v8/test/unittests/compiler/effect-control-linearizer-unittest.cc
2016-04-25 04:29:23 +00:00

331 lines
11 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/effect-control-linearizer.h"
#include "src/compiler/access-builder.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/linkage.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/schedule.h"
#include "src/compiler/simplified-operator.h"
#include "test/unittests/compiler/graph-unittest.h"
#include "test/unittests/compiler/node-test-utils.h"
#include "test/unittests/test-utils.h"
#include "testing/gmock/include/gmock/gmock.h"
namespace v8 {
namespace internal {
namespace compiler {
class EffectControlLinearizerTest : public TypedGraphTest {
public:
EffectControlLinearizerTest()
: TypedGraphTest(3),
machine_(zone()),
javascript_(zone()),
simplified_(zone()),
jsgraph_(isolate(), graph(), common(), &javascript_, &simplified_,
&machine_) {}
JSGraph* jsgraph() { return &jsgraph_; }
SimplifiedOperatorBuilder* simplified() { return &simplified_; }
private:
MachineOperatorBuilder machine_;
JSOperatorBuilder javascript_;
SimplifiedOperatorBuilder simplified_;
JSGraph jsgraph_;
};
namespace {
BasicBlock* AddBlockToSchedule(Schedule* schedule) {
BasicBlock* block = schedule->NewBasicBlock();
block->set_rpo_number(static_cast<int32_t>(schedule->rpo_order()->size()));
schedule->rpo_order()->push_back(block);
return block;
}
} // namespace
TEST_F(EffectControlLinearizerTest, SimpleLoad) {
Schedule schedule(zone());
// Create the graph.
Node* heap_number = NumberConstant(0.5);
Node* load = graph()->NewNode(
simplified()->LoadField(AccessBuilder::ForHeapNumberValue()), heap_number,
graph()->start(), graph()->start());
Node* ret = graph()->NewNode(common()->Return(), load, graph()->start(),
graph()->start());
// Build the basic block structure.
BasicBlock* start = schedule.start();
schedule.rpo_order()->push_back(start);
start->set_rpo_number(0);
// Populate the basic blocks with nodes.
schedule.AddNode(start, graph()->start());
schedule.AddNode(start, heap_number);
schedule.AddNode(start, load);
schedule.AddReturn(start, ret);
// Run the state effect introducer.
EffectControlLinearizer introducer(jsgraph(), &schedule, zone());
introducer.Run();
EXPECT_THAT(load,
IsLoadField(AccessBuilder::ForHeapNumberValue(), heap_number,
graph()->start(), graph()->start()));
// The return should have reconnected effect edge to the load.
EXPECT_THAT(ret, IsReturn(load, load, graph()->start()));
}
TEST_F(EffectControlLinearizerTest, DiamondLoad) {
Schedule schedule(zone());
// Create the graph.
Node* branch =
graph()->NewNode(common()->Branch(), Int32Constant(0), graph()->start());
Node* if_true = graph()->NewNode(common()->IfTrue(), branch);
Node* heap_number = NumberConstant(0.5);
Node* vtrue = graph()->NewNode(
simplified()->LoadField(AccessBuilder::ForHeapNumberValue()), heap_number,
graph()->start(), if_true);
Node* if_false = graph()->NewNode(common()->IfFalse(), branch);
Node* vfalse = Float64Constant(2);
Node* merge = graph()->NewNode(common()->Merge(2), if_true, if_false);
Node* phi = graph()->NewNode(
common()->Phi(MachineRepresentation::kFloat64, 2), vtrue, vfalse, merge);
Node* ret =
graph()->NewNode(common()->Return(), phi, graph()->start(), merge);
// Build the basic block structure.
BasicBlock* start = schedule.start();
schedule.rpo_order()->push_back(start);
start->set_rpo_number(0);
BasicBlock* tblock = AddBlockToSchedule(&schedule);
BasicBlock* fblock = AddBlockToSchedule(&schedule);
BasicBlock* mblock = AddBlockToSchedule(&schedule);
// Populate the basic blocks with nodes.
schedule.AddNode(start, graph()->start());
schedule.AddBranch(start, branch, tblock, fblock);
schedule.AddNode(tblock, if_true);
schedule.AddNode(tblock, heap_number);
schedule.AddNode(tblock, vtrue);
schedule.AddGoto(tblock, mblock);
schedule.AddNode(fblock, if_false);
schedule.AddNode(fblock, vfalse);
schedule.AddGoto(fblock, mblock);
schedule.AddNode(mblock, merge);
schedule.AddNode(mblock, phi);
schedule.AddReturn(mblock, ret);
// Run the state effect introducer.
EffectControlLinearizer introducer(jsgraph(), &schedule, zone());
introducer.Run();
// The effect input to the return should be an effect phi with the
// newly introduced effectful change operators.
ASSERT_THAT(
ret, IsReturn(phi, IsEffectPhi(vtrue, graph()->start(), merge), merge));
}
TEST_F(EffectControlLinearizerTest, FloatingDiamondsControlWiring) {
Schedule schedule(zone());
// Create the graph and schedule. Roughly (omitting effects and unimportant
// nodes):
//
// BLOCK 0:
// r1: Start
// c1: Call
// b1: Branch(const0, s1)
// |
// +-------+------+
// | |
// BLOCK 1: BLOCK 2:
// t1: IfTrue(b1) f1: IfFalse(b1)
// | |
// +-------+------+
// |
// BLOCK 3:
// m1: Merge(t1, f1)
// c2: IfSuccess(c1)
// b2: Branch(const0 , s1)
// |
// +-------+------+
// | |
// BLOCK 4: BLOCK 5:
// t2: IfTrue(b2) f2:IfFalse(b2)
// | |
// +-------+------+
// |
// BLOCK 6:
// m2: Merge(t2, f2)
// r1: Return(c1, c2)
MachineType kMachineSignature[] = {MachineType::AnyTagged(),
MachineType::AnyTagged()};
LinkageLocation kLocationSignature[] = {LinkageLocation::ForRegister(0),
LinkageLocation::ForRegister(1)};
const CallDescriptor* kCallDescriptor = new (zone()) CallDescriptor(
CallDescriptor::kCallCodeObject, MachineType::AnyTagged(),
LinkageLocation::ForRegister(0),
new (zone()) MachineSignature(1, 1, kMachineSignature),
new (zone()) LocationSignature(1, 1, kLocationSignature), 0,
Operator::kNoProperties, 0, 0, CallDescriptor::kNoFlags);
Node* p0 = Parameter(0);
Node* p1 = Parameter(1);
Node* const0 = Int32Constant(0);
Node* call = graph()->NewNode(common()->Call(kCallDescriptor), p0, p1,
graph()->start(), graph()->start());
Node* if_success = graph()->NewNode(common()->IfSuccess(), call);
// First Floating diamond.
Node* branch1 =
graph()->NewNode(common()->Branch(), const0, graph()->start());
Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
Node* merge1 = graph()->NewNode(common()->Merge(2), if_true1, if_false1);
// Second floating diamond.
Node* branch2 =
graph()->NewNode(common()->Branch(), const0, graph()->start());
Node* if_true2 = graph()->NewNode(common()->IfTrue(), branch2);
Node* if_false2 = graph()->NewNode(common()->IfFalse(), branch2);
Node* merge2 = graph()->NewNode(common()->Merge(2), if_true2, if_false2);
Node* ret =
graph()->NewNode(common()->Return(), call, graph()->start(), if_success);
// Build the basic block structure.
BasicBlock* start = schedule.start();
schedule.rpo_order()->push_back(start);
start->set_rpo_number(0);
BasicBlock* t1block = AddBlockToSchedule(&schedule);
BasicBlock* f1block = AddBlockToSchedule(&schedule);
BasicBlock* m1block = AddBlockToSchedule(&schedule);
BasicBlock* t2block = AddBlockToSchedule(&schedule);
BasicBlock* f2block = AddBlockToSchedule(&schedule);
BasicBlock* m2block = AddBlockToSchedule(&schedule);
// Populate the basic blocks with nodes.
schedule.AddNode(start, graph()->start());
schedule.AddNode(start, p0);
schedule.AddNode(start, p1);
schedule.AddNode(start, const0);
schedule.AddNode(start, call);
schedule.AddBranch(start, branch1, t1block, f1block);
schedule.AddNode(t1block, if_true1);
schedule.AddGoto(t1block, m1block);
schedule.AddNode(f1block, if_false1);
schedule.AddGoto(f1block, m1block);
schedule.AddNode(m1block, merge1);
// The scheduler does not always put the IfSuccess node to the corresponding
// call's block, simulate that here.
schedule.AddNode(m1block, if_success);
schedule.AddBranch(m1block, branch2, t2block, f2block);
schedule.AddNode(t2block, if_true2);
schedule.AddGoto(t2block, m2block);
schedule.AddNode(f2block, if_false2);
schedule.AddGoto(f2block, m2block);
schedule.AddNode(m2block, merge2);
schedule.AddReturn(m2block, ret);
// Run the state effect introducer.
EffectControlLinearizer introducer(jsgraph(), &schedule, zone());
introducer.Run();
// The effect input to the return should be an effect phi with the
// newly introduced effectful change operators.
ASSERT_THAT(ret, IsReturn(call, call, merge2));
ASSERT_THAT(branch2, IsBranch(const0, merge1));
ASSERT_THAT(branch1, IsBranch(const0, if_success));
ASSERT_THAT(if_success, IsIfSuccess(call));
}
TEST_F(EffectControlLinearizerTest, LoopLoad) {
Schedule schedule(zone());
// Create the graph.
Node* loop = graph()->NewNode(common()->Loop(1), graph()->start());
Node* effect_phi =
graph()->NewNode(common()->EffectPhi(1), graph()->start(), loop);
Node* cond = Int32Constant(0);
Node* branch = graph()->NewNode(common()->Branch(), cond, loop);
Node* if_true = graph()->NewNode(common()->IfTrue(), branch);
Node* if_false = graph()->NewNode(common()->IfFalse(), branch);
loop->AppendInput(zone(), if_false);
NodeProperties::ChangeOp(loop, common()->Loop(2));
effect_phi->InsertInput(zone(), 1, effect_phi);
NodeProperties::ChangeOp(effect_phi, common()->EffectPhi(2));
Node* heap_number = NumberConstant(0.5);
Node* load = graph()->NewNode(
simplified()->LoadField(AccessBuilder::ForHeapNumberValue()), heap_number,
graph()->start(), loop);
Node* ret = graph()->NewNode(common()->Return(), load, effect_phi, if_true);
// Build the basic block structure.
BasicBlock* start = schedule.start();
schedule.rpo_order()->push_back(start);
start->set_rpo_number(0);
BasicBlock* lblock = AddBlockToSchedule(&schedule);
BasicBlock* fblock = AddBlockToSchedule(&schedule);
BasicBlock* rblock = AddBlockToSchedule(&schedule);
// Populate the basic blocks with nodes.
schedule.AddNode(start, graph()->start());
schedule.AddGoto(start, lblock);
schedule.AddNode(lblock, loop);
schedule.AddNode(lblock, effect_phi);
schedule.AddNode(lblock, heap_number);
schedule.AddNode(lblock, load);
schedule.AddNode(lblock, cond);
schedule.AddBranch(lblock, branch, rblock, fblock);
schedule.AddNode(fblock, if_false);
schedule.AddGoto(fblock, lblock);
schedule.AddNode(rblock, if_true);
schedule.AddReturn(rblock, ret);
// Run the state effect introducer.
EffectControlLinearizer introducer(jsgraph(), &schedule, zone());
introducer.Run();
ASSERT_THAT(ret, IsReturn(load, load, if_true));
EXPECT_THAT(load, IsLoadField(AccessBuilder::ForHeapNumberValue(),
heap_number, effect_phi, loop));
}
} // namespace compiler
} // namespace internal
} // namespace v8