v8/src/debug/debug-coverage.cc
Leszek Swirski 6de8560209 [cleanup] Remove unused Isolate parameters
ReadOnlyRoots means that some added Isolate parameters are no longer
needed. So, we can remove them.

This patch was generated mostly automatically with a bespoke tool.

Bug: v8:7786
Bug: v8:7754
Cq-Include-Trybots: luci.v8.try:v8_linux_noi18n_rel_ng
Change-Id: Ia44fd2a66652253f780e3674bf7fb431caef0493
Reviewed-on: https://chromium-review.googlesource.com/1136305
Commit-Queue: Leszek Swirski <leszeks@chromium.org>
Reviewed-by: Michael Starzinger <mstarzinger@chromium.org>
Reviewed-by: Dan Elphick <delphick@chromium.org>
Reviewed-by: Benedikt Meurer <bmeurer@chromium.org>
Reviewed-by: Yang Guo <yangguo@chromium.org>
Cr-Commit-Position: refs/heads/master@{#54526}
2018-07-18 16:47:22 +00:00

615 lines
20 KiB
C++

// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/debug/debug-coverage.h"
#include "src/ast/ast.h"
#include "src/base/hashmap.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/frames-inl.h"
#include "src/isolate.h"
#include "src/objects.h"
#include "src/objects/debug-objects-inl.h"
namespace v8 {
namespace internal {
class SharedToCounterMap
: public base::TemplateHashMapImpl<SharedFunctionInfo*, uint32_t,
base::KeyEqualityMatcher<void*>,
base::DefaultAllocationPolicy> {
public:
typedef base::TemplateHashMapEntry<SharedFunctionInfo*, uint32_t> Entry;
inline void Add(SharedFunctionInfo* key, uint32_t count) {
Entry* entry = LookupOrInsert(key, Hash(key), []() { return 0; });
uint32_t old_count = entry->value;
if (UINT32_MAX - count < old_count) {
entry->value = UINT32_MAX;
} else {
entry->value = old_count + count;
}
}
inline uint32_t Get(SharedFunctionInfo* key) {
Entry* entry = Lookup(key, Hash(key));
if (entry == nullptr) return 0;
return entry->value;
}
private:
static uint32_t Hash(SharedFunctionInfo* key) {
return static_cast<uint32_t>(reinterpret_cast<intptr_t>(key));
}
DisallowHeapAllocation no_gc;
};
namespace {
int StartPosition(SharedFunctionInfo* info) {
int start = info->function_token_position();
if (start == kNoSourcePosition) start = info->StartPosition();
return start;
}
bool CompareSharedFunctionInfo(SharedFunctionInfo* a, SharedFunctionInfo* b) {
int a_start = StartPosition(a);
int b_start = StartPosition(b);
if (a_start == b_start) return a->EndPosition() > b->EndPosition();
return a_start < b_start;
}
bool CompareCoverageBlock(const CoverageBlock& a, const CoverageBlock& b) {
DCHECK_NE(kNoSourcePosition, a.start);
DCHECK_NE(kNoSourcePosition, b.start);
if (a.start == b.start) return a.end > b.end;
return a.start < b.start;
}
void SortBlockData(std::vector<CoverageBlock>& v) {
// Sort according to the block nesting structure.
std::sort(v.begin(), v.end(), CompareCoverageBlock);
}
std::vector<CoverageBlock> GetSortedBlockData(SharedFunctionInfo* shared) {
DCHECK(shared->HasCoverageInfo());
CoverageInfo* coverage_info =
CoverageInfo::cast(shared->GetDebugInfo()->coverage_info());
std::vector<CoverageBlock> result;
if (coverage_info->SlotCount() == 0) return result;
for (int i = 0; i < coverage_info->SlotCount(); i++) {
const int start_pos = coverage_info->StartSourcePosition(i);
const int until_pos = coverage_info->EndSourcePosition(i);
const int count = coverage_info->BlockCount(i);
DCHECK_NE(kNoSourcePosition, start_pos);
result.emplace_back(start_pos, until_pos, count);
}
SortBlockData(result);
return result;
}
// A utility class to simplify logic for performing passes over block coverage
// ranges. Provides access to the implicit tree structure of ranges (i.e. access
// to parent and sibling blocks), and supports efficient in-place editing and
// deletion. The underlying backing store is the array of CoverageBlocks stored
// on the CoverageFunction.
class CoverageBlockIterator final {
public:
explicit CoverageBlockIterator(CoverageFunction* function)
: function_(function),
ended_(false),
delete_current_(false),
read_index_(-1),
write_index_(-1) {
DCHECK(std::is_sorted(function_->blocks.begin(), function_->blocks.end(),
CompareCoverageBlock));
}
~CoverageBlockIterator() {
Finalize();
DCHECK(std::is_sorted(function_->blocks.begin(), function_->blocks.end(),
CompareCoverageBlock));
}
bool HasNext() const {
return read_index_ + 1 < static_cast<int>(function_->blocks.size());
}
bool Next() {
if (!HasNext()) {
if (!ended_) MaybeWriteCurrent();
ended_ = true;
return false;
}
// If a block has been deleted, subsequent iteration moves trailing blocks
// to their updated position within the array.
MaybeWriteCurrent();
if (read_index_ == -1) {
// Initialize the nesting stack with the function range.
nesting_stack_.emplace_back(function_->start, function_->end,
function_->count);
} else if (!delete_current_) {
nesting_stack_.emplace_back(GetBlock());
}
delete_current_ = false;
read_index_++;
DCHECK(IsActive());
CoverageBlock& block = GetBlock();
while (nesting_stack_.size() > 1 &&
nesting_stack_.back().end <= block.start) {
nesting_stack_.pop_back();
}
DCHECK_IMPLIES(block.start >= function_->end,
block.end == kNoSourcePosition);
DCHECK_NE(block.start, kNoSourcePosition);
DCHECK_LE(block.end, GetParent().end);
return true;
}
CoverageBlock& GetBlock() {
DCHECK(IsActive());
return function_->blocks[read_index_];
}
CoverageBlock& GetNextBlock() {
DCHECK(IsActive());
DCHECK(HasNext());
return function_->blocks[read_index_ + 1];
}
CoverageBlock& GetParent() {
DCHECK(IsActive());
return nesting_stack_.back();
}
bool HasSiblingOrChild() {
DCHECK(IsActive());
return HasNext() && GetNextBlock().start < GetParent().end;
}
CoverageBlock& GetSiblingOrChild() {
DCHECK(HasSiblingOrChild());
DCHECK(IsActive());
return GetNextBlock();
}
// A range is considered to be at top level if its parent range is the
// function range.
bool IsTopLevel() const { return nesting_stack_.size() == 1; }
void DeleteBlock() {
DCHECK(!delete_current_);
DCHECK(IsActive());
delete_current_ = true;
}
private:
void MaybeWriteCurrent() {
if (delete_current_) return;
if (read_index_ >= 0 && write_index_ != read_index_) {
function_->blocks[write_index_] = function_->blocks[read_index_];
}
write_index_++;
}
void Finalize() {
while (Next()) {
// Just iterate to the end.
}
function_->blocks.resize(write_index_);
}
bool IsActive() const { return read_index_ >= 0 && !ended_; }
CoverageFunction* function_;
std::vector<CoverageBlock> nesting_stack_;
bool ended_;
bool delete_current_;
int read_index_;
int write_index_;
};
bool HaveSameSourceRange(const CoverageBlock& lhs, const CoverageBlock& rhs) {
return lhs.start == rhs.start && lhs.end == rhs.end;
}
void MergeDuplicateSingletons(CoverageFunction* function) {
CoverageBlockIterator iter(function);
while (iter.Next() && iter.HasNext()) {
CoverageBlock& block = iter.GetBlock();
CoverageBlock& next_block = iter.GetNextBlock();
// Identical ranges should only occur through singleton ranges. Consider the
// ranges for `for (.) break;`: continuation ranges for both the `break` and
// `for` statements begin after the trailing semicolon.
// Such ranges are merged and keep the maximal execution count.
if (!HaveSameSourceRange(block, next_block)) continue;
DCHECK_EQ(kNoSourcePosition, block.end); // Singleton range.
next_block.count = std::max(block.count, next_block.count);
iter.DeleteBlock();
}
}
void MergeDuplicateRanges(CoverageFunction* function) {
CoverageBlockIterator iter(function);
while (iter.Next() && iter.HasNext()) {
CoverageBlock& block = iter.GetBlock();
CoverageBlock& next_block = iter.GetNextBlock();
if (!HaveSameSourceRange(block, next_block)) continue;
DCHECK_NE(kNoSourcePosition, block.end); // Non-singleton range.
next_block.count = std::max(block.count, next_block.count);
iter.DeleteBlock();
}
}
// Rewrite position singletons (produced by unconditional control flow
// like return statements, and by continuation counters) into source
// ranges that end at the next sibling range or the end of the parent
// range, whichever comes first.
void RewritePositionSingletonsToRanges(CoverageFunction* function) {
CoverageBlockIterator iter(function);
while (iter.Next()) {
CoverageBlock& block = iter.GetBlock();
CoverageBlock& parent = iter.GetParent();
if (block.start >= function->end) {
DCHECK_EQ(block.end, kNoSourcePosition);
iter.DeleteBlock();
} else if (block.end == kNoSourcePosition) {
// The current block ends at the next sibling block (if it exists) or the
// end of the parent block otherwise.
if (iter.HasSiblingOrChild()) {
block.end = iter.GetSiblingOrChild().start;
} else if (iter.IsTopLevel()) {
// See https://crbug.com/v8/6661. Functions are special-cased because
// we never want the closing brace to be uncovered. This is mainly to
// avoid a noisy UI.
block.end = parent.end - 1;
} else {
block.end = parent.end;
}
}
}
}
void MergeConsecutiveRanges(CoverageFunction* function) {
CoverageBlockIterator iter(function);
while (iter.Next()) {
CoverageBlock& block = iter.GetBlock();
if (iter.HasSiblingOrChild()) {
CoverageBlock& sibling = iter.GetSiblingOrChild();
if (sibling.start == block.end && sibling.count == block.count) {
// Best-effort: this pass may miss mergeable siblings in the presence of
// child blocks.
sibling.start = block.start;
iter.DeleteBlock();
}
}
}
}
void MergeNestedRanges(CoverageFunction* function) {
CoverageBlockIterator iter(function);
while (iter.Next()) {
CoverageBlock& block = iter.GetBlock();
CoverageBlock& parent = iter.GetParent();
if (parent.count == block.count) {
// Transformation may not be valid if sibling blocks exist with a
// differing count.
iter.DeleteBlock();
}
}
}
void FilterUncoveredRanges(CoverageFunction* function) {
CoverageBlockIterator iter(function);
while (iter.Next()) {
CoverageBlock& block = iter.GetBlock();
CoverageBlock& parent = iter.GetParent();
if (block.count == 0 && parent.count == 0) iter.DeleteBlock();
}
}
void FilterEmptyRanges(CoverageFunction* function) {
CoverageBlockIterator iter(function);
while (iter.Next()) {
CoverageBlock& block = iter.GetBlock();
if (block.start == block.end) iter.DeleteBlock();
}
}
void ClampToBinary(CoverageFunction* function) {
CoverageBlockIterator iter(function);
while (iter.Next()) {
CoverageBlock& block = iter.GetBlock();
if (block.count > 0) block.count = 1;
}
}
void ResetAllBlockCounts(SharedFunctionInfo* shared) {
DCHECK(shared->HasCoverageInfo());
CoverageInfo* coverage_info =
CoverageInfo::cast(shared->GetDebugInfo()->coverage_info());
for (int i = 0; i < coverage_info->SlotCount(); i++) {
coverage_info->ResetBlockCount(i);
}
}
bool IsBlockMode(debug::Coverage::Mode mode) {
switch (mode) {
case debug::Coverage::kBlockBinary:
case debug::Coverage::kBlockCount:
return true;
default:
return false;
}
}
bool IsBinaryMode(debug::Coverage::Mode mode) {
switch (mode) {
case debug::Coverage::kBlockBinary:
case debug::Coverage::kPreciseBinary:
return true;
default:
return false;
}
}
void CollectBlockCoverage(CoverageFunction* function, SharedFunctionInfo* info,
debug::Coverage::Mode mode) {
DCHECK(IsBlockMode(mode));
function->has_block_coverage = true;
function->blocks = GetSortedBlockData(info);
// If in binary mode, only report counts of 0/1.
if (mode == debug::Coverage::kBlockBinary) ClampToBinary(function);
// Remove duplicate singleton ranges, keeping the max count.
MergeDuplicateSingletons(function);
// Rewrite all singletons (created e.g. by continuations and unconditional
// control flow) to ranges.
RewritePositionSingletonsToRanges(function);
// Merge nested and consecutive ranges with identical counts.
// Note that it's necessary to merge duplicate ranges prior to merging nested
// changes in order to avoid invalid transformations. See crbug.com/827530.
MergeConsecutiveRanges(function);
SortBlockData(function->blocks);
MergeDuplicateRanges(function);
MergeNestedRanges(function);
MergeConsecutiveRanges(function);
// Filter out ranges with count == 0 unless the immediate parent range has
// a count != 0.
FilterUncoveredRanges(function);
// Filter out ranges of zero length.
FilterEmptyRanges(function);
// Reset all counters on the DebugInfo to zero.
ResetAllBlockCounts(info);
}
} // anonymous namespace
std::unique_ptr<Coverage> Coverage::CollectPrecise(Isolate* isolate) {
DCHECK(!isolate->is_best_effort_code_coverage());
std::unique_ptr<Coverage> result =
Collect(isolate, isolate->code_coverage_mode());
if (!isolate->is_collecting_type_profile() &&
(isolate->is_precise_binary_code_coverage() ||
isolate->is_block_binary_code_coverage())) {
// We do not have to hold onto feedback vectors for invocations we already
// reported. So we can reset the list.
isolate->SetFeedbackVectorsForProfilingTools(*ArrayList::New(isolate, 0));
}
return result;
}
std::unique_ptr<Coverage> Coverage::CollectBestEffort(Isolate* isolate) {
return Collect(isolate, v8::debug::Coverage::kBestEffort);
}
std::unique_ptr<Coverage> Coverage::Collect(
Isolate* isolate, v8::debug::Coverage::Mode collectionMode) {
SharedToCounterMap counter_map;
const bool reset_count = collectionMode != v8::debug::Coverage::kBestEffort;
switch (isolate->code_coverage_mode()) {
case v8::debug::Coverage::kBlockBinary:
case v8::debug::Coverage::kBlockCount:
case v8::debug::Coverage::kPreciseBinary:
case v8::debug::Coverage::kPreciseCount: {
// Feedback vectors are already listed to prevent losing them to GC.
DCHECK(isolate->factory()
->feedback_vectors_for_profiling_tools()
->IsArrayList());
Handle<ArrayList> list = Handle<ArrayList>::cast(
isolate->factory()->feedback_vectors_for_profiling_tools());
for (int i = 0; i < list->Length(); i++) {
FeedbackVector* vector = FeedbackVector::cast(list->Get(i));
SharedFunctionInfo* shared = vector->shared_function_info();
DCHECK(shared->IsSubjectToDebugging());
uint32_t count = static_cast<uint32_t>(vector->invocation_count());
if (reset_count) vector->clear_invocation_count();
counter_map.Add(shared, count);
}
break;
}
case v8::debug::Coverage::kBestEffort: {
DCHECK(!isolate->factory()
->feedback_vectors_for_profiling_tools()
->IsArrayList());
DCHECK_EQ(v8::debug::Coverage::kBestEffort, collectionMode);
HeapIterator heap_iterator(isolate->heap());
while (HeapObject* current_obj = heap_iterator.next()) {
if (!current_obj->IsFeedbackVector()) continue;
FeedbackVector* vector = FeedbackVector::cast(current_obj);
SharedFunctionInfo* shared = vector->shared_function_info();
if (!shared->IsSubjectToDebugging()) continue;
uint32_t count = static_cast<uint32_t>(vector->invocation_count());
counter_map.Add(shared, count);
}
break;
}
}
// Iterate shared function infos of every script and build a mapping
// between source ranges and invocation counts.
std::unique_ptr<Coverage> result(new Coverage());
Script::Iterator scripts(isolate);
while (Script* script = scripts.Next()) {
if (!script->IsUserJavaScript()) continue;
// Create and add new script data.
Handle<Script> script_handle(script, isolate);
result->emplace_back(script_handle);
std::vector<CoverageFunction>* functions = &result->back().functions;
std::vector<SharedFunctionInfo*> sorted;
{
// Sort functions by start position, from outer to inner functions.
SharedFunctionInfo::ScriptIterator infos(isolate, *script_handle);
while (SharedFunctionInfo* info = infos.Next()) {
sorted.push_back(info);
}
std::sort(sorted.begin(), sorted.end(), CompareSharedFunctionInfo);
}
// Stack to track nested functions, referring function by index.
std::vector<size_t> nesting;
// Use sorted list to reconstruct function nesting.
for (SharedFunctionInfo* info : sorted) {
int start = StartPosition(info);
int end = info->EndPosition();
uint32_t count = counter_map.Get(info);
// Find the correct outer function based on start position.
while (!nesting.empty() && functions->at(nesting.back()).end <= start) {
nesting.pop_back();
}
if (count != 0) {
switch (collectionMode) {
case v8::debug::Coverage::kBlockCount:
case v8::debug::Coverage::kPreciseCount:
break;
case v8::debug::Coverage::kBlockBinary:
case v8::debug::Coverage::kPreciseBinary:
count = info->has_reported_binary_coverage() ? 0 : 1;
info->set_has_reported_binary_coverage(true);
break;
case v8::debug::Coverage::kBestEffort:
count = 1;
break;
}
}
Handle<String> name(info->DebugName(), isolate);
CoverageFunction function(start, end, count, name);
if (IsBlockMode(collectionMode) && info->HasCoverageInfo()) {
CollectBlockCoverage(&function, info, collectionMode);
}
// Only include a function range if itself or its parent function is
// covered, or if it contains non-trivial block coverage.
bool is_covered = (count != 0);
bool parent_is_covered =
(!nesting.empty() && functions->at(nesting.back()).count != 0);
bool has_block_coverage = !function.blocks.empty();
if (is_covered || parent_is_covered || has_block_coverage) {
nesting.push_back(functions->size());
functions->emplace_back(function);
}
}
// Remove entries for scripts that have no coverage.
if (functions->empty()) result->pop_back();
}
return result;
}
void Coverage::SelectMode(Isolate* isolate, debug::Coverage::Mode mode) {
switch (mode) {
case debug::Coverage::kBestEffort:
// Note that DevTools switches back to best-effort coverage once the
// recording is stopped. Since we delete coverage infos at that point, any
// following coverage recording (without reloads) will be at function
// granularity.
isolate->debug()->RemoveAllCoverageInfos();
if (!isolate->is_collecting_type_profile()) {
isolate->SetFeedbackVectorsForProfilingTools(
ReadOnlyRoots(isolate).undefined_value());
}
break;
case debug::Coverage::kBlockBinary:
case debug::Coverage::kBlockCount:
case debug::Coverage::kPreciseBinary:
case debug::Coverage::kPreciseCount: {
HandleScope scope(isolate);
// Remove all optimized function. Optimized and inlined functions do not
// increment invocation count.
Deoptimizer::DeoptimizeAll(isolate);
// Root all feedback vectors to avoid early collection.
isolate->MaybeInitializeVectorListFromHeap();
HeapIterator heap_iterator(isolate->heap());
while (HeapObject* o = heap_iterator.next()) {
if (IsBinaryMode(mode) && o->IsSharedFunctionInfo()) {
// If collecting binary coverage, reset
// SFI::has_reported_binary_coverage to avoid optimizing / inlining
// functions before they have reported coverage.
SharedFunctionInfo* shared = SharedFunctionInfo::cast(o);
shared->set_has_reported_binary_coverage(false);
} else if (o->IsFeedbackVector()) {
// In any case, clear any collected invocation counts.
FeedbackVector* vector = FeedbackVector::cast(o);
vector->clear_invocation_count();
}
}
break;
}
}
isolate->set_code_coverage_mode(mode);
}
} // namespace internal
} // namespace v8