v8/test/unittests/heap/spaces-unittest.cc
Leszek Swirski f1589bbe11 [offthread] Change OffThreadIsolate to LocalIsolate
This patch introduces a new LocalIsolate and LocalFactory, which use
LocalHeap and replace OffThreadIsolate and OffThreadFactory. This allows
us to remove those classes, as well as the related OffThreadSpace,
OffThreadLargeObjectSpace, OffThreadHeap, and OffThreadTransferHandle.
OffThreadLogger becomes LocalLogger.

LocalHeap behaves more like Heap than OffThreadHeap did, so this allows
us to additionally remove the concept of "Finish" and "Publish" that the
OffThreadIsolate had, and allows us to internalize strings directly with
the newly-concurrent string table (where the implementation can now move
to FactoryBase).

This patch also removes the off-thread support from the deserializer
entirely, as well as removing the LocalIsolateWrapper which allowed
run-time distinction between Isolate and OffThreadIsolate. LocalHeap
doesn't support the reservation model used by the deserializer, and we
will likely move the deserializer to use LocalIsolate unconditionally
once we figure out the details of how to do this.

Bug: chromium:1011762

Change-Id: I1a1a0a72952b19a8a4c167c11a863c153a1252fc
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2315990
Commit-Queue: Andreas Haas <ahaas@chromium.org>
Auto-Submit: Leszek Swirski <leszeks@chromium.org>
Reviewed-by: Andreas Haas <ahaas@chromium.org>
Reviewed-by: Ulan Degenbaev <ulan@chromium.org>
Reviewed-by: Jakob Gruber <jgruber@chromium.org>
Reviewed-by: Dominik Inführ <dinfuehr@chromium.org>
Cr-Commit-Position: refs/heads/master@{#69397}
2020-08-14 10:57:27 +00:00

298 lines
12 KiB
C++

// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/heap/spaces.h"
#include <memory>
#include "src/common/globals.h"
#include "src/execution/isolate.h"
#include "src/heap/heap-inl.h"
#include "src/heap/heap-write-barrier-inl.h"
#include "src/heap/heap.h"
#include "src/heap/large-spaces.h"
#include "src/heap/memory-chunk.h"
#include "src/heap/spaces-inl.h"
#include "test/unittests/test-utils.h"
namespace v8 {
namespace internal {
using SpacesTest = TestWithIsolate;
TEST_F(SpacesTest, CompactionSpaceMerge) {
Heap* heap = i_isolate()->heap();
OldSpace* old_space = heap->old_space();
EXPECT_TRUE(old_space != nullptr);
CompactionSpace* compaction_space =
new CompactionSpace(heap, OLD_SPACE, NOT_EXECUTABLE,
LocalSpaceKind::kCompactionSpaceForMarkCompact);
EXPECT_TRUE(compaction_space != nullptr);
for (Page* p : *old_space) {
// Unlink free lists from the main space to avoid reusing the memory for
// compaction spaces.
old_space->UnlinkFreeListCategories(p);
}
// Cannot loop until "Available()" since we initially have 0 bytes available
// and would thus neither grow, nor be able to allocate an object.
const int kNumObjects = 10;
const int kNumObjectsPerPage =
compaction_space->AreaSize() / kMaxRegularHeapObjectSize;
const int kExpectedPages =
(kNumObjects + kNumObjectsPerPage - 1) / kNumObjectsPerPage;
for (int i = 0; i < kNumObjects; i++) {
HeapObject object =
compaction_space->AllocateRawUnaligned(kMaxRegularHeapObjectSize)
.ToObjectChecked();
heap->CreateFillerObjectAt(object.address(), kMaxRegularHeapObjectSize,
ClearRecordedSlots::kNo);
}
int pages_in_old_space = old_space->CountTotalPages();
int pages_in_compaction_space = compaction_space->CountTotalPages();
EXPECT_EQ(kExpectedPages, pages_in_compaction_space);
old_space->MergeLocalSpace(compaction_space);
EXPECT_EQ(pages_in_old_space + pages_in_compaction_space,
old_space->CountTotalPages());
delete compaction_space;
}
TEST_F(SpacesTest, WriteBarrierFromHeapObject) {
constexpr Address address1 = Page::kPageSize;
HeapObject object1 = HeapObject::unchecked_cast(Object(address1));
BasicMemoryChunk* chunk1 = BasicMemoryChunk::FromHeapObject(object1);
heap_internals::MemoryChunk* slim_chunk1 =
heap_internals::MemoryChunk::FromHeapObject(object1);
EXPECT_EQ(static_cast<void*>(chunk1), static_cast<void*>(slim_chunk1));
constexpr Address address2 = 2 * Page::kPageSize - 1;
HeapObject object2 = HeapObject::unchecked_cast(Object(address2));
BasicMemoryChunk* chunk2 = BasicMemoryChunk::FromHeapObject(object2);
heap_internals::MemoryChunk* slim_chunk2 =
heap_internals::MemoryChunk::FromHeapObject(object2);
EXPECT_EQ(static_cast<void*>(chunk2), static_cast<void*>(slim_chunk2));
}
TEST_F(SpacesTest, WriteBarrierIsMarking) {
const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk);
char memory[kSizeOfMemoryChunk];
memset(&memory, 0, kSizeOfMemoryChunk);
MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory);
heap_internals::MemoryChunk* slim_chunk =
reinterpret_cast<heap_internals::MemoryChunk*>(&memory);
EXPECT_FALSE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING));
EXPECT_FALSE(slim_chunk->IsMarking());
chunk->SetFlag(MemoryChunk::INCREMENTAL_MARKING);
EXPECT_TRUE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING));
EXPECT_TRUE(slim_chunk->IsMarking());
chunk->ClearFlag(MemoryChunk::INCREMENTAL_MARKING);
EXPECT_FALSE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING));
EXPECT_FALSE(slim_chunk->IsMarking());
}
TEST_F(SpacesTest, WriteBarrierInYoungGenerationToSpace) {
const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk);
char memory[kSizeOfMemoryChunk];
memset(&memory, 0, kSizeOfMemoryChunk);
MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory);
heap_internals::MemoryChunk* slim_chunk =
reinterpret_cast<heap_internals::MemoryChunk*>(&memory);
EXPECT_FALSE(chunk->InYoungGeneration());
EXPECT_FALSE(slim_chunk->InYoungGeneration());
chunk->SetFlag(MemoryChunk::TO_PAGE);
EXPECT_TRUE(chunk->InYoungGeneration());
EXPECT_TRUE(slim_chunk->InYoungGeneration());
chunk->ClearFlag(MemoryChunk::TO_PAGE);
EXPECT_FALSE(chunk->InYoungGeneration());
EXPECT_FALSE(slim_chunk->InYoungGeneration());
}
TEST_F(SpacesTest, WriteBarrierInYoungGenerationFromSpace) {
const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk);
char memory[kSizeOfMemoryChunk];
memset(&memory, 0, kSizeOfMemoryChunk);
MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory);
heap_internals::MemoryChunk* slim_chunk =
reinterpret_cast<heap_internals::MemoryChunk*>(&memory);
EXPECT_FALSE(chunk->InYoungGeneration());
EXPECT_FALSE(slim_chunk->InYoungGeneration());
chunk->SetFlag(MemoryChunk::FROM_PAGE);
EXPECT_TRUE(chunk->InYoungGeneration());
EXPECT_TRUE(slim_chunk->InYoungGeneration());
chunk->ClearFlag(MemoryChunk::FROM_PAGE);
EXPECT_FALSE(chunk->InYoungGeneration());
EXPECT_FALSE(slim_chunk->InYoungGeneration());
}
TEST_F(SpacesTest, CodeRangeAddressReuse) {
CodeRangeAddressHint hint;
// Create code ranges.
Address code_range1 = hint.GetAddressHint(100);
Address code_range2 = hint.GetAddressHint(200);
Address code_range3 = hint.GetAddressHint(100);
// Since the addresses are random, we cannot check that they are different.
// Free two code ranges.
hint.NotifyFreedCodeRange(code_range1, 100);
hint.NotifyFreedCodeRange(code_range2, 200);
// The next two code ranges should reuse the freed addresses.
Address code_range4 = hint.GetAddressHint(100);
EXPECT_EQ(code_range4, code_range1);
Address code_range5 = hint.GetAddressHint(200);
EXPECT_EQ(code_range5, code_range2);
// Free the third code range and check address reuse.
hint.NotifyFreedCodeRange(code_range3, 100);
Address code_range6 = hint.GetAddressHint(100);
EXPECT_EQ(code_range6, code_range3);
}
// Tests that FreeListMany::SelectFreeListCategoryType returns what it should.
TEST_F(SpacesTest, FreeListManySelectFreeListCategoryType) {
FreeListMany free_list;
// Testing that all sizes below 256 bytes get assigned the correct category
for (size_t size = 0; size <= FreeListMany::kPreciseCategoryMaxSize; size++) {
FreeListCategoryType cat = free_list.SelectFreeListCategoryType(size);
if (cat == 0) {
// If cat == 0, then we make sure that |size| doesn't fit in the 2nd
// category.
EXPECT_LT(size, free_list.categories_min[1]);
} else {
// Otherwise, size should fit in |cat|, but not in |cat+1|.
EXPECT_LE(free_list.categories_min[cat], size);
EXPECT_LT(size, free_list.categories_min[cat + 1]);
}
}
// Testing every size above 256 would take long time, so test only some
// "interesting cases": picking some number in the middle of the categories,
// as well as at the categories' bounds.
for (int cat = kFirstCategory + 1; cat <= free_list.last_category_; cat++) {
std::vector<size_t> sizes;
// Adding size less than this category's minimum
sizes.push_back(free_list.categories_min[cat] - 8);
// Adding size equal to this category's minimum
sizes.push_back(free_list.categories_min[cat]);
// Adding size greater than this category's minimum
sizes.push_back(free_list.categories_min[cat] + 8);
// Adding size between this category's minimum and the next category
if (cat != free_list.last_category_) {
sizes.push_back(
(free_list.categories_min[cat] + free_list.categories_min[cat + 1]) /
2);
}
for (size_t size : sizes) {
FreeListCategoryType cat = free_list.SelectFreeListCategoryType(size);
if (cat == free_list.last_category_) {
// If cat == last_category, then we make sure that |size| indeeds fits
// in the last category.
EXPECT_LE(free_list.categories_min[cat], size);
} else {
// Otherwise, size should fit in |cat|, but not in |cat+1|.
EXPECT_LE(free_list.categories_min[cat], size);
EXPECT_LT(size, free_list.categories_min[cat + 1]);
}
}
}
}
// Tests that FreeListMany::GuaranteedAllocatable returns what it should.
TEST_F(SpacesTest, FreeListManyGuaranteedAllocatable) {
FreeListMany free_list;
for (int cat = kFirstCategory; cat < free_list.last_category_; cat++) {
std::vector<size_t> sizes;
// Adding size less than this category's minimum
sizes.push_back(free_list.categories_min[cat] - 8);
// Adding size equal to this category's minimum
sizes.push_back(free_list.categories_min[cat]);
// Adding size greater than this category's minimum
sizes.push_back(free_list.categories_min[cat] + 8);
if (cat != free_list.last_category_) {
// Adding size between this category's minimum and the next category
sizes.push_back(
(free_list.categories_min[cat] + free_list.categories_min[cat + 1]) /
2);
}
for (size_t size : sizes) {
FreeListCategoryType cat_free =
free_list.SelectFreeListCategoryType(size);
size_t guaranteed_allocatable = free_list.GuaranteedAllocatable(size);
if (cat_free == free_list.last_category_) {
// If |cat_free| == last_category, then guaranteed_allocatable must
// return the last category, because when allocating, the last category
// is searched entirely.
EXPECT_EQ(free_list.SelectFreeListCategoryType(guaranteed_allocatable),
free_list.last_category_);
} else if (size < free_list.categories_min[0]) {
// If size < free_list.categories_min[0], then the bytes are wasted, and
// guaranteed_allocatable should return 0.
EXPECT_EQ(guaranteed_allocatable, 0ul);
} else {
// Otherwise, |guaranteed_allocatable| is equal to the minimum of
// |size|'s category (|cat_free|);
EXPECT_EQ(free_list.categories_min[cat_free], guaranteed_allocatable);
}
}
}
}
// Tests that
// FreeListManyCachedFastPath::SelectFastAllocationFreeListCategoryType returns
// what it should.
TEST_F(SpacesTest,
FreeListManyCachedFastPathSelectFastAllocationFreeListCategoryType) {
FreeListManyCachedFastPath free_list;
for (int cat = kFirstCategory; cat <= free_list.last_category_; cat++) {
std::vector<size_t> sizes;
// Adding size less than this category's minimum
sizes.push_back(free_list.categories_min[cat] - 8);
// Adding size equal to this category's minimum
sizes.push_back(free_list.categories_min[cat]);
// Adding size greater than this category's minimum
sizes.push_back(free_list.categories_min[cat] + 8);
// Adding size between this category's minimum and the next category
if (cat != free_list.last_category_) {
sizes.push_back(
(free_list.categories_min[cat] + free_list.categories_min[cat + 1]) /
2);
}
for (size_t size : sizes) {
FreeListCategoryType cat =
free_list.SelectFastAllocationFreeListCategoryType(size);
if (size <= FreeListManyCachedFastPath::kTinyObjectMaxSize) {
// For tiny objects, the first category of the fast path should be
// chosen.
EXPECT_TRUE(cat == FreeListManyCachedFastPath::kFastPathFirstCategory);
} else if (size >= free_list.categories_min[free_list.last_category_] -
FreeListManyCachedFastPath::kFastPathOffset) {
// For objects close to the minimum of the last category, the last
// category is chosen.
EXPECT_EQ(cat, free_list.last_category_);
} else {
// For other objects, the chosen category must satisfy that its minimum
// is at least |size|+1.85k.
EXPECT_GE(free_list.categories_min[cat],
size + FreeListManyCachedFastPath::kFastPathOffset);
// And the smaller categoriy's minimum is less than |size|+1.85k
// (otherwise it would have been chosen instead).
EXPECT_LT(free_list.categories_min[cat - 1],
size + FreeListManyCachedFastPath::kFastPathOffset);
}
}
}
}
} // namespace internal
} // namespace v8