v8/test/cctest/test-regexp.cc
yangguo d1f68f776e [regexp] fix bogus assertion in CharacterRange constructor.
The CharacterRange constructor checks the input for validity. However,
CharacterRange::Singleton also uses the constructor and may have
kEndMarker as input, causing the check to fail.

The solution is to move the check to CharacterRange::Range and
consistently use it across the code base.

R=jkummerow@chromium.org
BUG=chromium:593282
LOG=N

Review URL: https://codereview.chromium.org/1776013003

Cr-Commit-Position: refs/heads/master@{#34626}
2016-03-09 15:55:38 +00:00

1970 lines
65 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <cstdlib>
#include <sstream>
#include "include/v8.h"
#include "src/v8.h"
#include "src/ast/ast.h"
#include "src/char-predicates-inl.h"
#include "src/ostreams.h"
#include "src/regexp/jsregexp.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/regexp/regexp-macro-assembler-irregexp.h"
#include "src/regexp/regexp-parser.h"
#include "src/splay-tree-inl.h"
#include "src/string-stream.h"
#ifdef V8_INTERPRETED_REGEXP
#include "src/regexp/interpreter-irregexp.h"
#else // V8_INTERPRETED_REGEXP
#include "src/macro-assembler.h"
#if V8_TARGET_ARCH_ARM
#include "src/arm/assembler-arm.h" // NOLINT
#include "src/arm/macro-assembler-arm.h"
#include "src/regexp/arm/regexp-macro-assembler-arm.h"
#endif
#if V8_TARGET_ARCH_ARM64
#include "src/arm64/assembler-arm64.h"
#include "src/arm64/macro-assembler-arm64.h"
#include "src/regexp/arm64/regexp-macro-assembler-arm64.h"
#endif
#if V8_TARGET_ARCH_PPC
#include "src/ppc/assembler-ppc.h"
#include "src/ppc/macro-assembler-ppc.h"
#include "src/regexp/ppc/regexp-macro-assembler-ppc.h"
#endif
#if V8_TARGET_ARCH_MIPS
#include "src/mips/assembler-mips.h"
#include "src/mips/macro-assembler-mips.h"
#include "src/regexp/mips/regexp-macro-assembler-mips.h"
#endif
#if V8_TARGET_ARCH_MIPS64
#include "src/mips64/assembler-mips64.h"
#include "src/mips64/macro-assembler-mips64.h"
#include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
#endif
#if V8_TARGET_ARCH_X64
#include "src/regexp/x64/regexp-macro-assembler-x64.h"
#include "src/x64/assembler-x64.h"
#include "src/x64/macro-assembler-x64.h"
#endif
#if V8_TARGET_ARCH_IA32
#include "src/ia32/assembler-ia32.h"
#include "src/ia32/macro-assembler-ia32.h"
#include "src/regexp/ia32/regexp-macro-assembler-ia32.h"
#endif
#if V8_TARGET_ARCH_X87
#include "src/regexp/x87/regexp-macro-assembler-x87.h"
#include "src/x87/assembler-x87.h"
#include "src/x87/macro-assembler-x87.h"
#endif
#endif // V8_INTERPRETED_REGEXP
#include "test/cctest/cctest.h"
using namespace v8::internal;
static bool CheckParse(const char* input) {
v8::HandleScope scope(CcTest::isolate());
Zone zone;
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
return v8::internal::RegExpParser::ParseRegExp(
CcTest::i_isolate(), &zone, &reader, JSRegExp::kNone, &result);
}
static void CheckParseEq(const char* input, const char* expected,
bool unicode = false) {
v8::HandleScope scope(CcTest::isolate());
Zone zone;
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
JSRegExp::Flags flags = JSRegExp::kNone;
if (unicode) flags |= JSRegExp::kUnicode;
CHECK(v8::internal::RegExpParser::ParseRegExp(CcTest::i_isolate(), &zone,
&reader, flags, &result));
CHECK(result.tree != NULL);
CHECK(result.error.is_null());
std::ostringstream os;
result.tree->Print(os, &zone);
if (strcmp(expected, os.str().c_str()) != 0) {
printf("%s | %s\n", expected, os.str().c_str());
}
CHECK_EQ(0, strcmp(expected, os.str().c_str()));
}
static bool CheckSimple(const char* input) {
v8::HandleScope scope(CcTest::isolate());
Zone zone;
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
CHECK(v8::internal::RegExpParser::ParseRegExp(
CcTest::i_isolate(), &zone, &reader, JSRegExp::kNone, &result));
CHECK(result.tree != NULL);
CHECK(result.error.is_null());
return result.simple;
}
struct MinMaxPair {
int min_match;
int max_match;
};
static MinMaxPair CheckMinMaxMatch(const char* input) {
v8::HandleScope scope(CcTest::isolate());
Zone zone;
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
CHECK(v8::internal::RegExpParser::ParseRegExp(
CcTest::i_isolate(), &zone, &reader, JSRegExp::kNone, &result));
CHECK(result.tree != NULL);
CHECK(result.error.is_null());
int min_match = result.tree->min_match();
int max_match = result.tree->max_match();
MinMaxPair pair = { min_match, max_match };
return pair;
}
#define CHECK_PARSE_ERROR(input) CHECK(!CheckParse(input))
#define CHECK_SIMPLE(input, simple) CHECK_EQ(simple, CheckSimple(input));
#define CHECK_MIN_MAX(input, min, max) \
{ MinMaxPair min_max = CheckMinMaxMatch(input); \
CHECK_EQ(min, min_max.min_match); \
CHECK_EQ(max, min_max.max_match); \
}
void TestRegExpParser(bool lookbehind) {
FLAG_harmony_regexp_lookbehind = lookbehind;
FLAG_harmony_unicode_regexps = true;
CHECK_PARSE_ERROR("?");
CheckParseEq("abc", "'abc'");
CheckParseEq("", "%");
CheckParseEq("abc|def", "(| 'abc' 'def')");
CheckParseEq("abc|def|ghi", "(| 'abc' 'def' 'ghi')");
CheckParseEq("^xxx$", "(: @^i 'xxx' @$i)");
CheckParseEq("ab\\b\\d\\bcd", "(: 'ab' @b [0-9] @b 'cd')");
CheckParseEq("\\w|\\d", "(| [0-9 A-Z _ a-z] [0-9])");
CheckParseEq("a*", "(# 0 - g 'a')");
CheckParseEq("a*?", "(# 0 - n 'a')");
CheckParseEq("abc+", "(: 'ab' (# 1 - g 'c'))");
CheckParseEq("abc+?", "(: 'ab' (# 1 - n 'c'))");
CheckParseEq("xyz?", "(: 'xy' (# 0 1 g 'z'))");
CheckParseEq("xyz??", "(: 'xy' (# 0 1 n 'z'))");
CheckParseEq("xyz{0,1}", "(: 'xy' (# 0 1 g 'z'))");
CheckParseEq("xyz{0,1}?", "(: 'xy' (# 0 1 n 'z'))");
CheckParseEq("xyz{93}", "(: 'xy' (# 93 93 g 'z'))");
CheckParseEq("xyz{93}?", "(: 'xy' (# 93 93 n 'z'))");
CheckParseEq("xyz{1,32}", "(: 'xy' (# 1 32 g 'z'))");
CheckParseEq("xyz{1,32}?", "(: 'xy' (# 1 32 n 'z'))");
CheckParseEq("xyz{1,}", "(: 'xy' (# 1 - g 'z'))");
CheckParseEq("xyz{1,}?", "(: 'xy' (# 1 - n 'z'))");
CheckParseEq("a\\fb\\nc\\rd\\te\\vf", "'a\\x0cb\\x0ac\\x0dd\\x09e\\x0bf'");
CheckParseEq("a\\nb\\bc", "(: 'a\\x0ab' @b 'c')");
CheckParseEq("(?:foo)", "'foo'");
CheckParseEq("(?: foo )", "' foo '");
CheckParseEq("(foo|bar|baz)", "(^ (| 'foo' 'bar' 'baz'))");
CheckParseEq("foo|(bar|baz)|quux", "(| 'foo' (^ (| 'bar' 'baz')) 'quux')");
CheckParseEq("foo(?=bar)baz", "(: 'foo' (-> + 'bar') 'baz')");
CheckParseEq("foo(?!bar)baz", "(: 'foo' (-> - 'bar') 'baz')");
if (lookbehind) {
CheckParseEq("foo(?<=bar)baz", "(: 'foo' (<- + 'bar') 'baz')");
CheckParseEq("foo(?<!bar)baz", "(: 'foo' (<- - 'bar') 'baz')");
} else {
CHECK_PARSE_ERROR("foo(?<=bar)baz");
CHECK_PARSE_ERROR("foo(?<!bar)baz");
}
CheckParseEq("()", "(^ %)");
CheckParseEq("(?=)", "(-> + %)");
CheckParseEq("[]", "^[\\x00-\\u{10ffff}]"); // Doesn't compile on windows
CheckParseEq("[^]", "[\\x00-\\u{10ffff}]"); // \uffff isn't in codepage 1252
CheckParseEq("[x]", "[x]");
CheckParseEq("[xyz]", "[x y z]");
CheckParseEq("[a-zA-Z0-9]", "[a-z A-Z 0-9]");
CheckParseEq("[-123]", "[- 1 2 3]");
CheckParseEq("[^123]", "^[1 2 3]");
CheckParseEq("]", "']'");
CheckParseEq("}", "'}'");
CheckParseEq("[a-b-c]", "[a-b - c]");
CheckParseEq("[\\d]", "[0-9]");
CheckParseEq("[x\\dz]", "[x 0-9 z]");
CheckParseEq("[\\d-z]", "[0-9 - z]");
CheckParseEq("[\\d-\\d]", "[0-9 - 0-9]");
CheckParseEq("[z-\\d]", "[z - 0-9]");
// Control character outside character class.
CheckParseEq("\\cj\\cJ\\ci\\cI\\ck\\cK", "'\\x0a\\x0a\\x09\\x09\\x0b\\x0b'");
CheckParseEq("\\c!", "'\\c!'");
CheckParseEq("\\c_", "'\\c_'");
CheckParseEq("\\c~", "'\\c~'");
CheckParseEq("\\c1", "'\\c1'");
// Control character inside character class.
CheckParseEq("[\\c!]", "[\\ c !]");
CheckParseEq("[\\c_]", "[\\x1f]");
CheckParseEq("[\\c~]", "[\\ c ~]");
CheckParseEq("[\\ca]", "[\\x01]");
CheckParseEq("[\\cz]", "[\\x1a]");
CheckParseEq("[\\cA]", "[\\x01]");
CheckParseEq("[\\cZ]", "[\\x1a]");
CheckParseEq("[\\c1]", "[\\x11]");
CheckParseEq("[a\\]c]", "[a ] c]");
CheckParseEq("\\[\\]\\{\\}\\(\\)\\%\\^\\#\\ ", "'[]{}()%^# '");
CheckParseEq("[\\[\\]\\{\\}\\(\\)\\%\\^\\#\\ ]", "[[ ] { } ( ) % ^ # ]");
CheckParseEq("\\0", "'\\x00'");
CheckParseEq("\\8", "'8'");
CheckParseEq("\\9", "'9'");
CheckParseEq("\\11", "'\\x09'");
CheckParseEq("\\11a", "'\\x09a'");
CheckParseEq("\\011", "'\\x09'");
CheckParseEq("\\00011", "'\\x0011'");
CheckParseEq("\\118", "'\\x098'");
CheckParseEq("\\111", "'I'");
CheckParseEq("\\1111", "'I1'");
CheckParseEq("(x)(x)(x)\\1", "(: (^ 'x') (^ 'x') (^ 'x') (<- 1))");
CheckParseEq("(x)(x)(x)\\2", "(: (^ 'x') (^ 'x') (^ 'x') (<- 2))");
CheckParseEq("(x)(x)(x)\\3", "(: (^ 'x') (^ 'x') (^ 'x') (<- 3))");
CheckParseEq("(x)(x)(x)\\4", "(: (^ 'x') (^ 'x') (^ 'x') '\\x04')");
CheckParseEq("(x)(x)(x)\\1*",
"(: (^ 'x') (^ 'x') (^ 'x')"
" (# 0 - g (<- 1)))");
CheckParseEq("(x)(x)(x)\\2*",
"(: (^ 'x') (^ 'x') (^ 'x')"
" (# 0 - g (<- 2)))");
CheckParseEq("(x)(x)(x)\\3*",
"(: (^ 'x') (^ 'x') (^ 'x')"
" (# 0 - g (<- 3)))");
CheckParseEq("(x)(x)(x)\\4*",
"(: (^ 'x') (^ 'x') (^ 'x')"
" (# 0 - g '\\x04'))");
CheckParseEq("(x)(x)(x)(x)(x)(x)(x)(x)(x)(x)\\10",
"(: (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x')"
" (^ 'x') (^ 'x') (^ 'x') (^ 'x') (<- 10))");
CheckParseEq("(x)(x)(x)(x)(x)(x)(x)(x)(x)(x)\\11",
"(: (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x')"
" (^ 'x') (^ 'x') (^ 'x') (^ 'x') '\\x09')");
CheckParseEq("(a)\\1", "(: (^ 'a') (<- 1))");
CheckParseEq("(a\\1)", "(^ 'a')");
CheckParseEq("(\\1a)", "(^ 'a')");
CheckParseEq("(\\2)(\\1)", "(: (^ (<- 2)) (^ (<- 1)))");
CheckParseEq("(?=a)?a", "'a'");
CheckParseEq("(?=a){0,10}a", "'a'");
CheckParseEq("(?=a){1,10}a", "(: (-> + 'a') 'a')");
CheckParseEq("(?=a){9,10}a", "(: (-> + 'a') 'a')");
CheckParseEq("(?!a)?a", "'a'");
CheckParseEq("\\1(a)", "(: (<- 1) (^ 'a'))");
CheckParseEq("(?!(a))\\1", "(: (-> - (^ 'a')) (<- 1))");
CheckParseEq("(?!\\1(a\\1)\\1)\\1",
"(: (-> - (: (<- 1) (^ 'a') (<- 1))) (<- 1))");
CheckParseEq("\\1\\2(a(?:\\1(b\\1\\2))\\2)\\1",
"(: (<- 1) (<- 2) (^ (: 'a' (^ 'b') (<- 2))) (<- 1))");
if (lookbehind) {
CheckParseEq("\\1\\2(a(?<=\\1(b\\1\\2))\\2)\\1",
"(: (<- 1) (<- 2) (^ (: 'a' (<- + (^ 'b')) (<- 2))) (<- 1))");
}
CheckParseEq("[\\0]", "[\\x00]");
CheckParseEq("[\\11]", "[\\x09]");
CheckParseEq("[\\11a]", "[\\x09 a]");
CheckParseEq("[\\011]", "[\\x09]");
CheckParseEq("[\\00011]", "[\\x00 1 1]");
CheckParseEq("[\\118]", "[\\x09 8]");
CheckParseEq("[\\111]", "[I]");
CheckParseEq("[\\1111]", "[I 1]");
CheckParseEq("\\x34", "'\x34'");
CheckParseEq("\\x60", "'\x60'");
CheckParseEq("\\x3z", "'x3z'");
CheckParseEq("\\c", "'\\c'");
CheckParseEq("\\u0034", "'\x34'");
CheckParseEq("\\u003z", "'u003z'");
CheckParseEq("foo[z]*", "(: 'foo' (# 0 - g [z]))");
// Unicode regexps
CheckParseEq("\\u{12345}", "'\\ud808\\udf45'", true);
CheckParseEq("\\u{12345}\\u{23456}", "(! '\\ud808\\udf45' '\\ud84d\\udc56')",
true);
CheckParseEq("\\u{12345}|\\u{23456}", "(| '\\ud808\\udf45' '\\ud84d\\udc56')",
true);
CheckParseEq("\\u{12345}{3}", "(# 3 3 g '\\ud808\\udf45')", true);
CheckParseEq("\\u{12345}*", "(# 0 - g '\\ud808\\udf45')", true);
CheckParseEq("\\ud808\\udf45*", "(# 0 - g '\\ud808\\udf45')", true);
CheckParseEq("[\\ud808\\udf45-\\ud809\\udccc]", "[\\u{012345}-\\u{0124cc}]",
true);
CHECK_SIMPLE("", false);
CHECK_SIMPLE("a", true);
CHECK_SIMPLE("a|b", false);
CHECK_SIMPLE("a\\n", false);
CHECK_SIMPLE("^a", false);
CHECK_SIMPLE("a$", false);
CHECK_SIMPLE("a\\b!", false);
CHECK_SIMPLE("a\\Bb", false);
CHECK_SIMPLE("a*", false);
CHECK_SIMPLE("a*?", false);
CHECK_SIMPLE("a?", false);
CHECK_SIMPLE("a??", false);
CHECK_SIMPLE("a{0,1}?", false);
CHECK_SIMPLE("a{1,1}?", false);
CHECK_SIMPLE("a{1,2}?", false);
CHECK_SIMPLE("a+?", false);
CHECK_SIMPLE("(a)", false);
CHECK_SIMPLE("(a)\\1", false);
CHECK_SIMPLE("(\\1a)", false);
CHECK_SIMPLE("\\1(a)", false);
CHECK_SIMPLE("a\\s", false);
CHECK_SIMPLE("a\\S", false);
CHECK_SIMPLE("a\\d", false);
CHECK_SIMPLE("a\\D", false);
CHECK_SIMPLE("a\\w", false);
CHECK_SIMPLE("a\\W", false);
CHECK_SIMPLE("a.", false);
CHECK_SIMPLE("a\\q", false);
CHECK_SIMPLE("a[a]", false);
CHECK_SIMPLE("a[^a]", false);
CHECK_SIMPLE("a[a-z]", false);
CHECK_SIMPLE("a[\\q]", false);
CHECK_SIMPLE("a(?:b)", false);
CHECK_SIMPLE("a(?=b)", false);
CHECK_SIMPLE("a(?!b)", false);
CHECK_SIMPLE("\\x60", false);
CHECK_SIMPLE("\\u0060", false);
CHECK_SIMPLE("\\cA", false);
CHECK_SIMPLE("\\q", false);
CHECK_SIMPLE("\\1112", false);
CHECK_SIMPLE("\\0", false);
CHECK_SIMPLE("(a)\\1", false);
CHECK_SIMPLE("(?=a)?a", false);
CHECK_SIMPLE("(?!a)?a\\1", false);
CHECK_SIMPLE("(?:(?=a))a\\1", false);
CheckParseEq("a{}", "'a{}'");
CheckParseEq("a{,}", "'a{,}'");
CheckParseEq("a{", "'a{'");
CheckParseEq("a{z}", "'a{z}'");
CheckParseEq("a{1z}", "'a{1z}'");
CheckParseEq("a{12z}", "'a{12z}'");
CheckParseEq("a{12,", "'a{12,'");
CheckParseEq("a{12,3b", "'a{12,3b'");
CheckParseEq("{}", "'{}'");
CheckParseEq("{,}", "'{,}'");
CheckParseEq("{", "'{'");
CheckParseEq("{z}", "'{z}'");
CheckParseEq("{1z}", "'{1z}'");
CheckParseEq("{12z}", "'{12z}'");
CheckParseEq("{12,", "'{12,'");
CheckParseEq("{12,3b", "'{12,3b'");
CHECK_MIN_MAX("a", 1, 1);
CHECK_MIN_MAX("abc", 3, 3);
CHECK_MIN_MAX("a[bc]d", 3, 3);
CHECK_MIN_MAX("a|bc", 1, 2);
CHECK_MIN_MAX("ab|c", 1, 2);
CHECK_MIN_MAX("a||bc", 0, 2);
CHECK_MIN_MAX("|", 0, 0);
CHECK_MIN_MAX("(?:ab)", 2, 2);
CHECK_MIN_MAX("(?:ab|cde)", 2, 3);
CHECK_MIN_MAX("(?:ab)|cde", 2, 3);
CHECK_MIN_MAX("(ab)", 2, 2);
CHECK_MIN_MAX("(ab|cde)", 2, 3);
CHECK_MIN_MAX("(ab)\\1", 2, RegExpTree::kInfinity);
CHECK_MIN_MAX("(ab|cde)\\1", 2, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:ab)?", 0, 2);
CHECK_MIN_MAX("(?:ab)*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:ab)+", 2, RegExpTree::kInfinity);
CHECK_MIN_MAX("a?", 0, 1);
CHECK_MIN_MAX("a*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("a+", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("a??", 0, 1);
CHECK_MIN_MAX("a*?", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("a+?", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a?)?", 0, 1);
CHECK_MIN_MAX("(?:a*)?", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a+)?", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a?)+", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a*)+", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a+)+", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a?)*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a*)*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a+)*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("a{0}", 0, 0);
CHECK_MIN_MAX("(?:a+){0}", 0, 0);
CHECK_MIN_MAX("(?:a+){0,0}", 0, 0);
CHECK_MIN_MAX("a*b", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("a+b", 2, RegExpTree::kInfinity);
CHECK_MIN_MAX("a*b|c", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("a+b|c", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a{5,1000000}){3,1000000}", 15, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:ab){4,7}", 8, 14);
CHECK_MIN_MAX("a\\bc", 2, 2);
CHECK_MIN_MAX("a\\Bc", 2, 2);
CHECK_MIN_MAX("a\\sc", 3, 3);
CHECK_MIN_MAX("a\\Sc", 3, 3);
CHECK_MIN_MAX("a(?=b)c", 2, 2);
CHECK_MIN_MAX("a(?=bbb|bb)c", 2, 2);
CHECK_MIN_MAX("a(?!bbb|bb)c", 2, 2);
}
TEST(ParserWithLookbehind) {
TestRegExpParser(true); // Lookbehind enabled.
}
TEST(ParserWithoutLookbehind) {
TestRegExpParser(true); // Lookbehind enabled.
}
TEST(ParserRegression) {
CheckParseEq("[A-Z$-][x]", "(! [A-Z $ -] [x])");
CheckParseEq("a{3,4*}", "(: 'a{3,' (# 0 - g '4') '}')");
CheckParseEq("{", "'{'");
CheckParseEq("a|", "(| 'a' %)");
}
static void ExpectError(const char* input,
const char* expected) {
v8::HandleScope scope(CcTest::isolate());
Zone zone;
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
CHECK(!v8::internal::RegExpParser::ParseRegExp(
CcTest::i_isolate(), &zone, &reader, JSRegExp::kNone, &result));
CHECK(result.tree == NULL);
CHECK(!result.error.is_null());
v8::base::SmartArrayPointer<char> str = result.error->ToCString(ALLOW_NULLS);
CHECK_EQ(0, strcmp(expected, str.get()));
}
TEST(Errors) {
const char* kEndBackslash = "\\ at end of pattern";
ExpectError("\\", kEndBackslash);
const char* kUnterminatedGroup = "Unterminated group";
ExpectError("(foo", kUnterminatedGroup);
const char* kInvalidGroup = "Invalid group";
ExpectError("(?", kInvalidGroup);
const char* kUnterminatedCharacterClass = "Unterminated character class";
ExpectError("[", kUnterminatedCharacterClass);
ExpectError("[a-", kUnterminatedCharacterClass);
const char* kNothingToRepeat = "Nothing to repeat";
ExpectError("*", kNothingToRepeat);
ExpectError("?", kNothingToRepeat);
ExpectError("+", kNothingToRepeat);
ExpectError("{1}", kNothingToRepeat);
ExpectError("{1,2}", kNothingToRepeat);
ExpectError("{1,}", kNothingToRepeat);
// Check that we don't allow more than kMaxCapture captures
const int kMaxCaptures = 1 << 16; // Must match RegExpParser::kMaxCaptures.
const char* kTooManyCaptures = "Too many captures";
std::ostringstream os;
for (int i = 0; i <= kMaxCaptures; i++) {
os << "()";
}
ExpectError(os.str().c_str(), kTooManyCaptures);
}
static bool IsDigit(uc16 c) {
return ('0' <= c && c <= '9');
}
static bool NotDigit(uc16 c) {
return !IsDigit(c);
}
static bool IsWhiteSpaceOrLineTerminator(uc16 c) {
// According to ECMA 5.1, 15.10.2.12 the CharacterClassEscape \s includes
// WhiteSpace (7.2) and LineTerminator (7.3) values.
return v8::internal::WhiteSpaceOrLineTerminator::Is(c);
}
static bool NotWhiteSpaceNorLineTermiantor(uc16 c) {
return !IsWhiteSpaceOrLineTerminator(c);
}
static bool NotWord(uc16 c) {
return !IsRegExpWord(c);
}
static void TestCharacterClassEscapes(uc16 c, bool (pred)(uc16 c)) {
Zone zone;
ZoneList<CharacterRange>* ranges =
new(&zone) ZoneList<CharacterRange>(2, &zone);
CharacterRange::AddClassEscape(c, ranges, &zone);
for (uc32 i = 0; i < (1 << 16); i++) {
bool in_class = false;
for (int j = 0; !in_class && j < ranges->length(); j++) {
CharacterRange& range = ranges->at(j);
in_class = (range.from() <= i && i <= range.to());
}
CHECK_EQ(pred(i), in_class);
}
}
TEST(CharacterClassEscapes) {
TestCharacterClassEscapes('.', IsRegExpNewline);
TestCharacterClassEscapes('d', IsDigit);
TestCharacterClassEscapes('D', NotDigit);
TestCharacterClassEscapes('s', IsWhiteSpaceOrLineTerminator);
TestCharacterClassEscapes('S', NotWhiteSpaceNorLineTermiantor);
TestCharacterClassEscapes('w', IsRegExpWord);
TestCharacterClassEscapes('W', NotWord);
}
static RegExpNode* Compile(const char* input, bool multiline, bool unicode,
bool is_one_byte, Zone* zone) {
Isolate* isolate = CcTest::i_isolate();
FlatStringReader reader(isolate, CStrVector(input));
RegExpCompileData compile_data;
JSRegExp::Flags flags = JSRegExp::kNone;
if (multiline) flags = JSRegExp::kMultiline;
if (unicode) flags = JSRegExp::kUnicode;
if (!v8::internal::RegExpParser::ParseRegExp(CcTest::i_isolate(), zone,
&reader, flags, &compile_data))
return NULL;
Handle<String> pattern = isolate->factory()
->NewStringFromUtf8(CStrVector(input))
.ToHandleChecked();
Handle<String> sample_subject =
isolate->factory()->NewStringFromUtf8(CStrVector("")).ToHandleChecked();
RegExpEngine::Compile(isolate, zone, &compile_data, flags, pattern,
sample_subject, is_one_byte);
return compile_data.node;
}
static void Execute(const char* input, bool multiline, bool unicode,
bool is_one_byte, bool dot_output = false) {
v8::HandleScope scope(CcTest::isolate());
Zone zone;
RegExpNode* node = Compile(input, multiline, unicode, is_one_byte, &zone);
USE(node);
#ifdef DEBUG
if (dot_output) {
RegExpEngine::DotPrint(input, node, false);
}
#endif // DEBUG
}
class TestConfig {
public:
typedef int Key;
typedef int Value;
static const int kNoKey;
static int NoValue() { return 0; }
static inline int Compare(int a, int b) {
if (a < b)
return -1;
else if (a > b)
return 1;
else
return 0;
}
};
const int TestConfig::kNoKey = 0;
static unsigned PseudoRandom(int i, int j) {
return ~(~((i * 781) ^ (j * 329)));
}
TEST(SplayTreeSimple) {
static const unsigned kLimit = 1000;
Zone zone;
ZoneSplayTree<TestConfig> tree(&zone);
bool seen[kLimit];
for (unsigned i = 0; i < kLimit; i++) seen[i] = false;
#define CHECK_MAPS_EQUAL() do { \
for (unsigned k = 0; k < kLimit; k++) \
CHECK_EQ(seen[k], tree.Find(k, &loc)); \
} while (false)
for (int i = 0; i < 50; i++) {
for (int j = 0; j < 50; j++) {
int next = PseudoRandom(i, j) % kLimit;
if (seen[next]) {
// We've already seen this one. Check the value and remove
// it.
ZoneSplayTree<TestConfig>::Locator loc;
CHECK(tree.Find(next, &loc));
CHECK_EQ(next, loc.key());
CHECK_EQ(3 * next, loc.value());
tree.Remove(next);
seen[next] = false;
CHECK_MAPS_EQUAL();
} else {
// Check that it wasn't there already and then add it.
ZoneSplayTree<TestConfig>::Locator loc;
CHECK(!tree.Find(next, &loc));
CHECK(tree.Insert(next, &loc));
CHECK_EQ(next, loc.key());
loc.set_value(3 * next);
seen[next] = true;
CHECK_MAPS_EQUAL();
}
int val = PseudoRandom(j, i) % kLimit;
if (seen[val]) {
ZoneSplayTree<TestConfig>::Locator loc;
CHECK(tree.FindGreatestLessThan(val, &loc));
CHECK_EQ(loc.key(), val);
break;
}
val = PseudoRandom(i + j, i - j) % kLimit;
if (seen[val]) {
ZoneSplayTree<TestConfig>::Locator loc;
CHECK(tree.FindLeastGreaterThan(val, &loc));
CHECK_EQ(loc.key(), val);
break;
}
}
}
}
TEST(DispatchTableConstruction) {
// Initialize test data.
static const int kLimit = 1000;
static const int kRangeCount = 8;
static const int kRangeSize = 16;
uc16 ranges[kRangeCount][2 * kRangeSize];
for (int i = 0; i < kRangeCount; i++) {
Vector<uc16> range(ranges[i], 2 * kRangeSize);
for (int j = 0; j < 2 * kRangeSize; j++) {
range[j] = PseudoRandom(i + 25, j + 87) % kLimit;
}
range.Sort();
for (int j = 1; j < 2 * kRangeSize; j++) {
CHECK(range[j-1] <= range[j]);
}
}
// Enter test data into dispatch table.
Zone zone;
DispatchTable table(&zone);
for (int i = 0; i < kRangeCount; i++) {
uc16* range = ranges[i];
for (int j = 0; j < 2 * kRangeSize; j += 2)
table.AddRange(CharacterRange::Range(range[j], range[j + 1]), i, &zone);
}
// Check that the table looks as we would expect
for (int p = 0; p < kLimit; p++) {
OutSet* outs = table.Get(p);
for (int j = 0; j < kRangeCount; j++) {
uc16* range = ranges[j];
bool is_on = false;
for (int k = 0; !is_on && (k < 2 * kRangeSize); k += 2)
is_on = (range[k] <= p && p <= range[k + 1]);
CHECK_EQ(is_on, outs->Get(j));
}
}
}
// Test of debug-only syntax.
#ifdef DEBUG
TEST(ParsePossessiveRepetition) {
bool old_flag_value = FLAG_regexp_possessive_quantifier;
// Enable possessive quantifier syntax.
FLAG_regexp_possessive_quantifier = true;
CheckParseEq("a*+", "(# 0 - p 'a')");
CheckParseEq("a++", "(# 1 - p 'a')");
CheckParseEq("a?+", "(# 0 1 p 'a')");
CheckParseEq("a{10,20}+", "(# 10 20 p 'a')");
CheckParseEq("za{10,20}+b", "(: 'z' (# 10 20 p 'a') 'b')");
// Disable possessive quantifier syntax.
FLAG_regexp_possessive_quantifier = false;
CHECK_PARSE_ERROR("a*+");
CHECK_PARSE_ERROR("a++");
CHECK_PARSE_ERROR("a?+");
CHECK_PARSE_ERROR("a{10,20}+");
CHECK_PARSE_ERROR("a{10,20}+b");
FLAG_regexp_possessive_quantifier = old_flag_value;
}
#endif
// Tests of interpreter.
#ifndef V8_INTERPRETED_REGEXP
#if V8_TARGET_ARCH_IA32
typedef RegExpMacroAssemblerIA32 ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_X64
typedef RegExpMacroAssemblerX64 ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_ARM
typedef RegExpMacroAssemblerARM ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_ARM64
typedef RegExpMacroAssemblerARM64 ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_PPC
typedef RegExpMacroAssemblerPPC ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_MIPS
typedef RegExpMacroAssemblerMIPS ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_MIPS64
typedef RegExpMacroAssemblerMIPS ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_X87
typedef RegExpMacroAssemblerX87 ArchRegExpMacroAssembler;
#endif
class ContextInitializer {
public:
ContextInitializer()
: scope_(CcTest::isolate()),
env_(v8::Context::New(CcTest::isolate())) {
env_->Enter();
}
~ContextInitializer() {
env_->Exit();
}
private:
v8::HandleScope scope_;
v8::Local<v8::Context> env_;
};
static ArchRegExpMacroAssembler::Result Execute(Code* code,
String* input,
int start_offset,
const byte* input_start,
const byte* input_end,
int* captures) {
return NativeRegExpMacroAssembler::Execute(
code,
input,
start_offset,
input_start,
input_end,
captures,
0,
CcTest::i_isolate());
}
TEST(MacroAssemblerNativeSuccess) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone;
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
4);
m.Succeed();
Handle<String> source = factory->NewStringFromStaticChars("");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
int captures[4] = {42, 37, 87, 117};
Handle<String> input = factory->NewStringFromStaticChars("foofoo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
const byte* start_adr =
reinterpret_cast<const byte*>(seq_input->GetCharsAddress());
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + seq_input->length(),
captures);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(-1, captures[0]);
CHECK_EQ(-1, captures[1]);
CHECK_EQ(-1, captures[2]);
CHECK_EQ(-1, captures[3]);
}
TEST(MacroAssemblerNativeSimple) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone;
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
4);
Label fail, backtrack;
m.PushBacktrack(&fail);
m.CheckNotAtStart(0, NULL);
m.LoadCurrentCharacter(2, NULL);
m.CheckNotCharacter('o', NULL);
m.LoadCurrentCharacter(1, NULL, false);
m.CheckNotCharacter('o', NULL);
m.LoadCurrentCharacter(0, NULL, false);
m.CheckNotCharacter('f', NULL);
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(1, 3);
m.AdvanceCurrentPosition(3);
m.PushBacktrack(&backtrack);
m.Succeed();
m.Bind(&backtrack);
m.Backtrack();
m.Bind(&fail);
m.Fail();
Handle<String> source = factory->NewStringFromStaticChars("^foo");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
int captures[4] = {42, 37, 87, 117};
Handle<String> input = factory->NewStringFromStaticChars("foofoo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
captures);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, captures[0]);
CHECK_EQ(3, captures[1]);
CHECK_EQ(-1, captures[2]);
CHECK_EQ(-1, captures[3]);
input = factory->NewStringFromStaticChars("barbarbar");
seq_input = Handle<SeqOneByteString>::cast(input);
start_adr = seq_input->GetCharsAddress();
result = Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
captures);
CHECK_EQ(NativeRegExpMacroAssembler::FAILURE, result);
}
TEST(MacroAssemblerNativeSimpleUC16) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone;
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::UC16,
4);
Label fail, backtrack;
m.PushBacktrack(&fail);
m.CheckNotAtStart(0, NULL);
m.LoadCurrentCharacter(2, NULL);
m.CheckNotCharacter('o', NULL);
m.LoadCurrentCharacter(1, NULL, false);
m.CheckNotCharacter('o', NULL);
m.LoadCurrentCharacter(0, NULL, false);
m.CheckNotCharacter('f', NULL);
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(1, 3);
m.AdvanceCurrentPosition(3);
m.PushBacktrack(&backtrack);
m.Succeed();
m.Bind(&backtrack);
m.Backtrack();
m.Bind(&fail);
m.Fail();
Handle<String> source = factory->NewStringFromStaticChars("^foo");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
int captures[4] = {42, 37, 87, 117};
const uc16 input_data[6] = {'f', 'o', 'o', 'f', 'o',
static_cast<uc16>(0x2603)};
Handle<String> input = factory->NewStringFromTwoByte(
Vector<const uc16>(input_data, 6)).ToHandleChecked();
Handle<SeqTwoByteString> seq_input = Handle<SeqTwoByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
captures);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, captures[0]);
CHECK_EQ(3, captures[1]);
CHECK_EQ(-1, captures[2]);
CHECK_EQ(-1, captures[3]);
const uc16 input_data2[9] = {'b', 'a', 'r', 'b', 'a', 'r', 'b', 'a',
static_cast<uc16>(0x2603)};
input = factory->NewStringFromTwoByte(
Vector<const uc16>(input_data2, 9)).ToHandleChecked();
seq_input = Handle<SeqTwoByteString>::cast(input);
start_adr = seq_input->GetCharsAddress();
result = Execute(*code,
*input,
0,
start_adr,
start_adr + input->length() * 2,
captures);
CHECK_EQ(NativeRegExpMacroAssembler::FAILURE, result);
}
TEST(MacroAssemblerNativeBacktrack) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone;
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
0);
Label fail;
Label backtrack;
m.LoadCurrentCharacter(10, &fail);
m.Succeed();
m.Bind(&fail);
m.PushBacktrack(&backtrack);
m.LoadCurrentCharacter(10, NULL);
m.Succeed();
m.Bind(&backtrack);
m.Fail();
Handle<String> source = factory->NewStringFromStaticChars("..........");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<String> input = factory->NewStringFromStaticChars("foofoo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
NULL);
CHECK_EQ(NativeRegExpMacroAssembler::FAILURE, result);
}
TEST(MacroAssemblerNativeBackReferenceLATIN1) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone;
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
4);
m.WriteCurrentPositionToRegister(0, 0);
m.AdvanceCurrentPosition(2);
m.WriteCurrentPositionToRegister(1, 0);
Label nomatch;
m.CheckNotBackReference(0, false, &nomatch);
m.Fail();
m.Bind(&nomatch);
m.AdvanceCurrentPosition(2);
Label missing_match;
m.CheckNotBackReference(0, false, &missing_match);
m.WriteCurrentPositionToRegister(2, 0);
m.Succeed();
m.Bind(&missing_match);
m.Fail();
Handle<String> source = factory->NewStringFromStaticChars("^(..)..\1");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<String> input = factory->NewStringFromStaticChars("fooofo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int output[4];
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
output);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, output[0]);
CHECK_EQ(2, output[1]);
CHECK_EQ(6, output[2]);
CHECK_EQ(-1, output[3]);
}
TEST(MacroAssemblerNativeBackReferenceUC16) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone;
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::UC16,
4);
m.WriteCurrentPositionToRegister(0, 0);
m.AdvanceCurrentPosition(2);
m.WriteCurrentPositionToRegister(1, 0);
Label nomatch;
m.CheckNotBackReference(0, false, &nomatch);
m.Fail();
m.Bind(&nomatch);
m.AdvanceCurrentPosition(2);
Label missing_match;
m.CheckNotBackReference(0, false, &missing_match);
m.WriteCurrentPositionToRegister(2, 0);
m.Succeed();
m.Bind(&missing_match);
m.Fail();
Handle<String> source = factory->NewStringFromStaticChars("^(..)..\1");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
const uc16 input_data[6] = {'f', 0x2028, 'o', 'o', 'f', 0x2028};
Handle<String> input = factory->NewStringFromTwoByte(
Vector<const uc16>(input_data, 6)).ToHandleChecked();
Handle<SeqTwoByteString> seq_input = Handle<SeqTwoByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int output[4];
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length() * 2,
output);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, output[0]);
CHECK_EQ(2, output[1]);
CHECK_EQ(6, output[2]);
CHECK_EQ(-1, output[3]);
}
TEST(MacroAssemblernativeAtStart) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone;
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
0);
Label not_at_start, newline, fail;
m.CheckNotAtStart(0, &not_at_start);
// Check that prevchar = '\n' and current = 'f'.
m.CheckCharacter('\n', &newline);
m.Bind(&fail);
m.Fail();
m.Bind(&newline);
m.LoadCurrentCharacter(0, &fail);
m.CheckNotCharacter('f', &fail);
m.Succeed();
m.Bind(&not_at_start);
// Check that prevchar = 'o' and current = 'b'.
Label prevo;
m.CheckCharacter('o', &prevo);
m.Fail();
m.Bind(&prevo);
m.LoadCurrentCharacter(0, &fail);
m.CheckNotCharacter('b', &fail);
m.Succeed();
Handle<String> source = factory->NewStringFromStaticChars("(^f|ob)");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<String> input = factory->NewStringFromStaticChars("foobar");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
NULL);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
result = Execute(*code,
*input,
3,
start_adr + 3,
start_adr + input->length(),
NULL);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
}
TEST(MacroAssemblerNativeBackRefNoCase) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone;
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
4);
Label fail, succ;
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(2, 0);
m.AdvanceCurrentPosition(3);
m.WriteCurrentPositionToRegister(3, 0);
m.CheckNotBackReferenceIgnoreCase(2, false, false, &fail); // Match "AbC".
m.CheckNotBackReferenceIgnoreCase(2, false, false, &fail); // Match "ABC".
Label expected_fail;
m.CheckNotBackReferenceIgnoreCase(2, false, false, &expected_fail);
m.Bind(&fail);
m.Fail();
m.Bind(&expected_fail);
m.AdvanceCurrentPosition(3); // Skip "xYz"
m.CheckNotBackReferenceIgnoreCase(2, false, false, &succ);
m.Fail();
m.Bind(&succ);
m.WriteCurrentPositionToRegister(1, 0);
m.Succeed();
Handle<String> source =
factory->NewStringFromStaticChars("^(abc)\1\1(?!\1)...(?!\1)");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<String> input = factory->NewStringFromStaticChars("aBcAbCABCxYzab");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int output[4];
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
output);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, output[0]);
CHECK_EQ(12, output[1]);
CHECK_EQ(0, output[2]);
CHECK_EQ(3, output[3]);
}
TEST(MacroAssemblerNativeRegisters) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone;
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
6);
uc16 foo_chars[3] = {'f', 'o', 'o'};
Vector<const uc16> foo(foo_chars, 3);
enum registers { out1, out2, out3, out4, out5, out6, sp, loop_cnt };
Label fail;
Label backtrack;
m.WriteCurrentPositionToRegister(out1, 0); // Output: [0]
m.PushRegister(out1, RegExpMacroAssembler::kNoStackLimitCheck);
m.PushBacktrack(&backtrack);
m.WriteStackPointerToRegister(sp);
// Fill stack and registers
m.AdvanceCurrentPosition(2);
m.WriteCurrentPositionToRegister(out1, 0);
m.PushRegister(out1, RegExpMacroAssembler::kNoStackLimitCheck);
m.PushBacktrack(&fail);
// Drop backtrack stack frames.
m.ReadStackPointerFromRegister(sp);
// And take the first backtrack (to &backtrack)
m.Backtrack();
m.PushCurrentPosition();
m.AdvanceCurrentPosition(2);
m.PopCurrentPosition();
m.Bind(&backtrack);
m.PopRegister(out1);
m.ReadCurrentPositionFromRegister(out1);
m.AdvanceCurrentPosition(3);
m.WriteCurrentPositionToRegister(out2, 0); // [0,3]
Label loop;
m.SetRegister(loop_cnt, 0); // loop counter
m.Bind(&loop);
m.AdvanceRegister(loop_cnt, 1);
m.AdvanceCurrentPosition(1);
m.IfRegisterLT(loop_cnt, 3, &loop);
m.WriteCurrentPositionToRegister(out3, 0); // [0,3,6]
Label loop2;
m.SetRegister(loop_cnt, 2); // loop counter
m.Bind(&loop2);
m.AdvanceRegister(loop_cnt, -1);
m.AdvanceCurrentPosition(1);
m.IfRegisterGE(loop_cnt, 0, &loop2);
m.WriteCurrentPositionToRegister(out4, 0); // [0,3,6,9]
Label loop3;
Label exit_loop3;
m.PushRegister(out4, RegExpMacroAssembler::kNoStackLimitCheck);
m.PushRegister(out4, RegExpMacroAssembler::kNoStackLimitCheck);
m.ReadCurrentPositionFromRegister(out3);
m.Bind(&loop3);
m.AdvanceCurrentPosition(1);
m.CheckGreedyLoop(&exit_loop3);
m.GoTo(&loop3);
m.Bind(&exit_loop3);
m.PopCurrentPosition();
m.WriteCurrentPositionToRegister(out5, 0); // [0,3,6,9,9,-1]
m.Succeed();
m.Bind(&fail);
m.Fail();
Handle<String> source = factory->NewStringFromStaticChars("<loop test>");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
// String long enough for test (content doesn't matter).
Handle<String> input = factory->NewStringFromStaticChars("foofoofoofoofoo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int output[6];
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
output);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, output[0]);
CHECK_EQ(3, output[1]);
CHECK_EQ(6, output[2]);
CHECK_EQ(9, output[3]);
CHECK_EQ(9, output[4]);
CHECK_EQ(-1, output[5]);
}
TEST(MacroAssemblerStackOverflow) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone;
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
0);
Label loop;
m.Bind(&loop);
m.PushBacktrack(&loop);
m.GoTo(&loop);
Handle<String> source =
factory->NewStringFromStaticChars("<stack overflow test>");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
// String long enough for test (content doesn't matter).
Handle<String> input = factory->NewStringFromStaticChars("dummy");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
NULL);
CHECK_EQ(NativeRegExpMacroAssembler::EXCEPTION, result);
CHECK(isolate->has_pending_exception());
isolate->clear_pending_exception();
}
TEST(MacroAssemblerNativeLotsOfRegisters) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone;
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
2);
// At least 2048, to ensure the allocated space for registers
// span one full page.
const int large_number = 8000;
m.WriteCurrentPositionToRegister(large_number, 42);
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(1, 1);
Label done;
m.CheckNotBackReference(0, false, &done); // Performs a system-stack push.
m.Bind(&done);
m.PushRegister(large_number, RegExpMacroAssembler::kNoStackLimitCheck);
m.PopRegister(1);
m.Succeed();
Handle<String> source =
factory->NewStringFromStaticChars("<huge register space test>");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
// String long enough for test (content doesn't matter).
Handle<String> input = factory->NewStringFromStaticChars("sample text");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int captures[2];
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
captures);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, captures[0]);
CHECK_EQ(42, captures[1]);
isolate->clear_pending_exception();
}
#else // V8_INTERPRETED_REGEXP
TEST(MacroAssembler) {
byte codes[1024];
Zone zone;
RegExpMacroAssemblerIrregexp m(CcTest::i_isolate(), Vector<byte>(codes, 1024),
&zone);
// ^f(o)o.
Label start, fail, backtrack;
m.SetRegister(4, 42);
m.PushRegister(4, RegExpMacroAssembler::kNoStackLimitCheck);
m.AdvanceRegister(4, 42);
m.GoTo(&start);
m.Fail();
m.Bind(&start);
m.PushBacktrack(&fail);
m.CheckNotAtStart(0, NULL);
m.LoadCurrentCharacter(0, NULL);
m.CheckNotCharacter('f', NULL);
m.LoadCurrentCharacter(1, NULL);
m.CheckNotCharacter('o', NULL);
m.LoadCurrentCharacter(2, NULL);
m.CheckNotCharacter('o', NULL);
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(1, 3);
m.WriteCurrentPositionToRegister(2, 1);
m.WriteCurrentPositionToRegister(3, 2);
m.AdvanceCurrentPosition(3);
m.PushBacktrack(&backtrack);
m.Succeed();
m.Bind(&backtrack);
m.ClearRegisters(2, 3);
m.Backtrack();
m.Bind(&fail);
m.PopRegister(0);
m.Fail();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
Handle<String> source = factory->NewStringFromStaticChars("^f(o)o");
Handle<ByteArray> array = Handle<ByteArray>::cast(m.GetCode(source));
int captures[5];
const uc16 str1[] = {'f', 'o', 'o', 'b', 'a', 'r'};
Handle<String> f1_16 = factory->NewStringFromTwoByte(
Vector<const uc16>(str1, 6)).ToHandleChecked();
CHECK(IrregexpInterpreter::Match(isolate, array, f1_16, captures, 0));
CHECK_EQ(0, captures[0]);
CHECK_EQ(3, captures[1]);
CHECK_EQ(1, captures[2]);
CHECK_EQ(2, captures[3]);
CHECK_EQ(84, captures[4]);
const uc16 str2[] = {'b', 'a', 'r', 'f', 'o', 'o'};
Handle<String> f2_16 = factory->NewStringFromTwoByte(
Vector<const uc16>(str2, 6)).ToHandleChecked();
CHECK(!IrregexpInterpreter::Match(isolate, array, f2_16, captures, 0));
CHECK_EQ(42, captures[0]);
}
#endif // V8_INTERPRETED_REGEXP
TEST(AddInverseToTable) {
static const int kLimit = 1000;
static const int kRangeCount = 16;
for (int t = 0; t < 10; t++) {
Zone zone;
ZoneList<CharacterRange>* ranges =
new(&zone) ZoneList<CharacterRange>(kRangeCount, &zone);
for (int i = 0; i < kRangeCount; i++) {
int from = PseudoRandom(t + 87, i + 25) % kLimit;
int to = from + (PseudoRandom(i + 87, t + 25) % (kLimit / 20));
if (to > kLimit) to = kLimit;
ranges->Add(CharacterRange::Range(from, to), &zone);
}
DispatchTable table(&zone);
DispatchTableConstructor cons(&table, false, &zone);
cons.set_choice_index(0);
cons.AddInverse(ranges);
for (int i = 0; i < kLimit; i++) {
bool is_on = false;
for (int j = 0; !is_on && j < kRangeCount; j++)
is_on = ranges->at(j).Contains(i);
OutSet* set = table.Get(i);
CHECK_EQ(is_on, set->Get(0) == false);
}
}
Zone zone;
ZoneList<CharacterRange>* ranges =
new(&zone) ZoneList<CharacterRange>(1, &zone);
ranges->Add(CharacterRange::Range(0xFFF0, 0xFFFE), &zone);
DispatchTable table(&zone);
DispatchTableConstructor cons(&table, false, &zone);
cons.set_choice_index(0);
cons.AddInverse(ranges);
CHECK(!table.Get(0xFFFE)->Get(0));
CHECK(table.Get(0xFFFF)->Get(0));
}
static uc32 canonicalize(uc32 c) {
unibrow::uchar canon[unibrow::Ecma262Canonicalize::kMaxWidth];
int count = unibrow::Ecma262Canonicalize::Convert(c, '\0', canon, NULL);
if (count == 0) {
return c;
} else {
CHECK_EQ(1, count);
return canon[0];
}
}
TEST(LatinCanonicalize) {
unibrow::Mapping<unibrow::Ecma262UnCanonicalize> un_canonicalize;
for (unibrow::uchar lower = 'a'; lower <= 'z'; lower++) {
unibrow::uchar upper = lower + ('A' - 'a');
CHECK_EQ(canonicalize(lower), canonicalize(upper));
unibrow::uchar uncanon[unibrow::Ecma262UnCanonicalize::kMaxWidth];
int length = un_canonicalize.get(lower, '\0', uncanon);
CHECK_EQ(2, length);
CHECK_EQ(upper, uncanon[0]);
CHECK_EQ(lower, uncanon[1]);
}
for (uc32 c = 128; c < (1 << 21); c++)
CHECK_GE(canonicalize(c), 128);
unibrow::Mapping<unibrow::ToUppercase> to_upper;
// Canonicalization is only defined for the Basic Multilingual Plane.
for (uc32 c = 0; c < (1 << 16); c++) {
unibrow::uchar upper[unibrow::ToUppercase::kMaxWidth];
int length = to_upper.get(c, '\0', upper);
if (length == 0) {
length = 1;
upper[0] = c;
}
uc32 u = upper[0];
if (length > 1 || (c >= 128 && u < 128))
u = c;
CHECK_EQ(u, canonicalize(c));
}
}
static uc32 CanonRangeEnd(uc32 c) {
unibrow::uchar canon[unibrow::CanonicalizationRange::kMaxWidth];
int count = unibrow::CanonicalizationRange::Convert(c, '\0', canon, NULL);
if (count == 0) {
return c;
} else {
CHECK_EQ(1, count);
return canon[0];
}
}
TEST(RangeCanonicalization) {
// Check that we arrive at the same result when using the basic
// range canonicalization primitives as when using immediate
// canonicalization.
unibrow::Mapping<unibrow::Ecma262UnCanonicalize> un_canonicalize;
int block_start = 0;
while (block_start <= 0xFFFF) {
uc32 block_end = CanonRangeEnd(block_start);
unsigned block_length = block_end - block_start + 1;
if (block_length > 1) {
unibrow::uchar first[unibrow::Ecma262UnCanonicalize::kMaxWidth];
int first_length = un_canonicalize.get(block_start, '\0', first);
for (unsigned i = 1; i < block_length; i++) {
unibrow::uchar succ[unibrow::Ecma262UnCanonicalize::kMaxWidth];
int succ_length = un_canonicalize.get(block_start + i, '\0', succ);
CHECK_EQ(first_length, succ_length);
for (int j = 0; j < succ_length; j++) {
int calc = first[j] + i;
int found = succ[j];
CHECK_EQ(calc, found);
}
}
}
block_start = block_start + block_length;
}
}
TEST(UncanonicalizeEquivalence) {
unibrow::Mapping<unibrow::Ecma262UnCanonicalize> un_canonicalize;
unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
for (int i = 0; i < (1 << 16); i++) {
int length = un_canonicalize.get(i, '\0', chars);
for (int j = 0; j < length; j++) {
unibrow::uchar chars2[unibrow::Ecma262UnCanonicalize::kMaxWidth];
int length2 = un_canonicalize.get(chars[j], '\0', chars2);
CHECK_EQ(length, length2);
for (int k = 0; k < length; k++)
CHECK_EQ(static_cast<int>(chars[k]), static_cast<int>(chars2[k]));
}
}
}
static void TestRangeCaseIndependence(Isolate* isolate, CharacterRange input,
Vector<CharacterRange> expected) {
Zone zone;
int count = expected.length();
ZoneList<CharacterRange>* list =
new(&zone) ZoneList<CharacterRange>(count, &zone);
list->Add(input, &zone);
CharacterRange::AddCaseEquivalents(isolate, &zone, list, false);
list->Remove(0); // Remove the input before checking results.
CHECK_EQ(count, list->length());
for (int i = 0; i < list->length(); i++) {
CHECK_EQ(expected[i].from(), list->at(i).from());
CHECK_EQ(expected[i].to(), list->at(i).to());
}
}
static void TestSimpleRangeCaseIndependence(Isolate* isolate,
CharacterRange input,
CharacterRange expected) {
EmbeddedVector<CharacterRange, 1> vector;
vector[0] = expected;
TestRangeCaseIndependence(isolate, input, vector);
}
TEST(CharacterRangeCaseIndependence) {
Isolate* isolate = CcTest::i_isolate();
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Singleton('a'),
CharacterRange::Singleton('A'));
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Singleton('z'),
CharacterRange::Singleton('Z'));
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('a', 'z'),
CharacterRange::Range('A', 'Z'));
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('c', 'f'),
CharacterRange::Range('C', 'F'));
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('a', 'b'),
CharacterRange::Range('A', 'B'));
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('y', 'z'),
CharacterRange::Range('Y', 'Z'));
TestSimpleRangeCaseIndependence(isolate,
CharacterRange::Range('a' - 1, 'z' + 1),
CharacterRange::Range('A', 'Z'));
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('A', 'Z'),
CharacterRange::Range('a', 'z'));
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('C', 'F'),
CharacterRange::Range('c', 'f'));
TestSimpleRangeCaseIndependence(isolate,
CharacterRange::Range('A' - 1, 'Z' + 1),
CharacterRange::Range('a', 'z'));
// Here we need to add [l-z] to complete the case independence of
// [A-Za-z] but we expect [a-z] to be added since we always add a
// whole block at a time.
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('A', 'k'),
CharacterRange::Range('a', 'z'));
}
static bool InClass(uc32 c, ZoneList<CharacterRange>* ranges) {
if (ranges == NULL)
return false;
for (int i = 0; i < ranges->length(); i++) {
CharacterRange range = ranges->at(i);
if (range.from() <= c && c <= range.to())
return true;
}
return false;
}
TEST(UnicodeRangeSplitter) {
Zone zone;
ZoneList<CharacterRange>* base =
new(&zone) ZoneList<CharacterRange>(1, &zone);
base->Add(CharacterRange::Everything(), &zone);
UnicodeRangeSplitter splitter(&zone, base);
// BMP
for (uc32 c = 0; c < 0xd800; c++) {
CHECK(InClass(c, splitter.bmp()));
CHECK(!InClass(c, splitter.lead_surrogates()));
CHECK(!InClass(c, splitter.trail_surrogates()));
CHECK(!InClass(c, splitter.non_bmp()));
}
// Lead surrogates
for (uc32 c = 0xd800; c < 0xdbff; c++) {
CHECK(!InClass(c, splitter.bmp()));
CHECK(InClass(c, splitter.lead_surrogates()));
CHECK(!InClass(c, splitter.trail_surrogates()));
CHECK(!InClass(c, splitter.non_bmp()));
}
// Trail surrogates
for (uc32 c = 0xdc00; c < 0xdfff; c++) {
CHECK(!InClass(c, splitter.bmp()));
CHECK(!InClass(c, splitter.lead_surrogates()));
CHECK(InClass(c, splitter.trail_surrogates()));
CHECK(!InClass(c, splitter.non_bmp()));
}
// BMP
for (uc32 c = 0xe000; c < 0xffff; c++) {
CHECK(InClass(c, splitter.bmp()));
CHECK(!InClass(c, splitter.lead_surrogates()));
CHECK(!InClass(c, splitter.trail_surrogates()));
CHECK(!InClass(c, splitter.non_bmp()));
}
// Non-BMP
for (uc32 c = 0x10000; c < 0x10ffff; c++) {
CHECK(!InClass(c, splitter.bmp()));
CHECK(!InClass(c, splitter.lead_surrogates()));
CHECK(!InClass(c, splitter.trail_surrogates()));
CHECK(InClass(c, splitter.non_bmp()));
}
}
TEST(CanonicalizeCharacterSets) {
Zone zone;
ZoneList<CharacterRange>* list =
new(&zone) ZoneList<CharacterRange>(4, &zone);
CharacterSet set(list);
list->Add(CharacterRange::Range(10, 20), &zone);
list->Add(CharacterRange::Range(30, 40), &zone);
list->Add(CharacterRange::Range(50, 60), &zone);
set.Canonicalize();
CHECK_EQ(3, list->length());
CHECK_EQ(10, list->at(0).from());
CHECK_EQ(20, list->at(0).to());
CHECK_EQ(30, list->at(1).from());
CHECK_EQ(40, list->at(1).to());
CHECK_EQ(50, list->at(2).from());
CHECK_EQ(60, list->at(2).to());
list->Rewind(0);
list->Add(CharacterRange::Range(10, 20), &zone);
list->Add(CharacterRange::Range(50, 60), &zone);
list->Add(CharacterRange::Range(30, 40), &zone);
set.Canonicalize();
CHECK_EQ(3, list->length());
CHECK_EQ(10, list->at(0).from());
CHECK_EQ(20, list->at(0).to());
CHECK_EQ(30, list->at(1).from());
CHECK_EQ(40, list->at(1).to());
CHECK_EQ(50, list->at(2).from());
CHECK_EQ(60, list->at(2).to());
list->Rewind(0);
list->Add(CharacterRange::Range(30, 40), &zone);
list->Add(CharacterRange::Range(10, 20), &zone);
list->Add(CharacterRange::Range(25, 25), &zone);
list->Add(CharacterRange::Range(100, 100), &zone);
list->Add(CharacterRange::Range(1, 1), &zone);
set.Canonicalize();
CHECK_EQ(5, list->length());
CHECK_EQ(1, list->at(0).from());
CHECK_EQ(1, list->at(0).to());
CHECK_EQ(10, list->at(1).from());
CHECK_EQ(20, list->at(1).to());
CHECK_EQ(25, list->at(2).from());
CHECK_EQ(25, list->at(2).to());
CHECK_EQ(30, list->at(3).from());
CHECK_EQ(40, list->at(3).to());
CHECK_EQ(100, list->at(4).from());
CHECK_EQ(100, list->at(4).to());
list->Rewind(0);
list->Add(CharacterRange::Range(10, 19), &zone);
list->Add(CharacterRange::Range(21, 30), &zone);
list->Add(CharacterRange::Range(20, 20), &zone);
set.Canonicalize();
CHECK_EQ(1, list->length());
CHECK_EQ(10, list->at(0).from());
CHECK_EQ(30, list->at(0).to());
}
TEST(CharacterRangeMerge) {
Zone zone;
ZoneList<CharacterRange> l1(4, &zone);
ZoneList<CharacterRange> l2(4, &zone);
// Create all combinations of intersections of ranges, both singletons and
// longer.
int offset = 0;
// The five kinds of singleton intersections:
// X
// Y - outside before
// Y - outside touching start
// Y - overlap
// Y - outside touching end
// Y - outside after
for (int i = 0; i < 5; i++) {
l1.Add(CharacterRange::Singleton(offset + 2), &zone);
l2.Add(CharacterRange::Singleton(offset + i), &zone);
offset += 6;
}
// The seven kinds of singleton/non-singleton intersections:
// XXX
// Y - outside before
// Y - outside touching start
// Y - inside touching start
// Y - entirely inside
// Y - inside touching end
// Y - outside touching end
// Y - disjoint after
for (int i = 0; i < 7; i++) {
l1.Add(CharacterRange::Range(offset + 2, offset + 4), &zone);
l2.Add(CharacterRange::Singleton(offset + i), &zone);
offset += 8;
}
// The eleven kinds of non-singleton intersections:
//
// XXXXXXXX
// YYYY - outside before.
// YYYY - outside touching start.
// YYYY - overlapping start
// YYYY - inside touching start
// YYYY - entirely inside
// YYYY - inside touching end
// YYYY - overlapping end
// YYYY - outside touching end
// YYYY - outside after
// YYYYYYYY - identical
// YYYYYYYYYYYY - containing entirely.
for (int i = 0; i < 9; i++) {
l1.Add(CharacterRange::Range(offset + 6, offset + 15), &zone); // Length 8.
l2.Add(CharacterRange::Range(offset + 2 * i, offset + 2 * i + 3), &zone);
offset += 22;
}
l1.Add(CharacterRange::Range(offset + 6, offset + 15), &zone);
l2.Add(CharacterRange::Range(offset + 6, offset + 15), &zone);
offset += 22;
l1.Add(CharacterRange::Range(offset + 6, offset + 15), &zone);
l2.Add(CharacterRange::Range(offset + 4, offset + 17), &zone);
offset += 22;
// Different kinds of multi-range overlap:
// XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX
// YYYY Y YYYY Y YYYY Y YYYY Y YYYY Y YYYY Y
l1.Add(CharacterRange::Range(offset, offset + 21), &zone);
l1.Add(CharacterRange::Range(offset + 31, offset + 52), &zone);
for (int i = 0; i < 6; i++) {
l2.Add(CharacterRange::Range(offset + 2, offset + 5), &zone);
l2.Add(CharacterRange::Singleton(offset + 8), &zone);
offset += 9;
}
CHECK(CharacterRange::IsCanonical(&l1));
CHECK(CharacterRange::IsCanonical(&l2));
ZoneList<CharacterRange> first_only(4, &zone);
ZoneList<CharacterRange> second_only(4, &zone);
ZoneList<CharacterRange> both(4, &zone);
}
TEST(Graph) {
Execute("\\b\\w+\\b", false, true, true);
}
namespace {
int* global_use_counts = NULL;
void MockUseCounterCallback(v8::Isolate* isolate,
v8::Isolate::UseCounterFeature feature) {
++global_use_counts[feature];
}
}
// Test that ES2015 RegExp compatibility fixes are in place, that they
// are not overly broad, and the appropriate UseCounters are incremented
TEST(UseCountRegExp) {
i::FLAG_harmony_regexps = true;
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope scope(isolate);
LocalContext env;
int use_counts[v8::Isolate::kUseCounterFeatureCount] = {};
global_use_counts = use_counts;
CcTest::isolate()->SetUseCounterCallback(MockUseCounterCallback);
// Compat fix: RegExp.prototype.sticky == undefined; UseCounter tracks it
v8::Local<v8::Value> resultSticky = CompileRun("RegExp.prototype.sticky");
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]);
CHECK_EQ(0, use_counts[v8::Isolate::kRegExpPrototypeToString]);
CHECK(resultSticky->IsUndefined());
// re.sticky has approriate value and doesn't touch UseCounter
v8::Local<v8::Value> resultReSticky = CompileRun("/a/.sticky");
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]);
CHECK_EQ(0, use_counts[v8::Isolate::kRegExpPrototypeToString]);
CHECK(resultReSticky->IsFalse());
// When the getter is caleld on another object, throw an exception
// and don't increment the UseCounter
v8::Local<v8::Value> resultStickyError = CompileRun(
"var exception;"
"try { "
" Object.getOwnPropertyDescriptor(RegExp.prototype, 'sticky')"
" .get.call(null);"
"} catch (e) {"
" exception = e;"
"}"
"exception");
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]);
CHECK_EQ(0, use_counts[v8::Isolate::kRegExpPrototypeToString]);
CHECK(resultStickyError->IsObject());
// RegExp.prototype.toString() returns '/(?:)/' as a compatibility fix;
// a UseCounter is incremented to track it.
v8::Local<v8::Value> resultToString =
CompileRun("RegExp.prototype.toString().length");
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]);
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeToString]);
CHECK(resultToString->IsInt32());
CHECK_EQ(6,
resultToString->Int32Value(isolate->GetCurrentContext()).FromJust());
// .toString() works on normal RegExps
v8::Local<v8::Value> resultReToString = CompileRun("/a/.toString().length");
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]);
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeToString]);
CHECK(resultReToString->IsInt32());
CHECK_EQ(
3, resultReToString->Int32Value(isolate->GetCurrentContext()).FromJust());
// .toString() throws on non-RegExps that aren't RegExp.prototype
v8::Local<v8::Value> resultToStringError = CompileRun(
"var exception;"
"try { RegExp.prototype.toString.call(null) }"
"catch (e) { exception = e; }"
"exception");
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]);
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeToString]);
CHECK(resultToStringError->IsObject());
}