v8/src/grisu3.cc
2010-03-11 14:49:35 +00:00

495 lines
20 KiB
C++

// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "grisu3.h"
#include "cached_powers.h"
#include "diy_fp.h"
#include "double.h"
namespace v8 {
namespace internal {
template <int alpha = -60, int gamma = -32>
class Grisu3 {
public:
// Provides a decimal representation of v.
// Returns true if it succeeds, otherwise the result can not be trusted.
// There will be *length digits inside the buffer (not null-terminated).
// If the function returns true then
// v == (double) (buffer * 10^decimal_exponent).
// The digits in the buffer are the shortest representation possible: no
// 0.099999999999 instead of 0.1.
// The last digit will be closest to the actual v. That is, even if several
// digits might correctly yield 'v' when read again, the closest will be
// computed.
static bool grisu3(double v,
char* buffer, int* length, int* decimal_exponent);
private:
// Rounds the buffer according to the rest.
// If there is too much imprecision to round then false is returned.
// Similarily false is returned when the buffer is not within Delta.
static bool RoundWeed(char* buffer, int len, uint64_t wp_W, uint64_t Delta,
uint64_t rest, uint64_t ten_kappa, uint64_t ulp);
// Dispatches to the a specialized digit-generation routine. The chosen
// routine depends on w.e (which in turn depends on alpha and gamma).
// Currently there is only one digit-generation routine, but it would be easy
// to add others.
static bool DigitGen(DiyFp low, DiyFp w, DiyFp high,
char* buffer, int* len, int* kappa);
// Generates w's digits. The result is the shortest in the interval low-high.
// All DiyFp are assumed to be imprecise and this function takes this
// imprecision into account. If the function cannot compute the best
// representation (due to the imprecision) then false is returned.
static bool DigitGen_m60_m32(DiyFp low, DiyFp w, DiyFp high,
char* buffer, int* length, int* kappa);
};
template<int alpha, int gamma>
bool Grisu3<alpha, gamma>::grisu3(double v,
char* buffer,
int* length,
int* decimal_exponent) {
DiyFp w = Double(v).AsNormalizedDiyFp();
// boundary_minus and boundary_plus are the boundaries between v and its
// neighbors. Any number strictly between boundary_minus and boundary_plus
// will round to v when read as double.
// Grisu3 will never output representations that lie exactly on a boundary.
DiyFp boundary_minus, boundary_plus;
Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
ASSERT(boundary_plus.e() == w.e());
DiyFp ten_mk; // Cached power of ten: 10^-k
int mk; // -k
GetCachedPower(w.e() + DiyFp::kSignificandSize, alpha, gamma, &mk, &ten_mk);
ASSERT(alpha <= w.e() + ten_mk.e() + DiyFp::kSignificandSize &&
gamma >= w.e() + ten_mk.e() + DiyFp::kSignificandSize);
// Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
// 64 bit significand and ten_mk is thus only precise up to 64 bits.
// The DiyFp::Times procedure rounds its result, and ten_mk is approximated
// too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
// off by a small amount.
// In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
// In other words: let f = scaled_w.f() and e = scaled_w.e(), then
// (f-1) * 2^e < w*10^k < (f+1) * 2^e
DiyFp scaled_w = DiyFp::Times(w, ten_mk);
ASSERT(scaled_w.e() ==
boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
// In theory it would be possible to avoid some recomputations by computing
// the difference between w and boundary_minus/plus (a power of 2) and to
// compute scaled_boundary_minus/plus by subtracting/adding from
// scaled_w. However the code becomes much less readable and the speed
// enhancements are not terriffic.
DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
// DigitGen will generate the digits of scaled_w. Therefore we have
// v == (double) (scaled_w * 10^-mk).
// Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
// integer than it will be updated. For instance if scaled_w == 1.23 then
// the buffer will be filled with "123" und the decimal_exponent will be
// decreased by 2.
int kappa;
bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
buffer, length, &kappa);
*decimal_exponent = -mk + kappa;
return result;
}
// Generates the digits of input number w.
// w is a floating-point number (DiyFp), consisting of a significand and an
// exponent. Its exponent is bounded by alpha and gamma. Typically alpha >= -63
// and gamma <= 3.
// Returns false if it fails, in which case the generated digits in the buffer
// should not be used.
// Preconditions:
// * low, w and high are correct up to 1 ulp (unit in the last place). That
// is, their error must be less that a unit of their last digits.
// * low.e() == w.e() == high.e()
// * low < w < high, and taking into account their error: low~ <= high~
// * alpha <= w.e() <= gamma
// Postconditions: returns false if procedure fails.
// otherwise:
// * buffer is not null-terminated, but len contains the number of digits.
// * buffer contains the shortest possible decimal digit-sequence
// such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
// correct values of low and high (without their error).
// * if more than one decimal representation gives the minimal number of
// decimal digits then the one closest to W (where W is the correct value
// of w) is chosen.
// Remark: this procedure takes into account the imprecision of its input
// numbers. If the precision is not enough to guarantee all the postconditions
// then false is returned. This usually happens rarely (~0.5%).
template<int alpha, int gamma>
bool Grisu3<alpha, gamma>::DigitGen(DiyFp low,
DiyFp w,
DiyFp high,
char* buffer,
int* len,
int* kappa) {
ASSERT(low.e() == w.e() && w.e() == high.e());
ASSERT(low.f() + 1 <= high.f() - 1);
ASSERT(alpha <= w.e() && w.e() <= gamma);
// The following tests use alpha and gamma to avoid unnecessary dynamic tests.
if ((alpha >= -60 && gamma <= -32) || // -60 <= w.e() <= -32
(alpha <= -32 && gamma >= -60 && // Alpha/gamma overlaps -60/-32 region.
-60 <= w.e() && w.e() <= -32)) {
return DigitGen_m60_m32(low, w, high, buffer, len, kappa);
} else {
// A simple adaption of the special case -60/-32 would allow greater ranges
// of alpha/gamma and thus reduce the number of precomputed cached powers of
// ten.
UNIMPLEMENTED();
return false;
}
}
static const uint32_t kTen4 = 10000;
static const uint32_t kTen5 = 100000;
static const uint32_t kTen6 = 1000000;
static const uint32_t kTen7 = 10000000;
static const uint32_t kTen8 = 100000000;
static const uint32_t kTen9 = 1000000000;
// Returns the biggest power of ten that is <= than the given number. We
// furthermore receive the maximum number of bits 'number' has.
// If number_bits == 0 then 0^-1 is returned
// The number of bits must be <= 32.
static void BiggestPowerTen(uint32_t number,
int number_bits,
uint32_t* power,
int* exponent) {
switch (number_bits) {
case 32:
case 31:
case 30:
if (kTen9 <= number) {
*power = kTen9;
*exponent = 9;
break;
} // else fallthrough
case 29:
case 28:
case 27:
if (kTen8 <= number) {
*power = kTen8;
*exponent = 8;
break;
} // else fallthrough
case 26:
case 25:
case 24:
if (kTen7 <= number) {
*power = kTen7;
*exponent = 7;
break;
} // else fallthrough
case 23:
case 22:
case 21:
case 20:
if (kTen6 <= number) {
*power = kTen6;
*exponent = 6;
break;
} // else fallthrough
case 19:
case 18:
case 17:
if (kTen5 <= number) {
*power = kTen5;
*exponent = 5;
break;
} // else fallthrough
case 16:
case 15:
case 14:
if (kTen4 <= number) {
*power = kTen4;
*exponent = 4;
break;
} // else fallthrough
case 13:
case 12:
case 11:
case 10:
if (1000 <= number) {
*power = 1000;
*exponent = 3;
break;
} // else fallthrough
case 9:
case 8:
case 7:
if (100 <= number) {
*power = 100;
*exponent = 2;
break;
} // else fallthrough
case 6:
case 5:
case 4:
if (10 <= number) {
*power = 10;
*exponent = 1;
break;
} // else fallthrough
case 3:
case 2:
case 1:
if (1 <= number) {
*power = 1;
*exponent = 0;
break;
} // else fallthrough
case 0:
*power = 0;
*exponent = -1;
break;
default:
// Following assignments are here to silence compiler warnings.
*power = 0;
*exponent = 0;
UNREACHABLE();
}
}
// Same comments as for DigitGen but with additional precondition:
// -60 <= w.e() <= -32
//
// Say, for the sake of example, that
// w.e() == -48, and w.f() == 0x1234567890abcdef
// w's value can be computed by w.f() * 2^w.e()
// We can obtain w's integral digits by simply shifting w.f() by -w.e().
// -> w's integral part is 0x1234
// w's fractional part is therefore 0x567890abcdef.
// Printing w's integral part is easy (simply print 0x1234 in decimal).
// In order to print its fraction we repeatedly multiply the fraction by 10 and
// get each digit. Example the first digit after the comma would be computed by
// (0x567890abcdef * 10) >> 48. -> 3
// The whole thing becomes slightly more complicated because we want to stop
// once we have enough digits. That is, once the digits inside the buffer
// represent 'w' we can stop. Everything inside the interval low - high
// represents w. However we have to pay attention to low, high and w's
// imprecision.
template<int alpha, int gamma>
bool Grisu3<alpha, gamma>::DigitGen_m60_m32(DiyFp low,
DiyFp w,
DiyFp high,
char* buffer,
int* length,
int* kappa) {
// low, w and high are imprecise, but by less than one ulp (unit in the last
// place).
// If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
// the new numbers are outside of the interval we want the final
// representation to lie in.
// Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
// numbers that are certain to lie in the interval. We will use this fact
// later on.
// We will now start by generating the digits within the uncertain
// interval. Later we will weed out representations that lie outside the safe
// interval and thus _might_ lie outside the correct interval.
uint64_t unit = 1;
DiyFp too_low = DiyFp(low.f() - unit, low.e());
DiyFp too_high = DiyFp(high.f() + unit, high.e());
// too_low and too_high are guaranteed to lie outside the interval we want the
// generated number in.
DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
// We now cut the input number into two parts: the integral digits and the
// fractionals. We will not write any decimal separator though, but adapt
// kappa instead.
// Reminder: we are currently computing the digits (stored inside the buffer)
// such that: too_low < buffer * 10^kappa < too_high
// We use too_high for the digit_generation and stop as soon as possible.
// If we stop early we effectively round down.
DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
// Division by one is a shift.
uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
// Modulo by one is an and.
uint64_t fractionals = too_high.f() & (one.f() - 1);
uint32_t divider;
int divider_exponent;
BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
&divider, &divider_exponent);
*kappa = divider_exponent + 1;
*length = 0;
// Loop invariant: buffer = too_high / 10^kappa (integer division)
// The invariant holds for the first iteration: kappa has been initialized
// with the divider exponent + 1. And the divider is the biggest power of ten
// that is smaller than integrals.
while (*kappa > 0) {
int digit = integrals / divider;
buffer[*length] = '0' + digit;
(*length)++;
integrals %= divider;
(*kappa)--;
// Note that kappa now equals the exponent of the divider and that the
// invariant thus holds again.
uint64_t rest =
(static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
// Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
// Reminder: unsafe_interval.e() == one.e()
if (rest < unsafe_interval.f()) {
// Rounding down (by not emitting the remaining digits) yields a number
// that lies within the unsafe interval.
return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
unsafe_interval.f(), rest,
static_cast<uint64_t>(divider) << -one.e(), unit);
}
divider /= 10;
}
// The integrals have been generated. We are at the point of the decimal
// separator. In the following loop we simply multiply the remaining digits by
// 10 and divide by one. We just need to pay attention to multiply associated
// data (like the interval or 'unit'), too.
// Instead of multiplying by 10 we multiply by 5 (cheaper operation) and
// increase its (imaginary) exponent. At the same time we decrease the
// divider's (one's) exponent and shift its significand.
// Basically, if fractionals was a DiyFp (with fractionals.e == one.e):
// fractionals.f *= 10;
// fractionals.f >>= 1; fractionals.e++; // value remains unchanged.
// one.f >>= 1; one.e++; // value remains unchanged.
// and we have again fractionals.e == one.e which allows us to divide
// fractionals.f() by one.f()
// We simply combine the *= 10 and the >>= 1.
while (true) {
fractionals *= 5;
unit *= 5;
unsafe_interval.set_f(unsafe_interval.f() * 5);
unsafe_interval.set_e(unsafe_interval.e() + 1); // Will be optimized out.
one.set_f(one.f() >> 1);
one.set_e(one.e() + 1);
// Integer division by one.
int digit = static_cast<int>(fractionals >> -one.e());
buffer[*length] = '0' + digit;
(*length)++;
fractionals &= one.f() - 1; // Modulo by one.
(*kappa)--;
if (fractionals < unsafe_interval.f()) {
return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
unsafe_interval.f(), fractionals, one.f(), unit);
}
}
}
// Rounds the given generated digits in the buffer and weeds out generated
// digits that are not in the safe interval, or where we cannot find a rounded
// representation.
// Input: * buffer containing the digits of too_high / 10^kappa
// * the buffer's length
// * distance_too_high_w == (too_high - w).f() * unit
// * unsafe_interval == (too_high - too_low).f() * unit
// * rest = (too_high - buffer * 10^kappa).f() * unit
// * ten_kappa = 10^kappa * unit
// * unit = the common multiplier
// Output: returns true on success.
// Modifies the generated digits in the buffer to approach (round towards) w.
template<int alpha, int gamma>
bool Grisu3<alpha, gamma>::RoundWeed(char* buffer,
int length,
uint64_t distance_too_high_w,
uint64_t unsafe_interval,
uint64_t rest,
uint64_t ten_kappa,
uint64_t unit) {
uint64_t small_distance = distance_too_high_w - unit;
uint64_t big_distance = distance_too_high_w + unit;
// Let w- = too_high - big_distance, and
// w+ = too_high - small_distance.
// Note: w- < w < w+
//
// The real w (* unit) must lie somewhere inside the interval
// ]w-; w+[ (often written as "(w-; w+)")
// Basically the buffer currently contains a number in the unsafe interval
// ]too_low; too_high[ with too_low < w < too_high
//
// By generating the digits of too_high we got the biggest last digit.
// In the case that w+ < buffer < too_high we try to decrement the buffer.
// This way the buffer approaches (rounds towards) w.
// There are 3 conditions that stop the decrementation process:
// 1) the buffer is already below w+
// 2) decrementing the buffer would make it leave the unsafe interval
// 3) decrementing the buffer would yield a number below w+ and farther away
// than the current number. In other words:
// (buffer{-1} < w+) && w+ - buffer{-1} > buffer - w+
// Instead of using the buffer directly we use its distance to too_high.
// Conceptually rest ~= too_high - buffer
while (rest < small_distance && // Negated condition 1
unsafe_interval - rest >= ten_kappa && // Negated condition 2
(rest + ten_kappa < small_distance || // buffer{-1} > w+
small_distance - rest >= rest + ten_kappa - small_distance)) {
buffer[length - 1]--;
rest += ten_kappa;
}
// We have approached w+ as much as possible. We now test if approaching w-
// would require changing the buffer. If yes, then we have two possible
// representations close to w, but we cannot decide which one is closer.
if (rest < big_distance &&
unsafe_interval - rest >= ten_kappa &&
(rest + ten_kappa < big_distance ||
big_distance - rest > rest + ten_kappa - big_distance)) {
return false;
}
// Weeding test.
// The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
// Since too_low = too_high - unsafe_interval this is equivalent too
// [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
// Conceptually we have: rest ~= too_high - buffer
return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
}
bool grisu3(double v, char* buffer, int* sign, int* length, int* point) {
ASSERT(v != 0);
ASSERT(!Double(v).IsSpecial());
if (v < 0) {
v = -v;
*sign = 1;
} else {
*sign = 0;
}
int decimal_exponent;
bool result = Grisu3<-60, -32>::grisu3(v, buffer, length, &decimal_exponent);
*point = *length + decimal_exponent;
buffer[*length] = '\0';
return result;
}
} } // namespace v8::internal