {
__ZdaPv(i5);
}
if ((HEAP32[6] | 0) == 0) {
i6 = 24;
i5 = 0;
} else {
i5 = 24;
d9 = 0.0;
while (1) {
i6 = i5 + 4 | 0;
d9 = d9 + +HEAPF32[i6 >> 2];
d10 = d9 < 1.0 ? d9 : 1.0;
HEAPF32[i6 >> 2] = d10;
HEAP32[i5 + 8 >> 2] = ~~(d10 * 512.0) >>> 0;
i5 = i5 + 12 | 0;
if ((HEAP32[i5 >> 2] | 0) == 0) {
i6 = 24;
i5 = 0;
break;
}
}
}
do {
while (1) {
i8 = HEAP32[i6 + 8 >> 2] | 0;
if (i5 >>> 0 > i8 >>> 0 & (i8 | 0) != 0) {
i6 = i6 + 12 | 0;
} else {
break;
}
}
HEAP32[i4 + (i5 << 2) >> 2] = i6;
i5 = i5 + 1 | 0;
} while ((i5 | 0) != 513);
HEAP32[i4 + 2116 >> 2] = 0;
__Z9makeFastaI10RandomizedEvPKcS2_jRT_(0, 0, i3 * 3 | 0, i4);
if ((HEAP32[54] | 0) == 0) {
i5 = 216;
i4 = 0;
} else {
i5 = 216;
d9 = 0.0;
while (1) {
i4 = i5 + 4 | 0;
d9 = d9 + +HEAPF32[i4 >> 2];
d10 = d9 < 1.0 ? d9 : 1.0;
HEAPF32[i4 >> 2] = d10;
HEAP32[i5 + 8 >> 2] = ~~(d10 * 512.0) >>> 0;
i5 = i5 + 12 | 0;
if ((HEAP32[i5 >> 2] | 0) == 0) {
i5 = 216;
i4 = 0;
break;
}
}
}
do {
while (1) {
i8 = HEAP32[i5 + 8 >> 2] | 0;
if (i4 >>> 0 > i8 >>> 0 & (i8 | 0) != 0) {
i5 = i5 + 12 | 0;
} else {
break;
}
}
HEAP32[i1 + (i4 << 2) >> 2] = i5;
i4 = i4 + 1 | 0;
} while ((i4 | 0) != 513);
HEAP32[i1 + 2116 >> 2] = 0;
__Z9makeFastaI10RandomizedEvPKcS2_jRT_(0, 0, i3 * 5 | 0, i1);
i8 = 0;
STACKTOP = i2;
return i8 | 0;
}
function __Z9makeFastaI10RandomizedEvPKcS2_jRT_(i3, i2, i6, i1) {
i3 = i3 | 0;
i2 = i2 | 0;
i6 = i6 | 0;
i1 = i1 | 0;
var i4 = 0, i5 = 0, i7 = 0, d8 = 0.0, i9 = 0;
i2 = STACKTOP;
if ((i6 | 0) == 0) {
STACKTOP = i2;
return;
}
i4 = i1 + 2116 | 0;
i3 = i1 + 2052 | 0;
while (1) {
i5 = i6 >>> 0 < 60 ? i6 : 60;
if ((i5 | 0) != 0) {
i7 = 0;
do {
i9 = ((((HEAP32[4] | 0) * 3877 | 0) + 29573 | 0) >>> 0) % 139968 | 0;
HEAP32[4] = i9;
d8 = +(i9 >>> 0) / 139968.0;
i9 = HEAP32[i1 + (~~(d8 * 512.0) >>> 0 << 2) >> 2] | 0;
while (1) {
if (+HEAPF32[i9 + 4 >> 2] < d8) {
i9 = i9 + 12 | 0;
} else {
break;
}
}
HEAP8[i1 + i7 + 2052 | 0] = HEAP32[i9 >> 2];
i7 = i7 + 1 | 0;
} while ((i7 | 0) != (i5 | 0));
}
HEAP8[i1 + i5 + 2052 | 0] = 10;
i9 = i5 + 1 | 0;
HEAP8[i1 + i9 + 2052 | 0] = 0;
HEAP32[i4 >> 2] = i9;
i9 = _strlen(i3 | 0) | 0;
i7 = HEAP32[2] | 0;
if ((i9 | 0) > (i7 | 0)) {
if ((i7 | 0) > 0) {
HEAP8[i1 + i7 + 2052 | 0] = 0;
_puts(i3 | 0) | 0;
HEAP8[i1 + (HEAP32[2] | 0) + 2052 | 0] = 122;
HEAP32[2] = 0;
}
} else {
_puts(i3 | 0) | 0;
HEAP32[2] = (HEAP32[2] | 0) - i9;
}
if ((i6 | 0) == (i5 | 0)) {
break;
} else {
i6 = i6 - i5 | 0;
}
}
STACKTOP = i2;
return;
}
function __ZN14RotatingString5writeEj(i3, i4) {
i3 = i3 | 0;
i4 = i4 | 0;
var i1 = 0, i2 = 0, i5 = 0, i6 = 0, i7 = 0;
i1 = STACKTOP;
i5 = __Znaj(i4 + 2 | 0) | 0;
i2 = i3 + 8 | 0;
_memcpy(i5 | 0, (HEAP32[i3 >> 2] | 0) + (HEAP32[i2 >> 2] | 0) | 0, i4 | 0) | 0;
HEAP8[i5 + i4 | 0] = 0;
i7 = _strlen(i5 | 0) | 0;
i6 = HEAP32[2] | 0;
if ((i7 | 0) > (i6 | 0)) {
if ((i6 | 0) > 0) {
HEAP8[i5 + i6 | 0] = 0;
_puts(i5 | 0) | 0;
HEAP32[2] = 0;
i6 = 6;
} else {
i6 = 5;
}
} else {
_puts(i5 | 0) | 0;
HEAP32[2] = (HEAP32[2] | 0) - i7;
i6 = 5;
}
if ((i6 | 0) == 5 ? (i5 | 0) != 0 : 0) {
i6 = 6;
}
if ((i6 | 0) == 6) {
__ZdlPv(i5);
}
i4 = (HEAP32[i2 >> 2] | 0) + i4 | 0;
HEAP32[i2 >> 2] = i4;
i3 = HEAP32[i3 + 4 >> 2] | 0;
if (!(i4 >>> 0 > i3 >>> 0)) {
STACKTOP = i1;
return;
}
HEAP32[i2 >> 2] = i4 - i3;
STACKTOP = i1;
return;
}
function _memcpy(i3, i2, i1) {
i3 = i3 | 0;
i2 = i2 | 0;
i1 = i1 | 0;
var i4 = 0;
if ((i1 | 0) >= 4096) return _emscripten_memcpy_big(i3 | 0, i2 | 0, i1 | 0) | 0;
i4 = i3 | 0;
if ((i3 & 3) == (i2 & 3)) {
while (i3 & 3) {
if ((i1 | 0) == 0) return i4 | 0;
HEAP8[i3] = HEAP8[i2] | 0;
i3 = i3 + 1 | 0;
i2 = i2 + 1 | 0;
i1 = i1 - 1 | 0;
}
while ((i1 | 0) >= 4) {
HEAP32[i3 >> 2] = HEAP32[i2 >> 2];
i3 = i3 + 4 | 0;
i2 = i2 + 4 | 0;
i1 = i1 - 4 | 0;
}
}
while ((i1 | 0) > 0) {
HEAP8[i3] = HEAP8[i2] | 0;
i3 = i3 + 1 | 0;
i2 = i2 + 1 | 0;
i1 = i1 - 1 | 0;
}
return i4 | 0;
}
function _memset(i1, i4, i3) {
i1 = i1 | 0;
i4 = i4 | 0;
i3 = i3 | 0;
var i2 = 0, i5 = 0, i6 = 0, i7 = 0;
i2 = i1 + i3 | 0;
if ((i3 | 0) >= 20) {
i4 = i4 & 255;
i7 = i1 & 3;
i6 = i4 | i4 << 8 | i4 << 16 | i4 << 24;
i5 = i2 & ~3;
if (i7) {
i7 = i1 + 4 - i7 | 0;
while ((i1 | 0) < (i7 | 0)) {
HEAP8[i1] = i4;
i1 = i1 + 1 | 0;
}
}
while ((i1 | 0) < (i5 | 0)) {
HEAP32[i1 >> 2] = i6;
i1 = i1 + 4 | 0;
}
}
while ((i1 | 0) < (i2 | 0)) {
HEAP8[i1] = i4;
i1 = i1 + 1 | 0;
}
return i1 - i3 | 0;
}
function __Znwj(i2) {
i2 = i2 | 0;
var i1 = 0, i3 = 0;
i1 = STACKTOP;
i2 = (i2 | 0) == 0 ? 1 : i2;
while (1) {
i3 = _malloc(i2) | 0;
if ((i3 | 0) != 0) {
i2 = 6;
break;
}
i3 = HEAP32[270] | 0;
HEAP32[270] = i3 + 0;
if ((i3 | 0) == 0) {
i2 = 5;
break;
}
FUNCTION_TABLE_v[i3 & 0]();
}
if ((i2 | 0) == 5) {
i3 = ___cxa_allocate_exception(4) | 0;
HEAP32[i3 >> 2] = 1096;
___cxa_throw(i3 | 0, 1144, 1);
} else if ((i2 | 0) == 6) {
STACKTOP = i1;
return i3 | 0;
}
return 0;
}
function copyTempDouble(i1) {
i1 = i1 | 0;
HEAP8[tempDoublePtr] = HEAP8[i1];
HEAP8[tempDoublePtr + 1 | 0] = HEAP8[i1 + 1 | 0];
HEAP8[tempDoublePtr + 2 | 0] = HEAP8[i1 + 2 | 0];
HEAP8[tempDoublePtr + 3 | 0] = HEAP8[i1 + 3 | 0];
HEAP8[tempDoublePtr + 4 | 0] = HEAP8[i1 + 4 | 0];
HEAP8[tempDoublePtr + 5 | 0] = HEAP8[i1 + 5 | 0];
HEAP8[tempDoublePtr + 6 | 0] = HEAP8[i1 + 6 | 0];
HEAP8[tempDoublePtr + 7 | 0] = HEAP8[i1 + 7 | 0];
}
function copyTempFloat(i1) {
i1 = i1 | 0;
HEAP8[tempDoublePtr] = HEAP8[i1];
HEAP8[tempDoublePtr + 1 | 0] = HEAP8[i1 + 1 | 0];
HEAP8[tempDoublePtr + 2 | 0] = HEAP8[i1 + 2 | 0];
HEAP8[tempDoublePtr + 3 | 0] = HEAP8[i1 + 3 | 0];
}
function __ZNSt9bad_allocD0Ev(i1) {
i1 = i1 | 0;
var i2 = 0;
i2 = STACKTOP;
__ZNSt9exceptionD2Ev(i1 | 0);
__ZdlPv(i1);
STACKTOP = i2;
return;
}
function stackAlloc(i1) {
i1 = i1 | 0;
var i2 = 0;
i2 = STACKTOP;
STACKTOP = STACKTOP + i1 | 0;
STACKTOP = STACKTOP + 7 & -8;
return i2 | 0;
}
function __ZNSt9bad_allocD2Ev(i1) {
i1 = i1 | 0;
var i2 = 0;
i2 = STACKTOP;
__ZNSt9exceptionD2Ev(i1 | 0);
STACKTOP = i2;
return;
}
function __ZdlPv(i1) {
i1 = i1 | 0;
var i2 = 0;
i2 = STACKTOP;
if ((i1 | 0) != 0) {
_free(i1);
}
STACKTOP = i2;
return;
}
function _strlen(i1) {
i1 = i1 | 0;
var i2 = 0;
i2 = i1;
while (HEAP8[i2] | 0) {
i2 = i2 + 1 | 0;
}
return i2 - i1 | 0;
}
function setThrew(i1, i2) {
i1 = i1 | 0;
i2 = i2 | 0;
if ((__THREW__ | 0) == 0) {
__THREW__ = i1;
threwValue = i2;
}
}
function __Znaj(i1) {
i1 = i1 | 0;
var i2 = 0;
i2 = STACKTOP;
i1 = __Znwj(i1) | 0;
STACKTOP = i2;
return i1 | 0;
}
function runPostSets() {
HEAP32[286] = __ZTVN10__cxxabiv120__si_class_type_infoE;
HEAP32[288] = __ZTISt9exception;
}
function dynCall_ii(i2, i1) {
i2 = i2 | 0;
i1 = i1 | 0;
return FUNCTION_TABLE_ii[i2 & 1](i1 | 0) | 0;
}
function __ZdaPv(i1) {
i1 = i1 | 0;
var i2 = 0;
i2 = STACKTOP;
__ZdlPv(i1);
STACKTOP = i2;
return;
}
function dynCall_vi(i2, i1) {
i2 = i2 | 0;
i1 = i1 | 0;
FUNCTION_TABLE_vi[i2 & 3](i1 | 0);
}
function dynCall_v(i1) {
i1 = i1 | 0;
FUNCTION_TABLE_v[i1 & 0]();
}
function __ZNKSt9bad_alloc4whatEv(i1) {
i1 = i1 | 0;
return 1112;
}
function stackRestore(i1) {
i1 = i1 | 0;
STACKTOP = i1;
}
function setTempRet9(i1) {
i1 = i1 | 0;
tempRet9 = i1;
}
function setTempRet8(i1) {
i1 = i1 | 0;
tempRet8 = i1;
}
function setTempRet7(i1) {
i1 = i1 | 0;
tempRet7 = i1;
}
function setTempRet6(i1) {
i1 = i1 | 0;
tempRet6 = i1;
}
function setTempRet5(i1) {
i1 = i1 | 0;
tempRet5 = i1;
}
function setTempRet4(i1) {
i1 = i1 | 0;
tempRet4 = i1;
}
function setTempRet3(i1) {
i1 = i1 | 0;
tempRet3 = i1;
}
function setTempRet2(i1) {
i1 = i1 | 0;
tempRet2 = i1;
}
function setTempRet1(i1) {
i1 = i1 | 0;
tempRet1 = i1;
}
function setTempRet0(i1) {
i1 = i1 | 0;
tempRet0 = i1;
}
function b0(i1) {
i1 = i1 | 0;
abort(0);
return 0;
}
function stackSave() {
return STACKTOP | 0;
}
function b1(i1) {
i1 = i1 | 0;
abort(1);
}
function b2() {
abort(2);
}
// EMSCRIPTEN_END_FUNCS
var FUNCTION_TABLE_ii = [b0,__ZNKSt9bad_alloc4whatEv];
var FUNCTION_TABLE_vi = [b1,__ZNSt9bad_allocD2Ev,__ZNSt9bad_allocD0Ev,b1];
var FUNCTION_TABLE_v = [b2];
return { _strlen: _strlen, _free: _free, _main: _main, _memset: _memset, _malloc: _malloc, _memcpy: _memcpy, runPostSets: runPostSets, stackAlloc: stackAlloc, stackSave: stackSave, stackRestore: stackRestore, setThrew: setThrew, setTempRet0: setTempRet0, setTempRet1: setTempRet1, setTempRet2: setTempRet2, setTempRet3: setTempRet3, setTempRet4: setTempRet4, setTempRet5: setTempRet5, setTempRet6: setTempRet6, setTempRet7: setTempRet7, setTempRet8: setTempRet8, setTempRet9: setTempRet9, dynCall_ii: dynCall_ii, dynCall_vi: dynCall_vi, dynCall_v: dynCall_v };
})
// EMSCRIPTEN_END_ASM
({ "Math": Math, "Int8Array": Int8Array, "Int16Array": Int16Array, "Int32Array": Int32Array, "Uint8Array": Uint8Array, "Uint16Array": Uint16Array, "Uint32Array": Uint32Array, "Float32Array": Float32Array, "Float64Array": Float64Array }, { "abort": abort, "assert": assert, "asmPrintInt": asmPrintInt, "asmPrintFloat": asmPrintFloat, "min": Math_min, "invoke_ii": invoke_ii, "invoke_vi": invoke_vi, "invoke_v": invoke_v, "_send": _send, "___setErrNo": ___setErrNo, "___cxa_is_number_type": ___cxa_is_number_type, "___cxa_allocate_exception": ___cxa_allocate_exception, "___cxa_find_matching_catch": ___cxa_find_matching_catch, "_fflush": _fflush, "_time": _time, "_pwrite": _pwrite, "__reallyNegative": __reallyNegative, "_sbrk": _sbrk, "_emscripten_memcpy_big": _emscripten_memcpy_big, "_fileno": _fileno, "___resumeException": ___resumeException, "__ZSt18uncaught_exceptionv": __ZSt18uncaught_exceptionv, "_sysconf": _sysconf, "_puts": _puts, "_mkport": _mkport, "_write": _write, "___errno_location": ___errno_location, "__ZNSt9exceptionD2Ev": __ZNSt9exceptionD2Ev, "_fputc": _fputc, "___cxa_throw": ___cxa_throw, "_abort": _abort, "_fwrite": _fwrite, "___cxa_does_inherit": ___cxa_does_inherit, "_fprintf": _fprintf, "__formatString": __formatString, "_fputs": _fputs, "_printf": _printf, "STACKTOP": STACKTOP, "STACK_MAX": STACK_MAX, "tempDoublePtr": tempDoublePtr, "ABORT": ABORT, "NaN": NaN, "Infinity": Infinity, "__ZTISt9exception": __ZTISt9exception, "__ZTVN10__cxxabiv120__si_class_type_infoE": __ZTVN10__cxxabiv120__si_class_type_infoE }, buffer);
var _strlen = Module["_strlen"] = asm["_strlen"];
var _free = Module["_free"] = asm["_free"];
var _main = Module["_main"] = asm["_main"];
var _memset = Module["_memset"] = asm["_memset"];
var _malloc = Module["_malloc"] = asm["_malloc"];
var _memcpy = Module["_memcpy"] = asm["_memcpy"];
var runPostSets = Module["runPostSets"] = asm["runPostSets"];
var dynCall_ii = Module["dynCall_ii"] = asm["dynCall_ii"];
var dynCall_vi = Module["dynCall_vi"] = asm["dynCall_vi"];
var dynCall_v = Module["dynCall_v"] = asm["dynCall_v"];
Runtime.stackAlloc = function(size) { return asm['stackAlloc'](size) };
Runtime.stackSave = function() { return asm['stackSave']() };
Runtime.stackRestore = function(top) { asm['stackRestore'](top) };
// Warning: printing of i64 values may be slightly rounded! No deep i64 math used, so precise i64 code not included
var i64Math = null;
// === Auto-generated postamble setup entry stuff ===
if (memoryInitializer) {
if (ENVIRONMENT_IS_NODE || ENVIRONMENT_IS_SHELL) {
var data = Module['readBinary'](memoryInitializer);
HEAPU8.set(data, STATIC_BASE);
} else {
addRunDependency('memory initializer');
Browser.asyncLoad(memoryInitializer, function(data) {
HEAPU8.set(data, STATIC_BASE);
removeRunDependency('memory initializer');
}, function(data) {
throw 'could not load memory initializer ' + memoryInitializer;
});
}
}
function ExitStatus(status) {
this.name = "ExitStatus";
this.message = "Program terminated with exit(" + status + ")";
this.status = status;
};
ExitStatus.prototype = new Error();
ExitStatus.prototype.constructor = ExitStatus;
var initialStackTop;
var preloadStartTime = null;
var calledMain = false;
dependenciesFulfilled = function runCaller() {
// If run has never been called, and we should call run (INVOKE_RUN is true, and Module.noInitialRun is not false)
if (!Module['calledRun'] && shouldRunNow) run([].concat(Module["arguments"]));
if (!Module['calledRun']) dependenciesFulfilled = runCaller; // try this again later, after new deps are fulfilled
}
Module['callMain'] = Module.callMain = function callMain(args) {
assert(runDependencies == 0, 'cannot call main when async dependencies remain! (listen on __ATMAIN__)');
assert(__ATPRERUN__.length == 0, 'cannot call main when preRun functions remain to be called');
args = args || [];
ensureInitRuntime();
var argc = args.length+1;
function pad() {
for (var i = 0; i < 4-1; i++) {
argv.push(0);
}
}
var argv = [allocate(intArrayFromString("/bin/this.program"), 'i8', ALLOC_NORMAL) ];
pad();
for (var i = 0; i < argc-1; i = i + 1) {
argv.push(allocate(intArrayFromString(args[i]), 'i8', ALLOC_NORMAL));
pad();
}
argv.push(0);
argv = allocate(argv, 'i32', ALLOC_NORMAL);
initialStackTop = STACKTOP;
try {
var ret = Module['_main'](argc, argv, 0);
// if we're not running an evented main loop, it's time to exit
if (!Module['noExitRuntime']) {
exit(ret);
}
}
catch(e) {
if (e instanceof ExitStatus) {
// exit() throws this once it's done to make sure execution
// has been stopped completely
return;
} else if (e == 'SimulateInfiniteLoop') {
// running an evented main loop, don't immediately exit
Module['noExitRuntime'] = true;
return;
} else {
if (e && typeof e === 'object' && e.stack) Module.printErr('exception thrown: ' + [e, e.stack]);
throw e;
}
} finally {
calledMain = true;
}
}
function run(args) {
args = args || Module['arguments'];
if (preloadStartTime === null) preloadStartTime = Date.now();
if (runDependencies > 0) {
Module.printErr('run() called, but dependencies remain, so not running');
return;
}
preRun();
if (runDependencies > 0) return; // a preRun added a dependency, run will be called later
if (Module['calledRun']) return; // run may have just been called through dependencies being fulfilled just in this very frame
function doRun() {
if (Module['calledRun']) return; // run may have just been called while the async setStatus time below was happening
Module['calledRun'] = true;
ensureInitRuntime();
preMain();
if (ENVIRONMENT_IS_WEB && preloadStartTime !== null) {
Module.printErr('pre-main prep time: ' + (Date.now() - preloadStartTime) + ' ms');
}
if (Module['_main'] && shouldRunNow) {
Module['callMain'](args);
}
postRun();
}
if (Module['setStatus']) {
Module['setStatus']('Running...');
setTimeout(function() {
setTimeout(function() {
Module['setStatus']('');
}, 1);
if (!ABORT) doRun();
}, 1);
} else {
doRun();
}
}
Module['run'] = Module.run = run;
function exit(status) {
ABORT = true;
EXITSTATUS = status;
STACKTOP = initialStackTop;
// exit the runtime
exitRuntime();
// TODO We should handle this differently based on environment.
// In the browser, the best we can do is throw an exception
// to halt execution, but in node we could process.exit and
// I'd imagine SM shell would have something equivalent.
// This would let us set a proper exit status (which
// would be great for checking test exit statuses).
// https://github.com/kripken/emscripten/issues/1371
// throw an exception to halt the current execution
throw new ExitStatus(status);
}
Module['exit'] = Module.exit = exit;
function abort(text) {
if (text) {
Module.print(text);
Module.printErr(text);
}
ABORT = true;
EXITSTATUS = 1;
var extra = '\nIf this abort() is unexpected, build with -s ASSERTIONS=1 which can give more information.';
throw 'abort() at ' + stackTrace() + extra;
}
Module['abort'] = Module.abort = abort;
// {{PRE_RUN_ADDITIONS}}
if (Module['preInit']) {
if (typeof Module['preInit'] == 'function') Module['preInit'] = [Module['preInit']];
while (Module['preInit'].length > 0) {
Module['preInit'].pop()();
}
}
// shouldRunNow refers to calling main(), not run().
var shouldRunNow = true;
if (Module['noInitialRun']) {
shouldRunNow = false;
}
run([].concat(Module["arguments"]));