v8/src/simulator-arm.h
erik.corry@gmail.com 4d18959446 Avoid a call to the runtime system when doing binary fp ops on ARM
(at the moment only if we do not need to allocate a heap number).
Find a few more oportunities to avoid heap number allocation on IA32.
Add some infrastructure to test coverage of generated ARM code in our
tests.
Review URL: http://codereview.chromium.org/67163

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@1720 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2009-04-16 09:30:23 +00:00

205 lines
7.2 KiB
C++

// Copyright 2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Declares a Simulator for ARM instructions if we are not generating a native
// ARM binary. This Simulator allows us to run and debug ARM code generation on
// regular desktop machines.
// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
// which will start execution in the Simulator or forwards to the real entry
// on a ARM HW platform.
#ifndef V8_SIMULATOR_ARM_H_
#define V8_SIMULATOR_ARM_H_
#if defined(__arm__)
// When running without a simulator we call the entry directly.
#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
entry(p0, p1, p2, p3, p4)
// Calculated the stack limit beyond which we will throw stack overflow errors.
// This macro must be called from a C++ method. It relies on being able to take
// the address of "this" to get a value on the current execution stack and then
// calculates the stack limit based on that value.
#define GENERATED_CODE_STACK_LIMIT(limit) \
(reinterpret_cast<uintptr_t>(this) - limit)
#else // defined(__arm__)
// When running with the simulator transition into simulated execution at this
// point.
#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
assembler::arm::Simulator::current()->Call((int32_t)entry, (int32_t)p0, \
(int32_t)p1, (int32_t)p2, (int32_t)p3, (int32_t)p4)
// The simulator has its own stack. Thus it has a different stack limit from
// the C-based native code.
#define GENERATED_CODE_STACK_LIMIT(limit) \
(assembler::arm::Simulator::current()->StackLimit())
#include "constants-arm.h"
namespace assembler { namespace arm {
class Simulator {
public:
friend class Debugger;
enum Register {
no_reg = -1,
r0 = 0, r1, r2, r3, r4, r5, r6, r7,
r8, r9, r10, r11, r12, r13, r14, r15,
num_registers,
sp = 13,
lr = 14,
pc = 15
};
Simulator();
~Simulator();
// The currently executing Simulator instance. Potentially there can be one
// for each native thread.
static Simulator* current();
// Accessors for register state. Reading the pc value adheres to the ARM
// architecture specification and is off by a 8 from the currently executing
// instruction.
void set_register(int reg, int32_t value);
int32_t get_register(int reg) const;
// Special case of set_register and get_register to access the raw PC value.
void set_pc(int32_t value);
int32_t get_pc() const;
// Accessor to the internal simulator stack area.
uintptr_t StackLimit() const;
// Executes ARM instructions until the PC reaches end_sim_pc.
void Execute();
// V8 generally calls into generated code with 5 parameters. This is a
// convenience function, which sets up the simulator state and grabs the
// result on return.
v8::internal::Object* Call(int32_t entry, int32_t p0, int32_t p1,
int32_t p2, int32_t p3, int32_t p4);
private:
enum special_values {
// Known bad pc value to ensure that the simulator does not execute
// without being properly setup.
bad_lr = -1,
// A pc value used to signal the simulator to stop execution. Generally
// the lr is set to this value on transition from native C code to
// simulated execution, so that the simulator can "return" to the native
// C code.
end_sim_pc = -2
};
// Unsupported instructions use Format to print an error and stop execution.
void Format(Instr* instr, const char* format);
// Checks if the current instruction should be executed based on its
// condition bits.
bool ConditionallyExecute(Instr* instr);
// Helper functions to set the conditional flags in the architecture state.
void SetNZFlags(int32_t val);
void SetCFlag(bool val);
void SetVFlag(bool val);
bool CarryFrom(int32_t left, int32_t right);
bool BorrowFrom(int32_t left, int32_t right);
bool OverflowFrom(int32_t alu_out,
int32_t left,
int32_t right,
bool addition);
// Helper functions to decode common "addressing" modes
int32_t GetShiftRm(Instr* instr, bool* carry_out);
int32_t GetImm(Instr* instr, bool* carry_out);
void HandleRList(Instr* instr, bool load);
void SoftwareInterrupt(Instr* instr);
// Read and write memory.
inline uint8_t ReadBU(int32_t addr);
inline int8_t ReadB(int32_t addr);
inline void WriteB(int32_t addr, uint8_t value);
inline void WriteB(int32_t addr, int8_t value);
inline uint16_t ReadHU(int32_t addr, Instr* instr);
inline int16_t ReadH(int32_t addr, Instr* instr);
// Note: Overloaded on the sign of the value.
inline void WriteH(int32_t addr, uint16_t value, Instr* instr);
inline void WriteH(int32_t addr, int16_t value, Instr* instr);
inline int ReadW(int32_t addr, Instr* instr);
inline void WriteW(int32_t addr, int value, Instr* instr);
// Executing is handled based on the instruction type.
void DecodeType01(Instr* instr); // both type 0 and type 1 rolled into one
void DecodeType2(Instr* instr);
void DecodeType3(Instr* instr);
void DecodeType4(Instr* instr);
void DecodeType5(Instr* instr);
void DecodeType6(Instr* instr);
void DecodeType7(Instr* instr);
// Executes one instruction.
void InstructionDecode(Instr* instr);
// For use in calls that take two double values, constructed from r0, r1, r2
// and r3.
void GetFpArgs(double* x, double* y);
void SetFpResult(const double& result);
void TrashCallerSaveRegisters();
// architecture state
int32_t registers_[16];
bool n_flag_;
bool z_flag_;
bool c_flag_;
bool v_flag_;
// simulator support
char* stack_;
bool pc_modified_;
int icount_;
// registered breakpoints
Instr* break_pc_;
instr_t break_instr_;
};
} } // namespace assembler::arm
#endif // defined(__arm__)
#endif // V8_SIMULATOR_ARM_H_