v8/src/math.js

313 lines
9.7 KiB
JavaScript

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This file relies on the fact that the following declarations have been made
// in runtime.js:
// var $Object = global.Object;
// Keep reference to original values of some global properties. This
// has the added benefit that the code in this file is isolated from
// changes to these properties.
var $floor = MathFloor;
var $abs = MathAbs;
// Instance class name can only be set on functions. That is the only
// purpose for MathConstructor.
function MathConstructor() {}
var $Math = new MathConstructor();
// -------------------------------------------------------------------
// ECMA 262 - 15.8.2.1
function MathAbs(x) {
if (%_IsSmi(x)) return x >= 0 ? x : -x;
x = TO_NUMBER_INLINE(x);
if (x === 0) return 0; // To handle -0.
return x > 0 ? x : -x;
}
// ECMA 262 - 15.8.2.2
function MathAcos(x) {
return %MathAcos(TO_NUMBER_INLINE(x));
}
// ECMA 262 - 15.8.2.3
function MathAsin(x) {
return %MathAsin(TO_NUMBER_INLINE(x));
}
// ECMA 262 - 15.8.2.4
function MathAtan(x) {
return %MathAtan(TO_NUMBER_INLINE(x));
}
// ECMA 262 - 15.8.2.5
// The naming of y and x matches the spec, as does the order in which
// ToNumber (valueOf) is called.
function MathAtan2(y, x) {
return %MathAtan2(TO_NUMBER_INLINE(y), TO_NUMBER_INLINE(x));
}
// ECMA 262 - 15.8.2.6
function MathCeil(x) {
return -MathFloor(-x);
}
// ECMA 262 - 15.8.2.7
function MathCos(x) {
x = MathAbs(x); // Convert to number and get rid of -0.
return TrigonometricInterpolation(x, 1);
}
// ECMA 262 - 15.8.2.8
function MathExp(x) {
return %MathExp(TO_NUMBER_INLINE(x));
}
// ECMA 262 - 15.8.2.9
function MathFloor(x) {
x = TO_NUMBER_INLINE(x);
// It's more common to call this with a positive number that's out
// of range than negative numbers; check the upper bound first.
if (x < 0x80000000 && x > 0) {
// Numbers in the range [0, 2^31) can be floored by converting
// them to an unsigned 32-bit value using the shift operator.
// We avoid doing so for -0, because the result of Math.floor(-0)
// has to be -0, which wouldn't be the case with the shift.
return TO_UINT32(x);
} else {
return %MathFloor(x);
}
}
// ECMA 262 - 15.8.2.10
function MathLog(x) {
return %_MathLog(TO_NUMBER_INLINE(x));
}
// ECMA 262 - 15.8.2.11
function MathMax(arg1, arg2) { // length == 2
var length = %_ArgumentsLength();
if (length == 2) {
arg1 = TO_NUMBER_INLINE(arg1);
arg2 = TO_NUMBER_INLINE(arg2);
if (arg2 > arg1) return arg2;
if (arg1 > arg2) return arg1;
if (arg1 == arg2) {
// Make sure -0 is considered less than +0.
return (arg1 === 0 && %_IsMinusZero(arg1)) ? arg2 : arg1;
}
// All comparisons failed, one of the arguments must be NaN.
return NAN;
}
var r = -INFINITY;
for (var i = 0; i < length; i++) {
var n = %_Arguments(i);
if (!IS_NUMBER(n)) n = NonNumberToNumber(n);
// Make sure +0 is considered greater than -0.
if (NUMBER_IS_NAN(n) || n > r || (r === 0 && n === 0 && %_IsMinusZero(r))) {
r = n;
}
}
return r;
}
// ECMA 262 - 15.8.2.12
function MathMin(arg1, arg2) { // length == 2
var length = %_ArgumentsLength();
if (length == 2) {
arg1 = TO_NUMBER_INLINE(arg1);
arg2 = TO_NUMBER_INLINE(arg2);
if (arg2 > arg1) return arg1;
if (arg1 > arg2) return arg2;
if (arg1 == arg2) {
// Make sure -0 is considered less than +0.
return (arg1 === 0 && %_IsMinusZero(arg1)) ? arg1 : arg2;
}
// All comparisons failed, one of the arguments must be NaN.
return NAN;
}
var r = INFINITY;
for (var i = 0; i < length; i++) {
var n = %_Arguments(i);
if (!IS_NUMBER(n)) n = NonNumberToNumber(n);
// Make sure -0 is considered less than +0.
if (NUMBER_IS_NAN(n) || n < r || (r === 0 && n === 0 && %_IsMinusZero(n))) {
r = n;
}
}
return r;
}
// ECMA 262 - 15.8.2.13
function MathPow(x, y) {
return %_MathPow(TO_NUMBER_INLINE(x), TO_NUMBER_INLINE(y));
}
// ECMA 262 - 15.8.2.14
var rngstate; // Initialized to a Uint32Array during genesis.
function MathRandom() {
var r0 = (MathImul(18273, rngstate[0] & 0xFFFF) + (rngstate[0] >>> 16)) | 0;
rngstate[0] = r0;
var r1 = (MathImul(36969, rngstate[1] & 0xFFFF) + (rngstate[1] >>> 16)) | 0;
rngstate[1] = r1;
var x = ((r0 << 16) + (r1 & 0xFFFF)) | 0;
// Division by 0x100000000 through multiplication by reciprocal.
return (x < 0 ? (x + 0x100000000) : x) * 2.3283064365386962890625e-10;
}
// ECMA 262 - 15.8.2.15
function MathRound(x) {
return %RoundNumber(TO_NUMBER_INLINE(x));
}
// ECMA 262 - 15.8.2.16
function MathSin(x) {
x = x * 1; // Convert to number and deal with -0.
if (%_IsMinusZero(x)) return x;
return TrigonometricInterpolation(x, 0);
}
// ECMA 262 - 15.8.2.17
function MathSqrt(x) {
return %_MathSqrt(TO_NUMBER_INLINE(x));
}
// ECMA 262 - 15.8.2.18
function MathTan(x) {
return MathSin(x) / MathCos(x);
}
// Non-standard extension.
function MathImul(x, y) {
return %NumberImul(TO_NUMBER_INLINE(x), TO_NUMBER_INLINE(y));
}
var kInversePiHalf = 0.636619772367581343; // 2 / pi
var kInversePiHalfS26 = 9.48637384723993156e-9; // 2 / pi / (2^26)
var kS26 = 1 << 26;
var kTwoStepThreshold = 1 << 27;
// pi / 2 rounded up
var kPiHalf = 1.570796326794896780; // 0x192d4454fb21f93f
// We use two parts for pi/2 to emulate a higher precision.
// pi_half_1 only has 26 significant bits for mantissa.
// Note that pi_half > pi_half_1 + pi_half_2
var kPiHalf1 = 1.570796325802803040; // 0x00000054fb21f93f
var kPiHalf2 = 9.920935796805404252e-10; // 0x3326a611460b113e
var kSamples; // Initialized to a number during genesis.
var kIndexConvert; // Initialized to kSamples / (pi/2) during genesis.
var kSinTable; // Initialized to a Float64Array during genesis.
var kCosXIntervalTable; // Initialized to a Float64Array during genesis.
// This implements sine using the following algorithm.
// 1) Multiplication takes care of to-number conversion.
// 2) Reduce x to the first quadrant [0, pi/2].
// Conveniently enough, in case of +/-Infinity, we get NaN.
// Note that we try to use only 26 instead of 52 significant bits for
// mantissa to avoid rounding errors when multiplying. For very large
// input we therefore have additional steps.
// 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant.
// 4) Do a table lookup for the closest samples to the left and right of x.
// 5) Find the derivatives at those sampling points by table lookup:
// dsin(x)/dx = cos(x) = sin(pi/2-x) for x in [0, pi/2].
// 6) Use cubic spline interpolation to approximate sin(x).
// 7) Negate the result if x was in the 3rd or 4th quadrant.
// 8) Get rid of -0 by adding 0.
function TrigonometricInterpolation(x, phase) {
if (x < 0 || x > kPiHalf) {
var multiple;
while (x < -kTwoStepThreshold || x > kTwoStepThreshold) {
// Let's assume this loop does not terminate.
// All numbers x in each loop forms a set S.
// (1) abs(x) > 2^27 for all x in S.
// (2) abs(multiple) != 0 since (2^27 * inverse_pi_half_s26) > 1
// (3) multiple is rounded down in 2^26 steps, so the rounding error is
// at most max(ulp, 2^26).
// (4) so for x > 2^27, we subtract at most (1+pi/4)x and at least
// (1-pi/4)x
// (5) The subtraction results in x' so that abs(x') <= abs(x)*pi/4.
// Note that this difference cannot be simply rounded off.
// Set S cannot exist since (5) violates (1). Loop must terminate.
multiple = MathFloor(x * kInversePiHalfS26) * kS26;
x = x - multiple * kPiHalf1 - multiple * kPiHalf2;
}
multiple = MathFloor(x * kInversePiHalf);
x = x - multiple * kPiHalf1 - multiple * kPiHalf2;
phase += multiple;
}
var double_index = x * kIndexConvert;
if (phase & 1) double_index = kSamples - double_index;
var index = double_index | 0;
var t1 = double_index - index;
var t2 = 1 - t1;
var y1 = kSinTable[index];
var y2 = kSinTable[index + 1];
var dy = y2 - y1;
return (t2 * y1 + t1 * y2 +
t1 * t2 * ((kCosXIntervalTable[index] - dy) * t2 +
(dy - kCosXIntervalTable[index + 1]) * t1))
* (1 - (phase & 2)) + 0;
}
// -------------------------------------------------------------------
function SetUpMath() {
%CheckIsBootstrapping();
%SetPrototype($Math, $Object.prototype);
%SetProperty(global, "Math", $Math, DONT_ENUM);
%FunctionSetInstanceClassName(MathConstructor, 'Math');
// Set up math constants.
InstallConstants($Math, $Array(
// ECMA-262, section 15.8.1.1.
"E", 2.7182818284590452354,
// ECMA-262, section 15.8.1.2.
"LN10", 2.302585092994046,
// ECMA-262, section 15.8.1.3.
"LN2", 0.6931471805599453,
// ECMA-262, section 15.8.1.4.
"LOG2E", 1.4426950408889634,
"LOG10E", 0.4342944819032518,
"PI", 3.1415926535897932,
"SQRT1_2", 0.7071067811865476,
"SQRT2", 1.4142135623730951
));
// Set up non-enumerable functions of the Math object and
// set their names.
InstallFunctions($Math, DONT_ENUM, $Array(
"random", MathRandom,
"abs", MathAbs,
"acos", MathAcos,
"asin", MathAsin,
"atan", MathAtan,
"ceil", MathCeil,
"cos", MathCos,
"exp", MathExp,
"floor", MathFloor,
"log", MathLog,
"round", MathRound,
"sin", MathSin,
"sqrt", MathSqrt,
"tan", MathTan,
"atan2", MathAtan2,
"pow", MathPow,
"max", MathMax,
"min", MathMin,
"imul", MathImul
));
%SetInlineBuiltinFlag(MathCeil);
%SetInlineBuiltinFlag(MathRandom);
%SetInlineBuiltinFlag(MathSin);
%SetInlineBuiltinFlag(MathCos);
%SetInlineBuiltinFlag(MathTan);
%SetInlineBuiltinFlag(TrigonometricInterpolation);
}
SetUpMath();