4097318792
This prevents GC from observing code objects with out-of-sync weak dependencies. BUG=v8:3823 LOG=N Review URL: https://codereview.chromium.org/866723002 Cr-Commit-Position: refs/heads/master@{#26225}
10932 lines
394 KiB
C++
10932 lines
394 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef V8_OBJECTS_H_
|
|
#define V8_OBJECTS_H_
|
|
|
|
#include <iosfwd>
|
|
|
|
#include "src/allocation.h"
|
|
#include "src/assert-scope.h"
|
|
#include "src/bailout-reason.h"
|
|
#include "src/base/bits.h"
|
|
#include "src/builtins.h"
|
|
#include "src/checks.h"
|
|
#include "src/elements-kind.h"
|
|
#include "src/field-index.h"
|
|
#include "src/flags.h"
|
|
#include "src/list.h"
|
|
#include "src/property-details.h"
|
|
#include "src/smart-pointers.h"
|
|
#include "src/unicode-inl.h"
|
|
#include "src/unicode-decoder.h"
|
|
#include "src/zone.h"
|
|
|
|
#if V8_TARGET_ARCH_ARM
|
|
#include "src/arm/constants-arm.h" // NOLINT
|
|
#elif V8_TARGET_ARCH_ARM64
|
|
#include "src/arm64/constants-arm64.h" // NOLINT
|
|
#elif V8_TARGET_ARCH_MIPS
|
|
#include "src/mips/constants-mips.h" // NOLINT
|
|
#elif V8_TARGET_ARCH_MIPS64
|
|
#include "src/mips64/constants-mips64.h" // NOLINT
|
|
#elif V8_TARGET_ARCH_PPC
|
|
#include "src/ppc/constants-ppc.h" // NOLINT
|
|
#endif
|
|
|
|
|
|
//
|
|
// Most object types in the V8 JavaScript are described in this file.
|
|
//
|
|
// Inheritance hierarchy:
|
|
// - Object
|
|
// - Smi (immediate small integer)
|
|
// - HeapObject (superclass for everything allocated in the heap)
|
|
// - JSReceiver (suitable for property access)
|
|
// - JSObject
|
|
// - JSArray
|
|
// - JSArrayBuffer
|
|
// - JSArrayBufferView
|
|
// - JSTypedArray
|
|
// - JSDataView
|
|
// - JSCollection
|
|
// - JSSet
|
|
// - JSMap
|
|
// - JSSetIterator
|
|
// - JSMapIterator
|
|
// - JSWeakCollection
|
|
// - JSWeakMap
|
|
// - JSWeakSet
|
|
// - JSRegExp
|
|
// - JSFunction
|
|
// - JSGeneratorObject
|
|
// - JSModule
|
|
// - GlobalObject
|
|
// - JSGlobalObject
|
|
// - JSBuiltinsObject
|
|
// - JSGlobalProxy
|
|
// - JSValue
|
|
// - JSDate
|
|
// - JSMessageObject
|
|
// - JSProxy
|
|
// - JSFunctionProxy
|
|
// - FixedArrayBase
|
|
// - ByteArray
|
|
// - FixedArray
|
|
// - DescriptorArray
|
|
// - HashTable
|
|
// - Dictionary
|
|
// - StringTable
|
|
// - CompilationCacheTable
|
|
// - CodeCacheHashTable
|
|
// - MapCache
|
|
// - OrderedHashTable
|
|
// - OrderedHashSet
|
|
// - OrderedHashMap
|
|
// - Context
|
|
// - TypeFeedbackVector
|
|
// - JSFunctionResultCache
|
|
// - ScopeInfo
|
|
// - TransitionArray
|
|
// - ScriptContextTable
|
|
// - WeakFixedArray
|
|
// - FixedDoubleArray
|
|
// - ExternalArray
|
|
// - ExternalUint8ClampedArray
|
|
// - ExternalInt8Array
|
|
// - ExternalUint8Array
|
|
// - ExternalInt16Array
|
|
// - ExternalUint16Array
|
|
// - ExternalInt32Array
|
|
// - ExternalUint32Array
|
|
// - ExternalFloat32Array
|
|
// - Name
|
|
// - String
|
|
// - SeqString
|
|
// - SeqOneByteString
|
|
// - SeqTwoByteString
|
|
// - SlicedString
|
|
// - ConsString
|
|
// - ExternalString
|
|
// - ExternalOneByteString
|
|
// - ExternalTwoByteString
|
|
// - InternalizedString
|
|
// - SeqInternalizedString
|
|
// - SeqOneByteInternalizedString
|
|
// - SeqTwoByteInternalizedString
|
|
// - ConsInternalizedString
|
|
// - ExternalInternalizedString
|
|
// - ExternalOneByteInternalizedString
|
|
// - ExternalTwoByteInternalizedString
|
|
// - Symbol
|
|
// - HeapNumber
|
|
// - Cell
|
|
// - PropertyCell
|
|
// - Code
|
|
// - Map
|
|
// - Oddball
|
|
// - Foreign
|
|
// - SharedFunctionInfo
|
|
// - Struct
|
|
// - Box
|
|
// - AccessorInfo
|
|
// - ExecutableAccessorInfo
|
|
// - AccessorPair
|
|
// - AccessCheckInfo
|
|
// - InterceptorInfo
|
|
// - CallHandlerInfo
|
|
// - TemplateInfo
|
|
// - FunctionTemplateInfo
|
|
// - ObjectTemplateInfo
|
|
// - Script
|
|
// - TypeSwitchInfo
|
|
// - DebugInfo
|
|
// - BreakPointInfo
|
|
// - CodeCache
|
|
// - WeakCell
|
|
//
|
|
// Formats of Object*:
|
|
// Smi: [31 bit signed int] 0
|
|
// HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
enum KeyedAccessStoreMode {
|
|
STANDARD_STORE,
|
|
STORE_TRANSITION_SMI_TO_OBJECT,
|
|
STORE_TRANSITION_SMI_TO_DOUBLE,
|
|
STORE_TRANSITION_DOUBLE_TO_OBJECT,
|
|
STORE_TRANSITION_HOLEY_SMI_TO_OBJECT,
|
|
STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE,
|
|
STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT,
|
|
STORE_AND_GROW_NO_TRANSITION,
|
|
STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT,
|
|
STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE,
|
|
STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT,
|
|
STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT,
|
|
STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE,
|
|
STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT,
|
|
STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS,
|
|
STORE_NO_TRANSITION_HANDLE_COW
|
|
};
|
|
|
|
|
|
enum ContextualMode {
|
|
NOT_CONTEXTUAL,
|
|
CONTEXTUAL
|
|
};
|
|
|
|
|
|
enum MutableMode {
|
|
MUTABLE,
|
|
IMMUTABLE
|
|
};
|
|
|
|
|
|
static const int kGrowICDelta = STORE_AND_GROW_NO_TRANSITION -
|
|
STANDARD_STORE;
|
|
STATIC_ASSERT(STANDARD_STORE == 0);
|
|
STATIC_ASSERT(kGrowICDelta ==
|
|
STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT -
|
|
STORE_TRANSITION_SMI_TO_OBJECT);
|
|
STATIC_ASSERT(kGrowICDelta ==
|
|
STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE -
|
|
STORE_TRANSITION_SMI_TO_DOUBLE);
|
|
STATIC_ASSERT(kGrowICDelta ==
|
|
STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT -
|
|
STORE_TRANSITION_DOUBLE_TO_OBJECT);
|
|
|
|
|
|
static inline KeyedAccessStoreMode GetGrowStoreMode(
|
|
KeyedAccessStoreMode store_mode) {
|
|
if (store_mode < STORE_AND_GROW_NO_TRANSITION) {
|
|
store_mode = static_cast<KeyedAccessStoreMode>(
|
|
static_cast<int>(store_mode) + kGrowICDelta);
|
|
}
|
|
return store_mode;
|
|
}
|
|
|
|
|
|
static inline bool IsTransitionStoreMode(KeyedAccessStoreMode store_mode) {
|
|
return store_mode > STANDARD_STORE &&
|
|
store_mode <= STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT &&
|
|
store_mode != STORE_AND_GROW_NO_TRANSITION;
|
|
}
|
|
|
|
|
|
static inline KeyedAccessStoreMode GetNonTransitioningStoreMode(
|
|
KeyedAccessStoreMode store_mode) {
|
|
if (store_mode >= STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
|
|
return store_mode;
|
|
}
|
|
if (store_mode >= STORE_AND_GROW_NO_TRANSITION) {
|
|
return STORE_AND_GROW_NO_TRANSITION;
|
|
}
|
|
return STANDARD_STORE;
|
|
}
|
|
|
|
|
|
static inline bool IsGrowStoreMode(KeyedAccessStoreMode store_mode) {
|
|
return store_mode >= STORE_AND_GROW_NO_TRANSITION &&
|
|
store_mode <= STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
|
|
}
|
|
|
|
|
|
enum IcCheckType { ELEMENT, PROPERTY };
|
|
|
|
|
|
// Setter that skips the write barrier if mode is SKIP_WRITE_BARRIER.
|
|
enum WriteBarrierMode { SKIP_WRITE_BARRIER, UPDATE_WRITE_BARRIER };
|
|
|
|
|
|
// Indicates whether a value can be loaded as a constant.
|
|
enum StoreMode { ALLOW_IN_DESCRIPTOR, FORCE_FIELD };
|
|
|
|
|
|
// PropertyNormalizationMode is used to specify whether to keep
|
|
// inobject properties when normalizing properties of a JSObject.
|
|
enum PropertyNormalizationMode {
|
|
CLEAR_INOBJECT_PROPERTIES,
|
|
KEEP_INOBJECT_PROPERTIES
|
|
};
|
|
|
|
|
|
// Indicates how aggressively the prototype should be optimized. FAST_PROTOTYPE
|
|
// will give the fastest result by tailoring the map to the prototype, but that
|
|
// will cause polymorphism with other objects. REGULAR_PROTOTYPE is to be used
|
|
// (at least for now) when dynamically modifying the prototype chain of an
|
|
// object using __proto__ or Object.setPrototypeOf.
|
|
enum PrototypeOptimizationMode { REGULAR_PROTOTYPE, FAST_PROTOTYPE };
|
|
|
|
|
|
// Indicates whether transitions can be added to a source map or not.
|
|
enum TransitionFlag {
|
|
INSERT_TRANSITION,
|
|
OMIT_TRANSITION
|
|
};
|
|
|
|
|
|
enum DebugExtraICState {
|
|
DEBUG_BREAK,
|
|
DEBUG_PREPARE_STEP_IN
|
|
};
|
|
|
|
|
|
// Indicates whether the transition is simple: the target map of the transition
|
|
// either extends the current map with a new property, or it modifies the
|
|
// property that was added last to the current map.
|
|
enum SimpleTransitionFlag {
|
|
SIMPLE_PROPERTY_TRANSITION,
|
|
PROPERTY_TRANSITION,
|
|
SPECIAL_TRANSITION
|
|
};
|
|
|
|
|
|
// Indicates whether we are only interested in the descriptors of a particular
|
|
// map, or in all descriptors in the descriptor array.
|
|
enum DescriptorFlag {
|
|
ALL_DESCRIPTORS,
|
|
OWN_DESCRIPTORS
|
|
};
|
|
|
|
// The GC maintains a bit of information, the MarkingParity, which toggles
|
|
// from odd to even and back every time marking is completed. Incremental
|
|
// marking can visit an object twice during a marking phase, so algorithms that
|
|
// that piggy-back on marking can use the parity to ensure that they only
|
|
// perform an operation on an object once per marking phase: they record the
|
|
// MarkingParity when they visit an object, and only re-visit the object when it
|
|
// is marked again and the MarkingParity changes.
|
|
enum MarkingParity {
|
|
NO_MARKING_PARITY,
|
|
ODD_MARKING_PARITY,
|
|
EVEN_MARKING_PARITY
|
|
};
|
|
|
|
// ICs store extra state in a Code object. The default extra state is
|
|
// kNoExtraICState.
|
|
typedef int ExtraICState;
|
|
static const ExtraICState kNoExtraICState = 0;
|
|
|
|
// Instance size sentinel for objects of variable size.
|
|
const int kVariableSizeSentinel = 0;
|
|
|
|
// We may store the unsigned bit field as signed Smi value and do not
|
|
// use the sign bit.
|
|
const int kStubMajorKeyBits = 7;
|
|
const int kStubMinorKeyBits = kSmiValueSize - kStubMajorKeyBits - 1;
|
|
|
|
// All Maps have a field instance_type containing a InstanceType.
|
|
// It describes the type of the instances.
|
|
//
|
|
// As an example, a JavaScript object is a heap object and its map
|
|
// instance_type is JS_OBJECT_TYPE.
|
|
//
|
|
// The names of the string instance types are intended to systematically
|
|
// mirror their encoding in the instance_type field of the map. The default
|
|
// encoding is considered TWO_BYTE. It is not mentioned in the name. ONE_BYTE
|
|
// encoding is mentioned explicitly in the name. Likewise, the default
|
|
// representation is considered sequential. It is not mentioned in the
|
|
// name. The other representations (e.g. CONS, EXTERNAL) are explicitly
|
|
// mentioned. Finally, the string is either a STRING_TYPE (if it is a normal
|
|
// string) or a INTERNALIZED_STRING_TYPE (if it is a internalized string).
|
|
//
|
|
// NOTE: The following things are some that depend on the string types having
|
|
// instance_types that are less than those of all other types:
|
|
// HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
|
|
// Object::IsString.
|
|
//
|
|
// NOTE: Everything following JS_VALUE_TYPE is considered a
|
|
// JSObject for GC purposes. The first four entries here have typeof
|
|
// 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
|
|
#define INSTANCE_TYPE_LIST(V) \
|
|
V(STRING_TYPE) \
|
|
V(ONE_BYTE_STRING_TYPE) \
|
|
V(CONS_STRING_TYPE) \
|
|
V(CONS_ONE_BYTE_STRING_TYPE) \
|
|
V(SLICED_STRING_TYPE) \
|
|
V(SLICED_ONE_BYTE_STRING_TYPE) \
|
|
V(EXTERNAL_STRING_TYPE) \
|
|
V(EXTERNAL_ONE_BYTE_STRING_TYPE) \
|
|
V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \
|
|
V(SHORT_EXTERNAL_STRING_TYPE) \
|
|
V(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE) \
|
|
V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \
|
|
\
|
|
V(INTERNALIZED_STRING_TYPE) \
|
|
V(ONE_BYTE_INTERNALIZED_STRING_TYPE) \
|
|
V(EXTERNAL_INTERNALIZED_STRING_TYPE) \
|
|
V(EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE) \
|
|
V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \
|
|
V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE) \
|
|
V(SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE) \
|
|
V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \
|
|
\
|
|
V(SYMBOL_TYPE) \
|
|
\
|
|
V(MAP_TYPE) \
|
|
V(CODE_TYPE) \
|
|
V(ODDBALL_TYPE) \
|
|
V(CELL_TYPE) \
|
|
V(PROPERTY_CELL_TYPE) \
|
|
\
|
|
V(HEAP_NUMBER_TYPE) \
|
|
V(MUTABLE_HEAP_NUMBER_TYPE) \
|
|
V(FOREIGN_TYPE) \
|
|
V(BYTE_ARRAY_TYPE) \
|
|
V(FREE_SPACE_TYPE) \
|
|
/* Note: the order of these external array */ \
|
|
/* types is relied upon in */ \
|
|
/* Object::IsExternalArray(). */ \
|
|
V(EXTERNAL_INT8_ARRAY_TYPE) \
|
|
V(EXTERNAL_UINT8_ARRAY_TYPE) \
|
|
V(EXTERNAL_INT16_ARRAY_TYPE) \
|
|
V(EXTERNAL_UINT16_ARRAY_TYPE) \
|
|
V(EXTERNAL_INT32_ARRAY_TYPE) \
|
|
V(EXTERNAL_UINT32_ARRAY_TYPE) \
|
|
V(EXTERNAL_FLOAT32_ARRAY_TYPE) \
|
|
V(EXTERNAL_FLOAT64_ARRAY_TYPE) \
|
|
V(EXTERNAL_UINT8_CLAMPED_ARRAY_TYPE) \
|
|
\
|
|
V(FIXED_INT8_ARRAY_TYPE) \
|
|
V(FIXED_UINT8_ARRAY_TYPE) \
|
|
V(FIXED_INT16_ARRAY_TYPE) \
|
|
V(FIXED_UINT16_ARRAY_TYPE) \
|
|
V(FIXED_INT32_ARRAY_TYPE) \
|
|
V(FIXED_UINT32_ARRAY_TYPE) \
|
|
V(FIXED_FLOAT32_ARRAY_TYPE) \
|
|
V(FIXED_FLOAT64_ARRAY_TYPE) \
|
|
V(FIXED_UINT8_CLAMPED_ARRAY_TYPE) \
|
|
\
|
|
V(FILLER_TYPE) \
|
|
\
|
|
V(DECLARED_ACCESSOR_DESCRIPTOR_TYPE) \
|
|
V(DECLARED_ACCESSOR_INFO_TYPE) \
|
|
V(EXECUTABLE_ACCESSOR_INFO_TYPE) \
|
|
V(ACCESSOR_PAIR_TYPE) \
|
|
V(ACCESS_CHECK_INFO_TYPE) \
|
|
V(INTERCEPTOR_INFO_TYPE) \
|
|
V(CALL_HANDLER_INFO_TYPE) \
|
|
V(FUNCTION_TEMPLATE_INFO_TYPE) \
|
|
V(OBJECT_TEMPLATE_INFO_TYPE) \
|
|
V(SIGNATURE_INFO_TYPE) \
|
|
V(TYPE_SWITCH_INFO_TYPE) \
|
|
V(ALLOCATION_MEMENTO_TYPE) \
|
|
V(ALLOCATION_SITE_TYPE) \
|
|
V(SCRIPT_TYPE) \
|
|
V(CODE_CACHE_TYPE) \
|
|
V(POLYMORPHIC_CODE_CACHE_TYPE) \
|
|
V(TYPE_FEEDBACK_INFO_TYPE) \
|
|
V(ALIASED_ARGUMENTS_ENTRY_TYPE) \
|
|
V(BOX_TYPE) \
|
|
\
|
|
V(FIXED_ARRAY_TYPE) \
|
|
V(FIXED_DOUBLE_ARRAY_TYPE) \
|
|
V(CONSTANT_POOL_ARRAY_TYPE) \
|
|
V(SHARED_FUNCTION_INFO_TYPE) \
|
|
V(WEAK_CELL_TYPE) \
|
|
\
|
|
V(JS_MESSAGE_OBJECT_TYPE) \
|
|
\
|
|
V(JS_VALUE_TYPE) \
|
|
V(JS_DATE_TYPE) \
|
|
V(JS_OBJECT_TYPE) \
|
|
V(JS_CONTEXT_EXTENSION_OBJECT_TYPE) \
|
|
V(JS_GENERATOR_OBJECT_TYPE) \
|
|
V(JS_MODULE_TYPE) \
|
|
V(JS_GLOBAL_OBJECT_TYPE) \
|
|
V(JS_BUILTINS_OBJECT_TYPE) \
|
|
V(JS_GLOBAL_PROXY_TYPE) \
|
|
V(JS_ARRAY_TYPE) \
|
|
V(JS_ARRAY_BUFFER_TYPE) \
|
|
V(JS_TYPED_ARRAY_TYPE) \
|
|
V(JS_DATA_VIEW_TYPE) \
|
|
V(JS_PROXY_TYPE) \
|
|
V(JS_SET_TYPE) \
|
|
V(JS_MAP_TYPE) \
|
|
V(JS_SET_ITERATOR_TYPE) \
|
|
V(JS_MAP_ITERATOR_TYPE) \
|
|
V(JS_WEAK_MAP_TYPE) \
|
|
V(JS_WEAK_SET_TYPE) \
|
|
V(JS_REGEXP_TYPE) \
|
|
\
|
|
V(JS_FUNCTION_TYPE) \
|
|
V(JS_FUNCTION_PROXY_TYPE) \
|
|
V(DEBUG_INFO_TYPE) \
|
|
V(BREAK_POINT_INFO_TYPE)
|
|
|
|
|
|
// Since string types are not consecutive, this macro is used to
|
|
// iterate over them.
|
|
#define STRING_TYPE_LIST(V) \
|
|
V(STRING_TYPE, kVariableSizeSentinel, string, String) \
|
|
V(ONE_BYTE_STRING_TYPE, kVariableSizeSentinel, one_byte_string, \
|
|
OneByteString) \
|
|
V(CONS_STRING_TYPE, ConsString::kSize, cons_string, ConsString) \
|
|
V(CONS_ONE_BYTE_STRING_TYPE, ConsString::kSize, cons_one_byte_string, \
|
|
ConsOneByteString) \
|
|
V(SLICED_STRING_TYPE, SlicedString::kSize, sliced_string, SlicedString) \
|
|
V(SLICED_ONE_BYTE_STRING_TYPE, SlicedString::kSize, sliced_one_byte_string, \
|
|
SlicedOneByteString) \
|
|
V(EXTERNAL_STRING_TYPE, ExternalTwoByteString::kSize, external_string, \
|
|
ExternalString) \
|
|
V(EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kSize, \
|
|
external_one_byte_string, ExternalOneByteString) \
|
|
V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, ExternalTwoByteString::kSize, \
|
|
external_string_with_one_byte_data, ExternalStringWithOneByteData) \
|
|
V(SHORT_EXTERNAL_STRING_TYPE, ExternalTwoByteString::kShortSize, \
|
|
short_external_string, ShortExternalString) \
|
|
V(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kShortSize, \
|
|
short_external_one_byte_string, ShortExternalOneByteString) \
|
|
V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, \
|
|
ExternalTwoByteString::kShortSize, \
|
|
short_external_string_with_one_byte_data, \
|
|
ShortExternalStringWithOneByteData) \
|
|
\
|
|
V(INTERNALIZED_STRING_TYPE, kVariableSizeSentinel, internalized_string, \
|
|
InternalizedString) \
|
|
V(ONE_BYTE_INTERNALIZED_STRING_TYPE, kVariableSizeSentinel, \
|
|
one_byte_internalized_string, OneByteInternalizedString) \
|
|
V(EXTERNAL_INTERNALIZED_STRING_TYPE, ExternalTwoByteString::kSize, \
|
|
external_internalized_string, ExternalInternalizedString) \
|
|
V(EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE, ExternalOneByteString::kSize, \
|
|
external_one_byte_internalized_string, ExternalOneByteInternalizedString) \
|
|
V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \
|
|
ExternalTwoByteString::kSize, \
|
|
external_internalized_string_with_one_byte_data, \
|
|
ExternalInternalizedStringWithOneByteData) \
|
|
V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE, \
|
|
ExternalTwoByteString::kShortSize, short_external_internalized_string, \
|
|
ShortExternalInternalizedString) \
|
|
V(SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE, \
|
|
ExternalOneByteString::kShortSize, \
|
|
short_external_one_byte_internalized_string, \
|
|
ShortExternalOneByteInternalizedString) \
|
|
V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \
|
|
ExternalTwoByteString::kShortSize, \
|
|
short_external_internalized_string_with_one_byte_data, \
|
|
ShortExternalInternalizedStringWithOneByteData)
|
|
|
|
// A struct is a simple object a set of object-valued fields. Including an
|
|
// object type in this causes the compiler to generate most of the boilerplate
|
|
// code for the class including allocation and garbage collection routines,
|
|
// casts and predicates. All you need to define is the class, methods and
|
|
// object verification routines. Easy, no?
|
|
//
|
|
// Note that for subtle reasons related to the ordering or numerical values of
|
|
// type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
|
|
// manually.
|
|
#define STRUCT_LIST(V) \
|
|
V(BOX, Box, box) \
|
|
V(EXECUTABLE_ACCESSOR_INFO, ExecutableAccessorInfo, executable_accessor_info)\
|
|
V(ACCESSOR_PAIR, AccessorPair, accessor_pair) \
|
|
V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info) \
|
|
V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info) \
|
|
V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info) \
|
|
V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info) \
|
|
V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info) \
|
|
V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info) \
|
|
V(SCRIPT, Script, script) \
|
|
V(ALLOCATION_SITE, AllocationSite, allocation_site) \
|
|
V(ALLOCATION_MEMENTO, AllocationMemento, allocation_memento) \
|
|
V(CODE_CACHE, CodeCache, code_cache) \
|
|
V(POLYMORPHIC_CODE_CACHE, PolymorphicCodeCache, polymorphic_code_cache) \
|
|
V(TYPE_FEEDBACK_INFO, TypeFeedbackInfo, type_feedback_info) \
|
|
V(ALIASED_ARGUMENTS_ENTRY, AliasedArgumentsEntry, aliased_arguments_entry) \
|
|
V(DEBUG_INFO, DebugInfo, debug_info) \
|
|
V(BREAK_POINT_INFO, BreakPointInfo, break_point_info)
|
|
|
|
// We use the full 8 bits of the instance_type field to encode heap object
|
|
// instance types. The high-order bit (bit 7) is set if the object is not a
|
|
// string, and cleared if it is a string.
|
|
const uint32_t kIsNotStringMask = 0x80;
|
|
const uint32_t kStringTag = 0x0;
|
|
const uint32_t kNotStringTag = 0x80;
|
|
|
|
// Bit 6 indicates that the object is an internalized string (if set) or not.
|
|
// Bit 7 has to be clear as well.
|
|
const uint32_t kIsNotInternalizedMask = 0x40;
|
|
const uint32_t kNotInternalizedTag = 0x40;
|
|
const uint32_t kInternalizedTag = 0x0;
|
|
|
|
// If bit 7 is clear then bit 2 indicates whether the string consists of
|
|
// two-byte characters or one-byte characters.
|
|
const uint32_t kStringEncodingMask = 0x4;
|
|
const uint32_t kTwoByteStringTag = 0x0;
|
|
const uint32_t kOneByteStringTag = 0x4;
|
|
|
|
// If bit 7 is clear, the low-order 2 bits indicate the representation
|
|
// of the string.
|
|
const uint32_t kStringRepresentationMask = 0x03;
|
|
enum StringRepresentationTag {
|
|
kSeqStringTag = 0x0,
|
|
kConsStringTag = 0x1,
|
|
kExternalStringTag = 0x2,
|
|
kSlicedStringTag = 0x3
|
|
};
|
|
const uint32_t kIsIndirectStringMask = 0x1;
|
|
const uint32_t kIsIndirectStringTag = 0x1;
|
|
STATIC_ASSERT((kSeqStringTag & kIsIndirectStringMask) == 0); // NOLINT
|
|
STATIC_ASSERT((kExternalStringTag & kIsIndirectStringMask) == 0); // NOLINT
|
|
STATIC_ASSERT((kConsStringTag &
|
|
kIsIndirectStringMask) == kIsIndirectStringTag); // NOLINT
|
|
STATIC_ASSERT((kSlicedStringTag &
|
|
kIsIndirectStringMask) == kIsIndirectStringTag); // NOLINT
|
|
|
|
// Use this mask to distinguish between cons and slice only after making
|
|
// sure that the string is one of the two (an indirect string).
|
|
const uint32_t kSlicedNotConsMask = kSlicedStringTag & ~kConsStringTag;
|
|
STATIC_ASSERT(IS_POWER_OF_TWO(kSlicedNotConsMask));
|
|
|
|
// If bit 7 is clear, then bit 3 indicates whether this two-byte
|
|
// string actually contains one byte data.
|
|
const uint32_t kOneByteDataHintMask = 0x08;
|
|
const uint32_t kOneByteDataHintTag = 0x08;
|
|
|
|
// If bit 7 is clear and string representation indicates an external string,
|
|
// then bit 4 indicates whether the data pointer is cached.
|
|
const uint32_t kShortExternalStringMask = 0x10;
|
|
const uint32_t kShortExternalStringTag = 0x10;
|
|
|
|
|
|
// A ConsString with an empty string as the right side is a candidate
|
|
// for being shortcut by the garbage collector. We don't allocate any
|
|
// non-flat internalized strings, so we do not shortcut them thereby
|
|
// avoiding turning internalized strings into strings. The bit-masks
|
|
// below contain the internalized bit as additional safety.
|
|
// See heap.cc, mark-compact.cc and objects-visiting.cc.
|
|
const uint32_t kShortcutTypeMask =
|
|
kIsNotStringMask |
|
|
kIsNotInternalizedMask |
|
|
kStringRepresentationMask;
|
|
const uint32_t kShortcutTypeTag = kConsStringTag | kNotInternalizedTag;
|
|
|
|
static inline bool IsShortcutCandidate(int type) {
|
|
return ((type & kShortcutTypeMask) == kShortcutTypeTag);
|
|
}
|
|
|
|
|
|
enum InstanceType {
|
|
// String types.
|
|
INTERNALIZED_STRING_TYPE =
|
|
kTwoByteStringTag | kSeqStringTag | kInternalizedTag,
|
|
ONE_BYTE_INTERNALIZED_STRING_TYPE =
|
|
kOneByteStringTag | kSeqStringTag | kInternalizedTag,
|
|
EXTERNAL_INTERNALIZED_STRING_TYPE =
|
|
kTwoByteStringTag | kExternalStringTag | kInternalizedTag,
|
|
EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE =
|
|
kOneByteStringTag | kExternalStringTag | kInternalizedTag,
|
|
EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
|
|
EXTERNAL_INTERNALIZED_STRING_TYPE | kOneByteDataHintTag |
|
|
kInternalizedTag,
|
|
SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE = EXTERNAL_INTERNALIZED_STRING_TYPE |
|
|
kShortExternalStringTag |
|
|
kInternalizedTag,
|
|
SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE =
|
|
EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kShortExternalStringTag |
|
|
kInternalizedTag,
|
|
SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
|
|
EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
|
|
kShortExternalStringTag | kInternalizedTag,
|
|
STRING_TYPE = INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
ONE_BYTE_STRING_TYPE =
|
|
ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
CONS_STRING_TYPE = kTwoByteStringTag | kConsStringTag | kNotInternalizedTag,
|
|
CONS_ONE_BYTE_STRING_TYPE =
|
|
kOneByteStringTag | kConsStringTag | kNotInternalizedTag,
|
|
SLICED_STRING_TYPE =
|
|
kTwoByteStringTag | kSlicedStringTag | kNotInternalizedTag,
|
|
SLICED_ONE_BYTE_STRING_TYPE =
|
|
kOneByteStringTag | kSlicedStringTag | kNotInternalizedTag,
|
|
EXTERNAL_STRING_TYPE =
|
|
EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
EXTERNAL_ONE_BYTE_STRING_TYPE =
|
|
EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
|
|
EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
|
|
kNotInternalizedTag,
|
|
SHORT_EXTERNAL_STRING_TYPE =
|
|
SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE =
|
|
SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
|
|
SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
|
|
kNotInternalizedTag,
|
|
|
|
// Non-string names
|
|
SYMBOL_TYPE = kNotStringTag, // FIRST_NONSTRING_TYPE, LAST_NAME_TYPE
|
|
|
|
// Objects allocated in their own spaces (never in new space).
|
|
MAP_TYPE,
|
|
CODE_TYPE,
|
|
ODDBALL_TYPE,
|
|
CELL_TYPE,
|
|
PROPERTY_CELL_TYPE,
|
|
|
|
// "Data", objects that cannot contain non-map-word pointers to heap
|
|
// objects.
|
|
HEAP_NUMBER_TYPE,
|
|
MUTABLE_HEAP_NUMBER_TYPE,
|
|
FOREIGN_TYPE,
|
|
BYTE_ARRAY_TYPE,
|
|
FREE_SPACE_TYPE,
|
|
EXTERNAL_INT8_ARRAY_TYPE, // FIRST_EXTERNAL_ARRAY_TYPE
|
|
EXTERNAL_UINT8_ARRAY_TYPE,
|
|
EXTERNAL_INT16_ARRAY_TYPE,
|
|
EXTERNAL_UINT16_ARRAY_TYPE,
|
|
EXTERNAL_INT32_ARRAY_TYPE,
|
|
EXTERNAL_UINT32_ARRAY_TYPE,
|
|
EXTERNAL_FLOAT32_ARRAY_TYPE,
|
|
EXTERNAL_FLOAT64_ARRAY_TYPE,
|
|
EXTERNAL_UINT8_CLAMPED_ARRAY_TYPE, // LAST_EXTERNAL_ARRAY_TYPE
|
|
FIXED_INT8_ARRAY_TYPE, // FIRST_FIXED_TYPED_ARRAY_TYPE
|
|
FIXED_UINT8_ARRAY_TYPE,
|
|
FIXED_INT16_ARRAY_TYPE,
|
|
FIXED_UINT16_ARRAY_TYPE,
|
|
FIXED_INT32_ARRAY_TYPE,
|
|
FIXED_UINT32_ARRAY_TYPE,
|
|
FIXED_FLOAT32_ARRAY_TYPE,
|
|
FIXED_FLOAT64_ARRAY_TYPE,
|
|
FIXED_UINT8_CLAMPED_ARRAY_TYPE, // LAST_FIXED_TYPED_ARRAY_TYPE
|
|
FIXED_DOUBLE_ARRAY_TYPE,
|
|
FILLER_TYPE, // LAST_DATA_TYPE
|
|
|
|
// Structs.
|
|
DECLARED_ACCESSOR_DESCRIPTOR_TYPE,
|
|
DECLARED_ACCESSOR_INFO_TYPE,
|
|
EXECUTABLE_ACCESSOR_INFO_TYPE,
|
|
ACCESSOR_PAIR_TYPE,
|
|
ACCESS_CHECK_INFO_TYPE,
|
|
INTERCEPTOR_INFO_TYPE,
|
|
CALL_HANDLER_INFO_TYPE,
|
|
FUNCTION_TEMPLATE_INFO_TYPE,
|
|
OBJECT_TEMPLATE_INFO_TYPE,
|
|
SIGNATURE_INFO_TYPE,
|
|
TYPE_SWITCH_INFO_TYPE,
|
|
ALLOCATION_SITE_TYPE,
|
|
ALLOCATION_MEMENTO_TYPE,
|
|
SCRIPT_TYPE,
|
|
CODE_CACHE_TYPE,
|
|
POLYMORPHIC_CODE_CACHE_TYPE,
|
|
TYPE_FEEDBACK_INFO_TYPE,
|
|
ALIASED_ARGUMENTS_ENTRY_TYPE,
|
|
BOX_TYPE,
|
|
DEBUG_INFO_TYPE,
|
|
BREAK_POINT_INFO_TYPE,
|
|
FIXED_ARRAY_TYPE,
|
|
CONSTANT_POOL_ARRAY_TYPE,
|
|
SHARED_FUNCTION_INFO_TYPE,
|
|
WEAK_CELL_TYPE,
|
|
|
|
// All the following types are subtypes of JSReceiver, which corresponds to
|
|
// objects in the JS sense. The first and the last type in this range are
|
|
// the two forms of function. This organization enables using the same
|
|
// compares for checking the JS_RECEIVER/SPEC_OBJECT range and the
|
|
// NONCALLABLE_JS_OBJECT range.
|
|
JS_FUNCTION_PROXY_TYPE, // FIRST_JS_RECEIVER_TYPE, FIRST_JS_PROXY_TYPE
|
|
JS_PROXY_TYPE, // LAST_JS_PROXY_TYPE
|
|
JS_VALUE_TYPE, // FIRST_JS_OBJECT_TYPE
|
|
JS_MESSAGE_OBJECT_TYPE,
|
|
JS_DATE_TYPE,
|
|
JS_OBJECT_TYPE,
|
|
JS_CONTEXT_EXTENSION_OBJECT_TYPE,
|
|
JS_GENERATOR_OBJECT_TYPE,
|
|
JS_MODULE_TYPE,
|
|
JS_GLOBAL_OBJECT_TYPE,
|
|
JS_BUILTINS_OBJECT_TYPE,
|
|
JS_GLOBAL_PROXY_TYPE,
|
|
JS_ARRAY_TYPE,
|
|
JS_ARRAY_BUFFER_TYPE,
|
|
JS_TYPED_ARRAY_TYPE,
|
|
JS_DATA_VIEW_TYPE,
|
|
JS_SET_TYPE,
|
|
JS_MAP_TYPE,
|
|
JS_SET_ITERATOR_TYPE,
|
|
JS_MAP_ITERATOR_TYPE,
|
|
JS_WEAK_MAP_TYPE,
|
|
JS_WEAK_SET_TYPE,
|
|
JS_REGEXP_TYPE,
|
|
JS_FUNCTION_TYPE, // LAST_JS_OBJECT_TYPE, LAST_JS_RECEIVER_TYPE
|
|
|
|
// Pseudo-types
|
|
FIRST_TYPE = 0x0,
|
|
LAST_TYPE = JS_FUNCTION_TYPE,
|
|
FIRST_NAME_TYPE = FIRST_TYPE,
|
|
LAST_NAME_TYPE = SYMBOL_TYPE,
|
|
FIRST_UNIQUE_NAME_TYPE = INTERNALIZED_STRING_TYPE,
|
|
LAST_UNIQUE_NAME_TYPE = SYMBOL_TYPE,
|
|
FIRST_NONSTRING_TYPE = SYMBOL_TYPE,
|
|
// Boundaries for testing for an external array.
|
|
FIRST_EXTERNAL_ARRAY_TYPE = EXTERNAL_INT8_ARRAY_TYPE,
|
|
LAST_EXTERNAL_ARRAY_TYPE = EXTERNAL_UINT8_CLAMPED_ARRAY_TYPE,
|
|
// Boundaries for testing for a fixed typed array.
|
|
FIRST_FIXED_TYPED_ARRAY_TYPE = FIXED_INT8_ARRAY_TYPE,
|
|
LAST_FIXED_TYPED_ARRAY_TYPE = FIXED_UINT8_CLAMPED_ARRAY_TYPE,
|
|
// Boundary for promotion to old data space/old pointer space.
|
|
LAST_DATA_TYPE = FILLER_TYPE,
|
|
// Boundary for objects represented as JSReceiver (i.e. JSObject or JSProxy).
|
|
// Note that there is no range for JSObject or JSProxy, since their subtypes
|
|
// are not continuous in this enum! The enum ranges instead reflect the
|
|
// external class names, where proxies are treated as either ordinary objects,
|
|
// or functions.
|
|
FIRST_JS_RECEIVER_TYPE = JS_FUNCTION_PROXY_TYPE,
|
|
LAST_JS_RECEIVER_TYPE = LAST_TYPE,
|
|
// Boundaries for testing the types represented as JSObject
|
|
FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
|
|
LAST_JS_OBJECT_TYPE = LAST_TYPE,
|
|
// Boundaries for testing the types represented as JSProxy
|
|
FIRST_JS_PROXY_TYPE = JS_FUNCTION_PROXY_TYPE,
|
|
LAST_JS_PROXY_TYPE = JS_PROXY_TYPE,
|
|
// Boundaries for testing whether the type is a JavaScript object.
|
|
FIRST_SPEC_OBJECT_TYPE = FIRST_JS_RECEIVER_TYPE,
|
|
LAST_SPEC_OBJECT_TYPE = LAST_JS_RECEIVER_TYPE,
|
|
// Boundaries for testing the types for which typeof is "object".
|
|
FIRST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_PROXY_TYPE,
|
|
LAST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_REGEXP_TYPE,
|
|
// Note that the types for which typeof is "function" are not continuous.
|
|
// Define this so that we can put assertions on discrete checks.
|
|
NUM_OF_CALLABLE_SPEC_OBJECT_TYPES = 2
|
|
};
|
|
|
|
const int kExternalArrayTypeCount =
|
|
LAST_EXTERNAL_ARRAY_TYPE - FIRST_EXTERNAL_ARRAY_TYPE + 1;
|
|
|
|
STATIC_ASSERT(JS_OBJECT_TYPE == Internals::kJSObjectType);
|
|
STATIC_ASSERT(FIRST_NONSTRING_TYPE == Internals::kFirstNonstringType);
|
|
STATIC_ASSERT(ODDBALL_TYPE == Internals::kOddballType);
|
|
STATIC_ASSERT(FOREIGN_TYPE == Internals::kForeignType);
|
|
|
|
|
|
#define FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(V) \
|
|
V(FAST_ELEMENTS_SUB_TYPE) \
|
|
V(DICTIONARY_ELEMENTS_SUB_TYPE) \
|
|
V(FAST_PROPERTIES_SUB_TYPE) \
|
|
V(DICTIONARY_PROPERTIES_SUB_TYPE) \
|
|
V(MAP_CODE_CACHE_SUB_TYPE) \
|
|
V(SCOPE_INFO_SUB_TYPE) \
|
|
V(STRING_TABLE_SUB_TYPE) \
|
|
V(DESCRIPTOR_ARRAY_SUB_TYPE) \
|
|
V(TRANSITION_ARRAY_SUB_TYPE)
|
|
|
|
enum FixedArraySubInstanceType {
|
|
#define DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE(name) name,
|
|
FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE)
|
|
#undef DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE
|
|
LAST_FIXED_ARRAY_SUB_TYPE = TRANSITION_ARRAY_SUB_TYPE
|
|
};
|
|
|
|
|
|
enum CompareResult {
|
|
LESS = -1,
|
|
EQUAL = 0,
|
|
GREATER = 1,
|
|
|
|
NOT_EQUAL = GREATER
|
|
};
|
|
|
|
|
|
#define DECL_BOOLEAN_ACCESSORS(name) \
|
|
inline bool name() const; \
|
|
inline void set_##name(bool value); \
|
|
|
|
|
|
#define DECL_ACCESSORS(name, type) \
|
|
inline type* name() const; \
|
|
inline void set_##name(type* value, \
|
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \
|
|
|
|
|
|
#define DECLARE_CAST(type) \
|
|
INLINE(static type* cast(Object* object)); \
|
|
INLINE(static const type* cast(const Object* object));
|
|
|
|
|
|
class AccessorPair;
|
|
class AllocationSite;
|
|
class AllocationSiteCreationContext;
|
|
class AllocationSiteUsageContext;
|
|
class ConsString;
|
|
class DictionaryElementsAccessor;
|
|
class ElementsAccessor;
|
|
class FixedArrayBase;
|
|
class GlobalObject;
|
|
class LayoutDescriptor;
|
|
class LookupIterator;
|
|
class ObjectVisitor;
|
|
class StringStream;
|
|
class TypeFeedbackVector;
|
|
class WeakCell;
|
|
// We cannot just say "class HeapType;" if it is created from a template... =8-?
|
|
template<class> class TypeImpl;
|
|
struct HeapTypeConfig;
|
|
typedef TypeImpl<HeapTypeConfig> HeapType;
|
|
|
|
|
|
// A template-ized version of the IsXXX functions.
|
|
template <class C> inline bool Is(Object* obj);
|
|
|
|
#ifdef VERIFY_HEAP
|
|
#define DECLARE_VERIFIER(Name) void Name##Verify();
|
|
#else
|
|
#define DECLARE_VERIFIER(Name)
|
|
#endif
|
|
|
|
#ifdef OBJECT_PRINT
|
|
#define DECLARE_PRINTER(Name) void Name##Print(std::ostream& os); // NOLINT
|
|
#else
|
|
#define DECLARE_PRINTER(Name)
|
|
#endif
|
|
|
|
|
|
#define OBJECT_TYPE_LIST(V) \
|
|
V(Smi) \
|
|
V(HeapObject) \
|
|
V(Number)
|
|
|
|
#define HEAP_OBJECT_TYPE_LIST(V) \
|
|
V(HeapNumber) \
|
|
V(MutableHeapNumber) \
|
|
V(Name) \
|
|
V(UniqueName) \
|
|
V(String) \
|
|
V(SeqString) \
|
|
V(ExternalString) \
|
|
V(ConsString) \
|
|
V(SlicedString) \
|
|
V(ExternalTwoByteString) \
|
|
V(ExternalOneByteString) \
|
|
V(SeqTwoByteString) \
|
|
V(SeqOneByteString) \
|
|
V(InternalizedString) \
|
|
V(Symbol) \
|
|
\
|
|
V(ExternalArray) \
|
|
V(ExternalInt8Array) \
|
|
V(ExternalUint8Array) \
|
|
V(ExternalInt16Array) \
|
|
V(ExternalUint16Array) \
|
|
V(ExternalInt32Array) \
|
|
V(ExternalUint32Array) \
|
|
V(ExternalFloat32Array) \
|
|
V(ExternalFloat64Array) \
|
|
V(ExternalUint8ClampedArray) \
|
|
V(FixedTypedArrayBase) \
|
|
V(FixedUint8Array) \
|
|
V(FixedInt8Array) \
|
|
V(FixedUint16Array) \
|
|
V(FixedInt16Array) \
|
|
V(FixedUint32Array) \
|
|
V(FixedInt32Array) \
|
|
V(FixedFloat32Array) \
|
|
V(FixedFloat64Array) \
|
|
V(FixedUint8ClampedArray) \
|
|
V(ByteArray) \
|
|
V(FreeSpace) \
|
|
V(JSReceiver) \
|
|
V(JSObject) \
|
|
V(JSContextExtensionObject) \
|
|
V(JSGeneratorObject) \
|
|
V(JSModule) \
|
|
V(LayoutDescriptor) \
|
|
V(Map) \
|
|
V(DescriptorArray) \
|
|
V(TransitionArray) \
|
|
V(TypeFeedbackVector) \
|
|
V(DeoptimizationInputData) \
|
|
V(DeoptimizationOutputData) \
|
|
V(DependentCode) \
|
|
V(FixedArray) \
|
|
V(FixedDoubleArray) \
|
|
V(WeakFixedArray) \
|
|
V(ConstantPoolArray) \
|
|
V(Context) \
|
|
V(ScriptContextTable) \
|
|
V(NativeContext) \
|
|
V(ScopeInfo) \
|
|
V(JSFunction) \
|
|
V(Code) \
|
|
V(Oddball) \
|
|
V(SharedFunctionInfo) \
|
|
V(JSValue) \
|
|
V(JSDate) \
|
|
V(JSMessageObject) \
|
|
V(StringWrapper) \
|
|
V(Foreign) \
|
|
V(Boolean) \
|
|
V(JSArray) \
|
|
V(JSArrayBuffer) \
|
|
V(JSArrayBufferView) \
|
|
V(JSTypedArray) \
|
|
V(JSDataView) \
|
|
V(JSProxy) \
|
|
V(JSFunctionProxy) \
|
|
V(JSSet) \
|
|
V(JSMap) \
|
|
V(JSSetIterator) \
|
|
V(JSMapIterator) \
|
|
V(JSWeakCollection) \
|
|
V(JSWeakMap) \
|
|
V(JSWeakSet) \
|
|
V(JSRegExp) \
|
|
V(HashTable) \
|
|
V(Dictionary) \
|
|
V(StringTable) \
|
|
V(JSFunctionResultCache) \
|
|
V(NormalizedMapCache) \
|
|
V(CompilationCacheTable) \
|
|
V(CodeCacheHashTable) \
|
|
V(PolymorphicCodeCacheHashTable) \
|
|
V(MapCache) \
|
|
V(Primitive) \
|
|
V(GlobalObject) \
|
|
V(JSGlobalObject) \
|
|
V(JSBuiltinsObject) \
|
|
V(JSGlobalProxy) \
|
|
V(UndetectableObject) \
|
|
V(AccessCheckNeeded) \
|
|
V(Cell) \
|
|
V(PropertyCell) \
|
|
V(WeakCell) \
|
|
V(ObjectHashTable) \
|
|
V(WeakHashTable) \
|
|
V(OrderedHashTable)
|
|
|
|
// Object is the abstract superclass for all classes in the
|
|
// object hierarchy.
|
|
// Object does not use any virtual functions to avoid the
|
|
// allocation of the C++ vtable.
|
|
// Since both Smi and HeapObject are subclasses of Object no
|
|
// data members can be present in Object.
|
|
class Object {
|
|
public:
|
|
// Type testing.
|
|
bool IsObject() const { return true; }
|
|
|
|
#define IS_TYPE_FUNCTION_DECL(type_) INLINE(bool Is##type_() const);
|
|
OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
|
|
HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
|
|
#undef IS_TYPE_FUNCTION_DECL
|
|
|
|
// A non-keyed store is of the form a.x = foo or a["x"] = foo whereas
|
|
// a keyed store is of the form a[expression] = foo.
|
|
enum StoreFromKeyed {
|
|
MAY_BE_STORE_FROM_KEYED,
|
|
CERTAINLY_NOT_STORE_FROM_KEYED
|
|
};
|
|
|
|
enum StorePropertyMode { NORMAL_PROPERTY, SUPER_PROPERTY };
|
|
|
|
INLINE(bool IsFixedArrayBase() const);
|
|
INLINE(bool IsExternal() const);
|
|
INLINE(bool IsAccessorInfo() const);
|
|
|
|
INLINE(bool IsStruct() const);
|
|
#define DECLARE_STRUCT_PREDICATE(NAME, Name, name) \
|
|
INLINE(bool Is##Name() const);
|
|
STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
|
|
#undef DECLARE_STRUCT_PREDICATE
|
|
|
|
INLINE(bool IsSpecObject()) const;
|
|
INLINE(bool IsSpecFunction()) const;
|
|
INLINE(bool IsTemplateInfo()) const;
|
|
INLINE(bool IsNameDictionary() const);
|
|
INLINE(bool IsSeededNumberDictionary() const);
|
|
INLINE(bool IsUnseededNumberDictionary() const);
|
|
INLINE(bool IsOrderedHashSet() const);
|
|
INLINE(bool IsOrderedHashMap() const);
|
|
bool IsCallable() const;
|
|
|
|
// Oddball testing.
|
|
INLINE(bool IsUndefined() const);
|
|
INLINE(bool IsNull() const);
|
|
INLINE(bool IsTheHole() const);
|
|
INLINE(bool IsException() const);
|
|
INLINE(bool IsUninitialized() const);
|
|
INLINE(bool IsTrue() const);
|
|
INLINE(bool IsFalse() const);
|
|
INLINE(bool IsArgumentsMarker() const);
|
|
|
|
// Filler objects (fillers and free space objects).
|
|
INLINE(bool IsFiller() const);
|
|
|
|
// Extract the number.
|
|
inline double Number();
|
|
INLINE(bool IsNaN() const);
|
|
INLINE(bool IsMinusZero() const);
|
|
bool ToInt32(int32_t* value);
|
|
bool ToUint32(uint32_t* value);
|
|
|
|
inline Representation OptimalRepresentation() {
|
|
if (!FLAG_track_fields) return Representation::Tagged();
|
|
if (IsSmi()) {
|
|
return Representation::Smi();
|
|
} else if (FLAG_track_double_fields && IsHeapNumber()) {
|
|
return Representation::Double();
|
|
} else if (FLAG_track_computed_fields && IsUninitialized()) {
|
|
return Representation::None();
|
|
} else if (FLAG_track_heap_object_fields) {
|
|
DCHECK(IsHeapObject());
|
|
return Representation::HeapObject();
|
|
} else {
|
|
return Representation::Tagged();
|
|
}
|
|
}
|
|
|
|
inline bool FitsRepresentation(Representation representation) {
|
|
if (FLAG_track_fields && representation.IsNone()) {
|
|
return false;
|
|
} else if (FLAG_track_fields && representation.IsSmi()) {
|
|
return IsSmi();
|
|
} else if (FLAG_track_double_fields && representation.IsDouble()) {
|
|
return IsMutableHeapNumber() || IsNumber();
|
|
} else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) {
|
|
return IsHeapObject();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Handle<HeapType> OptimalType(Isolate* isolate, Representation representation);
|
|
|
|
inline static Handle<Object> NewStorageFor(Isolate* isolate,
|
|
Handle<Object> object,
|
|
Representation representation);
|
|
|
|
inline static Handle<Object> WrapForRead(Isolate* isolate,
|
|
Handle<Object> object,
|
|
Representation representation);
|
|
|
|
// Returns true if the object is of the correct type to be used as a
|
|
// implementation of a JSObject's elements.
|
|
inline bool HasValidElements();
|
|
|
|
inline bool HasSpecificClassOf(String* name);
|
|
|
|
bool BooleanValue(); // ECMA-262 9.2.
|
|
|
|
// Convert to a JSObject if needed.
|
|
// native_context is used when creating wrapper object.
|
|
static inline MaybeHandle<JSReceiver> ToObject(Isolate* isolate,
|
|
Handle<Object> object);
|
|
static MaybeHandle<JSReceiver> ToObject(Isolate* isolate,
|
|
Handle<Object> object,
|
|
Handle<Context> context);
|
|
|
|
// Converts this to a Smi if possible.
|
|
static MUST_USE_RESULT inline MaybeHandle<Smi> ToSmi(Isolate* isolate,
|
|
Handle<Object> object);
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Object> GetProperty(LookupIterator* it);
|
|
|
|
// Implementation of [[Put]], ECMA-262 5th edition, section 8.12.5.
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetProperty(
|
|
Handle<Object> object, Handle<Name> key, Handle<Object> value,
|
|
StrictMode strict_mode,
|
|
StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED);
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetProperty(
|
|
LookupIterator* it, Handle<Object> value, StrictMode strict_mode,
|
|
StoreFromKeyed store_mode,
|
|
StorePropertyMode data_store_mode = NORMAL_PROPERTY);
|
|
MUST_USE_RESULT static MaybeHandle<Object> WriteToReadOnlyProperty(
|
|
LookupIterator* it, Handle<Object> value, StrictMode strict_mode);
|
|
MUST_USE_RESULT static MaybeHandle<Object> WriteToReadOnlyElement(
|
|
Isolate* isolate, Handle<Object> receiver, uint32_t index,
|
|
Handle<Object> value, StrictMode strict_mode);
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetDataProperty(
|
|
LookupIterator* it, Handle<Object> value);
|
|
MUST_USE_RESULT static MaybeHandle<Object> AddDataProperty(
|
|
LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
|
|
StrictMode strict_mode, StoreFromKeyed store_mode);
|
|
MUST_USE_RESULT static inline MaybeHandle<Object> GetPropertyOrElement(
|
|
Handle<Object> object,
|
|
Handle<Name> key);
|
|
MUST_USE_RESULT static inline MaybeHandle<Object> GetProperty(
|
|
Isolate* isolate,
|
|
Handle<Object> object,
|
|
const char* key);
|
|
MUST_USE_RESULT static inline MaybeHandle<Object> GetProperty(
|
|
Handle<Object> object,
|
|
Handle<Name> key);
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithAccessor(
|
|
Handle<Object> receiver,
|
|
Handle<Name> name,
|
|
Handle<JSObject> holder,
|
|
Handle<Object> structure);
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithAccessor(
|
|
Handle<Object> receiver, Handle<Name> name, Handle<Object> value,
|
|
Handle<JSObject> holder, Handle<Object> structure,
|
|
StrictMode strict_mode);
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithDefinedGetter(
|
|
Handle<Object> receiver,
|
|
Handle<JSReceiver> getter);
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithDefinedSetter(
|
|
Handle<Object> receiver,
|
|
Handle<JSReceiver> setter,
|
|
Handle<Object> value);
|
|
|
|
MUST_USE_RESULT static inline MaybeHandle<Object> GetElement(
|
|
Isolate* isolate,
|
|
Handle<Object> object,
|
|
uint32_t index);
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Object> GetElementWithReceiver(
|
|
Isolate* isolate,
|
|
Handle<Object> object,
|
|
Handle<Object> receiver,
|
|
uint32_t index);
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetElementWithReceiver(
|
|
Isolate* isolate, Handle<Object> object, Handle<Object> receiver,
|
|
uint32_t index, Handle<Object> value, StrictMode strict_mode);
|
|
|
|
static inline Handle<Object> GetPrototypeSkipHiddenPrototypes(
|
|
Isolate* isolate, Handle<Object> receiver);
|
|
|
|
// Returns the permanent hash code associated with this object. May return
|
|
// undefined if not yet created.
|
|
Object* GetHash();
|
|
|
|
// Returns the permanent hash code associated with this object depending on
|
|
// the actual object type. May create and store a hash code if needed and none
|
|
// exists.
|
|
static Handle<Smi> GetOrCreateHash(Isolate* isolate, Handle<Object> object);
|
|
|
|
// Checks whether this object has the same value as the given one. This
|
|
// function is implemented according to ES5, section 9.12 and can be used
|
|
// to implement the Harmony "egal" function.
|
|
bool SameValue(Object* other);
|
|
|
|
// Checks whether this object has the same value as the given one.
|
|
// +0 and -0 are treated equal. Everything else is the same as SameValue.
|
|
// This function is implemented according to ES6, section 7.2.4 and is used
|
|
// by ES6 Map and Set.
|
|
bool SameValueZero(Object* other);
|
|
|
|
// Tries to convert an object to an array index. Returns true and sets
|
|
// the output parameter if it succeeds.
|
|
inline bool ToArrayIndex(uint32_t* index);
|
|
|
|
// Returns true if this is a JSValue containing a string and the index is
|
|
// < the length of the string. Used to implement [] on strings.
|
|
inline bool IsStringObjectWithCharacterAt(uint32_t index);
|
|
|
|
DECLARE_VERIFIER(Object)
|
|
#ifdef VERIFY_HEAP
|
|
// Verify a pointer is a valid object pointer.
|
|
static void VerifyPointer(Object* p);
|
|
#endif
|
|
|
|
inline void VerifyApiCallResultType();
|
|
|
|
// Prints this object without details.
|
|
void ShortPrint(FILE* out = stdout);
|
|
|
|
// Prints this object without details to a message accumulator.
|
|
void ShortPrint(StringStream* accumulator);
|
|
|
|
void ShortPrint(std::ostream& os); // NOLINT
|
|
|
|
DECLARE_CAST(Object)
|
|
|
|
// Layout description.
|
|
static const int kHeaderSize = 0; // Object does not take up any space.
|
|
|
|
#ifdef OBJECT_PRINT
|
|
// For our gdb macros, we should perhaps change these in the future.
|
|
void Print();
|
|
|
|
// Prints this object with details.
|
|
void Print(std::ostream& os); // NOLINT
|
|
#else
|
|
void Print() { ShortPrint(); }
|
|
void Print(std::ostream& os) { ShortPrint(os); } // NOLINT
|
|
#endif
|
|
|
|
private:
|
|
friend class LookupIterator;
|
|
friend class PrototypeIterator;
|
|
|
|
// Return the map of the root of object's prototype chain.
|
|
Map* GetRootMap(Isolate* isolate);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
|
|
};
|
|
|
|
|
|
struct Brief {
|
|
explicit Brief(const Object* const v) : value(v) {}
|
|
const Object* value;
|
|
};
|
|
|
|
|
|
std::ostream& operator<<(std::ostream& os, const Brief& v);
|
|
|
|
|
|
// Smi represents integer Numbers that can be stored in 31 bits.
|
|
// Smis are immediate which means they are NOT allocated in the heap.
|
|
// The this pointer has the following format: [31 bit signed int] 0
|
|
// For long smis it has the following format:
|
|
// [32 bit signed int] [31 bits zero padding] 0
|
|
// Smi stands for small integer.
|
|
class Smi: public Object {
|
|
public:
|
|
// Returns the integer value.
|
|
inline int value() const;
|
|
|
|
// Convert a value to a Smi object.
|
|
static inline Smi* FromInt(int value);
|
|
|
|
static inline Smi* FromIntptr(intptr_t value);
|
|
|
|
// Returns whether value can be represented in a Smi.
|
|
static inline bool IsValid(intptr_t value);
|
|
|
|
DECLARE_CAST(Smi)
|
|
|
|
// Dispatched behavior.
|
|
void SmiPrint(std::ostream& os) const; // NOLINT
|
|
DECLARE_VERIFIER(Smi)
|
|
|
|
static const int kMinValue =
|
|
(static_cast<unsigned int>(-1)) << (kSmiValueSize - 1);
|
|
static const int kMaxValue = -(kMinValue + 1);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
|
|
};
|
|
|
|
|
|
// Heap objects typically have a map pointer in their first word. However,
|
|
// during GC other data (e.g. mark bits, forwarding addresses) is sometimes
|
|
// encoded in the first word. The class MapWord is an abstraction of the
|
|
// value in a heap object's first word.
|
|
class MapWord BASE_EMBEDDED {
|
|
public:
|
|
// Normal state: the map word contains a map pointer.
|
|
|
|
// Create a map word from a map pointer.
|
|
static inline MapWord FromMap(const Map* map);
|
|
|
|
// View this map word as a map pointer.
|
|
inline Map* ToMap();
|
|
|
|
|
|
// Scavenge collection: the map word of live objects in the from space
|
|
// contains a forwarding address (a heap object pointer in the to space).
|
|
|
|
// True if this map word is a forwarding address for a scavenge
|
|
// collection. Only valid during a scavenge collection (specifically,
|
|
// when all map words are heap object pointers, i.e. not during a full GC).
|
|
inline bool IsForwardingAddress();
|
|
|
|
// Create a map word from a forwarding address.
|
|
static inline MapWord FromForwardingAddress(HeapObject* object);
|
|
|
|
// View this map word as a forwarding address.
|
|
inline HeapObject* ToForwardingAddress();
|
|
|
|
static inline MapWord FromRawValue(uintptr_t value) {
|
|
return MapWord(value);
|
|
}
|
|
|
|
inline uintptr_t ToRawValue() {
|
|
return value_;
|
|
}
|
|
|
|
private:
|
|
// HeapObject calls the private constructor and directly reads the value.
|
|
friend class HeapObject;
|
|
|
|
explicit MapWord(uintptr_t value) : value_(value) {}
|
|
|
|
uintptr_t value_;
|
|
};
|
|
|
|
|
|
// HeapObject is the superclass for all classes describing heap allocated
|
|
// objects.
|
|
class HeapObject: public Object {
|
|
public:
|
|
// [map]: Contains a map which contains the object's reflective
|
|
// information.
|
|
inline Map* map() const;
|
|
inline void set_map(Map* value);
|
|
// The no-write-barrier version. This is OK if the object is white and in
|
|
// new space, or if the value is an immortal immutable object, like the maps
|
|
// of primitive (non-JS) objects like strings, heap numbers etc.
|
|
inline void set_map_no_write_barrier(Map* value);
|
|
|
|
// Get the map using acquire load.
|
|
inline Map* synchronized_map();
|
|
inline MapWord synchronized_map_word() const;
|
|
|
|
// Set the map using release store
|
|
inline void synchronized_set_map(Map* value);
|
|
inline void synchronized_set_map_no_write_barrier(Map* value);
|
|
inline void synchronized_set_map_word(MapWord map_word);
|
|
|
|
// During garbage collection, the map word of a heap object does not
|
|
// necessarily contain a map pointer.
|
|
inline MapWord map_word() const;
|
|
inline void set_map_word(MapWord map_word);
|
|
|
|
// The Heap the object was allocated in. Used also to access Isolate.
|
|
inline Heap* GetHeap() const;
|
|
|
|
// Convenience method to get current isolate.
|
|
inline Isolate* GetIsolate() const;
|
|
|
|
// Converts an address to a HeapObject pointer.
|
|
static inline HeapObject* FromAddress(Address address);
|
|
|
|
// Returns the address of this HeapObject.
|
|
inline Address address();
|
|
|
|
// Iterates over pointers contained in the object (including the Map)
|
|
void Iterate(ObjectVisitor* v);
|
|
|
|
// Iterates over all pointers contained in the object except the
|
|
// first map pointer. The object type is given in the first
|
|
// parameter. This function does not access the map pointer in the
|
|
// object, and so is safe to call while the map pointer is modified.
|
|
void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
|
|
|
|
// Returns the heap object's size in bytes
|
|
inline int Size();
|
|
|
|
// Returns true if this heap object may contain raw values, i.e., values that
|
|
// look like pointers to heap objects.
|
|
inline bool MayContainRawValues();
|
|
|
|
// Given a heap object's map pointer, returns the heap size in bytes
|
|
// Useful when the map pointer field is used for other purposes.
|
|
// GC internal.
|
|
inline int SizeFromMap(Map* map);
|
|
|
|
// Returns the field at offset in obj, as a read/write Object* reference.
|
|
// Does no checking, and is safe to use during GC, while maps are invalid.
|
|
// Does not invoke write barrier, so should only be assigned to
|
|
// during marking GC.
|
|
static inline Object** RawField(HeapObject* obj, int offset);
|
|
|
|
// Adds the |code| object related to |name| to the code cache of this map. If
|
|
// this map is a dictionary map that is shared, the map copied and installed
|
|
// onto the object.
|
|
static void UpdateMapCodeCache(Handle<HeapObject> object,
|
|
Handle<Name> name,
|
|
Handle<Code> code);
|
|
|
|
DECLARE_CAST(HeapObject)
|
|
|
|
// Return the write barrier mode for this. Callers of this function
|
|
// must be able to present a reference to an DisallowHeapAllocation
|
|
// object as a sign that they are not going to use this function
|
|
// from code that allocates and thus invalidates the returned write
|
|
// barrier mode.
|
|
inline WriteBarrierMode GetWriteBarrierMode(
|
|
const DisallowHeapAllocation& promise);
|
|
|
|
// Dispatched behavior.
|
|
void HeapObjectShortPrint(std::ostream& os); // NOLINT
|
|
#ifdef OBJECT_PRINT
|
|
void PrintHeader(std::ostream& os, const char* id); // NOLINT
|
|
#endif
|
|
DECLARE_PRINTER(HeapObject)
|
|
DECLARE_VERIFIER(HeapObject)
|
|
#ifdef VERIFY_HEAP
|
|
inline void VerifyObjectField(int offset);
|
|
inline void VerifySmiField(int offset);
|
|
|
|
// Verify a pointer is a valid HeapObject pointer that points to object
|
|
// areas in the heap.
|
|
static void VerifyHeapPointer(Object* p);
|
|
#endif
|
|
|
|
inline bool NeedsToEnsureDoubleAlignment();
|
|
|
|
// Layout description.
|
|
// First field in a heap object is map.
|
|
static const int kMapOffset = Object::kHeaderSize;
|
|
static const int kHeaderSize = kMapOffset + kPointerSize;
|
|
|
|
STATIC_ASSERT(kMapOffset == Internals::kHeapObjectMapOffset);
|
|
|
|
protected:
|
|
// helpers for calling an ObjectVisitor to iterate over pointers in the
|
|
// half-open range [start, end) specified as integer offsets
|
|
inline void IteratePointers(ObjectVisitor* v, int start, int end);
|
|
// as above, for the single element at "offset"
|
|
inline void IteratePointer(ObjectVisitor* v, int offset);
|
|
// as above, for the next code link of a code object.
|
|
inline void IterateNextCodeLink(ObjectVisitor* v, int offset);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
|
|
};
|
|
|
|
|
|
// This class describes a body of an object of a fixed size
|
|
// in which all pointer fields are located in the [start_offset, end_offset)
|
|
// interval.
|
|
template<int start_offset, int end_offset, int size>
|
|
class FixedBodyDescriptor {
|
|
public:
|
|
static const int kStartOffset = start_offset;
|
|
static const int kEndOffset = end_offset;
|
|
static const int kSize = size;
|
|
|
|
static inline void IterateBody(HeapObject* obj, ObjectVisitor* v);
|
|
|
|
template<typename StaticVisitor>
|
|
static inline void IterateBody(HeapObject* obj) {
|
|
StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset),
|
|
HeapObject::RawField(obj, end_offset));
|
|
}
|
|
};
|
|
|
|
|
|
// This class describes a body of an object of a variable size
|
|
// in which all pointer fields are located in the [start_offset, object_size)
|
|
// interval.
|
|
template<int start_offset>
|
|
class FlexibleBodyDescriptor {
|
|
public:
|
|
static const int kStartOffset = start_offset;
|
|
|
|
static inline void IterateBody(HeapObject* obj,
|
|
int object_size,
|
|
ObjectVisitor* v);
|
|
|
|
template<typename StaticVisitor>
|
|
static inline void IterateBody(HeapObject* obj, int object_size) {
|
|
StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset),
|
|
HeapObject::RawField(obj, object_size));
|
|
}
|
|
};
|
|
|
|
|
|
// The HeapNumber class describes heap allocated numbers that cannot be
|
|
// represented in a Smi (small integer)
|
|
class HeapNumber: public HeapObject {
|
|
public:
|
|
// [value]: number value.
|
|
inline double value() const;
|
|
inline void set_value(double value);
|
|
|
|
DECLARE_CAST(HeapNumber)
|
|
|
|
// Dispatched behavior.
|
|
bool HeapNumberBooleanValue();
|
|
|
|
void HeapNumberPrint(std::ostream& os); // NOLINT
|
|
DECLARE_VERIFIER(HeapNumber)
|
|
|
|
inline int get_exponent();
|
|
inline int get_sign();
|
|
|
|
// Layout description.
|
|
static const int kValueOffset = HeapObject::kHeaderSize;
|
|
// IEEE doubles are two 32 bit words. The first is just mantissa, the second
|
|
// is a mixture of sign, exponent and mantissa. The offsets of two 32 bit
|
|
// words within double numbers are endian dependent and they are set
|
|
// accordingly.
|
|
#if defined(V8_TARGET_LITTLE_ENDIAN)
|
|
static const int kMantissaOffset = kValueOffset;
|
|
static const int kExponentOffset = kValueOffset + 4;
|
|
#elif defined(V8_TARGET_BIG_ENDIAN)
|
|
static const int kMantissaOffset = kValueOffset + 4;
|
|
static const int kExponentOffset = kValueOffset;
|
|
#else
|
|
#error Unknown byte ordering
|
|
#endif
|
|
|
|
static const int kSize = kValueOffset + kDoubleSize;
|
|
static const uint32_t kSignMask = 0x80000000u;
|
|
static const uint32_t kExponentMask = 0x7ff00000u;
|
|
static const uint32_t kMantissaMask = 0xfffffu;
|
|
static const int kMantissaBits = 52;
|
|
static const int kExponentBits = 11;
|
|
static const int kExponentBias = 1023;
|
|
static const int kExponentShift = 20;
|
|
static const int kInfinityOrNanExponent =
|
|
(kExponentMask >> kExponentShift) - kExponentBias;
|
|
static const int kMantissaBitsInTopWord = 20;
|
|
static const int kNonMantissaBitsInTopWord = 12;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
|
|
};
|
|
|
|
|
|
enum EnsureElementsMode {
|
|
DONT_ALLOW_DOUBLE_ELEMENTS,
|
|
ALLOW_COPIED_DOUBLE_ELEMENTS,
|
|
ALLOW_CONVERTED_DOUBLE_ELEMENTS
|
|
};
|
|
|
|
|
|
// Indicates whether a property should be set or (re)defined. Setting of a
|
|
// property causes attributes to remain unchanged, writability to be checked
|
|
// and callbacks to be called. Defining of a property causes attributes to
|
|
// be updated and callbacks to be overridden.
|
|
enum SetPropertyMode {
|
|
SET_PROPERTY,
|
|
DEFINE_PROPERTY
|
|
};
|
|
|
|
|
|
// Indicator for one component of an AccessorPair.
|
|
enum AccessorComponent {
|
|
ACCESSOR_GETTER,
|
|
ACCESSOR_SETTER
|
|
};
|
|
|
|
|
|
// JSReceiver includes types on which properties can be defined, i.e.,
|
|
// JSObject and JSProxy.
|
|
class JSReceiver: public HeapObject {
|
|
public:
|
|
DECLARE_CAST(JSReceiver)
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetElement(
|
|
Handle<JSReceiver> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictMode strict_mode);
|
|
|
|
// Implementation of [[HasProperty]], ECMA-262 5th edition, section 8.12.6.
|
|
MUST_USE_RESULT static inline Maybe<bool> HasProperty(
|
|
Handle<JSReceiver> object, Handle<Name> name);
|
|
MUST_USE_RESULT static inline Maybe<bool> HasOwnProperty(Handle<JSReceiver>,
|
|
Handle<Name> name);
|
|
MUST_USE_RESULT static inline Maybe<bool> HasElement(
|
|
Handle<JSReceiver> object, uint32_t index);
|
|
MUST_USE_RESULT static inline Maybe<bool> HasOwnElement(
|
|
Handle<JSReceiver> object, uint32_t index);
|
|
|
|
// Implementation of [[Delete]], ECMA-262 5th edition, section 8.12.7.
|
|
MUST_USE_RESULT static MaybeHandle<Object> DeleteProperty(
|
|
Handle<JSReceiver> object, Handle<Name> name,
|
|
StrictMode strict_mode = SLOPPY);
|
|
MUST_USE_RESULT static MaybeHandle<Object> DeleteElement(
|
|
Handle<JSReceiver> object, uint32_t index,
|
|
StrictMode strict_mode = SLOPPY);
|
|
|
|
// Tests for the fast common case for property enumeration.
|
|
bool IsSimpleEnum();
|
|
|
|
// Returns the class name ([[Class]] property in the specification).
|
|
String* class_name();
|
|
|
|
// Returns the constructor name (the name (possibly, inferred name) of the
|
|
// function that was used to instantiate the object).
|
|
String* constructor_name();
|
|
|
|
MUST_USE_RESULT static inline Maybe<PropertyAttributes> GetPropertyAttributes(
|
|
Handle<JSReceiver> object, Handle<Name> name);
|
|
MUST_USE_RESULT static Maybe<PropertyAttributes> GetPropertyAttributes(
|
|
LookupIterator* it);
|
|
MUST_USE_RESULT static Maybe<PropertyAttributes> GetOwnPropertyAttributes(
|
|
Handle<JSReceiver> object, Handle<Name> name);
|
|
|
|
MUST_USE_RESULT static inline Maybe<PropertyAttributes> GetElementAttribute(
|
|
Handle<JSReceiver> object, uint32_t index);
|
|
MUST_USE_RESULT static inline Maybe<PropertyAttributes>
|
|
GetOwnElementAttribute(Handle<JSReceiver> object, uint32_t index);
|
|
|
|
// Retrieves a permanent object identity hash code. The undefined value might
|
|
// be returned in case no hash was created yet.
|
|
inline Object* GetIdentityHash();
|
|
|
|
// Retrieves a permanent object identity hash code. May create and store a
|
|
// hash code if needed and none exists.
|
|
inline static Handle<Smi> GetOrCreateIdentityHash(
|
|
Handle<JSReceiver> object);
|
|
|
|
enum KeyCollectionType { OWN_ONLY, INCLUDE_PROTOS };
|
|
|
|
// Computes the enumerable keys for a JSObject. Used for implementing
|
|
// "for (n in object) { }".
|
|
MUST_USE_RESULT static MaybeHandle<FixedArray> GetKeys(
|
|
Handle<JSReceiver> object,
|
|
KeyCollectionType type);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSReceiver);
|
|
};
|
|
|
|
// Forward declaration for JSObject::GetOrCreateHiddenPropertiesHashTable.
|
|
class ObjectHashTable;
|
|
|
|
// Forward declaration for JSObject::Copy.
|
|
class AllocationSite;
|
|
|
|
|
|
// The JSObject describes real heap allocated JavaScript objects with
|
|
// properties.
|
|
// Note that the map of JSObject changes during execution to enable inline
|
|
// caching.
|
|
class JSObject: public JSReceiver {
|
|
public:
|
|
// [properties]: Backing storage for properties.
|
|
// properties is a FixedArray in the fast case and a Dictionary in the
|
|
// slow case.
|
|
DECL_ACCESSORS(properties, FixedArray) // Get and set fast properties.
|
|
inline void initialize_properties();
|
|
inline bool HasFastProperties();
|
|
inline NameDictionary* property_dictionary(); // Gets slow properties.
|
|
|
|
// [elements]: The elements (properties with names that are integers).
|
|
//
|
|
// Elements can be in two general modes: fast and slow. Each mode
|
|
// corrensponds to a set of object representations of elements that
|
|
// have something in common.
|
|
//
|
|
// In the fast mode elements is a FixedArray and so each element can
|
|
// be quickly accessed. This fact is used in the generated code. The
|
|
// elements array can have one of three maps in this mode:
|
|
// fixed_array_map, sloppy_arguments_elements_map or
|
|
// fixed_cow_array_map (for copy-on-write arrays). In the latter case
|
|
// the elements array may be shared by a few objects and so before
|
|
// writing to any element the array must be copied. Use
|
|
// EnsureWritableFastElements in this case.
|
|
//
|
|
// In the slow mode the elements is either a NumberDictionary, an
|
|
// ExternalArray, or a FixedArray parameter map for a (sloppy)
|
|
// arguments object.
|
|
DECL_ACCESSORS(elements, FixedArrayBase)
|
|
inline void initialize_elements();
|
|
static void ResetElements(Handle<JSObject> object);
|
|
static inline void SetMapAndElements(Handle<JSObject> object,
|
|
Handle<Map> map,
|
|
Handle<FixedArrayBase> elements);
|
|
inline ElementsKind GetElementsKind();
|
|
inline ElementsAccessor* GetElementsAccessor();
|
|
// Returns true if an object has elements of FAST_SMI_ELEMENTS ElementsKind.
|
|
inline bool HasFastSmiElements();
|
|
// Returns true if an object has elements of FAST_ELEMENTS ElementsKind.
|
|
inline bool HasFastObjectElements();
|
|
// Returns true if an object has elements of FAST_ELEMENTS or
|
|
// FAST_SMI_ONLY_ELEMENTS.
|
|
inline bool HasFastSmiOrObjectElements();
|
|
// Returns true if an object has any of the fast elements kinds.
|
|
inline bool HasFastElements();
|
|
// Returns true if an object has elements of FAST_DOUBLE_ELEMENTS
|
|
// ElementsKind.
|
|
inline bool HasFastDoubleElements();
|
|
// Returns true if an object has elements of FAST_HOLEY_*_ELEMENTS
|
|
// ElementsKind.
|
|
inline bool HasFastHoleyElements();
|
|
inline bool HasSloppyArgumentsElements();
|
|
inline bool HasDictionaryElements();
|
|
|
|
inline bool HasExternalUint8ClampedElements();
|
|
inline bool HasExternalArrayElements();
|
|
inline bool HasExternalInt8Elements();
|
|
inline bool HasExternalUint8Elements();
|
|
inline bool HasExternalInt16Elements();
|
|
inline bool HasExternalUint16Elements();
|
|
inline bool HasExternalInt32Elements();
|
|
inline bool HasExternalUint32Elements();
|
|
inline bool HasExternalFloat32Elements();
|
|
inline bool HasExternalFloat64Elements();
|
|
|
|
inline bool HasFixedTypedArrayElements();
|
|
|
|
inline bool HasFixedUint8ClampedElements();
|
|
inline bool HasFixedArrayElements();
|
|
inline bool HasFixedInt8Elements();
|
|
inline bool HasFixedUint8Elements();
|
|
inline bool HasFixedInt16Elements();
|
|
inline bool HasFixedUint16Elements();
|
|
inline bool HasFixedInt32Elements();
|
|
inline bool HasFixedUint32Elements();
|
|
inline bool HasFixedFloat32Elements();
|
|
inline bool HasFixedFloat64Elements();
|
|
|
|
bool HasFastArgumentsElements();
|
|
bool HasDictionaryArgumentsElements();
|
|
inline SeededNumberDictionary* element_dictionary(); // Gets slow elements.
|
|
|
|
// Requires: HasFastElements().
|
|
static Handle<FixedArray> EnsureWritableFastElements(
|
|
Handle<JSObject> object);
|
|
|
|
// Collects elements starting at index 0.
|
|
// Undefined values are placed after non-undefined values.
|
|
// Returns the number of non-undefined values.
|
|
static Handle<Object> PrepareElementsForSort(Handle<JSObject> object,
|
|
uint32_t limit);
|
|
// As PrepareElementsForSort, but only on objects where elements is
|
|
// a dictionary, and it will stay a dictionary. Collates undefined and
|
|
// unexisting elements below limit from position zero of the elements.
|
|
static Handle<Object> PrepareSlowElementsForSort(Handle<JSObject> object,
|
|
uint32_t limit);
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithInterceptor(
|
|
LookupIterator* it, Handle<Object> value);
|
|
|
|
// SetLocalPropertyIgnoreAttributes converts callbacks to fields. We need to
|
|
// grant an exemption to ExecutableAccessor callbacks in some cases.
|
|
enum ExecutableAccessorInfoHandling {
|
|
DEFAULT_HANDLING,
|
|
DONT_FORCE_FIELD
|
|
};
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetOwnPropertyIgnoreAttributes(
|
|
Handle<JSObject> object,
|
|
Handle<Name> key,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
|
|
|
|
static void AddProperty(Handle<JSObject> object, Handle<Name> key,
|
|
Handle<Object> value, PropertyAttributes attributes);
|
|
|
|
// Extend the receiver with a single fast property appeared first in the
|
|
// passed map. This also extends the property backing store if necessary.
|
|
static void AllocateStorageForMap(Handle<JSObject> object, Handle<Map> map);
|
|
|
|
// Migrates the given object to a map whose field representations are the
|
|
// lowest upper bound of all known representations for that field.
|
|
static void MigrateInstance(Handle<JSObject> instance);
|
|
|
|
// Migrates the given object only if the target map is already available,
|
|
// or returns false if such a map is not yet available.
|
|
static bool TryMigrateInstance(Handle<JSObject> instance);
|
|
|
|
// Sets the property value in a normalized object given (key, value, details).
|
|
// Handles the special representation of JS global objects.
|
|
static void SetNormalizedProperty(Handle<JSObject> object,
|
|
Handle<Name> key,
|
|
Handle<Object> value,
|
|
PropertyDetails details);
|
|
|
|
static void OptimizeAsPrototype(Handle<JSObject> object,
|
|
PrototypeOptimizationMode mode);
|
|
static void ReoptimizeIfPrototype(Handle<JSObject> object);
|
|
static void RegisterPrototypeUser(Handle<JSObject> prototype,
|
|
Handle<HeapObject> user);
|
|
static void UnregisterPrototypeUser(Handle<JSObject> prototype,
|
|
Handle<HeapObject> user);
|
|
|
|
// Retrieve interceptors.
|
|
InterceptorInfo* GetNamedInterceptor();
|
|
InterceptorInfo* GetIndexedInterceptor();
|
|
|
|
// Used from JSReceiver.
|
|
MUST_USE_RESULT static Maybe<PropertyAttributes>
|
|
GetPropertyAttributesWithInterceptor(Handle<JSObject> holder,
|
|
Handle<Object> receiver,
|
|
Handle<Name> name);
|
|
MUST_USE_RESULT static Maybe<PropertyAttributes>
|
|
GetPropertyAttributesWithFailedAccessCheck(LookupIterator* it);
|
|
MUST_USE_RESULT static Maybe<PropertyAttributes>
|
|
GetElementAttributeWithReceiver(Handle<JSObject> object,
|
|
Handle<JSReceiver> receiver,
|
|
uint32_t index, bool check_prototype);
|
|
|
|
// Retrieves an AccessorPair property from the given object. Might return
|
|
// undefined if the property doesn't exist or is of a different kind.
|
|
MUST_USE_RESULT static MaybeHandle<Object> GetAccessor(
|
|
Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
AccessorComponent component);
|
|
|
|
// Defines an AccessorPair property on the given object.
|
|
// TODO(mstarzinger): Rename to SetAccessor().
|
|
static MaybeHandle<Object> DefineAccessor(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> getter,
|
|
Handle<Object> setter,
|
|
PropertyAttributes attributes);
|
|
|
|
// Defines an AccessorInfo property on the given object.
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetAccessor(
|
|
Handle<JSObject> object,
|
|
Handle<AccessorInfo> info);
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithInterceptor(
|
|
Handle<JSObject> object,
|
|
Handle<Object> receiver,
|
|
Handle<Name> name);
|
|
|
|
// Accessors for hidden properties object.
|
|
//
|
|
// Hidden properties are not own properties of the object itself.
|
|
// Instead they are stored in an auxiliary structure kept as an own
|
|
// property with a special name Heap::hidden_string(). But if the
|
|
// receiver is a JSGlobalProxy then the auxiliary object is a property
|
|
// of its prototype, and if it's a detached proxy, then you can't have
|
|
// hidden properties.
|
|
|
|
// Sets a hidden property on this object. Returns this object if successful,
|
|
// undefined if called on a detached proxy.
|
|
static Handle<Object> SetHiddenProperty(Handle<JSObject> object,
|
|
Handle<Name> key,
|
|
Handle<Object> value);
|
|
// Gets the value of a hidden property with the given key. Returns the hole
|
|
// if the property doesn't exist (or if called on a detached proxy),
|
|
// otherwise returns the value set for the key.
|
|
Object* GetHiddenProperty(Handle<Name> key);
|
|
// Deletes a hidden property. Deleting a non-existing property is
|
|
// considered successful.
|
|
static void DeleteHiddenProperty(Handle<JSObject> object,
|
|
Handle<Name> key);
|
|
// Returns true if the object has a property with the hidden string as name.
|
|
static bool HasHiddenProperties(Handle<JSObject> object);
|
|
|
|
static void SetIdentityHash(Handle<JSObject> object, Handle<Smi> hash);
|
|
|
|
static inline void ValidateElements(Handle<JSObject> object);
|
|
|
|
// Makes sure that this object can contain HeapObject as elements.
|
|
static inline void EnsureCanContainHeapObjectElements(Handle<JSObject> obj);
|
|
|
|
// Makes sure that this object can contain the specified elements.
|
|
static inline void EnsureCanContainElements(
|
|
Handle<JSObject> object,
|
|
Object** elements,
|
|
uint32_t count,
|
|
EnsureElementsMode mode);
|
|
static inline void EnsureCanContainElements(
|
|
Handle<JSObject> object,
|
|
Handle<FixedArrayBase> elements,
|
|
uint32_t length,
|
|
EnsureElementsMode mode);
|
|
static void EnsureCanContainElements(
|
|
Handle<JSObject> object,
|
|
Arguments* arguments,
|
|
uint32_t first_arg,
|
|
uint32_t arg_count,
|
|
EnsureElementsMode mode);
|
|
|
|
// Would we convert a fast elements array to dictionary mode given
|
|
// an access at key?
|
|
bool WouldConvertToSlowElements(Handle<Object> key);
|
|
// Do we want to keep the elements in fast case when increasing the
|
|
// capacity?
|
|
bool ShouldConvertToSlowElements(int new_capacity);
|
|
// Returns true if the backing storage for the slow-case elements of
|
|
// this object takes up nearly as much space as a fast-case backing
|
|
// storage would. In that case the JSObject should have fast
|
|
// elements.
|
|
bool ShouldConvertToFastElements();
|
|
// Returns true if the elements of JSObject contains only values that can be
|
|
// represented in a FixedDoubleArray and has at least one value that can only
|
|
// be represented as a double and not a Smi.
|
|
bool ShouldConvertToFastDoubleElements(bool* has_smi_only_elements);
|
|
|
|
// Computes the new capacity when expanding the elements of a JSObject.
|
|
static int NewElementsCapacity(int old_capacity) {
|
|
// (old_capacity + 50%) + 16
|
|
return old_capacity + (old_capacity >> 1) + 16;
|
|
}
|
|
|
|
// These methods do not perform access checks!
|
|
MUST_USE_RESULT static MaybeHandle<AccessorPair> GetOwnElementAccessorPair(
|
|
Handle<JSObject> object, uint32_t index);
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetFastElement(
|
|
Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
StrictMode strict_mode,
|
|
bool check_prototype);
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetOwnElement(
|
|
Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
StrictMode strict_mode);
|
|
|
|
// Empty handle is returned if the element cannot be set to the given value.
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetElement(
|
|
Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictMode strict_mode,
|
|
bool check_prototype = true,
|
|
SetPropertyMode set_mode = SET_PROPERTY);
|
|
|
|
// Returns the index'th element.
|
|
// The undefined object if index is out of bounds.
|
|
MUST_USE_RESULT static MaybeHandle<Object> GetElementWithInterceptor(
|
|
Handle<JSObject> object,
|
|
Handle<Object> receiver,
|
|
uint32_t index);
|
|
|
|
enum SetFastElementsCapacitySmiMode {
|
|
kAllowSmiElements,
|
|
kForceSmiElements,
|
|
kDontAllowSmiElements
|
|
};
|
|
|
|
// Replace the elements' backing store with fast elements of the given
|
|
// capacity. Update the length for JSArrays. Returns the new backing
|
|
// store.
|
|
static Handle<FixedArray> SetFastElementsCapacityAndLength(
|
|
Handle<JSObject> object,
|
|
int capacity,
|
|
int length,
|
|
SetFastElementsCapacitySmiMode smi_mode);
|
|
static void SetFastDoubleElementsCapacityAndLength(
|
|
Handle<JSObject> object,
|
|
int capacity,
|
|
int length);
|
|
|
|
// Lookup interceptors are used for handling properties controlled by host
|
|
// objects.
|
|
inline bool HasNamedInterceptor();
|
|
inline bool HasIndexedInterceptor();
|
|
|
|
// Computes the enumerable keys from interceptors. Used for debug mirrors and
|
|
// by JSReceiver::GetKeys.
|
|
MUST_USE_RESULT static MaybeHandle<JSObject> GetKeysForNamedInterceptor(
|
|
Handle<JSObject> object,
|
|
Handle<JSReceiver> receiver);
|
|
MUST_USE_RESULT static MaybeHandle<JSObject> GetKeysForIndexedInterceptor(
|
|
Handle<JSObject> object,
|
|
Handle<JSReceiver> receiver);
|
|
|
|
// Support functions for v8 api (needed for correct interceptor behavior).
|
|
MUST_USE_RESULT static Maybe<bool> HasRealNamedProperty(
|
|
Handle<JSObject> object, Handle<Name> key);
|
|
MUST_USE_RESULT static Maybe<bool> HasRealElementProperty(
|
|
Handle<JSObject> object, uint32_t index);
|
|
MUST_USE_RESULT static Maybe<bool> HasRealNamedCallbackProperty(
|
|
Handle<JSObject> object, Handle<Name> key);
|
|
|
|
// Get the header size for a JSObject. Used to compute the index of
|
|
// internal fields as well as the number of internal fields.
|
|
inline int GetHeaderSize();
|
|
|
|
inline int GetInternalFieldCount();
|
|
inline int GetInternalFieldOffset(int index);
|
|
inline Object* GetInternalField(int index);
|
|
inline void SetInternalField(int index, Object* value);
|
|
inline void SetInternalField(int index, Smi* value);
|
|
|
|
// Returns the number of properties on this object filtering out properties
|
|
// with the specified attributes (ignoring interceptors).
|
|
int NumberOfOwnProperties(PropertyAttributes filter = NONE);
|
|
// Fill in details for properties into storage starting at the specified
|
|
// index.
|
|
void GetOwnPropertyNames(
|
|
FixedArray* storage, int index, PropertyAttributes filter = NONE);
|
|
|
|
// Returns the number of properties on this object filtering out properties
|
|
// with the specified attributes (ignoring interceptors).
|
|
int NumberOfOwnElements(PropertyAttributes filter);
|
|
// Returns the number of enumerable elements (ignoring interceptors).
|
|
int NumberOfEnumElements();
|
|
// Returns the number of elements on this object filtering out elements
|
|
// with the specified attributes (ignoring interceptors).
|
|
int GetOwnElementKeys(FixedArray* storage, PropertyAttributes filter);
|
|
// Count and fill in the enumerable elements into storage.
|
|
// (storage->length() == NumberOfEnumElements()).
|
|
// If storage is NULL, will count the elements without adding
|
|
// them to any storage.
|
|
// Returns the number of enumerable elements.
|
|
int GetEnumElementKeys(FixedArray* storage);
|
|
|
|
// Returns a new map with all transitions dropped from the object's current
|
|
// map and the ElementsKind set.
|
|
static Handle<Map> GetElementsTransitionMap(Handle<JSObject> object,
|
|
ElementsKind to_kind);
|
|
static void TransitionElementsKind(Handle<JSObject> object,
|
|
ElementsKind to_kind);
|
|
|
|
static void MigrateToMap(Handle<JSObject> object, Handle<Map> new_map);
|
|
|
|
// Convert the object to use the canonical dictionary
|
|
// representation. If the object is expected to have additional properties
|
|
// added this number can be indicated to have the backing store allocated to
|
|
// an initial capacity for holding these properties.
|
|
static void NormalizeProperties(Handle<JSObject> object,
|
|
PropertyNormalizationMode mode,
|
|
int expected_additional_properties,
|
|
const char* reason);
|
|
|
|
// Convert and update the elements backing store to be a
|
|
// SeededNumberDictionary dictionary. Returns the backing after conversion.
|
|
static Handle<SeededNumberDictionary> NormalizeElements(
|
|
Handle<JSObject> object);
|
|
|
|
// Transform slow named properties to fast variants.
|
|
static void MigrateSlowToFast(Handle<JSObject> object,
|
|
int unused_property_fields, const char* reason);
|
|
|
|
inline bool IsUnboxedDoubleField(FieldIndex index);
|
|
|
|
// Access fast-case object properties at index.
|
|
static Handle<Object> FastPropertyAt(Handle<JSObject> object,
|
|
Representation representation,
|
|
FieldIndex index);
|
|
inline Object* RawFastPropertyAt(FieldIndex index);
|
|
inline double RawFastDoublePropertyAt(FieldIndex index);
|
|
|
|
inline void FastPropertyAtPut(FieldIndex index, Object* value);
|
|
inline void RawFastPropertyAtPut(FieldIndex index, Object* value);
|
|
inline void RawFastDoublePropertyAtPut(FieldIndex index, double value);
|
|
void WriteToField(int descriptor, Object* value);
|
|
|
|
// Access to in object properties.
|
|
inline int GetInObjectPropertyOffset(int index);
|
|
inline Object* InObjectPropertyAt(int index);
|
|
inline Object* InObjectPropertyAtPut(int index,
|
|
Object* value,
|
|
WriteBarrierMode mode
|
|
= UPDATE_WRITE_BARRIER);
|
|
|
|
// Set the object's prototype (only JSReceiver and null are allowed values).
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetPrototype(
|
|
Handle<JSObject> object, Handle<Object> value, bool from_javascript);
|
|
|
|
// Initializes the body after properties slot, properties slot is
|
|
// initialized by set_properties. Fill the pre-allocated fields with
|
|
// pre_allocated_value and the rest with filler_value.
|
|
// Note: this call does not update write barrier, the caller is responsible
|
|
// to ensure that |filler_value| can be collected without WB here.
|
|
inline void InitializeBody(Map* map,
|
|
Object* pre_allocated_value,
|
|
Object* filler_value);
|
|
|
|
// Check whether this object references another object
|
|
bool ReferencesObject(Object* obj);
|
|
|
|
// Disalow further properties to be added to the object.
|
|
MUST_USE_RESULT static MaybeHandle<Object> PreventExtensions(
|
|
Handle<JSObject> object);
|
|
|
|
// ES5 Object.seal
|
|
MUST_USE_RESULT static MaybeHandle<Object> Seal(Handle<JSObject> object);
|
|
|
|
// ES5 Object.freeze
|
|
MUST_USE_RESULT static MaybeHandle<Object> Freeze(Handle<JSObject> object);
|
|
|
|
// Called the first time an object is observed with ES7 Object.observe.
|
|
static void SetObserved(Handle<JSObject> object);
|
|
|
|
// Copy object.
|
|
enum DeepCopyHints { kNoHints = 0, kObjectIsShallow = 1 };
|
|
|
|
static Handle<JSObject> Copy(Handle<JSObject> object);
|
|
MUST_USE_RESULT static MaybeHandle<JSObject> DeepCopy(
|
|
Handle<JSObject> object,
|
|
AllocationSiteUsageContext* site_context,
|
|
DeepCopyHints hints = kNoHints);
|
|
MUST_USE_RESULT static MaybeHandle<JSObject> DeepWalk(
|
|
Handle<JSObject> object,
|
|
AllocationSiteCreationContext* site_context);
|
|
|
|
static Handle<Object> GetDataProperty(Handle<JSObject> object,
|
|
Handle<Name> key);
|
|
static Handle<Object> GetDataProperty(LookupIterator* it);
|
|
|
|
DECLARE_CAST(JSObject)
|
|
|
|
// Dispatched behavior.
|
|
void JSObjectShortPrint(StringStream* accumulator);
|
|
DECLARE_PRINTER(JSObject)
|
|
DECLARE_VERIFIER(JSObject)
|
|
#ifdef OBJECT_PRINT
|
|
void PrintProperties(std::ostream& os); // NOLINT
|
|
void PrintElements(std::ostream& os); // NOLINT
|
|
#endif
|
|
#if defined(DEBUG) || defined(OBJECT_PRINT)
|
|
void PrintTransitions(std::ostream& os); // NOLINT
|
|
#endif
|
|
|
|
static void PrintElementsTransition(
|
|
FILE* file, Handle<JSObject> object,
|
|
ElementsKind from_kind, Handle<FixedArrayBase> from_elements,
|
|
ElementsKind to_kind, Handle<FixedArrayBase> to_elements);
|
|
|
|
void PrintInstanceMigration(FILE* file, Map* original_map, Map* new_map);
|
|
|
|
#ifdef DEBUG
|
|
// Structure for collecting spill information about JSObjects.
|
|
class SpillInformation {
|
|
public:
|
|
void Clear();
|
|
void Print();
|
|
int number_of_objects_;
|
|
int number_of_objects_with_fast_properties_;
|
|
int number_of_objects_with_fast_elements_;
|
|
int number_of_fast_used_fields_;
|
|
int number_of_fast_unused_fields_;
|
|
int number_of_slow_used_properties_;
|
|
int number_of_slow_unused_properties_;
|
|
int number_of_fast_used_elements_;
|
|
int number_of_fast_unused_elements_;
|
|
int number_of_slow_used_elements_;
|
|
int number_of_slow_unused_elements_;
|
|
};
|
|
|
|
void IncrementSpillStatistics(SpillInformation* info);
|
|
#endif
|
|
|
|
#ifdef VERIFY_HEAP
|
|
// If a GC was caused while constructing this object, the elements pointer
|
|
// may point to a one pointer filler map. The object won't be rooted, but
|
|
// our heap verification code could stumble across it.
|
|
bool ElementsAreSafeToExamine();
|
|
#endif
|
|
|
|
Object* SlowReverseLookup(Object* value);
|
|
|
|
// Maximal number of elements (numbered 0 .. kMaxElementCount - 1).
|
|
// Also maximal value of JSArray's length property.
|
|
static const uint32_t kMaxElementCount = 0xffffffffu;
|
|
|
|
// Constants for heuristics controlling conversion of fast elements
|
|
// to slow elements.
|
|
|
|
// Maximal gap that can be introduced by adding an element beyond
|
|
// the current elements length.
|
|
static const uint32_t kMaxGap = 1024;
|
|
|
|
// Maximal length of fast elements array that won't be checked for
|
|
// being dense enough on expansion.
|
|
static const int kMaxUncheckedFastElementsLength = 5000;
|
|
|
|
// Same as above but for old arrays. This limit is more strict. We
|
|
// don't want to be wasteful with long lived objects.
|
|
static const int kMaxUncheckedOldFastElementsLength = 500;
|
|
|
|
// Note that Page::kMaxRegularHeapObjectSize puts a limit on
|
|
// permissible values (see the DCHECK in heap.cc).
|
|
static const int kInitialMaxFastElementArray = 100000;
|
|
|
|
// This constant applies only to the initial map of "$Object" aka
|
|
// "global.Object" and not to arbitrary other JSObject maps.
|
|
static const int kInitialGlobalObjectUnusedPropertiesCount = 4;
|
|
|
|
static const int kMaxInstanceSize = 255 * kPointerSize;
|
|
// When extending the backing storage for property values, we increase
|
|
// its size by more than the 1 entry necessary, so sequentially adding fields
|
|
// to the same object requires fewer allocations and copies.
|
|
static const int kFieldsAdded = 3;
|
|
|
|
// Layout description.
|
|
static const int kPropertiesOffset = HeapObject::kHeaderSize;
|
|
static const int kElementsOffset = kPropertiesOffset + kPointerSize;
|
|
static const int kHeaderSize = kElementsOffset + kPointerSize;
|
|
|
|
STATIC_ASSERT(kHeaderSize == Internals::kJSObjectHeaderSize);
|
|
|
|
class BodyDescriptor : public FlexibleBodyDescriptor<kPropertiesOffset> {
|
|
public:
|
|
static inline int SizeOf(Map* map, HeapObject* object);
|
|
};
|
|
|
|
Context* GetCreationContext();
|
|
|
|
// Enqueue change record for Object.observe. May cause GC.
|
|
MUST_USE_RESULT static MaybeHandle<Object> EnqueueChangeRecord(
|
|
Handle<JSObject> object, const char* type, Handle<Name> name,
|
|
Handle<Object> old_value);
|
|
|
|
private:
|
|
friend class DictionaryElementsAccessor;
|
|
friend class JSReceiver;
|
|
friend class Object;
|
|
|
|
static void MigrateFastToFast(Handle<JSObject> object, Handle<Map> new_map);
|
|
static void MigrateFastToSlow(Handle<JSObject> object,
|
|
Handle<Map> new_map,
|
|
int expected_additional_properties);
|
|
|
|
static void UpdateAllocationSite(Handle<JSObject> object,
|
|
ElementsKind to_kind);
|
|
|
|
// Used from Object::GetProperty().
|
|
MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithFailedAccessCheck(
|
|
LookupIterator* it);
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Object> GetElementWithCallback(
|
|
Handle<JSObject> object,
|
|
Handle<Object> receiver,
|
|
Handle<Object> structure,
|
|
uint32_t index,
|
|
Handle<Object> holder);
|
|
|
|
MUST_USE_RESULT static Maybe<PropertyAttributes>
|
|
GetElementAttributeWithInterceptor(Handle<JSObject> object,
|
|
Handle<JSReceiver> receiver,
|
|
uint32_t index, bool continue_search);
|
|
|
|
// Queries indexed interceptor on an object for property attributes.
|
|
//
|
|
// We determine property attributes as follows:
|
|
// - if interceptor has a query callback, then the property attributes are
|
|
// the result of query callback for index.
|
|
// - otherwise if interceptor has a getter callback and it returns
|
|
// non-empty value on index, then the property attributes is NONE
|
|
// (property is present, and it is enumerable, configurable, writable)
|
|
// - otherwise there are no property attributes that can be inferred for
|
|
// interceptor, and this function returns ABSENT.
|
|
MUST_USE_RESULT static Maybe<PropertyAttributes>
|
|
GetElementAttributeFromInterceptor(Handle<JSObject> object,
|
|
Handle<Object> receiver,
|
|
uint32_t index);
|
|
|
|
MUST_USE_RESULT static Maybe<PropertyAttributes>
|
|
GetElementAttributeWithoutInterceptor(Handle<JSObject> object,
|
|
Handle<JSReceiver> receiver,
|
|
uint32_t index,
|
|
bool continue_search);
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetElementWithCallback(
|
|
Handle<Object> object, Handle<Object> structure, uint32_t index,
|
|
Handle<Object> value, Handle<JSObject> holder, StrictMode strict_mode);
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetElementWithInterceptor(
|
|
Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictMode strict_mode,
|
|
bool check_prototype,
|
|
SetPropertyMode set_mode);
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetElementWithoutInterceptor(
|
|
Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictMode strict_mode,
|
|
bool check_prototype,
|
|
SetPropertyMode set_mode);
|
|
MUST_USE_RESULT
|
|
static MaybeHandle<Object> SetElementWithCallbackSetterInPrototypes(
|
|
Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
bool* found,
|
|
StrictMode strict_mode);
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetDictionaryElement(
|
|
Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictMode strict_mode,
|
|
bool check_prototype,
|
|
SetPropertyMode set_mode = SET_PROPERTY);
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetFastDoubleElement(
|
|
Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
StrictMode strict_mode,
|
|
bool check_prototype = true);
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithFailedAccessCheck(
|
|
LookupIterator* it, Handle<Object> value, StrictMode strict_mode);
|
|
|
|
// Add a property to a slow-case object.
|
|
static void AddSlowProperty(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes);
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Object> DeleteProperty(
|
|
Handle<JSObject> object, Handle<Name> name, StrictMode strict_mode);
|
|
MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyWithInterceptor(
|
|
Handle<JSObject> holder, Handle<JSObject> receiver, Handle<Name> name);
|
|
|
|
// Deletes an existing named property in a normalized object.
|
|
static void DeleteNormalizedProperty(Handle<JSObject> object,
|
|
Handle<Name> name);
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Object> DeleteElement(
|
|
Handle<JSObject> object, uint32_t index, StrictMode strict_mode);
|
|
MUST_USE_RESULT static MaybeHandle<Object> DeleteElementWithInterceptor(
|
|
Handle<JSObject> object,
|
|
uint32_t index);
|
|
|
|
bool ReferencesObjectFromElements(FixedArray* elements,
|
|
ElementsKind kind,
|
|
Object* object);
|
|
|
|
// Returns true if most of the elements backing storage is used.
|
|
bool HasDenseElements();
|
|
|
|
// Gets the current elements capacity and the number of used elements.
|
|
void GetElementsCapacityAndUsage(int* capacity, int* used);
|
|
|
|
static bool CanSetCallback(Handle<JSObject> object, Handle<Name> name);
|
|
static void SetElementCallback(Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> structure,
|
|
PropertyAttributes attributes);
|
|
static void SetPropertyCallback(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> structure,
|
|
PropertyAttributes attributes);
|
|
static void DefineElementAccessor(Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> getter,
|
|
Handle<Object> setter,
|
|
PropertyAttributes attributes);
|
|
|
|
// Return the hash table backing store or the inline stored identity hash,
|
|
// whatever is found.
|
|
MUST_USE_RESULT Object* GetHiddenPropertiesHashTable();
|
|
|
|
// Return the hash table backing store for hidden properties. If there is no
|
|
// backing store, allocate one.
|
|
static Handle<ObjectHashTable> GetOrCreateHiddenPropertiesHashtable(
|
|
Handle<JSObject> object);
|
|
|
|
// Set the hidden property backing store to either a hash table or
|
|
// the inline-stored identity hash.
|
|
static Handle<Object> SetHiddenPropertiesHashTable(
|
|
Handle<JSObject> object,
|
|
Handle<Object> value);
|
|
|
|
MUST_USE_RESULT Object* GetIdentityHash();
|
|
|
|
static Handle<Smi> GetOrCreateIdentityHash(Handle<JSObject> object);
|
|
|
|
static Handle<SeededNumberDictionary> GetNormalizedElementDictionary(
|
|
Handle<JSObject> object);
|
|
|
|
// Helper for fast versions of preventExtensions, seal, and freeze.
|
|
// attrs is one of NONE, SEALED, or FROZEN (depending on the operation).
|
|
template <PropertyAttributes attrs>
|
|
MUST_USE_RESULT static MaybeHandle<Object> PreventExtensionsWithTransition(
|
|
Handle<JSObject> object);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
|
|
};
|
|
|
|
|
|
// Common superclass for FixedArrays that allow implementations to share
|
|
// common accessors and some code paths.
|
|
class FixedArrayBase: public HeapObject {
|
|
public:
|
|
// [length]: length of the array.
|
|
inline int length() const;
|
|
inline void set_length(int value);
|
|
|
|
// Get and set the length using acquire loads and release stores.
|
|
inline int synchronized_length() const;
|
|
inline void synchronized_set_length(int value);
|
|
|
|
DECLARE_CAST(FixedArrayBase)
|
|
|
|
// Layout description.
|
|
// Length is smi tagged when it is stored.
|
|
static const int kLengthOffset = HeapObject::kHeaderSize;
|
|
static const int kHeaderSize = kLengthOffset + kPointerSize;
|
|
};
|
|
|
|
|
|
class FixedDoubleArray;
|
|
class IncrementalMarking;
|
|
|
|
|
|
// FixedArray describes fixed-sized arrays with element type Object*.
|
|
class FixedArray: public FixedArrayBase {
|
|
public:
|
|
// Setter and getter for elements.
|
|
inline Object* get(int index) const;
|
|
static inline Handle<Object> get(Handle<FixedArray> array, int index);
|
|
// Setter that uses write barrier.
|
|
inline void set(int index, Object* value);
|
|
inline bool is_the_hole(int index);
|
|
|
|
// Setter that doesn't need write barrier.
|
|
inline void set(int index, Smi* value);
|
|
// Setter with explicit barrier mode.
|
|
inline void set(int index, Object* value, WriteBarrierMode mode);
|
|
|
|
// Setters for frequently used oddballs located in old space.
|
|
inline void set_undefined(int index);
|
|
inline void set_null(int index);
|
|
inline void set_the_hole(int index);
|
|
|
|
inline Object** GetFirstElementAddress();
|
|
inline bool ContainsOnlySmisOrHoles();
|
|
|
|
// Gives access to raw memory which stores the array's data.
|
|
inline Object** data_start();
|
|
|
|
inline void FillWithHoles(int from, int to);
|
|
|
|
// Shrink length and insert filler objects.
|
|
void Shrink(int length);
|
|
|
|
// Copy operation.
|
|
static Handle<FixedArray> CopySize(Handle<FixedArray> array,
|
|
int new_length,
|
|
PretenureFlag pretenure = NOT_TENURED);
|
|
|
|
enum KeyFilter { ALL_KEYS, NON_SYMBOL_KEYS };
|
|
|
|
// Add the elements of a JSArray to this FixedArray.
|
|
MUST_USE_RESULT static MaybeHandle<FixedArray> AddKeysFromArrayLike(
|
|
Handle<FixedArray> content, Handle<JSObject> array,
|
|
KeyFilter filter = ALL_KEYS);
|
|
|
|
// Computes the union of keys and return the result.
|
|
// Used for implementing "for (n in object) { }"
|
|
MUST_USE_RESULT static MaybeHandle<FixedArray> UnionOfKeys(
|
|
Handle<FixedArray> first,
|
|
Handle<FixedArray> second);
|
|
|
|
// Copy a sub array from the receiver to dest.
|
|
void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
|
|
|
|
// Garbage collection support.
|
|
static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
|
|
|
|
// Code Generation support.
|
|
static int OffsetOfElementAt(int index) { return SizeFor(index); }
|
|
|
|
// Garbage collection support.
|
|
Object** RawFieldOfElementAt(int index) {
|
|
return HeapObject::RawField(this, OffsetOfElementAt(index));
|
|
}
|
|
|
|
DECLARE_CAST(FixedArray)
|
|
|
|
// Maximal allowed size, in bytes, of a single FixedArray.
|
|
// Prevents overflowing size computations, as well as extreme memory
|
|
// consumption.
|
|
static const int kMaxSize = 128 * MB * kPointerSize;
|
|
// Maximally allowed length of a FixedArray.
|
|
static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize;
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(FixedArray)
|
|
DECLARE_VERIFIER(FixedArray)
|
|
#ifdef DEBUG
|
|
// Checks if two FixedArrays have identical contents.
|
|
bool IsEqualTo(FixedArray* other);
|
|
#endif
|
|
|
|
// Swap two elements in a pair of arrays. If this array and the
|
|
// numbers array are the same object, the elements are only swapped
|
|
// once.
|
|
void SwapPairs(FixedArray* numbers, int i, int j);
|
|
|
|
// Sort prefix of this array and the numbers array as pairs wrt. the
|
|
// numbers. If the numbers array and the this array are the same
|
|
// object, the prefix of this array is sorted.
|
|
void SortPairs(FixedArray* numbers, uint32_t len);
|
|
|
|
class BodyDescriptor : public FlexibleBodyDescriptor<kHeaderSize> {
|
|
public:
|
|
static inline int SizeOf(Map* map, HeapObject* object) {
|
|
return SizeFor(reinterpret_cast<FixedArray*>(object)->length());
|
|
}
|
|
};
|
|
|
|
protected:
|
|
// Set operation on FixedArray without using write barriers. Can
|
|
// only be used for storing old space objects or smis.
|
|
static inline void NoWriteBarrierSet(FixedArray* array,
|
|
int index,
|
|
Object* value);
|
|
|
|
// Set operation on FixedArray without incremental write barrier. Can
|
|
// only be used if the object is guaranteed to be white (whiteness witness
|
|
// is present).
|
|
static inline void NoIncrementalWriteBarrierSet(FixedArray* array,
|
|
int index,
|
|
Object* value);
|
|
|
|
private:
|
|
STATIC_ASSERT(kHeaderSize == Internals::kFixedArrayHeaderSize);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
|
|
};
|
|
|
|
|
|
// FixedDoubleArray describes fixed-sized arrays with element type double.
|
|
class FixedDoubleArray: public FixedArrayBase {
|
|
public:
|
|
// Setter and getter for elements.
|
|
inline double get_scalar(int index);
|
|
inline uint64_t get_representation(int index);
|
|
static inline Handle<Object> get(Handle<FixedDoubleArray> array, int index);
|
|
inline void set(int index, double value);
|
|
inline void set_the_hole(int index);
|
|
|
|
// Checking for the hole.
|
|
inline bool is_the_hole(int index);
|
|
|
|
// Garbage collection support.
|
|
inline static int SizeFor(int length) {
|
|
return kHeaderSize + length * kDoubleSize;
|
|
}
|
|
|
|
// Gives access to raw memory which stores the array's data.
|
|
inline double* data_start();
|
|
|
|
inline void FillWithHoles(int from, int to);
|
|
|
|
// Code Generation support.
|
|
static int OffsetOfElementAt(int index) { return SizeFor(index); }
|
|
|
|
DECLARE_CAST(FixedDoubleArray)
|
|
|
|
// Maximal allowed size, in bytes, of a single FixedDoubleArray.
|
|
// Prevents overflowing size computations, as well as extreme memory
|
|
// consumption.
|
|
static const int kMaxSize = 512 * MB;
|
|
// Maximally allowed length of a FixedArray.
|
|
static const int kMaxLength = (kMaxSize - kHeaderSize) / kDoubleSize;
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(FixedDoubleArray)
|
|
DECLARE_VERIFIER(FixedDoubleArray)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(FixedDoubleArray);
|
|
};
|
|
|
|
|
|
class WeakFixedArray : public FixedArray {
|
|
public:
|
|
enum SearchForDuplicates { kAlwaysAdd, kAddIfNotFound };
|
|
|
|
// If |maybe_array| is not a WeakFixedArray, a fresh one will be allocated.
|
|
static Handle<WeakFixedArray> Add(
|
|
Handle<Object> maybe_array, Handle<HeapObject> value,
|
|
SearchForDuplicates search_for_duplicates = kAlwaysAdd);
|
|
|
|
void Remove(Handle<HeapObject> value);
|
|
|
|
inline Object* Get(int index) const;
|
|
inline int Length() const;
|
|
|
|
DECLARE_CAST(WeakFixedArray)
|
|
|
|
private:
|
|
static const int kLastUsedIndexIndex = 0;
|
|
static const int kFirstIndex = 1;
|
|
|
|
static Handle<WeakFixedArray> Allocate(
|
|
Isolate* isolate, int size, Handle<WeakFixedArray> initialize_from);
|
|
|
|
static void Set(Handle<WeakFixedArray> array, int index,
|
|
Handle<HeapObject> value);
|
|
inline void clear(int index);
|
|
inline bool IsEmptySlot(int index) const;
|
|
|
|
inline int last_used_index() const;
|
|
inline void set_last_used_index(int index);
|
|
|
|
// Disallow inherited setters.
|
|
void set(int index, Smi* value);
|
|
void set(int index, Object* value);
|
|
void set(int index, Object* value, WriteBarrierMode mode);
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(WeakFixedArray);
|
|
};
|
|
|
|
|
|
// ConstantPoolArray describes a fixed-sized array containing constant pool
|
|
// entries.
|
|
//
|
|
// A ConstantPoolArray can be structured in two different ways depending upon
|
|
// whether it is extended or small. The is_extended_layout() method can be used
|
|
// to discover which layout the constant pool has.
|
|
//
|
|
// The format of a small constant pool is:
|
|
// [kSmallLayout1Offset] : Small section layout bitmap 1
|
|
// [kSmallLayout2Offset] : Small section layout bitmap 2
|
|
// [first_index(INT64, SMALL_SECTION)] : 64 bit entries
|
|
// ... : ...
|
|
// [first_index(CODE_PTR, SMALL_SECTION)] : code pointer entries
|
|
// ... : ...
|
|
// [first_index(HEAP_PTR, SMALL_SECTION)] : heap pointer entries
|
|
// ... : ...
|
|
// [first_index(INT32, SMALL_SECTION)] : 32 bit entries
|
|
// ... : ...
|
|
//
|
|
// If the constant pool has an extended layout, the extended section constant
|
|
// pool also contains an extended section, which has the following format at
|
|
// location get_extended_section_header_offset():
|
|
// [kExtendedInt64CountOffset] : count of extended 64 bit entries
|
|
// [kExtendedCodePtrCountOffset] : count of extended code pointers
|
|
// [kExtendedHeapPtrCountOffset] : count of extended heap pointers
|
|
// [kExtendedInt32CountOffset] : count of extended 32 bit entries
|
|
// [first_index(INT64, EXTENDED_SECTION)] : 64 bit entries
|
|
// ... : ...
|
|
// [first_index(CODE_PTR, EXTENDED_SECTION)]: code pointer entries
|
|
// ... : ...
|
|
// [first_index(HEAP_PTR, EXTENDED_SECTION)]: heap pointer entries
|
|
// ... : ...
|
|
// [first_index(INT32, EXTENDED_SECTION)] : 32 bit entries
|
|
// ... : ...
|
|
//
|
|
class ConstantPoolArray: public HeapObject {
|
|
public:
|
|
enum WeakObjectState { NO_WEAK_OBJECTS, WEAK_OBJECTS_IN_OPTIMIZED_CODE };
|
|
|
|
enum Type {
|
|
INT64 = 0,
|
|
CODE_PTR,
|
|
HEAP_PTR,
|
|
INT32,
|
|
// Number of types stored by the ConstantPoolArrays.
|
|
NUMBER_OF_TYPES,
|
|
FIRST_TYPE = INT64,
|
|
LAST_TYPE = INT32
|
|
};
|
|
|
|
enum LayoutSection {
|
|
SMALL_SECTION = 0,
|
|
EXTENDED_SECTION,
|
|
NUMBER_OF_LAYOUT_SECTIONS
|
|
};
|
|
|
|
class NumberOfEntries BASE_EMBEDDED {
|
|
public:
|
|
inline NumberOfEntries() {
|
|
for (int i = 0; i < NUMBER_OF_TYPES; i++) {
|
|
element_counts_[i] = 0;
|
|
}
|
|
}
|
|
|
|
inline NumberOfEntries(int int64_count, int code_ptr_count,
|
|
int heap_ptr_count, int int32_count) {
|
|
element_counts_[INT64] = int64_count;
|
|
element_counts_[CODE_PTR] = code_ptr_count;
|
|
element_counts_[HEAP_PTR] = heap_ptr_count;
|
|
element_counts_[INT32] = int32_count;
|
|
}
|
|
|
|
inline NumberOfEntries(ConstantPoolArray* array, LayoutSection section) {
|
|
element_counts_[INT64] = array->number_of_entries(INT64, section);
|
|
element_counts_[CODE_PTR] = array->number_of_entries(CODE_PTR, section);
|
|
element_counts_[HEAP_PTR] = array->number_of_entries(HEAP_PTR, section);
|
|
element_counts_[INT32] = array->number_of_entries(INT32, section);
|
|
}
|
|
|
|
inline void increment(Type type);
|
|
inline int equals(const NumberOfEntries& other) const;
|
|
inline bool is_empty() const;
|
|
inline int count_of(Type type) const;
|
|
inline int base_of(Type type) const;
|
|
inline int total_count() const;
|
|
inline int are_in_range(int min, int max) const;
|
|
|
|
private:
|
|
int element_counts_[NUMBER_OF_TYPES];
|
|
};
|
|
|
|
class Iterator BASE_EMBEDDED {
|
|
public:
|
|
inline Iterator(ConstantPoolArray* array, Type type)
|
|
: array_(array),
|
|
type_(type),
|
|
final_section_(array->final_section()),
|
|
current_section_(SMALL_SECTION),
|
|
next_index_(array->first_index(type, SMALL_SECTION)) {
|
|
update_section();
|
|
}
|
|
|
|
inline Iterator(ConstantPoolArray* array, Type type, LayoutSection section)
|
|
: array_(array),
|
|
type_(type),
|
|
final_section_(section),
|
|
current_section_(section),
|
|
next_index_(array->first_index(type, section)) {
|
|
update_section();
|
|
}
|
|
|
|
inline int next_index();
|
|
inline bool is_finished();
|
|
|
|
private:
|
|
inline void update_section();
|
|
ConstantPoolArray* array_;
|
|
const Type type_;
|
|
const LayoutSection final_section_;
|
|
|
|
LayoutSection current_section_;
|
|
int next_index_;
|
|
};
|
|
|
|
// Getters for the first index, the last index and the count of entries of
|
|
// a given type for a given layout section.
|
|
inline int first_index(Type type, LayoutSection layout_section);
|
|
inline int last_index(Type type, LayoutSection layout_section);
|
|
inline int number_of_entries(Type type, LayoutSection layout_section);
|
|
|
|
// Returns the type of the entry at the given index.
|
|
inline Type get_type(int index);
|
|
inline bool offset_is_type(int offset, Type type);
|
|
|
|
// Setter and getter for pool elements.
|
|
inline Address get_code_ptr_entry(int index);
|
|
inline Object* get_heap_ptr_entry(int index);
|
|
inline int64_t get_int64_entry(int index);
|
|
inline int32_t get_int32_entry(int index);
|
|
inline double get_int64_entry_as_double(int index);
|
|
|
|
inline void set(int index, Address value);
|
|
inline void set(int index, Object* value);
|
|
inline void set(int index, int64_t value);
|
|
inline void set(int index, double value);
|
|
inline void set(int index, int32_t value);
|
|
|
|
// Setters which take a raw offset rather than an index (for code generation).
|
|
inline void set_at_offset(int offset, int32_t value);
|
|
inline void set_at_offset(int offset, int64_t value);
|
|
inline void set_at_offset(int offset, double value);
|
|
inline void set_at_offset(int offset, Address value);
|
|
inline void set_at_offset(int offset, Object* value);
|
|
|
|
// Setter and getter for weak objects state
|
|
inline void set_weak_object_state(WeakObjectState state);
|
|
inline WeakObjectState get_weak_object_state();
|
|
|
|
// Returns true if the constant pool has an extended layout, false if it has
|
|
// only the small layout.
|
|
inline bool is_extended_layout();
|
|
|
|
// Returns the last LayoutSection in this constant pool array.
|
|
inline LayoutSection final_section();
|
|
|
|
// Set up initial state for a small layout constant pool array.
|
|
inline void Init(const NumberOfEntries& small);
|
|
|
|
// Set up initial state for an extended layout constant pool array.
|
|
inline void InitExtended(const NumberOfEntries& small,
|
|
const NumberOfEntries& extended);
|
|
|
|
// Clears the pointer entries with GC safe values.
|
|
void ClearPtrEntries(Isolate* isolate);
|
|
|
|
// returns the total number of entries in the constant pool array.
|
|
inline int length();
|
|
|
|
// Garbage collection support.
|
|
inline int size();
|
|
|
|
|
|
inline static int MaxInt64Offset(int number_of_int64) {
|
|
return kFirstEntryOffset + (number_of_int64 * kInt64Size);
|
|
}
|
|
|
|
inline static int SizeFor(const NumberOfEntries& small) {
|
|
int size = kFirstEntryOffset +
|
|
(small.count_of(INT64) * kInt64Size) +
|
|
(small.count_of(CODE_PTR) * kPointerSize) +
|
|
(small.count_of(HEAP_PTR) * kPointerSize) +
|
|
(small.count_of(INT32) * kInt32Size);
|
|
return RoundUp(size, kPointerSize);
|
|
}
|
|
|
|
inline static int SizeForExtended(const NumberOfEntries& small,
|
|
const NumberOfEntries& extended) {
|
|
int size = SizeFor(small);
|
|
size = RoundUp(size, kInt64Size); // Align extended header to 64 bits.
|
|
size += kExtendedFirstOffset +
|
|
(extended.count_of(INT64) * kInt64Size) +
|
|
(extended.count_of(CODE_PTR) * kPointerSize) +
|
|
(extended.count_of(HEAP_PTR) * kPointerSize) +
|
|
(extended.count_of(INT32) * kInt32Size);
|
|
return RoundUp(size, kPointerSize);
|
|
}
|
|
|
|
inline static int entry_size(Type type) {
|
|
switch (type) {
|
|
case INT32:
|
|
return kInt32Size;
|
|
case INT64:
|
|
return kInt64Size;
|
|
case CODE_PTR:
|
|
case HEAP_PTR:
|
|
return kPointerSize;
|
|
default:
|
|
UNREACHABLE();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Code Generation support.
|
|
inline int OffsetOfElementAt(int index) {
|
|
int offset;
|
|
LayoutSection section;
|
|
if (is_extended_layout() && index >= first_extended_section_index()) {
|
|
section = EXTENDED_SECTION;
|
|
offset = get_extended_section_header_offset() + kExtendedFirstOffset;
|
|
} else {
|
|
section = SMALL_SECTION;
|
|
offset = kFirstEntryOffset;
|
|
}
|
|
|
|
// Add offsets for the preceding type sections.
|
|
DCHECK(index <= last_index(LAST_TYPE, section));
|
|
for (Type type = FIRST_TYPE; index > last_index(type, section);
|
|
type = next_type(type)) {
|
|
offset += entry_size(type) * number_of_entries(type, section);
|
|
}
|
|
|
|
// Add offset for the index in it's type.
|
|
Type type = get_type(index);
|
|
offset += entry_size(type) * (index - first_index(type, section));
|
|
return offset;
|
|
}
|
|
|
|
DECLARE_CAST(ConstantPoolArray)
|
|
|
|
// Garbage collection support.
|
|
Object** RawFieldOfElementAt(int index) {
|
|
return HeapObject::RawField(this, OffsetOfElementAt(index));
|
|
}
|
|
|
|
// Small Layout description.
|
|
static const int kSmallLayout1Offset = HeapObject::kHeaderSize;
|
|
static const int kSmallLayout2Offset = kSmallLayout1Offset + kInt32Size;
|
|
static const int kHeaderSize = kSmallLayout2Offset + kInt32Size;
|
|
static const int kFirstEntryOffset = ROUND_UP(kHeaderSize, kInt64Size);
|
|
|
|
static const int kSmallLayoutCountBits = 10;
|
|
static const int kMaxSmallEntriesPerType = (1 << kSmallLayoutCountBits) - 1;
|
|
|
|
// Fields in kSmallLayout1Offset.
|
|
class Int64CountField: public BitField<int, 1, kSmallLayoutCountBits> {};
|
|
class CodePtrCountField: public BitField<int, 11, kSmallLayoutCountBits> {};
|
|
class HeapPtrCountField: public BitField<int, 21, kSmallLayoutCountBits> {};
|
|
class IsExtendedField: public BitField<bool, 31, 1> {};
|
|
|
|
// Fields in kSmallLayout2Offset.
|
|
class Int32CountField: public BitField<int, 1, kSmallLayoutCountBits> {};
|
|
class TotalCountField: public BitField<int, 11, 12> {};
|
|
class WeakObjectStateField: public BitField<WeakObjectState, 23, 2> {};
|
|
|
|
// Extended layout description, which starts at
|
|
// get_extended_section_header_offset().
|
|
static const int kExtendedInt64CountOffset = 0;
|
|
static const int kExtendedCodePtrCountOffset =
|
|
kExtendedInt64CountOffset + kInt32Size;
|
|
static const int kExtendedHeapPtrCountOffset =
|
|
kExtendedCodePtrCountOffset + kInt32Size;
|
|
static const int kExtendedInt32CountOffset =
|
|
kExtendedHeapPtrCountOffset + kInt32Size;
|
|
static const int kExtendedFirstOffset =
|
|
kExtendedInt32CountOffset + kInt32Size;
|
|
|
|
// Dispatched behavior.
|
|
void ConstantPoolIterateBody(ObjectVisitor* v);
|
|
|
|
DECLARE_PRINTER(ConstantPoolArray)
|
|
DECLARE_VERIFIER(ConstantPoolArray)
|
|
|
|
private:
|
|
inline int first_extended_section_index();
|
|
inline int get_extended_section_header_offset();
|
|
|
|
inline static Type next_type(Type type) {
|
|
DCHECK(type >= FIRST_TYPE && type < NUMBER_OF_TYPES);
|
|
int type_int = static_cast<int>(type);
|
|
return static_cast<Type>(++type_int);
|
|
}
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ConstantPoolArray);
|
|
};
|
|
|
|
|
|
// DescriptorArrays are fixed arrays used to hold instance descriptors.
|
|
// The format of the these objects is:
|
|
// [0]: Number of descriptors
|
|
// [1]: Either Smi(0) if uninitialized, or a pointer to small fixed array:
|
|
// [0]: pointer to fixed array with enum cache
|
|
// [1]: either Smi(0) or pointer to fixed array with indices
|
|
// [2]: first key
|
|
// [2 + number of descriptors * kDescriptorSize]: start of slack
|
|
class DescriptorArray: public FixedArray {
|
|
public:
|
|
// Returns true for both shared empty_descriptor_array and for smis, which the
|
|
// map uses to encode additional bit fields when the descriptor array is not
|
|
// yet used.
|
|
inline bool IsEmpty();
|
|
|
|
// Returns the number of descriptors in the array.
|
|
int number_of_descriptors() {
|
|
DCHECK(length() >= kFirstIndex || IsEmpty());
|
|
int len = length();
|
|
return len == 0 ? 0 : Smi::cast(get(kDescriptorLengthIndex))->value();
|
|
}
|
|
|
|
int number_of_descriptors_storage() {
|
|
int len = length();
|
|
return len == 0 ? 0 : (len - kFirstIndex) / kDescriptorSize;
|
|
}
|
|
|
|
int NumberOfSlackDescriptors() {
|
|
return number_of_descriptors_storage() - number_of_descriptors();
|
|
}
|
|
|
|
inline void SetNumberOfDescriptors(int number_of_descriptors);
|
|
inline int number_of_entries() { return number_of_descriptors(); }
|
|
|
|
bool HasEnumCache() {
|
|
return !IsEmpty() && !get(kEnumCacheIndex)->IsSmi();
|
|
}
|
|
|
|
void CopyEnumCacheFrom(DescriptorArray* array) {
|
|
set(kEnumCacheIndex, array->get(kEnumCacheIndex));
|
|
}
|
|
|
|
FixedArray* GetEnumCache() {
|
|
DCHECK(HasEnumCache());
|
|
FixedArray* bridge = FixedArray::cast(get(kEnumCacheIndex));
|
|
return FixedArray::cast(bridge->get(kEnumCacheBridgeCacheIndex));
|
|
}
|
|
|
|
bool HasEnumIndicesCache() {
|
|
if (IsEmpty()) return false;
|
|
Object* object = get(kEnumCacheIndex);
|
|
if (object->IsSmi()) return false;
|
|
FixedArray* bridge = FixedArray::cast(object);
|
|
return !bridge->get(kEnumCacheBridgeIndicesCacheIndex)->IsSmi();
|
|
}
|
|
|
|
FixedArray* GetEnumIndicesCache() {
|
|
DCHECK(HasEnumIndicesCache());
|
|
FixedArray* bridge = FixedArray::cast(get(kEnumCacheIndex));
|
|
return FixedArray::cast(bridge->get(kEnumCacheBridgeIndicesCacheIndex));
|
|
}
|
|
|
|
Object** GetEnumCacheSlot() {
|
|
DCHECK(HasEnumCache());
|
|
return HeapObject::RawField(reinterpret_cast<HeapObject*>(this),
|
|
kEnumCacheOffset);
|
|
}
|
|
|
|
void ClearEnumCache();
|
|
|
|
// Initialize or change the enum cache,
|
|
// using the supplied storage for the small "bridge".
|
|
void SetEnumCache(FixedArray* bridge_storage,
|
|
FixedArray* new_cache,
|
|
Object* new_index_cache);
|
|
|
|
bool CanHoldValue(int descriptor, Object* value);
|
|
|
|
// Accessors for fetching instance descriptor at descriptor number.
|
|
inline Name* GetKey(int descriptor_number);
|
|
inline Object** GetKeySlot(int descriptor_number);
|
|
inline Object* GetValue(int descriptor_number);
|
|
inline void SetValue(int descriptor_number, Object* value);
|
|
inline Object** GetValueSlot(int descriptor_number);
|
|
static inline int GetValueOffset(int descriptor_number);
|
|
inline Object** GetDescriptorStartSlot(int descriptor_number);
|
|
inline Object** GetDescriptorEndSlot(int descriptor_number);
|
|
inline PropertyDetails GetDetails(int descriptor_number);
|
|
inline PropertyType GetType(int descriptor_number);
|
|
inline int GetFieldIndex(int descriptor_number);
|
|
inline HeapType* GetFieldType(int descriptor_number);
|
|
inline Object* GetConstant(int descriptor_number);
|
|
inline Object* GetCallbacksObject(int descriptor_number);
|
|
inline AccessorDescriptor* GetCallbacks(int descriptor_number);
|
|
|
|
inline Name* GetSortedKey(int descriptor_number);
|
|
inline int GetSortedKeyIndex(int descriptor_number);
|
|
inline void SetSortedKey(int pointer, int descriptor_number);
|
|
inline void SetRepresentation(int descriptor_number,
|
|
Representation representation);
|
|
|
|
// Accessor for complete descriptor.
|
|
inline void Get(int descriptor_number, Descriptor* desc);
|
|
inline void Set(int descriptor_number, Descriptor* desc);
|
|
void Replace(int descriptor_number, Descriptor* descriptor);
|
|
|
|
// Append automatically sets the enumeration index. This should only be used
|
|
// to add descriptors in bulk at the end, followed by sorting the descriptor
|
|
// array.
|
|
inline void Append(Descriptor* desc);
|
|
|
|
static Handle<DescriptorArray> CopyUpTo(Handle<DescriptorArray> desc,
|
|
int enumeration_index,
|
|
int slack = 0);
|
|
|
|
static Handle<DescriptorArray> CopyUpToAddAttributes(
|
|
Handle<DescriptorArray> desc,
|
|
int enumeration_index,
|
|
PropertyAttributes attributes,
|
|
int slack = 0);
|
|
|
|
// Sort the instance descriptors by the hash codes of their keys.
|
|
void Sort();
|
|
|
|
// Search the instance descriptors for given name.
|
|
INLINE(int Search(Name* name, int number_of_own_descriptors));
|
|
|
|
// As the above, but uses DescriptorLookupCache and updates it when
|
|
// necessary.
|
|
INLINE(int SearchWithCache(Name* name, Map* map));
|
|
|
|
// Allocates a DescriptorArray, but returns the singleton
|
|
// empty descriptor array object if number_of_descriptors is 0.
|
|
static Handle<DescriptorArray> Allocate(Isolate* isolate,
|
|
int number_of_descriptors,
|
|
int slack = 0);
|
|
|
|
DECLARE_CAST(DescriptorArray)
|
|
|
|
// Constant for denoting key was not found.
|
|
static const int kNotFound = -1;
|
|
|
|
static const int kDescriptorLengthIndex = 0;
|
|
static const int kEnumCacheIndex = 1;
|
|
static const int kFirstIndex = 2;
|
|
|
|
// The length of the "bridge" to the enum cache.
|
|
static const int kEnumCacheBridgeLength = 2;
|
|
static const int kEnumCacheBridgeCacheIndex = 0;
|
|
static const int kEnumCacheBridgeIndicesCacheIndex = 1;
|
|
|
|
// Layout description.
|
|
static const int kDescriptorLengthOffset = FixedArray::kHeaderSize;
|
|
static const int kEnumCacheOffset = kDescriptorLengthOffset + kPointerSize;
|
|
static const int kFirstOffset = kEnumCacheOffset + kPointerSize;
|
|
|
|
// Layout description for the bridge array.
|
|
static const int kEnumCacheBridgeCacheOffset = FixedArray::kHeaderSize;
|
|
|
|
// Layout of descriptor.
|
|
static const int kDescriptorKey = 0;
|
|
static const int kDescriptorDetails = 1;
|
|
static const int kDescriptorValue = 2;
|
|
static const int kDescriptorSize = 3;
|
|
|
|
#if defined(DEBUG) || defined(OBJECT_PRINT)
|
|
// For our gdb macros, we should perhaps change these in the future.
|
|
void Print();
|
|
|
|
// Print all the descriptors.
|
|
void PrintDescriptors(std::ostream& os); // NOLINT
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
// Is the descriptor array sorted and without duplicates?
|
|
bool IsSortedNoDuplicates(int valid_descriptors = -1);
|
|
|
|
// Is the descriptor array consistent with the back pointers in targets?
|
|
bool IsConsistentWithBackPointers(Map* current_map);
|
|
|
|
// Are two DescriptorArrays equal?
|
|
bool IsEqualTo(DescriptorArray* other);
|
|
#endif
|
|
|
|
// Returns the fixed array length required to hold number_of_descriptors
|
|
// descriptors.
|
|
static int LengthFor(int number_of_descriptors) {
|
|
return ToKeyIndex(number_of_descriptors);
|
|
}
|
|
|
|
private:
|
|
// WhitenessWitness is used to prove that a descriptor array is white
|
|
// (unmarked), so incremental write barriers can be skipped because the
|
|
// marking invariant cannot be broken and slots pointing into evacuation
|
|
// candidates will be discovered when the object is scanned. A witness is
|
|
// always stack-allocated right after creating an array. By allocating a
|
|
// witness, incremental marking is globally disabled. The witness is then
|
|
// passed along wherever needed to statically prove that the array is known to
|
|
// be white.
|
|
class WhitenessWitness {
|
|
public:
|
|
inline explicit WhitenessWitness(DescriptorArray* array);
|
|
inline ~WhitenessWitness();
|
|
|
|
private:
|
|
IncrementalMarking* marking_;
|
|
};
|
|
|
|
// An entry in a DescriptorArray, represented as an (array, index) pair.
|
|
class Entry {
|
|
public:
|
|
inline explicit Entry(DescriptorArray* descs, int index) :
|
|
descs_(descs), index_(index) { }
|
|
|
|
inline PropertyType type() { return descs_->GetType(index_); }
|
|
inline Object* GetCallbackObject() { return descs_->GetValue(index_); }
|
|
|
|
private:
|
|
DescriptorArray* descs_;
|
|
int index_;
|
|
};
|
|
|
|
// Conversion from descriptor number to array indices.
|
|
static int ToKeyIndex(int descriptor_number) {
|
|
return kFirstIndex +
|
|
(descriptor_number * kDescriptorSize) +
|
|
kDescriptorKey;
|
|
}
|
|
|
|
static int ToDetailsIndex(int descriptor_number) {
|
|
return kFirstIndex +
|
|
(descriptor_number * kDescriptorSize) +
|
|
kDescriptorDetails;
|
|
}
|
|
|
|
static int ToValueIndex(int descriptor_number) {
|
|
return kFirstIndex +
|
|
(descriptor_number * kDescriptorSize) +
|
|
kDescriptorValue;
|
|
}
|
|
|
|
// Transfer a complete descriptor from the src descriptor array to this
|
|
// descriptor array.
|
|
void CopyFrom(int index, DescriptorArray* src, const WhitenessWitness&);
|
|
|
|
inline void Set(int descriptor_number,
|
|
Descriptor* desc,
|
|
const WhitenessWitness&);
|
|
|
|
// Swap first and second descriptor.
|
|
inline void SwapSortedKeys(int first, int second);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
|
|
};
|
|
|
|
|
|
enum SearchMode { ALL_ENTRIES, VALID_ENTRIES };
|
|
|
|
template <SearchMode search_mode, typename T>
|
|
inline int Search(T* array, Name* name, int valid_entries = 0,
|
|
int* out_insertion_index = NULL);
|
|
|
|
|
|
// HashTable is a subclass of FixedArray that implements a hash table
|
|
// that uses open addressing and quadratic probing.
|
|
//
|
|
// In order for the quadratic probing to work, elements that have not
|
|
// yet been used and elements that have been deleted are
|
|
// distinguished. Probing continues when deleted elements are
|
|
// encountered and stops when unused elements are encountered.
|
|
//
|
|
// - Elements with key == undefined have not been used yet.
|
|
// - Elements with key == the_hole have been deleted.
|
|
//
|
|
// The hash table class is parameterized with a Shape and a Key.
|
|
// Shape must be a class with the following interface:
|
|
// class ExampleShape {
|
|
// public:
|
|
// // Tells whether key matches other.
|
|
// static bool IsMatch(Key key, Object* other);
|
|
// // Returns the hash value for key.
|
|
// static uint32_t Hash(Key key);
|
|
// // Returns the hash value for object.
|
|
// static uint32_t HashForObject(Key key, Object* object);
|
|
// // Convert key to an object.
|
|
// static inline Handle<Object> AsHandle(Isolate* isolate, Key key);
|
|
// // The prefix size indicates number of elements in the beginning
|
|
// // of the backing storage.
|
|
// static const int kPrefixSize = ..;
|
|
// // The Element size indicates number of elements per entry.
|
|
// static const int kEntrySize = ..;
|
|
// };
|
|
// The prefix size indicates an amount of memory in the
|
|
// beginning of the backing storage that can be used for non-element
|
|
// information by subclasses.
|
|
|
|
template<typename Key>
|
|
class BaseShape {
|
|
public:
|
|
static const bool UsesSeed = false;
|
|
static uint32_t Hash(Key key) { return 0; }
|
|
static uint32_t SeededHash(Key key, uint32_t seed) {
|
|
DCHECK(UsesSeed);
|
|
return Hash(key);
|
|
}
|
|
static uint32_t HashForObject(Key key, Object* object) { return 0; }
|
|
static uint32_t SeededHashForObject(Key key, uint32_t seed, Object* object) {
|
|
DCHECK(UsesSeed);
|
|
return HashForObject(key, object);
|
|
}
|
|
};
|
|
|
|
template<typename Derived, typename Shape, typename Key>
|
|
class HashTable: public FixedArray {
|
|
public:
|
|
// Wrapper methods
|
|
inline uint32_t Hash(Key key) {
|
|
if (Shape::UsesSeed) {
|
|
return Shape::SeededHash(key, GetHeap()->HashSeed());
|
|
} else {
|
|
return Shape::Hash(key);
|
|
}
|
|
}
|
|
|
|
inline uint32_t HashForObject(Key key, Object* object) {
|
|
if (Shape::UsesSeed) {
|
|
return Shape::SeededHashForObject(key, GetHeap()->HashSeed(), object);
|
|
} else {
|
|
return Shape::HashForObject(key, object);
|
|
}
|
|
}
|
|
|
|
// Returns the number of elements in the hash table.
|
|
int NumberOfElements() {
|
|
return Smi::cast(get(kNumberOfElementsIndex))->value();
|
|
}
|
|
|
|
// Returns the number of deleted elements in the hash table.
|
|
int NumberOfDeletedElements() {
|
|
return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
|
|
}
|
|
|
|
// Returns the capacity of the hash table.
|
|
int Capacity() {
|
|
return Smi::cast(get(kCapacityIndex))->value();
|
|
}
|
|
|
|
// ElementAdded should be called whenever an element is added to a
|
|
// hash table.
|
|
void ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); }
|
|
|
|
// ElementRemoved should be called whenever an element is removed from
|
|
// a hash table.
|
|
void ElementRemoved() {
|
|
SetNumberOfElements(NumberOfElements() - 1);
|
|
SetNumberOfDeletedElements(NumberOfDeletedElements() + 1);
|
|
}
|
|
void ElementsRemoved(int n) {
|
|
SetNumberOfElements(NumberOfElements() - n);
|
|
SetNumberOfDeletedElements(NumberOfDeletedElements() + n);
|
|
}
|
|
|
|
// Returns a new HashTable object.
|
|
MUST_USE_RESULT static Handle<Derived> New(
|
|
Isolate* isolate,
|
|
int at_least_space_for,
|
|
MinimumCapacity capacity_option = USE_DEFAULT_MINIMUM_CAPACITY,
|
|
PretenureFlag pretenure = NOT_TENURED);
|
|
|
|
// Computes the required capacity for a table holding the given
|
|
// number of elements. May be more than HashTable::kMaxCapacity.
|
|
static int ComputeCapacity(int at_least_space_for);
|
|
|
|
// Returns the key at entry.
|
|
Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
|
|
|
|
// Tells whether k is a real key. The hole and undefined are not allowed
|
|
// as keys and can be used to indicate missing or deleted elements.
|
|
bool IsKey(Object* k) {
|
|
return !k->IsTheHole() && !k->IsUndefined();
|
|
}
|
|
|
|
// Garbage collection support.
|
|
void IteratePrefix(ObjectVisitor* visitor);
|
|
void IterateElements(ObjectVisitor* visitor);
|
|
|
|
DECLARE_CAST(HashTable)
|
|
|
|
// Compute the probe offset (quadratic probing).
|
|
INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
|
|
return (n + n * n) >> 1;
|
|
}
|
|
|
|
static const int kNumberOfElementsIndex = 0;
|
|
static const int kNumberOfDeletedElementsIndex = 1;
|
|
static const int kCapacityIndex = 2;
|
|
static const int kPrefixStartIndex = 3;
|
|
static const int kElementsStartIndex =
|
|
kPrefixStartIndex + Shape::kPrefixSize;
|
|
static const int kEntrySize = Shape::kEntrySize;
|
|
static const int kElementsStartOffset =
|
|
kHeaderSize + kElementsStartIndex * kPointerSize;
|
|
static const int kCapacityOffset =
|
|
kHeaderSize + kCapacityIndex * kPointerSize;
|
|
|
|
// Constant used for denoting a absent entry.
|
|
static const int kNotFound = -1;
|
|
|
|
// Maximal capacity of HashTable. Based on maximal length of underlying
|
|
// FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex
|
|
// cannot overflow.
|
|
static const int kMaxCapacity =
|
|
(FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize;
|
|
|
|
// Find entry for key otherwise return kNotFound.
|
|
inline int FindEntry(Key key);
|
|
int FindEntry(Isolate* isolate, Key key);
|
|
|
|
// Rehashes the table in-place.
|
|
void Rehash(Key key);
|
|
|
|
protected:
|
|
friend class ObjectHashTable;
|
|
|
|
// Find the entry at which to insert element with the given key that
|
|
// has the given hash value.
|
|
uint32_t FindInsertionEntry(uint32_t hash);
|
|
|
|
// Returns the index for an entry (of the key)
|
|
static inline int EntryToIndex(int entry) {
|
|
return (entry * kEntrySize) + kElementsStartIndex;
|
|
}
|
|
|
|
// Update the number of elements in the hash table.
|
|
void SetNumberOfElements(int nof) {
|
|
set(kNumberOfElementsIndex, Smi::FromInt(nof));
|
|
}
|
|
|
|
// Update the number of deleted elements in the hash table.
|
|
void SetNumberOfDeletedElements(int nod) {
|
|
set(kNumberOfDeletedElementsIndex, Smi::FromInt(nod));
|
|
}
|
|
|
|
// Sets the capacity of the hash table.
|
|
void SetCapacity(int capacity) {
|
|
// To scale a computed hash code to fit within the hash table, we
|
|
// use bit-wise AND with a mask, so the capacity must be positive
|
|
// and non-zero.
|
|
DCHECK(capacity > 0);
|
|
DCHECK(capacity <= kMaxCapacity);
|
|
set(kCapacityIndex, Smi::FromInt(capacity));
|
|
}
|
|
|
|
|
|
// Returns probe entry.
|
|
static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
|
|
DCHECK(base::bits::IsPowerOfTwo32(size));
|
|
return (hash + GetProbeOffset(number)) & (size - 1);
|
|
}
|
|
|
|
inline static uint32_t FirstProbe(uint32_t hash, uint32_t size) {
|
|
return hash & (size - 1);
|
|
}
|
|
|
|
inline static uint32_t NextProbe(
|
|
uint32_t last, uint32_t number, uint32_t size) {
|
|
return (last + number) & (size - 1);
|
|
}
|
|
|
|
// Attempt to shrink hash table after removal of key.
|
|
MUST_USE_RESULT static Handle<Derived> Shrink(Handle<Derived> table, Key key);
|
|
|
|
// Ensure enough space for n additional elements.
|
|
MUST_USE_RESULT static Handle<Derived> EnsureCapacity(
|
|
Handle<Derived> table,
|
|
int n,
|
|
Key key,
|
|
PretenureFlag pretenure = NOT_TENURED);
|
|
|
|
private:
|
|
// Returns _expected_ if one of entries given by the first _probe_ probes is
|
|
// equal to _expected_. Otherwise, returns the entry given by the probe
|
|
// number _probe_.
|
|
uint32_t EntryForProbe(Key key, Object* k, int probe, uint32_t expected);
|
|
|
|
void Swap(uint32_t entry1, uint32_t entry2, WriteBarrierMode mode);
|
|
|
|
// Rehashes this hash-table into the new table.
|
|
void Rehash(Handle<Derived> new_table, Key key);
|
|
};
|
|
|
|
|
|
// HashTableKey is an abstract superclass for virtual key behavior.
|
|
class HashTableKey {
|
|
public:
|
|
// Returns whether the other object matches this key.
|
|
virtual bool IsMatch(Object* other) = 0;
|
|
// Returns the hash value for this key.
|
|
virtual uint32_t Hash() = 0;
|
|
// Returns the hash value for object.
|
|
virtual uint32_t HashForObject(Object* key) = 0;
|
|
// Returns the key object for storing into the hash table.
|
|
MUST_USE_RESULT virtual Handle<Object> AsHandle(Isolate* isolate) = 0;
|
|
// Required.
|
|
virtual ~HashTableKey() {}
|
|
};
|
|
|
|
|
|
class StringTableShape : public BaseShape<HashTableKey*> {
|
|
public:
|
|
static inline bool IsMatch(HashTableKey* key, Object* value) {
|
|
return key->IsMatch(value);
|
|
}
|
|
|
|
static inline uint32_t Hash(HashTableKey* key) {
|
|
return key->Hash();
|
|
}
|
|
|
|
static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
|
|
return key->HashForObject(object);
|
|
}
|
|
|
|
static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);
|
|
|
|
static const int kPrefixSize = 0;
|
|
static const int kEntrySize = 1;
|
|
};
|
|
|
|
class SeqOneByteString;
|
|
|
|
// StringTable.
|
|
//
|
|
// No special elements in the prefix and the element size is 1
|
|
// because only the string itself (the key) needs to be stored.
|
|
class StringTable: public HashTable<StringTable,
|
|
StringTableShape,
|
|
HashTableKey*> {
|
|
public:
|
|
// Find string in the string table. If it is not there yet, it is
|
|
// added. The return value is the string found.
|
|
static Handle<String> LookupString(Isolate* isolate, Handle<String> key);
|
|
static Handle<String> LookupKey(Isolate* isolate, HashTableKey* key);
|
|
|
|
// Tries to internalize given string and returns string handle on success
|
|
// or an empty handle otherwise.
|
|
MUST_USE_RESULT static MaybeHandle<String> InternalizeStringIfExists(
|
|
Isolate* isolate,
|
|
Handle<String> string);
|
|
|
|
// Looks up a string that is equal to the given string and returns
|
|
// string handle if it is found, or an empty handle otherwise.
|
|
MUST_USE_RESULT static MaybeHandle<String> LookupStringIfExists(
|
|
Isolate* isolate,
|
|
Handle<String> str);
|
|
MUST_USE_RESULT static MaybeHandle<String> LookupTwoCharsStringIfExists(
|
|
Isolate* isolate,
|
|
uint16_t c1,
|
|
uint16_t c2);
|
|
|
|
static void EnsureCapacityForDeserialization(Isolate* isolate, int expected);
|
|
|
|
DECLARE_CAST(StringTable)
|
|
|
|
private:
|
|
template <bool seq_one_byte>
|
|
friend class JsonParser;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(StringTable);
|
|
};
|
|
|
|
|
|
template <typename Derived, typename Shape, typename Key>
|
|
class Dictionary: public HashTable<Derived, Shape, Key> {
|
|
protected:
|
|
typedef HashTable<Derived, Shape, Key> DerivedHashTable;
|
|
|
|
public:
|
|
// Returns the value at entry.
|
|
Object* ValueAt(int entry) {
|
|
return this->get(DerivedHashTable::EntryToIndex(entry) + 1);
|
|
}
|
|
|
|
// Set the value for entry.
|
|
void ValueAtPut(int entry, Object* value) {
|
|
this->set(DerivedHashTable::EntryToIndex(entry) + 1, value);
|
|
}
|
|
|
|
// Returns the property details for the property at entry.
|
|
PropertyDetails DetailsAt(int entry) {
|
|
DCHECK(entry >= 0); // Not found is -1, which is not caught by get().
|
|
return PropertyDetails(
|
|
Smi::cast(this->get(DerivedHashTable::EntryToIndex(entry) + 2)));
|
|
}
|
|
|
|
// Set the details for entry.
|
|
void DetailsAtPut(int entry, PropertyDetails value) {
|
|
this->set(DerivedHashTable::EntryToIndex(entry) + 2, value.AsSmi());
|
|
}
|
|
|
|
// Sorting support
|
|
void CopyValuesTo(FixedArray* elements);
|
|
|
|
// Delete a property from the dictionary.
|
|
static Handle<Object> DeleteProperty(Handle<Derived> dictionary, int entry);
|
|
|
|
// Attempt to shrink the dictionary after deletion of key.
|
|
MUST_USE_RESULT static inline Handle<Derived> Shrink(
|
|
Handle<Derived> dictionary,
|
|
Key key) {
|
|
return DerivedHashTable::Shrink(dictionary, key);
|
|
}
|
|
|
|
// Returns the number of elements in the dictionary filtering out properties
|
|
// with the specified attributes.
|
|
int NumberOfElementsFilterAttributes(PropertyAttributes filter);
|
|
|
|
// Returns the number of enumerable elements in the dictionary.
|
|
int NumberOfEnumElements();
|
|
|
|
// Returns true if the dictionary contains any elements that are non-writable,
|
|
// non-configurable, non-enumerable, or have getters/setters.
|
|
bool HasComplexElements();
|
|
|
|
enum SortMode { UNSORTED, SORTED };
|
|
// Copies keys to preallocated fixed array.
|
|
void CopyKeysTo(FixedArray* storage,
|
|
PropertyAttributes filter,
|
|
SortMode sort_mode);
|
|
// Fill in details for properties into storage.
|
|
void CopyKeysTo(FixedArray* storage,
|
|
int index,
|
|
PropertyAttributes filter,
|
|
SortMode sort_mode);
|
|
|
|
// Accessors for next enumeration index.
|
|
void SetNextEnumerationIndex(int index) {
|
|
DCHECK(index != 0);
|
|
this->set(kNextEnumerationIndexIndex, Smi::FromInt(index));
|
|
}
|
|
|
|
int NextEnumerationIndex() {
|
|
return Smi::cast(this->get(kNextEnumerationIndexIndex))->value();
|
|
}
|
|
|
|
// Creates a new dictionary.
|
|
MUST_USE_RESULT static Handle<Derived> New(
|
|
Isolate* isolate,
|
|
int at_least_space_for,
|
|
PretenureFlag pretenure = NOT_TENURED);
|
|
|
|
// Ensure enough space for n additional elements.
|
|
static Handle<Derived> EnsureCapacity(Handle<Derived> obj, int n, Key key);
|
|
|
|
#ifdef OBJECT_PRINT
|
|
void Print(std::ostream& os); // NOLINT
|
|
#endif
|
|
// Returns the key (slow).
|
|
Object* SlowReverseLookup(Object* value);
|
|
|
|
// Sets the entry to (key, value) pair.
|
|
inline void SetEntry(int entry,
|
|
Handle<Object> key,
|
|
Handle<Object> value);
|
|
inline void SetEntry(int entry,
|
|
Handle<Object> key,
|
|
Handle<Object> value,
|
|
PropertyDetails details);
|
|
|
|
MUST_USE_RESULT static Handle<Derived> Add(
|
|
Handle<Derived> dictionary,
|
|
Key key,
|
|
Handle<Object> value,
|
|
PropertyDetails details);
|
|
|
|
// Returns iteration indices array for the |dictionary|.
|
|
// Values are direct indices in the |HashTable| array.
|
|
static Handle<FixedArray> BuildIterationIndicesArray(
|
|
Handle<Derived> dictionary);
|
|
|
|
protected:
|
|
// Generic at put operation.
|
|
MUST_USE_RESULT static Handle<Derived> AtPut(
|
|
Handle<Derived> dictionary,
|
|
Key key,
|
|
Handle<Object> value);
|
|
|
|
// Add entry to dictionary.
|
|
static void AddEntry(
|
|
Handle<Derived> dictionary,
|
|
Key key,
|
|
Handle<Object> value,
|
|
PropertyDetails details,
|
|
uint32_t hash);
|
|
|
|
// Generate new enumeration indices to avoid enumeration index overflow.
|
|
// Returns iteration indices array for the |dictionary|.
|
|
static Handle<FixedArray> GenerateNewEnumerationIndices(
|
|
Handle<Derived> dictionary);
|
|
static const int kMaxNumberKeyIndex = DerivedHashTable::kPrefixStartIndex;
|
|
static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
|
|
};
|
|
|
|
|
|
class NameDictionaryShape : public BaseShape<Handle<Name> > {
|
|
public:
|
|
static inline bool IsMatch(Handle<Name> key, Object* other);
|
|
static inline uint32_t Hash(Handle<Name> key);
|
|
static inline uint32_t HashForObject(Handle<Name> key, Object* object);
|
|
static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Name> key);
|
|
static const int kPrefixSize = 2;
|
|
static const int kEntrySize = 3;
|
|
static const bool kIsEnumerable = true;
|
|
};
|
|
|
|
|
|
class NameDictionary: public Dictionary<NameDictionary,
|
|
NameDictionaryShape,
|
|
Handle<Name> > {
|
|
typedef Dictionary<
|
|
NameDictionary, NameDictionaryShape, Handle<Name> > DerivedDictionary;
|
|
|
|
public:
|
|
DECLARE_CAST(NameDictionary)
|
|
|
|
// Copies enumerable keys to preallocated fixed array.
|
|
void CopyEnumKeysTo(FixedArray* storage);
|
|
inline static Handle<FixedArray> DoGenerateNewEnumerationIndices(
|
|
Handle<NameDictionary> dictionary);
|
|
|
|
// Find entry for key, otherwise return kNotFound. Optimized version of
|
|
// HashTable::FindEntry.
|
|
int FindEntry(Handle<Name> key);
|
|
};
|
|
|
|
|
|
class NumberDictionaryShape : public BaseShape<uint32_t> {
|
|
public:
|
|
static inline bool IsMatch(uint32_t key, Object* other);
|
|
static inline Handle<Object> AsHandle(Isolate* isolate, uint32_t key);
|
|
static const int kEntrySize = 3;
|
|
static const bool kIsEnumerable = false;
|
|
};
|
|
|
|
|
|
class SeededNumberDictionaryShape : public NumberDictionaryShape {
|
|
public:
|
|
static const bool UsesSeed = true;
|
|
static const int kPrefixSize = 2;
|
|
|
|
static inline uint32_t SeededHash(uint32_t key, uint32_t seed);
|
|
static inline uint32_t SeededHashForObject(uint32_t key,
|
|
uint32_t seed,
|
|
Object* object);
|
|
};
|
|
|
|
|
|
class UnseededNumberDictionaryShape : public NumberDictionaryShape {
|
|
public:
|
|
static const int kPrefixSize = 0;
|
|
|
|
static inline uint32_t Hash(uint32_t key);
|
|
static inline uint32_t HashForObject(uint32_t key, Object* object);
|
|
};
|
|
|
|
|
|
class SeededNumberDictionary
|
|
: public Dictionary<SeededNumberDictionary,
|
|
SeededNumberDictionaryShape,
|
|
uint32_t> {
|
|
public:
|
|
DECLARE_CAST(SeededNumberDictionary)
|
|
|
|
// Type specific at put (default NONE attributes is used when adding).
|
|
MUST_USE_RESULT static Handle<SeededNumberDictionary> AtNumberPut(
|
|
Handle<SeededNumberDictionary> dictionary,
|
|
uint32_t key,
|
|
Handle<Object> value);
|
|
MUST_USE_RESULT static Handle<SeededNumberDictionary> AddNumberEntry(
|
|
Handle<SeededNumberDictionary> dictionary,
|
|
uint32_t key,
|
|
Handle<Object> value,
|
|
PropertyDetails details);
|
|
|
|
// Set an existing entry or add a new one if needed.
|
|
// Return the updated dictionary.
|
|
MUST_USE_RESULT static Handle<SeededNumberDictionary> Set(
|
|
Handle<SeededNumberDictionary> dictionary,
|
|
uint32_t key,
|
|
Handle<Object> value,
|
|
PropertyDetails details);
|
|
|
|
void UpdateMaxNumberKey(uint32_t key);
|
|
|
|
// If slow elements are required we will never go back to fast-case
|
|
// for the elements kept in this dictionary. We require slow
|
|
// elements if an element has been added at an index larger than
|
|
// kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
|
|
// when defining a getter or setter with a number key.
|
|
inline bool requires_slow_elements();
|
|
inline void set_requires_slow_elements();
|
|
|
|
// Get the value of the max number key that has been added to this
|
|
// dictionary. max_number_key can only be called if
|
|
// requires_slow_elements returns false.
|
|
inline uint32_t max_number_key();
|
|
|
|
// Bit masks.
|
|
static const int kRequiresSlowElementsMask = 1;
|
|
static const int kRequiresSlowElementsTagSize = 1;
|
|
static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
|
|
};
|
|
|
|
|
|
class UnseededNumberDictionary
|
|
: public Dictionary<UnseededNumberDictionary,
|
|
UnseededNumberDictionaryShape,
|
|
uint32_t> {
|
|
public:
|
|
DECLARE_CAST(UnseededNumberDictionary)
|
|
|
|
// Type specific at put (default NONE attributes is used when adding).
|
|
MUST_USE_RESULT static Handle<UnseededNumberDictionary> AtNumberPut(
|
|
Handle<UnseededNumberDictionary> dictionary,
|
|
uint32_t key,
|
|
Handle<Object> value);
|
|
MUST_USE_RESULT static Handle<UnseededNumberDictionary> AddNumberEntry(
|
|
Handle<UnseededNumberDictionary> dictionary,
|
|
uint32_t key,
|
|
Handle<Object> value);
|
|
|
|
// Set an existing entry or add a new one if needed.
|
|
// Return the updated dictionary.
|
|
MUST_USE_RESULT static Handle<UnseededNumberDictionary> Set(
|
|
Handle<UnseededNumberDictionary> dictionary,
|
|
uint32_t key,
|
|
Handle<Object> value);
|
|
};
|
|
|
|
|
|
class ObjectHashTableShape : public BaseShape<Handle<Object> > {
|
|
public:
|
|
static inline bool IsMatch(Handle<Object> key, Object* other);
|
|
static inline uint32_t Hash(Handle<Object> key);
|
|
static inline uint32_t HashForObject(Handle<Object> key, Object* object);
|
|
static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Object> key);
|
|
static const int kPrefixSize = 0;
|
|
static const int kEntrySize = 2;
|
|
};
|
|
|
|
|
|
// ObjectHashTable maps keys that are arbitrary objects to object values by
|
|
// using the identity hash of the key for hashing purposes.
|
|
class ObjectHashTable: public HashTable<ObjectHashTable,
|
|
ObjectHashTableShape,
|
|
Handle<Object> > {
|
|
typedef HashTable<
|
|
ObjectHashTable, ObjectHashTableShape, Handle<Object> > DerivedHashTable;
|
|
public:
|
|
DECLARE_CAST(ObjectHashTable)
|
|
|
|
// Attempt to shrink hash table after removal of key.
|
|
MUST_USE_RESULT static inline Handle<ObjectHashTable> Shrink(
|
|
Handle<ObjectHashTable> table,
|
|
Handle<Object> key);
|
|
|
|
// Looks up the value associated with the given key. The hole value is
|
|
// returned in case the key is not present.
|
|
Object* Lookup(Handle<Object> key);
|
|
|
|
// Adds (or overwrites) the value associated with the given key.
|
|
static Handle<ObjectHashTable> Put(Handle<ObjectHashTable> table,
|
|
Handle<Object> key,
|
|
Handle<Object> value);
|
|
|
|
// Returns an ObjectHashTable (possibly |table|) where |key| has been removed.
|
|
static Handle<ObjectHashTable> Remove(Handle<ObjectHashTable> table,
|
|
Handle<Object> key,
|
|
bool* was_present);
|
|
|
|
private:
|
|
friend class MarkCompactCollector;
|
|
|
|
void AddEntry(int entry, Object* key, Object* value);
|
|
void RemoveEntry(int entry);
|
|
|
|
// Returns the index to the value of an entry.
|
|
static inline int EntryToValueIndex(int entry) {
|
|
return EntryToIndex(entry) + 1;
|
|
}
|
|
};
|
|
|
|
|
|
// OrderedHashTable is a HashTable with Object keys that preserves
|
|
// insertion order. There are Map and Set interfaces (OrderedHashMap
|
|
// and OrderedHashTable, below). It is meant to be used by JSMap/JSSet.
|
|
//
|
|
// Only Object* keys are supported, with Object::SameValueZero() used as the
|
|
// equality operator and Object::GetHash() for the hash function.
|
|
//
|
|
// Based on the "Deterministic Hash Table" as described by Jason Orendorff at
|
|
// https://wiki.mozilla.org/User:Jorend/Deterministic_hash_tables
|
|
// Originally attributed to Tyler Close.
|
|
//
|
|
// Memory layout:
|
|
// [0]: bucket count
|
|
// [1]: element count
|
|
// [2]: deleted element count
|
|
// [3..(3 + NumberOfBuckets() - 1)]: "hash table", where each item is an
|
|
// offset into the data table (see below) where the
|
|
// first item in this bucket is stored.
|
|
// [3 + NumberOfBuckets()..length]: "data table", an array of length
|
|
// Capacity() * kEntrySize, where the first entrysize
|
|
// items are handled by the derived class and the
|
|
// item at kChainOffset is another entry into the
|
|
// data table indicating the next entry in this hash
|
|
// bucket.
|
|
//
|
|
// When we transition the table to a new version we obsolete it and reuse parts
|
|
// of the memory to store information how to transition an iterator to the new
|
|
// table:
|
|
//
|
|
// Memory layout for obsolete table:
|
|
// [0]: bucket count
|
|
// [1]: Next newer table
|
|
// [2]: Number of removed holes or -1 when the table was cleared.
|
|
// [3..(3 + NumberOfRemovedHoles() - 1)]: The indexes of the removed holes.
|
|
// [3 + NumberOfRemovedHoles()..length]: Not used
|
|
//
|
|
template<class Derived, class Iterator, int entrysize>
|
|
class OrderedHashTable: public FixedArray {
|
|
public:
|
|
// Returns an OrderedHashTable with a capacity of at least |capacity|.
|
|
static Handle<Derived> Allocate(
|
|
Isolate* isolate, int capacity, PretenureFlag pretenure = NOT_TENURED);
|
|
|
|
// Returns an OrderedHashTable (possibly |table|) with enough space
|
|
// to add at least one new element.
|
|
static Handle<Derived> EnsureGrowable(Handle<Derived> table);
|
|
|
|
// Returns an OrderedHashTable (possibly |table|) that's shrunken
|
|
// if possible.
|
|
static Handle<Derived> Shrink(Handle<Derived> table);
|
|
|
|
// Returns a new empty OrderedHashTable and records the clearing so that
|
|
// exisiting iterators can be updated.
|
|
static Handle<Derived> Clear(Handle<Derived> table);
|
|
|
|
// Returns an OrderedHashTable (possibly |table|) where |key| has been
|
|
// removed.
|
|
static Handle<Derived> Remove(Handle<Derived> table, Handle<Object> key,
|
|
bool* was_present);
|
|
|
|
// Returns kNotFound if the key isn't present.
|
|
int FindEntry(Handle<Object> key, int hash);
|
|
|
|
// Like the above, but doesn't require the caller to provide a hash.
|
|
int FindEntry(Handle<Object> key);
|
|
|
|
int NumberOfElements() {
|
|
return Smi::cast(get(kNumberOfElementsIndex))->value();
|
|
}
|
|
|
|
int NumberOfDeletedElements() {
|
|
return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
|
|
}
|
|
|
|
int UsedCapacity() { return NumberOfElements() + NumberOfDeletedElements(); }
|
|
|
|
int NumberOfBuckets() {
|
|
return Smi::cast(get(kNumberOfBucketsIndex))->value();
|
|
}
|
|
|
|
// Returns the index into the data table where the new entry
|
|
// should be placed. The table is assumed to have enough space
|
|
// for a new entry.
|
|
int AddEntry(int hash);
|
|
|
|
// Removes the entry, and puts the_hole in entrysize pointers
|
|
// (leaving the hash table chain intact).
|
|
void RemoveEntry(int entry);
|
|
|
|
// Returns an index into |this| for the given entry.
|
|
int EntryToIndex(int entry) {
|
|
return kHashTableStartIndex + NumberOfBuckets() + (entry * kEntrySize);
|
|
}
|
|
|
|
Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
|
|
|
|
bool IsObsolete() {
|
|
return !get(kNextTableIndex)->IsSmi();
|
|
}
|
|
|
|
// The next newer table. This is only valid if the table is obsolete.
|
|
Derived* NextTable() {
|
|
return Derived::cast(get(kNextTableIndex));
|
|
}
|
|
|
|
// When the table is obsolete we store the indexes of the removed holes.
|
|
int RemovedIndexAt(int index) {
|
|
return Smi::cast(get(kRemovedHolesIndex + index))->value();
|
|
}
|
|
|
|
static const int kNotFound = -1;
|
|
static const int kMinCapacity = 4;
|
|
|
|
static const int kNumberOfBucketsIndex = 0;
|
|
static const int kNumberOfElementsIndex = kNumberOfBucketsIndex + 1;
|
|
static const int kNumberOfDeletedElementsIndex = kNumberOfElementsIndex + 1;
|
|
static const int kHashTableStartIndex = kNumberOfDeletedElementsIndex + 1;
|
|
static const int kNextTableIndex = kNumberOfElementsIndex;
|
|
|
|
static const int kNumberOfBucketsOffset =
|
|
kHeaderSize + kNumberOfBucketsIndex * kPointerSize;
|
|
static const int kNumberOfElementsOffset =
|
|
kHeaderSize + kNumberOfElementsIndex * kPointerSize;
|
|
static const int kNumberOfDeletedElementsOffset =
|
|
kHeaderSize + kNumberOfDeletedElementsIndex * kPointerSize;
|
|
static const int kHashTableStartOffset =
|
|
kHeaderSize + kHashTableStartIndex * kPointerSize;
|
|
static const int kNextTableOffset =
|
|
kHeaderSize + kNextTableIndex * kPointerSize;
|
|
|
|
static const int kEntrySize = entrysize + 1;
|
|
static const int kChainOffset = entrysize;
|
|
|
|
static const int kLoadFactor = 2;
|
|
|
|
// NumberOfDeletedElements is set to kClearedTableSentinel when
|
|
// the table is cleared, which allows iterator transitions to
|
|
// optimize that case.
|
|
static const int kClearedTableSentinel = -1;
|
|
|
|
private:
|
|
static Handle<Derived> Rehash(Handle<Derived> table, int new_capacity);
|
|
|
|
void SetNumberOfBuckets(int num) {
|
|
set(kNumberOfBucketsIndex, Smi::FromInt(num));
|
|
}
|
|
|
|
void SetNumberOfElements(int num) {
|
|
set(kNumberOfElementsIndex, Smi::FromInt(num));
|
|
}
|
|
|
|
void SetNumberOfDeletedElements(int num) {
|
|
set(kNumberOfDeletedElementsIndex, Smi::FromInt(num));
|
|
}
|
|
|
|
int Capacity() {
|
|
return NumberOfBuckets() * kLoadFactor;
|
|
}
|
|
|
|
// Returns the next entry for the given entry.
|
|
int ChainAt(int entry) {
|
|
return Smi::cast(get(EntryToIndex(entry) + kChainOffset))->value();
|
|
}
|
|
|
|
int HashToBucket(int hash) {
|
|
return hash & (NumberOfBuckets() - 1);
|
|
}
|
|
|
|
int HashToEntry(int hash) {
|
|
int bucket = HashToBucket(hash);
|
|
return Smi::cast(get(kHashTableStartIndex + bucket))->value();
|
|
}
|
|
|
|
void SetNextTable(Derived* next_table) {
|
|
set(kNextTableIndex, next_table);
|
|
}
|
|
|
|
void SetRemovedIndexAt(int index, int removed_index) {
|
|
return set(kRemovedHolesIndex + index, Smi::FromInt(removed_index));
|
|
}
|
|
|
|
static const int kRemovedHolesIndex = kHashTableStartIndex;
|
|
|
|
static const int kMaxCapacity =
|
|
(FixedArray::kMaxLength - kHashTableStartIndex)
|
|
/ (1 + (kEntrySize * kLoadFactor));
|
|
};
|
|
|
|
|
|
class JSSetIterator;
|
|
|
|
|
|
class OrderedHashSet: public OrderedHashTable<
|
|
OrderedHashSet, JSSetIterator, 1> {
|
|
public:
|
|
DECLARE_CAST(OrderedHashSet)
|
|
|
|
bool Contains(Handle<Object> key);
|
|
static Handle<OrderedHashSet> Add(
|
|
Handle<OrderedHashSet> table, Handle<Object> key);
|
|
};
|
|
|
|
|
|
class JSMapIterator;
|
|
|
|
|
|
class OrderedHashMap:public OrderedHashTable<
|
|
OrderedHashMap, JSMapIterator, 2> {
|
|
public:
|
|
DECLARE_CAST(OrderedHashMap)
|
|
|
|
Object* Lookup(Handle<Object> key);
|
|
static Handle<OrderedHashMap> Put(
|
|
Handle<OrderedHashMap> table,
|
|
Handle<Object> key,
|
|
Handle<Object> value);
|
|
|
|
Object* ValueAt(int entry) {
|
|
return get(EntryToIndex(entry) + kValueOffset);
|
|
}
|
|
|
|
static const int kValueOffset = 1;
|
|
};
|
|
|
|
|
|
template <int entrysize>
|
|
class WeakHashTableShape : public BaseShape<Handle<Object> > {
|
|
public:
|
|
static inline bool IsMatch(Handle<Object> key, Object* other);
|
|
static inline uint32_t Hash(Handle<Object> key);
|
|
static inline uint32_t HashForObject(Handle<Object> key, Object* object);
|
|
static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Object> key);
|
|
static const int kPrefixSize = 0;
|
|
static const int kEntrySize = entrysize;
|
|
};
|
|
|
|
|
|
// WeakHashTable maps keys that are arbitrary objects to object values.
|
|
// It is used for the global weak hash table that maps objects
|
|
// embedded in optimized code to dependent code lists.
|
|
class WeakHashTable: public HashTable<WeakHashTable,
|
|
WeakHashTableShape<2>,
|
|
Handle<Object> > {
|
|
typedef HashTable<
|
|
WeakHashTable, WeakHashTableShape<2>, Handle<Object> > DerivedHashTable;
|
|
public:
|
|
DECLARE_CAST(WeakHashTable)
|
|
|
|
// Looks up the value associated with the given key. The hole value is
|
|
// returned in case the key is not present.
|
|
Object* Lookup(Handle<Object> key);
|
|
|
|
// Adds (or overwrites) the value associated with the given key. Mapping a
|
|
// key to the hole value causes removal of the whole entry.
|
|
MUST_USE_RESULT static Handle<WeakHashTable> Put(Handle<WeakHashTable> table,
|
|
Handle<Object> key,
|
|
Handle<Object> value);
|
|
|
|
// This function is called when heap verification is turned on.
|
|
void Zap(Object* value) {
|
|
int capacity = Capacity();
|
|
for (int i = 0; i < capacity; i++) {
|
|
set(EntryToIndex(i), value);
|
|
set(EntryToValueIndex(i), value);
|
|
}
|
|
}
|
|
|
|
private:
|
|
friend class MarkCompactCollector;
|
|
|
|
void AddEntry(int entry, Handle<Object> key, Handle<Object> value);
|
|
|
|
// Returns the index to the value of an entry.
|
|
static inline int EntryToValueIndex(int entry) {
|
|
return EntryToIndex(entry) + 1;
|
|
}
|
|
};
|
|
|
|
|
|
// JSFunctionResultCache caches results of some JSFunction invocation.
|
|
// It is a fixed array with fixed structure:
|
|
// [0]: factory function
|
|
// [1]: finger index
|
|
// [2]: current cache size
|
|
// [3]: dummy field.
|
|
// The rest of array are key/value pairs.
|
|
class JSFunctionResultCache: public FixedArray {
|
|
public:
|
|
static const int kFactoryIndex = 0;
|
|
static const int kFingerIndex = kFactoryIndex + 1;
|
|
static const int kCacheSizeIndex = kFingerIndex + 1;
|
|
static const int kDummyIndex = kCacheSizeIndex + 1;
|
|
static const int kEntriesIndex = kDummyIndex + 1;
|
|
|
|
static const int kEntrySize = 2; // key + value
|
|
|
|
static const int kFactoryOffset = kHeaderSize;
|
|
static const int kFingerOffset = kFactoryOffset + kPointerSize;
|
|
static const int kCacheSizeOffset = kFingerOffset + kPointerSize;
|
|
|
|
inline void MakeZeroSize();
|
|
inline void Clear();
|
|
|
|
inline int size();
|
|
inline void set_size(int size);
|
|
inline int finger_index();
|
|
inline void set_finger_index(int finger_index);
|
|
|
|
DECLARE_CAST(JSFunctionResultCache)
|
|
|
|
DECLARE_VERIFIER(JSFunctionResultCache)
|
|
};
|
|
|
|
|
|
// ScopeInfo represents information about different scopes of a source
|
|
// program and the allocation of the scope's variables. Scope information
|
|
// is stored in a compressed form in ScopeInfo objects and is used
|
|
// at runtime (stack dumps, deoptimization, etc.).
|
|
|
|
// This object provides quick access to scope info details for runtime
|
|
// routines.
|
|
class ScopeInfo : public FixedArray {
|
|
public:
|
|
DECLARE_CAST(ScopeInfo)
|
|
|
|
// Return the type of this scope.
|
|
ScopeType scope_type();
|
|
|
|
// Does this scope call eval?
|
|
bool CallsEval();
|
|
|
|
// Return the strict mode of this scope.
|
|
StrictMode strict_mode();
|
|
|
|
// Does this scope make a sloppy eval call?
|
|
bool CallsSloppyEval() { return CallsEval() && strict_mode() == SLOPPY; }
|
|
|
|
// Return the total number of locals allocated on the stack and in the
|
|
// context. This includes the parameters that are allocated in the context.
|
|
int LocalCount();
|
|
|
|
// Return the number of stack slots for code. This number consists of two
|
|
// parts:
|
|
// 1. One stack slot per stack allocated local.
|
|
// 2. One stack slot for the function name if it is stack allocated.
|
|
int StackSlotCount();
|
|
|
|
// Return the number of context slots for code if a context is allocated. This
|
|
// number consists of three parts:
|
|
// 1. Size of fixed header for every context: Context::MIN_CONTEXT_SLOTS
|
|
// 2. One context slot per context allocated local.
|
|
// 3. One context slot for the function name if it is context allocated.
|
|
// Parameters allocated in the context count as context allocated locals. If
|
|
// no contexts are allocated for this scope ContextLength returns 0.
|
|
int ContextLength();
|
|
|
|
// Is this scope the scope of a named function expression?
|
|
bool HasFunctionName();
|
|
|
|
// Return if this has context allocated locals.
|
|
bool HasHeapAllocatedLocals();
|
|
|
|
// Return if contexts are allocated for this scope.
|
|
bool HasContext();
|
|
|
|
// Return if this is a function scope with "use asm".
|
|
bool IsAsmModule() { return AsmModuleField::decode(Flags()); }
|
|
|
|
// Return if this is a nested function within an asm module scope.
|
|
bool IsAsmFunction() { return AsmFunctionField::decode(Flags()); }
|
|
|
|
// Return the function_name if present.
|
|
String* FunctionName();
|
|
|
|
// Return the name of the given parameter.
|
|
String* ParameterName(int var);
|
|
|
|
// Return the name of the given local.
|
|
String* LocalName(int var);
|
|
|
|
// Return the name of the given stack local.
|
|
String* StackLocalName(int var);
|
|
|
|
// Return the name of the given context local.
|
|
String* ContextLocalName(int var);
|
|
|
|
// Return the mode of the given context local.
|
|
VariableMode ContextLocalMode(int var);
|
|
|
|
// Return the initialization flag of the given context local.
|
|
InitializationFlag ContextLocalInitFlag(int var);
|
|
|
|
// Return the initialization flag of the given context local.
|
|
MaybeAssignedFlag ContextLocalMaybeAssignedFlag(int var);
|
|
|
|
// Return true if this local was introduced by the compiler, and should not be
|
|
// exposed to the user in a debugger.
|
|
bool LocalIsSynthetic(int var);
|
|
|
|
// Lookup support for serialized scope info. Returns the
|
|
// the stack slot index for a given slot name if the slot is
|
|
// present; otherwise returns a value < 0. The name must be an internalized
|
|
// string.
|
|
int StackSlotIndex(String* name);
|
|
|
|
// Lookup support for serialized scope info. Returns the
|
|
// context slot index for a given slot name if the slot is present; otherwise
|
|
// returns a value < 0. The name must be an internalized string.
|
|
// If the slot is present and mode != NULL, sets *mode to the corresponding
|
|
// mode for that variable.
|
|
static int ContextSlotIndex(Handle<ScopeInfo> scope_info, Handle<String> name,
|
|
VariableMode* mode, InitializationFlag* init_flag,
|
|
MaybeAssignedFlag* maybe_assigned_flag);
|
|
|
|
// Lookup support for serialized scope info. Returns the
|
|
// parameter index for a given parameter name if the parameter is present;
|
|
// otherwise returns a value < 0. The name must be an internalized string.
|
|
int ParameterIndex(String* name);
|
|
|
|
// Lookup support for serialized scope info. Returns the function context
|
|
// slot index if the function name is present and context-allocated (named
|
|
// function expressions, only), otherwise returns a value < 0. The name
|
|
// must be an internalized string.
|
|
int FunctionContextSlotIndex(String* name, VariableMode* mode);
|
|
|
|
|
|
// Copies all the context locals into an object used to materialize a scope.
|
|
static bool CopyContextLocalsToScopeObject(Handle<ScopeInfo> scope_info,
|
|
Handle<Context> context,
|
|
Handle<JSObject> scope_object);
|
|
|
|
|
|
static Handle<ScopeInfo> Create(Scope* scope, Zone* zone);
|
|
|
|
// Serializes empty scope info.
|
|
static ScopeInfo* Empty(Isolate* isolate);
|
|
|
|
#ifdef DEBUG
|
|
void Print();
|
|
#endif
|
|
|
|
// The layout of the static part of a ScopeInfo is as follows. Each entry is
|
|
// numeric and occupies one array slot.
|
|
// 1. A set of properties of the scope
|
|
// 2. The number of parameters. This only applies to function scopes. For
|
|
// non-function scopes this is 0.
|
|
// 3. The number of non-parameter variables allocated on the stack.
|
|
// 4. The number of non-parameter and parameter variables allocated in the
|
|
// context.
|
|
#define FOR_EACH_NUMERIC_FIELD(V) \
|
|
V(Flags) \
|
|
V(ParameterCount) \
|
|
V(StackLocalCount) \
|
|
V(ContextLocalCount)
|
|
|
|
#define FIELD_ACCESSORS(name) \
|
|
void Set##name(int value) { \
|
|
set(k##name, Smi::FromInt(value)); \
|
|
} \
|
|
int name() { \
|
|
if (length() > 0) { \
|
|
return Smi::cast(get(k##name))->value(); \
|
|
} else { \
|
|
return 0; \
|
|
} \
|
|
}
|
|
FOR_EACH_NUMERIC_FIELD(FIELD_ACCESSORS)
|
|
#undef FIELD_ACCESSORS
|
|
|
|
private:
|
|
enum {
|
|
#define DECL_INDEX(name) k##name,
|
|
FOR_EACH_NUMERIC_FIELD(DECL_INDEX)
|
|
#undef DECL_INDEX
|
|
#undef FOR_EACH_NUMERIC_FIELD
|
|
kVariablePartIndex
|
|
};
|
|
|
|
// The layout of the variable part of a ScopeInfo is as follows:
|
|
// 1. ParameterEntries:
|
|
// This part stores the names of the parameters for function scopes. One
|
|
// slot is used per parameter, so in total this part occupies
|
|
// ParameterCount() slots in the array. For other scopes than function
|
|
// scopes ParameterCount() is 0.
|
|
// 2. StackLocalEntries:
|
|
// Contains the names of local variables that are allocated on the stack,
|
|
// in increasing order of the stack slot index. One slot is used per stack
|
|
// local, so in total this part occupies StackLocalCount() slots in the
|
|
// array.
|
|
// 3. ContextLocalNameEntries:
|
|
// Contains the names of local variables and parameters that are allocated
|
|
// in the context. They are stored in increasing order of the context slot
|
|
// index starting with Context::MIN_CONTEXT_SLOTS. One slot is used per
|
|
// context local, so in total this part occupies ContextLocalCount() slots
|
|
// in the array.
|
|
// 4. ContextLocalInfoEntries:
|
|
// Contains the variable modes and initialization flags corresponding to
|
|
// the context locals in ContextLocalNameEntries. One slot is used per
|
|
// context local, so in total this part occupies ContextLocalCount()
|
|
// slots in the array.
|
|
// 5. FunctionNameEntryIndex:
|
|
// If the scope belongs to a named function expression this part contains
|
|
// information about the function variable. It always occupies two array
|
|
// slots: a. The name of the function variable.
|
|
// b. The context or stack slot index for the variable.
|
|
int ParameterEntriesIndex();
|
|
int StackLocalEntriesIndex();
|
|
int ContextLocalNameEntriesIndex();
|
|
int ContextLocalInfoEntriesIndex();
|
|
int FunctionNameEntryIndex();
|
|
|
|
// Location of the function variable for named function expressions.
|
|
enum FunctionVariableInfo {
|
|
NONE, // No function name present.
|
|
STACK, // Function
|
|
CONTEXT,
|
|
UNUSED
|
|
};
|
|
|
|
// Properties of scopes.
|
|
class ScopeTypeField : public BitField<ScopeType, 0, 4> {};
|
|
class CallsEvalField : public BitField<bool, 4, 1> {};
|
|
class StrictModeField : public BitField<StrictMode, 5, 1> {};
|
|
class FunctionVariableField : public BitField<FunctionVariableInfo, 6, 2> {};
|
|
class FunctionVariableMode : public BitField<VariableMode, 8, 3> {};
|
|
class AsmModuleField : public BitField<bool, 11, 1> {};
|
|
class AsmFunctionField : public BitField<bool, 12, 1> {};
|
|
|
|
// BitFields representing the encoded information for context locals in the
|
|
// ContextLocalInfoEntries part.
|
|
class ContextLocalMode: public BitField<VariableMode, 0, 3> {};
|
|
class ContextLocalInitFlag: public BitField<InitializationFlag, 3, 1> {};
|
|
class ContextLocalMaybeAssignedFlag
|
|
: public BitField<MaybeAssignedFlag, 4, 1> {};
|
|
};
|
|
|
|
|
|
// The cache for maps used by normalized (dictionary mode) objects.
|
|
// Such maps do not have property descriptors, so a typical program
|
|
// needs very limited number of distinct normalized maps.
|
|
class NormalizedMapCache: public FixedArray {
|
|
public:
|
|
static Handle<NormalizedMapCache> New(Isolate* isolate);
|
|
|
|
MUST_USE_RESULT MaybeHandle<Map> Get(Handle<Map> fast_map,
|
|
PropertyNormalizationMode mode);
|
|
void Set(Handle<Map> fast_map, Handle<Map> normalized_map);
|
|
|
|
void Clear();
|
|
|
|
DECLARE_CAST(NormalizedMapCache)
|
|
|
|
static inline bool IsNormalizedMapCache(const Object* obj);
|
|
|
|
DECLARE_VERIFIER(NormalizedMapCache)
|
|
private:
|
|
static const int kEntries = 64;
|
|
|
|
static inline int GetIndex(Handle<Map> map);
|
|
|
|
// The following declarations hide base class methods.
|
|
Object* get(int index);
|
|
void set(int index, Object* value);
|
|
};
|
|
|
|
|
|
// ByteArray represents fixed sized byte arrays. Used for the relocation info
|
|
// that is attached to code objects.
|
|
class ByteArray: public FixedArrayBase {
|
|
public:
|
|
inline int Size() { return RoundUp(length() + kHeaderSize, kPointerSize); }
|
|
|
|
// Setter and getter.
|
|
inline byte get(int index);
|
|
inline void set(int index, byte value);
|
|
|
|
// Treat contents as an int array.
|
|
inline int get_int(int index);
|
|
|
|
static int SizeFor(int length) {
|
|
return OBJECT_POINTER_ALIGN(kHeaderSize + length);
|
|
}
|
|
// We use byte arrays for free blocks in the heap. Given a desired size in
|
|
// bytes that is a multiple of the word size and big enough to hold a byte
|
|
// array, this function returns the number of elements a byte array should
|
|
// have.
|
|
static int LengthFor(int size_in_bytes) {
|
|
DCHECK(IsAligned(size_in_bytes, kPointerSize));
|
|
DCHECK(size_in_bytes >= kHeaderSize);
|
|
return size_in_bytes - kHeaderSize;
|
|
}
|
|
|
|
// Returns data start address.
|
|
inline Address GetDataStartAddress();
|
|
|
|
// Returns a pointer to the ByteArray object for a given data start address.
|
|
static inline ByteArray* FromDataStartAddress(Address address);
|
|
|
|
DECLARE_CAST(ByteArray)
|
|
|
|
// Dispatched behavior.
|
|
inline int ByteArraySize() {
|
|
return SizeFor(this->length());
|
|
}
|
|
DECLARE_PRINTER(ByteArray)
|
|
DECLARE_VERIFIER(ByteArray)
|
|
|
|
// Layout description.
|
|
static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
|
|
|
|
// Maximal memory consumption for a single ByteArray.
|
|
static const int kMaxSize = 512 * MB;
|
|
// Maximal length of a single ByteArray.
|
|
static const int kMaxLength = kMaxSize - kHeaderSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
|
|
};
|
|
|
|
|
|
// FreeSpace represents fixed sized areas of the heap that are not currently in
|
|
// use. Used by the heap and GC.
|
|
class FreeSpace: public HeapObject {
|
|
public:
|
|
// [size]: size of the free space including the header.
|
|
inline int size() const;
|
|
inline void set_size(int value);
|
|
|
|
inline int nobarrier_size() const;
|
|
inline void nobarrier_set_size(int value);
|
|
|
|
inline int Size() { return size(); }
|
|
|
|
DECLARE_CAST(FreeSpace)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(FreeSpace)
|
|
DECLARE_VERIFIER(FreeSpace)
|
|
|
|
// Layout description.
|
|
// Size is smi tagged when it is stored.
|
|
static const int kSizeOffset = HeapObject::kHeaderSize;
|
|
static const int kHeaderSize = kSizeOffset + kPointerSize;
|
|
|
|
static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(FreeSpace);
|
|
};
|
|
|
|
|
|
// V has parameters (Type, type, TYPE, C type, element_size)
|
|
#define TYPED_ARRAYS(V) \
|
|
V(Uint8, uint8, UINT8, uint8_t, 1) \
|
|
V(Int8, int8, INT8, int8_t, 1) \
|
|
V(Uint16, uint16, UINT16, uint16_t, 2) \
|
|
V(Int16, int16, INT16, int16_t, 2) \
|
|
V(Uint32, uint32, UINT32, uint32_t, 4) \
|
|
V(Int32, int32, INT32, int32_t, 4) \
|
|
V(Float32, float32, FLOAT32, float, 4) \
|
|
V(Float64, float64, FLOAT64, double, 8) \
|
|
V(Uint8Clamped, uint8_clamped, UINT8_CLAMPED, uint8_t, 1)
|
|
|
|
|
|
|
|
// An ExternalArray represents a fixed-size array of primitive values
|
|
// which live outside the JavaScript heap. Its subclasses are used to
|
|
// implement the CanvasArray types being defined in the WebGL
|
|
// specification. As of this writing the first public draft is not yet
|
|
// available, but Khronos members can access the draft at:
|
|
// https://cvs.khronos.org/svn/repos/3dweb/trunk/doc/spec/WebGL-spec.html
|
|
//
|
|
// The semantics of these arrays differ from CanvasPixelArray.
|
|
// Out-of-range values passed to the setter are converted via a C
|
|
// cast, not clamping. Out-of-range indices cause exceptions to be
|
|
// raised rather than being silently ignored.
|
|
class ExternalArray: public FixedArrayBase {
|
|
public:
|
|
inline bool is_the_hole(int index) { return false; }
|
|
|
|
// [external_pointer]: The pointer to the external memory area backing this
|
|
// external array.
|
|
DECL_ACCESSORS(external_pointer, void) // Pointer to the data store.
|
|
|
|
DECLARE_CAST(ExternalArray)
|
|
|
|
// Maximal acceptable length for an external array.
|
|
static const int kMaxLength = 0x3fffffff;
|
|
|
|
// ExternalArray headers are not quadword aligned.
|
|
static const int kExternalPointerOffset =
|
|
POINTER_SIZE_ALIGN(FixedArrayBase::kLengthOffset + kPointerSize);
|
|
static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
|
|
static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalArray);
|
|
};
|
|
|
|
|
|
// A ExternalUint8ClampedArray represents a fixed-size byte array with special
|
|
// semantics used for implementing the CanvasPixelArray object. Please see the
|
|
// specification at:
|
|
|
|
// http://www.whatwg.org/specs/web-apps/current-work/
|
|
// multipage/the-canvas-element.html#canvaspixelarray
|
|
// In particular, write access clamps the value written to 0 or 255 if the
|
|
// value written is outside this range.
|
|
class ExternalUint8ClampedArray: public ExternalArray {
|
|
public:
|
|
inline uint8_t* external_uint8_clamped_pointer();
|
|
|
|
// Setter and getter.
|
|
inline uint8_t get_scalar(int index);
|
|
static inline Handle<Object> get(Handle<ExternalUint8ClampedArray> array,
|
|
int index);
|
|
inline void set(int index, uint8_t value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined and clamps the converted value between 0 and 255.
|
|
static Handle<Object> SetValue(Handle<ExternalUint8ClampedArray> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
DECLARE_CAST(ExternalUint8ClampedArray)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalUint8ClampedArray)
|
|
DECLARE_VERIFIER(ExternalUint8ClampedArray)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUint8ClampedArray);
|
|
};
|
|
|
|
|
|
class ExternalInt8Array: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline int8_t get_scalar(int index);
|
|
static inline Handle<Object> get(Handle<ExternalInt8Array> array, int index);
|
|
inline void set(int index, int8_t value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
static Handle<Object> SetValue(Handle<ExternalInt8Array> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
DECLARE_CAST(ExternalInt8Array)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalInt8Array)
|
|
DECLARE_VERIFIER(ExternalInt8Array)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalInt8Array);
|
|
};
|
|
|
|
|
|
class ExternalUint8Array: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline uint8_t get_scalar(int index);
|
|
static inline Handle<Object> get(Handle<ExternalUint8Array> array, int index);
|
|
inline void set(int index, uint8_t value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
static Handle<Object> SetValue(Handle<ExternalUint8Array> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
DECLARE_CAST(ExternalUint8Array)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalUint8Array)
|
|
DECLARE_VERIFIER(ExternalUint8Array)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUint8Array);
|
|
};
|
|
|
|
|
|
class ExternalInt16Array: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline int16_t get_scalar(int index);
|
|
static inline Handle<Object> get(Handle<ExternalInt16Array> array, int index);
|
|
inline void set(int index, int16_t value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
static Handle<Object> SetValue(Handle<ExternalInt16Array> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
DECLARE_CAST(ExternalInt16Array)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalInt16Array)
|
|
DECLARE_VERIFIER(ExternalInt16Array)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalInt16Array);
|
|
};
|
|
|
|
|
|
class ExternalUint16Array: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline uint16_t get_scalar(int index);
|
|
static inline Handle<Object> get(Handle<ExternalUint16Array> array,
|
|
int index);
|
|
inline void set(int index, uint16_t value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
static Handle<Object> SetValue(Handle<ExternalUint16Array> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
DECLARE_CAST(ExternalUint16Array)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalUint16Array)
|
|
DECLARE_VERIFIER(ExternalUint16Array)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUint16Array);
|
|
};
|
|
|
|
|
|
class ExternalInt32Array: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline int32_t get_scalar(int index);
|
|
static inline Handle<Object> get(Handle<ExternalInt32Array> array, int index);
|
|
inline void set(int index, int32_t value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
static Handle<Object> SetValue(Handle<ExternalInt32Array> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
DECLARE_CAST(ExternalInt32Array)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalInt32Array)
|
|
DECLARE_VERIFIER(ExternalInt32Array)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalInt32Array);
|
|
};
|
|
|
|
|
|
class ExternalUint32Array: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline uint32_t get_scalar(int index);
|
|
static inline Handle<Object> get(Handle<ExternalUint32Array> array,
|
|
int index);
|
|
inline void set(int index, uint32_t value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
static Handle<Object> SetValue(Handle<ExternalUint32Array> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
DECLARE_CAST(ExternalUint32Array)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalUint32Array)
|
|
DECLARE_VERIFIER(ExternalUint32Array)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUint32Array);
|
|
};
|
|
|
|
|
|
class ExternalFloat32Array: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline float get_scalar(int index);
|
|
static inline Handle<Object> get(Handle<ExternalFloat32Array> array,
|
|
int index);
|
|
inline void set(int index, float value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
static Handle<Object> SetValue(Handle<ExternalFloat32Array> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
DECLARE_CAST(ExternalFloat32Array)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalFloat32Array)
|
|
DECLARE_VERIFIER(ExternalFloat32Array)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloat32Array);
|
|
};
|
|
|
|
|
|
class ExternalFloat64Array: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline double get_scalar(int index);
|
|
static inline Handle<Object> get(Handle<ExternalFloat64Array> array,
|
|
int index);
|
|
inline void set(int index, double value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
static Handle<Object> SetValue(Handle<ExternalFloat64Array> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
DECLARE_CAST(ExternalFloat64Array)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalFloat64Array)
|
|
DECLARE_VERIFIER(ExternalFloat64Array)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloat64Array);
|
|
};
|
|
|
|
|
|
class FixedTypedArrayBase: public FixedArrayBase {
|
|
public:
|
|
DECLARE_CAST(FixedTypedArrayBase)
|
|
|
|
static const int kDataOffset = kHeaderSize;
|
|
|
|
inline int size();
|
|
|
|
inline int TypedArraySize(InstanceType type);
|
|
|
|
// Use with care: returns raw pointer into heap.
|
|
inline void* DataPtr();
|
|
|
|
inline int DataSize();
|
|
|
|
private:
|
|
inline int DataSize(InstanceType type);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArrayBase);
|
|
};
|
|
|
|
|
|
template <class Traits>
|
|
class FixedTypedArray: public FixedTypedArrayBase {
|
|
public:
|
|
typedef typename Traits::ElementType ElementType;
|
|
static const InstanceType kInstanceType = Traits::kInstanceType;
|
|
|
|
DECLARE_CAST(FixedTypedArray<Traits>)
|
|
|
|
static inline int ElementOffset(int index) {
|
|
return kDataOffset + index * sizeof(ElementType);
|
|
}
|
|
|
|
static inline int SizeFor(int length) {
|
|
return ElementOffset(length);
|
|
}
|
|
|
|
inline ElementType get_scalar(int index);
|
|
static inline Handle<Object> get(Handle<FixedTypedArray> array, int index);
|
|
inline void set(int index, ElementType value);
|
|
|
|
static inline ElementType from_int(int value);
|
|
static inline ElementType from_double(double value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
static Handle<Object> SetValue(Handle<FixedTypedArray<Traits> > array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
DECLARE_PRINTER(FixedTypedArray)
|
|
DECLARE_VERIFIER(FixedTypedArray)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArray);
|
|
};
|
|
|
|
#define FIXED_TYPED_ARRAY_TRAITS(Type, type, TYPE, elementType, size) \
|
|
class Type##ArrayTraits { \
|
|
public: /* NOLINT */ \
|
|
typedef elementType ElementType; \
|
|
static const InstanceType kInstanceType = FIXED_##TYPE##_ARRAY_TYPE; \
|
|
static const char* Designator() { return #type " array"; } \
|
|
static inline Handle<Object> ToHandle(Isolate* isolate, \
|
|
elementType scalar); \
|
|
static inline elementType defaultValue(); \
|
|
}; \
|
|
\
|
|
typedef FixedTypedArray<Type##ArrayTraits> Fixed##Type##Array;
|
|
|
|
TYPED_ARRAYS(FIXED_TYPED_ARRAY_TRAITS)
|
|
|
|
#undef FIXED_TYPED_ARRAY_TRAITS
|
|
|
|
|
|
// DeoptimizationInputData is a fixed array used to hold the deoptimization
|
|
// data for code generated by the Hydrogen/Lithium compiler. It also
|
|
// contains information about functions that were inlined. If N different
|
|
// functions were inlined then first N elements of the literal array will
|
|
// contain these functions.
|
|
//
|
|
// It can be empty.
|
|
class DeoptimizationInputData: public FixedArray {
|
|
public:
|
|
// Layout description. Indices in the array.
|
|
static const int kTranslationByteArrayIndex = 0;
|
|
static const int kInlinedFunctionCountIndex = 1;
|
|
static const int kLiteralArrayIndex = 2;
|
|
static const int kOsrAstIdIndex = 3;
|
|
static const int kOsrPcOffsetIndex = 4;
|
|
static const int kOptimizationIdIndex = 5;
|
|
static const int kSharedFunctionInfoIndex = 6;
|
|
static const int kFirstDeoptEntryIndex = 7;
|
|
|
|
// Offsets of deopt entry elements relative to the start of the entry.
|
|
static const int kAstIdRawOffset = 0;
|
|
static const int kTranslationIndexOffset = 1;
|
|
static const int kArgumentsStackHeightOffset = 2;
|
|
static const int kPcOffset = 3;
|
|
static const int kDeoptEntrySize = 4;
|
|
|
|
// Simple element accessors.
|
|
#define DEFINE_ELEMENT_ACCESSORS(name, type) \
|
|
type* name() { \
|
|
return type::cast(get(k##name##Index)); \
|
|
} \
|
|
void Set##name(type* value) { \
|
|
set(k##name##Index, value); \
|
|
}
|
|
|
|
DEFINE_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray)
|
|
DEFINE_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi)
|
|
DEFINE_ELEMENT_ACCESSORS(LiteralArray, FixedArray)
|
|
DEFINE_ELEMENT_ACCESSORS(OsrAstId, Smi)
|
|
DEFINE_ELEMENT_ACCESSORS(OsrPcOffset, Smi)
|
|
DEFINE_ELEMENT_ACCESSORS(OptimizationId, Smi)
|
|
DEFINE_ELEMENT_ACCESSORS(SharedFunctionInfo, Object)
|
|
|
|
#undef DEFINE_ELEMENT_ACCESSORS
|
|
|
|
// Accessors for elements of the ith deoptimization entry.
|
|
#define DEFINE_ENTRY_ACCESSORS(name, type) \
|
|
type* name(int i) { \
|
|
return type::cast(get(IndexForEntry(i) + k##name##Offset)); \
|
|
} \
|
|
void Set##name(int i, type* value) { \
|
|
set(IndexForEntry(i) + k##name##Offset, value); \
|
|
}
|
|
|
|
DEFINE_ENTRY_ACCESSORS(AstIdRaw, Smi)
|
|
DEFINE_ENTRY_ACCESSORS(TranslationIndex, Smi)
|
|
DEFINE_ENTRY_ACCESSORS(ArgumentsStackHeight, Smi)
|
|
DEFINE_ENTRY_ACCESSORS(Pc, Smi)
|
|
|
|
#undef DEFINE_DEOPT_ENTRY_ACCESSORS
|
|
|
|
BailoutId AstId(int i) {
|
|
return BailoutId(AstIdRaw(i)->value());
|
|
}
|
|
|
|
void SetAstId(int i, BailoutId value) {
|
|
SetAstIdRaw(i, Smi::FromInt(value.ToInt()));
|
|
}
|
|
|
|
int DeoptCount() {
|
|
return (length() - kFirstDeoptEntryIndex) / kDeoptEntrySize;
|
|
}
|
|
|
|
// Allocates a DeoptimizationInputData.
|
|
static Handle<DeoptimizationInputData> New(Isolate* isolate,
|
|
int deopt_entry_count,
|
|
PretenureFlag pretenure);
|
|
|
|
DECLARE_CAST(DeoptimizationInputData)
|
|
|
|
#ifdef ENABLE_DISASSEMBLER
|
|
void DeoptimizationInputDataPrint(std::ostream& os); // NOLINT
|
|
#endif
|
|
|
|
private:
|
|
static int IndexForEntry(int i) {
|
|
return kFirstDeoptEntryIndex + (i * kDeoptEntrySize);
|
|
}
|
|
|
|
|
|
static int LengthFor(int entry_count) { return IndexForEntry(entry_count); }
|
|
};
|
|
|
|
|
|
// DeoptimizationOutputData is a fixed array used to hold the deoptimization
|
|
// data for code generated by the full compiler.
|
|
// The format of the these objects is
|
|
// [i * 2]: Ast ID for ith deoptimization.
|
|
// [i * 2 + 1]: PC and state of ith deoptimization
|
|
class DeoptimizationOutputData: public FixedArray {
|
|
public:
|
|
int DeoptPoints() { return length() / 2; }
|
|
|
|
BailoutId AstId(int index) {
|
|
return BailoutId(Smi::cast(get(index * 2))->value());
|
|
}
|
|
|
|
void SetAstId(int index, BailoutId id) {
|
|
set(index * 2, Smi::FromInt(id.ToInt()));
|
|
}
|
|
|
|
Smi* PcAndState(int index) { return Smi::cast(get(1 + index * 2)); }
|
|
void SetPcAndState(int index, Smi* offset) { set(1 + index * 2, offset); }
|
|
|
|
static int LengthOfFixedArray(int deopt_points) {
|
|
return deopt_points * 2;
|
|
}
|
|
|
|
// Allocates a DeoptimizationOutputData.
|
|
static Handle<DeoptimizationOutputData> New(Isolate* isolate,
|
|
int number_of_deopt_points,
|
|
PretenureFlag pretenure);
|
|
|
|
DECLARE_CAST(DeoptimizationOutputData)
|
|
|
|
#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
|
|
void DeoptimizationOutputDataPrint(std::ostream& os); // NOLINT
|
|
#endif
|
|
};
|
|
|
|
|
|
// Forward declaration.
|
|
class Cell;
|
|
class PropertyCell;
|
|
class SafepointEntry;
|
|
class TypeFeedbackInfo;
|
|
|
|
// Code describes objects with on-the-fly generated machine code.
|
|
class Code: public HeapObject {
|
|
public:
|
|
// Opaque data type for encapsulating code flags like kind, inline
|
|
// cache state, and arguments count.
|
|
typedef uint32_t Flags;
|
|
|
|
#define NON_IC_KIND_LIST(V) \
|
|
V(FUNCTION) \
|
|
V(OPTIMIZED_FUNCTION) \
|
|
V(STUB) \
|
|
V(HANDLER) \
|
|
V(BUILTIN) \
|
|
V(REGEXP)
|
|
|
|
#define IC_KIND_LIST(V) \
|
|
V(LOAD_IC) \
|
|
V(KEYED_LOAD_IC) \
|
|
V(CALL_IC) \
|
|
V(STORE_IC) \
|
|
V(KEYED_STORE_IC) \
|
|
V(BINARY_OP_IC) \
|
|
V(COMPARE_IC) \
|
|
V(COMPARE_NIL_IC) \
|
|
V(TO_BOOLEAN_IC)
|
|
|
|
#define CODE_KIND_LIST(V) \
|
|
NON_IC_KIND_LIST(V) \
|
|
IC_KIND_LIST(V)
|
|
|
|
enum Kind {
|
|
#define DEFINE_CODE_KIND_ENUM(name) name,
|
|
CODE_KIND_LIST(DEFINE_CODE_KIND_ENUM)
|
|
#undef DEFINE_CODE_KIND_ENUM
|
|
NUMBER_OF_KINDS
|
|
};
|
|
|
|
// No more than 16 kinds. The value is currently encoded in four bits in
|
|
// Flags.
|
|
STATIC_ASSERT(NUMBER_OF_KINDS <= 16);
|
|
|
|
static const char* Kind2String(Kind kind);
|
|
|
|
// Types of stubs.
|
|
enum StubType {
|
|
NORMAL,
|
|
FAST
|
|
};
|
|
|
|
static const int kPrologueOffsetNotSet = -1;
|
|
|
|
#ifdef ENABLE_DISASSEMBLER
|
|
// Printing
|
|
static const char* ICState2String(InlineCacheState state);
|
|
static const char* StubType2String(StubType type);
|
|
static void PrintExtraICState(std::ostream& os, // NOLINT
|
|
Kind kind, ExtraICState extra);
|
|
void Disassemble(const char* name, std::ostream& os); // NOLINT
|
|
#endif // ENABLE_DISASSEMBLER
|
|
|
|
// [instruction_size]: Size of the native instructions
|
|
inline int instruction_size() const;
|
|
inline void set_instruction_size(int value);
|
|
|
|
// [relocation_info]: Code relocation information
|
|
DECL_ACCESSORS(relocation_info, ByteArray)
|
|
void InvalidateRelocation();
|
|
void InvalidateEmbeddedObjects();
|
|
|
|
// [handler_table]: Fixed array containing offsets of exception handlers.
|
|
DECL_ACCESSORS(handler_table, FixedArray)
|
|
|
|
// [deoptimization_data]: Array containing data for deopt.
|
|
DECL_ACCESSORS(deoptimization_data, FixedArray)
|
|
|
|
// [raw_type_feedback_info]: This field stores various things, depending on
|
|
// the kind of the code object.
|
|
// FUNCTION => type feedback information.
|
|
// STUB and ICs => major/minor key as Smi.
|
|
DECL_ACCESSORS(raw_type_feedback_info, Object)
|
|
inline Object* type_feedback_info();
|
|
inline void set_type_feedback_info(
|
|
Object* value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
inline uint32_t stub_key();
|
|
inline void set_stub_key(uint32_t key);
|
|
|
|
// [next_code_link]: Link for lists of optimized or deoptimized code.
|
|
// Note that storage for this field is overlapped with typefeedback_info.
|
|
DECL_ACCESSORS(next_code_link, Object)
|
|
|
|
// [gc_metadata]: Field used to hold GC related metadata. The contents of this
|
|
// field does not have to be traced during garbage collection since
|
|
// it is only used by the garbage collector itself.
|
|
DECL_ACCESSORS(gc_metadata, Object)
|
|
|
|
// [ic_age]: Inline caching age: the value of the Heap::global_ic_age
|
|
// at the moment when this object was created.
|
|
inline void set_ic_age(int count);
|
|
inline int ic_age() const;
|
|
|
|
// [prologue_offset]: Offset of the function prologue, used for aging
|
|
// FUNCTIONs and OPTIMIZED_FUNCTIONs.
|
|
inline int prologue_offset() const;
|
|
inline void set_prologue_offset(int offset);
|
|
|
|
// Unchecked accessors to be used during GC.
|
|
inline ByteArray* unchecked_relocation_info();
|
|
|
|
inline int relocation_size();
|
|
|
|
// [flags]: Various code flags.
|
|
inline Flags flags();
|
|
inline void set_flags(Flags flags);
|
|
|
|
// [flags]: Access to specific code flags.
|
|
inline Kind kind();
|
|
inline InlineCacheState ic_state(); // Only valid for IC stubs.
|
|
inline ExtraICState extra_ic_state(); // Only valid for IC stubs.
|
|
|
|
inline StubType type(); // Only valid for monomorphic IC stubs.
|
|
|
|
// Testers for IC stub kinds.
|
|
inline bool is_inline_cache_stub();
|
|
inline bool is_debug_stub();
|
|
inline bool is_handler() { return kind() == HANDLER; }
|
|
inline bool is_load_stub() { return kind() == LOAD_IC; }
|
|
inline bool is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; }
|
|
inline bool is_store_stub() { return kind() == STORE_IC; }
|
|
inline bool is_keyed_store_stub() { return kind() == KEYED_STORE_IC; }
|
|
inline bool is_call_stub() { return kind() == CALL_IC; }
|
|
inline bool is_binary_op_stub() { return kind() == BINARY_OP_IC; }
|
|
inline bool is_compare_ic_stub() { return kind() == COMPARE_IC; }
|
|
inline bool is_compare_nil_ic_stub() { return kind() == COMPARE_NIL_IC; }
|
|
inline bool is_to_boolean_ic_stub() { return kind() == TO_BOOLEAN_IC; }
|
|
inline bool is_keyed_stub();
|
|
inline bool is_optimized_code() { return kind() == OPTIMIZED_FUNCTION; }
|
|
inline bool embeds_maps_weakly() {
|
|
Kind k = kind();
|
|
return (k == LOAD_IC || k == STORE_IC || k == KEYED_LOAD_IC ||
|
|
k == KEYED_STORE_IC || k == COMPARE_NIL_IC) &&
|
|
ic_state() == MONOMORPHIC;
|
|
}
|
|
|
|
inline bool IsCodeStubOrIC();
|
|
|
|
inline void set_raw_kind_specific_flags1(int value);
|
|
inline void set_raw_kind_specific_flags2(int value);
|
|
|
|
// [is_crankshafted]: For kind STUB or ICs, tells whether or not a code
|
|
// object was generated by either the hydrogen or the TurboFan optimizing
|
|
// compiler (but it may not be an optimized function).
|
|
inline bool is_crankshafted();
|
|
inline bool is_hydrogen_stub(); // Crankshafted, but not a function.
|
|
inline void set_is_crankshafted(bool value);
|
|
|
|
// [is_turbofanned]: For kind STUB or OPTIMIZED_FUNCTION, tells whether the
|
|
// code object was generated by the TurboFan optimizing compiler.
|
|
inline bool is_turbofanned();
|
|
inline void set_is_turbofanned(bool value);
|
|
|
|
// [can_have_weak_objects]: For kind OPTIMIZED_FUNCTION, tells whether the
|
|
// embedded objects in code should be treated weakly.
|
|
inline bool can_have_weak_objects();
|
|
inline void set_can_have_weak_objects(bool value);
|
|
|
|
// [optimizable]: For FUNCTION kind, tells if it is optimizable.
|
|
inline bool optimizable();
|
|
inline void set_optimizable(bool value);
|
|
|
|
// [has_deoptimization_support]: For FUNCTION kind, tells if it has
|
|
// deoptimization support.
|
|
inline bool has_deoptimization_support();
|
|
inline void set_has_deoptimization_support(bool value);
|
|
|
|
// [has_debug_break_slots]: For FUNCTION kind, tells if it has
|
|
// been compiled with debug break slots.
|
|
inline bool has_debug_break_slots();
|
|
inline void set_has_debug_break_slots(bool value);
|
|
|
|
// [compiled_with_optimizing]: For FUNCTION kind, tells if it has
|
|
// been compiled with IsOptimizing set to true.
|
|
inline bool is_compiled_optimizable();
|
|
inline void set_compiled_optimizable(bool value);
|
|
|
|
// [has_reloc_info_for_serialization]: For FUNCTION kind, tells if its
|
|
// reloc info includes runtime and external references to support
|
|
// serialization/deserialization.
|
|
inline bool has_reloc_info_for_serialization();
|
|
inline void set_has_reloc_info_for_serialization(bool value);
|
|
|
|
// [allow_osr_at_loop_nesting_level]: For FUNCTION kind, tells for
|
|
// how long the function has been marked for OSR and therefore which
|
|
// level of loop nesting we are willing to do on-stack replacement
|
|
// for.
|
|
inline void set_allow_osr_at_loop_nesting_level(int level);
|
|
inline int allow_osr_at_loop_nesting_level();
|
|
|
|
// [profiler_ticks]: For FUNCTION kind, tells for how many profiler ticks
|
|
// the code object was seen on the stack with no IC patching going on.
|
|
inline int profiler_ticks();
|
|
inline void set_profiler_ticks(int ticks);
|
|
|
|
// [builtin_index]: For BUILTIN kind, tells which builtin index it has.
|
|
// For builtins, tells which builtin index it has.
|
|
// Note that builtins can have a code kind other than BUILTIN, which means
|
|
// that for arbitrary code objects, this index value may be random garbage.
|
|
// To verify in that case, compare the code object to the indexed builtin.
|
|
inline int builtin_index();
|
|
inline void set_builtin_index(int id);
|
|
|
|
// [stack_slots]: For kind OPTIMIZED_FUNCTION, the number of stack slots
|
|
// reserved in the code prologue.
|
|
inline unsigned stack_slots();
|
|
inline void set_stack_slots(unsigned slots);
|
|
|
|
// [safepoint_table_start]: For kind OPTIMIZED_FUNCTION, the offset in
|
|
// the instruction stream where the safepoint table starts.
|
|
inline unsigned safepoint_table_offset();
|
|
inline void set_safepoint_table_offset(unsigned offset);
|
|
|
|
// [back_edge_table_start]: For kind FUNCTION, the offset in the
|
|
// instruction stream where the back edge table starts.
|
|
inline unsigned back_edge_table_offset();
|
|
inline void set_back_edge_table_offset(unsigned offset);
|
|
|
|
inline bool back_edges_patched_for_osr();
|
|
|
|
// [to_boolean_foo]: For kind TO_BOOLEAN_IC tells what state the stub is in.
|
|
inline byte to_boolean_state();
|
|
|
|
// [has_function_cache]: For kind STUB tells whether there is a function
|
|
// cache is passed to the stub.
|
|
inline bool has_function_cache();
|
|
inline void set_has_function_cache(bool flag);
|
|
|
|
|
|
// [marked_for_deoptimization]: For kind OPTIMIZED_FUNCTION tells whether
|
|
// the code is going to be deoptimized because of dead embedded maps.
|
|
inline bool marked_for_deoptimization();
|
|
inline void set_marked_for_deoptimization(bool flag);
|
|
|
|
// [constant_pool]: The constant pool for this function.
|
|
inline ConstantPoolArray* constant_pool();
|
|
inline void set_constant_pool(Object* constant_pool);
|
|
|
|
// Get the safepoint entry for the given pc.
|
|
SafepointEntry GetSafepointEntry(Address pc);
|
|
|
|
// Find an object in a stub with a specified map
|
|
Object* FindNthObject(int n, Map* match_map);
|
|
|
|
// Find the first allocation site in an IC stub.
|
|
AllocationSite* FindFirstAllocationSite();
|
|
|
|
// Find the first map in an IC stub.
|
|
Map* FindFirstMap();
|
|
void FindAllMaps(MapHandleList* maps);
|
|
|
|
// Find the first handler in an IC stub.
|
|
Code* FindFirstHandler();
|
|
|
|
// Find |length| handlers and put them into |code_list|. Returns false if not
|
|
// enough handlers can be found.
|
|
bool FindHandlers(CodeHandleList* code_list, int length = -1);
|
|
|
|
// Find the handler for |map|.
|
|
MaybeHandle<Code> FindHandlerForMap(Map* map);
|
|
|
|
// Find the first name in an IC stub.
|
|
Name* FindFirstName();
|
|
|
|
class FindAndReplacePattern;
|
|
// For each (map-to-find, object-to-replace) pair in the pattern, this
|
|
// function replaces the corresponding placeholder in the code with the
|
|
// object-to-replace. The function assumes that pairs in the pattern come in
|
|
// the same order as the placeholders in the code.
|
|
void FindAndReplace(const FindAndReplacePattern& pattern);
|
|
|
|
// The entire code object including its header is copied verbatim to the
|
|
// snapshot so that it can be written in one, fast, memcpy during
|
|
// deserialization. The deserializer will overwrite some pointers, rather
|
|
// like a runtime linker, but the random allocation addresses used in the
|
|
// mksnapshot process would still be present in the unlinked snapshot data,
|
|
// which would make snapshot production non-reproducible. This method wipes
|
|
// out the to-be-overwritten header data for reproducible snapshots.
|
|
inline void WipeOutHeader();
|
|
|
|
// Flags operations.
|
|
static inline Flags ComputeFlags(
|
|
Kind kind, InlineCacheState ic_state = UNINITIALIZED,
|
|
ExtraICState extra_ic_state = kNoExtraICState, StubType type = NORMAL,
|
|
CacheHolderFlag holder = kCacheOnReceiver);
|
|
|
|
static inline Flags ComputeMonomorphicFlags(
|
|
Kind kind, ExtraICState extra_ic_state = kNoExtraICState,
|
|
CacheHolderFlag holder = kCacheOnReceiver, StubType type = NORMAL);
|
|
|
|
static inline Flags ComputeHandlerFlags(
|
|
Kind handler_kind, StubType type = NORMAL,
|
|
CacheHolderFlag holder = kCacheOnReceiver);
|
|
|
|
static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
|
|
static inline StubType ExtractTypeFromFlags(Flags flags);
|
|
static inline CacheHolderFlag ExtractCacheHolderFromFlags(Flags flags);
|
|
static inline Kind ExtractKindFromFlags(Flags flags);
|
|
static inline ExtraICState ExtractExtraICStateFromFlags(Flags flags);
|
|
|
|
static inline Flags RemoveTypeFromFlags(Flags flags);
|
|
static inline Flags RemoveTypeAndHolderFromFlags(Flags flags);
|
|
|
|
// Convert a target address into a code object.
|
|
static inline Code* GetCodeFromTargetAddress(Address address);
|
|
|
|
// Convert an entry address into an object.
|
|
static inline Object* GetObjectFromEntryAddress(Address location_of_address);
|
|
|
|
// Returns the address of the first instruction.
|
|
inline byte* instruction_start();
|
|
|
|
// Returns the address right after the last instruction.
|
|
inline byte* instruction_end();
|
|
|
|
// Returns the size of the instructions, padding, and relocation information.
|
|
inline int body_size();
|
|
|
|
// Returns the address of the first relocation info (read backwards!).
|
|
inline byte* relocation_start();
|
|
|
|
// Code entry point.
|
|
inline byte* entry();
|
|
|
|
// Returns true if pc is inside this object's instructions.
|
|
inline bool contains(byte* pc);
|
|
|
|
// Relocate the code by delta bytes. Called to signal that this code
|
|
// object has been moved by delta bytes.
|
|
void Relocate(intptr_t delta);
|
|
|
|
// Migrate code described by desc.
|
|
void CopyFrom(const CodeDesc& desc);
|
|
|
|
// Returns the object size for a given body (used for allocation).
|
|
static int SizeFor(int body_size) {
|
|
DCHECK_SIZE_TAG_ALIGNED(body_size);
|
|
return RoundUp(kHeaderSize + body_size, kCodeAlignment);
|
|
}
|
|
|
|
// Calculate the size of the code object to report for log events. This takes
|
|
// the layout of the code object into account.
|
|
int ExecutableSize() {
|
|
// Check that the assumptions about the layout of the code object holds.
|
|
DCHECK_EQ(static_cast<int>(instruction_start() - address()),
|
|
Code::kHeaderSize);
|
|
return instruction_size() + Code::kHeaderSize;
|
|
}
|
|
|
|
// Locating source position.
|
|
int SourcePosition(Address pc);
|
|
int SourceStatementPosition(Address pc);
|
|
|
|
DECLARE_CAST(Code)
|
|
|
|
// Dispatched behavior.
|
|
int CodeSize() { return SizeFor(body_size()); }
|
|
inline void CodeIterateBody(ObjectVisitor* v);
|
|
|
|
template<typename StaticVisitor>
|
|
inline void CodeIterateBody(Heap* heap);
|
|
|
|
DECLARE_PRINTER(Code)
|
|
DECLARE_VERIFIER(Code)
|
|
|
|
void ClearInlineCaches();
|
|
void ClearInlineCaches(Kind kind);
|
|
|
|
BailoutId TranslatePcOffsetToAstId(uint32_t pc_offset);
|
|
uint32_t TranslateAstIdToPcOffset(BailoutId ast_id);
|
|
|
|
#define DECLARE_CODE_AGE_ENUM(X) k##X##CodeAge,
|
|
enum Age {
|
|
kNotExecutedCodeAge = -2,
|
|
kExecutedOnceCodeAge = -1,
|
|
kNoAgeCodeAge = 0,
|
|
CODE_AGE_LIST(DECLARE_CODE_AGE_ENUM)
|
|
kAfterLastCodeAge,
|
|
kFirstCodeAge = kNotExecutedCodeAge,
|
|
kLastCodeAge = kAfterLastCodeAge - 1,
|
|
kCodeAgeCount = kAfterLastCodeAge - kNotExecutedCodeAge - 1,
|
|
kIsOldCodeAge = kSexagenarianCodeAge,
|
|
kPreAgedCodeAge = kIsOldCodeAge - 1
|
|
};
|
|
#undef DECLARE_CODE_AGE_ENUM
|
|
|
|
// Code aging. Indicates how many full GCs this code has survived without
|
|
// being entered through the prologue. Used to determine when it is
|
|
// relatively safe to flush this code object and replace it with the lazy
|
|
// compilation stub.
|
|
static void MakeCodeAgeSequenceYoung(byte* sequence, Isolate* isolate);
|
|
static void MarkCodeAsExecuted(byte* sequence, Isolate* isolate);
|
|
void MakeYoung(Isolate* isolate);
|
|
void MakeOlder(MarkingParity);
|
|
static bool IsYoungSequence(Isolate* isolate, byte* sequence);
|
|
bool IsOld();
|
|
Age GetAge();
|
|
// Gets the raw code age, including psuedo code-age values such as
|
|
// kNotExecutedCodeAge and kExecutedOnceCodeAge.
|
|
Age GetRawAge();
|
|
static inline Code* GetPreAgedCodeAgeStub(Isolate* isolate) {
|
|
return GetCodeAgeStub(isolate, kNotExecutedCodeAge, NO_MARKING_PARITY);
|
|
}
|
|
|
|
void PrintDeoptLocation(FILE* out, int bailout_id);
|
|
bool CanDeoptAt(Address pc);
|
|
|
|
#ifdef VERIFY_HEAP
|
|
void VerifyEmbeddedObjectsDependency();
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
void VerifyEmbeddedObjectsInFullCode();
|
|
#endif // DEBUG
|
|
|
|
inline bool CanContainWeakObjects() {
|
|
// is_turbofanned() implies !can_have_weak_objects().
|
|
DCHECK(!is_optimized_code() || !is_turbofanned() ||
|
|
!can_have_weak_objects());
|
|
return is_optimized_code() && can_have_weak_objects();
|
|
}
|
|
|
|
inline bool IsWeakObject(Object* object) {
|
|
return (CanContainWeakObjects() && IsWeakObjectInOptimizedCode(object));
|
|
}
|
|
|
|
static inline bool IsWeakObjectInOptimizedCode(Object* object);
|
|
|
|
// Max loop nesting marker used to postpose OSR. We don't take loop
|
|
// nesting that is deeper than 5 levels into account.
|
|
static const int kMaxLoopNestingMarker = 6;
|
|
|
|
// Layout description.
|
|
static const int kRelocationInfoOffset = HeapObject::kHeaderSize;
|
|
static const int kHandlerTableOffset = kRelocationInfoOffset + kPointerSize;
|
|
static const int kDeoptimizationDataOffset =
|
|
kHandlerTableOffset + kPointerSize;
|
|
// For FUNCTION kind, we store the type feedback info here.
|
|
static const int kTypeFeedbackInfoOffset =
|
|
kDeoptimizationDataOffset + kPointerSize;
|
|
static const int kNextCodeLinkOffset = kTypeFeedbackInfoOffset + kPointerSize;
|
|
static const int kGCMetadataOffset = kNextCodeLinkOffset + kPointerSize;
|
|
static const int kInstructionSizeOffset = kGCMetadataOffset + kPointerSize;
|
|
static const int kICAgeOffset = kInstructionSizeOffset + kIntSize;
|
|
static const int kFlagsOffset = kICAgeOffset + kIntSize;
|
|
static const int kKindSpecificFlags1Offset = kFlagsOffset + kIntSize;
|
|
static const int kKindSpecificFlags2Offset =
|
|
kKindSpecificFlags1Offset + kIntSize;
|
|
// Note: We might be able to squeeze this into the flags above.
|
|
static const int kPrologueOffset = kKindSpecificFlags2Offset + kIntSize;
|
|
static const int kConstantPoolOffset = kPrologueOffset + kIntSize;
|
|
|
|
static const int kHeaderPaddingStart = kConstantPoolOffset + kPointerSize;
|
|
|
|
// Add padding to align the instruction start following right after
|
|
// the Code object header.
|
|
static const int kHeaderSize =
|
|
(kHeaderPaddingStart + kCodeAlignmentMask) & ~kCodeAlignmentMask;
|
|
// Ensure that the slot for the constant pool pointer is aligned.
|
|
STATIC_ASSERT((kConstantPoolOffset & kPointerAlignmentMask) == 0);
|
|
|
|
// Byte offsets within kKindSpecificFlags1Offset.
|
|
static const int kOptimizableOffset = kKindSpecificFlags1Offset;
|
|
|
|
static const int kFullCodeFlags = kOptimizableOffset + 1;
|
|
class FullCodeFlagsHasDeoptimizationSupportField:
|
|
public BitField<bool, 0, 1> {}; // NOLINT
|
|
class FullCodeFlagsHasDebugBreakSlotsField: public BitField<bool, 1, 1> {};
|
|
class FullCodeFlagsIsCompiledOptimizable: public BitField<bool, 2, 1> {};
|
|
class FullCodeFlagsHasRelocInfoForSerialization
|
|
: public BitField<bool, 3, 1> {};
|
|
|
|
static const int kProfilerTicksOffset = kFullCodeFlags + 1;
|
|
|
|
// Flags layout. BitField<type, shift, size>.
|
|
class ICStateField : public BitField<InlineCacheState, 0, 4> {};
|
|
class TypeField : public BitField<StubType, 4, 1> {};
|
|
class CacheHolderField : public BitField<CacheHolderFlag, 5, 2> {};
|
|
class KindField : public BitField<Kind, 7, 4> {};
|
|
class ExtraICStateField: public BitField<ExtraICState, 11,
|
|
PlatformSmiTagging::kSmiValueSize - 11 + 1> {}; // NOLINT
|
|
|
|
// KindSpecificFlags1 layout (STUB and OPTIMIZED_FUNCTION)
|
|
static const int kStackSlotsFirstBit = 0;
|
|
static const int kStackSlotsBitCount = 24;
|
|
static const int kHasFunctionCacheBit =
|
|
kStackSlotsFirstBit + kStackSlotsBitCount;
|
|
static const int kMarkedForDeoptimizationBit = kHasFunctionCacheBit + 1;
|
|
static const int kIsTurbofannedBit = kMarkedForDeoptimizationBit + 1;
|
|
static const int kCanHaveWeakObjects = kIsTurbofannedBit + 1;
|
|
|
|
STATIC_ASSERT(kStackSlotsFirstBit + kStackSlotsBitCount <= 32);
|
|
STATIC_ASSERT(kCanHaveWeakObjects + 1 <= 32);
|
|
|
|
class StackSlotsField: public BitField<int,
|
|
kStackSlotsFirstBit, kStackSlotsBitCount> {}; // NOLINT
|
|
class HasFunctionCacheField : public BitField<bool, kHasFunctionCacheBit, 1> {
|
|
}; // NOLINT
|
|
class MarkedForDeoptimizationField
|
|
: public BitField<bool, kMarkedForDeoptimizationBit, 1> {}; // NOLINT
|
|
class IsTurbofannedField : public BitField<bool, kIsTurbofannedBit, 1> {
|
|
}; // NOLINT
|
|
class CanHaveWeakObjectsField
|
|
: public BitField<bool, kCanHaveWeakObjects, 1> {}; // NOLINT
|
|
|
|
// KindSpecificFlags2 layout (ALL)
|
|
static const int kIsCrankshaftedBit = 0;
|
|
class IsCrankshaftedField: public BitField<bool,
|
|
kIsCrankshaftedBit, 1> {}; // NOLINT
|
|
|
|
// KindSpecificFlags2 layout (STUB and OPTIMIZED_FUNCTION)
|
|
static const int kSafepointTableOffsetFirstBit = kIsCrankshaftedBit + 1;
|
|
static const int kSafepointTableOffsetBitCount = 24;
|
|
|
|
STATIC_ASSERT(kSafepointTableOffsetFirstBit +
|
|
kSafepointTableOffsetBitCount <= 32);
|
|
STATIC_ASSERT(1 + kSafepointTableOffsetBitCount <= 32);
|
|
|
|
class SafepointTableOffsetField: public BitField<int,
|
|
kSafepointTableOffsetFirstBit,
|
|
kSafepointTableOffsetBitCount> {}; // NOLINT
|
|
|
|
// KindSpecificFlags2 layout (FUNCTION)
|
|
class BackEdgeTableOffsetField: public BitField<int,
|
|
kIsCrankshaftedBit + 1, 27> {}; // NOLINT
|
|
class AllowOSRAtLoopNestingLevelField: public BitField<int,
|
|
kIsCrankshaftedBit + 1 + 27, 4> {}; // NOLINT
|
|
STATIC_ASSERT(AllowOSRAtLoopNestingLevelField::kMax >= kMaxLoopNestingMarker);
|
|
|
|
static const int kArgumentsBits = 16;
|
|
static const int kMaxArguments = (1 << kArgumentsBits) - 1;
|
|
|
|
// This constant should be encodable in an ARM instruction.
|
|
static const int kFlagsNotUsedInLookup =
|
|
TypeField::kMask | CacheHolderField::kMask;
|
|
|
|
private:
|
|
friend class RelocIterator;
|
|
friend class Deoptimizer; // For FindCodeAgeSequence.
|
|
|
|
void ClearInlineCaches(Kind* kind);
|
|
|
|
// Code aging
|
|
byte* FindCodeAgeSequence();
|
|
static void GetCodeAgeAndParity(Code* code, Age* age,
|
|
MarkingParity* parity);
|
|
static void GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
|
|
MarkingParity* parity);
|
|
static Code* GetCodeAgeStub(Isolate* isolate, Age age, MarkingParity parity);
|
|
|
|
// Code aging -- platform-specific
|
|
static void PatchPlatformCodeAge(Isolate* isolate,
|
|
byte* sequence, Age age,
|
|
MarkingParity parity);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
|
|
};
|
|
|
|
|
|
class CompilationInfo;
|
|
|
|
// This class describes the layout of dependent codes array of a map. The
|
|
// array is partitioned into several groups of dependent codes. Each group
|
|
// contains codes with the same dependency on the map. The array has the
|
|
// following layout for n dependency groups:
|
|
//
|
|
// +----+----+-----+----+---------+----------+-----+---------+-----------+
|
|
// | C1 | C2 | ... | Cn | group 1 | group 2 | ... | group n | undefined |
|
|
// +----+----+-----+----+---------+----------+-----+---------+-----------+
|
|
//
|
|
// The first n elements are Smis, each of them specifies the number of codes
|
|
// in the corresponding group. The subsequent elements contain grouped code
|
|
// objects. The suffix of the array can be filled with the undefined value if
|
|
// the number of codes is less than the length of the array. The order of the
|
|
// code objects within a group is not preserved.
|
|
//
|
|
// All code indexes used in the class are counted starting from the first
|
|
// code object of the first group. In other words, code index 0 corresponds
|
|
// to array index n = kCodesStartIndex.
|
|
|
|
class DependentCode: public FixedArray {
|
|
public:
|
|
enum DependencyGroup {
|
|
// Group of code that weakly embed this map and depend on being
|
|
// deoptimized when the map is garbage collected.
|
|
kWeakCodeGroup,
|
|
// Group of code that embed a transition to this map, and depend on being
|
|
// deoptimized when the transition is replaced by a new version.
|
|
kTransitionGroup,
|
|
// Group of code that omit run-time prototype checks for prototypes
|
|
// described by this map. The group is deoptimized whenever an object
|
|
// described by this map changes shape (and transitions to a new map),
|
|
// possibly invalidating the assumptions embedded in the code.
|
|
kPrototypeCheckGroup,
|
|
// Group of code that depends on elements not being added to objects with
|
|
// this map.
|
|
kElementsCantBeAddedGroup,
|
|
// Group of code that depends on global property values in property cells
|
|
// not being changed.
|
|
kPropertyCellChangedGroup,
|
|
// Group of code that omit run-time type checks for the field(s) introduced
|
|
// by this map.
|
|
kFieldTypeGroup,
|
|
// Group of code that omit run-time type checks for initial maps of
|
|
// constructors.
|
|
kInitialMapChangedGroup,
|
|
// Group of code that depends on tenuring information in AllocationSites
|
|
// not being changed.
|
|
kAllocationSiteTenuringChangedGroup,
|
|
// Group of code that depends on element transition information in
|
|
// AllocationSites not being changed.
|
|
kAllocationSiteTransitionChangedGroup
|
|
};
|
|
|
|
static const int kGroupCount = kAllocationSiteTransitionChangedGroup + 1;
|
|
|
|
// Array for holding the index of the first code object of each group.
|
|
// The last element stores the total number of code objects.
|
|
class GroupStartIndexes {
|
|
public:
|
|
explicit GroupStartIndexes(DependentCode* entries);
|
|
void Recompute(DependentCode* entries);
|
|
int at(int i) { return start_indexes_[i]; }
|
|
int number_of_entries() { return start_indexes_[kGroupCount]; }
|
|
private:
|
|
int start_indexes_[kGroupCount + 1];
|
|
};
|
|
|
|
bool Contains(DependencyGroup group, Code* code);
|
|
static Handle<DependentCode> Insert(Handle<DependentCode> entries,
|
|
DependencyGroup group,
|
|
Handle<Object> object);
|
|
void UpdateToFinishedCode(DependencyGroup group,
|
|
CompilationInfo* info,
|
|
Code* code);
|
|
void RemoveCompilationInfo(DependentCode::DependencyGroup group,
|
|
CompilationInfo* info);
|
|
|
|
void DeoptimizeDependentCodeGroup(Isolate* isolate,
|
|
DependentCode::DependencyGroup group);
|
|
|
|
bool MarkCodeForDeoptimization(Isolate* isolate,
|
|
DependentCode::DependencyGroup group);
|
|
|
|
// The following low-level accessors should only be used by this class
|
|
// and the mark compact collector.
|
|
inline int number_of_entries(DependencyGroup group);
|
|
inline void set_number_of_entries(DependencyGroup group, int value);
|
|
inline bool is_code_at(int i);
|
|
inline Code* code_at(int i);
|
|
inline CompilationInfo* compilation_info_at(int i);
|
|
inline void set_object_at(int i, Object* object);
|
|
inline Object** slot_at(int i);
|
|
inline Object* object_at(int i);
|
|
inline void clear_at(int i);
|
|
inline void copy(int from, int to);
|
|
DECLARE_CAST(DependentCode)
|
|
|
|
static DependentCode* ForObject(Handle<HeapObject> object,
|
|
DependencyGroup group);
|
|
|
|
static const char* DependencyGroupName(DependencyGroup group);
|
|
static void SetMarkedForDeoptimization(Code* code, DependencyGroup group);
|
|
|
|
private:
|
|
// Make a room at the end of the given group by moving out the first
|
|
// code objects of the subsequent groups.
|
|
inline void ExtendGroup(DependencyGroup group);
|
|
static const int kCodesStartIndex = kGroupCount;
|
|
};
|
|
|
|
|
|
// All heap objects have a Map that describes their structure.
|
|
// A Map contains information about:
|
|
// - Size information about the object
|
|
// - How to iterate over an object (for garbage collection)
|
|
class Map: public HeapObject {
|
|
public:
|
|
// Instance size.
|
|
// Size in bytes or kVariableSizeSentinel if instances do not have
|
|
// a fixed size.
|
|
inline int instance_size();
|
|
inline void set_instance_size(int value);
|
|
|
|
// Count of properties allocated in the object.
|
|
inline int inobject_properties();
|
|
inline void set_inobject_properties(int value);
|
|
|
|
// Count of property fields pre-allocated in the object when first allocated.
|
|
inline int pre_allocated_property_fields();
|
|
inline void set_pre_allocated_property_fields(int value);
|
|
|
|
// Instance type.
|
|
inline InstanceType instance_type();
|
|
inline void set_instance_type(InstanceType value);
|
|
|
|
// Tells how many unused property fields are available in the
|
|
// instance (only used for JSObject in fast mode).
|
|
inline int unused_property_fields();
|
|
inline void set_unused_property_fields(int value);
|
|
|
|
// Bit field.
|
|
inline byte bit_field();
|
|
inline void set_bit_field(byte value);
|
|
|
|
// Bit field 2.
|
|
inline byte bit_field2();
|
|
inline void set_bit_field2(byte value);
|
|
|
|
// Bit field 3.
|
|
inline uint32_t bit_field3();
|
|
inline void set_bit_field3(uint32_t bits);
|
|
|
|
class EnumLengthBits: public BitField<int,
|
|
0, kDescriptorIndexBitCount> {}; // NOLINT
|
|
class NumberOfOwnDescriptorsBits: public BitField<int,
|
|
kDescriptorIndexBitCount, kDescriptorIndexBitCount> {}; // NOLINT
|
|
STATIC_ASSERT(kDescriptorIndexBitCount + kDescriptorIndexBitCount == 20);
|
|
class DictionaryMap : public BitField<bool, 20, 1> {};
|
|
class OwnsDescriptors : public BitField<bool, 21, 1> {};
|
|
class HasInstanceCallHandler : public BitField<bool, 22, 1> {};
|
|
class Deprecated : public BitField<bool, 23, 1> {};
|
|
class IsUnstable : public BitField<bool, 24, 1> {};
|
|
class IsMigrationTarget : public BitField<bool, 25, 1> {};
|
|
// Bits 26 and 27 are free.
|
|
|
|
// Keep this bit field at the very end for better code in
|
|
// Builtins::kJSConstructStubGeneric stub.
|
|
// This counter is used for in-object slack tracking and for map aging.
|
|
// The in-object slack tracking is considered enabled when the counter is
|
|
// in the range [kSlackTrackingCounterStart, kSlackTrackingCounterEnd].
|
|
class Counter : public BitField<int, 28, 4> {};
|
|
static const int kSlackTrackingCounterStart = 14;
|
|
static const int kSlackTrackingCounterEnd = 8;
|
|
static const int kRetainingCounterStart = kSlackTrackingCounterEnd - 1;
|
|
static const int kRetainingCounterEnd = 0;
|
|
|
|
// Tells whether the object in the prototype property will be used
|
|
// for instances created from this function. If the prototype
|
|
// property is set to a value that is not a JSObject, the prototype
|
|
// property will not be used to create instances of the function.
|
|
// See ECMA-262, 13.2.2.
|
|
inline void set_non_instance_prototype(bool value);
|
|
inline bool has_non_instance_prototype();
|
|
|
|
// Tells whether function has special prototype property. If not, prototype
|
|
// property will not be created when accessed (will return undefined),
|
|
// and construction from this function will not be allowed.
|
|
inline void set_function_with_prototype(bool value);
|
|
inline bool function_with_prototype();
|
|
|
|
// Tells whether the instance with this map should be ignored by the
|
|
// Object.getPrototypeOf() function and the __proto__ accessor.
|
|
inline void set_is_hidden_prototype() {
|
|
set_bit_field(bit_field() | (1 << kIsHiddenPrototype));
|
|
}
|
|
|
|
inline bool is_hidden_prototype() {
|
|
return ((1 << kIsHiddenPrototype) & bit_field()) != 0;
|
|
}
|
|
|
|
// Records and queries whether the instance has a named interceptor.
|
|
inline void set_has_named_interceptor() {
|
|
set_bit_field(bit_field() | (1 << kHasNamedInterceptor));
|
|
}
|
|
|
|
inline bool has_named_interceptor() {
|
|
return ((1 << kHasNamedInterceptor) & bit_field()) != 0;
|
|
}
|
|
|
|
// Records and queries whether the instance has an indexed interceptor.
|
|
inline void set_has_indexed_interceptor() {
|
|
set_bit_field(bit_field() | (1 << kHasIndexedInterceptor));
|
|
}
|
|
|
|
inline bool has_indexed_interceptor() {
|
|
return ((1 << kHasIndexedInterceptor) & bit_field()) != 0;
|
|
}
|
|
|
|
// Tells whether the instance is undetectable.
|
|
// An undetectable object is a special class of JSObject: 'typeof' operator
|
|
// returns undefined, ToBoolean returns false. Otherwise it behaves like
|
|
// a normal JS object. It is useful for implementing undetectable
|
|
// document.all in Firefox & Safari.
|
|
// See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
|
|
inline void set_is_undetectable() {
|
|
set_bit_field(bit_field() | (1 << kIsUndetectable));
|
|
}
|
|
|
|
inline bool is_undetectable() {
|
|
return ((1 << kIsUndetectable) & bit_field()) != 0;
|
|
}
|
|
|
|
// Tells whether the instance has a call-as-function handler.
|
|
inline void set_is_observed() {
|
|
set_bit_field(bit_field() | (1 << kIsObserved));
|
|
}
|
|
|
|
inline bool is_observed() {
|
|
return ((1 << kIsObserved) & bit_field()) != 0;
|
|
}
|
|
|
|
inline void set_is_extensible(bool value);
|
|
inline bool is_extensible();
|
|
inline void set_is_prototype_map(bool value);
|
|
inline bool is_prototype_map();
|
|
|
|
inline void set_elements_kind(ElementsKind elements_kind) {
|
|
DCHECK(static_cast<int>(elements_kind) < kElementsKindCount);
|
|
DCHECK(kElementsKindCount <= (1 << Map::ElementsKindBits::kSize));
|
|
set_bit_field2(Map::ElementsKindBits::update(bit_field2(), elements_kind));
|
|
DCHECK(this->elements_kind() == elements_kind);
|
|
}
|
|
|
|
inline ElementsKind elements_kind() {
|
|
return Map::ElementsKindBits::decode(bit_field2());
|
|
}
|
|
|
|
// Tells whether the instance has fast elements that are only Smis.
|
|
inline bool has_fast_smi_elements() {
|
|
return IsFastSmiElementsKind(elements_kind());
|
|
}
|
|
|
|
// Tells whether the instance has fast elements.
|
|
inline bool has_fast_object_elements() {
|
|
return IsFastObjectElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_fast_smi_or_object_elements() {
|
|
return IsFastSmiOrObjectElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_fast_double_elements() {
|
|
return IsFastDoubleElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_fast_elements() {
|
|
return IsFastElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_sloppy_arguments_elements() {
|
|
return elements_kind() == SLOPPY_ARGUMENTS_ELEMENTS;
|
|
}
|
|
|
|
inline bool has_external_array_elements() {
|
|
return IsExternalArrayElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_fixed_typed_array_elements() {
|
|
return IsFixedTypedArrayElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_dictionary_elements() {
|
|
return IsDictionaryElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_slow_elements_kind() {
|
|
return elements_kind() == DICTIONARY_ELEMENTS
|
|
|| elements_kind() == SLOPPY_ARGUMENTS_ELEMENTS;
|
|
}
|
|
|
|
static bool IsValidElementsTransition(ElementsKind from_kind,
|
|
ElementsKind to_kind);
|
|
|
|
// Returns true if the current map doesn't have DICTIONARY_ELEMENTS but if a
|
|
// map with DICTIONARY_ELEMENTS was found in the prototype chain.
|
|
bool DictionaryElementsInPrototypeChainOnly();
|
|
|
|
inline bool HasTransitionArray() const;
|
|
inline bool HasElementsTransition();
|
|
inline Map* elements_transition_map();
|
|
|
|
inline Map* GetTransition(int transition_index);
|
|
inline int SearchSpecialTransition(Symbol* name);
|
|
inline int SearchTransition(PropertyKind kind, Name* name,
|
|
PropertyAttributes attributes);
|
|
inline FixedArrayBase* GetInitialElements();
|
|
|
|
DECL_ACCESSORS(transitions, TransitionArray)
|
|
|
|
static inline Handle<String> ExpectedTransitionKey(Handle<Map> map);
|
|
static inline Handle<Map> ExpectedTransitionTarget(Handle<Map> map);
|
|
|
|
// Try to follow an existing transition to a field with attributes NONE. The
|
|
// return value indicates whether the transition was successful.
|
|
static inline Handle<Map> FindTransitionToField(Handle<Map> map,
|
|
Handle<Name> key);
|
|
|
|
Map* FindRootMap();
|
|
Map* FindFieldOwner(int descriptor);
|
|
|
|
inline int GetInObjectPropertyOffset(int index);
|
|
|
|
int NumberOfFields();
|
|
|
|
// TODO(ishell): candidate with JSObject::MigrateToMap().
|
|
bool InstancesNeedRewriting(Map* target, int target_number_of_fields,
|
|
int target_inobject, int target_unused,
|
|
int* old_number_of_fields);
|
|
// TODO(ishell): moveit!
|
|
static Handle<Map> GeneralizeAllFieldRepresentations(Handle<Map> map);
|
|
MUST_USE_RESULT static Handle<HeapType> GeneralizeFieldType(
|
|
Handle<HeapType> type1,
|
|
Handle<HeapType> type2,
|
|
Isolate* isolate);
|
|
static void GeneralizeFieldType(Handle<Map> map, int modify_index,
|
|
Representation new_representation,
|
|
Handle<HeapType> new_field_type);
|
|
static Handle<Map> GeneralizeRepresentation(
|
|
Handle<Map> map,
|
|
int modify_index,
|
|
Representation new_representation,
|
|
Handle<HeapType> new_field_type,
|
|
StoreMode store_mode);
|
|
static Handle<Map> CopyGeneralizeAllRepresentations(
|
|
Handle<Map> map,
|
|
int modify_index,
|
|
StoreMode store_mode,
|
|
PropertyAttributes attributes,
|
|
const char* reason);
|
|
static Handle<Map> CopyGeneralizeAllRepresentations(
|
|
Handle<Map> map,
|
|
int modify_index,
|
|
StoreMode store_mode,
|
|
const char* reason);
|
|
|
|
static Handle<Map> PrepareForDataProperty(Handle<Map> old_map,
|
|
int descriptor_number,
|
|
Handle<Object> value);
|
|
|
|
static Handle<Map> Normalize(Handle<Map> map, PropertyNormalizationMode mode,
|
|
const char* reason);
|
|
|
|
// Returns the constructor name (the name (possibly, inferred name) of the
|
|
// function that was used to instantiate the object).
|
|
String* constructor_name();
|
|
|
|
// Tells whether the map is used for JSObjects in dictionary mode (ie
|
|
// normalized objects, ie objects for which HasFastProperties returns false).
|
|
// A map can never be used for both dictionary mode and fast mode JSObjects.
|
|
// False by default and for HeapObjects that are not JSObjects.
|
|
inline void set_dictionary_map(bool value);
|
|
inline bool is_dictionary_map();
|
|
|
|
// Tells whether the instance needs security checks when accessing its
|
|
// properties.
|
|
inline void set_is_access_check_needed(bool access_check_needed);
|
|
inline bool is_access_check_needed();
|
|
|
|
// Returns true if map has a non-empty stub code cache.
|
|
inline bool has_code_cache();
|
|
|
|
// [prototype]: implicit prototype object.
|
|
DECL_ACCESSORS(prototype, Object)
|
|
// TODO(jkummerow): make set_prototype private.
|
|
void SetPrototype(Handle<Object> prototype,
|
|
PrototypeOptimizationMode proto_mode = FAST_PROTOTYPE);
|
|
bool ShouldRegisterAsPrototypeUser(Handle<JSObject> prototype);
|
|
bool CanUseOptimizationsBasedOnPrototypeRegistry();
|
|
|
|
// [constructor]: points back to the function responsible for this map.
|
|
DECL_ACCESSORS(constructor, Object)
|
|
|
|
// [instance descriptors]: describes the object.
|
|
DECL_ACCESSORS(instance_descriptors, DescriptorArray)
|
|
|
|
// [layout descriptor]: describes the object layout.
|
|
DECL_ACCESSORS(layout_descriptor, LayoutDescriptor)
|
|
// |layout descriptor| accessor which can be used from GC.
|
|
inline LayoutDescriptor* layout_descriptor_gc_safe();
|
|
inline bool HasFastPointerLayout() const;
|
|
|
|
// |layout descriptor| accessor that is safe to call even when
|
|
// FLAG_unbox_double_fields is disabled (in this case Map does not contain
|
|
// |layout_descriptor| field at all).
|
|
inline LayoutDescriptor* GetLayoutDescriptor();
|
|
|
|
inline void UpdateDescriptors(DescriptorArray* descriptors,
|
|
LayoutDescriptor* layout_descriptor);
|
|
inline void InitializeDescriptors(DescriptorArray* descriptors,
|
|
LayoutDescriptor* layout_descriptor);
|
|
|
|
// [stub cache]: contains stubs compiled for this map.
|
|
DECL_ACCESSORS(code_cache, Object)
|
|
|
|
// [dependent code]: list of optimized codes that weakly embed this map.
|
|
DECL_ACCESSORS(dependent_code, DependentCode)
|
|
|
|
// [back pointer]: points back to the parent map from which a transition
|
|
// leads to this map. The field overlaps with prototype transitions and the
|
|
// back pointer will be moved into the prototype transitions array if
|
|
// required.
|
|
inline Object* GetBackPointer();
|
|
inline void SetBackPointer(Object* value,
|
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
inline void init_back_pointer(Object* undefined);
|
|
|
|
// [prototype transitions]: cache of prototype transitions.
|
|
// Prototype transition is a transition that happens
|
|
// when we change object's prototype to a new one.
|
|
// Cache format:
|
|
// 0: finger - index of the first free cell in the cache
|
|
// 1: back pointer that overlaps with prototype transitions field.
|
|
// 2 + 2 * i: prototype
|
|
// 3 + 2 * i: target map
|
|
inline FixedArray* GetPrototypeTransitions();
|
|
inline bool HasPrototypeTransitions();
|
|
|
|
static const int kProtoTransitionHeaderSize = 1;
|
|
static const int kProtoTransitionNumberOfEntriesOffset = 0;
|
|
static const int kProtoTransitionElementsPerEntry = 2;
|
|
static const int kProtoTransitionPrototypeOffset = 0;
|
|
static const int kProtoTransitionMapOffset = 1;
|
|
|
|
inline int NumberOfProtoTransitions() {
|
|
FixedArray* cache = GetPrototypeTransitions();
|
|
if (cache->length() == 0) return 0;
|
|
return
|
|
Smi::cast(cache->get(kProtoTransitionNumberOfEntriesOffset))->value();
|
|
}
|
|
|
|
inline void SetNumberOfProtoTransitions(int value) {
|
|
FixedArray* cache = GetPrototypeTransitions();
|
|
DCHECK(cache->length() != 0);
|
|
cache->set(kProtoTransitionNumberOfEntriesOffset, Smi::FromInt(value));
|
|
}
|
|
|
|
// Lookup in the map's instance descriptors and fill out the result
|
|
// with the given holder if the name is found. The holder may be
|
|
// NULL when this function is used from the compiler.
|
|
inline void LookupDescriptor(JSObject* holder,
|
|
Name* name,
|
|
LookupResult* result);
|
|
|
|
inline void LookupTransition(JSObject* holder, Name* name,
|
|
PropertyAttributes attributes,
|
|
LookupResult* result);
|
|
|
|
inline PropertyDetails GetLastDescriptorDetails();
|
|
|
|
// The size of transition arrays are limited so they do not end up in large
|
|
// object space. Otherwise ClearNonLiveTransitions would leak memory while
|
|
// applying in-place right trimming.
|
|
inline bool CanHaveMoreTransitions();
|
|
|
|
int LastAdded() {
|
|
int number_of_own_descriptors = NumberOfOwnDescriptors();
|
|
DCHECK(number_of_own_descriptors > 0);
|
|
return number_of_own_descriptors - 1;
|
|
}
|
|
|
|
int NumberOfOwnDescriptors() {
|
|
return NumberOfOwnDescriptorsBits::decode(bit_field3());
|
|
}
|
|
|
|
void SetNumberOfOwnDescriptors(int number) {
|
|
DCHECK(number <= instance_descriptors()->number_of_descriptors());
|
|
set_bit_field3(NumberOfOwnDescriptorsBits::update(bit_field3(), number));
|
|
}
|
|
|
|
inline Cell* RetrieveDescriptorsPointer();
|
|
|
|
int EnumLength() {
|
|
return EnumLengthBits::decode(bit_field3());
|
|
}
|
|
|
|
void SetEnumLength(int length) {
|
|
if (length != kInvalidEnumCacheSentinel) {
|
|
DCHECK(length >= 0);
|
|
DCHECK(length == 0 || instance_descriptors()->HasEnumCache());
|
|
DCHECK(length <= NumberOfOwnDescriptors());
|
|
}
|
|
set_bit_field3(EnumLengthBits::update(bit_field3(), length));
|
|
}
|
|
|
|
inline bool owns_descriptors();
|
|
inline void set_owns_descriptors(bool owns_descriptors);
|
|
inline bool has_instance_call_handler();
|
|
inline void set_has_instance_call_handler();
|
|
inline void mark_unstable();
|
|
inline bool is_stable();
|
|
inline void set_migration_target(bool value);
|
|
inline bool is_migration_target();
|
|
inline void set_counter(int value);
|
|
inline int counter();
|
|
inline void deprecate();
|
|
inline bool is_deprecated();
|
|
inline bool CanBeDeprecated();
|
|
// Returns a non-deprecated version of the input. If the input was not
|
|
// deprecated, it is directly returned. Otherwise, the non-deprecated version
|
|
// is found by re-transitioning from the root of the transition tree using the
|
|
// descriptor array of the map. Returns NULL if no updated map is found.
|
|
// This method also applies any pending migrations along the prototype chain.
|
|
static MaybeHandle<Map> TryUpdate(Handle<Map> map) WARN_UNUSED_RESULT;
|
|
// Same as above, but does not touch the prototype chain.
|
|
static MaybeHandle<Map> TryUpdateInternal(Handle<Map> map)
|
|
WARN_UNUSED_RESULT;
|
|
|
|
// Returns a non-deprecated version of the input. This method may deprecate
|
|
// existing maps along the way if encodings conflict. Not for use while
|
|
// gathering type feedback. Use TryUpdate in those cases instead.
|
|
static Handle<Map> Update(Handle<Map> map);
|
|
|
|
static Handle<Map> CopyDropDescriptors(Handle<Map> map);
|
|
static Handle<Map> CopyInsertDescriptor(Handle<Map> map,
|
|
Descriptor* descriptor,
|
|
TransitionFlag flag);
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Map> CopyWithField(
|
|
Handle<Map> map,
|
|
Handle<Name> name,
|
|
Handle<HeapType> type,
|
|
PropertyAttributes attributes,
|
|
Representation representation,
|
|
TransitionFlag flag);
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Map> CopyWithConstant(
|
|
Handle<Map> map,
|
|
Handle<Name> name,
|
|
Handle<Object> constant,
|
|
PropertyAttributes attributes,
|
|
TransitionFlag flag);
|
|
|
|
// Returns a new map with all transitions dropped from the given map and
|
|
// the ElementsKind set.
|
|
static Handle<Map> TransitionElementsTo(Handle<Map> map,
|
|
ElementsKind to_kind);
|
|
|
|
static Handle<Map> AsElementsKind(Handle<Map> map, ElementsKind kind);
|
|
|
|
static Handle<Map> CopyAsElementsKind(Handle<Map> map,
|
|
ElementsKind kind,
|
|
TransitionFlag flag);
|
|
|
|
static Handle<Map> CopyForObserved(Handle<Map> map);
|
|
|
|
static Handle<Map> CopyForPreventExtensions(Handle<Map> map,
|
|
PropertyAttributes attrs_to_add,
|
|
Handle<Symbol> transition_marker,
|
|
const char* reason);
|
|
// Maximal number of fast properties. Used to restrict the number of map
|
|
// transitions to avoid an explosion in the number of maps for objects used as
|
|
// dictionaries.
|
|
inline bool TooManyFastProperties(StoreFromKeyed store_mode);
|
|
static Handle<Map> TransitionToDataProperty(Handle<Map> map,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StoreFromKeyed store_mode);
|
|
static Handle<Map> TransitionToAccessorProperty(
|
|
Handle<Map> map, Handle<Name> name, AccessorComponent component,
|
|
Handle<Object> accessor, PropertyAttributes attributes);
|
|
static Handle<Map> ReconfigureDataProperty(Handle<Map> map, int descriptor,
|
|
PropertyAttributes attributes);
|
|
|
|
inline void AppendDescriptor(Descriptor* desc);
|
|
|
|
// Returns a copy of the map, with all transitions dropped from the
|
|
// instance descriptors.
|
|
static Handle<Map> Copy(Handle<Map> map, const char* reason);
|
|
static Handle<Map> Create(Isolate* isolate, int inobject_properties);
|
|
|
|
// Returns the next free property index (only valid for FAST MODE).
|
|
int NextFreePropertyIndex();
|
|
|
|
// Returns the number of properties described in instance_descriptors
|
|
// filtering out properties with the specified attributes.
|
|
int NumberOfDescribedProperties(DescriptorFlag which = OWN_DESCRIPTORS,
|
|
PropertyAttributes filter = NONE);
|
|
|
|
// Returns the number of slots allocated for the initial properties
|
|
// backing storage for instances of this map.
|
|
int InitialPropertiesLength() {
|
|
return pre_allocated_property_fields() + unused_property_fields() -
|
|
inobject_properties();
|
|
}
|
|
|
|
DECLARE_CAST(Map)
|
|
|
|
// Code cache operations.
|
|
|
|
// Clears the code cache.
|
|
inline void ClearCodeCache(Heap* heap);
|
|
|
|
// Update code cache.
|
|
static void UpdateCodeCache(Handle<Map> map,
|
|
Handle<Name> name,
|
|
Handle<Code> code);
|
|
|
|
// Extend the descriptor array of the map with the list of descriptors.
|
|
// In case of duplicates, the latest descriptor is used.
|
|
static void AppendCallbackDescriptors(Handle<Map> map,
|
|
Handle<Object> descriptors);
|
|
|
|
static inline int SlackForArraySize(int old_size, int size_limit);
|
|
|
|
static void EnsureDescriptorSlack(Handle<Map> map, int slack);
|
|
|
|
// Returns the found code or undefined if absent.
|
|
Object* FindInCodeCache(Name* name, Code::Flags flags);
|
|
|
|
// Returns the non-negative index of the code object if it is in the
|
|
// cache and -1 otherwise.
|
|
int IndexInCodeCache(Object* name, Code* code);
|
|
|
|
// Removes a code object from the code cache at the given index.
|
|
void RemoveFromCodeCache(Name* name, Code* code, int index);
|
|
|
|
// Set all map transitions from this map to dead maps to null. Also clear
|
|
// back pointers in transition targets so that we do not process this map
|
|
// again while following back pointers.
|
|
void ClearNonLiveTransitions(Heap* heap);
|
|
|
|
// Computes a hash value for this map, to be used in HashTables and such.
|
|
int Hash();
|
|
|
|
// Returns the map that this map transitions to if its elements_kind
|
|
// is changed to |elements_kind|, or NULL if no such map is cached yet.
|
|
// |safe_to_add_transitions| is set to false if adding transitions is not
|
|
// allowed.
|
|
Map* LookupElementsTransitionMap(ElementsKind elements_kind);
|
|
|
|
// Returns the transitioned map for this map with the most generic
|
|
// elements_kind that's found in |candidates|, or null handle if no match is
|
|
// found at all.
|
|
Handle<Map> FindTransitionedMap(MapHandleList* candidates);
|
|
|
|
bool CanTransition() {
|
|
// Only JSObject and subtypes have map transitions and back pointers.
|
|
STATIC_ASSERT(LAST_TYPE == LAST_JS_OBJECT_TYPE);
|
|
return instance_type() >= FIRST_JS_OBJECT_TYPE;
|
|
}
|
|
|
|
bool IsJSObjectMap() {
|
|
return instance_type() >= FIRST_JS_OBJECT_TYPE;
|
|
}
|
|
bool IsStringMap() { return instance_type() < FIRST_NONSTRING_TYPE; }
|
|
bool IsJSProxyMap() {
|
|
InstanceType type = instance_type();
|
|
return FIRST_JS_PROXY_TYPE <= type && type <= LAST_JS_PROXY_TYPE;
|
|
}
|
|
bool IsJSGlobalProxyMap() {
|
|
return instance_type() == JS_GLOBAL_PROXY_TYPE;
|
|
}
|
|
bool IsJSGlobalObjectMap() {
|
|
return instance_type() == JS_GLOBAL_OBJECT_TYPE;
|
|
}
|
|
bool IsGlobalObjectMap() {
|
|
const InstanceType type = instance_type();
|
|
return type == JS_GLOBAL_OBJECT_TYPE || type == JS_BUILTINS_OBJECT_TYPE;
|
|
}
|
|
|
|
inline bool CanOmitMapChecks();
|
|
|
|
static void AddDependentCompilationInfo(Handle<Map> map,
|
|
DependentCode::DependencyGroup group,
|
|
CompilationInfo* info);
|
|
|
|
static void AddDependentCode(Handle<Map> map,
|
|
DependentCode::DependencyGroup group,
|
|
Handle<Code> code);
|
|
|
|
bool IsMapInArrayPrototypeChain();
|
|
|
|
static Handle<WeakCell> WeakCellForMap(Handle<Map> map);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(Map)
|
|
DECLARE_VERIFIER(Map)
|
|
|
|
#ifdef VERIFY_HEAP
|
|
void DictionaryMapVerify();
|
|
void VerifyOmittedMapChecks();
|
|
#endif
|
|
|
|
inline int visitor_id();
|
|
inline void set_visitor_id(int visitor_id);
|
|
|
|
typedef void (*TraverseCallback)(Map* map, void* data);
|
|
|
|
void TraverseTransitionTree(TraverseCallback callback, void* data);
|
|
|
|
// When you set the prototype of an object using the __proto__ accessor you
|
|
// need a new map for the object (the prototype is stored in the map). In
|
|
// order not to multiply maps unnecessarily we store these as transitions in
|
|
// the original map. That way we can transition to the same map if the same
|
|
// prototype is set, rather than creating a new map every time. The
|
|
// transitions are in the form of a map where the keys are prototype objects
|
|
// and the values are the maps they transition to.
|
|
static const int kMaxCachedPrototypeTransitions = 256;
|
|
static Handle<Map> TransitionToPrototype(Handle<Map> map,
|
|
Handle<Object> prototype,
|
|
PrototypeOptimizationMode mode);
|
|
|
|
static const int kMaxPreAllocatedPropertyFields = 255;
|
|
|
|
// Layout description.
|
|
static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
|
|
static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
|
|
static const int kBitField3Offset = kInstanceAttributesOffset + kIntSize;
|
|
static const int kPrototypeOffset = kBitField3Offset + kPointerSize;
|
|
static const int kConstructorOffset = kPrototypeOffset + kPointerSize;
|
|
// Storage for the transition array is overloaded to directly contain a back
|
|
// pointer if unused. When the map has transitions, the back pointer is
|
|
// transferred to the transition array and accessed through an extra
|
|
// indirection.
|
|
static const int kTransitionsOrBackPointerOffset =
|
|
kConstructorOffset + kPointerSize;
|
|
static const int kDescriptorsOffset =
|
|
kTransitionsOrBackPointerOffset + kPointerSize;
|
|
#if V8_DOUBLE_FIELDS_UNBOXING
|
|
static const int kLayoutDecriptorOffset = kDescriptorsOffset + kPointerSize;
|
|
static const int kCodeCacheOffset = kLayoutDecriptorOffset + kPointerSize;
|
|
#else
|
|
static const int kLayoutDecriptorOffset = 1; // Must not be ever accessed.
|
|
static const int kCodeCacheOffset = kDescriptorsOffset + kPointerSize;
|
|
#endif
|
|
static const int kDependentCodeOffset = kCodeCacheOffset + kPointerSize;
|
|
static const int kSize = kDependentCodeOffset + kPointerSize;
|
|
|
|
// Layout of pointer fields. Heap iteration code relies on them
|
|
// being continuously allocated.
|
|
static const int kPointerFieldsBeginOffset = Map::kPrototypeOffset;
|
|
static const int kPointerFieldsEndOffset = kSize;
|
|
|
|
// Byte offsets within kInstanceSizesOffset.
|
|
static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
|
|
static const int kInObjectPropertiesByte = 1;
|
|
static const int kInObjectPropertiesOffset =
|
|
kInstanceSizesOffset + kInObjectPropertiesByte;
|
|
static const int kPreAllocatedPropertyFieldsByte = 2;
|
|
static const int kPreAllocatedPropertyFieldsOffset =
|
|
kInstanceSizesOffset + kPreAllocatedPropertyFieldsByte;
|
|
static const int kVisitorIdByte = 3;
|
|
static const int kVisitorIdOffset = kInstanceSizesOffset + kVisitorIdByte;
|
|
|
|
// Byte offsets within kInstanceAttributesOffset attributes.
|
|
#if V8_TARGET_LITTLE_ENDIAN
|
|
// Order instance type and bit field together such that they can be loaded
|
|
// together as a 16-bit word with instance type in the lower 8 bits regardless
|
|
// of endianess. Also provide endian-independent offset to that 16-bit word.
|
|
static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
|
|
static const int kBitFieldOffset = kInstanceAttributesOffset + 1;
|
|
#else
|
|
static const int kBitFieldOffset = kInstanceAttributesOffset + 0;
|
|
static const int kInstanceTypeOffset = kInstanceAttributesOffset + 1;
|
|
#endif
|
|
static const int kInstanceTypeAndBitFieldOffset =
|
|
kInstanceAttributesOffset + 0;
|
|
static const int kBitField2Offset = kInstanceAttributesOffset + 2;
|
|
static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 3;
|
|
|
|
STATIC_ASSERT(kInstanceTypeAndBitFieldOffset ==
|
|
Internals::kMapInstanceTypeAndBitFieldOffset);
|
|
|
|
// Bit positions for bit field.
|
|
static const int kHasNonInstancePrototype = 0;
|
|
static const int kIsHiddenPrototype = 1;
|
|
static const int kHasNamedInterceptor = 2;
|
|
static const int kHasIndexedInterceptor = 3;
|
|
static const int kIsUndetectable = 4;
|
|
static const int kIsObserved = 5;
|
|
static const int kIsAccessCheckNeeded = 6;
|
|
class FunctionWithPrototype: public BitField<bool, 7, 1> {};
|
|
|
|
// Bit positions for bit field 2
|
|
static const int kIsExtensible = 0;
|
|
static const int kStringWrapperSafeForDefaultValueOf = 1;
|
|
class IsPrototypeMapBits : public BitField<bool, 2, 1> {};
|
|
class ElementsKindBits: public BitField<ElementsKind, 3, 5> {};
|
|
|
|
// Derived values from bit field 2
|
|
static const int8_t kMaximumBitField2FastElementValue = static_cast<int8_t>(
|
|
(FAST_ELEMENTS + 1) << Map::ElementsKindBits::kShift) - 1;
|
|
static const int8_t kMaximumBitField2FastSmiElementValue =
|
|
static_cast<int8_t>((FAST_SMI_ELEMENTS + 1) <<
|
|
Map::ElementsKindBits::kShift) - 1;
|
|
static const int8_t kMaximumBitField2FastHoleyElementValue =
|
|
static_cast<int8_t>((FAST_HOLEY_ELEMENTS + 1) <<
|
|
Map::ElementsKindBits::kShift) - 1;
|
|
static const int8_t kMaximumBitField2FastHoleySmiElementValue =
|
|
static_cast<int8_t>((FAST_HOLEY_SMI_ELEMENTS + 1) <<
|
|
Map::ElementsKindBits::kShift) - 1;
|
|
|
|
typedef FixedBodyDescriptor<kPointerFieldsBeginOffset,
|
|
kPointerFieldsEndOffset,
|
|
kSize> BodyDescriptor;
|
|
|
|
// Compares this map to another to see if they describe equivalent objects.
|
|
// If |mode| is set to CLEAR_INOBJECT_PROPERTIES, |other| is treated as if
|
|
// it had exactly zero inobject properties.
|
|
// The "shared" flags of both this map and |other| are ignored.
|
|
bool EquivalentToForNormalization(Map* other, PropertyNormalizationMode mode);
|
|
|
|
// Returns true if given field is unboxed double.
|
|
inline bool IsUnboxedDoubleField(FieldIndex index);
|
|
|
|
#if TRACE_MAPS
|
|
static void TraceTransition(const char* what, Map* from, Map* to, Name* name);
|
|
static void TraceAllTransitions(Map* map);
|
|
#endif
|
|
|
|
static inline Handle<Map> CopyInstallDescriptorsForTesting(
|
|
Handle<Map> map, int new_descriptor, Handle<DescriptorArray> descriptors,
|
|
Handle<LayoutDescriptor> layout_descriptor);
|
|
|
|
private:
|
|
static void ConnectElementsTransition(Handle<Map> parent, Handle<Map> child);
|
|
static void ConnectTransition(Handle<Map> parent, Handle<Map> child,
|
|
Handle<Name> name, SimpleTransitionFlag flag);
|
|
|
|
bool EquivalentToForTransition(Map* other);
|
|
static Handle<Map> RawCopy(Handle<Map> map, int instance_size);
|
|
static Handle<Map> ShareDescriptor(Handle<Map> map,
|
|
Handle<DescriptorArray> descriptors,
|
|
Descriptor* descriptor);
|
|
static Handle<Map> CopyInstallDescriptors(
|
|
Handle<Map> map, int new_descriptor, Handle<DescriptorArray> descriptors,
|
|
Handle<LayoutDescriptor> layout_descriptor);
|
|
static Handle<Map> CopyAddDescriptor(Handle<Map> map,
|
|
Descriptor* descriptor,
|
|
TransitionFlag flag);
|
|
static Handle<Map> CopyReplaceDescriptors(
|
|
Handle<Map> map, Handle<DescriptorArray> descriptors,
|
|
Handle<LayoutDescriptor> layout_descriptor, TransitionFlag flag,
|
|
MaybeHandle<Name> maybe_name, const char* reason,
|
|
SimpleTransitionFlag simple_flag);
|
|
|
|
static Handle<Map> CopyReplaceDescriptor(Handle<Map> map,
|
|
Handle<DescriptorArray> descriptors,
|
|
Descriptor* descriptor,
|
|
int index,
|
|
TransitionFlag flag);
|
|
|
|
static Handle<Map> CopyNormalized(Handle<Map> map,
|
|
PropertyNormalizationMode mode);
|
|
|
|
// Fires when the layout of an object with a leaf map changes.
|
|
// This includes adding transitions to the leaf map or changing
|
|
// the descriptor array.
|
|
inline void NotifyLeafMapLayoutChange();
|
|
|
|
static Handle<Map> TransitionElementsToSlow(Handle<Map> object,
|
|
ElementsKind to_kind);
|
|
|
|
// Zaps the contents of backing data structures. Note that the
|
|
// heap verifier (i.e. VerifyMarkingVisitor) relies on zapping of objects
|
|
// holding weak references when incremental marking is used, because it also
|
|
// iterates over objects that are otherwise unreachable.
|
|
// In general we only want to call these functions in release mode when
|
|
// heap verification is turned on.
|
|
void ZapPrototypeTransitions();
|
|
void ZapTransitions();
|
|
|
|
void DeprecateTransitionTree();
|
|
bool DeprecateTarget(PropertyKind kind, Name* key,
|
|
PropertyAttributes attributes,
|
|
DescriptorArray* new_descriptors,
|
|
LayoutDescriptor* new_layout_descriptor);
|
|
|
|
Map* FindLastMatchMap(int verbatim, int length, DescriptorArray* descriptors);
|
|
|
|
void UpdateFieldType(int descriptor_number, Handle<Name> name,
|
|
Representation new_representation,
|
|
Handle<HeapType> new_type);
|
|
|
|
void PrintGeneralization(FILE* file,
|
|
const char* reason,
|
|
int modify_index,
|
|
int split,
|
|
int descriptors,
|
|
bool constant_to_field,
|
|
Representation old_representation,
|
|
Representation new_representation,
|
|
HeapType* old_field_type,
|
|
HeapType* new_field_type);
|
|
|
|
static inline void SetPrototypeTransitions(
|
|
Handle<Map> map,
|
|
Handle<FixedArray> prototype_transitions);
|
|
|
|
static Handle<Map> GetPrototypeTransition(Handle<Map> map,
|
|
Handle<Object> prototype);
|
|
static Handle<Map> PutPrototypeTransition(Handle<Map> map,
|
|
Handle<Object> prototype,
|
|
Handle<Map> target_map);
|
|
|
|
static const int kFastPropertiesSoftLimit = 12;
|
|
static const int kMaxFastProperties = 128;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
|
|
};
|
|
|
|
|
|
// An abstract superclass, a marker class really, for simple structure classes.
|
|
// It doesn't carry much functionality but allows struct classes to be
|
|
// identified in the type system.
|
|
class Struct: public HeapObject {
|
|
public:
|
|
inline void InitializeBody(int object_size);
|
|
DECLARE_CAST(Struct)
|
|
};
|
|
|
|
|
|
// A simple one-element struct, useful where smis need to be boxed.
|
|
class Box : public Struct {
|
|
public:
|
|
// [value]: the boxed contents.
|
|
DECL_ACCESSORS(value, Object)
|
|
|
|
DECLARE_CAST(Box)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(Box)
|
|
DECLARE_VERIFIER(Box)
|
|
|
|
static const int kValueOffset = HeapObject::kHeaderSize;
|
|
static const int kSize = kValueOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Box);
|
|
};
|
|
|
|
|
|
// Script describes a script which has been added to the VM.
|
|
class Script: public Struct {
|
|
public:
|
|
// Script types.
|
|
enum Type {
|
|
TYPE_NATIVE = 0,
|
|
TYPE_EXTENSION = 1,
|
|
TYPE_NORMAL = 2
|
|
};
|
|
|
|
// Script compilation types.
|
|
enum CompilationType {
|
|
COMPILATION_TYPE_HOST = 0,
|
|
COMPILATION_TYPE_EVAL = 1
|
|
};
|
|
|
|
// Script compilation state.
|
|
enum CompilationState {
|
|
COMPILATION_STATE_INITIAL = 0,
|
|
COMPILATION_STATE_COMPILED = 1
|
|
};
|
|
|
|
// [source]: the script source.
|
|
DECL_ACCESSORS(source, Object)
|
|
|
|
// [name]: the script name.
|
|
DECL_ACCESSORS(name, Object)
|
|
|
|
// [id]: the script id.
|
|
DECL_ACCESSORS(id, Smi)
|
|
|
|
// [line_offset]: script line offset in resource from where it was extracted.
|
|
DECL_ACCESSORS(line_offset, Smi)
|
|
|
|
// [column_offset]: script column offset in resource from where it was
|
|
// extracted.
|
|
DECL_ACCESSORS(column_offset, Smi)
|
|
|
|
// [context_data]: context data for the context this script was compiled in.
|
|
DECL_ACCESSORS(context_data, Object)
|
|
|
|
// [wrapper]: the wrapper cache. This is either undefined or a WeakCell.
|
|
DECL_ACCESSORS(wrapper, HeapObject)
|
|
|
|
// [type]: the script type.
|
|
DECL_ACCESSORS(type, Smi)
|
|
|
|
// [line_ends]: FixedArray of line ends positions.
|
|
DECL_ACCESSORS(line_ends, Object)
|
|
|
|
// [eval_from_shared]: for eval scripts the shared funcion info for the
|
|
// function from which eval was called.
|
|
DECL_ACCESSORS(eval_from_shared, Object)
|
|
|
|
// [eval_from_instructions_offset]: the instruction offset in the code for the
|
|
// function from which eval was called where eval was called.
|
|
DECL_ACCESSORS(eval_from_instructions_offset, Smi)
|
|
|
|
// [flags]: Holds an exciting bitfield.
|
|
DECL_ACCESSORS(flags, Smi)
|
|
|
|
// [source_url]: sourceURL from magic comment
|
|
DECL_ACCESSORS(source_url, Object)
|
|
|
|
// [source_url]: sourceMappingURL magic comment
|
|
DECL_ACCESSORS(source_mapping_url, Object)
|
|
|
|
// [compilation_type]: how the the script was compiled. Encoded in the
|
|
// 'flags' field.
|
|
inline CompilationType compilation_type();
|
|
inline void set_compilation_type(CompilationType type);
|
|
|
|
// [compilation_state]: determines whether the script has already been
|
|
// compiled. Encoded in the 'flags' field.
|
|
inline CompilationState compilation_state();
|
|
inline void set_compilation_state(CompilationState state);
|
|
|
|
// [is_shared_cross_origin]: An opaque boolean set by the embedder via
|
|
// ScriptOrigin, and used by the embedder to make decisions about the
|
|
// script's level of privilege. V8 just passes this through. Encoded in
|
|
// the 'flags' field.
|
|
DECL_BOOLEAN_ACCESSORS(is_shared_cross_origin)
|
|
|
|
DECLARE_CAST(Script)
|
|
|
|
// If script source is an external string, check that the underlying
|
|
// resource is accessible. Otherwise, always return true.
|
|
inline bool HasValidSource();
|
|
|
|
// Convert code position into column number.
|
|
static int GetColumnNumber(Handle<Script> script, int code_pos);
|
|
|
|
// Convert code position into (zero-based) line number.
|
|
// The non-handlified version does not allocate, but may be much slower.
|
|
static int GetLineNumber(Handle<Script> script, int code_pos);
|
|
int GetLineNumber(int code_pos);
|
|
|
|
static Handle<Object> GetNameOrSourceURL(Handle<Script> script);
|
|
|
|
// Init line_ends array with code positions of line ends inside script source.
|
|
static void InitLineEnds(Handle<Script> script);
|
|
|
|
// Get the JS object wrapping the given script; create it if none exists.
|
|
static Handle<JSObject> GetWrapper(Handle<Script> script);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(Script)
|
|
DECLARE_VERIFIER(Script)
|
|
|
|
static const int kSourceOffset = HeapObject::kHeaderSize;
|
|
static const int kNameOffset = kSourceOffset + kPointerSize;
|
|
static const int kLineOffsetOffset = kNameOffset + kPointerSize;
|
|
static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
|
|
static const int kContextOffset = kColumnOffsetOffset + kPointerSize;
|
|
static const int kWrapperOffset = kContextOffset + kPointerSize;
|
|
static const int kTypeOffset = kWrapperOffset + kPointerSize;
|
|
static const int kLineEndsOffset = kTypeOffset + kPointerSize;
|
|
static const int kIdOffset = kLineEndsOffset + kPointerSize;
|
|
static const int kEvalFromSharedOffset = kIdOffset + kPointerSize;
|
|
static const int kEvalFrominstructionsOffsetOffset =
|
|
kEvalFromSharedOffset + kPointerSize;
|
|
static const int kFlagsOffset =
|
|
kEvalFrominstructionsOffsetOffset + kPointerSize;
|
|
static const int kSourceUrlOffset = kFlagsOffset + kPointerSize;
|
|
static const int kSourceMappingUrlOffset = kSourceUrlOffset + kPointerSize;
|
|
static const int kSize = kSourceMappingUrlOffset + kPointerSize;
|
|
|
|
private:
|
|
int GetLineNumberWithArray(int code_pos);
|
|
|
|
// Bit positions in the flags field.
|
|
static const int kCompilationTypeBit = 0;
|
|
static const int kCompilationStateBit = 1;
|
|
static const int kIsSharedCrossOriginBit = 2;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
|
|
};
|
|
|
|
|
|
// List of builtin functions we want to identify to improve code
|
|
// generation.
|
|
//
|
|
// Each entry has a name of a global object property holding an object
|
|
// optionally followed by ".prototype", a name of a builtin function
|
|
// on the object (the one the id is set for), and a label.
|
|
//
|
|
// Installation of ids for the selected builtin functions is handled
|
|
// by the bootstrapper.
|
|
#define FUNCTIONS_WITH_ID_LIST(V) \
|
|
V(Array.prototype, indexOf, ArrayIndexOf) \
|
|
V(Array.prototype, lastIndexOf, ArrayLastIndexOf) \
|
|
V(Array.prototype, push, ArrayPush) \
|
|
V(Array.prototype, pop, ArrayPop) \
|
|
V(Array.prototype, shift, ArrayShift) \
|
|
V(Function.prototype, apply, FunctionApply) \
|
|
V(Function.prototype, call, FunctionCall) \
|
|
V(String.prototype, charCodeAt, StringCharCodeAt) \
|
|
V(String.prototype, charAt, StringCharAt) \
|
|
V(String, fromCharCode, StringFromCharCode) \
|
|
V(Math, random, MathRandom) \
|
|
V(Math, floor, MathFloor) \
|
|
V(Math, round, MathRound) \
|
|
V(Math, ceil, MathCeil) \
|
|
V(Math, abs, MathAbs) \
|
|
V(Math, log, MathLog) \
|
|
V(Math, exp, MathExp) \
|
|
V(Math, sqrt, MathSqrt) \
|
|
V(Math, pow, MathPow) \
|
|
V(Math, max, MathMax) \
|
|
V(Math, min, MathMin) \
|
|
V(Math, cos, MathCos) \
|
|
V(Math, sin, MathSin) \
|
|
V(Math, tan, MathTan) \
|
|
V(Math, acos, MathAcos) \
|
|
V(Math, asin, MathAsin) \
|
|
V(Math, atan, MathAtan) \
|
|
V(Math, atan2, MathAtan2) \
|
|
V(Math, imul, MathImul) \
|
|
V(Math, clz32, MathClz32) \
|
|
V(Math, fround, MathFround)
|
|
|
|
enum BuiltinFunctionId {
|
|
kArrayCode,
|
|
#define DECLARE_FUNCTION_ID(ignored1, ignore2, name) \
|
|
k##name,
|
|
FUNCTIONS_WITH_ID_LIST(DECLARE_FUNCTION_ID)
|
|
#undef DECLARE_FUNCTION_ID
|
|
// Fake id for a special case of Math.pow. Note, it continues the
|
|
// list of math functions.
|
|
kMathPowHalf
|
|
};
|
|
|
|
|
|
// SharedFunctionInfo describes the JSFunction information that can be
|
|
// shared by multiple instances of the function.
|
|
class SharedFunctionInfo: public HeapObject {
|
|
public:
|
|
// [name]: Function name.
|
|
DECL_ACCESSORS(name, Object)
|
|
|
|
// [code]: Function code.
|
|
DECL_ACCESSORS(code, Code)
|
|
inline void ReplaceCode(Code* code);
|
|
|
|
// [optimized_code_map]: Map from native context to optimized code
|
|
// and a shared literals array or Smi(0) if none.
|
|
DECL_ACCESSORS(optimized_code_map, Object)
|
|
|
|
// Returns index i of the entry with the specified context and OSR entry.
|
|
// At position i - 1 is the context, position i the code, and i + 1 the
|
|
// literals array. Returns -1 when no matching entry is found.
|
|
int SearchOptimizedCodeMap(Context* native_context, BailoutId osr_ast_id);
|
|
|
|
// Installs optimized code from the code map on the given closure. The
|
|
// index has to be consistent with a search result as defined above.
|
|
FixedArray* GetLiteralsFromOptimizedCodeMap(int index);
|
|
|
|
Code* GetCodeFromOptimizedCodeMap(int index);
|
|
|
|
// Clear optimized code map.
|
|
void ClearOptimizedCodeMap();
|
|
|
|
// Removed a specific optimized code object from the optimized code map.
|
|
void EvictFromOptimizedCodeMap(Code* optimized_code, const char* reason);
|
|
|
|
void ClearTypeFeedbackInfo();
|
|
|
|
// Trims the optimized code map after entries have been removed.
|
|
void TrimOptimizedCodeMap(int shrink_by);
|
|
|
|
// Add a new entry to the optimized code map.
|
|
static void AddToOptimizedCodeMap(Handle<SharedFunctionInfo> shared,
|
|
Handle<Context> native_context,
|
|
Handle<Code> code,
|
|
Handle<FixedArray> literals,
|
|
BailoutId osr_ast_id);
|
|
|
|
// Layout description of the optimized code map.
|
|
static const int kNextMapIndex = 0;
|
|
static const int kEntriesStart = 1;
|
|
static const int kContextOffset = 0;
|
|
static const int kCachedCodeOffset = 1;
|
|
static const int kLiteralsOffset = 2;
|
|
static const int kOsrAstIdOffset = 3;
|
|
static const int kEntryLength = 4;
|
|
static const int kInitialLength = kEntriesStart + kEntryLength;
|
|
|
|
// [scope_info]: Scope info.
|
|
DECL_ACCESSORS(scope_info, ScopeInfo)
|
|
|
|
// [construct stub]: Code stub for constructing instances of this function.
|
|
DECL_ACCESSORS(construct_stub, Code)
|
|
|
|
// Returns if this function has been compiled to native code yet.
|
|
inline bool is_compiled();
|
|
|
|
// [length]: The function length - usually the number of declared parameters.
|
|
// Use up to 2^30 parameters.
|
|
inline int length() const;
|
|
inline void set_length(int value);
|
|
|
|
// [formal parameter count]: The declared number of parameters.
|
|
inline int formal_parameter_count() const;
|
|
inline void set_formal_parameter_count(int value);
|
|
|
|
// Set the formal parameter count so the function code will be
|
|
// called without using argument adaptor frames.
|
|
inline void DontAdaptArguments();
|
|
|
|
// [expected_nof_properties]: Expected number of properties for the function.
|
|
inline int expected_nof_properties() const;
|
|
inline void set_expected_nof_properties(int value);
|
|
|
|
// [feedback_vector] - accumulates ast node feedback from full-codegen and
|
|
// (increasingly) from crankshafted code where sufficient feedback isn't
|
|
// available.
|
|
DECL_ACCESSORS(feedback_vector, TypeFeedbackVector)
|
|
|
|
#if TRACE_MAPS
|
|
// [unique_id] - For --trace-maps purposes, an identifier that's persistent
|
|
// even if the GC moves this SharedFunctionInfo.
|
|
inline int unique_id() const;
|
|
inline void set_unique_id(int value);
|
|
#endif
|
|
|
|
// [instance class name]: class name for instances.
|
|
DECL_ACCESSORS(instance_class_name, Object)
|
|
|
|
// [function data]: This field holds some additional data for function.
|
|
// Currently it either has FunctionTemplateInfo to make benefit the API
|
|
// or Smi identifying a builtin function.
|
|
// In the long run we don't want all functions to have this field but
|
|
// we can fix that when we have a better model for storing hidden data
|
|
// on objects.
|
|
DECL_ACCESSORS(function_data, Object)
|
|
|
|
inline bool IsApiFunction();
|
|
inline FunctionTemplateInfo* get_api_func_data();
|
|
inline bool HasBuiltinFunctionId();
|
|
inline BuiltinFunctionId builtin_function_id();
|
|
|
|
// [script info]: Script from which the function originates.
|
|
DECL_ACCESSORS(script, Object)
|
|
|
|
// [num_literals]: Number of literals used by this function.
|
|
inline int num_literals() const;
|
|
inline void set_num_literals(int value);
|
|
|
|
// [start_position_and_type]: Field used to store both the source code
|
|
// position, whether or not the function is a function expression,
|
|
// and whether or not the function is a toplevel function. The two
|
|
// least significants bit indicates whether the function is an
|
|
// expression and the rest contains the source code position.
|
|
inline int start_position_and_type() const;
|
|
inline void set_start_position_and_type(int value);
|
|
|
|
// [debug info]: Debug information.
|
|
DECL_ACCESSORS(debug_info, Object)
|
|
|
|
// [inferred name]: Name inferred from variable or property
|
|
// assignment of this function. Used to facilitate debugging and
|
|
// profiling of JavaScript code written in OO style, where almost
|
|
// all functions are anonymous but are assigned to object
|
|
// properties.
|
|
DECL_ACCESSORS(inferred_name, String)
|
|
|
|
// The function's name if it is non-empty, otherwise the inferred name.
|
|
String* DebugName();
|
|
|
|
// Position of the 'function' token in the script source.
|
|
inline int function_token_position() const;
|
|
inline void set_function_token_position(int function_token_position);
|
|
|
|
// Position of this function in the script source.
|
|
inline int start_position() const;
|
|
inline void set_start_position(int start_position);
|
|
|
|
// End position of this function in the script source.
|
|
inline int end_position() const;
|
|
inline void set_end_position(int end_position);
|
|
|
|
// Is this function a function expression in the source code.
|
|
DECL_BOOLEAN_ACCESSORS(is_expression)
|
|
|
|
// Is this function a top-level function (scripts, evals).
|
|
DECL_BOOLEAN_ACCESSORS(is_toplevel)
|
|
|
|
// Bit field containing various information collected by the compiler to
|
|
// drive optimization.
|
|
inline int compiler_hints() const;
|
|
inline void set_compiler_hints(int value);
|
|
|
|
inline int ast_node_count() const;
|
|
inline void set_ast_node_count(int count);
|
|
|
|
inline int profiler_ticks() const;
|
|
inline void set_profiler_ticks(int ticks);
|
|
|
|
// Inline cache age is used to infer whether the function survived a context
|
|
// disposal or not. In the former case we reset the opt_count.
|
|
inline int ic_age();
|
|
inline void set_ic_age(int age);
|
|
|
|
// Indicates if this function can be lazy compiled.
|
|
// This is used to determine if we can safely flush code from a function
|
|
// when doing GC if we expect that the function will no longer be used.
|
|
DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation)
|
|
|
|
// Indicates if this function can be lazy compiled without a context.
|
|
// This is used to determine if we can force compilation without reaching
|
|
// the function through program execution but through other means (e.g. heap
|
|
// iteration by the debugger).
|
|
DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation_without_context)
|
|
|
|
// Indicates whether optimizations have been disabled for this
|
|
// shared function info. If a function is repeatedly optimized or if
|
|
// we cannot optimize the function we disable optimization to avoid
|
|
// spending time attempting to optimize it again.
|
|
DECL_BOOLEAN_ACCESSORS(optimization_disabled)
|
|
|
|
// Indicates the language mode.
|
|
inline StrictMode strict_mode();
|
|
inline void set_strict_mode(StrictMode strict_mode);
|
|
|
|
// False if the function definitely does not allocate an arguments object.
|
|
DECL_BOOLEAN_ACCESSORS(uses_arguments)
|
|
|
|
// Indicates that this function uses a super property.
|
|
// This is needed to set up the [[HomeObject]] on the function instance.
|
|
DECL_BOOLEAN_ACCESSORS(uses_super_property)
|
|
|
|
// Indicates that this function uses the super constructor.
|
|
DECL_BOOLEAN_ACCESSORS(uses_super_constructor_call)
|
|
|
|
// True if the function has any duplicated parameter names.
|
|
DECL_BOOLEAN_ACCESSORS(has_duplicate_parameters)
|
|
|
|
// Indicates whether the function is a native function.
|
|
// These needs special treatment in .call and .apply since
|
|
// null passed as the receiver should not be translated to the
|
|
// global object.
|
|
DECL_BOOLEAN_ACCESSORS(native)
|
|
|
|
// Indicate that this builtin needs to be inlined in crankshaft.
|
|
DECL_BOOLEAN_ACCESSORS(inline_builtin)
|
|
|
|
// Indicates that the function was created by the Function function.
|
|
// Though it's anonymous, toString should treat it as if it had the name
|
|
// "anonymous". We don't set the name itself so that the system does not
|
|
// see a binding for it.
|
|
DECL_BOOLEAN_ACCESSORS(name_should_print_as_anonymous)
|
|
|
|
// Indicates whether the function is a bound function created using
|
|
// the bind function.
|
|
DECL_BOOLEAN_ACCESSORS(bound)
|
|
|
|
// Indicates that the function is anonymous (the name field can be set
|
|
// through the API, which does not change this flag).
|
|
DECL_BOOLEAN_ACCESSORS(is_anonymous)
|
|
|
|
// Is this a function or top-level/eval code.
|
|
DECL_BOOLEAN_ACCESSORS(is_function)
|
|
|
|
// Indicates that code for this function cannot be cached.
|
|
DECL_BOOLEAN_ACCESSORS(dont_cache)
|
|
|
|
// Indicates that code for this function cannot be flushed.
|
|
DECL_BOOLEAN_ACCESSORS(dont_flush)
|
|
|
|
// Indicates that this function is a generator.
|
|
DECL_BOOLEAN_ACCESSORS(is_generator)
|
|
|
|
// Indicates that this function is an arrow function.
|
|
DECL_BOOLEAN_ACCESSORS(is_arrow)
|
|
|
|
// Indicates that this function is a concise method.
|
|
DECL_BOOLEAN_ACCESSORS(is_concise_method)
|
|
|
|
// Indicates that this function is a default constructor.
|
|
DECL_BOOLEAN_ACCESSORS(is_default_constructor)
|
|
|
|
// Indicates that this function is an asm function.
|
|
DECL_BOOLEAN_ACCESSORS(asm_function)
|
|
|
|
// Indicates that the the shared function info is deserialized from cache.
|
|
DECL_BOOLEAN_ACCESSORS(deserialized)
|
|
|
|
inline FunctionKind kind();
|
|
inline void set_kind(FunctionKind kind);
|
|
|
|
// Indicates whether or not the code in the shared function support
|
|
// deoptimization.
|
|
inline bool has_deoptimization_support();
|
|
|
|
// Enable deoptimization support through recompiled code.
|
|
void EnableDeoptimizationSupport(Code* recompiled);
|
|
|
|
// Disable (further) attempted optimization of all functions sharing this
|
|
// shared function info.
|
|
void DisableOptimization(BailoutReason reason);
|
|
|
|
inline BailoutReason disable_optimization_reason();
|
|
|
|
// Lookup the bailout ID and DCHECK that it exists in the non-optimized
|
|
// code, returns whether it asserted (i.e., always true if assertions are
|
|
// disabled).
|
|
bool VerifyBailoutId(BailoutId id);
|
|
|
|
// [source code]: Source code for the function.
|
|
bool HasSourceCode() const;
|
|
Handle<Object> GetSourceCode();
|
|
|
|
// Number of times the function was optimized.
|
|
inline int opt_count();
|
|
inline void set_opt_count(int opt_count);
|
|
|
|
// Number of times the function was deoptimized.
|
|
inline void set_deopt_count(int value);
|
|
inline int deopt_count();
|
|
inline void increment_deopt_count();
|
|
|
|
// Number of time we tried to re-enable optimization after it
|
|
// was disabled due to high number of deoptimizations.
|
|
inline void set_opt_reenable_tries(int value);
|
|
inline int opt_reenable_tries();
|
|
|
|
inline void TryReenableOptimization();
|
|
|
|
// Stores deopt_count, opt_reenable_tries and ic_age as bit-fields.
|
|
inline void set_counters(int value);
|
|
inline int counters() const;
|
|
|
|
// Stores opt_count and bailout_reason as bit-fields.
|
|
inline void set_opt_count_and_bailout_reason(int value);
|
|
inline int opt_count_and_bailout_reason() const;
|
|
|
|
void set_disable_optimization_reason(BailoutReason reason) {
|
|
set_opt_count_and_bailout_reason(
|
|
DisabledOptimizationReasonBits::update(opt_count_and_bailout_reason(),
|
|
reason));
|
|
}
|
|
|
|
// Check whether or not this function is inlineable.
|
|
bool IsInlineable();
|
|
|
|
// Source size of this function.
|
|
int SourceSize();
|
|
|
|
// Calculate the instance size.
|
|
int CalculateInstanceSize();
|
|
|
|
// Calculate the number of in-object properties.
|
|
int CalculateInObjectProperties();
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(SharedFunctionInfo)
|
|
DECLARE_VERIFIER(SharedFunctionInfo)
|
|
|
|
void ResetForNewContext(int new_ic_age);
|
|
|
|
DECLARE_CAST(SharedFunctionInfo)
|
|
|
|
// Constants.
|
|
static const int kDontAdaptArgumentsSentinel = -1;
|
|
|
|
// Layout description.
|
|
// Pointer fields.
|
|
static const int kNameOffset = HeapObject::kHeaderSize;
|
|
static const int kCodeOffset = kNameOffset + kPointerSize;
|
|
static const int kOptimizedCodeMapOffset = kCodeOffset + kPointerSize;
|
|
static const int kScopeInfoOffset = kOptimizedCodeMapOffset + kPointerSize;
|
|
static const int kConstructStubOffset = kScopeInfoOffset + kPointerSize;
|
|
static const int kInstanceClassNameOffset =
|
|
kConstructStubOffset + kPointerSize;
|
|
static const int kFunctionDataOffset =
|
|
kInstanceClassNameOffset + kPointerSize;
|
|
static const int kScriptOffset = kFunctionDataOffset + kPointerSize;
|
|
static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
|
|
static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
|
|
static const int kFeedbackVectorOffset =
|
|
kInferredNameOffset + kPointerSize;
|
|
#if TRACE_MAPS
|
|
static const int kUniqueIdOffset = kFeedbackVectorOffset + kPointerSize;
|
|
static const int kLastPointerFieldOffset = kUniqueIdOffset;
|
|
#else
|
|
static const int kLastPointerFieldOffset = kFeedbackVectorOffset;
|
|
#endif
|
|
|
|
#if V8_HOST_ARCH_32_BIT
|
|
// Smi fields.
|
|
static const int kLengthOffset = kLastPointerFieldOffset + kPointerSize;
|
|
static const int kFormalParameterCountOffset = kLengthOffset + kPointerSize;
|
|
static const int kExpectedNofPropertiesOffset =
|
|
kFormalParameterCountOffset + kPointerSize;
|
|
static const int kNumLiteralsOffset =
|
|
kExpectedNofPropertiesOffset + kPointerSize;
|
|
static const int kStartPositionAndTypeOffset =
|
|
kNumLiteralsOffset + kPointerSize;
|
|
static const int kEndPositionOffset =
|
|
kStartPositionAndTypeOffset + kPointerSize;
|
|
static const int kFunctionTokenPositionOffset =
|
|
kEndPositionOffset + kPointerSize;
|
|
static const int kCompilerHintsOffset =
|
|
kFunctionTokenPositionOffset + kPointerSize;
|
|
static const int kOptCountAndBailoutReasonOffset =
|
|
kCompilerHintsOffset + kPointerSize;
|
|
static const int kCountersOffset =
|
|
kOptCountAndBailoutReasonOffset + kPointerSize;
|
|
static const int kAstNodeCountOffset =
|
|
kCountersOffset + kPointerSize;
|
|
static const int kProfilerTicksOffset =
|
|
kAstNodeCountOffset + kPointerSize;
|
|
|
|
// Total size.
|
|
static const int kSize = kProfilerTicksOffset + kPointerSize;
|
|
#else
|
|
// The only reason to use smi fields instead of int fields
|
|
// is to allow iteration without maps decoding during
|
|
// garbage collections.
|
|
// To avoid wasting space on 64-bit architectures we use
|
|
// the following trick: we group integer fields into pairs
|
|
// The least significant integer in each pair is shifted left by 1.
|
|
// By doing this we guarantee that LSB of each kPointerSize aligned
|
|
// word is not set and thus this word cannot be treated as pointer
|
|
// to HeapObject during old space traversal.
|
|
#if V8_TARGET_LITTLE_ENDIAN
|
|
static const int kLengthOffset = kLastPointerFieldOffset + kPointerSize;
|
|
static const int kFormalParameterCountOffset =
|
|
kLengthOffset + kIntSize;
|
|
|
|
static const int kExpectedNofPropertiesOffset =
|
|
kFormalParameterCountOffset + kIntSize;
|
|
static const int kNumLiteralsOffset =
|
|
kExpectedNofPropertiesOffset + kIntSize;
|
|
|
|
static const int kEndPositionOffset =
|
|
kNumLiteralsOffset + kIntSize;
|
|
static const int kStartPositionAndTypeOffset =
|
|
kEndPositionOffset + kIntSize;
|
|
|
|
static const int kFunctionTokenPositionOffset =
|
|
kStartPositionAndTypeOffset + kIntSize;
|
|
static const int kCompilerHintsOffset =
|
|
kFunctionTokenPositionOffset + kIntSize;
|
|
|
|
static const int kOptCountAndBailoutReasonOffset =
|
|
kCompilerHintsOffset + kIntSize;
|
|
static const int kCountersOffset =
|
|
kOptCountAndBailoutReasonOffset + kIntSize;
|
|
|
|
static const int kAstNodeCountOffset =
|
|
kCountersOffset + kIntSize;
|
|
static const int kProfilerTicksOffset =
|
|
kAstNodeCountOffset + kIntSize;
|
|
|
|
// Total size.
|
|
static const int kSize = kProfilerTicksOffset + kIntSize;
|
|
|
|
#elif V8_TARGET_BIG_ENDIAN
|
|
static const int kFormalParameterCountOffset =
|
|
kLastPointerFieldOffset + kPointerSize;
|
|
static const int kLengthOffset = kFormalParameterCountOffset + kIntSize;
|
|
|
|
static const int kNumLiteralsOffset = kLengthOffset + kIntSize;
|
|
static const int kExpectedNofPropertiesOffset = kNumLiteralsOffset + kIntSize;
|
|
|
|
static const int kStartPositionAndTypeOffset =
|
|
kExpectedNofPropertiesOffset + kIntSize;
|
|
static const int kEndPositionOffset = kStartPositionAndTypeOffset + kIntSize;
|
|
|
|
static const int kCompilerHintsOffset = kEndPositionOffset + kIntSize;
|
|
static const int kFunctionTokenPositionOffset =
|
|
kCompilerHintsOffset + kIntSize;
|
|
|
|
static const int kCountersOffset = kFunctionTokenPositionOffset + kIntSize;
|
|
static const int kOptCountAndBailoutReasonOffset = kCountersOffset + kIntSize;
|
|
|
|
static const int kProfilerTicksOffset =
|
|
kOptCountAndBailoutReasonOffset + kIntSize;
|
|
static const int kAstNodeCountOffset = kProfilerTicksOffset + kIntSize;
|
|
|
|
// Total size.
|
|
static const int kSize = kAstNodeCountOffset + kIntSize;
|
|
|
|
#else
|
|
#error Unknown byte ordering
|
|
#endif // Big endian
|
|
#endif // 64-bit
|
|
|
|
|
|
static const int kAlignedSize = POINTER_SIZE_ALIGN(kSize);
|
|
|
|
typedef FixedBodyDescriptor<kNameOffset,
|
|
kLastPointerFieldOffset + kPointerSize,
|
|
kSize> BodyDescriptor;
|
|
|
|
// Bit positions in start_position_and_type.
|
|
// The source code start position is in the 30 most significant bits of
|
|
// the start_position_and_type field.
|
|
static const int kIsExpressionBit = 0;
|
|
static const int kIsTopLevelBit = 1;
|
|
static const int kStartPositionShift = 2;
|
|
static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
|
|
|
|
// Bit positions in compiler_hints.
|
|
enum CompilerHints {
|
|
kAllowLazyCompilation,
|
|
kAllowLazyCompilationWithoutContext,
|
|
kOptimizationDisabled,
|
|
kStrictModeFunction,
|
|
kUsesArguments,
|
|
kUsesSuperProperty,
|
|
kUsesSuperConstructorCall,
|
|
kHasDuplicateParameters,
|
|
kNative,
|
|
kInlineBuiltin,
|
|
kBoundFunction,
|
|
kIsAnonymous,
|
|
kNameShouldPrintAsAnonymous,
|
|
kIsFunction,
|
|
kDontCache,
|
|
kDontFlush,
|
|
kIsArrow,
|
|
kIsGenerator,
|
|
kIsConciseMethod,
|
|
kIsDefaultConstructor,
|
|
kIsAsmFunction,
|
|
kDeserialized,
|
|
kCompilerHintsCount // Pseudo entry
|
|
};
|
|
|
|
class FunctionKindBits : public BitField<FunctionKind, kIsArrow, 4> {};
|
|
|
|
class DeoptCountBits : public BitField<int, 0, 4> {};
|
|
class OptReenableTriesBits : public BitField<int, 4, 18> {};
|
|
class ICAgeBits : public BitField<int, 22, 8> {};
|
|
|
|
class OptCountBits : public BitField<int, 0, 22> {};
|
|
class DisabledOptimizationReasonBits : public BitField<int, 22, 8> {};
|
|
|
|
private:
|
|
#if V8_HOST_ARCH_32_BIT
|
|
// On 32 bit platforms, compiler hints is a smi.
|
|
static const int kCompilerHintsSmiTagSize = kSmiTagSize;
|
|
static const int kCompilerHintsSize = kPointerSize;
|
|
#else
|
|
// On 64 bit platforms, compiler hints is not a smi, see comment above.
|
|
static const int kCompilerHintsSmiTagSize = 0;
|
|
static const int kCompilerHintsSize = kIntSize;
|
|
#endif
|
|
|
|
STATIC_ASSERT(SharedFunctionInfo::kCompilerHintsCount <=
|
|
SharedFunctionInfo::kCompilerHintsSize * kBitsPerByte);
|
|
|
|
public:
|
|
// Constants for optimizing codegen for strict mode function and
|
|
// native tests.
|
|
// Allows to use byte-width instructions.
|
|
static const int kStrictModeBitWithinByte =
|
|
(kStrictModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
|
|
|
|
static const int kNativeBitWithinByte =
|
|
(kNative + kCompilerHintsSmiTagSize) % kBitsPerByte;
|
|
|
|
#if defined(V8_TARGET_LITTLE_ENDIAN)
|
|
static const int kStrictModeByteOffset = kCompilerHintsOffset +
|
|
(kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
|
|
static const int kNativeByteOffset = kCompilerHintsOffset +
|
|
(kNative + kCompilerHintsSmiTagSize) / kBitsPerByte;
|
|
#elif defined(V8_TARGET_BIG_ENDIAN)
|
|
static const int kStrictModeByteOffset = kCompilerHintsOffset +
|
|
(kCompilerHintsSize - 1) -
|
|
((kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
|
|
static const int kNativeByteOffset = kCompilerHintsOffset +
|
|
(kCompilerHintsSize - 1) -
|
|
((kNative + kCompilerHintsSmiTagSize) / kBitsPerByte);
|
|
#else
|
|
#error Unknown byte ordering
|
|
#endif
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
|
|
};
|
|
|
|
|
|
// Printing support.
|
|
struct SourceCodeOf {
|
|
explicit SourceCodeOf(SharedFunctionInfo* v, int max = -1)
|
|
: value(v), max_length(max) {}
|
|
const SharedFunctionInfo* value;
|
|
int max_length;
|
|
};
|
|
|
|
|
|
std::ostream& operator<<(std::ostream& os, const SourceCodeOf& v);
|
|
|
|
|
|
class JSGeneratorObject: public JSObject {
|
|
public:
|
|
// [function]: The function corresponding to this generator object.
|
|
DECL_ACCESSORS(function, JSFunction)
|
|
|
|
// [context]: The context of the suspended computation.
|
|
DECL_ACCESSORS(context, Context)
|
|
|
|
// [receiver]: The receiver of the suspended computation.
|
|
DECL_ACCESSORS(receiver, Object)
|
|
|
|
// [continuation]: Offset into code of continuation.
|
|
//
|
|
// A positive offset indicates a suspended generator. The special
|
|
// kGeneratorExecuting and kGeneratorClosed values indicate that a generator
|
|
// cannot be resumed.
|
|
inline int continuation() const;
|
|
inline void set_continuation(int continuation);
|
|
inline bool is_closed();
|
|
inline bool is_executing();
|
|
inline bool is_suspended();
|
|
|
|
// [operand_stack]: Saved operand stack.
|
|
DECL_ACCESSORS(operand_stack, FixedArray)
|
|
|
|
// [stack_handler_index]: Index of first stack handler in operand_stack, or -1
|
|
// if the captured activation had no stack handler.
|
|
inline int stack_handler_index() const;
|
|
inline void set_stack_handler_index(int stack_handler_index);
|
|
|
|
DECLARE_CAST(JSGeneratorObject)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSGeneratorObject)
|
|
DECLARE_VERIFIER(JSGeneratorObject)
|
|
|
|
// Magic sentinel values for the continuation.
|
|
static const int kGeneratorExecuting = -1;
|
|
static const int kGeneratorClosed = 0;
|
|
|
|
// Layout description.
|
|
static const int kFunctionOffset = JSObject::kHeaderSize;
|
|
static const int kContextOffset = kFunctionOffset + kPointerSize;
|
|
static const int kReceiverOffset = kContextOffset + kPointerSize;
|
|
static const int kContinuationOffset = kReceiverOffset + kPointerSize;
|
|
static const int kOperandStackOffset = kContinuationOffset + kPointerSize;
|
|
static const int kStackHandlerIndexOffset =
|
|
kOperandStackOffset + kPointerSize;
|
|
static const int kSize = kStackHandlerIndexOffset + kPointerSize;
|
|
|
|
// Resume mode, for use by runtime functions.
|
|
enum ResumeMode { NEXT, THROW };
|
|
|
|
// Yielding from a generator returns an object with the following inobject
|
|
// properties. See Context::iterator_result_map() for the map.
|
|
static const int kResultValuePropertyIndex = 0;
|
|
static const int kResultDonePropertyIndex = 1;
|
|
static const int kResultPropertyCount = 2;
|
|
|
|
static const int kResultValuePropertyOffset = JSObject::kHeaderSize;
|
|
static const int kResultDonePropertyOffset =
|
|
kResultValuePropertyOffset + kPointerSize;
|
|
static const int kResultSize = kResultDonePropertyOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSGeneratorObject);
|
|
};
|
|
|
|
|
|
// Representation for module instance objects.
|
|
class JSModule: public JSObject {
|
|
public:
|
|
// [context]: the context holding the module's locals, or undefined if none.
|
|
DECL_ACCESSORS(context, Object)
|
|
|
|
// [scope_info]: Scope info.
|
|
DECL_ACCESSORS(scope_info, ScopeInfo)
|
|
|
|
DECLARE_CAST(JSModule)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSModule)
|
|
DECLARE_VERIFIER(JSModule)
|
|
|
|
// Layout description.
|
|
static const int kContextOffset = JSObject::kHeaderSize;
|
|
static const int kScopeInfoOffset = kContextOffset + kPointerSize;
|
|
static const int kSize = kScopeInfoOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSModule);
|
|
};
|
|
|
|
|
|
// JSFunction describes JavaScript functions.
|
|
class JSFunction: public JSObject {
|
|
public:
|
|
// [prototype_or_initial_map]:
|
|
DECL_ACCESSORS(prototype_or_initial_map, Object)
|
|
|
|
// [shared]: The information about the function that
|
|
// can be shared by instances.
|
|
DECL_ACCESSORS(shared, SharedFunctionInfo)
|
|
|
|
// [context]: The context for this function.
|
|
inline Context* context();
|
|
inline void set_context(Object* context);
|
|
inline JSObject* global_proxy();
|
|
|
|
// [code]: The generated code object for this function. Executed
|
|
// when the function is invoked, e.g. foo() or new foo(). See
|
|
// [[Call]] and [[Construct]] description in ECMA-262, section
|
|
// 8.6.2, page 27.
|
|
inline Code* code();
|
|
inline void set_code(Code* code);
|
|
inline void set_code_no_write_barrier(Code* code);
|
|
inline void ReplaceCode(Code* code);
|
|
|
|
// Tells whether this function is builtin.
|
|
inline bool IsBuiltin();
|
|
|
|
// Tells whether this function is defined in a native script.
|
|
inline bool IsFromNativeScript();
|
|
|
|
// Tells whether this function is defined in an extension script.
|
|
inline bool IsFromExtensionScript();
|
|
|
|
// Tells whether or not the function needs arguments adaption.
|
|
inline bool NeedsArgumentsAdaption();
|
|
|
|
// Tells whether or not this function has been optimized.
|
|
inline bool IsOptimized();
|
|
|
|
// Tells whether or not this function can be optimized.
|
|
inline bool IsOptimizable();
|
|
|
|
// Mark this function for lazy recompilation. The function will be
|
|
// recompiled the next time it is executed.
|
|
void MarkForOptimization();
|
|
void AttemptConcurrentOptimization();
|
|
|
|
// Tells whether or not the function is already marked for lazy
|
|
// recompilation.
|
|
inline bool IsMarkedForOptimization();
|
|
inline bool IsMarkedForConcurrentOptimization();
|
|
|
|
// Tells whether or not the function is on the concurrent recompilation queue.
|
|
inline bool IsInOptimizationQueue();
|
|
|
|
// Inobject slack tracking is the way to reclaim unused inobject space.
|
|
//
|
|
// The instance size is initially determined by adding some slack to
|
|
// expected_nof_properties (to allow for a few extra properties added
|
|
// after the constructor). There is no guarantee that the extra space
|
|
// will not be wasted.
|
|
//
|
|
// Here is the algorithm to reclaim the unused inobject space:
|
|
// - Detect the first constructor call for this JSFunction.
|
|
// When it happens enter the "in progress" state: initialize construction
|
|
// counter in the initial_map.
|
|
// - While the tracking is in progress create objects filled with
|
|
// one_pointer_filler_map instead of undefined_value. This way they can be
|
|
// resized quickly and safely.
|
|
// - Once enough objects have been created compute the 'slack'
|
|
// (traverse the map transition tree starting from the
|
|
// initial_map and find the lowest value of unused_property_fields).
|
|
// - Traverse the transition tree again and decrease the instance size
|
|
// of every map. Existing objects will resize automatically (they are
|
|
// filled with one_pointer_filler_map). All further allocations will
|
|
// use the adjusted instance size.
|
|
// - SharedFunctionInfo's expected_nof_properties left unmodified since
|
|
// allocations made using different closures could actually create different
|
|
// kind of objects (see prototype inheritance pattern).
|
|
//
|
|
// Important: inobject slack tracking is not attempted during the snapshot
|
|
// creation.
|
|
|
|
// True if the initial_map is set and the object constructions countdown
|
|
// counter is not zero.
|
|
static const int kGenerousAllocationCount =
|
|
Map::kSlackTrackingCounterStart - Map::kSlackTrackingCounterEnd + 1;
|
|
inline bool IsInobjectSlackTrackingInProgress();
|
|
|
|
// Starts the tracking.
|
|
// Initializes object constructions countdown counter in the initial map.
|
|
void StartInobjectSlackTracking();
|
|
|
|
// Completes the tracking.
|
|
void CompleteInobjectSlackTracking();
|
|
|
|
// [literals_or_bindings]: Fixed array holding either
|
|
// the materialized literals or the bindings of a bound function.
|
|
//
|
|
// If the function contains object, regexp or array literals, the
|
|
// literals array prefix contains the object, regexp, and array
|
|
// function to be used when creating these literals. This is
|
|
// necessary so that we do not dynamically lookup the object, regexp
|
|
// or array functions. Performing a dynamic lookup, we might end up
|
|
// using the functions from a new context that we should not have
|
|
// access to.
|
|
//
|
|
// On bound functions, the array is a (copy-on-write) fixed-array containing
|
|
// the function that was bound, bound this-value and any bound
|
|
// arguments. Bound functions never contain literals.
|
|
DECL_ACCESSORS(literals_or_bindings, FixedArray)
|
|
|
|
inline FixedArray* literals();
|
|
inline void set_literals(FixedArray* literals);
|
|
|
|
inline FixedArray* function_bindings();
|
|
inline void set_function_bindings(FixedArray* bindings);
|
|
|
|
// The initial map for an object created by this constructor.
|
|
inline Map* initial_map();
|
|
static void SetInitialMap(Handle<JSFunction> function, Handle<Map> map,
|
|
Handle<Object> prototype);
|
|
inline bool has_initial_map();
|
|
static void EnsureHasInitialMap(Handle<JSFunction> function);
|
|
|
|
// Get and set the prototype property on a JSFunction. If the
|
|
// function has an initial map the prototype is set on the initial
|
|
// map. Otherwise, the prototype is put in the initial map field
|
|
// until an initial map is needed.
|
|
inline bool has_prototype();
|
|
inline bool has_instance_prototype();
|
|
inline Object* prototype();
|
|
inline Object* instance_prototype();
|
|
static void SetPrototype(Handle<JSFunction> function,
|
|
Handle<Object> value);
|
|
static void SetInstancePrototype(Handle<JSFunction> function,
|
|
Handle<Object> value);
|
|
|
|
// Creates a new closure for the fucntion with the same bindings,
|
|
// bound values, and prototype. An equivalent of spec operations
|
|
// ``CloneMethod`` and ``CloneBoundFunction``.
|
|
static Handle<JSFunction> CloneClosure(Handle<JSFunction> function);
|
|
|
|
// After prototype is removed, it will not be created when accessed, and
|
|
// [[Construct]] from this function will not be allowed.
|
|
bool RemovePrototype();
|
|
inline bool should_have_prototype();
|
|
|
|
// Accessor for this function's initial map's [[class]]
|
|
// property. This is primarily used by ECMA native functions. This
|
|
// method sets the class_name field of this function's initial map
|
|
// to a given value. It creates an initial map if this function does
|
|
// not have one. Note that this method does not copy the initial map
|
|
// if it has one already, but simply replaces it with the new value.
|
|
// Instances created afterwards will have a map whose [[class]] is
|
|
// set to 'value', but there is no guarantees on instances created
|
|
// before.
|
|
void SetInstanceClassName(String* name);
|
|
|
|
// Returns if this function has been compiled to native code yet.
|
|
inline bool is_compiled();
|
|
|
|
// [next_function_link]: Links functions into various lists, e.g. the list
|
|
// of optimized functions hanging off the native_context. The CodeFlusher
|
|
// uses this link to chain together flushing candidates. Treated weakly
|
|
// by the garbage collector.
|
|
DECL_ACCESSORS(next_function_link, Object)
|
|
|
|
// Prints the name of the function using PrintF.
|
|
void PrintName(FILE* out = stdout);
|
|
|
|
DECLARE_CAST(JSFunction)
|
|
|
|
// Iterates the objects, including code objects indirectly referenced
|
|
// through pointers to the first instruction in the code object.
|
|
void JSFunctionIterateBody(int object_size, ObjectVisitor* v);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSFunction)
|
|
DECLARE_VERIFIER(JSFunction)
|
|
|
|
// Returns the number of allocated literals.
|
|
inline int NumberOfLiterals();
|
|
|
|
// Retrieve the native context from a function's literal array.
|
|
static Context* NativeContextFromLiterals(FixedArray* literals);
|
|
|
|
// Used for flags such as --hydrogen-filter.
|
|
bool PassesFilter(const char* raw_filter);
|
|
|
|
// Layout descriptors. The last property (from kNonWeakFieldsEndOffset to
|
|
// kSize) is weak and has special handling during garbage collection.
|
|
static const int kCodeEntryOffset = JSObject::kHeaderSize;
|
|
static const int kPrototypeOrInitialMapOffset =
|
|
kCodeEntryOffset + kPointerSize;
|
|
static const int kSharedFunctionInfoOffset =
|
|
kPrototypeOrInitialMapOffset + kPointerSize;
|
|
static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
|
|
static const int kLiteralsOffset = kContextOffset + kPointerSize;
|
|
static const int kNonWeakFieldsEndOffset = kLiteralsOffset + kPointerSize;
|
|
static const int kNextFunctionLinkOffset = kNonWeakFieldsEndOffset;
|
|
static const int kSize = kNextFunctionLinkOffset + kPointerSize;
|
|
|
|
// Layout of the literals array.
|
|
static const int kLiteralsPrefixSize = 1;
|
|
static const int kLiteralNativeContextIndex = 0;
|
|
|
|
// Layout of the bound-function binding array.
|
|
static const int kBoundFunctionIndex = 0;
|
|
static const int kBoundThisIndex = 1;
|
|
static const int kBoundArgumentsStartIndex = 2;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
|
|
};
|
|
|
|
|
|
// JSGlobalProxy's prototype must be a JSGlobalObject or null,
|
|
// and the prototype is hidden. JSGlobalProxy always delegates
|
|
// property accesses to its prototype if the prototype is not null.
|
|
//
|
|
// A JSGlobalProxy can be reinitialized which will preserve its identity.
|
|
//
|
|
// Accessing a JSGlobalProxy requires security check.
|
|
|
|
class JSGlobalProxy : public JSObject {
|
|
public:
|
|
// [native_context]: the owner native context of this global proxy object.
|
|
// It is null value if this object is not used by any context.
|
|
DECL_ACCESSORS(native_context, Object)
|
|
|
|
// [hash]: The hash code property (undefined if not initialized yet).
|
|
DECL_ACCESSORS(hash, Object)
|
|
|
|
DECLARE_CAST(JSGlobalProxy)
|
|
|
|
inline bool IsDetachedFrom(GlobalObject* global) const;
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSGlobalProxy)
|
|
DECLARE_VERIFIER(JSGlobalProxy)
|
|
|
|
// Layout description.
|
|
static const int kNativeContextOffset = JSObject::kHeaderSize;
|
|
static const int kHashOffset = kNativeContextOffset + kPointerSize;
|
|
static const int kSize = kHashOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
|
|
};
|
|
|
|
|
|
// Forward declaration.
|
|
class JSBuiltinsObject;
|
|
|
|
// Common super class for JavaScript global objects and the special
|
|
// builtins global objects.
|
|
class GlobalObject: public JSObject {
|
|
public:
|
|
// [builtins]: the object holding the runtime routines written in JS.
|
|
DECL_ACCESSORS(builtins, JSBuiltinsObject)
|
|
|
|
// [native context]: the natives corresponding to this global object.
|
|
DECL_ACCESSORS(native_context, Context)
|
|
|
|
// [global proxy]: the global proxy object of the context
|
|
DECL_ACCESSORS(global_proxy, JSObject)
|
|
|
|
DECLARE_CAST(GlobalObject)
|
|
|
|
static void InvalidatePropertyCell(Handle<GlobalObject> object,
|
|
Handle<Name> name);
|
|
|
|
// Layout description.
|
|
static const int kBuiltinsOffset = JSObject::kHeaderSize;
|
|
static const int kNativeContextOffset = kBuiltinsOffset + kPointerSize;
|
|
static const int kGlobalProxyOffset = kNativeContextOffset + kPointerSize;
|
|
static const int kHeaderSize = kGlobalProxyOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
|
|
};
|
|
|
|
|
|
// JavaScript global object.
|
|
class JSGlobalObject: public GlobalObject {
|
|
public:
|
|
DECLARE_CAST(JSGlobalObject)
|
|
|
|
// Ensure that the global object has a cell for the given property name.
|
|
static Handle<PropertyCell> EnsurePropertyCell(Handle<JSGlobalObject> global,
|
|
Handle<Name> name);
|
|
|
|
inline bool IsDetached();
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSGlobalObject)
|
|
DECLARE_VERIFIER(JSGlobalObject)
|
|
|
|
// Layout description.
|
|
static const int kSize = GlobalObject::kHeaderSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
|
|
};
|
|
|
|
|
|
// Builtins global object which holds the runtime routines written in
|
|
// JavaScript.
|
|
class JSBuiltinsObject: public GlobalObject {
|
|
public:
|
|
// Accessors for the runtime routines written in JavaScript.
|
|
inline Object* javascript_builtin(Builtins::JavaScript id);
|
|
inline void set_javascript_builtin(Builtins::JavaScript id, Object* value);
|
|
|
|
// Accessors for code of the runtime routines written in JavaScript.
|
|
inline Code* javascript_builtin_code(Builtins::JavaScript id);
|
|
inline void set_javascript_builtin_code(Builtins::JavaScript id, Code* value);
|
|
|
|
DECLARE_CAST(JSBuiltinsObject)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSBuiltinsObject)
|
|
DECLARE_VERIFIER(JSBuiltinsObject)
|
|
|
|
// Layout description. The size of the builtins object includes
|
|
// room for two pointers per runtime routine written in javascript
|
|
// (function and code object).
|
|
static const int kJSBuiltinsCount = Builtins::id_count;
|
|
static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize;
|
|
static const int kJSBuiltinsCodeOffset =
|
|
GlobalObject::kHeaderSize + (kJSBuiltinsCount * kPointerSize);
|
|
static const int kSize =
|
|
kJSBuiltinsCodeOffset + (kJSBuiltinsCount * kPointerSize);
|
|
|
|
static int OffsetOfFunctionWithId(Builtins::JavaScript id) {
|
|
return kJSBuiltinsOffset + id * kPointerSize;
|
|
}
|
|
|
|
static int OffsetOfCodeWithId(Builtins::JavaScript id) {
|
|
return kJSBuiltinsCodeOffset + id * kPointerSize;
|
|
}
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
|
|
};
|
|
|
|
|
|
// Representation for JS Wrapper objects, String, Number, Boolean, etc.
|
|
class JSValue: public JSObject {
|
|
public:
|
|
// [value]: the object being wrapped.
|
|
DECL_ACCESSORS(value, Object)
|
|
|
|
DECLARE_CAST(JSValue)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSValue)
|
|
DECLARE_VERIFIER(JSValue)
|
|
|
|
// Layout description.
|
|
static const int kValueOffset = JSObject::kHeaderSize;
|
|
static const int kSize = kValueOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
|
|
};
|
|
|
|
|
|
class DateCache;
|
|
|
|
// Representation for JS date objects.
|
|
class JSDate: public JSObject {
|
|
public:
|
|
// If one component is NaN, all of them are, indicating a NaN time value.
|
|
// [value]: the time value.
|
|
DECL_ACCESSORS(value, Object)
|
|
// [year]: caches year. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(year, Object)
|
|
// [month]: caches month. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(month, Object)
|
|
// [day]: caches day. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(day, Object)
|
|
// [weekday]: caches day of week. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(weekday, Object)
|
|
// [hour]: caches hours. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(hour, Object)
|
|
// [min]: caches minutes. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(min, Object)
|
|
// [sec]: caches seconds. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(sec, Object)
|
|
// [cache stamp]: sample of the date cache stamp at the
|
|
// moment when chached fields were cached.
|
|
DECL_ACCESSORS(cache_stamp, Object)
|
|
|
|
DECLARE_CAST(JSDate)
|
|
|
|
// Returns the date field with the specified index.
|
|
// See FieldIndex for the list of date fields.
|
|
static Object* GetField(Object* date, Smi* index);
|
|
|
|
void SetValue(Object* value, bool is_value_nan);
|
|
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSDate)
|
|
DECLARE_VERIFIER(JSDate)
|
|
|
|
// The order is important. It must be kept in sync with date macros
|
|
// in macros.py.
|
|
enum FieldIndex {
|
|
kDateValue,
|
|
kYear,
|
|
kMonth,
|
|
kDay,
|
|
kWeekday,
|
|
kHour,
|
|
kMinute,
|
|
kSecond,
|
|
kFirstUncachedField,
|
|
kMillisecond = kFirstUncachedField,
|
|
kDays,
|
|
kTimeInDay,
|
|
kFirstUTCField,
|
|
kYearUTC = kFirstUTCField,
|
|
kMonthUTC,
|
|
kDayUTC,
|
|
kWeekdayUTC,
|
|
kHourUTC,
|
|
kMinuteUTC,
|
|
kSecondUTC,
|
|
kMillisecondUTC,
|
|
kDaysUTC,
|
|
kTimeInDayUTC,
|
|
kTimezoneOffset
|
|
};
|
|
|
|
// Layout description.
|
|
static const int kValueOffset = JSObject::kHeaderSize;
|
|
static const int kYearOffset = kValueOffset + kPointerSize;
|
|
static const int kMonthOffset = kYearOffset + kPointerSize;
|
|
static const int kDayOffset = kMonthOffset + kPointerSize;
|
|
static const int kWeekdayOffset = kDayOffset + kPointerSize;
|
|
static const int kHourOffset = kWeekdayOffset + kPointerSize;
|
|
static const int kMinOffset = kHourOffset + kPointerSize;
|
|
static const int kSecOffset = kMinOffset + kPointerSize;
|
|
static const int kCacheStampOffset = kSecOffset + kPointerSize;
|
|
static const int kSize = kCacheStampOffset + kPointerSize;
|
|
|
|
private:
|
|
inline Object* DoGetField(FieldIndex index);
|
|
|
|
Object* GetUTCField(FieldIndex index, double value, DateCache* date_cache);
|
|
|
|
// Computes and caches the cacheable fields of the date.
|
|
inline void SetCachedFields(int64_t local_time_ms, DateCache* date_cache);
|
|
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSDate);
|
|
};
|
|
|
|
|
|
// Representation of message objects used for error reporting through
|
|
// the API. The messages are formatted in JavaScript so this object is
|
|
// a real JavaScript object. The information used for formatting the
|
|
// error messages are not directly accessible from JavaScript to
|
|
// prevent leaking information to user code called during error
|
|
// formatting.
|
|
class JSMessageObject: public JSObject {
|
|
public:
|
|
// [type]: the type of error message.
|
|
DECL_ACCESSORS(type, String)
|
|
|
|
// [arguments]: the arguments for formatting the error message.
|
|
DECL_ACCESSORS(arguments, JSArray)
|
|
|
|
// [script]: the script from which the error message originated.
|
|
DECL_ACCESSORS(script, Object)
|
|
|
|
// [stack_frames]: an array of stack frames for this error object.
|
|
DECL_ACCESSORS(stack_frames, Object)
|
|
|
|
// [start_position]: the start position in the script for the error message.
|
|
inline int start_position() const;
|
|
inline void set_start_position(int value);
|
|
|
|
// [end_position]: the end position in the script for the error message.
|
|
inline int end_position() const;
|
|
inline void set_end_position(int value);
|
|
|
|
DECLARE_CAST(JSMessageObject)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSMessageObject)
|
|
DECLARE_VERIFIER(JSMessageObject)
|
|
|
|
// Layout description.
|
|
static const int kTypeOffset = JSObject::kHeaderSize;
|
|
static const int kArgumentsOffset = kTypeOffset + kPointerSize;
|
|
static const int kScriptOffset = kArgumentsOffset + kPointerSize;
|
|
static const int kStackFramesOffset = kScriptOffset + kPointerSize;
|
|
static const int kStartPositionOffset = kStackFramesOffset + kPointerSize;
|
|
static const int kEndPositionOffset = kStartPositionOffset + kPointerSize;
|
|
static const int kSize = kEndPositionOffset + kPointerSize;
|
|
|
|
typedef FixedBodyDescriptor<HeapObject::kMapOffset,
|
|
kStackFramesOffset + kPointerSize,
|
|
kSize> BodyDescriptor;
|
|
};
|
|
|
|
|
|
// Regular expressions
|
|
// The regular expression holds a single reference to a FixedArray in
|
|
// the kDataOffset field.
|
|
// The FixedArray contains the following data:
|
|
// - tag : type of regexp implementation (not compiled yet, atom or irregexp)
|
|
// - reference to the original source string
|
|
// - reference to the original flag string
|
|
// If it is an atom regexp
|
|
// - a reference to a literal string to search for
|
|
// If it is an irregexp regexp:
|
|
// - a reference to code for Latin1 inputs (bytecode or compiled), or a smi
|
|
// used for tracking the last usage (used for code flushing).
|
|
// - a reference to code for UC16 inputs (bytecode or compiled), or a smi
|
|
// used for tracking the last usage (used for code flushing)..
|
|
// - max number of registers used by irregexp implementations.
|
|
// - number of capture registers (output values) of the regexp.
|
|
class JSRegExp: public JSObject {
|
|
public:
|
|
// Meaning of Type:
|
|
// NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
|
|
// ATOM: A simple string to match against using an indexOf operation.
|
|
// IRREGEXP: Compiled with Irregexp.
|
|
// IRREGEXP_NATIVE: Compiled to native code with Irregexp.
|
|
enum Type { NOT_COMPILED, ATOM, IRREGEXP };
|
|
enum Flag {
|
|
NONE = 0,
|
|
GLOBAL = 1,
|
|
IGNORE_CASE = 2,
|
|
MULTILINE = 4,
|
|
STICKY = 8,
|
|
UNICODE_ESCAPES = 16
|
|
};
|
|
|
|
class Flags {
|
|
public:
|
|
explicit Flags(uint32_t value) : value_(value) { }
|
|
bool is_global() { return (value_ & GLOBAL) != 0; }
|
|
bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
|
|
bool is_multiline() { return (value_ & MULTILINE) != 0; }
|
|
bool is_sticky() { return (value_ & STICKY) != 0; }
|
|
bool is_unicode() { return (value_ & UNICODE_ESCAPES) != 0; }
|
|
uint32_t value() { return value_; }
|
|
private:
|
|
uint32_t value_;
|
|
};
|
|
|
|
DECL_ACCESSORS(data, Object)
|
|
|
|
inline Type TypeTag();
|
|
inline int CaptureCount();
|
|
inline Flags GetFlags();
|
|
inline String* Pattern();
|
|
inline Object* DataAt(int index);
|
|
// Set implementation data after the object has been prepared.
|
|
inline void SetDataAt(int index, Object* value);
|
|
|
|
static int code_index(bool is_latin1) {
|
|
if (is_latin1) {
|
|
return kIrregexpLatin1CodeIndex;
|
|
} else {
|
|
return kIrregexpUC16CodeIndex;
|
|
}
|
|
}
|
|
|
|
static int saved_code_index(bool is_latin1) {
|
|
if (is_latin1) {
|
|
return kIrregexpLatin1CodeSavedIndex;
|
|
} else {
|
|
return kIrregexpUC16CodeSavedIndex;
|
|
}
|
|
}
|
|
|
|
DECLARE_CAST(JSRegExp)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_VERIFIER(JSRegExp)
|
|
|
|
static const int kDataOffset = JSObject::kHeaderSize;
|
|
static const int kSize = kDataOffset + kPointerSize;
|
|
|
|
// Indices in the data array.
|
|
static const int kTagIndex = 0;
|
|
static const int kSourceIndex = kTagIndex + 1;
|
|
static const int kFlagsIndex = kSourceIndex + 1;
|
|
static const int kDataIndex = kFlagsIndex + 1;
|
|
// The data fields are used in different ways depending on the
|
|
// value of the tag.
|
|
// Atom regexps (literal strings).
|
|
static const int kAtomPatternIndex = kDataIndex;
|
|
|
|
static const int kAtomDataSize = kAtomPatternIndex + 1;
|
|
|
|
// Irregexp compiled code or bytecode for Latin1. If compilation
|
|
// fails, this fields hold an exception object that should be
|
|
// thrown if the regexp is used again.
|
|
static const int kIrregexpLatin1CodeIndex = kDataIndex;
|
|
// Irregexp compiled code or bytecode for UC16. If compilation
|
|
// fails, this fields hold an exception object that should be
|
|
// thrown if the regexp is used again.
|
|
static const int kIrregexpUC16CodeIndex = kDataIndex + 1;
|
|
|
|
// Saved instance of Irregexp compiled code or bytecode for Latin1 that
|
|
// is a potential candidate for flushing.
|
|
static const int kIrregexpLatin1CodeSavedIndex = kDataIndex + 2;
|
|
// Saved instance of Irregexp compiled code or bytecode for UC16 that is
|
|
// a potential candidate for flushing.
|
|
static const int kIrregexpUC16CodeSavedIndex = kDataIndex + 3;
|
|
|
|
// Maximal number of registers used by either Latin1 or UC16.
|
|
// Only used to check that there is enough stack space
|
|
static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 4;
|
|
// Number of captures in the compiled regexp.
|
|
static const int kIrregexpCaptureCountIndex = kDataIndex + 5;
|
|
|
|
static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;
|
|
|
|
// Offsets directly into the data fixed array.
|
|
static const int kDataTagOffset =
|
|
FixedArray::kHeaderSize + kTagIndex * kPointerSize;
|
|
static const int kDataOneByteCodeOffset =
|
|
FixedArray::kHeaderSize + kIrregexpLatin1CodeIndex * kPointerSize;
|
|
static const int kDataUC16CodeOffset =
|
|
FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize;
|
|
static const int kIrregexpCaptureCountOffset =
|
|
FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize;
|
|
|
|
// In-object fields.
|
|
static const int kGlobalFieldIndex = 0;
|
|
static const int kIgnoreCaseFieldIndex = 1;
|
|
static const int kMultilineFieldIndex = 2;
|
|
static const int kLastIndexFieldIndex = 3;
|
|
static const int kInObjectFieldCount = 4;
|
|
|
|
// The uninitialized value for a regexp code object.
|
|
static const int kUninitializedValue = -1;
|
|
|
|
// The compilation error value for the regexp code object. The real error
|
|
// object is in the saved code field.
|
|
static const int kCompilationErrorValue = -2;
|
|
|
|
// When we store the sweep generation at which we moved the code from the
|
|
// code index to the saved code index we mask it of to be in the [0:255]
|
|
// range.
|
|
static const int kCodeAgeMask = 0xff;
|
|
};
|
|
|
|
|
|
class CompilationCacheShape : public BaseShape<HashTableKey*> {
|
|
public:
|
|
static inline bool IsMatch(HashTableKey* key, Object* value) {
|
|
return key->IsMatch(value);
|
|
}
|
|
|
|
static inline uint32_t Hash(HashTableKey* key) {
|
|
return key->Hash();
|
|
}
|
|
|
|
static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
|
|
return key->HashForObject(object);
|
|
}
|
|
|
|
static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);
|
|
|
|
static const int kPrefixSize = 0;
|
|
static const int kEntrySize = 2;
|
|
};
|
|
|
|
|
|
// This cache is used in two different variants. For regexp caching, it simply
|
|
// maps identifying info of the regexp to the cached regexp object. Scripts and
|
|
// eval code only gets cached after a second probe for the code object. To do
|
|
// so, on first "put" only a hash identifying the source is entered into the
|
|
// cache, mapping it to a lifetime count of the hash. On each call to Age all
|
|
// such lifetimes get reduced, and removed once they reach zero. If a second put
|
|
// is called while such a hash is live in the cache, the hash gets replaced by
|
|
// an actual cache entry. Age also removes stale live entries from the cache.
|
|
// Such entries are identified by SharedFunctionInfos pointing to either the
|
|
// recompilation stub, or to "old" code. This avoids memory leaks due to
|
|
// premature caching of scripts and eval strings that are never needed later.
|
|
class CompilationCacheTable: public HashTable<CompilationCacheTable,
|
|
CompilationCacheShape,
|
|
HashTableKey*> {
|
|
public:
|
|
// Find cached value for a string key, otherwise return null.
|
|
Handle<Object> Lookup(Handle<String> src, Handle<Context> context);
|
|
Handle<Object> LookupEval(Handle<String> src,
|
|
Handle<SharedFunctionInfo> shared,
|
|
StrictMode strict_mode, int scope_position);
|
|
Handle<Object> LookupRegExp(Handle<String> source, JSRegExp::Flags flags);
|
|
static Handle<CompilationCacheTable> Put(
|
|
Handle<CompilationCacheTable> cache, Handle<String> src,
|
|
Handle<Context> context, Handle<Object> value);
|
|
static Handle<CompilationCacheTable> PutEval(
|
|
Handle<CompilationCacheTable> cache, Handle<String> src,
|
|
Handle<SharedFunctionInfo> context, Handle<SharedFunctionInfo> value,
|
|
int scope_position);
|
|
static Handle<CompilationCacheTable> PutRegExp(
|
|
Handle<CompilationCacheTable> cache, Handle<String> src,
|
|
JSRegExp::Flags flags, Handle<FixedArray> value);
|
|
void Remove(Object* value);
|
|
void Age();
|
|
static const int kHashGenerations = 10;
|
|
|
|
DECLARE_CAST(CompilationCacheTable)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
|
|
};
|
|
|
|
|
|
class CodeCache: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(default_cache, FixedArray)
|
|
DECL_ACCESSORS(normal_type_cache, Object)
|
|
DECL_ACCESSORS(weak_cell_cache, Object)
|
|
|
|
// Add the code object to the cache.
|
|
static void Update(
|
|
Handle<CodeCache> cache, Handle<Name> name, Handle<Code> code);
|
|
|
|
// Lookup code object in the cache. Returns code object if found and undefined
|
|
// if not.
|
|
Object* Lookup(Name* name, Code::Flags flags);
|
|
|
|
// Get the internal index of a code object in the cache. Returns -1 if the
|
|
// code object is not in that cache. This index can be used to later call
|
|
// RemoveByIndex. The cache cannot be modified between a call to GetIndex and
|
|
// RemoveByIndex.
|
|
int GetIndex(Object* name, Code* code);
|
|
|
|
// Remove an object from the cache with the provided internal index.
|
|
void RemoveByIndex(Object* name, Code* code, int index);
|
|
|
|
DECLARE_CAST(CodeCache)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(CodeCache)
|
|
DECLARE_VERIFIER(CodeCache)
|
|
|
|
static const int kDefaultCacheOffset = HeapObject::kHeaderSize;
|
|
static const int kNormalTypeCacheOffset =
|
|
kDefaultCacheOffset + kPointerSize;
|
|
static const int kWeakCellCacheOffset = kNormalTypeCacheOffset + kPointerSize;
|
|
static const int kSize = kWeakCellCacheOffset + kPointerSize;
|
|
|
|
private:
|
|
static void UpdateDefaultCache(
|
|
Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code);
|
|
static void UpdateNormalTypeCache(
|
|
Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code);
|
|
Object* LookupDefaultCache(Name* name, Code::Flags flags);
|
|
Object* LookupNormalTypeCache(Name* name, Code::Flags flags);
|
|
|
|
// Code cache layout of the default cache. Elements are alternating name and
|
|
// code objects for non normal load/store/call IC's.
|
|
static const int kCodeCacheEntrySize = 2;
|
|
static const int kCodeCacheEntryNameOffset = 0;
|
|
static const int kCodeCacheEntryCodeOffset = 1;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCache);
|
|
};
|
|
|
|
|
|
class CodeCacheHashTableShape : public BaseShape<HashTableKey*> {
|
|
public:
|
|
static inline bool IsMatch(HashTableKey* key, Object* value) {
|
|
return key->IsMatch(value);
|
|
}
|
|
|
|
static inline uint32_t Hash(HashTableKey* key) {
|
|
return key->Hash();
|
|
}
|
|
|
|
static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
|
|
return key->HashForObject(object);
|
|
}
|
|
|
|
static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);
|
|
|
|
static const int kPrefixSize = 0;
|
|
static const int kEntrySize = 2;
|
|
};
|
|
|
|
|
|
class CodeCacheHashTable: public HashTable<CodeCacheHashTable,
|
|
CodeCacheHashTableShape,
|
|
HashTableKey*> {
|
|
public:
|
|
Object* Lookup(Name* name, Code::Flags flags);
|
|
static Handle<CodeCacheHashTable> Put(
|
|
Handle<CodeCacheHashTable> table,
|
|
Handle<Name> name,
|
|
Handle<Code> code);
|
|
|
|
int GetIndex(Name* name, Code::Flags flags);
|
|
void RemoveByIndex(int index);
|
|
|
|
DECLARE_CAST(CodeCacheHashTable)
|
|
|
|
// Initial size of the fixed array backing the hash table.
|
|
static const int kInitialSize = 64;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCacheHashTable);
|
|
};
|
|
|
|
|
|
class PolymorphicCodeCache: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(cache, Object)
|
|
|
|
static void Update(Handle<PolymorphicCodeCache> cache,
|
|
MapHandleList* maps,
|
|
Code::Flags flags,
|
|
Handle<Code> code);
|
|
|
|
|
|
// Returns an undefined value if the entry is not found.
|
|
Handle<Object> Lookup(MapHandleList* maps, Code::Flags flags);
|
|
|
|
DECLARE_CAST(PolymorphicCodeCache)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(PolymorphicCodeCache)
|
|
DECLARE_VERIFIER(PolymorphicCodeCache)
|
|
|
|
static const int kCacheOffset = HeapObject::kHeaderSize;
|
|
static const int kSize = kCacheOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCache);
|
|
};
|
|
|
|
|
|
class PolymorphicCodeCacheHashTable
|
|
: public HashTable<PolymorphicCodeCacheHashTable,
|
|
CodeCacheHashTableShape,
|
|
HashTableKey*> {
|
|
public:
|
|
Object* Lookup(MapHandleList* maps, int code_kind);
|
|
|
|
static Handle<PolymorphicCodeCacheHashTable> Put(
|
|
Handle<PolymorphicCodeCacheHashTable> hash_table,
|
|
MapHandleList* maps,
|
|
int code_kind,
|
|
Handle<Code> code);
|
|
|
|
DECLARE_CAST(PolymorphicCodeCacheHashTable)
|
|
|
|
static const int kInitialSize = 64;
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCacheHashTable);
|
|
};
|
|
|
|
|
|
class TypeFeedbackInfo: public Struct {
|
|
public:
|
|
inline int ic_total_count();
|
|
inline void set_ic_total_count(int count);
|
|
|
|
inline int ic_with_type_info_count();
|
|
inline void change_ic_with_type_info_count(int delta);
|
|
|
|
inline int ic_generic_count();
|
|
inline void change_ic_generic_count(int delta);
|
|
|
|
inline void initialize_storage();
|
|
|
|
inline void change_own_type_change_checksum();
|
|
inline int own_type_change_checksum();
|
|
|
|
inline void set_inlined_type_change_checksum(int checksum);
|
|
inline bool matches_inlined_type_change_checksum(int checksum);
|
|
|
|
DECLARE_CAST(TypeFeedbackInfo)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(TypeFeedbackInfo)
|
|
DECLARE_VERIFIER(TypeFeedbackInfo)
|
|
|
|
static const int kStorage1Offset = HeapObject::kHeaderSize;
|
|
static const int kStorage2Offset = kStorage1Offset + kPointerSize;
|
|
static const int kStorage3Offset = kStorage2Offset + kPointerSize;
|
|
static const int kSize = kStorage3Offset + kPointerSize;
|
|
|
|
private:
|
|
static const int kTypeChangeChecksumBits = 7;
|
|
|
|
class ICTotalCountField: public BitField<int, 0,
|
|
kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT
|
|
class OwnTypeChangeChecksum: public BitField<int,
|
|
kSmiValueSize - kTypeChangeChecksumBits,
|
|
kTypeChangeChecksumBits> {}; // NOLINT
|
|
class ICsWithTypeInfoCountField: public BitField<int, 0,
|
|
kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT
|
|
class InlinedTypeChangeChecksum: public BitField<int,
|
|
kSmiValueSize - kTypeChangeChecksumBits,
|
|
kTypeChangeChecksumBits> {}; // NOLINT
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(TypeFeedbackInfo);
|
|
};
|
|
|
|
|
|
enum AllocationSiteMode {
|
|
DONT_TRACK_ALLOCATION_SITE,
|
|
TRACK_ALLOCATION_SITE,
|
|
LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE
|
|
};
|
|
|
|
|
|
class AllocationSite: public Struct {
|
|
public:
|
|
static const uint32_t kMaximumArrayBytesToPretransition = 8 * 1024;
|
|
static const double kPretenureRatio;
|
|
static const int kPretenureMinimumCreated = 100;
|
|
|
|
// Values for pretenure decision field.
|
|
enum PretenureDecision {
|
|
kUndecided = 0,
|
|
kDontTenure = 1,
|
|
kMaybeTenure = 2,
|
|
kTenure = 3,
|
|
kZombie = 4,
|
|
kLastPretenureDecisionValue = kZombie
|
|
};
|
|
|
|
const char* PretenureDecisionName(PretenureDecision decision);
|
|
|
|
DECL_ACCESSORS(transition_info, Object)
|
|
// nested_site threads a list of sites that represent nested literals
|
|
// walked in a particular order. So [[1, 2], 1, 2] will have one
|
|
// nested_site, but [[1, 2], 3, [4]] will have a list of two.
|
|
DECL_ACCESSORS(nested_site, Object)
|
|
DECL_ACCESSORS(pretenure_data, Smi)
|
|
DECL_ACCESSORS(pretenure_create_count, Smi)
|
|
DECL_ACCESSORS(dependent_code, DependentCode)
|
|
DECL_ACCESSORS(weak_next, Object)
|
|
|
|
inline void Initialize();
|
|
|
|
// This method is expensive, it should only be called for reporting.
|
|
bool IsNestedSite();
|
|
|
|
// transition_info bitfields, for constructed array transition info.
|
|
class ElementsKindBits: public BitField<ElementsKind, 0, 15> {};
|
|
class UnusedBits: public BitField<int, 15, 14> {};
|
|
class DoNotInlineBit: public BitField<bool, 29, 1> {};
|
|
|
|
// Bitfields for pretenure_data
|
|
class MementoFoundCountBits: public BitField<int, 0, 26> {};
|
|
class PretenureDecisionBits: public BitField<PretenureDecision, 26, 3> {};
|
|
class DeoptDependentCodeBit: public BitField<bool, 29, 1> {};
|
|
STATIC_ASSERT(PretenureDecisionBits::kMax >= kLastPretenureDecisionValue);
|
|
|
|
// Increments the mementos found counter and returns true when the first
|
|
// memento was found for a given allocation site.
|
|
inline bool IncrementMementoFoundCount();
|
|
|
|
inline void IncrementMementoCreateCount();
|
|
|
|
PretenureFlag GetPretenureMode();
|
|
|
|
void ResetPretenureDecision();
|
|
|
|
PretenureDecision pretenure_decision() {
|
|
int value = pretenure_data()->value();
|
|
return PretenureDecisionBits::decode(value);
|
|
}
|
|
|
|
void set_pretenure_decision(PretenureDecision decision) {
|
|
int value = pretenure_data()->value();
|
|
set_pretenure_data(
|
|
Smi::FromInt(PretenureDecisionBits::update(value, decision)),
|
|
SKIP_WRITE_BARRIER);
|
|
}
|
|
|
|
bool deopt_dependent_code() {
|
|
int value = pretenure_data()->value();
|
|
return DeoptDependentCodeBit::decode(value);
|
|
}
|
|
|
|
void set_deopt_dependent_code(bool deopt) {
|
|
int value = pretenure_data()->value();
|
|
set_pretenure_data(
|
|
Smi::FromInt(DeoptDependentCodeBit::update(value, deopt)),
|
|
SKIP_WRITE_BARRIER);
|
|
}
|
|
|
|
int memento_found_count() {
|
|
int value = pretenure_data()->value();
|
|
return MementoFoundCountBits::decode(value);
|
|
}
|
|
|
|
inline void set_memento_found_count(int count);
|
|
|
|
int memento_create_count() {
|
|
return pretenure_create_count()->value();
|
|
}
|
|
|
|
void set_memento_create_count(int count) {
|
|
set_pretenure_create_count(Smi::FromInt(count), SKIP_WRITE_BARRIER);
|
|
}
|
|
|
|
// The pretenuring decision is made during gc, and the zombie state allows
|
|
// us to recognize when an allocation site is just being kept alive because
|
|
// a later traversal of new space may discover AllocationMementos that point
|
|
// to this AllocationSite.
|
|
bool IsZombie() {
|
|
return pretenure_decision() == kZombie;
|
|
}
|
|
|
|
bool IsMaybeTenure() {
|
|
return pretenure_decision() == kMaybeTenure;
|
|
}
|
|
|
|
inline void MarkZombie();
|
|
|
|
inline bool MakePretenureDecision(PretenureDecision current_decision,
|
|
double ratio,
|
|
bool maximum_size_scavenge);
|
|
|
|
inline bool DigestPretenuringFeedback(bool maximum_size_scavenge);
|
|
|
|
ElementsKind GetElementsKind() {
|
|
DCHECK(!SitePointsToLiteral());
|
|
int value = Smi::cast(transition_info())->value();
|
|
return ElementsKindBits::decode(value);
|
|
}
|
|
|
|
void SetElementsKind(ElementsKind kind) {
|
|
int value = Smi::cast(transition_info())->value();
|
|
set_transition_info(Smi::FromInt(ElementsKindBits::update(value, kind)),
|
|
SKIP_WRITE_BARRIER);
|
|
}
|
|
|
|
bool CanInlineCall() {
|
|
int value = Smi::cast(transition_info())->value();
|
|
return DoNotInlineBit::decode(value) == 0;
|
|
}
|
|
|
|
void SetDoNotInlineCall() {
|
|
int value = Smi::cast(transition_info())->value();
|
|
set_transition_info(Smi::FromInt(DoNotInlineBit::update(value, true)),
|
|
SKIP_WRITE_BARRIER);
|
|
}
|
|
|
|
bool SitePointsToLiteral() {
|
|
// If transition_info is a smi, then it represents an ElementsKind
|
|
// for a constructed array. Otherwise, it must be a boilerplate
|
|
// for an object or array literal.
|
|
return transition_info()->IsJSArray() || transition_info()->IsJSObject();
|
|
}
|
|
|
|
static void DigestTransitionFeedback(Handle<AllocationSite> site,
|
|
ElementsKind to_kind);
|
|
|
|
static void RegisterForDeoptOnTenureChange(Handle<AllocationSite> site,
|
|
CompilationInfo* info);
|
|
|
|
static void RegisterForDeoptOnTransitionChange(Handle<AllocationSite> site,
|
|
CompilationInfo* info);
|
|
|
|
DECLARE_PRINTER(AllocationSite)
|
|
DECLARE_VERIFIER(AllocationSite)
|
|
|
|
DECLARE_CAST(AllocationSite)
|
|
static inline AllocationSiteMode GetMode(
|
|
ElementsKind boilerplate_elements_kind);
|
|
static inline AllocationSiteMode GetMode(ElementsKind from, ElementsKind to);
|
|
static inline bool CanTrack(InstanceType type);
|
|
|
|
static const int kTransitionInfoOffset = HeapObject::kHeaderSize;
|
|
static const int kNestedSiteOffset = kTransitionInfoOffset + kPointerSize;
|
|
static const int kPretenureDataOffset = kNestedSiteOffset + kPointerSize;
|
|
static const int kPretenureCreateCountOffset =
|
|
kPretenureDataOffset + kPointerSize;
|
|
static const int kDependentCodeOffset =
|
|
kPretenureCreateCountOffset + kPointerSize;
|
|
static const int kWeakNextOffset = kDependentCodeOffset + kPointerSize;
|
|
static const int kSize = kWeakNextOffset + kPointerSize;
|
|
|
|
// During mark compact we need to take special care for the dependent code
|
|
// field.
|
|
static const int kPointerFieldsBeginOffset = kTransitionInfoOffset;
|
|
static const int kPointerFieldsEndOffset = kDependentCodeOffset;
|
|
|
|
// For other visitors, use the fixed body descriptor below.
|
|
typedef FixedBodyDescriptor<HeapObject::kHeaderSize,
|
|
kDependentCodeOffset + kPointerSize,
|
|
kSize> BodyDescriptor;
|
|
|
|
private:
|
|
static void AddDependentCompilationInfo(Handle<AllocationSite> site,
|
|
DependentCode::DependencyGroup group,
|
|
CompilationInfo* info);
|
|
|
|
bool PretenuringDecisionMade() {
|
|
return pretenure_decision() != kUndecided;
|
|
}
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationSite);
|
|
};
|
|
|
|
|
|
class AllocationMemento: public Struct {
|
|
public:
|
|
static const int kAllocationSiteOffset = HeapObject::kHeaderSize;
|
|
static const int kSize = kAllocationSiteOffset + kPointerSize;
|
|
|
|
DECL_ACCESSORS(allocation_site, Object)
|
|
|
|
bool IsValid() {
|
|
return allocation_site()->IsAllocationSite() &&
|
|
!AllocationSite::cast(allocation_site())->IsZombie();
|
|
}
|
|
AllocationSite* GetAllocationSite() {
|
|
DCHECK(IsValid());
|
|
return AllocationSite::cast(allocation_site());
|
|
}
|
|
|
|
DECLARE_PRINTER(AllocationMemento)
|
|
DECLARE_VERIFIER(AllocationMemento)
|
|
|
|
DECLARE_CAST(AllocationMemento)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationMemento);
|
|
};
|
|
|
|
|
|
// Representation of a slow alias as part of a sloppy arguments objects.
|
|
// For fast aliases (if HasSloppyArgumentsElements()):
|
|
// - the parameter map contains an index into the context
|
|
// - all attributes of the element have default values
|
|
// For slow aliases (if HasDictionaryArgumentsElements()):
|
|
// - the parameter map contains no fast alias mapping (i.e. the hole)
|
|
// - this struct (in the slow backing store) contains an index into the context
|
|
// - all attributes are available as part if the property details
|
|
class AliasedArgumentsEntry: public Struct {
|
|
public:
|
|
inline int aliased_context_slot() const;
|
|
inline void set_aliased_context_slot(int count);
|
|
|
|
DECLARE_CAST(AliasedArgumentsEntry)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(AliasedArgumentsEntry)
|
|
DECLARE_VERIFIER(AliasedArgumentsEntry)
|
|
|
|
static const int kAliasedContextSlot = HeapObject::kHeaderSize;
|
|
static const int kSize = kAliasedContextSlot + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(AliasedArgumentsEntry);
|
|
};
|
|
|
|
|
|
enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
|
|
enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
|
|
|
|
|
|
class StringHasher {
|
|
public:
|
|
explicit inline StringHasher(int length, uint32_t seed);
|
|
|
|
template <typename schar>
|
|
static inline uint32_t HashSequentialString(const schar* chars,
|
|
int length,
|
|
uint32_t seed);
|
|
|
|
// Reads all the data, even for long strings and computes the utf16 length.
|
|
static uint32_t ComputeUtf8Hash(Vector<const char> chars,
|
|
uint32_t seed,
|
|
int* utf16_length_out);
|
|
|
|
// Calculated hash value for a string consisting of 1 to
|
|
// String::kMaxArrayIndexSize digits with no leading zeros (except "0").
|
|
// value is represented decimal value.
|
|
static uint32_t MakeArrayIndexHash(uint32_t value, int length);
|
|
|
|
// No string is allowed to have a hash of zero. That value is reserved
|
|
// for internal properties. If the hash calculation yields zero then we
|
|
// use 27 instead.
|
|
static const int kZeroHash = 27;
|
|
|
|
// Reusable parts of the hashing algorithm.
|
|
INLINE(static uint32_t AddCharacterCore(uint32_t running_hash, uint16_t c));
|
|
INLINE(static uint32_t GetHashCore(uint32_t running_hash));
|
|
INLINE(static uint32_t ComputeRunningHash(uint32_t running_hash,
|
|
const uc16* chars, int length));
|
|
INLINE(static uint32_t ComputeRunningHashOneByte(uint32_t running_hash,
|
|
const char* chars,
|
|
int length));
|
|
|
|
protected:
|
|
// Returns the value to store in the hash field of a string with
|
|
// the given length and contents.
|
|
uint32_t GetHashField();
|
|
// Returns true if the hash of this string can be computed without
|
|
// looking at the contents.
|
|
inline bool has_trivial_hash();
|
|
// Adds a block of characters to the hash.
|
|
template<typename Char>
|
|
inline void AddCharacters(const Char* chars, int len);
|
|
|
|
private:
|
|
// Add a character to the hash.
|
|
inline void AddCharacter(uint16_t c);
|
|
// Update index. Returns true if string is still an index.
|
|
inline bool UpdateIndex(uint16_t c);
|
|
|
|
int length_;
|
|
uint32_t raw_running_hash_;
|
|
uint32_t array_index_;
|
|
bool is_array_index_;
|
|
bool is_first_char_;
|
|
DISALLOW_COPY_AND_ASSIGN(StringHasher);
|
|
};
|
|
|
|
|
|
class IteratingStringHasher : public StringHasher {
|
|
public:
|
|
static inline uint32_t Hash(String* string, uint32_t seed);
|
|
inline void VisitOneByteString(const uint8_t* chars, int length);
|
|
inline void VisitTwoByteString(const uint16_t* chars, int length);
|
|
|
|
private:
|
|
inline IteratingStringHasher(int len, uint32_t seed)
|
|
: StringHasher(len, seed) {}
|
|
void VisitConsString(ConsString* cons_string);
|
|
DISALLOW_COPY_AND_ASSIGN(IteratingStringHasher);
|
|
};
|
|
|
|
|
|
// The characteristics of a string are stored in its map. Retrieving these
|
|
// few bits of information is moderately expensive, involving two memory
|
|
// loads where the second is dependent on the first. To improve efficiency
|
|
// the shape of the string is given its own class so that it can be retrieved
|
|
// once and used for several string operations. A StringShape is small enough
|
|
// to be passed by value and is immutable, but be aware that flattening a
|
|
// string can potentially alter its shape. Also be aware that a GC caused by
|
|
// something else can alter the shape of a string due to ConsString
|
|
// shortcutting. Keeping these restrictions in mind has proven to be error-
|
|
// prone and so we no longer put StringShapes in variables unless there is a
|
|
// concrete performance benefit at that particular point in the code.
|
|
class StringShape BASE_EMBEDDED {
|
|
public:
|
|
inline explicit StringShape(const String* s);
|
|
inline explicit StringShape(Map* s);
|
|
inline explicit StringShape(InstanceType t);
|
|
inline bool IsSequential();
|
|
inline bool IsExternal();
|
|
inline bool IsCons();
|
|
inline bool IsSliced();
|
|
inline bool IsIndirect();
|
|
inline bool IsExternalOneByte();
|
|
inline bool IsExternalTwoByte();
|
|
inline bool IsSequentialOneByte();
|
|
inline bool IsSequentialTwoByte();
|
|
inline bool IsInternalized();
|
|
inline StringRepresentationTag representation_tag();
|
|
inline uint32_t encoding_tag();
|
|
inline uint32_t full_representation_tag();
|
|
inline uint32_t size_tag();
|
|
#ifdef DEBUG
|
|
inline uint32_t type() { return type_; }
|
|
inline void invalidate() { valid_ = false; }
|
|
inline bool valid() { return valid_; }
|
|
#else
|
|
inline void invalidate() { }
|
|
#endif
|
|
|
|
private:
|
|
uint32_t type_;
|
|
#ifdef DEBUG
|
|
inline void set_valid() { valid_ = true; }
|
|
bool valid_;
|
|
#else
|
|
inline void set_valid() { }
|
|
#endif
|
|
};
|
|
|
|
|
|
// The Name abstract class captures anything that can be used as a property
|
|
// name, i.e., strings and symbols. All names store a hash value.
|
|
class Name: public HeapObject {
|
|
public:
|
|
// Get and set the hash field of the name.
|
|
inline uint32_t hash_field();
|
|
inline void set_hash_field(uint32_t value);
|
|
|
|
// Tells whether the hash code has been computed.
|
|
inline bool HasHashCode();
|
|
|
|
// Returns a hash value used for the property table
|
|
inline uint32_t Hash();
|
|
|
|
// Equality operations.
|
|
inline bool Equals(Name* other);
|
|
inline static bool Equals(Handle<Name> one, Handle<Name> two);
|
|
|
|
// Conversion.
|
|
inline bool AsArrayIndex(uint32_t* index);
|
|
|
|
// Whether name can only name own properties.
|
|
inline bool IsOwn();
|
|
|
|
DECLARE_CAST(Name)
|
|
|
|
DECLARE_PRINTER(Name)
|
|
#if TRACE_MAPS
|
|
void NameShortPrint();
|
|
int NameShortPrint(Vector<char> str);
|
|
#endif
|
|
|
|
// Layout description.
|
|
static const int kHashFieldSlot = HeapObject::kHeaderSize;
|
|
#if V8_TARGET_LITTLE_ENDIAN || !V8_HOST_ARCH_64_BIT
|
|
static const int kHashFieldOffset = kHashFieldSlot;
|
|
#else
|
|
static const int kHashFieldOffset = kHashFieldSlot + kIntSize;
|
|
#endif
|
|
static const int kSize = kHashFieldSlot + kPointerSize;
|
|
|
|
// Mask constant for checking if a name has a computed hash code
|
|
// and if it is a string that is an array index. The least significant bit
|
|
// indicates whether a hash code has been computed. If the hash code has
|
|
// been computed the 2nd bit tells whether the string can be used as an
|
|
// array index.
|
|
static const int kHashNotComputedMask = 1;
|
|
static const int kIsNotArrayIndexMask = 1 << 1;
|
|
static const int kNofHashBitFields = 2;
|
|
|
|
// Shift constant retrieving hash code from hash field.
|
|
static const int kHashShift = kNofHashBitFields;
|
|
|
|
// Only these bits are relevant in the hash, since the top two are shifted
|
|
// out.
|
|
static const uint32_t kHashBitMask = 0xffffffffu >> kHashShift;
|
|
|
|
// Array index strings this short can keep their index in the hash field.
|
|
static const int kMaxCachedArrayIndexLength = 7;
|
|
|
|
// For strings which are array indexes the hash value has the string length
|
|
// mixed into the hash, mainly to avoid a hash value of zero which would be
|
|
// the case for the string '0'. 24 bits are used for the array index value.
|
|
static const int kArrayIndexValueBits = 24;
|
|
static const int kArrayIndexLengthBits =
|
|
kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;
|
|
|
|
STATIC_ASSERT((kArrayIndexLengthBits > 0));
|
|
|
|
class ArrayIndexValueBits : public BitField<unsigned int, kNofHashBitFields,
|
|
kArrayIndexValueBits> {}; // NOLINT
|
|
class ArrayIndexLengthBits : public BitField<unsigned int,
|
|
kNofHashBitFields + kArrayIndexValueBits,
|
|
kArrayIndexLengthBits> {}; // NOLINT
|
|
|
|
// Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
|
|
// could use a mask to test if the length of string is less than or equal to
|
|
// kMaxCachedArrayIndexLength.
|
|
STATIC_ASSERT(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));
|
|
|
|
static const unsigned int kContainsCachedArrayIndexMask =
|
|
(~static_cast<unsigned>(kMaxCachedArrayIndexLength)
|
|
<< ArrayIndexLengthBits::kShift) |
|
|
kIsNotArrayIndexMask;
|
|
|
|
// Value of empty hash field indicating that the hash is not computed.
|
|
static const int kEmptyHashField =
|
|
kIsNotArrayIndexMask | kHashNotComputedMask;
|
|
|
|
protected:
|
|
static inline bool IsHashFieldComputed(uint32_t field);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Name);
|
|
};
|
|
|
|
|
|
// ES6 symbols.
|
|
class Symbol: public Name {
|
|
public:
|
|
// [name]: the print name of a symbol, or undefined if none.
|
|
DECL_ACCESSORS(name, Object)
|
|
|
|
DECL_ACCESSORS(flags, Smi)
|
|
|
|
// [is_private]: whether this is a private symbol.
|
|
DECL_BOOLEAN_ACCESSORS(is_private)
|
|
|
|
// [is_own]: whether this is an own symbol, that is, only used to designate
|
|
// own properties of objects.
|
|
DECL_BOOLEAN_ACCESSORS(is_own)
|
|
|
|
DECLARE_CAST(Symbol)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(Symbol)
|
|
DECLARE_VERIFIER(Symbol)
|
|
|
|
// Layout description.
|
|
static const int kNameOffset = Name::kSize;
|
|
static const int kFlagsOffset = kNameOffset + kPointerSize;
|
|
static const int kSize = kFlagsOffset + kPointerSize;
|
|
|
|
typedef FixedBodyDescriptor<kNameOffset, kFlagsOffset, kSize> BodyDescriptor;
|
|
|
|
void SymbolShortPrint(std::ostream& os);
|
|
|
|
private:
|
|
static const int kPrivateBit = 0;
|
|
static const int kOwnBit = 1;
|
|
|
|
const char* PrivateSymbolToName() const;
|
|
|
|
#if TRACE_MAPS
|
|
friend class Name; // For PrivateSymbolToName.
|
|
#endif
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Symbol);
|
|
};
|
|
|
|
|
|
class ConsString;
|
|
|
|
// The String abstract class captures JavaScript string values:
|
|
//
|
|
// Ecma-262:
|
|
// 4.3.16 String Value
|
|
// A string value is a member of the type String and is a finite
|
|
// ordered sequence of zero or more 16-bit unsigned integer values.
|
|
//
|
|
// All string values have a length field.
|
|
class String: public Name {
|
|
public:
|
|
enum Encoding { ONE_BYTE_ENCODING, TWO_BYTE_ENCODING };
|
|
|
|
// Array index strings this short can keep their index in the hash field.
|
|
static const int kMaxCachedArrayIndexLength = 7;
|
|
|
|
// For strings which are array indexes the hash value has the string length
|
|
// mixed into the hash, mainly to avoid a hash value of zero which would be
|
|
// the case for the string '0'. 24 bits are used for the array index value.
|
|
static const int kArrayIndexValueBits = 24;
|
|
static const int kArrayIndexLengthBits =
|
|
kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;
|
|
|
|
STATIC_ASSERT((kArrayIndexLengthBits > 0));
|
|
|
|
class ArrayIndexValueBits : public BitField<unsigned int, kNofHashBitFields,
|
|
kArrayIndexValueBits> {}; // NOLINT
|
|
class ArrayIndexLengthBits : public BitField<unsigned int,
|
|
kNofHashBitFields + kArrayIndexValueBits,
|
|
kArrayIndexLengthBits> {}; // NOLINT
|
|
|
|
// Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
|
|
// could use a mask to test if the length of string is less than or equal to
|
|
// kMaxCachedArrayIndexLength.
|
|
STATIC_ASSERT(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));
|
|
|
|
static const unsigned int kContainsCachedArrayIndexMask =
|
|
(~static_cast<unsigned>(kMaxCachedArrayIndexLength)
|
|
<< ArrayIndexLengthBits::kShift) |
|
|
kIsNotArrayIndexMask;
|
|
|
|
// Representation of the flat content of a String.
|
|
// A non-flat string doesn't have flat content.
|
|
// A flat string has content that's encoded as a sequence of either
|
|
// one-byte chars or two-byte UC16.
|
|
// Returned by String::GetFlatContent().
|
|
class FlatContent {
|
|
public:
|
|
// Returns true if the string is flat and this structure contains content.
|
|
bool IsFlat() { return state_ != NON_FLAT; }
|
|
// Returns true if the structure contains one-byte content.
|
|
bool IsOneByte() { return state_ == ONE_BYTE; }
|
|
// Returns true if the structure contains two-byte content.
|
|
bool IsTwoByte() { return state_ == TWO_BYTE; }
|
|
|
|
// Return the one byte content of the string. Only use if IsOneByte()
|
|
// returns true.
|
|
Vector<const uint8_t> ToOneByteVector() {
|
|
DCHECK_EQ(ONE_BYTE, state_);
|
|
return Vector<const uint8_t>(onebyte_start, length_);
|
|
}
|
|
// Return the two-byte content of the string. Only use if IsTwoByte()
|
|
// returns true.
|
|
Vector<const uc16> ToUC16Vector() {
|
|
DCHECK_EQ(TWO_BYTE, state_);
|
|
return Vector<const uc16>(twobyte_start, length_);
|
|
}
|
|
|
|
uc16 Get(int i) {
|
|
DCHECK(i < length_);
|
|
DCHECK(state_ != NON_FLAT);
|
|
if (state_ == ONE_BYTE) return onebyte_start[i];
|
|
return twobyte_start[i];
|
|
}
|
|
|
|
private:
|
|
enum State { NON_FLAT, ONE_BYTE, TWO_BYTE };
|
|
|
|
// Constructors only used by String::GetFlatContent().
|
|
explicit FlatContent(const uint8_t* start, int length)
|
|
: onebyte_start(start), length_(length), state_(ONE_BYTE) {}
|
|
explicit FlatContent(const uc16* start, int length)
|
|
: twobyte_start(start), length_(length), state_(TWO_BYTE) { }
|
|
FlatContent() : onebyte_start(NULL), length_(0), state_(NON_FLAT) { }
|
|
|
|
union {
|
|
const uint8_t* onebyte_start;
|
|
const uc16* twobyte_start;
|
|
};
|
|
int length_;
|
|
State state_;
|
|
|
|
friend class String;
|
|
};
|
|
|
|
template <typename Char>
|
|
INLINE(Vector<const Char> GetCharVector());
|
|
|
|
// Get and set the length of the string.
|
|
inline int length() const;
|
|
inline void set_length(int value);
|
|
|
|
// Get and set the length of the string using acquire loads and release
|
|
// stores.
|
|
inline int synchronized_length() const;
|
|
inline void synchronized_set_length(int value);
|
|
|
|
// Returns whether this string has only one-byte chars, i.e. all of them can
|
|
// be one-byte encoded. This might be the case even if the string is
|
|
// two-byte. Such strings may appear when the embedder prefers
|
|
// two-byte external representations even for one-byte data.
|
|
inline bool IsOneByteRepresentation() const;
|
|
inline bool IsTwoByteRepresentation() const;
|
|
|
|
// Cons and slices have an encoding flag that may not represent the actual
|
|
// encoding of the underlying string. This is taken into account here.
|
|
// Requires: this->IsFlat()
|
|
inline bool IsOneByteRepresentationUnderneath();
|
|
inline bool IsTwoByteRepresentationUnderneath();
|
|
|
|
// NOTE: this should be considered only a hint. False negatives are
|
|
// possible.
|
|
inline bool HasOnlyOneByteChars();
|
|
|
|
// Get and set individual two byte chars in the string.
|
|
inline void Set(int index, uint16_t value);
|
|
// Get individual two byte char in the string. Repeated calls
|
|
// to this method are not efficient unless the string is flat.
|
|
INLINE(uint16_t Get(int index));
|
|
|
|
// Flattens the string. Checks first inline to see if it is
|
|
// necessary. Does nothing if the string is not a cons string.
|
|
// Flattening allocates a sequential string with the same data as
|
|
// the given string and mutates the cons string to a degenerate
|
|
// form, where the first component is the new sequential string and
|
|
// the second component is the empty string. If allocation fails,
|
|
// this function returns a failure. If flattening succeeds, this
|
|
// function returns the sequential string that is now the first
|
|
// component of the cons string.
|
|
//
|
|
// Degenerate cons strings are handled specially by the garbage
|
|
// collector (see IsShortcutCandidate).
|
|
|
|
static inline Handle<String> Flatten(Handle<String> string,
|
|
PretenureFlag pretenure = NOT_TENURED);
|
|
|
|
// Tries to return the content of a flat string as a structure holding either
|
|
// a flat vector of char or of uc16.
|
|
// If the string isn't flat, and therefore doesn't have flat content, the
|
|
// returned structure will report so, and can't provide a vector of either
|
|
// kind.
|
|
FlatContent GetFlatContent();
|
|
|
|
// Returns the parent of a sliced string or first part of a flat cons string.
|
|
// Requires: StringShape(this).IsIndirect() && this->IsFlat()
|
|
inline String* GetUnderlying();
|
|
|
|
// Mark the string as an undetectable object. It only applies to
|
|
// one-byte and two-byte string types.
|
|
bool MarkAsUndetectable();
|
|
|
|
// String equality operations.
|
|
inline bool Equals(String* other);
|
|
inline static bool Equals(Handle<String> one, Handle<String> two);
|
|
bool IsUtf8EqualTo(Vector<const char> str, bool allow_prefix_match = false);
|
|
bool IsOneByteEqualTo(Vector<const uint8_t> str);
|
|
bool IsTwoByteEqualTo(Vector<const uc16> str);
|
|
|
|
// Return a UTF8 representation of the string. The string is null
|
|
// terminated but may optionally contain nulls. Length is returned
|
|
// in length_output if length_output is not a null pointer The string
|
|
// should be nearly flat, otherwise the performance of this method may
|
|
// be very slow (quadratic in the length). Setting robustness_flag to
|
|
// ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
|
|
// handles unexpected data without causing assert failures and it does not
|
|
// do any heap allocations. This is useful when printing stack traces.
|
|
SmartArrayPointer<char> ToCString(AllowNullsFlag allow_nulls,
|
|
RobustnessFlag robustness_flag,
|
|
int offset,
|
|
int length,
|
|
int* length_output = 0);
|
|
SmartArrayPointer<char> ToCString(
|
|
AllowNullsFlag allow_nulls = DISALLOW_NULLS,
|
|
RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
|
|
int* length_output = 0);
|
|
|
|
// Return a 16 bit Unicode representation of the string.
|
|
// The string should be nearly flat, otherwise the performance of
|
|
// of this method may be very bad. Setting robustness_flag to
|
|
// ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
|
|
// handles unexpected data without causing assert failures and it does not
|
|
// do any heap allocations. This is useful when printing stack traces.
|
|
SmartArrayPointer<uc16> ToWideCString(
|
|
RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
|
|
|
|
bool ComputeArrayIndex(uint32_t* index);
|
|
|
|
// Externalization.
|
|
bool MakeExternal(v8::String::ExternalStringResource* resource);
|
|
bool MakeExternal(v8::String::ExternalOneByteStringResource* resource);
|
|
|
|
// Conversion.
|
|
inline bool AsArrayIndex(uint32_t* index);
|
|
|
|
DECLARE_CAST(String)
|
|
|
|
void PrintOn(FILE* out);
|
|
|
|
// For use during stack traces. Performs rudimentary sanity check.
|
|
bool LooksValid();
|
|
|
|
// Dispatched behavior.
|
|
void StringShortPrint(StringStream* accumulator);
|
|
void PrintUC16(std::ostream& os, int start = 0, int end = -1); // NOLINT
|
|
#if defined(DEBUG) || defined(OBJECT_PRINT)
|
|
char* ToAsciiArray();
|
|
#endif
|
|
DECLARE_PRINTER(String)
|
|
DECLARE_VERIFIER(String)
|
|
|
|
inline bool IsFlat();
|
|
|
|
// Layout description.
|
|
static const int kLengthOffset = Name::kSize;
|
|
static const int kSize = kLengthOffset + kPointerSize;
|
|
|
|
// Maximum number of characters to consider when trying to convert a string
|
|
// value into an array index.
|
|
static const int kMaxArrayIndexSize = 10;
|
|
STATIC_ASSERT(kMaxArrayIndexSize < (1 << kArrayIndexLengthBits));
|
|
|
|
// Max char codes.
|
|
static const int32_t kMaxOneByteCharCode = unibrow::Latin1::kMaxChar;
|
|
static const uint32_t kMaxOneByteCharCodeU = unibrow::Latin1::kMaxChar;
|
|
static const int kMaxUtf16CodeUnit = 0xffff;
|
|
static const uint32_t kMaxUtf16CodeUnitU = kMaxUtf16CodeUnit;
|
|
|
|
// Value of hash field containing computed hash equal to zero.
|
|
static const int kEmptyStringHash = kIsNotArrayIndexMask;
|
|
|
|
// Maximal string length.
|
|
static const int kMaxLength = (1 << 28) - 16;
|
|
|
|
// Max length for computing hash. For strings longer than this limit the
|
|
// string length is used as the hash value.
|
|
static const int kMaxHashCalcLength = 16383;
|
|
|
|
// Limit for truncation in short printing.
|
|
static const int kMaxShortPrintLength = 1024;
|
|
|
|
// Support for regular expressions.
|
|
const uc16* GetTwoByteData(unsigned start);
|
|
|
|
// Helper function for flattening strings.
|
|
template <typename sinkchar>
|
|
static void WriteToFlat(String* source,
|
|
sinkchar* sink,
|
|
int from,
|
|
int to);
|
|
|
|
// The return value may point to the first aligned word containing the first
|
|
// non-one-byte character, rather than directly to the non-one-byte character.
|
|
// If the return value is >= the passed length, the entire string was
|
|
// one-byte.
|
|
static inline int NonAsciiStart(const char* chars, int length) {
|
|
const char* start = chars;
|
|
const char* limit = chars + length;
|
|
|
|
if (length >= kIntptrSize) {
|
|
// Check unaligned bytes.
|
|
while (!IsAligned(reinterpret_cast<intptr_t>(chars), sizeof(uintptr_t))) {
|
|
if (static_cast<uint8_t>(*chars) > unibrow::Utf8::kMaxOneByteChar) {
|
|
return static_cast<int>(chars - start);
|
|
}
|
|
++chars;
|
|
}
|
|
// Check aligned words.
|
|
DCHECK(unibrow::Utf8::kMaxOneByteChar == 0x7F);
|
|
const uintptr_t non_one_byte_mask = kUintptrAllBitsSet / 0xFF * 0x80;
|
|
while (chars + sizeof(uintptr_t) <= limit) {
|
|
if (*reinterpret_cast<const uintptr_t*>(chars) & non_one_byte_mask) {
|
|
return static_cast<int>(chars - start);
|
|
}
|
|
chars += sizeof(uintptr_t);
|
|
}
|
|
}
|
|
// Check remaining unaligned bytes.
|
|
while (chars < limit) {
|
|
if (static_cast<uint8_t>(*chars) > unibrow::Utf8::kMaxOneByteChar) {
|
|
return static_cast<int>(chars - start);
|
|
}
|
|
++chars;
|
|
}
|
|
|
|
return static_cast<int>(chars - start);
|
|
}
|
|
|
|
static inline bool IsAscii(const char* chars, int length) {
|
|
return NonAsciiStart(chars, length) >= length;
|
|
}
|
|
|
|
static inline bool IsAscii(const uint8_t* chars, int length) {
|
|
return
|
|
NonAsciiStart(reinterpret_cast<const char*>(chars), length) >= length;
|
|
}
|
|
|
|
static inline int NonOneByteStart(const uc16* chars, int length) {
|
|
const uc16* limit = chars + length;
|
|
const uc16* start = chars;
|
|
while (chars < limit) {
|
|
if (*chars > kMaxOneByteCharCodeU) return static_cast<int>(chars - start);
|
|
++chars;
|
|
}
|
|
return static_cast<int>(chars - start);
|
|
}
|
|
|
|
static inline bool IsOneByte(const uc16* chars, int length) {
|
|
return NonOneByteStart(chars, length) >= length;
|
|
}
|
|
|
|
template<class Visitor>
|
|
static inline ConsString* VisitFlat(Visitor* visitor,
|
|
String* string,
|
|
int offset = 0);
|
|
|
|
static Handle<FixedArray> CalculateLineEnds(Handle<String> string,
|
|
bool include_ending_line);
|
|
|
|
// Use the hash field to forward to the canonical internalized string
|
|
// when deserializing an internalized string.
|
|
inline void SetForwardedInternalizedString(String* string);
|
|
inline String* GetForwardedInternalizedString();
|
|
|
|
private:
|
|
friend class Name;
|
|
friend class StringTableInsertionKey;
|
|
|
|
static Handle<String> SlowFlatten(Handle<ConsString> cons,
|
|
PretenureFlag tenure);
|
|
|
|
// Slow case of String::Equals. This implementation works on any strings
|
|
// but it is most efficient on strings that are almost flat.
|
|
bool SlowEquals(String* other);
|
|
|
|
static bool SlowEquals(Handle<String> one, Handle<String> two);
|
|
|
|
// Slow case of AsArrayIndex.
|
|
bool SlowAsArrayIndex(uint32_t* index);
|
|
|
|
// Compute and set the hash code.
|
|
uint32_t ComputeAndSetHash();
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(String);
|
|
};
|
|
|
|
|
|
// The SeqString abstract class captures sequential string values.
|
|
class SeqString: public String {
|
|
public:
|
|
DECLARE_CAST(SeqString)
|
|
|
|
// Layout description.
|
|
static const int kHeaderSize = String::kSize;
|
|
|
|
// Truncate the string in-place if possible and return the result.
|
|
// In case of new_length == 0, the empty string is returned without
|
|
// truncating the original string.
|
|
MUST_USE_RESULT static Handle<String> Truncate(Handle<SeqString> string,
|
|
int new_length);
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
|
|
};
|
|
|
|
|
|
// The OneByteString class captures sequential one-byte string objects.
|
|
// Each character in the OneByteString is an one-byte character.
|
|
class SeqOneByteString: public SeqString {
|
|
public:
|
|
static const bool kHasOneByteEncoding = true;
|
|
|
|
// Dispatched behavior.
|
|
inline uint16_t SeqOneByteStringGet(int index);
|
|
inline void SeqOneByteStringSet(int index, uint16_t value);
|
|
|
|
// Get the address of the characters in this string.
|
|
inline Address GetCharsAddress();
|
|
|
|
inline uint8_t* GetChars();
|
|
|
|
DECLARE_CAST(SeqOneByteString)
|
|
|
|
// Garbage collection support. This method is called by the
|
|
// garbage collector to compute the actual size of an OneByteString
|
|
// instance.
|
|
inline int SeqOneByteStringSize(InstanceType instance_type);
|
|
|
|
// Computes the size for an OneByteString instance of a given length.
|
|
static int SizeFor(int length) {
|
|
return OBJECT_POINTER_ALIGN(kHeaderSize + length * kCharSize);
|
|
}
|
|
|
|
// Maximal memory usage for a single sequential one-byte string.
|
|
static const int kMaxSize = 512 * MB - 1;
|
|
STATIC_ASSERT((kMaxSize - kHeaderSize) >= String::kMaxLength);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SeqOneByteString);
|
|
};
|
|
|
|
|
|
// The TwoByteString class captures sequential unicode string objects.
|
|
// Each character in the TwoByteString is a two-byte uint16_t.
|
|
class SeqTwoByteString: public SeqString {
|
|
public:
|
|
static const bool kHasOneByteEncoding = false;
|
|
|
|
// Dispatched behavior.
|
|
inline uint16_t SeqTwoByteStringGet(int index);
|
|
inline void SeqTwoByteStringSet(int index, uint16_t value);
|
|
|
|
// Get the address of the characters in this string.
|
|
inline Address GetCharsAddress();
|
|
|
|
inline uc16* GetChars();
|
|
|
|
// For regexp code.
|
|
const uint16_t* SeqTwoByteStringGetData(unsigned start);
|
|
|
|
DECLARE_CAST(SeqTwoByteString)
|
|
|
|
// Garbage collection support. This method is called by the
|
|
// garbage collector to compute the actual size of a TwoByteString
|
|
// instance.
|
|
inline int SeqTwoByteStringSize(InstanceType instance_type);
|
|
|
|
// Computes the size for a TwoByteString instance of a given length.
|
|
static int SizeFor(int length) {
|
|
return OBJECT_POINTER_ALIGN(kHeaderSize + length * kShortSize);
|
|
}
|
|
|
|
// Maximal memory usage for a single sequential two-byte string.
|
|
static const int kMaxSize = 512 * MB - 1;
|
|
STATIC_ASSERT(static_cast<int>((kMaxSize - kHeaderSize)/sizeof(uint16_t)) >=
|
|
String::kMaxLength);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
|
|
};
|
|
|
|
|
|
// The ConsString class describes string values built by using the
|
|
// addition operator on strings. A ConsString is a pair where the
|
|
// first and second components are pointers to other string values.
|
|
// One or both components of a ConsString can be pointers to other
|
|
// ConsStrings, creating a binary tree of ConsStrings where the leaves
|
|
// are non-ConsString string values. The string value represented by
|
|
// a ConsString can be obtained by concatenating the leaf string
|
|
// values in a left-to-right depth-first traversal of the tree.
|
|
class ConsString: public String {
|
|
public:
|
|
// First string of the cons cell.
|
|
inline String* first();
|
|
// Doesn't check that the result is a string, even in debug mode. This is
|
|
// useful during GC where the mark bits confuse the checks.
|
|
inline Object* unchecked_first();
|
|
inline void set_first(String* first,
|
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
|
|
// Second string of the cons cell.
|
|
inline String* second();
|
|
// Doesn't check that the result is a string, even in debug mode. This is
|
|
// useful during GC where the mark bits confuse the checks.
|
|
inline Object* unchecked_second();
|
|
inline void set_second(String* second,
|
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
|
|
// Dispatched behavior.
|
|
uint16_t ConsStringGet(int index);
|
|
|
|
DECLARE_CAST(ConsString)
|
|
|
|
// Layout description.
|
|
static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
|
|
static const int kSecondOffset = kFirstOffset + kPointerSize;
|
|
static const int kSize = kSecondOffset + kPointerSize;
|
|
|
|
// Minimum length for a cons string.
|
|
static const int kMinLength = 13;
|
|
|
|
typedef FixedBodyDescriptor<kFirstOffset, kSecondOffset + kPointerSize, kSize>
|
|
BodyDescriptor;
|
|
|
|
DECLARE_VERIFIER(ConsString)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
|
|
};
|
|
|
|
|
|
// The Sliced String class describes strings that are substrings of another
|
|
// sequential string. The motivation is to save time and memory when creating
|
|
// a substring. A Sliced String is described as a pointer to the parent,
|
|
// the offset from the start of the parent string and the length. Using
|
|
// a Sliced String therefore requires unpacking of the parent string and
|
|
// adding the offset to the start address. A substring of a Sliced String
|
|
// are not nested since the double indirection is simplified when creating
|
|
// such a substring.
|
|
// Currently missing features are:
|
|
// - handling externalized parent strings
|
|
// - external strings as parent
|
|
// - truncating sliced string to enable otherwise unneeded parent to be GC'ed.
|
|
class SlicedString: public String {
|
|
public:
|
|
inline String* parent();
|
|
inline void set_parent(String* parent,
|
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
inline int offset() const;
|
|
inline void set_offset(int offset);
|
|
|
|
// Dispatched behavior.
|
|
uint16_t SlicedStringGet(int index);
|
|
|
|
DECLARE_CAST(SlicedString)
|
|
|
|
// Layout description.
|
|
static const int kParentOffset = POINTER_SIZE_ALIGN(String::kSize);
|
|
static const int kOffsetOffset = kParentOffset + kPointerSize;
|
|
static const int kSize = kOffsetOffset + kPointerSize;
|
|
|
|
// Minimum length for a sliced string.
|
|
static const int kMinLength = 13;
|
|
|
|
typedef FixedBodyDescriptor<kParentOffset,
|
|
kOffsetOffset + kPointerSize, kSize>
|
|
BodyDescriptor;
|
|
|
|
DECLARE_VERIFIER(SlicedString)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SlicedString);
|
|
};
|
|
|
|
|
|
// The ExternalString class describes string values that are backed by
|
|
// a string resource that lies outside the V8 heap. ExternalStrings
|
|
// consist of the length field common to all strings, a pointer to the
|
|
// external resource. It is important to ensure (externally) that the
|
|
// resource is not deallocated while the ExternalString is live in the
|
|
// V8 heap.
|
|
//
|
|
// The API expects that all ExternalStrings are created through the
|
|
// API. Therefore, ExternalStrings should not be used internally.
|
|
class ExternalString: public String {
|
|
public:
|
|
DECLARE_CAST(ExternalString)
|
|
|
|
// Layout description.
|
|
static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
|
|
static const int kShortSize = kResourceOffset + kPointerSize;
|
|
static const int kResourceDataOffset = kResourceOffset + kPointerSize;
|
|
static const int kSize = kResourceDataOffset + kPointerSize;
|
|
|
|
static const int kMaxShortLength =
|
|
(kShortSize - SeqString::kHeaderSize) / kCharSize;
|
|
|
|
// Return whether external string is short (data pointer is not cached).
|
|
inline bool is_short();
|
|
|
|
STATIC_ASSERT(kResourceOffset == Internals::kStringResourceOffset);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
|
|
};
|
|
|
|
|
|
// The ExternalOneByteString class is an external string backed by an
|
|
// one-byte string.
|
|
class ExternalOneByteString : public ExternalString {
|
|
public:
|
|
static const bool kHasOneByteEncoding = true;
|
|
|
|
typedef v8::String::ExternalOneByteStringResource Resource;
|
|
|
|
// The underlying resource.
|
|
inline const Resource* resource();
|
|
inline void set_resource(const Resource* buffer);
|
|
|
|
// Update the pointer cache to the external character array.
|
|
// The cached pointer is always valid, as the external character array does =
|
|
// not move during lifetime. Deserialization is the only exception, after
|
|
// which the pointer cache has to be refreshed.
|
|
inline void update_data_cache();
|
|
|
|
inline const uint8_t* GetChars();
|
|
|
|
// Dispatched behavior.
|
|
inline uint16_t ExternalOneByteStringGet(int index);
|
|
|
|
DECLARE_CAST(ExternalOneByteString)
|
|
|
|
// Garbage collection support.
|
|
inline void ExternalOneByteStringIterateBody(ObjectVisitor* v);
|
|
|
|
template <typename StaticVisitor>
|
|
inline void ExternalOneByteStringIterateBody();
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalOneByteString);
|
|
};
|
|
|
|
|
|
// The ExternalTwoByteString class is an external string backed by a UTF-16
|
|
// encoded string.
|
|
class ExternalTwoByteString: public ExternalString {
|
|
public:
|
|
static const bool kHasOneByteEncoding = false;
|
|
|
|
typedef v8::String::ExternalStringResource Resource;
|
|
|
|
// The underlying string resource.
|
|
inline const Resource* resource();
|
|
inline void set_resource(const Resource* buffer);
|
|
|
|
// Update the pointer cache to the external character array.
|
|
// The cached pointer is always valid, as the external character array does =
|
|
// not move during lifetime. Deserialization is the only exception, after
|
|
// which the pointer cache has to be refreshed.
|
|
inline void update_data_cache();
|
|
|
|
inline const uint16_t* GetChars();
|
|
|
|
// Dispatched behavior.
|
|
inline uint16_t ExternalTwoByteStringGet(int index);
|
|
|
|
// For regexp code.
|
|
inline const uint16_t* ExternalTwoByteStringGetData(unsigned start);
|
|
|
|
DECLARE_CAST(ExternalTwoByteString)
|
|
|
|
// Garbage collection support.
|
|
inline void ExternalTwoByteStringIterateBody(ObjectVisitor* v);
|
|
|
|
template<typename StaticVisitor>
|
|
inline void ExternalTwoByteStringIterateBody();
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
|
|
};
|
|
|
|
|
|
// Utility superclass for stack-allocated objects that must be updated
|
|
// on gc. It provides two ways for the gc to update instances, either
|
|
// iterating or updating after gc.
|
|
class Relocatable BASE_EMBEDDED {
|
|
public:
|
|
explicit inline Relocatable(Isolate* isolate);
|
|
inline virtual ~Relocatable();
|
|
virtual void IterateInstance(ObjectVisitor* v) { }
|
|
virtual void PostGarbageCollection() { }
|
|
|
|
static void PostGarbageCollectionProcessing(Isolate* isolate);
|
|
static int ArchiveSpacePerThread();
|
|
static char* ArchiveState(Isolate* isolate, char* to);
|
|
static char* RestoreState(Isolate* isolate, char* from);
|
|
static void Iterate(Isolate* isolate, ObjectVisitor* v);
|
|
static void Iterate(ObjectVisitor* v, Relocatable* top);
|
|
static char* Iterate(ObjectVisitor* v, char* t);
|
|
|
|
private:
|
|
Isolate* isolate_;
|
|
Relocatable* prev_;
|
|
};
|
|
|
|
|
|
// A flat string reader provides random access to the contents of a
|
|
// string independent of the character width of the string. The handle
|
|
// must be valid as long as the reader is being used.
|
|
class FlatStringReader : public Relocatable {
|
|
public:
|
|
FlatStringReader(Isolate* isolate, Handle<String> str);
|
|
FlatStringReader(Isolate* isolate, Vector<const char> input);
|
|
void PostGarbageCollection();
|
|
inline uc32 Get(int index);
|
|
template <typename Char>
|
|
inline Char Get(int index);
|
|
int length() { return length_; }
|
|
private:
|
|
String** str_;
|
|
bool is_one_byte_;
|
|
int length_;
|
|
const void* start_;
|
|
};
|
|
|
|
|
|
// This maintains an off-stack representation of the stack frames required
|
|
// to traverse a ConsString, allowing an entirely iterative and restartable
|
|
// traversal of the entire string
|
|
class ConsStringIterator {
|
|
public:
|
|
inline ConsStringIterator() {}
|
|
inline explicit ConsStringIterator(ConsString* cons_string, int offset = 0) {
|
|
Reset(cons_string, offset);
|
|
}
|
|
inline void Reset(ConsString* cons_string, int offset = 0) {
|
|
depth_ = 0;
|
|
// Next will always return NULL.
|
|
if (cons_string == NULL) return;
|
|
Initialize(cons_string, offset);
|
|
}
|
|
// Returns NULL when complete.
|
|
inline String* Next(int* offset_out) {
|
|
*offset_out = 0;
|
|
if (depth_ == 0) return NULL;
|
|
return Continue(offset_out);
|
|
}
|
|
|
|
private:
|
|
static const int kStackSize = 32;
|
|
// Use a mask instead of doing modulo operations for stack wrapping.
|
|
static const int kDepthMask = kStackSize-1;
|
|
STATIC_ASSERT(IS_POWER_OF_TWO(kStackSize));
|
|
static inline int OffsetForDepth(int depth);
|
|
|
|
inline void PushLeft(ConsString* string);
|
|
inline void PushRight(ConsString* string);
|
|
inline void AdjustMaximumDepth();
|
|
inline void Pop();
|
|
inline bool StackBlown() { return maximum_depth_ - depth_ == kStackSize; }
|
|
void Initialize(ConsString* cons_string, int offset);
|
|
String* Continue(int* offset_out);
|
|
String* NextLeaf(bool* blew_stack);
|
|
String* Search(int* offset_out);
|
|
|
|
// Stack must always contain only frames for which right traversal
|
|
// has not yet been performed.
|
|
ConsString* frames_[kStackSize];
|
|
ConsString* root_;
|
|
int depth_;
|
|
int maximum_depth_;
|
|
int consumed_;
|
|
DISALLOW_COPY_AND_ASSIGN(ConsStringIterator);
|
|
};
|
|
|
|
|
|
class StringCharacterStream {
|
|
public:
|
|
inline StringCharacterStream(String* string,
|
|
int offset = 0);
|
|
inline uint16_t GetNext();
|
|
inline bool HasMore();
|
|
inline void Reset(String* string, int offset = 0);
|
|
inline void VisitOneByteString(const uint8_t* chars, int length);
|
|
inline void VisitTwoByteString(const uint16_t* chars, int length);
|
|
|
|
private:
|
|
ConsStringIterator iter_;
|
|
bool is_one_byte_;
|
|
union {
|
|
const uint8_t* buffer8_;
|
|
const uint16_t* buffer16_;
|
|
};
|
|
const uint8_t* end_;
|
|
DISALLOW_COPY_AND_ASSIGN(StringCharacterStream);
|
|
};
|
|
|
|
|
|
template <typename T>
|
|
class VectorIterator {
|
|
public:
|
|
VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
|
|
explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
|
|
T GetNext() { return data_[index_++]; }
|
|
bool has_more() { return index_ < data_.length(); }
|
|
private:
|
|
Vector<const T> data_;
|
|
int index_;
|
|
};
|
|
|
|
|
|
// The Oddball describes objects null, undefined, true, and false.
|
|
class Oddball: public HeapObject {
|
|
public:
|
|
// [to_string]: Cached to_string computed at startup.
|
|
DECL_ACCESSORS(to_string, String)
|
|
|
|
// [to_number]: Cached to_number computed at startup.
|
|
DECL_ACCESSORS(to_number, Object)
|
|
|
|
inline byte kind() const;
|
|
inline void set_kind(byte kind);
|
|
|
|
DECLARE_CAST(Oddball)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_VERIFIER(Oddball)
|
|
|
|
// Initialize the fields.
|
|
static void Initialize(Isolate* isolate,
|
|
Handle<Oddball> oddball,
|
|
const char* to_string,
|
|
Handle<Object> to_number,
|
|
byte kind);
|
|
|
|
// Layout description.
|
|
static const int kToStringOffset = HeapObject::kHeaderSize;
|
|
static const int kToNumberOffset = kToStringOffset + kPointerSize;
|
|
static const int kKindOffset = kToNumberOffset + kPointerSize;
|
|
static const int kSize = kKindOffset + kPointerSize;
|
|
|
|
static const byte kFalse = 0;
|
|
static const byte kTrue = 1;
|
|
static const byte kNotBooleanMask = ~1;
|
|
static const byte kTheHole = 2;
|
|
static const byte kNull = 3;
|
|
static const byte kArgumentMarker = 4;
|
|
static const byte kUndefined = 5;
|
|
static const byte kUninitialized = 6;
|
|
static const byte kOther = 7;
|
|
static const byte kException = 8;
|
|
|
|
typedef FixedBodyDescriptor<kToStringOffset,
|
|
kToNumberOffset + kPointerSize,
|
|
kSize> BodyDescriptor;
|
|
|
|
STATIC_ASSERT(kKindOffset == Internals::kOddballKindOffset);
|
|
STATIC_ASSERT(kNull == Internals::kNullOddballKind);
|
|
STATIC_ASSERT(kUndefined == Internals::kUndefinedOddballKind);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
|
|
};
|
|
|
|
|
|
class Cell: public HeapObject {
|
|
public:
|
|
// [value]: value of the global property.
|
|
DECL_ACCESSORS(value, Object)
|
|
|
|
DECLARE_CAST(Cell)
|
|
|
|
static inline Cell* FromValueAddress(Address value) {
|
|
Object* result = FromAddress(value - kValueOffset);
|
|
DCHECK(result->IsCell() || result->IsPropertyCell());
|
|
return static_cast<Cell*>(result);
|
|
}
|
|
|
|
inline Address ValueAddress() {
|
|
return address() + kValueOffset;
|
|
}
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(Cell)
|
|
DECLARE_VERIFIER(Cell)
|
|
|
|
// Layout description.
|
|
static const int kValueOffset = HeapObject::kHeaderSize;
|
|
static const int kSize = kValueOffset + kPointerSize;
|
|
|
|
typedef FixedBodyDescriptor<kValueOffset,
|
|
kValueOffset + kPointerSize,
|
|
kSize> BodyDescriptor;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Cell);
|
|
};
|
|
|
|
|
|
class PropertyCell: public Cell {
|
|
public:
|
|
// [type]: type of the global property.
|
|
HeapType* type();
|
|
void set_type(HeapType* value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
|
|
// [dependent_code]: dependent code that depends on the type of the global
|
|
// property.
|
|
DECL_ACCESSORS(dependent_code, DependentCode)
|
|
|
|
// Sets the value of the cell and updates the type field to be the union
|
|
// of the cell's current type and the value's type. If the change causes
|
|
// a change of the type of the cell's contents, code dependent on the cell
|
|
// will be deoptimized.
|
|
// Usually returns the value that was passed in, but may perform
|
|
// non-observable modifications on it, such as internalize strings.
|
|
static Handle<Object> SetValueInferType(Handle<PropertyCell> cell,
|
|
Handle<Object> value);
|
|
|
|
// Computes the new type of the cell's contents for the given value, but
|
|
// without actually modifying the 'type' field.
|
|
static Handle<HeapType> UpdatedType(Handle<PropertyCell> cell,
|
|
Handle<Object> value);
|
|
|
|
static void AddDependentCompilationInfo(Handle<PropertyCell> cell,
|
|
CompilationInfo* info);
|
|
|
|
DECLARE_CAST(PropertyCell)
|
|
|
|
inline Address TypeAddress() {
|
|
return address() + kTypeOffset;
|
|
}
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(PropertyCell)
|
|
DECLARE_VERIFIER(PropertyCell)
|
|
|
|
// Layout description.
|
|
static const int kTypeOffset = kValueOffset + kPointerSize;
|
|
static const int kDependentCodeOffset = kTypeOffset + kPointerSize;
|
|
static const int kSize = kDependentCodeOffset + kPointerSize;
|
|
|
|
static const int kPointerFieldsBeginOffset = kValueOffset;
|
|
static const int kPointerFieldsEndOffset = kDependentCodeOffset;
|
|
|
|
typedef FixedBodyDescriptor<kValueOffset,
|
|
kSize,
|
|
kSize> BodyDescriptor;
|
|
|
|
private:
|
|
DECL_ACCESSORS(type_raw, Object)
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(PropertyCell);
|
|
};
|
|
|
|
|
|
class WeakCell : public HeapObject {
|
|
public:
|
|
inline Object* value() const;
|
|
|
|
// This should not be called by anyone except GC.
|
|
inline void clear();
|
|
|
|
// This should not be called by anyone except allocator.
|
|
inline void initialize(HeapObject* value);
|
|
|
|
inline bool cleared() const;
|
|
|
|
DECL_ACCESSORS(next, Object)
|
|
|
|
DECLARE_CAST(WeakCell)
|
|
|
|
DECLARE_PRINTER(WeakCell)
|
|
DECLARE_VERIFIER(WeakCell)
|
|
|
|
// Layout description.
|
|
static const int kValueOffset = HeapObject::kHeaderSize;
|
|
static const int kNextOffset = kValueOffset + kPointerSize;
|
|
static const int kSize = kNextOffset + kPointerSize;
|
|
|
|
typedef FixedBodyDescriptor<kValueOffset, kSize, kSize> BodyDescriptor;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(WeakCell);
|
|
};
|
|
|
|
|
|
// The JSProxy describes EcmaScript Harmony proxies
|
|
class JSProxy: public JSReceiver {
|
|
public:
|
|
// [handler]: The handler property.
|
|
DECL_ACCESSORS(handler, Object)
|
|
|
|
// [hash]: The hash code property (undefined if not initialized yet).
|
|
DECL_ACCESSORS(hash, Object)
|
|
|
|
DECLARE_CAST(JSProxy)
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithHandler(
|
|
Handle<JSProxy> proxy,
|
|
Handle<Object> receiver,
|
|
Handle<Name> name);
|
|
MUST_USE_RESULT static inline MaybeHandle<Object> GetElementWithHandler(
|
|
Handle<JSProxy> proxy,
|
|
Handle<Object> receiver,
|
|
uint32_t index);
|
|
|
|
// If the handler defines an accessor property with a setter, invoke it.
|
|
// If it defines an accessor property without a setter, or a data property
|
|
// that is read-only, throw. In all these cases set '*done' to true,
|
|
// otherwise set it to false.
|
|
MUST_USE_RESULT
|
|
static MaybeHandle<Object> SetPropertyViaPrototypesWithHandler(
|
|
Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name,
|
|
Handle<Object> value, StrictMode strict_mode, bool* done);
|
|
|
|
MUST_USE_RESULT static Maybe<PropertyAttributes>
|
|
GetPropertyAttributesWithHandler(Handle<JSProxy> proxy,
|
|
Handle<Object> receiver,
|
|
Handle<Name> name);
|
|
MUST_USE_RESULT static Maybe<PropertyAttributes>
|
|
GetElementAttributeWithHandler(Handle<JSProxy> proxy,
|
|
Handle<JSReceiver> receiver,
|
|
uint32_t index);
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithHandler(
|
|
Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name,
|
|
Handle<Object> value, StrictMode strict_mode);
|
|
|
|
// Turn the proxy into an (empty) JSObject.
|
|
static void Fix(Handle<JSProxy> proxy);
|
|
|
|
// Initializes the body after the handler slot.
|
|
inline void InitializeBody(int object_size, Object* value);
|
|
|
|
// Invoke a trap by name. If the trap does not exist on this's handler,
|
|
// but derived_trap is non-NULL, invoke that instead. May cause GC.
|
|
MUST_USE_RESULT static MaybeHandle<Object> CallTrap(
|
|
Handle<JSProxy> proxy,
|
|
const char* name,
|
|
Handle<Object> derived_trap,
|
|
int argc,
|
|
Handle<Object> args[]);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSProxy)
|
|
DECLARE_VERIFIER(JSProxy)
|
|
|
|
// Layout description. We add padding so that a proxy has the same
|
|
// size as a virgin JSObject. This is essential for becoming a JSObject
|
|
// upon freeze.
|
|
static const int kHandlerOffset = HeapObject::kHeaderSize;
|
|
static const int kHashOffset = kHandlerOffset + kPointerSize;
|
|
static const int kPaddingOffset = kHashOffset + kPointerSize;
|
|
static const int kSize = JSObject::kHeaderSize;
|
|
static const int kHeaderSize = kPaddingOffset;
|
|
static const int kPaddingSize = kSize - kPaddingOffset;
|
|
|
|
STATIC_ASSERT(kPaddingSize >= 0);
|
|
|
|
typedef FixedBodyDescriptor<kHandlerOffset,
|
|
kPaddingOffset,
|
|
kSize> BodyDescriptor;
|
|
|
|
private:
|
|
friend class JSReceiver;
|
|
|
|
MUST_USE_RESULT static inline MaybeHandle<Object> SetElementWithHandler(
|
|
Handle<JSProxy> proxy,
|
|
Handle<JSReceiver> receiver,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
StrictMode strict_mode);
|
|
|
|
MUST_USE_RESULT static Maybe<bool> HasPropertyWithHandler(
|
|
Handle<JSProxy> proxy, Handle<Name> name);
|
|
MUST_USE_RESULT static inline Maybe<bool> HasElementWithHandler(
|
|
Handle<JSProxy> proxy, uint32_t index);
|
|
|
|
MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyWithHandler(
|
|
Handle<JSProxy> proxy, Handle<Name> name, StrictMode strict_mode);
|
|
MUST_USE_RESULT static MaybeHandle<Object> DeleteElementWithHandler(
|
|
Handle<JSProxy> proxy, uint32_t index, StrictMode strict_mode);
|
|
|
|
MUST_USE_RESULT Object* GetIdentityHash();
|
|
|
|
static Handle<Smi> GetOrCreateIdentityHash(Handle<JSProxy> proxy);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSProxy);
|
|
};
|
|
|
|
|
|
class JSFunctionProxy: public JSProxy {
|
|
public:
|
|
// [call_trap]: The call trap.
|
|
DECL_ACCESSORS(call_trap, Object)
|
|
|
|
// [construct_trap]: The construct trap.
|
|
DECL_ACCESSORS(construct_trap, Object)
|
|
|
|
DECLARE_CAST(JSFunctionProxy)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSFunctionProxy)
|
|
DECLARE_VERIFIER(JSFunctionProxy)
|
|
|
|
// Layout description.
|
|
static const int kCallTrapOffset = JSProxy::kPaddingOffset;
|
|
static const int kConstructTrapOffset = kCallTrapOffset + kPointerSize;
|
|
static const int kPaddingOffset = kConstructTrapOffset + kPointerSize;
|
|
static const int kSize = JSFunction::kSize;
|
|
static const int kPaddingSize = kSize - kPaddingOffset;
|
|
|
|
STATIC_ASSERT(kPaddingSize >= 0);
|
|
|
|
typedef FixedBodyDescriptor<kHandlerOffset,
|
|
kConstructTrapOffset + kPointerSize,
|
|
kSize> BodyDescriptor;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunctionProxy);
|
|
};
|
|
|
|
|
|
class JSCollection : public JSObject {
|
|
public:
|
|
// [table]: the backing hash table
|
|
DECL_ACCESSORS(table, Object)
|
|
|
|
static const int kTableOffset = JSObject::kHeaderSize;
|
|
static const int kSize = kTableOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSCollection);
|
|
};
|
|
|
|
|
|
// The JSSet describes EcmaScript Harmony sets
|
|
class JSSet : public JSCollection {
|
|
public:
|
|
DECLARE_CAST(JSSet)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSSet)
|
|
DECLARE_VERIFIER(JSSet)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSSet);
|
|
};
|
|
|
|
|
|
// The JSMap describes EcmaScript Harmony maps
|
|
class JSMap : public JSCollection {
|
|
public:
|
|
DECLARE_CAST(JSMap)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSMap)
|
|
DECLARE_VERIFIER(JSMap)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSMap);
|
|
};
|
|
|
|
|
|
// OrderedHashTableIterator is an iterator that iterates over the keys and
|
|
// values of an OrderedHashTable.
|
|
//
|
|
// The iterator has a reference to the underlying OrderedHashTable data,
|
|
// [table], as well as the current [index] the iterator is at.
|
|
//
|
|
// When the OrderedHashTable is rehashed it adds a reference from the old table
|
|
// to the new table as well as storing enough data about the changes so that the
|
|
// iterator [index] can be adjusted accordingly.
|
|
//
|
|
// When the [Next] result from the iterator is requested, the iterator checks if
|
|
// there is a newer table that it needs to transition to.
|
|
template<class Derived, class TableType>
|
|
class OrderedHashTableIterator: public JSObject {
|
|
public:
|
|
// [table]: the backing hash table mapping keys to values.
|
|
DECL_ACCESSORS(table, Object)
|
|
|
|
// [index]: The index into the data table.
|
|
DECL_ACCESSORS(index, Object)
|
|
|
|
// [kind]: The kind of iteration this is. One of the [Kind] enum values.
|
|
DECL_ACCESSORS(kind, Object)
|
|
|
|
#ifdef OBJECT_PRINT
|
|
void OrderedHashTableIteratorPrint(std::ostream& os); // NOLINT
|
|
#endif
|
|
|
|
static const int kTableOffset = JSObject::kHeaderSize;
|
|
static const int kIndexOffset = kTableOffset + kPointerSize;
|
|
static const int kKindOffset = kIndexOffset + kPointerSize;
|
|
static const int kSize = kKindOffset + kPointerSize;
|
|
|
|
enum Kind {
|
|
kKindKeys = 1,
|
|
kKindValues = 2,
|
|
kKindEntries = 3
|
|
};
|
|
|
|
// Whether the iterator has more elements. This needs to be called before
|
|
// calling |CurrentKey| and/or |CurrentValue|.
|
|
bool HasMore();
|
|
|
|
// Move the index forward one.
|
|
void MoveNext() {
|
|
set_index(Smi::FromInt(Smi::cast(index())->value() + 1));
|
|
}
|
|
|
|
// Populates the array with the next key and value and then moves the iterator
|
|
// forward.
|
|
// This returns the |kind| or 0 if the iterator is already at the end.
|
|
Smi* Next(JSArray* value_array);
|
|
|
|
// Returns the current key of the iterator. This should only be called when
|
|
// |HasMore| returns true.
|
|
inline Object* CurrentKey();
|
|
|
|
private:
|
|
// Transitions the iterator to the non obsolete backing store. This is a NOP
|
|
// if the [table] is not obsolete.
|
|
void Transition();
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(OrderedHashTableIterator);
|
|
};
|
|
|
|
|
|
class JSSetIterator: public OrderedHashTableIterator<JSSetIterator,
|
|
OrderedHashSet> {
|
|
public:
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSSetIterator)
|
|
DECLARE_VERIFIER(JSSetIterator)
|
|
|
|
DECLARE_CAST(JSSetIterator)
|
|
|
|
// Called by |Next| to populate the array. This allows the subclasses to
|
|
// populate the array differently.
|
|
inline void PopulateValueArray(FixedArray* array);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSSetIterator);
|
|
};
|
|
|
|
|
|
class JSMapIterator: public OrderedHashTableIterator<JSMapIterator,
|
|
OrderedHashMap> {
|
|
public:
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSMapIterator)
|
|
DECLARE_VERIFIER(JSMapIterator)
|
|
|
|
DECLARE_CAST(JSMapIterator)
|
|
|
|
// Called by |Next| to populate the array. This allows the subclasses to
|
|
// populate the array differently.
|
|
inline void PopulateValueArray(FixedArray* array);
|
|
|
|
private:
|
|
// Returns the current value of the iterator. This should only be called when
|
|
// |HasMore| returns true.
|
|
inline Object* CurrentValue();
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSMapIterator);
|
|
};
|
|
|
|
|
|
// Base class for both JSWeakMap and JSWeakSet
|
|
class JSWeakCollection: public JSObject {
|
|
public:
|
|
// [table]: the backing hash table mapping keys to values.
|
|
DECL_ACCESSORS(table, Object)
|
|
|
|
// [next]: linked list of encountered weak maps during GC.
|
|
DECL_ACCESSORS(next, Object)
|
|
|
|
static const int kTableOffset = JSObject::kHeaderSize;
|
|
static const int kNextOffset = kTableOffset + kPointerSize;
|
|
static const int kSize = kNextOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakCollection);
|
|
};
|
|
|
|
|
|
// The JSWeakMap describes EcmaScript Harmony weak maps
|
|
class JSWeakMap: public JSWeakCollection {
|
|
public:
|
|
DECLARE_CAST(JSWeakMap)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSWeakMap)
|
|
DECLARE_VERIFIER(JSWeakMap)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakMap);
|
|
};
|
|
|
|
|
|
// The JSWeakSet describes EcmaScript Harmony weak sets
|
|
class JSWeakSet: public JSWeakCollection {
|
|
public:
|
|
DECLARE_CAST(JSWeakSet)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSWeakSet)
|
|
DECLARE_VERIFIER(JSWeakSet)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakSet);
|
|
};
|
|
|
|
|
|
class JSArrayBuffer: public JSObject {
|
|
public:
|
|
// [backing_store]: backing memory for this array
|
|
DECL_ACCESSORS(backing_store, void)
|
|
|
|
// [byte_length]: length in bytes
|
|
DECL_ACCESSORS(byte_length, Object)
|
|
|
|
// [flags]
|
|
DECL_ACCESSORS(flag, Smi)
|
|
|
|
inline bool is_external();
|
|
inline void set_is_external(bool value);
|
|
|
|
inline bool should_be_freed();
|
|
inline void set_should_be_freed(bool value);
|
|
|
|
inline bool is_neuterable();
|
|
inline void set_is_neuterable(bool value);
|
|
|
|
// [weak_next]: linked list of array buffers.
|
|
DECL_ACCESSORS(weak_next, Object)
|
|
|
|
// [weak_first_array]: weak linked list of views.
|
|
DECL_ACCESSORS(weak_first_view, Object)
|
|
|
|
DECLARE_CAST(JSArrayBuffer)
|
|
|
|
// Neutering. Only neuters the buffer, not associated typed arrays.
|
|
void Neuter();
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSArrayBuffer)
|
|
DECLARE_VERIFIER(JSArrayBuffer)
|
|
|
|
static const int kBackingStoreOffset = JSObject::kHeaderSize;
|
|
static const int kByteLengthOffset = kBackingStoreOffset + kPointerSize;
|
|
static const int kFlagOffset = kByteLengthOffset + kPointerSize;
|
|
static const int kWeakNextOffset = kFlagOffset + kPointerSize;
|
|
static const int kWeakFirstViewOffset = kWeakNextOffset + kPointerSize;
|
|
static const int kSize = kWeakFirstViewOffset + kPointerSize;
|
|
|
|
static const int kSizeWithInternalFields =
|
|
kSize + v8::ArrayBuffer::kInternalFieldCount * kPointerSize;
|
|
|
|
private:
|
|
// Bit position in a flag
|
|
static const int kIsExternalBit = 0;
|
|
static const int kShouldBeFreed = 1;
|
|
static const int kIsNeuterableBit = 2;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBuffer);
|
|
};
|
|
|
|
|
|
class JSArrayBufferView: public JSObject {
|
|
public:
|
|
// [buffer]: ArrayBuffer that this typed array views.
|
|
DECL_ACCESSORS(buffer, Object)
|
|
|
|
// [byte_length]: offset of typed array in bytes.
|
|
DECL_ACCESSORS(byte_offset, Object)
|
|
|
|
// [byte_length]: length of typed array in bytes.
|
|
DECL_ACCESSORS(byte_length, Object)
|
|
|
|
// [weak_next]: linked list of typed arrays over the same array buffer.
|
|
DECL_ACCESSORS(weak_next, Object)
|
|
|
|
DECLARE_CAST(JSArrayBufferView)
|
|
|
|
DECLARE_VERIFIER(JSArrayBufferView)
|
|
|
|
static const int kBufferOffset = JSObject::kHeaderSize;
|
|
static const int kByteOffsetOffset = kBufferOffset + kPointerSize;
|
|
static const int kByteLengthOffset = kByteOffsetOffset + kPointerSize;
|
|
static const int kWeakNextOffset = kByteLengthOffset + kPointerSize;
|
|
static const int kViewSize = kWeakNextOffset + kPointerSize;
|
|
|
|
protected:
|
|
void NeuterView();
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBufferView);
|
|
};
|
|
|
|
|
|
class JSTypedArray: public JSArrayBufferView {
|
|
public:
|
|
// [length]: length of typed array in elements.
|
|
DECL_ACCESSORS(length, Object)
|
|
|
|
// Neutering. Only neuters this typed array.
|
|
void Neuter();
|
|
|
|
DECLARE_CAST(JSTypedArray)
|
|
|
|
ExternalArrayType type();
|
|
size_t element_size();
|
|
|
|
Handle<JSArrayBuffer> GetBuffer();
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSTypedArray)
|
|
DECLARE_VERIFIER(JSTypedArray)
|
|
|
|
static const int kLengthOffset = kViewSize + kPointerSize;
|
|
static const int kSize = kLengthOffset + kPointerSize;
|
|
|
|
static const int kSizeWithInternalFields =
|
|
kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize;
|
|
|
|
private:
|
|
static Handle<JSArrayBuffer> MaterializeArrayBuffer(
|
|
Handle<JSTypedArray> typed_array);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSTypedArray);
|
|
};
|
|
|
|
|
|
class JSDataView: public JSArrayBufferView {
|
|
public:
|
|
// Only neuters this DataView
|
|
void Neuter();
|
|
|
|
DECLARE_CAST(JSDataView)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSDataView)
|
|
DECLARE_VERIFIER(JSDataView)
|
|
|
|
static const int kSize = kViewSize;
|
|
|
|
static const int kSizeWithInternalFields =
|
|
kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSDataView);
|
|
};
|
|
|
|
|
|
// Foreign describes objects pointing from JavaScript to C structures.
|
|
// Since they cannot contain references to JS HeapObjects they can be
|
|
// placed in old_data_space.
|
|
class Foreign: public HeapObject {
|
|
public:
|
|
// [address]: field containing the address.
|
|
inline Address foreign_address();
|
|
inline void set_foreign_address(Address value);
|
|
|
|
DECLARE_CAST(Foreign)
|
|
|
|
// Dispatched behavior.
|
|
inline void ForeignIterateBody(ObjectVisitor* v);
|
|
|
|
template<typename StaticVisitor>
|
|
inline void ForeignIterateBody();
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(Foreign)
|
|
DECLARE_VERIFIER(Foreign)
|
|
|
|
// Layout description.
|
|
|
|
static const int kForeignAddressOffset = HeapObject::kHeaderSize;
|
|
static const int kSize = kForeignAddressOffset + kPointerSize;
|
|
|
|
STATIC_ASSERT(kForeignAddressOffset == Internals::kForeignAddressOffset);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Foreign);
|
|
};
|
|
|
|
|
|
// The JSArray describes JavaScript Arrays
|
|
// Such an array can be in one of two modes:
|
|
// - fast, backing storage is a FixedArray and length <= elements.length();
|
|
// Please note: push and pop can be used to grow and shrink the array.
|
|
// - slow, backing storage is a HashTable with numbers as keys.
|
|
class JSArray: public JSObject {
|
|
public:
|
|
// [length]: The length property.
|
|
DECL_ACCESSORS(length, Object)
|
|
|
|
// Overload the length setter to skip write barrier when the length
|
|
// is set to a smi. This matches the set function on FixedArray.
|
|
inline void set_length(Smi* length);
|
|
|
|
static void JSArrayUpdateLengthFromIndex(Handle<JSArray> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
static bool HasReadOnlyLength(Handle<JSArray> array);
|
|
static bool WouldChangeReadOnlyLength(Handle<JSArray> array, uint32_t index);
|
|
static MaybeHandle<Object> ReadOnlyLengthError(Handle<JSArray> array);
|
|
|
|
// TODO(adamk): Remove this method in favor of HasReadOnlyLength().
|
|
static bool IsReadOnlyLengthDescriptor(Handle<Map> jsarray_map);
|
|
|
|
// Initialize the array with the given capacity. The function may
|
|
// fail due to out-of-memory situations, but only if the requested
|
|
// capacity is non-zero.
|
|
static void Initialize(Handle<JSArray> array, int capacity, int length = 0);
|
|
|
|
// Initializes the array to a certain length.
|
|
inline bool AllowsSetElementsLength();
|
|
// Can cause GC.
|
|
MUST_USE_RESULT static MaybeHandle<Object> SetElementsLength(
|
|
Handle<JSArray> array,
|
|
Handle<Object> length);
|
|
|
|
// Set the content of the array to the content of storage.
|
|
static inline void SetContent(Handle<JSArray> array,
|
|
Handle<FixedArrayBase> storage);
|
|
|
|
DECLARE_CAST(JSArray)
|
|
|
|
// Ensures that the fixed array backing the JSArray has at
|
|
// least the stated size.
|
|
static inline void EnsureSize(Handle<JSArray> array,
|
|
int minimum_size_of_backing_fixed_array);
|
|
|
|
// Expand the fixed array backing of a fast-case JSArray to at least
|
|
// the requested size.
|
|
static void Expand(Handle<JSArray> array,
|
|
int minimum_size_of_backing_fixed_array);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSArray)
|
|
DECLARE_VERIFIER(JSArray)
|
|
|
|
// Number of element slots to pre-allocate for an empty array.
|
|
static const int kPreallocatedArrayElements = 4;
|
|
|
|
// Layout description.
|
|
static const int kLengthOffset = JSObject::kHeaderSize;
|
|
static const int kSize = kLengthOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
|
|
};
|
|
|
|
|
|
Handle<Object> CacheInitialJSArrayMaps(Handle<Context> native_context,
|
|
Handle<Map> initial_map);
|
|
|
|
|
|
// JSRegExpResult is just a JSArray with a specific initial map.
|
|
// This initial map adds in-object properties for "index" and "input"
|
|
// properties, as assigned by RegExp.prototype.exec, which allows
|
|
// faster creation of RegExp exec results.
|
|
// This class just holds constants used when creating the result.
|
|
// After creation the result must be treated as a JSArray in all regards.
|
|
class JSRegExpResult: public JSArray {
|
|
public:
|
|
// Offsets of object fields.
|
|
static const int kIndexOffset = JSArray::kSize;
|
|
static const int kInputOffset = kIndexOffset + kPointerSize;
|
|
static const int kSize = kInputOffset + kPointerSize;
|
|
// Indices of in-object properties.
|
|
static const int kIndexIndex = 0;
|
|
static const int kInputIndex = 1;
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSRegExpResult);
|
|
};
|
|
|
|
|
|
class AccessorInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(name, Object)
|
|
DECL_ACCESSORS(flag, Smi)
|
|
DECL_ACCESSORS(expected_receiver_type, Object)
|
|
|
|
inline bool all_can_read();
|
|
inline void set_all_can_read(bool value);
|
|
|
|
inline bool all_can_write();
|
|
inline void set_all_can_write(bool value);
|
|
|
|
inline PropertyAttributes property_attributes();
|
|
inline void set_property_attributes(PropertyAttributes attributes);
|
|
|
|
// Checks whether the given receiver is compatible with this accessor.
|
|
static bool IsCompatibleReceiverType(Isolate* isolate,
|
|
Handle<AccessorInfo> info,
|
|
Handle<HeapType> type);
|
|
inline bool IsCompatibleReceiver(Object* receiver);
|
|
|
|
DECLARE_CAST(AccessorInfo)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_VERIFIER(AccessorInfo)
|
|
|
|
// Append all descriptors to the array that are not already there.
|
|
// Return number added.
|
|
static int AppendUnique(Handle<Object> descriptors,
|
|
Handle<FixedArray> array,
|
|
int valid_descriptors);
|
|
|
|
static const int kNameOffset = HeapObject::kHeaderSize;
|
|
static const int kFlagOffset = kNameOffset + kPointerSize;
|
|
static const int kExpectedReceiverTypeOffset = kFlagOffset + kPointerSize;
|
|
static const int kSize = kExpectedReceiverTypeOffset + kPointerSize;
|
|
|
|
private:
|
|
inline bool HasExpectedReceiverType() {
|
|
return expected_receiver_type()->IsFunctionTemplateInfo();
|
|
}
|
|
// Bit positions in flag.
|
|
static const int kAllCanReadBit = 0;
|
|
static const int kAllCanWriteBit = 1;
|
|
class AttributesField: public BitField<PropertyAttributes, 2, 3> {};
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
|
|
};
|
|
|
|
|
|
// An accessor must have a getter, but can have no setter.
|
|
//
|
|
// When setting a property, V8 searches accessors in prototypes.
|
|
// If an accessor was found and it does not have a setter,
|
|
// the request is ignored.
|
|
//
|
|
// If the accessor in the prototype has the READ_ONLY property attribute, then
|
|
// a new value is added to the derived object when the property is set.
|
|
// This shadows the accessor in the prototype.
|
|
class ExecutableAccessorInfo: public AccessorInfo {
|
|
public:
|
|
DECL_ACCESSORS(getter, Object)
|
|
DECL_ACCESSORS(setter, Object)
|
|
DECL_ACCESSORS(data, Object)
|
|
|
|
DECLARE_CAST(ExecutableAccessorInfo)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExecutableAccessorInfo)
|
|
DECLARE_VERIFIER(ExecutableAccessorInfo)
|
|
|
|
static const int kGetterOffset = AccessorInfo::kSize;
|
|
static const int kSetterOffset = kGetterOffset + kPointerSize;
|
|
static const int kDataOffset = kSetterOffset + kPointerSize;
|
|
static const int kSize = kDataOffset + kPointerSize;
|
|
|
|
inline void clear_setter();
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExecutableAccessorInfo);
|
|
};
|
|
|
|
|
|
// Support for JavaScript accessors: A pair of a getter and a setter. Each
|
|
// accessor can either be
|
|
// * a pointer to a JavaScript function or proxy: a real accessor
|
|
// * undefined: considered an accessor by the spec, too, strangely enough
|
|
// * the hole: an accessor which has not been set
|
|
// * a pointer to a map: a transition used to ensure map sharing
|
|
class AccessorPair: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(getter, Object)
|
|
DECL_ACCESSORS(setter, Object)
|
|
|
|
DECLARE_CAST(AccessorPair)
|
|
|
|
static Handle<AccessorPair> Copy(Handle<AccessorPair> pair);
|
|
|
|
Object* get(AccessorComponent component) {
|
|
return component == ACCESSOR_GETTER ? getter() : setter();
|
|
}
|
|
|
|
void set(AccessorComponent component, Object* value) {
|
|
if (component == ACCESSOR_GETTER) {
|
|
set_getter(value);
|
|
} else {
|
|
set_setter(value);
|
|
}
|
|
}
|
|
|
|
// Note: Returns undefined instead in case of a hole.
|
|
Object* GetComponent(AccessorComponent component);
|
|
|
|
// Set both components, skipping arguments which are a JavaScript null.
|
|
void SetComponents(Object* getter, Object* setter) {
|
|
if (!getter->IsNull()) set_getter(getter);
|
|
if (!setter->IsNull()) set_setter(setter);
|
|
}
|
|
|
|
bool ContainsAccessor() {
|
|
return IsJSAccessor(getter()) || IsJSAccessor(setter());
|
|
}
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(AccessorPair)
|
|
DECLARE_VERIFIER(AccessorPair)
|
|
|
|
static const int kGetterOffset = HeapObject::kHeaderSize;
|
|
static const int kSetterOffset = kGetterOffset + kPointerSize;
|
|
static const int kSize = kSetterOffset + kPointerSize;
|
|
|
|
private:
|
|
// Strangely enough, in addition to functions and harmony proxies, the spec
|
|
// requires us to consider undefined as a kind of accessor, too:
|
|
// var obj = {};
|
|
// Object.defineProperty(obj, "foo", {get: undefined});
|
|
// assertTrue("foo" in obj);
|
|
bool IsJSAccessor(Object* obj) {
|
|
return obj->IsSpecFunction() || obj->IsUndefined();
|
|
}
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorPair);
|
|
};
|
|
|
|
|
|
class AccessCheckInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(named_callback, Object)
|
|
DECL_ACCESSORS(indexed_callback, Object)
|
|
DECL_ACCESSORS(data, Object)
|
|
|
|
DECLARE_CAST(AccessCheckInfo)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(AccessCheckInfo)
|
|
DECLARE_VERIFIER(AccessCheckInfo)
|
|
|
|
static const int kNamedCallbackOffset = HeapObject::kHeaderSize;
|
|
static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
|
|
static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
|
|
static const int kSize = kDataOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
|
|
};
|
|
|
|
|
|
class InterceptorInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(getter, Object)
|
|
DECL_ACCESSORS(setter, Object)
|
|
DECL_ACCESSORS(query, Object)
|
|
DECL_ACCESSORS(deleter, Object)
|
|
DECL_ACCESSORS(enumerator, Object)
|
|
DECL_ACCESSORS(data, Object)
|
|
DECL_BOOLEAN_ACCESSORS(can_intercept_symbols)
|
|
|
|
inline int flags() const;
|
|
inline void set_flags(int flags);
|
|
|
|
DECLARE_CAST(InterceptorInfo)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(InterceptorInfo)
|
|
DECLARE_VERIFIER(InterceptorInfo)
|
|
|
|
static const int kGetterOffset = HeapObject::kHeaderSize;
|
|
static const int kSetterOffset = kGetterOffset + kPointerSize;
|
|
static const int kQueryOffset = kSetterOffset + kPointerSize;
|
|
static const int kDeleterOffset = kQueryOffset + kPointerSize;
|
|
static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
|
|
static const int kDataOffset = kEnumeratorOffset + kPointerSize;
|
|
static const int kFlagsOffset = kDataOffset + kPointerSize;
|
|
static const int kSize = kFlagsOffset + kPointerSize;
|
|
|
|
static const int kCanInterceptSymbolsBit = 0;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
|
|
};
|
|
|
|
|
|
class CallHandlerInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(callback, Object)
|
|
DECL_ACCESSORS(data, Object)
|
|
|
|
DECLARE_CAST(CallHandlerInfo)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(CallHandlerInfo)
|
|
DECLARE_VERIFIER(CallHandlerInfo)
|
|
|
|
static const int kCallbackOffset = HeapObject::kHeaderSize;
|
|
static const int kDataOffset = kCallbackOffset + kPointerSize;
|
|
static const int kSize = kDataOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
|
|
};
|
|
|
|
|
|
class TemplateInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(tag, Object)
|
|
DECL_ACCESSORS(property_list, Object)
|
|
DECL_ACCESSORS(property_accessors, Object)
|
|
|
|
DECLARE_VERIFIER(TemplateInfo)
|
|
|
|
static const int kTagOffset = HeapObject::kHeaderSize;
|
|
static const int kPropertyListOffset = kTagOffset + kPointerSize;
|
|
static const int kPropertyAccessorsOffset =
|
|
kPropertyListOffset + kPointerSize;
|
|
static const int kHeaderSize = kPropertyAccessorsOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
|
|
};
|
|
|
|
|
|
class FunctionTemplateInfo: public TemplateInfo {
|
|
public:
|
|
DECL_ACCESSORS(serial_number, Object)
|
|
DECL_ACCESSORS(call_code, Object)
|
|
DECL_ACCESSORS(prototype_template, Object)
|
|
DECL_ACCESSORS(parent_template, Object)
|
|
DECL_ACCESSORS(named_property_handler, Object)
|
|
DECL_ACCESSORS(indexed_property_handler, Object)
|
|
DECL_ACCESSORS(instance_template, Object)
|
|
DECL_ACCESSORS(class_name, Object)
|
|
DECL_ACCESSORS(signature, Object)
|
|
DECL_ACCESSORS(instance_call_handler, Object)
|
|
DECL_ACCESSORS(access_check_info, Object)
|
|
DECL_ACCESSORS(flag, Smi)
|
|
|
|
inline int length() const;
|
|
inline void set_length(int value);
|
|
|
|
// Following properties use flag bits.
|
|
DECL_BOOLEAN_ACCESSORS(hidden_prototype)
|
|
DECL_BOOLEAN_ACCESSORS(undetectable)
|
|
// If the bit is set, object instances created by this function
|
|
// requires access check.
|
|
DECL_BOOLEAN_ACCESSORS(needs_access_check)
|
|
DECL_BOOLEAN_ACCESSORS(read_only_prototype)
|
|
DECL_BOOLEAN_ACCESSORS(remove_prototype)
|
|
DECL_BOOLEAN_ACCESSORS(do_not_cache)
|
|
|
|
DECLARE_CAST(FunctionTemplateInfo)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(FunctionTemplateInfo)
|
|
DECLARE_VERIFIER(FunctionTemplateInfo)
|
|
|
|
static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
|
|
static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
|
|
static const int kPrototypeTemplateOffset =
|
|
kCallCodeOffset + kPointerSize;
|
|
static const int kParentTemplateOffset =
|
|
kPrototypeTemplateOffset + kPointerSize;
|
|
static const int kNamedPropertyHandlerOffset =
|
|
kParentTemplateOffset + kPointerSize;
|
|
static const int kIndexedPropertyHandlerOffset =
|
|
kNamedPropertyHandlerOffset + kPointerSize;
|
|
static const int kInstanceTemplateOffset =
|
|
kIndexedPropertyHandlerOffset + kPointerSize;
|
|
static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
|
|
static const int kSignatureOffset = kClassNameOffset + kPointerSize;
|
|
static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
|
|
static const int kAccessCheckInfoOffset =
|
|
kInstanceCallHandlerOffset + kPointerSize;
|
|
static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
|
|
static const int kLengthOffset = kFlagOffset + kPointerSize;
|
|
static const int kSize = kLengthOffset + kPointerSize;
|
|
|
|
// Returns true if |object| is an instance of this function template.
|
|
bool IsTemplateFor(Object* object);
|
|
bool IsTemplateFor(Map* map);
|
|
|
|
private:
|
|
// Bit position in the flag, from least significant bit position.
|
|
static const int kHiddenPrototypeBit = 0;
|
|
static const int kUndetectableBit = 1;
|
|
static const int kNeedsAccessCheckBit = 2;
|
|
static const int kReadOnlyPrototypeBit = 3;
|
|
static const int kRemovePrototypeBit = 4;
|
|
static const int kDoNotCacheBit = 5;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
|
|
};
|
|
|
|
|
|
class ObjectTemplateInfo: public TemplateInfo {
|
|
public:
|
|
DECL_ACCESSORS(constructor, Object)
|
|
DECL_ACCESSORS(internal_field_count, Object)
|
|
|
|
DECLARE_CAST(ObjectTemplateInfo)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ObjectTemplateInfo)
|
|
DECLARE_VERIFIER(ObjectTemplateInfo)
|
|
|
|
static const int kConstructorOffset = TemplateInfo::kHeaderSize;
|
|
static const int kInternalFieldCountOffset =
|
|
kConstructorOffset + kPointerSize;
|
|
static const int kSize = kInternalFieldCountOffset + kPointerSize;
|
|
};
|
|
|
|
|
|
class TypeSwitchInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(types, Object)
|
|
|
|
DECLARE_CAST(TypeSwitchInfo)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(TypeSwitchInfo)
|
|
DECLARE_VERIFIER(TypeSwitchInfo)
|
|
|
|
static const int kTypesOffset = Struct::kHeaderSize;
|
|
static const int kSize = kTypesOffset + kPointerSize;
|
|
};
|
|
|
|
|
|
// The DebugInfo class holds additional information for a function being
|
|
// debugged.
|
|
class DebugInfo: public Struct {
|
|
public:
|
|
// The shared function info for the source being debugged.
|
|
DECL_ACCESSORS(shared, SharedFunctionInfo)
|
|
// Code object for the original code.
|
|
DECL_ACCESSORS(original_code, Code)
|
|
// Code object for the patched code. This code object is the code object
|
|
// currently active for the function.
|
|
DECL_ACCESSORS(code, Code)
|
|
// Fixed array holding status information for each active break point.
|
|
DECL_ACCESSORS(break_points, FixedArray)
|
|
|
|
// Check if there is a break point at a code position.
|
|
bool HasBreakPoint(int code_position);
|
|
// Get the break point info object for a code position.
|
|
Object* GetBreakPointInfo(int code_position);
|
|
// Clear a break point.
|
|
static void ClearBreakPoint(Handle<DebugInfo> debug_info,
|
|
int code_position,
|
|
Handle<Object> break_point_object);
|
|
// Set a break point.
|
|
static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
|
|
int source_position, int statement_position,
|
|
Handle<Object> break_point_object);
|
|
// Get the break point objects for a code position.
|
|
Object* GetBreakPointObjects(int code_position);
|
|
// Find the break point info holding this break point object.
|
|
static Object* FindBreakPointInfo(Handle<DebugInfo> debug_info,
|
|
Handle<Object> break_point_object);
|
|
// Get the number of break points for this function.
|
|
int GetBreakPointCount();
|
|
|
|
DECLARE_CAST(DebugInfo)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(DebugInfo)
|
|
DECLARE_VERIFIER(DebugInfo)
|
|
|
|
static const int kSharedFunctionInfoIndex = Struct::kHeaderSize;
|
|
static const int kOriginalCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
|
|
static const int kPatchedCodeIndex = kOriginalCodeIndex + kPointerSize;
|
|
static const int kActiveBreakPointsCountIndex =
|
|
kPatchedCodeIndex + kPointerSize;
|
|
static const int kBreakPointsStateIndex =
|
|
kActiveBreakPointsCountIndex + kPointerSize;
|
|
static const int kSize = kBreakPointsStateIndex + kPointerSize;
|
|
|
|
static const int kEstimatedNofBreakPointsInFunction = 16;
|
|
|
|
private:
|
|
static const int kNoBreakPointInfo = -1;
|
|
|
|
// Lookup the index in the break_points array for a code position.
|
|
int GetBreakPointInfoIndex(int code_position);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
|
|
};
|
|
|
|
|
|
// The BreakPointInfo class holds information for break points set in a
|
|
// function. The DebugInfo object holds a BreakPointInfo object for each code
|
|
// position with one or more break points.
|
|
class BreakPointInfo: public Struct {
|
|
public:
|
|
// The position in the code for the break point.
|
|
DECL_ACCESSORS(code_position, Smi)
|
|
// The position in the source for the break position.
|
|
DECL_ACCESSORS(source_position, Smi)
|
|
// The position in the source for the last statement before this break
|
|
// position.
|
|
DECL_ACCESSORS(statement_position, Smi)
|
|
// List of related JavaScript break points.
|
|
DECL_ACCESSORS(break_point_objects, Object)
|
|
|
|
// Removes a break point.
|
|
static void ClearBreakPoint(Handle<BreakPointInfo> info,
|
|
Handle<Object> break_point_object);
|
|
// Set a break point.
|
|
static void SetBreakPoint(Handle<BreakPointInfo> info,
|
|
Handle<Object> break_point_object);
|
|
// Check if break point info has this break point object.
|
|
static bool HasBreakPointObject(Handle<BreakPointInfo> info,
|
|
Handle<Object> break_point_object);
|
|
// Get the number of break points for this code position.
|
|
int GetBreakPointCount();
|
|
|
|
DECLARE_CAST(BreakPointInfo)
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(BreakPointInfo)
|
|
DECLARE_VERIFIER(BreakPointInfo)
|
|
|
|
static const int kCodePositionIndex = Struct::kHeaderSize;
|
|
static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
|
|
static const int kStatementPositionIndex =
|
|
kSourcePositionIndex + kPointerSize;
|
|
static const int kBreakPointObjectsIndex =
|
|
kStatementPositionIndex + kPointerSize;
|
|
static const int kSize = kBreakPointObjectsIndex + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
|
|
};
|
|
|
|
|
|
#undef DECL_BOOLEAN_ACCESSORS
|
|
#undef DECL_ACCESSORS
|
|
#undef DECLARE_CAST
|
|
#undef DECLARE_VERIFIER
|
|
|
|
#define VISITOR_SYNCHRONIZATION_TAGS_LIST(V) \
|
|
V(kStringTable, "string_table", "(Internalized strings)") \
|
|
V(kExternalStringsTable, "external_strings_table", "(External strings)") \
|
|
V(kStrongRootList, "strong_root_list", "(Strong roots)") \
|
|
V(kSmiRootList, "smi_root_list", "(Smi roots)") \
|
|
V(kInternalizedString, "internalized_string", "(Internal string)") \
|
|
V(kBootstrapper, "bootstrapper", "(Bootstrapper)") \
|
|
V(kTop, "top", "(Isolate)") \
|
|
V(kRelocatable, "relocatable", "(Relocatable)") \
|
|
V(kDebug, "debug", "(Debugger)") \
|
|
V(kCompilationCache, "compilationcache", "(Compilation cache)") \
|
|
V(kHandleScope, "handlescope", "(Handle scope)") \
|
|
V(kBuiltins, "builtins", "(Builtins)") \
|
|
V(kGlobalHandles, "globalhandles", "(Global handles)") \
|
|
V(kEternalHandles, "eternalhandles", "(Eternal handles)") \
|
|
V(kThreadManager, "threadmanager", "(Thread manager)") \
|
|
V(kExtensions, "Extensions", "(Extensions)")
|
|
|
|
class VisitorSynchronization : public AllStatic {
|
|
public:
|
|
#define DECLARE_ENUM(enum_item, ignore1, ignore2) enum_item,
|
|
enum SyncTag {
|
|
VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_ENUM)
|
|
kNumberOfSyncTags
|
|
};
|
|
#undef DECLARE_ENUM
|
|
|
|
static const char* const kTags[kNumberOfSyncTags];
|
|
static const char* const kTagNames[kNumberOfSyncTags];
|
|
};
|
|
|
|
// Abstract base class for visiting, and optionally modifying, the
|
|
// pointers contained in Objects. Used in GC and serialization/deserialization.
|
|
class ObjectVisitor BASE_EMBEDDED {
|
|
public:
|
|
virtual ~ObjectVisitor() {}
|
|
|
|
// Visits a contiguous arrays of pointers in the half-open range
|
|
// [start, end). Any or all of the values may be modified on return.
|
|
virtual void VisitPointers(Object** start, Object** end) = 0;
|
|
|
|
// Handy shorthand for visiting a single pointer.
|
|
virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }
|
|
|
|
// Visit weak next_code_link in Code object.
|
|
virtual void VisitNextCodeLink(Object** p) { VisitPointers(p, p + 1); }
|
|
|
|
// To allow lazy clearing of inline caches the visitor has
|
|
// a rich interface for iterating over Code objects..
|
|
|
|
// Visits a code target in the instruction stream.
|
|
virtual void VisitCodeTarget(RelocInfo* rinfo);
|
|
|
|
// Visits a code entry in a JS function.
|
|
virtual void VisitCodeEntry(Address entry_address);
|
|
|
|
// Visits a global property cell reference in the instruction stream.
|
|
virtual void VisitCell(RelocInfo* rinfo);
|
|
|
|
// Visits a runtime entry in the instruction stream.
|
|
virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}
|
|
|
|
// Visits the resource of an one-byte or two-byte string.
|
|
virtual void VisitExternalOneByteString(
|
|
v8::String::ExternalOneByteStringResource** resource) {}
|
|
virtual void VisitExternalTwoByteString(
|
|
v8::String::ExternalStringResource** resource) {}
|
|
|
|
// Visits a debug call target in the instruction stream.
|
|
virtual void VisitDebugTarget(RelocInfo* rinfo);
|
|
|
|
// Visits the byte sequence in a function's prologue that contains information
|
|
// about the code's age.
|
|
virtual void VisitCodeAgeSequence(RelocInfo* rinfo);
|
|
|
|
// Visit pointer embedded into a code object.
|
|
virtual void VisitEmbeddedPointer(RelocInfo* rinfo);
|
|
|
|
// Visits an external reference embedded into a code object.
|
|
virtual void VisitExternalReference(RelocInfo* rinfo);
|
|
|
|
// Visits an external reference. The value may be modified on return.
|
|
virtual void VisitExternalReference(Address* p) {}
|
|
|
|
// Visits a handle that has an embedder-assigned class ID.
|
|
virtual void VisitEmbedderReference(Object** p, uint16_t class_id) {}
|
|
|
|
// Intended for serialization/deserialization checking: insert, or
|
|
// check for the presence of, a tag at this position in the stream.
|
|
// Also used for marking up GC roots in heap snapshots.
|
|
virtual void Synchronize(VisitorSynchronization::SyncTag tag) {}
|
|
};
|
|
|
|
|
|
class StructBodyDescriptor : public
|
|
FlexibleBodyDescriptor<HeapObject::kHeaderSize> {
|
|
public:
|
|
static inline int SizeOf(Map* map, HeapObject* object) {
|
|
return map->instance_size();
|
|
}
|
|
};
|
|
|
|
|
|
// BooleanBit is a helper class for setting and getting a bit in an
|
|
// integer or Smi.
|
|
class BooleanBit : public AllStatic {
|
|
public:
|
|
static inline bool get(Smi* smi, int bit_position) {
|
|
return get(smi->value(), bit_position);
|
|
}
|
|
|
|
static inline bool get(int value, int bit_position) {
|
|
return (value & (1 << bit_position)) != 0;
|
|
}
|
|
|
|
static inline Smi* set(Smi* smi, int bit_position, bool v) {
|
|
return Smi::FromInt(set(smi->value(), bit_position, v));
|
|
}
|
|
|
|
static inline int set(int value, int bit_position, bool v) {
|
|
if (v) {
|
|
value |= (1 << bit_position);
|
|
} else {
|
|
value &= ~(1 << bit_position);
|
|
}
|
|
return value;
|
|
}
|
|
};
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_OBJECTS_H_
|