d4b533d41b
R=svenpanne@chromium.org Review URL: https://codereview.chromium.org/259183002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@21035 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
219 lines
6.7 KiB
C++
219 lines
6.7 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include <string.h>
|
|
|
|
#include "v8.h"
|
|
#include "zone-inl.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
// Segments represent chunks of memory: They have starting address
|
|
// (encoded in the this pointer) and a size in bytes. Segments are
|
|
// chained together forming a LIFO structure with the newest segment
|
|
// available as segment_head_. Segments are allocated using malloc()
|
|
// and de-allocated using free().
|
|
|
|
class Segment {
|
|
public:
|
|
void Initialize(Segment* next, int size) {
|
|
next_ = next;
|
|
size_ = size;
|
|
}
|
|
|
|
Segment* next() const { return next_; }
|
|
void clear_next() { next_ = NULL; }
|
|
|
|
int size() const { return size_; }
|
|
int capacity() const { return size_ - sizeof(Segment); }
|
|
|
|
Address start() const { return address(sizeof(Segment)); }
|
|
Address end() const { return address(size_); }
|
|
|
|
private:
|
|
// Computes the address of the nth byte in this segment.
|
|
Address address(int n) const {
|
|
return Address(this) + n;
|
|
}
|
|
|
|
Segment* next_;
|
|
int size_;
|
|
};
|
|
|
|
|
|
Zone::Zone(Isolate* isolate)
|
|
: allocation_size_(0),
|
|
segment_bytes_allocated_(0),
|
|
position_(0),
|
|
limit_(0),
|
|
segment_head_(NULL),
|
|
isolate_(isolate) {
|
|
}
|
|
|
|
|
|
Zone::~Zone() {
|
|
DeleteAll();
|
|
DeleteKeptSegment();
|
|
|
|
ASSERT(segment_bytes_allocated_ == 0);
|
|
}
|
|
|
|
|
|
void Zone::DeleteAll() {
|
|
#ifdef DEBUG
|
|
// Constant byte value used for zapping dead memory in debug mode.
|
|
static const unsigned char kZapDeadByte = 0xcd;
|
|
#endif
|
|
|
|
// Find a segment with a suitable size to keep around.
|
|
Segment* keep = NULL;
|
|
// Traverse the chained list of segments, zapping (in debug mode)
|
|
// and freeing every segment except the one we wish to keep.
|
|
for (Segment* current = segment_head_; current != NULL; ) {
|
|
Segment* next = current->next();
|
|
if (keep == NULL && current->size() <= kMaximumKeptSegmentSize) {
|
|
// Unlink the segment we wish to keep from the list.
|
|
keep = current;
|
|
keep->clear_next();
|
|
} else {
|
|
int size = current->size();
|
|
#ifdef DEBUG
|
|
// Un-poison first so the zapping doesn't trigger ASan complaints.
|
|
ASAN_UNPOISON_MEMORY_REGION(current, size);
|
|
// Zap the entire current segment (including the header).
|
|
memset(current, kZapDeadByte, size);
|
|
#endif
|
|
DeleteSegment(current, size);
|
|
}
|
|
current = next;
|
|
}
|
|
|
|
// If we have found a segment we want to keep, we must recompute the
|
|
// variables 'position' and 'limit' to prepare for future allocate
|
|
// attempts. Otherwise, we must clear the position and limit to
|
|
// force a new segment to be allocated on demand.
|
|
if (keep != NULL) {
|
|
Address start = keep->start();
|
|
position_ = RoundUp(start, kAlignment);
|
|
limit_ = keep->end();
|
|
// Un-poison so we can re-use the segment later.
|
|
ASAN_UNPOISON_MEMORY_REGION(start, keep->capacity());
|
|
#ifdef DEBUG
|
|
// Zap the contents of the kept segment (but not the header).
|
|
memset(start, kZapDeadByte, keep->capacity());
|
|
#endif
|
|
} else {
|
|
position_ = limit_ = 0;
|
|
}
|
|
|
|
// Update the head segment to be the kept segment (if any).
|
|
segment_head_ = keep;
|
|
}
|
|
|
|
|
|
void Zone::DeleteKeptSegment() {
|
|
#ifdef DEBUG
|
|
// Constant byte value used for zapping dead memory in debug mode.
|
|
static const unsigned char kZapDeadByte = 0xcd;
|
|
#endif
|
|
|
|
ASSERT(segment_head_ == NULL || segment_head_->next() == NULL);
|
|
if (segment_head_ != NULL) {
|
|
int size = segment_head_->size();
|
|
#ifdef DEBUG
|
|
// Un-poison first so the zapping doesn't trigger ASan complaints.
|
|
ASAN_UNPOISON_MEMORY_REGION(segment_head_, size);
|
|
// Zap the entire kept segment (including the header).
|
|
memset(segment_head_, kZapDeadByte, size);
|
|
#endif
|
|
DeleteSegment(segment_head_, size);
|
|
segment_head_ = NULL;
|
|
}
|
|
|
|
ASSERT(segment_bytes_allocated_ == 0);
|
|
}
|
|
|
|
|
|
// Creates a new segment, sets it size, and pushes it to the front
|
|
// of the segment chain. Returns the new segment.
|
|
Segment* Zone::NewSegment(int size) {
|
|
Segment* result = reinterpret_cast<Segment*>(Malloced::New(size));
|
|
adjust_segment_bytes_allocated(size);
|
|
if (result != NULL) {
|
|
result->Initialize(segment_head_, size);
|
|
segment_head_ = result;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
// Deletes the given segment. Does not touch the segment chain.
|
|
void Zone::DeleteSegment(Segment* segment, int size) {
|
|
adjust_segment_bytes_allocated(-size);
|
|
Malloced::Delete(segment);
|
|
}
|
|
|
|
|
|
Address Zone::NewExpand(int size) {
|
|
// Make sure the requested size is already properly aligned and that
|
|
// there isn't enough room in the Zone to satisfy the request.
|
|
ASSERT(size == RoundDown(size, kAlignment));
|
|
ASSERT(size > limit_ - position_);
|
|
|
|
// Compute the new segment size. We use a 'high water mark'
|
|
// strategy, where we increase the segment size every time we expand
|
|
// except that we employ a maximum segment size when we delete. This
|
|
// is to avoid excessive malloc() and free() overhead.
|
|
Segment* head = segment_head_;
|
|
const size_t old_size = (head == NULL) ? 0 : head->size();
|
|
static const size_t kSegmentOverhead = sizeof(Segment) + kAlignment;
|
|
const size_t new_size_no_overhead = size + (old_size << 1);
|
|
size_t new_size = kSegmentOverhead + new_size_no_overhead;
|
|
const size_t min_new_size = kSegmentOverhead + static_cast<size_t>(size);
|
|
// Guard against integer overflow.
|
|
if (new_size_no_overhead < static_cast<size_t>(size) ||
|
|
new_size < static_cast<size_t>(kSegmentOverhead)) {
|
|
V8::FatalProcessOutOfMemory("Zone");
|
|
return NULL;
|
|
}
|
|
if (new_size < static_cast<size_t>(kMinimumSegmentSize)) {
|
|
new_size = kMinimumSegmentSize;
|
|
} else if (new_size > static_cast<size_t>(kMaximumSegmentSize)) {
|
|
// Limit the size of new segments to avoid growing the segment size
|
|
// exponentially, thus putting pressure on contiguous virtual address space.
|
|
// All the while making sure to allocate a segment large enough to hold the
|
|
// requested size.
|
|
new_size = Max(min_new_size, static_cast<size_t>(kMaximumSegmentSize));
|
|
}
|
|
if (new_size > INT_MAX) {
|
|
V8::FatalProcessOutOfMemory("Zone");
|
|
return NULL;
|
|
}
|
|
Segment* segment = NewSegment(static_cast<int>(new_size));
|
|
if (segment == NULL) {
|
|
V8::FatalProcessOutOfMemory("Zone");
|
|
return NULL;
|
|
}
|
|
|
|
// Recompute 'top' and 'limit' based on the new segment.
|
|
Address result = RoundUp(segment->start(), kAlignment);
|
|
position_ = result + size;
|
|
// Check for address overflow.
|
|
// (Should not happen since the segment is guaranteed to accomodate
|
|
// size bytes + header and alignment padding)
|
|
if (reinterpret_cast<uintptr_t>(position_)
|
|
< reinterpret_cast<uintptr_t>(result)) {
|
|
V8::FatalProcessOutOfMemory("Zone");
|
|
return NULL;
|
|
}
|
|
limit_ = segment->end();
|
|
ASSERT(position_ <= limit_);
|
|
return result;
|
|
}
|
|
|
|
|
|
} } // namespace v8::internal
|