d4b533d41b
R=svenpanne@chromium.org Review URL: https://codereview.chromium.org/259183002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@21035 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
313 lines
9.7 KiB
JavaScript
313 lines
9.7 KiB
JavaScript
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
// This file relies on the fact that the following declarations have been made
|
|
// in runtime.js:
|
|
// var $Object = global.Object;
|
|
|
|
// Keep reference to original values of some global properties. This
|
|
// has the added benefit that the code in this file is isolated from
|
|
// changes to these properties.
|
|
var $floor = MathFloor;
|
|
var $abs = MathAbs;
|
|
|
|
// Instance class name can only be set on functions. That is the only
|
|
// purpose for MathConstructor.
|
|
function MathConstructor() {}
|
|
var $Math = new MathConstructor();
|
|
|
|
// -------------------------------------------------------------------
|
|
|
|
// ECMA 262 - 15.8.2.1
|
|
function MathAbs(x) {
|
|
if (%_IsSmi(x)) return x >= 0 ? x : -x;
|
|
x = TO_NUMBER_INLINE(x);
|
|
if (x === 0) return 0; // To handle -0.
|
|
return x > 0 ? x : -x;
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.2
|
|
function MathAcos(x) {
|
|
return %MathAcos(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.3
|
|
function MathAsin(x) {
|
|
return %MathAsin(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.4
|
|
function MathAtan(x) {
|
|
return %MathAtan(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.5
|
|
// The naming of y and x matches the spec, as does the order in which
|
|
// ToNumber (valueOf) is called.
|
|
function MathAtan2(y, x) {
|
|
return %MathAtan2(TO_NUMBER_INLINE(y), TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.6
|
|
function MathCeil(x) {
|
|
return -MathFloor(-x);
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.7
|
|
function MathCos(x) {
|
|
x = MathAbs(x); // Convert to number and get rid of -0.
|
|
return TrigonometricInterpolation(x, 1);
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.8
|
|
function MathExp(x) {
|
|
return %MathExp(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.9
|
|
function MathFloor(x) {
|
|
x = TO_NUMBER_INLINE(x);
|
|
// It's more common to call this with a positive number that's out
|
|
// of range than negative numbers; check the upper bound first.
|
|
if (x < 0x80000000 && x > 0) {
|
|
// Numbers in the range [0, 2^31) can be floored by converting
|
|
// them to an unsigned 32-bit value using the shift operator.
|
|
// We avoid doing so for -0, because the result of Math.floor(-0)
|
|
// has to be -0, which wouldn't be the case with the shift.
|
|
return TO_UINT32(x);
|
|
} else {
|
|
return %MathFloor(x);
|
|
}
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.10
|
|
function MathLog(x) {
|
|
return %_MathLog(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.11
|
|
function MathMax(arg1, arg2) { // length == 2
|
|
var length = %_ArgumentsLength();
|
|
if (length == 2) {
|
|
arg1 = TO_NUMBER_INLINE(arg1);
|
|
arg2 = TO_NUMBER_INLINE(arg2);
|
|
if (arg2 > arg1) return arg2;
|
|
if (arg1 > arg2) return arg1;
|
|
if (arg1 == arg2) {
|
|
// Make sure -0 is considered less than +0.
|
|
return (arg1 === 0 && %_IsMinusZero(arg1)) ? arg2 : arg1;
|
|
}
|
|
// All comparisons failed, one of the arguments must be NaN.
|
|
return NAN;
|
|
}
|
|
var r = -INFINITY;
|
|
for (var i = 0; i < length; i++) {
|
|
var n = %_Arguments(i);
|
|
if (!IS_NUMBER(n)) n = NonNumberToNumber(n);
|
|
// Make sure +0 is considered greater than -0.
|
|
if (NUMBER_IS_NAN(n) || n > r || (r === 0 && n === 0 && %_IsMinusZero(r))) {
|
|
r = n;
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.12
|
|
function MathMin(arg1, arg2) { // length == 2
|
|
var length = %_ArgumentsLength();
|
|
if (length == 2) {
|
|
arg1 = TO_NUMBER_INLINE(arg1);
|
|
arg2 = TO_NUMBER_INLINE(arg2);
|
|
if (arg2 > arg1) return arg1;
|
|
if (arg1 > arg2) return arg2;
|
|
if (arg1 == arg2) {
|
|
// Make sure -0 is considered less than +0.
|
|
return (arg1 === 0 && %_IsMinusZero(arg1)) ? arg1 : arg2;
|
|
}
|
|
// All comparisons failed, one of the arguments must be NaN.
|
|
return NAN;
|
|
}
|
|
var r = INFINITY;
|
|
for (var i = 0; i < length; i++) {
|
|
var n = %_Arguments(i);
|
|
if (!IS_NUMBER(n)) n = NonNumberToNumber(n);
|
|
// Make sure -0 is considered less than +0.
|
|
if (NUMBER_IS_NAN(n) || n < r || (r === 0 && n === 0 && %_IsMinusZero(n))) {
|
|
r = n;
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.13
|
|
function MathPow(x, y) {
|
|
return %_MathPow(TO_NUMBER_INLINE(x), TO_NUMBER_INLINE(y));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.14
|
|
var rngstate; // Initialized to a Uint32Array during genesis.
|
|
function MathRandom() {
|
|
var r0 = (MathImul(18273, rngstate[0] & 0xFFFF) + (rngstate[0] >>> 16)) | 0;
|
|
rngstate[0] = r0;
|
|
var r1 = (MathImul(36969, rngstate[1] & 0xFFFF) + (rngstate[1] >>> 16)) | 0;
|
|
rngstate[1] = r1;
|
|
var x = ((r0 << 16) + (r1 & 0xFFFF)) | 0;
|
|
// Division by 0x100000000 through multiplication by reciprocal.
|
|
return (x < 0 ? (x + 0x100000000) : x) * 2.3283064365386962890625e-10;
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.15
|
|
function MathRound(x) {
|
|
return %RoundNumber(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.16
|
|
function MathSin(x) {
|
|
x = x * 1; // Convert to number and deal with -0.
|
|
if (%_IsMinusZero(x)) return x;
|
|
return TrigonometricInterpolation(x, 0);
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.17
|
|
function MathSqrt(x) {
|
|
return %_MathSqrt(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.18
|
|
function MathTan(x) {
|
|
return MathSin(x) / MathCos(x);
|
|
}
|
|
|
|
// Non-standard extension.
|
|
function MathImul(x, y) {
|
|
return %NumberImul(TO_NUMBER_INLINE(x), TO_NUMBER_INLINE(y));
|
|
}
|
|
|
|
|
|
var kInversePiHalf = 0.636619772367581343; // 2 / pi
|
|
var kInversePiHalfS26 = 9.48637384723993156e-9; // 2 / pi / (2^26)
|
|
var kS26 = 1 << 26;
|
|
var kTwoStepThreshold = 1 << 27;
|
|
// pi / 2 rounded up
|
|
var kPiHalf = 1.570796326794896780; // 0x192d4454fb21f93f
|
|
// We use two parts for pi/2 to emulate a higher precision.
|
|
// pi_half_1 only has 26 significant bits for mantissa.
|
|
// Note that pi_half > pi_half_1 + pi_half_2
|
|
var kPiHalf1 = 1.570796325802803040; // 0x00000054fb21f93f
|
|
var kPiHalf2 = 9.920935796805404252e-10; // 0x3326a611460b113e
|
|
|
|
var kSamples; // Initialized to a number during genesis.
|
|
var kIndexConvert; // Initialized to kSamples / (pi/2) during genesis.
|
|
var kSinTable; // Initialized to a Float64Array during genesis.
|
|
var kCosXIntervalTable; // Initialized to a Float64Array during genesis.
|
|
|
|
// This implements sine using the following algorithm.
|
|
// 1) Multiplication takes care of to-number conversion.
|
|
// 2) Reduce x to the first quadrant [0, pi/2].
|
|
// Conveniently enough, in case of +/-Infinity, we get NaN.
|
|
// Note that we try to use only 26 instead of 52 significant bits for
|
|
// mantissa to avoid rounding errors when multiplying. For very large
|
|
// input we therefore have additional steps.
|
|
// 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant.
|
|
// 4) Do a table lookup for the closest samples to the left and right of x.
|
|
// 5) Find the derivatives at those sampling points by table lookup:
|
|
// dsin(x)/dx = cos(x) = sin(pi/2-x) for x in [0, pi/2].
|
|
// 6) Use cubic spline interpolation to approximate sin(x).
|
|
// 7) Negate the result if x was in the 3rd or 4th quadrant.
|
|
// 8) Get rid of -0 by adding 0.
|
|
function TrigonometricInterpolation(x, phase) {
|
|
if (x < 0 || x > kPiHalf) {
|
|
var multiple;
|
|
while (x < -kTwoStepThreshold || x > kTwoStepThreshold) {
|
|
// Let's assume this loop does not terminate.
|
|
// All numbers x in each loop forms a set S.
|
|
// (1) abs(x) > 2^27 for all x in S.
|
|
// (2) abs(multiple) != 0 since (2^27 * inverse_pi_half_s26) > 1
|
|
// (3) multiple is rounded down in 2^26 steps, so the rounding error is
|
|
// at most max(ulp, 2^26).
|
|
// (4) so for x > 2^27, we subtract at most (1+pi/4)x and at least
|
|
// (1-pi/4)x
|
|
// (5) The subtraction results in x' so that abs(x') <= abs(x)*pi/4.
|
|
// Note that this difference cannot be simply rounded off.
|
|
// Set S cannot exist since (5) violates (1). Loop must terminate.
|
|
multiple = MathFloor(x * kInversePiHalfS26) * kS26;
|
|
x = x - multiple * kPiHalf1 - multiple * kPiHalf2;
|
|
}
|
|
multiple = MathFloor(x * kInversePiHalf);
|
|
x = x - multiple * kPiHalf1 - multiple * kPiHalf2;
|
|
phase += multiple;
|
|
}
|
|
var double_index = x * kIndexConvert;
|
|
if (phase & 1) double_index = kSamples - double_index;
|
|
var index = double_index | 0;
|
|
var t1 = double_index - index;
|
|
var t2 = 1 - t1;
|
|
var y1 = kSinTable[index];
|
|
var y2 = kSinTable[index + 1];
|
|
var dy = y2 - y1;
|
|
return (t2 * y1 + t1 * y2 +
|
|
t1 * t2 * ((kCosXIntervalTable[index] - dy) * t2 +
|
|
(dy - kCosXIntervalTable[index + 1]) * t1))
|
|
* (1 - (phase & 2)) + 0;
|
|
}
|
|
|
|
// -------------------------------------------------------------------
|
|
|
|
function SetUpMath() {
|
|
%CheckIsBootstrapping();
|
|
|
|
%SetPrototype($Math, $Object.prototype);
|
|
%SetProperty(global, "Math", $Math, DONT_ENUM);
|
|
%FunctionSetInstanceClassName(MathConstructor, 'Math');
|
|
|
|
// Set up math constants.
|
|
InstallConstants($Math, $Array(
|
|
// ECMA-262, section 15.8.1.1.
|
|
"E", 2.7182818284590452354,
|
|
// ECMA-262, section 15.8.1.2.
|
|
"LN10", 2.302585092994046,
|
|
// ECMA-262, section 15.8.1.3.
|
|
"LN2", 0.6931471805599453,
|
|
// ECMA-262, section 15.8.1.4.
|
|
"LOG2E", 1.4426950408889634,
|
|
"LOG10E", 0.4342944819032518,
|
|
"PI", 3.1415926535897932,
|
|
"SQRT1_2", 0.7071067811865476,
|
|
"SQRT2", 1.4142135623730951
|
|
));
|
|
|
|
// Set up non-enumerable functions of the Math object and
|
|
// set their names.
|
|
InstallFunctions($Math, DONT_ENUM, $Array(
|
|
"random", MathRandom,
|
|
"abs", MathAbs,
|
|
"acos", MathAcos,
|
|
"asin", MathAsin,
|
|
"atan", MathAtan,
|
|
"ceil", MathCeil,
|
|
"cos", MathCos,
|
|
"exp", MathExp,
|
|
"floor", MathFloor,
|
|
"log", MathLog,
|
|
"round", MathRound,
|
|
"sin", MathSin,
|
|
"sqrt", MathSqrt,
|
|
"tan", MathTan,
|
|
"atan2", MathAtan2,
|
|
"pow", MathPow,
|
|
"max", MathMax,
|
|
"min", MathMin,
|
|
"imul", MathImul
|
|
));
|
|
|
|
%SetInlineBuiltinFlag(MathCeil);
|
|
%SetInlineBuiltinFlag(MathRandom);
|
|
%SetInlineBuiltinFlag(MathSin);
|
|
%SetInlineBuiltinFlag(MathCos);
|
|
%SetInlineBuiltinFlag(MathTan);
|
|
%SetInlineBuiltinFlag(TrigonometricInterpolation);
|
|
}
|
|
|
|
SetUpMath();
|