744570e583
Bug: chromium:1052746 Change-Id: I3de37ca453b640b7f714e585848ccd068dd9ddbc Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3957815 Commit-Queue: Maya Lekova <mslekova@chromium.org> Reviewed-by: Toon Verwaest <verwaest@chromium.org> Reviewed-by: Samuel Groß <saelo@chromium.org> Reviewed-by: Maya Lekova <mslekova@chromium.org> Cr-Commit-Position: refs/heads/main@{#84597}
958 lines
36 KiB
C++
958 lines
36 KiB
C++
// Copyright 2020 the V8 project authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style license that can be
|
||
// found in the LICENSE file.
|
||
|
||
/**
|
||
* This file provides additional API on top of the default one for making
|
||
* API calls, which come from embedder C++ functions. The functions are being
|
||
* called directly from optimized code, doing all the necessary typechecks
|
||
* in the compiler itself, instead of on the embedder side. Hence the "fast"
|
||
* in the name. Example usage might look like:
|
||
*
|
||
* \code
|
||
* void FastMethod(int param, bool another_param);
|
||
*
|
||
* v8::FunctionTemplate::New(isolate, SlowCallback, data,
|
||
* signature, length, constructor_behavior
|
||
* side_effect_type,
|
||
* &v8::CFunction::Make(FastMethod));
|
||
* \endcode
|
||
*
|
||
* By design, fast calls are limited by the following requirements, which
|
||
* the embedder should enforce themselves:
|
||
* - they should not allocate on the JS heap;
|
||
* - they should not trigger JS execution.
|
||
* To enforce them, the embedder could use the existing
|
||
* v8::Isolate::DisallowJavascriptExecutionScope and a utility similar to
|
||
* Blink's NoAllocationScope:
|
||
* https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/platform/heap/thread_state_scopes.h;l=16
|
||
*
|
||
* Due to these limitations, it's not directly possible to report errors by
|
||
* throwing a JS exception or to otherwise do an allocation. There is an
|
||
* alternative way of creating fast calls that supports falling back to the
|
||
* slow call and then performing the necessary allocation. When one creates
|
||
* the fast method by using CFunction::MakeWithFallbackSupport instead of
|
||
* CFunction::Make, the fast callback gets as last parameter an output variable,
|
||
* through which it can request falling back to the slow call. So one might
|
||
* declare their method like:
|
||
*
|
||
* \code
|
||
* void FastMethodWithFallback(int param, FastApiCallbackOptions& options);
|
||
* \endcode
|
||
*
|
||
* If the callback wants to signal an error condition or to perform an
|
||
* allocation, it must set options.fallback to true and do an early return from
|
||
* the fast method. Then V8 checks the value of options.fallback and if it's
|
||
* true, falls back to executing the SlowCallback, which is capable of reporting
|
||
* the error (either by throwing a JS exception or logging to the console) or
|
||
* doing the allocation. It's the embedder's responsibility to ensure that the
|
||
* fast callback is idempotent up to the point where error and fallback
|
||
* conditions are checked, because otherwise executing the slow callback might
|
||
* produce visible side-effects twice.
|
||
*
|
||
* An example for custom embedder type support might employ a way to wrap/
|
||
* unwrap various C++ types in JSObject instances, e.g:
|
||
*
|
||
* \code
|
||
*
|
||
* // Helper method with a check for field count.
|
||
* template <typename T, int offset>
|
||
* inline T* GetInternalField(v8::Local<v8::Object> wrapper) {
|
||
* assert(offset < wrapper->InternalFieldCount());
|
||
* return reinterpret_cast<T*>(
|
||
* wrapper->GetAlignedPointerFromInternalField(offset));
|
||
* }
|
||
*
|
||
* class CustomEmbedderType {
|
||
* public:
|
||
* // Returns the raw C object from a wrapper JS object.
|
||
* static CustomEmbedderType* Unwrap(v8::Local<v8::Object> wrapper) {
|
||
* return GetInternalField<CustomEmbedderType,
|
||
* kV8EmbedderWrapperObjectIndex>(wrapper);
|
||
* }
|
||
* static void FastMethod(v8::Local<v8::Object> receiver_obj, int param) {
|
||
* CustomEmbedderType* receiver = static_cast<CustomEmbedderType*>(
|
||
* receiver_obj->GetAlignedPointerFromInternalField(
|
||
* kV8EmbedderWrapperObjectIndex));
|
||
*
|
||
* // Type checks are already done by the optimized code.
|
||
* // Then call some performance-critical method like:
|
||
* // receiver->Method(param);
|
||
* }
|
||
*
|
||
* static void SlowMethod(
|
||
* const v8::FunctionCallbackInfo<v8::Value>& info) {
|
||
* v8::Local<v8::Object> instance =
|
||
* v8::Local<v8::Object>::Cast(info.Holder());
|
||
* CustomEmbedderType* receiver = Unwrap(instance);
|
||
* // TODO: Do type checks and extract {param}.
|
||
* receiver->Method(param);
|
||
* }
|
||
* };
|
||
*
|
||
* // TODO(mslekova): Clean-up these constants
|
||
* // The constants kV8EmbedderWrapperTypeIndex and
|
||
* // kV8EmbedderWrapperObjectIndex describe the offsets for the type info
|
||
* // struct and the native object, when expressed as internal field indices
|
||
* // within a JSObject. The existance of this helper function assumes that
|
||
* // all embedder objects have their JSObject-side type info at the same
|
||
* // offset, but this is not a limitation of the API itself. For a detailed
|
||
* // use case, see the third example.
|
||
* static constexpr int kV8EmbedderWrapperTypeIndex = 0;
|
||
* static constexpr int kV8EmbedderWrapperObjectIndex = 1;
|
||
*
|
||
* // The following setup function can be templatized based on
|
||
* // the {embedder_object} argument.
|
||
* void SetupCustomEmbedderObject(v8::Isolate* isolate,
|
||
* v8::Local<v8::Context> context,
|
||
* CustomEmbedderType* embedder_object) {
|
||
* isolate->set_embedder_wrapper_type_index(
|
||
* kV8EmbedderWrapperTypeIndex);
|
||
* isolate->set_embedder_wrapper_object_index(
|
||
* kV8EmbedderWrapperObjectIndex);
|
||
*
|
||
* v8::CFunction c_func =
|
||
* MakeV8CFunction(CustomEmbedderType::FastMethod);
|
||
*
|
||
* Local<v8::FunctionTemplate> method_template =
|
||
* v8::FunctionTemplate::New(
|
||
* isolate, CustomEmbedderType::SlowMethod, v8::Local<v8::Value>(),
|
||
* v8::Local<v8::Signature>(), 1, v8::ConstructorBehavior::kAllow,
|
||
* v8::SideEffectType::kHasSideEffect, &c_func);
|
||
*
|
||
* v8::Local<v8::ObjectTemplate> object_template =
|
||
* v8::ObjectTemplate::New(isolate);
|
||
* object_template->SetInternalFieldCount(
|
||
* kV8EmbedderWrapperObjectIndex + 1);
|
||
* object_template->Set(isolate, "method", method_template);
|
||
*
|
||
* // Instantiate the wrapper JS object.
|
||
* v8::Local<v8::Object> object =
|
||
* object_template->NewInstance(context).ToLocalChecked();
|
||
* object->SetAlignedPointerInInternalField(
|
||
* kV8EmbedderWrapperObjectIndex,
|
||
* reinterpret_cast<void*>(embedder_object));
|
||
*
|
||
* // TODO: Expose {object} where it's necessary.
|
||
* }
|
||
* \endcode
|
||
*
|
||
* For instance if {object} is exposed via a global "obj" variable,
|
||
* one could write in JS:
|
||
* function hot_func() {
|
||
* obj.method(42);
|
||
* }
|
||
* and once {hot_func} gets optimized, CustomEmbedderType::FastMethod
|
||
* will be called instead of the slow version, with the following arguments:
|
||
* receiver := the {embedder_object} from above
|
||
* param := 42
|
||
*
|
||
* Currently supported return types:
|
||
* - void
|
||
* - bool
|
||
* - int32_t
|
||
* - uint32_t
|
||
* - float32_t
|
||
* - float64_t
|
||
* Currently supported argument types:
|
||
* - pointer to an embedder type
|
||
* - JavaScript array of primitive types
|
||
* - bool
|
||
* - int32_t
|
||
* - uint32_t
|
||
* - int64_t
|
||
* - uint64_t
|
||
* - float32_t
|
||
* - float64_t
|
||
*
|
||
* The 64-bit integer types currently have the IDL (unsigned) long long
|
||
* semantics: https://heycam.github.io/webidl/#abstract-opdef-converttoint
|
||
* In the future we'll extend the API to also provide conversions from/to
|
||
* BigInt to preserve full precision.
|
||
* The floating point types currently have the IDL (unrestricted) semantics,
|
||
* which is the only one used by WebGL. We plan to add support also for
|
||
* restricted floats/doubles, similarly to the BigInt conversion policies.
|
||
* We also differ from the specific NaN bit pattern that WebIDL prescribes
|
||
* (https://heycam.github.io/webidl/#es-unrestricted-float) in that Blink
|
||
* passes NaN values as-is, i.e. doesn't normalize them.
|
||
*
|
||
* To be supported types:
|
||
* - TypedArrays and ArrayBuffers
|
||
* - arrays of embedder types
|
||
*
|
||
*
|
||
* The API offers a limited support for function overloads:
|
||
*
|
||
* \code
|
||
* void FastMethod_2Args(int param, bool another_param);
|
||
* void FastMethod_3Args(int param, bool another_param, int third_param);
|
||
*
|
||
* v8::CFunction fast_method_2args_c_func =
|
||
* MakeV8CFunction(FastMethod_2Args);
|
||
* v8::CFunction fast_method_3args_c_func =
|
||
* MakeV8CFunction(FastMethod_3Args);
|
||
* const v8::CFunction fast_method_overloads[] = {fast_method_2args_c_func,
|
||
* fast_method_3args_c_func};
|
||
* Local<v8::FunctionTemplate> method_template =
|
||
* v8::FunctionTemplate::NewWithCFunctionOverloads(
|
||
* isolate, SlowCallback, data, signature, length,
|
||
* constructor_behavior, side_effect_type,
|
||
* {fast_method_overloads, 2});
|
||
* \endcode
|
||
*
|
||
* In this example a single FunctionTemplate is associated to multiple C++
|
||
* functions. The overload resolution is currently only based on the number of
|
||
* arguments passed in a call. For example, if this method_template is
|
||
* registered with a wrapper JS object as described above, a call with two
|
||
* arguments:
|
||
* obj.method(42, true);
|
||
* will result in a fast call to FastMethod_2Args, while a call with three or
|
||
* more arguments:
|
||
* obj.method(42, true, 11);
|
||
* will result in a fast call to FastMethod_3Args. Instead a call with less than
|
||
* two arguments, like:
|
||
* obj.method(42);
|
||
* would not result in a fast call but would fall back to executing the
|
||
* associated SlowCallback.
|
||
*/
|
||
|
||
#ifndef INCLUDE_V8_FAST_API_CALLS_H_
|
||
#define INCLUDE_V8_FAST_API_CALLS_H_
|
||
|
||
#include <stddef.h>
|
||
#include <stdint.h>
|
||
|
||
#include <tuple>
|
||
#include <type_traits>
|
||
|
||
#include "v8-internal.h" // NOLINT(build/include_directory)
|
||
#include "v8-local-handle.h" // NOLINT(build/include_directory)
|
||
#include "v8-typed-array.h" // NOLINT(build/include_directory)
|
||
#include "v8-value.h" // NOLINT(build/include_directory)
|
||
#include "v8config.h" // NOLINT(build/include_directory)
|
||
|
||
namespace v8 {
|
||
|
||
class Isolate;
|
||
|
||
class CTypeInfo {
|
||
public:
|
||
enum class Type : uint8_t {
|
||
kVoid,
|
||
kBool,
|
||
kUint8,
|
||
kInt32,
|
||
kUint32,
|
||
kInt64,
|
||
kUint64,
|
||
kFloat32,
|
||
kFloat64,
|
||
kPointer,
|
||
kV8Value,
|
||
kSeqOneByteString,
|
||
kApiObject, // This will be deprecated once all users have
|
||
// migrated from v8::ApiObject to v8::Local<v8::Value>.
|
||
kAny, // This is added to enable untyped representation of fast
|
||
// call arguments for test purposes. It can represent any of
|
||
// the other types stored in the same memory as a union (see
|
||
// the AnyCType struct declared below). This allows for
|
||
// uniform passing of arguments w.r.t. their location
|
||
// (in a register or on the stack), independent of their
|
||
// actual type. It's currently used by the arm64 simulator
|
||
// and can be added to the other simulators as well when fast
|
||
// calls having both GP and FP params need to be supported.
|
||
};
|
||
|
||
// kCallbackOptionsType is not part of the Type enum
|
||
// because it is only used internally. Use value 255 that is larger
|
||
// than any valid Type enum.
|
||
static constexpr Type kCallbackOptionsType = Type(255);
|
||
|
||
enum class SequenceType : uint8_t {
|
||
kScalar,
|
||
kIsSequence, // sequence<T>
|
||
kIsTypedArray, // TypedArray of T or any ArrayBufferView if T
|
||
// is void
|
||
kIsArrayBuffer // ArrayBuffer
|
||
};
|
||
|
||
enum class Flags : uint8_t {
|
||
kNone = 0,
|
||
kAllowSharedBit = 1 << 0, // Must be an ArrayBuffer or TypedArray
|
||
kEnforceRangeBit = 1 << 1, // T must be integral
|
||
kClampBit = 1 << 2, // T must be integral
|
||
kIsRestrictedBit = 1 << 3, // T must be float or double
|
||
};
|
||
|
||
explicit constexpr CTypeInfo(
|
||
Type type, SequenceType sequence_type = SequenceType::kScalar,
|
||
Flags flags = Flags::kNone)
|
||
: type_(type), sequence_type_(sequence_type), flags_(flags) {}
|
||
|
||
typedef uint32_t Identifier;
|
||
explicit constexpr CTypeInfo(Identifier identifier)
|
||
: CTypeInfo(static_cast<Type>(identifier >> 16),
|
||
static_cast<SequenceType>((identifier >> 8) & 255),
|
||
static_cast<Flags>(identifier & 255)) {}
|
||
constexpr Identifier GetId() const {
|
||
return static_cast<uint8_t>(type_) << 16 |
|
||
static_cast<uint8_t>(sequence_type_) << 8 |
|
||
static_cast<uint8_t>(flags_);
|
||
}
|
||
|
||
constexpr Type GetType() const { return type_; }
|
||
constexpr SequenceType GetSequenceType() const { return sequence_type_; }
|
||
constexpr Flags GetFlags() const { return flags_; }
|
||
|
||
static constexpr bool IsIntegralType(Type type) {
|
||
return type == Type::kUint8 || type == Type::kInt32 ||
|
||
type == Type::kUint32 || type == Type::kInt64 ||
|
||
type == Type::kUint64;
|
||
}
|
||
|
||
static constexpr bool IsFloatingPointType(Type type) {
|
||
return type == Type::kFloat32 || type == Type::kFloat64;
|
||
}
|
||
|
||
static constexpr bool IsPrimitive(Type type) {
|
||
return IsIntegralType(type) || IsFloatingPointType(type) ||
|
||
type == Type::kBool;
|
||
}
|
||
|
||
private:
|
||
Type type_;
|
||
SequenceType sequence_type_;
|
||
Flags flags_;
|
||
};
|
||
|
||
struct FastApiTypedArrayBase {
|
||
public:
|
||
// Returns the length in number of elements.
|
||
size_t V8_EXPORT length() const { return length_; }
|
||
// Checks whether the given index is within the bounds of the collection.
|
||
void V8_EXPORT ValidateIndex(size_t index) const;
|
||
|
||
protected:
|
||
size_t length_ = 0;
|
||
};
|
||
|
||
template <typename T>
|
||
struct FastApiTypedArray : public FastApiTypedArrayBase {
|
||
public:
|
||
V8_INLINE T get(size_t index) const {
|
||
#ifdef DEBUG
|
||
ValidateIndex(index);
|
||
#endif // DEBUG
|
||
T tmp;
|
||
memcpy(&tmp, reinterpret_cast<T*>(data_) + index, sizeof(T));
|
||
return tmp;
|
||
}
|
||
|
||
bool getStorageIfAligned(T** elements) const {
|
||
if (reinterpret_cast<uintptr_t>(data_) % alignof(T) != 0) {
|
||
return false;
|
||
}
|
||
*elements = reinterpret_cast<T*>(data_);
|
||
return true;
|
||
}
|
||
|
||
private:
|
||
// This pointer should include the typed array offset applied.
|
||
// It's not guaranteed that it's aligned to sizeof(T), it's only
|
||
// guaranteed that it's 4-byte aligned, so for 8-byte types we need to
|
||
// provide a special implementation for reading from it, which hides
|
||
// the possibly unaligned read in the `get` method.
|
||
void* data_;
|
||
};
|
||
|
||
// Any TypedArray. It uses kTypedArrayBit with base type void
|
||
// Overloaded args of ArrayBufferView and TypedArray are not supported
|
||
// (for now) because the generic “any” ArrayBufferView doesn’t have its
|
||
// own instance type. It could be supported if we specify that
|
||
// TypedArray<T> always has precedence over the generic ArrayBufferView,
|
||
// but this complicates overload resolution.
|
||
struct FastApiArrayBufferView {
|
||
void* data;
|
||
size_t byte_length;
|
||
};
|
||
|
||
struct FastApiArrayBuffer {
|
||
void* data;
|
||
size_t byte_length;
|
||
};
|
||
|
||
struct FastOneByteString {
|
||
const char* data;
|
||
uint32_t length;
|
||
};
|
||
|
||
class V8_EXPORT CFunctionInfo {
|
||
public:
|
||
// Construct a struct to hold a CFunction's type information.
|
||
// |return_info| describes the function's return type.
|
||
// |arg_info| is an array of |arg_count| CTypeInfos describing the
|
||
// arguments. Only the last argument may be of the special type
|
||
// CTypeInfo::kCallbackOptionsType.
|
||
CFunctionInfo(const CTypeInfo& return_info, unsigned int arg_count,
|
||
const CTypeInfo* arg_info);
|
||
|
||
const CTypeInfo& ReturnInfo() const { return return_info_; }
|
||
|
||
// The argument count, not including the v8::FastApiCallbackOptions
|
||
// if present.
|
||
unsigned int ArgumentCount() const {
|
||
return HasOptions() ? arg_count_ - 1 : arg_count_;
|
||
}
|
||
|
||
// |index| must be less than ArgumentCount().
|
||
// Note: if the last argument passed on construction of CFunctionInfo
|
||
// has type CTypeInfo::kCallbackOptionsType, it is not included in
|
||
// ArgumentCount().
|
||
const CTypeInfo& ArgumentInfo(unsigned int index) const;
|
||
|
||
bool HasOptions() const {
|
||
// The options arg is always the last one.
|
||
return arg_count_ > 0 && arg_info_[arg_count_ - 1].GetType() ==
|
||
CTypeInfo::kCallbackOptionsType;
|
||
}
|
||
|
||
private:
|
||
const CTypeInfo return_info_;
|
||
const unsigned int arg_count_;
|
||
const CTypeInfo* arg_info_;
|
||
};
|
||
|
||
struct FastApiCallbackOptions;
|
||
|
||
// Provided for testing.
|
||
struct AnyCType {
|
||
AnyCType() : int64_value(0) {}
|
||
|
||
union {
|
||
bool bool_value;
|
||
int32_t int32_value;
|
||
uint32_t uint32_value;
|
||
int64_t int64_value;
|
||
uint64_t uint64_value;
|
||
float float_value;
|
||
double double_value;
|
||
void* pointer_value;
|
||
Local<Object> object_value;
|
||
Local<Array> sequence_value;
|
||
const FastApiTypedArray<uint8_t>* uint8_ta_value;
|
||
const FastApiTypedArray<int32_t>* int32_ta_value;
|
||
const FastApiTypedArray<uint32_t>* uint32_ta_value;
|
||
const FastApiTypedArray<int64_t>* int64_ta_value;
|
||
const FastApiTypedArray<uint64_t>* uint64_ta_value;
|
||
const FastApiTypedArray<float>* float_ta_value;
|
||
const FastApiTypedArray<double>* double_ta_value;
|
||
const FastOneByteString* string_value;
|
||
FastApiCallbackOptions* options_value;
|
||
};
|
||
};
|
||
|
||
static_assert(
|
||
sizeof(AnyCType) == 8,
|
||
"The AnyCType struct should have size == 64 bits, as this is assumed "
|
||
"by EffectControlLinearizer.");
|
||
|
||
class V8_EXPORT CFunction {
|
||
public:
|
||
constexpr CFunction() : address_(nullptr), type_info_(nullptr) {}
|
||
|
||
const CTypeInfo& ReturnInfo() const { return type_info_->ReturnInfo(); }
|
||
|
||
const CTypeInfo& ArgumentInfo(unsigned int index) const {
|
||
return type_info_->ArgumentInfo(index);
|
||
}
|
||
|
||
unsigned int ArgumentCount() const { return type_info_->ArgumentCount(); }
|
||
|
||
const void* GetAddress() const { return address_; }
|
||
const CFunctionInfo* GetTypeInfo() const { return type_info_; }
|
||
|
||
enum class OverloadResolution { kImpossible, kAtRuntime, kAtCompileTime };
|
||
|
||
// Returns whether an overload between this and the given CFunction can
|
||
// be resolved at runtime by the RTTI available for the arguments or at
|
||
// compile time for functions with different number of arguments.
|
||
OverloadResolution GetOverloadResolution(const CFunction* other) {
|
||
// Runtime overload resolution can only deal with functions with the
|
||
// same number of arguments. Functions with different arity are handled
|
||
// by compile time overload resolution though.
|
||
if (ArgumentCount() != other->ArgumentCount()) {
|
||
return OverloadResolution::kAtCompileTime;
|
||
}
|
||
|
||
// The functions can only differ by a single argument position.
|
||
int diff_index = -1;
|
||
for (unsigned int i = 0; i < ArgumentCount(); ++i) {
|
||
if (ArgumentInfo(i).GetSequenceType() !=
|
||
other->ArgumentInfo(i).GetSequenceType()) {
|
||
if (diff_index >= 0) {
|
||
return OverloadResolution::kImpossible;
|
||
}
|
||
diff_index = i;
|
||
|
||
// We only support overload resolution between sequence types.
|
||
if (ArgumentInfo(i).GetSequenceType() ==
|
||
CTypeInfo::SequenceType::kScalar ||
|
||
other->ArgumentInfo(i).GetSequenceType() ==
|
||
CTypeInfo::SequenceType::kScalar) {
|
||
return OverloadResolution::kImpossible;
|
||
}
|
||
}
|
||
}
|
||
|
||
return OverloadResolution::kAtRuntime;
|
||
}
|
||
|
||
template <typename F>
|
||
static CFunction Make(F* func) {
|
||
return ArgUnwrap<F*>::Make(func);
|
||
}
|
||
|
||
// Provided for testing purposes.
|
||
template <typename R, typename... Args, typename R_Patch,
|
||
typename... Args_Patch>
|
||
static CFunction Make(R (*func)(Args...),
|
||
R_Patch (*patching_func)(Args_Patch...)) {
|
||
CFunction c_func = ArgUnwrap<R (*)(Args...)>::Make(func);
|
||
static_assert(
|
||
sizeof...(Args_Patch) == sizeof...(Args),
|
||
"The patching function must have the same number of arguments.");
|
||
c_func.address_ = reinterpret_cast<void*>(patching_func);
|
||
return c_func;
|
||
}
|
||
|
||
CFunction(const void* address, const CFunctionInfo* type_info);
|
||
|
||
private:
|
||
const void* address_;
|
||
const CFunctionInfo* type_info_;
|
||
|
||
template <typename F>
|
||
class ArgUnwrap {
|
||
static_assert(sizeof(F) != sizeof(F),
|
||
"CFunction must be created from a function pointer.");
|
||
};
|
||
|
||
template <typename R, typename... Args>
|
||
class ArgUnwrap<R (*)(Args...)> {
|
||
public:
|
||
static CFunction Make(R (*func)(Args...));
|
||
};
|
||
};
|
||
|
||
/**
|
||
* A struct which may be passed to a fast call callback, like so:
|
||
* \code
|
||
* void FastMethodWithOptions(int param, FastApiCallbackOptions& options);
|
||
* \endcode
|
||
*/
|
||
struct FastApiCallbackOptions {
|
||
/**
|
||
* Creates a new instance of FastApiCallbackOptions for testing purpose. The
|
||
* returned instance may be filled with mock data.
|
||
*/
|
||
static FastApiCallbackOptions CreateForTesting(Isolate* isolate) {
|
||
return {false, {0}, nullptr};
|
||
}
|
||
|
||
/**
|
||
* If the callback wants to signal an error condition or to perform an
|
||
* allocation, it must set options.fallback to true and do an early return
|
||
* from the fast method. Then V8 checks the value of options.fallback and if
|
||
* it's true, falls back to executing the SlowCallback, which is capable of
|
||
* reporting the error (either by throwing a JS exception or logging to the
|
||
* console) or doing the allocation. It's the embedder's responsibility to
|
||
* ensure that the fast callback is idempotent up to the point where error and
|
||
* fallback conditions are checked, because otherwise executing the slow
|
||
* callback might produce visible side-effects twice.
|
||
*/
|
||
bool fallback;
|
||
|
||
/**
|
||
* The `data` passed to the FunctionTemplate constructor, or `undefined`.
|
||
* `data_ptr` allows for default constructing FastApiCallbackOptions.
|
||
*/
|
||
union {
|
||
uintptr_t data_ptr;
|
||
v8::Local<v8::Value> data;
|
||
};
|
||
|
||
/**
|
||
* When called from WebAssembly, a view of the calling module's memory.
|
||
*/
|
||
FastApiTypedArray<uint8_t>* const wasm_memory;
|
||
};
|
||
|
||
namespace internal {
|
||
|
||
// Helper to count the number of occurances of `T` in `List`
|
||
template <typename T, typename... List>
|
||
struct count : std::integral_constant<int, 0> {};
|
||
template <typename T, typename... Args>
|
||
struct count<T, T, Args...>
|
||
: std::integral_constant<std::size_t, 1 + count<T, Args...>::value> {};
|
||
template <typename T, typename U, typename... Args>
|
||
struct count<T, U, Args...> : count<T, Args...> {};
|
||
|
||
template <typename RetBuilder, typename... ArgBuilders>
|
||
class CFunctionInfoImpl : public CFunctionInfo {
|
||
static constexpr int kOptionsArgCount =
|
||
count<FastApiCallbackOptions&, ArgBuilders...>();
|
||
static constexpr int kReceiverCount = 1;
|
||
|
||
static_assert(kOptionsArgCount == 0 || kOptionsArgCount == 1,
|
||
"Only one options parameter is supported.");
|
||
|
||
static_assert(sizeof...(ArgBuilders) >= kOptionsArgCount + kReceiverCount,
|
||
"The receiver or the options argument is missing.");
|
||
|
||
public:
|
||
constexpr CFunctionInfoImpl()
|
||
: CFunctionInfo(RetBuilder::Build(), sizeof...(ArgBuilders),
|
||
arg_info_storage_),
|
||
arg_info_storage_{ArgBuilders::Build()...} {
|
||
constexpr CTypeInfo::Type kReturnType = RetBuilder::Build().GetType();
|
||
static_assert(kReturnType == CTypeInfo::Type::kVoid ||
|
||
kReturnType == CTypeInfo::Type::kBool ||
|
||
kReturnType == CTypeInfo::Type::kInt32 ||
|
||
kReturnType == CTypeInfo::Type::kUint32 ||
|
||
kReturnType == CTypeInfo::Type::kFloat32 ||
|
||
kReturnType == CTypeInfo::Type::kFloat64 ||
|
||
kReturnType == CTypeInfo::Type::kPointer ||
|
||
kReturnType == CTypeInfo::Type::kAny,
|
||
"64-bit int, string and api object values are not currently "
|
||
"supported return types.");
|
||
}
|
||
|
||
private:
|
||
const CTypeInfo arg_info_storage_[sizeof...(ArgBuilders)];
|
||
};
|
||
|
||
template <typename T>
|
||
struct TypeInfoHelper {
|
||
static_assert(sizeof(T) != sizeof(T), "This type is not supported");
|
||
};
|
||
|
||
#define SPECIALIZE_GET_TYPE_INFO_HELPER_FOR(T, Enum) \
|
||
template <> \
|
||
struct TypeInfoHelper<T> { \
|
||
static constexpr CTypeInfo::Flags Flags() { \
|
||
return CTypeInfo::Flags::kNone; \
|
||
} \
|
||
\
|
||
static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::Enum; } \
|
||
static constexpr CTypeInfo::SequenceType SequenceType() { \
|
||
return CTypeInfo::SequenceType::kScalar; \
|
||
} \
|
||
};
|
||
|
||
template <CTypeInfo::Type type>
|
||
struct CTypeInfoTraits {};
|
||
|
||
#define DEFINE_TYPE_INFO_TRAITS(CType, Enum) \
|
||
template <> \
|
||
struct CTypeInfoTraits<CTypeInfo::Type::Enum> { \
|
||
using ctype = CType; \
|
||
};
|
||
|
||
#define PRIMITIVE_C_TYPES(V) \
|
||
V(bool, kBool) \
|
||
V(uint8_t, kUint8) \
|
||
V(int32_t, kInt32) \
|
||
V(uint32_t, kUint32) \
|
||
V(int64_t, kInt64) \
|
||
V(uint64_t, kUint64) \
|
||
V(float, kFloat32) \
|
||
V(double, kFloat64) \
|
||
V(void*, kPointer)
|
||
|
||
// Same as above, but includes deprecated types for compatibility.
|
||
#define ALL_C_TYPES(V) \
|
||
PRIMITIVE_C_TYPES(V) \
|
||
V(void, kVoid) \
|
||
V(v8::Local<v8::Value>, kV8Value) \
|
||
V(v8::Local<v8::Object>, kV8Value) \
|
||
V(AnyCType, kAny)
|
||
|
||
// ApiObject was a temporary solution to wrap the pointer to the v8::Value.
|
||
// Please use v8::Local<v8::Value> in new code for the arguments and
|
||
// v8::Local<v8::Object> for the receiver, as ApiObject will be deprecated.
|
||
|
||
ALL_C_TYPES(SPECIALIZE_GET_TYPE_INFO_HELPER_FOR)
|
||
PRIMITIVE_C_TYPES(DEFINE_TYPE_INFO_TRAITS)
|
||
|
||
#undef PRIMITIVE_C_TYPES
|
||
#undef ALL_C_TYPES
|
||
|
||
#define SPECIALIZE_GET_TYPE_INFO_HELPER_FOR_TA(T, Enum) \
|
||
template <> \
|
||
struct TypeInfoHelper<const FastApiTypedArray<T>&> { \
|
||
static constexpr CTypeInfo::Flags Flags() { \
|
||
return CTypeInfo::Flags::kNone; \
|
||
} \
|
||
\
|
||
static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::Enum; } \
|
||
static constexpr CTypeInfo::SequenceType SequenceType() { \
|
||
return CTypeInfo::SequenceType::kIsTypedArray; \
|
||
} \
|
||
};
|
||
|
||
#define TYPED_ARRAY_C_TYPES(V) \
|
||
V(uint8_t, kUint8) \
|
||
V(int32_t, kInt32) \
|
||
V(uint32_t, kUint32) \
|
||
V(int64_t, kInt64) \
|
||
V(uint64_t, kUint64) \
|
||
V(float, kFloat32) \
|
||
V(double, kFloat64)
|
||
|
||
TYPED_ARRAY_C_TYPES(SPECIALIZE_GET_TYPE_INFO_HELPER_FOR_TA)
|
||
|
||
#undef TYPED_ARRAY_C_TYPES
|
||
|
||
template <>
|
||
struct TypeInfoHelper<v8::Local<v8::Array>> {
|
||
static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }
|
||
|
||
static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::kVoid; }
|
||
static constexpr CTypeInfo::SequenceType SequenceType() {
|
||
return CTypeInfo::SequenceType::kIsSequence;
|
||
}
|
||
};
|
||
|
||
template <>
|
||
struct TypeInfoHelper<v8::Local<v8::Uint32Array>> {
|
||
static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }
|
||
|
||
static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::kUint32; }
|
||
static constexpr CTypeInfo::SequenceType SequenceType() {
|
||
return CTypeInfo::SequenceType::kIsTypedArray;
|
||
}
|
||
};
|
||
|
||
template <>
|
||
struct TypeInfoHelper<FastApiCallbackOptions&> {
|
||
static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }
|
||
|
||
static constexpr CTypeInfo::Type Type() {
|
||
return CTypeInfo::kCallbackOptionsType;
|
||
}
|
||
static constexpr CTypeInfo::SequenceType SequenceType() {
|
||
return CTypeInfo::SequenceType::kScalar;
|
||
}
|
||
};
|
||
|
||
template <>
|
||
struct TypeInfoHelper<const FastOneByteString&> {
|
||
static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }
|
||
|
||
static constexpr CTypeInfo::Type Type() {
|
||
return CTypeInfo::Type::kSeqOneByteString;
|
||
}
|
||
static constexpr CTypeInfo::SequenceType SequenceType() {
|
||
return CTypeInfo::SequenceType::kScalar;
|
||
}
|
||
};
|
||
|
||
#define STATIC_ASSERT_IMPLIES(COND, ASSERTION, MSG) \
|
||
static_assert(((COND) == 0) || (ASSERTION), MSG)
|
||
|
||
} // namespace internal
|
||
|
||
template <typename T, CTypeInfo::Flags... Flags>
|
||
class V8_EXPORT CTypeInfoBuilder {
|
||
public:
|
||
using BaseType = T;
|
||
|
||
static constexpr CTypeInfo Build() {
|
||
constexpr CTypeInfo::Flags kFlags =
|
||
MergeFlags(internal::TypeInfoHelper<T>::Flags(), Flags...);
|
||
constexpr CTypeInfo::Type kType = internal::TypeInfoHelper<T>::Type();
|
||
constexpr CTypeInfo::SequenceType kSequenceType =
|
||
internal::TypeInfoHelper<T>::SequenceType();
|
||
|
||
STATIC_ASSERT_IMPLIES(
|
||
uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kAllowSharedBit),
|
||
(kSequenceType == CTypeInfo::SequenceType::kIsTypedArray ||
|
||
kSequenceType == CTypeInfo::SequenceType::kIsArrayBuffer),
|
||
"kAllowSharedBit is only allowed for TypedArrays and ArrayBuffers.");
|
||
STATIC_ASSERT_IMPLIES(
|
||
uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kEnforceRangeBit),
|
||
CTypeInfo::IsIntegralType(kType),
|
||
"kEnforceRangeBit is only allowed for integral types.");
|
||
STATIC_ASSERT_IMPLIES(
|
||
uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kClampBit),
|
||
CTypeInfo::IsIntegralType(kType),
|
||
"kClampBit is only allowed for integral types.");
|
||
STATIC_ASSERT_IMPLIES(
|
||
uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kIsRestrictedBit),
|
||
CTypeInfo::IsFloatingPointType(kType),
|
||
"kIsRestrictedBit is only allowed for floating point types.");
|
||
STATIC_ASSERT_IMPLIES(kSequenceType == CTypeInfo::SequenceType::kIsSequence,
|
||
kType == CTypeInfo::Type::kVoid,
|
||
"Sequences are only supported from void type.");
|
||
STATIC_ASSERT_IMPLIES(
|
||
kSequenceType == CTypeInfo::SequenceType::kIsTypedArray,
|
||
CTypeInfo::IsPrimitive(kType) || kType == CTypeInfo::Type::kVoid,
|
||
"TypedArrays are only supported from primitive types or void.");
|
||
|
||
// Return the same type with the merged flags.
|
||
return CTypeInfo(internal::TypeInfoHelper<T>::Type(),
|
||
internal::TypeInfoHelper<T>::SequenceType(), kFlags);
|
||
}
|
||
|
||
private:
|
||
template <typename... Rest>
|
||
static constexpr CTypeInfo::Flags MergeFlags(CTypeInfo::Flags flags,
|
||
Rest... rest) {
|
||
return CTypeInfo::Flags(uint8_t(flags) | uint8_t(MergeFlags(rest...)));
|
||
}
|
||
static constexpr CTypeInfo::Flags MergeFlags() { return CTypeInfo::Flags(0); }
|
||
};
|
||
|
||
namespace internal {
|
||
template <typename RetBuilder, typename... ArgBuilders>
|
||
class CFunctionBuilderWithFunction {
|
||
public:
|
||
explicit constexpr CFunctionBuilderWithFunction(const void* fn) : fn_(fn) {}
|
||
|
||
template <CTypeInfo::Flags... Flags>
|
||
constexpr auto Ret() {
|
||
return CFunctionBuilderWithFunction<
|
||
CTypeInfoBuilder<typename RetBuilder::BaseType, Flags...>,
|
||
ArgBuilders...>(fn_);
|
||
}
|
||
|
||
template <unsigned int N, CTypeInfo::Flags... Flags>
|
||
constexpr auto Arg() {
|
||
// Return a copy of the builder with the Nth arg builder merged with
|
||
// template parameter pack Flags.
|
||
return ArgImpl<N, Flags...>(
|
||
std::make_index_sequence<sizeof...(ArgBuilders)>());
|
||
}
|
||
|
||
// Provided for testing purposes.
|
||
template <typename Ret, typename... Args>
|
||
auto Patch(Ret (*patching_func)(Args...)) {
|
||
static_assert(
|
||
sizeof...(Args) == sizeof...(ArgBuilders),
|
||
"The patching function must have the same number of arguments.");
|
||
fn_ = reinterpret_cast<void*>(patching_func);
|
||
return *this;
|
||
}
|
||
|
||
auto Build() {
|
||
static CFunctionInfoImpl<RetBuilder, ArgBuilders...> instance;
|
||
return CFunction(fn_, &instance);
|
||
}
|
||
|
||
private:
|
||
template <bool Merge, unsigned int N, CTypeInfo::Flags... Flags>
|
||
struct GetArgBuilder;
|
||
|
||
// Returns the same ArgBuilder as the one at index N, including its flags.
|
||
// Flags in the template parameter pack are ignored.
|
||
template <unsigned int N, CTypeInfo::Flags... Flags>
|
||
struct GetArgBuilder<false, N, Flags...> {
|
||
using type =
|
||
typename std::tuple_element<N, std::tuple<ArgBuilders...>>::type;
|
||
};
|
||
|
||
// Returns an ArgBuilder with the same base type as the one at index N,
|
||
// but merges the flags with the flags in the template parameter pack.
|
||
template <unsigned int N, CTypeInfo::Flags... Flags>
|
||
struct GetArgBuilder<true, N, Flags...> {
|
||
using type = CTypeInfoBuilder<
|
||
typename std::tuple_element<N,
|
||
std::tuple<ArgBuilders...>>::type::BaseType,
|
||
std::tuple_element<N, std::tuple<ArgBuilders...>>::type::Build()
|
||
.GetFlags(),
|
||
Flags...>;
|
||
};
|
||
|
||
// Return a copy of the CFunctionBuilder, but merges the Flags on
|
||
// ArgBuilder index N with the new Flags passed in the template parameter
|
||
// pack.
|
||
template <unsigned int N, CTypeInfo::Flags... Flags, size_t... I>
|
||
constexpr auto ArgImpl(std::index_sequence<I...>) {
|
||
return CFunctionBuilderWithFunction<
|
||
RetBuilder, typename GetArgBuilder<N == I, I, Flags...>::type...>(fn_);
|
||
}
|
||
|
||
const void* fn_;
|
||
};
|
||
|
||
class CFunctionBuilder {
|
||
public:
|
||
constexpr CFunctionBuilder() {}
|
||
|
||
template <typename R, typename... Args>
|
||
constexpr auto Fn(R (*fn)(Args...)) {
|
||
return CFunctionBuilderWithFunction<CTypeInfoBuilder<R>,
|
||
CTypeInfoBuilder<Args>...>(
|
||
reinterpret_cast<const void*>(fn));
|
||
}
|
||
};
|
||
|
||
} // namespace internal
|
||
|
||
// static
|
||
template <typename R, typename... Args>
|
||
CFunction CFunction::ArgUnwrap<R (*)(Args...)>::Make(R (*func)(Args...)) {
|
||
return internal::CFunctionBuilder().Fn(func).Build();
|
||
}
|
||
|
||
using CFunctionBuilder = internal::CFunctionBuilder;
|
||
|
||
static constexpr CTypeInfo kTypeInfoInt32 = CTypeInfo(CTypeInfo::Type::kInt32);
|
||
static constexpr CTypeInfo kTypeInfoFloat64 =
|
||
CTypeInfo(CTypeInfo::Type::kFloat64);
|
||
|
||
/**
|
||
* Copies the contents of this JavaScript array to a C++ buffer with
|
||
* a given max_length. A CTypeInfo is passed as an argument,
|
||
* instructing different rules for conversion (e.g. restricted float/double).
|
||
* The element type T of the destination array must match the C type
|
||
* corresponding to the CTypeInfo (specified by CTypeInfoTraits).
|
||
* If the array length is larger than max_length or the array is of
|
||
* unsupported type, the operation will fail, returning false. Generally, an
|
||
* array which contains objects, undefined, null or anything not convertible
|
||
* to the requested destination type, is considered unsupported. The operation
|
||
* returns true on success. `type_info` will be used for conversions.
|
||
*/
|
||
template <CTypeInfo::Identifier type_info_id, typename T>
|
||
bool V8_EXPORT V8_WARN_UNUSED_RESULT TryToCopyAndConvertArrayToCppBuffer(
|
||
Local<Array> src, T* dst, uint32_t max_length);
|
||
|
||
template <>
|
||
bool V8_EXPORT V8_WARN_UNUSED_RESULT
|
||
TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<int32_t>::Build().GetId(),
|
||
int32_t>(Local<Array> src, int32_t* dst,
|
||
uint32_t max_length);
|
||
|
||
template <>
|
||
bool V8_EXPORT V8_WARN_UNUSED_RESULT
|
||
TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<uint32_t>::Build().GetId(),
|
||
uint32_t>(Local<Array> src, uint32_t* dst,
|
||
uint32_t max_length);
|
||
|
||
template <>
|
||
bool V8_EXPORT V8_WARN_UNUSED_RESULT
|
||
TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<float>::Build().GetId(),
|
||
float>(Local<Array> src, float* dst,
|
||
uint32_t max_length);
|
||
|
||
template <>
|
||
bool V8_EXPORT V8_WARN_UNUSED_RESULT
|
||
TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<double>::Build().GetId(),
|
||
double>(Local<Array> src, double* dst,
|
||
uint32_t max_length);
|
||
|
||
} // namespace v8
|
||
|
||
#endif // INCLUDE_V8_FAST_API_CALLS_H_
|