v8/test/cctest/test-assembler-arm64.cc
2014-03-21 09:28:26 +00:00

10782 lines
280 KiB
C++

// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmath>
#include <limits>
#include "v8.h"
#include "macro-assembler.h"
#include "arm64/simulator-arm64.h"
#include "arm64/decoder-arm64-inl.h"
#include "arm64/disasm-arm64.h"
#include "arm64/utils-arm64.h"
#include "cctest.h"
#include "test-utils-arm64.h"
using namespace v8::internal;
// Test infrastructure.
//
// Tests are functions which accept no parameters and have no return values.
// The testing code should not perform an explicit return once completed. For
// example to test the mov immediate instruction a very simple test would be:
//
// TEST(mov_x0_one) {
// SETUP();
//
// START();
// __ mov(x0, Operand(1));
// END();
//
// RUN();
//
// ASSERT_EQUAL_64(1, x0);
//
// TEARDOWN();
// }
//
// Within a START ... END block all registers but sp can be modified. sp has to
// be explicitly saved/restored. The END() macro replaces the function return
// so it may appear multiple times in a test if the test has multiple exit
// points.
//
// Once the test has been run all integer and floating point registers as well
// as flags are accessible through a RegisterDump instance, see
// utils-arm64.cc for more info on RegisterDump.
//
// We provide some helper assert to handle common cases:
//
// ASSERT_EQUAL_32(int32_t, int_32t)
// ASSERT_EQUAL_FP32(float, float)
// ASSERT_EQUAL_32(int32_t, W register)
// ASSERT_EQUAL_FP32(float, S register)
// ASSERT_EQUAL_64(int64_t, int_64t)
// ASSERT_EQUAL_FP64(double, double)
// ASSERT_EQUAL_64(int64_t, X register)
// ASSERT_EQUAL_64(X register, X register)
// ASSERT_EQUAL_FP64(double, D register)
//
// e.g. ASSERT_EQUAL_64(0.5, d30);
//
// If more advance computation is required before the assert then access the
// RegisterDump named core directly:
//
// ASSERT_EQUAL_64(0x1234, core.xreg(0) & 0xffff);
#if 0 // TODO(all): enable.
static v8::Persistent<v8::Context> env;
static void InitializeVM() {
if (env.IsEmpty()) {
env = v8::Context::New();
}
}
#endif
#define __ masm.
#define BUF_SIZE 8192
#define SETUP() SETUP_SIZE(BUF_SIZE)
#define INIT_V8() \
CcTest::InitializeVM(); \
#ifdef USE_SIMULATOR
// Run tests with the simulator.
#define SETUP_SIZE(buf_size) \
Isolate* isolate = Isolate::Current(); \
HandleScope scope(isolate); \
ASSERT(isolate != NULL); \
byte* buf = new byte[buf_size]; \
MacroAssembler masm(isolate, buf, buf_size); \
Decoder<DispatchingDecoderVisitor>* decoder = \
new Decoder<DispatchingDecoderVisitor>(); \
Simulator simulator(decoder); \
PrintDisassembler* pdis = NULL; \
RegisterDump core;
/* if (Cctest::trace_sim()) { \
pdis = new PrintDisassembler(stdout); \
decoder.PrependVisitor(pdis); \
} \
*/
// Reset the assembler and simulator, so that instructions can be generated,
// but don't actually emit any code. This can be used by tests that need to
// emit instructions at the start of the buffer. Note that START_AFTER_RESET
// must be called before any callee-saved register is modified, and before an
// END is encountered.
//
// Most tests should call START, rather than call RESET directly.
#define RESET() \
__ Reset(); \
simulator.ResetState();
#define START_AFTER_RESET() \
__ SetStackPointer(csp); \
__ PushCalleeSavedRegisters(); \
__ Debug("Start test.", __LINE__, TRACE_ENABLE | LOG_ALL);
#define START() \
RESET(); \
START_AFTER_RESET();
#define RUN() \
simulator.RunFrom(reinterpret_cast<Instruction*>(buf))
#define END() \
__ Debug("End test.", __LINE__, TRACE_DISABLE | LOG_ALL); \
core.Dump(&masm); \
__ PopCalleeSavedRegisters(); \
__ Ret(); \
__ GetCode(NULL);
#define TEARDOWN() \
delete pdis; \
delete[] buf;
#else // ifdef USE_SIMULATOR.
// Run the test on real hardware or models.
#define SETUP_SIZE(buf_size) \
Isolate* isolate = Isolate::Current(); \
HandleScope scope(isolate); \
ASSERT(isolate != NULL); \
byte* buf = new byte[buf_size]; \
MacroAssembler masm(isolate, buf, buf_size); \
RegisterDump core; \
CPU::SetUp();
#define RESET() \
__ Reset();
#define START_AFTER_RESET() \
__ SetStackPointer(csp); \
__ PushCalleeSavedRegisters();
#define START() \
RESET(); \
START_AFTER_RESET();
#define RUN() \
CPU::FlushICache(buf, masm.SizeOfGeneratedCode()); \
{ \
void (*test_function)(void); \
memcpy(&test_function, &buf, sizeof(buf)); \
test_function(); \
}
#define END() \
core.Dump(&masm); \
__ PopCalleeSavedRegisters(); \
__ Ret(); \
__ GetCode(NULL);
#define TEARDOWN() \
delete[] buf;
#endif // ifdef USE_SIMULATOR.
#define ASSERT_EQUAL_NZCV(expected) \
CHECK(EqualNzcv(expected, core.flags_nzcv()))
#define ASSERT_EQUAL_REGISTERS(expected) \
CHECK(EqualRegisters(&expected, &core))
#define ASSERT_EQUAL_32(expected, result) \
CHECK(Equal32(static_cast<uint32_t>(expected), &core, result))
#define ASSERT_EQUAL_FP32(expected, result) \
CHECK(EqualFP32(expected, &core, result))
#define ASSERT_EQUAL_64(expected, result) \
CHECK(Equal64(expected, &core, result))
#define ASSERT_EQUAL_FP64(expected, result) \
CHECK(EqualFP64(expected, &core, result))
#ifdef DEBUG
#define ASSERT_LITERAL_POOL_SIZE(expected) \
CHECK((expected) == (__ LiteralPoolSize()))
#else
#define ASSERT_LITERAL_POOL_SIZE(expected) \
((void) 0)
#endif
TEST(stack_ops) {
INIT_V8();
SETUP();
START();
// save csp.
__ Mov(x29, csp);
// Set the csp to a known value.
__ Mov(x16, 0x1000);
__ Mov(csp, x16);
__ Mov(x0, csp);
// Add immediate to the csp, and move the result to a normal register.
__ Add(csp, csp, Operand(0x50));
__ Mov(x1, csp);
// Add extended to the csp, and move the result to a normal register.
__ Mov(x17, 0xfff);
__ Add(csp, csp, Operand(x17, SXTB));
__ Mov(x2, csp);
// Create an csp using a logical instruction, and move to normal register.
__ Orr(csp, xzr, Operand(0x1fff));
__ Mov(x3, csp);
// Write wcsp using a logical instruction.
__ Orr(wcsp, wzr, Operand(0xfffffff8L));
__ Mov(x4, csp);
// Write csp, and read back wcsp.
__ Orr(csp, xzr, Operand(0xfffffff8L));
__ Mov(w5, wcsp);
// restore csp.
__ Mov(csp, x29);
END();
RUN();
ASSERT_EQUAL_64(0x1000, x0);
ASSERT_EQUAL_64(0x1050, x1);
ASSERT_EQUAL_64(0x104f, x2);
ASSERT_EQUAL_64(0x1fff, x3);
ASSERT_EQUAL_64(0xfffffff8, x4);
ASSERT_EQUAL_64(0xfffffff8, x5);
TEARDOWN();
}
TEST(mvn) {
INIT_V8();
SETUP();
START();
__ Mvn(w0, 0xfff);
__ Mvn(x1, 0xfff);
__ Mvn(w2, Operand(w0, LSL, 1));
__ Mvn(x3, Operand(x1, LSL, 2));
__ Mvn(w4, Operand(w0, LSR, 3));
__ Mvn(x5, Operand(x1, LSR, 4));
__ Mvn(w6, Operand(w0, ASR, 11));
__ Mvn(x7, Operand(x1, ASR, 12));
__ Mvn(w8, Operand(w0, ROR, 13));
__ Mvn(x9, Operand(x1, ROR, 14));
__ Mvn(w10, Operand(w2, UXTB));
__ Mvn(x11, Operand(x2, SXTB, 1));
__ Mvn(w12, Operand(w2, UXTH, 2));
__ Mvn(x13, Operand(x2, SXTH, 3));
__ Mvn(x14, Operand(w2, UXTW, 4));
__ Mvn(x15, Operand(w2, SXTW, 4));
END();
RUN();
ASSERT_EQUAL_64(0xfffff000, x0);
ASSERT_EQUAL_64(0xfffffffffffff000UL, x1);
ASSERT_EQUAL_64(0x00001fff, x2);
ASSERT_EQUAL_64(0x0000000000003fffUL, x3);
ASSERT_EQUAL_64(0xe00001ff, x4);
ASSERT_EQUAL_64(0xf0000000000000ffUL, x5);
ASSERT_EQUAL_64(0x00000001, x6);
ASSERT_EQUAL_64(0x0, x7);
ASSERT_EQUAL_64(0x7ff80000, x8);
ASSERT_EQUAL_64(0x3ffc000000000000UL, x9);
ASSERT_EQUAL_64(0xffffff00, x10);
ASSERT_EQUAL_64(0x0000000000000001UL, x11);
ASSERT_EQUAL_64(0xffff8003, x12);
ASSERT_EQUAL_64(0xffffffffffff0007UL, x13);
ASSERT_EQUAL_64(0xfffffffffffe000fUL, x14);
ASSERT_EQUAL_64(0xfffffffffffe000fUL, x15);
TEARDOWN();
}
TEST(mov) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xffffffffffffffffL);
__ Mov(x1, 0xffffffffffffffffL);
__ Mov(x2, 0xffffffffffffffffL);
__ Mov(x3, 0xffffffffffffffffL);
__ Mov(x0, 0x0123456789abcdefL);
__ movz(x1, 0xabcdL << 16);
__ movk(x2, 0xabcdL << 32);
__ movn(x3, 0xabcdL << 48);
__ Mov(x4, 0x0123456789abcdefL);
__ Mov(x5, x4);
__ Mov(w6, -1);
// Test that moves back to the same register have the desired effect. This
// is a no-op for X registers, and a truncation for W registers.
__ Mov(x7, 0x0123456789abcdefL);
__ Mov(x7, x7);
__ Mov(x8, 0x0123456789abcdefL);
__ Mov(w8, w8);
__ Mov(x9, 0x0123456789abcdefL);
__ Mov(x9, Operand(x9));
__ Mov(x10, 0x0123456789abcdefL);
__ Mov(w10, Operand(w10));
__ Mov(w11, 0xfff);
__ Mov(x12, 0xfff);
__ Mov(w13, Operand(w11, LSL, 1));
__ Mov(x14, Operand(x12, LSL, 2));
__ Mov(w15, Operand(w11, LSR, 3));
__ Mov(x18, Operand(x12, LSR, 4));
__ Mov(w19, Operand(w11, ASR, 11));
__ Mov(x20, Operand(x12, ASR, 12));
__ Mov(w21, Operand(w11, ROR, 13));
__ Mov(x22, Operand(x12, ROR, 14));
__ Mov(w23, Operand(w13, UXTB));
__ Mov(x24, Operand(x13, SXTB, 1));
__ Mov(w25, Operand(w13, UXTH, 2));
__ Mov(x26, Operand(x13, SXTH, 3));
__ Mov(x27, Operand(w13, UXTW, 4));
END();
RUN();
ASSERT_EQUAL_64(0x0123456789abcdefL, x0);
ASSERT_EQUAL_64(0x00000000abcd0000L, x1);
ASSERT_EQUAL_64(0xffffabcdffffffffL, x2);
ASSERT_EQUAL_64(0x5432ffffffffffffL, x3);
ASSERT_EQUAL_64(x4, x5);
ASSERT_EQUAL_32(-1, w6);
ASSERT_EQUAL_64(0x0123456789abcdefL, x7);
ASSERT_EQUAL_32(0x89abcdefL, w8);
ASSERT_EQUAL_64(0x0123456789abcdefL, x9);
ASSERT_EQUAL_32(0x89abcdefL, w10);
ASSERT_EQUAL_64(0x00000fff, x11);
ASSERT_EQUAL_64(0x0000000000000fffUL, x12);
ASSERT_EQUAL_64(0x00001ffe, x13);
ASSERT_EQUAL_64(0x0000000000003ffcUL, x14);
ASSERT_EQUAL_64(0x000001ff, x15);
ASSERT_EQUAL_64(0x00000000000000ffUL, x18);
ASSERT_EQUAL_64(0x00000001, x19);
ASSERT_EQUAL_64(0x0, x20);
ASSERT_EQUAL_64(0x7ff80000, x21);
ASSERT_EQUAL_64(0x3ffc000000000000UL, x22);
ASSERT_EQUAL_64(0x000000fe, x23);
ASSERT_EQUAL_64(0xfffffffffffffffcUL, x24);
ASSERT_EQUAL_64(0x00007ff8, x25);
ASSERT_EQUAL_64(0x000000000000fff0UL, x26);
ASSERT_EQUAL_64(0x000000000001ffe0UL, x27);
TEARDOWN();
}
TEST(mov_imm_w) {
INIT_V8();
SETUP();
START();
__ Mov(w0, 0xffffffffL);
__ Mov(w1, 0xffff1234L);
__ Mov(w2, 0x1234ffffL);
__ Mov(w3, 0x00000000L);
__ Mov(w4, 0x00001234L);
__ Mov(w5, 0x12340000L);
__ Mov(w6, 0x12345678L);
END();
RUN();
ASSERT_EQUAL_64(0xffffffffL, x0);
ASSERT_EQUAL_64(0xffff1234L, x1);
ASSERT_EQUAL_64(0x1234ffffL, x2);
ASSERT_EQUAL_64(0x00000000L, x3);
ASSERT_EQUAL_64(0x00001234L, x4);
ASSERT_EQUAL_64(0x12340000L, x5);
ASSERT_EQUAL_64(0x12345678L, x6);
TEARDOWN();
}
TEST(mov_imm_x) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xffffffffffffffffL);
__ Mov(x1, 0xffffffffffff1234L);
__ Mov(x2, 0xffffffff12345678L);
__ Mov(x3, 0xffff1234ffff5678L);
__ Mov(x4, 0x1234ffffffff5678L);
__ Mov(x5, 0x1234ffff5678ffffL);
__ Mov(x6, 0x12345678ffffffffL);
__ Mov(x7, 0x1234ffffffffffffL);
__ Mov(x8, 0x123456789abcffffL);
__ Mov(x9, 0x12345678ffff9abcL);
__ Mov(x10, 0x1234ffff56789abcL);
__ Mov(x11, 0xffff123456789abcL);
__ Mov(x12, 0x0000000000000000L);
__ Mov(x13, 0x0000000000001234L);
__ Mov(x14, 0x0000000012345678L);
__ Mov(x15, 0x0000123400005678L);
__ Mov(x18, 0x1234000000005678L);
__ Mov(x19, 0x1234000056780000L);
__ Mov(x20, 0x1234567800000000L);
__ Mov(x21, 0x1234000000000000L);
__ Mov(x22, 0x123456789abc0000L);
__ Mov(x23, 0x1234567800009abcL);
__ Mov(x24, 0x1234000056789abcL);
__ Mov(x25, 0x0000123456789abcL);
__ Mov(x26, 0x123456789abcdef0L);
__ Mov(x27, 0xffff000000000001L);
__ Mov(x28, 0x8000ffff00000000L);
END();
RUN();
ASSERT_EQUAL_64(0xffffffffffff1234L, x1);
ASSERT_EQUAL_64(0xffffffff12345678L, x2);
ASSERT_EQUAL_64(0xffff1234ffff5678L, x3);
ASSERT_EQUAL_64(0x1234ffffffff5678L, x4);
ASSERT_EQUAL_64(0x1234ffff5678ffffL, x5);
ASSERT_EQUAL_64(0x12345678ffffffffL, x6);
ASSERT_EQUAL_64(0x1234ffffffffffffL, x7);
ASSERT_EQUAL_64(0x123456789abcffffL, x8);
ASSERT_EQUAL_64(0x12345678ffff9abcL, x9);
ASSERT_EQUAL_64(0x1234ffff56789abcL, x10);
ASSERT_EQUAL_64(0xffff123456789abcL, x11);
ASSERT_EQUAL_64(0x0000000000000000L, x12);
ASSERT_EQUAL_64(0x0000000000001234L, x13);
ASSERT_EQUAL_64(0x0000000012345678L, x14);
ASSERT_EQUAL_64(0x0000123400005678L, x15);
ASSERT_EQUAL_64(0x1234000000005678L, x18);
ASSERT_EQUAL_64(0x1234000056780000L, x19);
ASSERT_EQUAL_64(0x1234567800000000L, x20);
ASSERT_EQUAL_64(0x1234000000000000L, x21);
ASSERT_EQUAL_64(0x123456789abc0000L, x22);
ASSERT_EQUAL_64(0x1234567800009abcL, x23);
ASSERT_EQUAL_64(0x1234000056789abcL, x24);
ASSERT_EQUAL_64(0x0000123456789abcL, x25);
ASSERT_EQUAL_64(0x123456789abcdef0L, x26);
ASSERT_EQUAL_64(0xffff000000000001L, x27);
ASSERT_EQUAL_64(0x8000ffff00000000L, x28);
TEARDOWN();
}
TEST(orr) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xf0f0);
__ Mov(x1, 0xf00000ff);
__ Orr(x2, x0, Operand(x1));
__ Orr(w3, w0, Operand(w1, LSL, 28));
__ Orr(x4, x0, Operand(x1, LSL, 32));
__ Orr(x5, x0, Operand(x1, LSR, 4));
__ Orr(w6, w0, Operand(w1, ASR, 4));
__ Orr(x7, x0, Operand(x1, ASR, 4));
__ Orr(w8, w0, Operand(w1, ROR, 12));
__ Orr(x9, x0, Operand(x1, ROR, 12));
__ Orr(w10, w0, Operand(0xf));
__ Orr(x11, x0, Operand(0xf0000000f0000000L));
END();
RUN();
ASSERT_EQUAL_64(0xf000f0ff, x2);
ASSERT_EQUAL_64(0xf000f0f0, x3);
ASSERT_EQUAL_64(0xf00000ff0000f0f0L, x4);
ASSERT_EQUAL_64(0x0f00f0ff, x5);
ASSERT_EQUAL_64(0xff00f0ff, x6);
ASSERT_EQUAL_64(0x0f00f0ff, x7);
ASSERT_EQUAL_64(0x0ffff0f0, x8);
ASSERT_EQUAL_64(0x0ff00000000ff0f0L, x9);
ASSERT_EQUAL_64(0xf0ff, x10);
ASSERT_EQUAL_64(0xf0000000f000f0f0L, x11);
TEARDOWN();
}
TEST(orr_extend) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 1);
__ Mov(x1, 0x8000000080008080UL);
__ Orr(w6, w0, Operand(w1, UXTB));
__ Orr(x7, x0, Operand(x1, UXTH, 1));
__ Orr(w8, w0, Operand(w1, UXTW, 2));
__ Orr(x9, x0, Operand(x1, UXTX, 3));
__ Orr(w10, w0, Operand(w1, SXTB));
__ Orr(x11, x0, Operand(x1, SXTH, 1));
__ Orr(x12, x0, Operand(x1, SXTW, 2));
__ Orr(x13, x0, Operand(x1, SXTX, 3));
END();
RUN();
ASSERT_EQUAL_64(0x00000081, x6);
ASSERT_EQUAL_64(0x00010101, x7);
ASSERT_EQUAL_64(0x00020201, x8);
ASSERT_EQUAL_64(0x0000000400040401UL, x9);
ASSERT_EQUAL_64(0x00000000ffffff81UL, x10);
ASSERT_EQUAL_64(0xffffffffffff0101UL, x11);
ASSERT_EQUAL_64(0xfffffffe00020201UL, x12);
ASSERT_EQUAL_64(0x0000000400040401UL, x13);
TEARDOWN();
}
TEST(bitwise_wide_imm) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0xf0f0f0f0f0f0f0f0UL);
__ Orr(x10, x0, Operand(0x1234567890abcdefUL));
__ Orr(w11, w1, Operand(0x90abcdef));
END();
RUN();
ASSERT_EQUAL_64(0, x0);
ASSERT_EQUAL_64(0xf0f0f0f0f0f0f0f0UL, x1);
ASSERT_EQUAL_64(0x1234567890abcdefUL, x10);
ASSERT_EQUAL_64(0xf0fbfdffUL, x11);
TEARDOWN();
}
TEST(orn) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xf0f0);
__ Mov(x1, 0xf00000ff);
__ Orn(x2, x0, Operand(x1));
__ Orn(w3, w0, Operand(w1, LSL, 4));
__ Orn(x4, x0, Operand(x1, LSL, 4));
__ Orn(x5, x0, Operand(x1, LSR, 1));
__ Orn(w6, w0, Operand(w1, ASR, 1));
__ Orn(x7, x0, Operand(x1, ASR, 1));
__ Orn(w8, w0, Operand(w1, ROR, 16));
__ Orn(x9, x0, Operand(x1, ROR, 16));
__ Orn(w10, w0, Operand(0xffff));
__ Orn(x11, x0, Operand(0xffff0000ffffL));
END();
RUN();
ASSERT_EQUAL_64(0xffffffff0ffffff0L, x2);
ASSERT_EQUAL_64(0xfffff0ff, x3);
ASSERT_EQUAL_64(0xfffffff0fffff0ffL, x4);
ASSERT_EQUAL_64(0xffffffff87fffff0L, x5);
ASSERT_EQUAL_64(0x07fffff0, x6);
ASSERT_EQUAL_64(0xffffffff87fffff0L, x7);
ASSERT_EQUAL_64(0xff00ffff, x8);
ASSERT_EQUAL_64(0xff00ffffffffffffL, x9);
ASSERT_EQUAL_64(0xfffff0f0, x10);
ASSERT_EQUAL_64(0xffff0000fffff0f0L, x11);
TEARDOWN();
}
TEST(orn_extend) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 1);
__ Mov(x1, 0x8000000080008081UL);
__ Orn(w6, w0, Operand(w1, UXTB));
__ Orn(x7, x0, Operand(x1, UXTH, 1));
__ Orn(w8, w0, Operand(w1, UXTW, 2));
__ Orn(x9, x0, Operand(x1, UXTX, 3));
__ Orn(w10, w0, Operand(w1, SXTB));
__ Orn(x11, x0, Operand(x1, SXTH, 1));
__ Orn(x12, x0, Operand(x1, SXTW, 2));
__ Orn(x13, x0, Operand(x1, SXTX, 3));
END();
RUN();
ASSERT_EQUAL_64(0xffffff7f, x6);
ASSERT_EQUAL_64(0xfffffffffffefefdUL, x7);
ASSERT_EQUAL_64(0xfffdfdfb, x8);
ASSERT_EQUAL_64(0xfffffffbfffbfbf7UL, x9);
ASSERT_EQUAL_64(0x0000007f, x10);
ASSERT_EQUAL_64(0x0000fefd, x11);
ASSERT_EQUAL_64(0x00000001fffdfdfbUL, x12);
ASSERT_EQUAL_64(0xfffffffbfffbfbf7UL, x13);
TEARDOWN();
}
TEST(and_) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xfff0);
__ Mov(x1, 0xf00000ff);
__ And(x2, x0, Operand(x1));
__ And(w3, w0, Operand(w1, LSL, 4));
__ And(x4, x0, Operand(x1, LSL, 4));
__ And(x5, x0, Operand(x1, LSR, 1));
__ And(w6, w0, Operand(w1, ASR, 20));
__ And(x7, x0, Operand(x1, ASR, 20));
__ And(w8, w0, Operand(w1, ROR, 28));
__ And(x9, x0, Operand(x1, ROR, 28));
__ And(w10, w0, Operand(0xff00));
__ And(x11, x0, Operand(0xff));
END();
RUN();
ASSERT_EQUAL_64(0x000000f0, x2);
ASSERT_EQUAL_64(0x00000ff0, x3);
ASSERT_EQUAL_64(0x00000ff0, x4);
ASSERT_EQUAL_64(0x00000070, x5);
ASSERT_EQUAL_64(0x0000ff00, x6);
ASSERT_EQUAL_64(0x00000f00, x7);
ASSERT_EQUAL_64(0x00000ff0, x8);
ASSERT_EQUAL_64(0x00000000, x9);
ASSERT_EQUAL_64(0x0000ff00, x10);
ASSERT_EQUAL_64(0x000000f0, x11);
TEARDOWN();
}
TEST(and_extend) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xffffffffffffffffUL);
__ Mov(x1, 0x8000000080008081UL);
__ And(w6, w0, Operand(w1, UXTB));
__ And(x7, x0, Operand(x1, UXTH, 1));
__ And(w8, w0, Operand(w1, UXTW, 2));
__ And(x9, x0, Operand(x1, UXTX, 3));
__ And(w10, w0, Operand(w1, SXTB));
__ And(x11, x0, Operand(x1, SXTH, 1));
__ And(x12, x0, Operand(x1, SXTW, 2));
__ And(x13, x0, Operand(x1, SXTX, 3));
END();
RUN();
ASSERT_EQUAL_64(0x00000081, x6);
ASSERT_EQUAL_64(0x00010102, x7);
ASSERT_EQUAL_64(0x00020204, x8);
ASSERT_EQUAL_64(0x0000000400040408UL, x9);
ASSERT_EQUAL_64(0xffffff81, x10);
ASSERT_EQUAL_64(0xffffffffffff0102UL, x11);
ASSERT_EQUAL_64(0xfffffffe00020204UL, x12);
ASSERT_EQUAL_64(0x0000000400040408UL, x13);
TEARDOWN();
}
TEST(ands) {
INIT_V8();
SETUP();
START();
__ Mov(x1, 0xf00000ff);
__ Ands(w0, w1, Operand(w1));
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
ASSERT_EQUAL_64(0xf00000ff, x0);
START();
__ Mov(x0, 0xfff0);
__ Mov(x1, 0xf00000ff);
__ Ands(w0, w0, Operand(w1, LSR, 4));
END();
RUN();
ASSERT_EQUAL_NZCV(ZFlag);
ASSERT_EQUAL_64(0x00000000, x0);
START();
__ Mov(x0, 0x8000000000000000L);
__ Mov(x1, 0x00000001);
__ Ands(x0, x0, Operand(x1, ROR, 1));
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
ASSERT_EQUAL_64(0x8000000000000000L, x0);
START();
__ Mov(x0, 0xfff0);
__ Ands(w0, w0, Operand(0xf));
END();
RUN();
ASSERT_EQUAL_NZCV(ZFlag);
ASSERT_EQUAL_64(0x00000000, x0);
START();
__ Mov(x0, 0xff000000);
__ Ands(w0, w0, Operand(0x80000000));
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
ASSERT_EQUAL_64(0x80000000, x0);
TEARDOWN();
}
TEST(bic) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xfff0);
__ Mov(x1, 0xf00000ff);
__ Bic(x2, x0, Operand(x1));
__ Bic(w3, w0, Operand(w1, LSL, 4));
__ Bic(x4, x0, Operand(x1, LSL, 4));
__ Bic(x5, x0, Operand(x1, LSR, 1));
__ Bic(w6, w0, Operand(w1, ASR, 20));
__ Bic(x7, x0, Operand(x1, ASR, 20));
__ Bic(w8, w0, Operand(w1, ROR, 28));
__ Bic(x9, x0, Operand(x1, ROR, 24));
__ Bic(x10, x0, Operand(0x1f));
__ Bic(x11, x0, Operand(0x100));
// Test bic into csp when the constant cannot be encoded in the immediate
// field.
// Use x20 to preserve csp. We check for the result via x21 because the
// test infrastructure requires that csp be restored to its original value.
__ Mov(x20, csp);
__ Mov(x0, 0xffffff);
__ Bic(csp, x0, Operand(0xabcdef));
__ Mov(x21, csp);
__ Mov(csp, x20);
END();
RUN();
ASSERT_EQUAL_64(0x0000ff00, x2);
ASSERT_EQUAL_64(0x0000f000, x3);
ASSERT_EQUAL_64(0x0000f000, x4);
ASSERT_EQUAL_64(0x0000ff80, x5);
ASSERT_EQUAL_64(0x000000f0, x6);
ASSERT_EQUAL_64(0x0000f0f0, x7);
ASSERT_EQUAL_64(0x0000f000, x8);
ASSERT_EQUAL_64(0x0000ff00, x9);
ASSERT_EQUAL_64(0x0000ffe0, x10);
ASSERT_EQUAL_64(0x0000fef0, x11);
ASSERT_EQUAL_64(0x543210, x21);
TEARDOWN();
}
TEST(bic_extend) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xffffffffffffffffUL);
__ Mov(x1, 0x8000000080008081UL);
__ Bic(w6, w0, Operand(w1, UXTB));
__ Bic(x7, x0, Operand(x1, UXTH, 1));
__ Bic(w8, w0, Operand(w1, UXTW, 2));
__ Bic(x9, x0, Operand(x1, UXTX, 3));
__ Bic(w10, w0, Operand(w1, SXTB));
__ Bic(x11, x0, Operand(x1, SXTH, 1));
__ Bic(x12, x0, Operand(x1, SXTW, 2));
__ Bic(x13, x0, Operand(x1, SXTX, 3));
END();
RUN();
ASSERT_EQUAL_64(0xffffff7e, x6);
ASSERT_EQUAL_64(0xfffffffffffefefdUL, x7);
ASSERT_EQUAL_64(0xfffdfdfb, x8);
ASSERT_EQUAL_64(0xfffffffbfffbfbf7UL, x9);
ASSERT_EQUAL_64(0x0000007e, x10);
ASSERT_EQUAL_64(0x0000fefd, x11);
ASSERT_EQUAL_64(0x00000001fffdfdfbUL, x12);
ASSERT_EQUAL_64(0xfffffffbfffbfbf7UL, x13);
TEARDOWN();
}
TEST(bics) {
INIT_V8();
SETUP();
START();
__ Mov(x1, 0xffff);
__ Bics(w0, w1, Operand(w1));
END();
RUN();
ASSERT_EQUAL_NZCV(ZFlag);
ASSERT_EQUAL_64(0x00000000, x0);
START();
__ Mov(x0, 0xffffffff);
__ Bics(w0, w0, Operand(w0, LSR, 1));
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
ASSERT_EQUAL_64(0x80000000, x0);
START();
__ Mov(x0, 0x8000000000000000L);
__ Mov(x1, 0x00000001);
__ Bics(x0, x0, Operand(x1, ROR, 1));
END();
RUN();
ASSERT_EQUAL_NZCV(ZFlag);
ASSERT_EQUAL_64(0x00000000, x0);
START();
__ Mov(x0, 0xffffffffffffffffL);
__ Bics(x0, x0, Operand(0x7fffffffffffffffL));
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
ASSERT_EQUAL_64(0x8000000000000000L, x0);
START();
__ Mov(w0, 0xffff0000);
__ Bics(w0, w0, Operand(0xfffffff0));
END();
RUN();
ASSERT_EQUAL_NZCV(ZFlag);
ASSERT_EQUAL_64(0x00000000, x0);
TEARDOWN();
}
TEST(eor) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xfff0);
__ Mov(x1, 0xf00000ff);
__ Eor(x2, x0, Operand(x1));
__ Eor(w3, w0, Operand(w1, LSL, 4));
__ Eor(x4, x0, Operand(x1, LSL, 4));
__ Eor(x5, x0, Operand(x1, LSR, 1));
__ Eor(w6, w0, Operand(w1, ASR, 20));
__ Eor(x7, x0, Operand(x1, ASR, 20));
__ Eor(w8, w0, Operand(w1, ROR, 28));
__ Eor(x9, x0, Operand(x1, ROR, 28));
__ Eor(w10, w0, Operand(0xff00ff00));
__ Eor(x11, x0, Operand(0xff00ff00ff00ff00L));
END();
RUN();
ASSERT_EQUAL_64(0xf000ff0f, x2);
ASSERT_EQUAL_64(0x0000f000, x3);
ASSERT_EQUAL_64(0x0000000f0000f000L, x4);
ASSERT_EQUAL_64(0x7800ff8f, x5);
ASSERT_EQUAL_64(0xffff00f0, x6);
ASSERT_EQUAL_64(0x0000f0f0, x7);
ASSERT_EQUAL_64(0x0000f00f, x8);
ASSERT_EQUAL_64(0x00000ff00000ffffL, x9);
ASSERT_EQUAL_64(0xff0000f0, x10);
ASSERT_EQUAL_64(0xff00ff00ff0000f0L, x11);
TEARDOWN();
}
TEST(eor_extend) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0x1111111111111111UL);
__ Mov(x1, 0x8000000080008081UL);
__ Eor(w6, w0, Operand(w1, UXTB));
__ Eor(x7, x0, Operand(x1, UXTH, 1));
__ Eor(w8, w0, Operand(w1, UXTW, 2));
__ Eor(x9, x0, Operand(x1, UXTX, 3));
__ Eor(w10, w0, Operand(w1, SXTB));
__ Eor(x11, x0, Operand(x1, SXTH, 1));
__ Eor(x12, x0, Operand(x1, SXTW, 2));
__ Eor(x13, x0, Operand(x1, SXTX, 3));
END();
RUN();
ASSERT_EQUAL_64(0x11111190, x6);
ASSERT_EQUAL_64(0x1111111111101013UL, x7);
ASSERT_EQUAL_64(0x11131315, x8);
ASSERT_EQUAL_64(0x1111111511151519UL, x9);
ASSERT_EQUAL_64(0xeeeeee90, x10);
ASSERT_EQUAL_64(0xeeeeeeeeeeee1013UL, x11);
ASSERT_EQUAL_64(0xeeeeeeef11131315UL, x12);
ASSERT_EQUAL_64(0x1111111511151519UL, x13);
TEARDOWN();
}
TEST(eon) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xfff0);
__ Mov(x1, 0xf00000ff);
__ Eon(x2, x0, Operand(x1));
__ Eon(w3, w0, Operand(w1, LSL, 4));
__ Eon(x4, x0, Operand(x1, LSL, 4));
__ Eon(x5, x0, Operand(x1, LSR, 1));
__ Eon(w6, w0, Operand(w1, ASR, 20));
__ Eon(x7, x0, Operand(x1, ASR, 20));
__ Eon(w8, w0, Operand(w1, ROR, 28));
__ Eon(x9, x0, Operand(x1, ROR, 28));
__ Eon(w10, w0, Operand(0x03c003c0));
__ Eon(x11, x0, Operand(0x0000100000001000L));
END();
RUN();
ASSERT_EQUAL_64(0xffffffff0fff00f0L, x2);
ASSERT_EQUAL_64(0xffff0fff, x3);
ASSERT_EQUAL_64(0xfffffff0ffff0fffL, x4);
ASSERT_EQUAL_64(0xffffffff87ff0070L, x5);
ASSERT_EQUAL_64(0x0000ff0f, x6);
ASSERT_EQUAL_64(0xffffffffffff0f0fL, x7);
ASSERT_EQUAL_64(0xffff0ff0, x8);
ASSERT_EQUAL_64(0xfffff00fffff0000L, x9);
ASSERT_EQUAL_64(0xfc3f03cf, x10);
ASSERT_EQUAL_64(0xffffefffffff100fL, x11);
TEARDOWN();
}
TEST(eon_extend) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0x1111111111111111UL);
__ Mov(x1, 0x8000000080008081UL);
__ Eon(w6, w0, Operand(w1, UXTB));
__ Eon(x7, x0, Operand(x1, UXTH, 1));
__ Eon(w8, w0, Operand(w1, UXTW, 2));
__ Eon(x9, x0, Operand(x1, UXTX, 3));
__ Eon(w10, w0, Operand(w1, SXTB));
__ Eon(x11, x0, Operand(x1, SXTH, 1));
__ Eon(x12, x0, Operand(x1, SXTW, 2));
__ Eon(x13, x0, Operand(x1, SXTX, 3));
END();
RUN();
ASSERT_EQUAL_64(0xeeeeee6f, x6);
ASSERT_EQUAL_64(0xeeeeeeeeeeefefecUL, x7);
ASSERT_EQUAL_64(0xeeececea, x8);
ASSERT_EQUAL_64(0xeeeeeeeaeeeaeae6UL, x9);
ASSERT_EQUAL_64(0x1111116f, x10);
ASSERT_EQUAL_64(0x111111111111efecUL, x11);
ASSERT_EQUAL_64(0x11111110eeececeaUL, x12);
ASSERT_EQUAL_64(0xeeeeeeeaeeeaeae6UL, x13);
TEARDOWN();
}
TEST(mul) {
INIT_V8();
SETUP();
START();
__ Mov(x16, 0);
__ Mov(x17, 1);
__ Mov(x18, 0xffffffff);
__ Mov(x19, 0xffffffffffffffffUL);
__ Mul(w0, w16, w16);
__ Mul(w1, w16, w17);
__ Mul(w2, w17, w18);
__ Mul(w3, w18, w19);
__ Mul(x4, x16, x16);
__ Mul(x5, x17, x18);
__ Mul(x6, x18, x19);
__ Mul(x7, x19, x19);
__ Smull(x8, w17, w18);
__ Smull(x9, w18, w18);
__ Smull(x10, w19, w19);
__ Mneg(w11, w16, w16);
__ Mneg(w12, w16, w17);
__ Mneg(w13, w17, w18);
__ Mneg(w14, w18, w19);
__ Mneg(x20, x16, x16);
__ Mneg(x21, x17, x18);
__ Mneg(x22, x18, x19);
__ Mneg(x23, x19, x19);
END();
RUN();
ASSERT_EQUAL_64(0, x0);
ASSERT_EQUAL_64(0, x1);
ASSERT_EQUAL_64(0xffffffff, x2);
ASSERT_EQUAL_64(1, x3);
ASSERT_EQUAL_64(0, x4);
ASSERT_EQUAL_64(0xffffffff, x5);
ASSERT_EQUAL_64(0xffffffff00000001UL, x6);
ASSERT_EQUAL_64(1, x7);
ASSERT_EQUAL_64(0xffffffffffffffffUL, x8);
ASSERT_EQUAL_64(1, x9);
ASSERT_EQUAL_64(1, x10);
ASSERT_EQUAL_64(0, x11);
ASSERT_EQUAL_64(0, x12);
ASSERT_EQUAL_64(1, x13);
ASSERT_EQUAL_64(0xffffffff, x14);
ASSERT_EQUAL_64(0, x20);
ASSERT_EQUAL_64(0xffffffff00000001UL, x21);
ASSERT_EQUAL_64(0xffffffff, x22);
ASSERT_EQUAL_64(0xffffffffffffffffUL, x23);
TEARDOWN();
}
static void SmullHelper(int64_t expected, int64_t a, int64_t b) {
SETUP();
START();
__ Mov(w0, a);
__ Mov(w1, b);
__ Smull(x2, w0, w1);
END();
RUN();
ASSERT_EQUAL_64(expected, x2);
TEARDOWN();
}
TEST(smull) {
INIT_V8();
SmullHelper(0, 0, 0);
SmullHelper(1, 1, 1);
SmullHelper(-1, -1, 1);
SmullHelper(1, -1, -1);
SmullHelper(0xffffffff80000000, 0x80000000, 1);
SmullHelper(0x0000000080000000, 0x00010000, 0x00008000);
}
TEST(madd) {
INIT_V8();
SETUP();
START();
__ Mov(x16, 0);
__ Mov(x17, 1);
__ Mov(x18, 0xffffffff);
__ Mov(x19, 0xffffffffffffffffUL);
__ Madd(w0, w16, w16, w16);
__ Madd(w1, w16, w16, w17);
__ Madd(w2, w16, w16, w18);
__ Madd(w3, w16, w16, w19);
__ Madd(w4, w16, w17, w17);
__ Madd(w5, w17, w17, w18);
__ Madd(w6, w17, w17, w19);
__ Madd(w7, w17, w18, w16);
__ Madd(w8, w17, w18, w18);
__ Madd(w9, w18, w18, w17);
__ Madd(w10, w18, w19, w18);
__ Madd(w11, w19, w19, w19);
__ Madd(x12, x16, x16, x16);
__ Madd(x13, x16, x16, x17);
__ Madd(x14, x16, x16, x18);
__ Madd(x15, x16, x16, x19);
__ Madd(x20, x16, x17, x17);
__ Madd(x21, x17, x17, x18);
__ Madd(x22, x17, x17, x19);
__ Madd(x23, x17, x18, x16);
__ Madd(x24, x17, x18, x18);
__ Madd(x25, x18, x18, x17);
__ Madd(x26, x18, x19, x18);
__ Madd(x27, x19, x19, x19);
END();
RUN();
ASSERT_EQUAL_64(0, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(0xffffffff, x2);
ASSERT_EQUAL_64(0xffffffff, x3);
ASSERT_EQUAL_64(1, x4);
ASSERT_EQUAL_64(0, x5);
ASSERT_EQUAL_64(0, x6);
ASSERT_EQUAL_64(0xffffffff, x7);
ASSERT_EQUAL_64(0xfffffffe, x8);
ASSERT_EQUAL_64(2, x9);
ASSERT_EQUAL_64(0, x10);
ASSERT_EQUAL_64(0, x11);
ASSERT_EQUAL_64(0, x12);
ASSERT_EQUAL_64(1, x13);
ASSERT_EQUAL_64(0xffffffff, x14);
ASSERT_EQUAL_64(0xffffffffffffffff, x15);
ASSERT_EQUAL_64(1, x20);
ASSERT_EQUAL_64(0x100000000UL, x21);
ASSERT_EQUAL_64(0, x22);
ASSERT_EQUAL_64(0xffffffff, x23);
ASSERT_EQUAL_64(0x1fffffffe, x24);
ASSERT_EQUAL_64(0xfffffffe00000002UL, x25);
ASSERT_EQUAL_64(0, x26);
ASSERT_EQUAL_64(0, x27);
TEARDOWN();
}
TEST(msub) {
INIT_V8();
SETUP();
START();
__ Mov(x16, 0);
__ Mov(x17, 1);
__ Mov(x18, 0xffffffff);
__ Mov(x19, 0xffffffffffffffffUL);
__ Msub(w0, w16, w16, w16);
__ Msub(w1, w16, w16, w17);
__ Msub(w2, w16, w16, w18);
__ Msub(w3, w16, w16, w19);
__ Msub(w4, w16, w17, w17);
__ Msub(w5, w17, w17, w18);
__ Msub(w6, w17, w17, w19);
__ Msub(w7, w17, w18, w16);
__ Msub(w8, w17, w18, w18);
__ Msub(w9, w18, w18, w17);
__ Msub(w10, w18, w19, w18);
__ Msub(w11, w19, w19, w19);
__ Msub(x12, x16, x16, x16);
__ Msub(x13, x16, x16, x17);
__ Msub(x14, x16, x16, x18);
__ Msub(x15, x16, x16, x19);
__ Msub(x20, x16, x17, x17);
__ Msub(x21, x17, x17, x18);
__ Msub(x22, x17, x17, x19);
__ Msub(x23, x17, x18, x16);
__ Msub(x24, x17, x18, x18);
__ Msub(x25, x18, x18, x17);
__ Msub(x26, x18, x19, x18);
__ Msub(x27, x19, x19, x19);
END();
RUN();
ASSERT_EQUAL_64(0, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(0xffffffff, x2);
ASSERT_EQUAL_64(0xffffffff, x3);
ASSERT_EQUAL_64(1, x4);
ASSERT_EQUAL_64(0xfffffffe, x5);
ASSERT_EQUAL_64(0xfffffffe, x6);
ASSERT_EQUAL_64(1, x7);
ASSERT_EQUAL_64(0, x8);
ASSERT_EQUAL_64(0, x9);
ASSERT_EQUAL_64(0xfffffffe, x10);
ASSERT_EQUAL_64(0xfffffffe, x11);
ASSERT_EQUAL_64(0, x12);
ASSERT_EQUAL_64(1, x13);
ASSERT_EQUAL_64(0xffffffff, x14);
ASSERT_EQUAL_64(0xffffffffffffffffUL, x15);
ASSERT_EQUAL_64(1, x20);
ASSERT_EQUAL_64(0xfffffffeUL, x21);
ASSERT_EQUAL_64(0xfffffffffffffffeUL, x22);
ASSERT_EQUAL_64(0xffffffff00000001UL, x23);
ASSERT_EQUAL_64(0, x24);
ASSERT_EQUAL_64(0x200000000UL, x25);
ASSERT_EQUAL_64(0x1fffffffeUL, x26);
ASSERT_EQUAL_64(0xfffffffffffffffeUL, x27);
TEARDOWN();
}
TEST(smulh) {
INIT_V8();
SETUP();
START();
__ Mov(x20, 0);
__ Mov(x21, 1);
__ Mov(x22, 0x0000000100000000L);
__ Mov(x23, 0x12345678);
__ Mov(x24, 0x0123456789abcdefL);
__ Mov(x25, 0x0000000200000000L);
__ Mov(x26, 0x8000000000000000UL);
__ Mov(x27, 0xffffffffffffffffUL);
__ Mov(x28, 0x5555555555555555UL);
__ Mov(x29, 0xaaaaaaaaaaaaaaaaUL);
__ Smulh(x0, x20, x24);
__ Smulh(x1, x21, x24);
__ Smulh(x2, x22, x23);
__ Smulh(x3, x22, x24);
__ Smulh(x4, x24, x25);
__ Smulh(x5, x23, x27);
__ Smulh(x6, x26, x26);
__ Smulh(x7, x26, x27);
__ Smulh(x8, x27, x27);
__ Smulh(x9, x28, x28);
__ Smulh(x10, x28, x29);
__ Smulh(x11, x29, x29);
END();
RUN();
ASSERT_EQUAL_64(0, x0);
ASSERT_EQUAL_64(0, x1);
ASSERT_EQUAL_64(0, x2);
ASSERT_EQUAL_64(0x01234567, x3);
ASSERT_EQUAL_64(0x02468acf, x4);
ASSERT_EQUAL_64(0xffffffffffffffffUL, x5);
ASSERT_EQUAL_64(0x4000000000000000UL, x6);
ASSERT_EQUAL_64(0, x7);
ASSERT_EQUAL_64(0, x8);
ASSERT_EQUAL_64(0x1c71c71c71c71c71UL, x9);
ASSERT_EQUAL_64(0xe38e38e38e38e38eUL, x10);
ASSERT_EQUAL_64(0x1c71c71c71c71c72UL, x11);
TEARDOWN();
}
TEST(smaddl_umaddl) {
INIT_V8();
SETUP();
START();
__ Mov(x17, 1);
__ Mov(x18, 0xffffffff);
__ Mov(x19, 0xffffffffffffffffUL);
__ Mov(x20, 4);
__ Mov(x21, 0x200000000UL);
__ Smaddl(x9, w17, w18, x20);
__ Smaddl(x10, w18, w18, x20);
__ Smaddl(x11, w19, w19, x20);
__ Smaddl(x12, w19, w19, x21);
__ Umaddl(x13, w17, w18, x20);
__ Umaddl(x14, w18, w18, x20);
__ Umaddl(x15, w19, w19, x20);
__ Umaddl(x22, w19, w19, x21);
END();
RUN();
ASSERT_EQUAL_64(3, x9);
ASSERT_EQUAL_64(5, x10);
ASSERT_EQUAL_64(5, x11);
ASSERT_EQUAL_64(0x200000001UL, x12);
ASSERT_EQUAL_64(0x100000003UL, x13);
ASSERT_EQUAL_64(0xfffffffe00000005UL, x14);
ASSERT_EQUAL_64(0xfffffffe00000005UL, x15);
ASSERT_EQUAL_64(0x1, x22);
TEARDOWN();
}
TEST(smsubl_umsubl) {
INIT_V8();
SETUP();
START();
__ Mov(x17, 1);
__ Mov(x18, 0xffffffff);
__ Mov(x19, 0xffffffffffffffffUL);
__ Mov(x20, 4);
__ Mov(x21, 0x200000000UL);
__ Smsubl(x9, w17, w18, x20);
__ Smsubl(x10, w18, w18, x20);
__ Smsubl(x11, w19, w19, x20);
__ Smsubl(x12, w19, w19, x21);
__ Umsubl(x13, w17, w18, x20);
__ Umsubl(x14, w18, w18, x20);
__ Umsubl(x15, w19, w19, x20);
__ Umsubl(x22, w19, w19, x21);
END();
RUN();
ASSERT_EQUAL_64(5, x9);
ASSERT_EQUAL_64(3, x10);
ASSERT_EQUAL_64(3, x11);
ASSERT_EQUAL_64(0x1ffffffffUL, x12);
ASSERT_EQUAL_64(0xffffffff00000005UL, x13);
ASSERT_EQUAL_64(0x200000003UL, x14);
ASSERT_EQUAL_64(0x200000003UL, x15);
ASSERT_EQUAL_64(0x3ffffffffUL, x22);
TEARDOWN();
}
TEST(div) {
INIT_V8();
SETUP();
START();
__ Mov(x16, 1);
__ Mov(x17, 0xffffffff);
__ Mov(x18, 0xffffffffffffffffUL);
__ Mov(x19, 0x80000000);
__ Mov(x20, 0x8000000000000000UL);
__ Mov(x21, 2);
__ Udiv(w0, w16, w16);
__ Udiv(w1, w17, w16);
__ Sdiv(w2, w16, w16);
__ Sdiv(w3, w16, w17);
__ Sdiv(w4, w17, w18);
__ Udiv(x5, x16, x16);
__ Udiv(x6, x17, x18);
__ Sdiv(x7, x16, x16);
__ Sdiv(x8, x16, x17);
__ Sdiv(x9, x17, x18);
__ Udiv(w10, w19, w21);
__ Sdiv(w11, w19, w21);
__ Udiv(x12, x19, x21);
__ Sdiv(x13, x19, x21);
__ Udiv(x14, x20, x21);
__ Sdiv(x15, x20, x21);
__ Udiv(w22, w19, w17);
__ Sdiv(w23, w19, w17);
__ Udiv(x24, x20, x18);
__ Sdiv(x25, x20, x18);
__ Udiv(x26, x16, x21);
__ Sdiv(x27, x16, x21);
__ Udiv(x28, x18, x21);
__ Sdiv(x29, x18, x21);
__ Mov(x17, 0);
__ Udiv(w18, w16, w17);
__ Sdiv(w19, w16, w17);
__ Udiv(x20, x16, x17);
__ Sdiv(x21, x16, x17);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(0xffffffff, x1);
ASSERT_EQUAL_64(1, x2);
ASSERT_EQUAL_64(0xffffffff, x3);
ASSERT_EQUAL_64(1, x4);
ASSERT_EQUAL_64(1, x5);
ASSERT_EQUAL_64(0, x6);
ASSERT_EQUAL_64(1, x7);
ASSERT_EQUAL_64(0, x8);
ASSERT_EQUAL_64(0xffffffff00000001UL, x9);
ASSERT_EQUAL_64(0x40000000, x10);
ASSERT_EQUAL_64(0xC0000000, x11);
ASSERT_EQUAL_64(0x40000000, x12);
ASSERT_EQUAL_64(0x40000000, x13);
ASSERT_EQUAL_64(0x4000000000000000UL, x14);
ASSERT_EQUAL_64(0xC000000000000000UL, x15);
ASSERT_EQUAL_64(0, x22);
ASSERT_EQUAL_64(0x80000000, x23);
ASSERT_EQUAL_64(0, x24);
ASSERT_EQUAL_64(0x8000000000000000UL, x25);
ASSERT_EQUAL_64(0, x26);
ASSERT_EQUAL_64(0, x27);
ASSERT_EQUAL_64(0x7fffffffffffffffUL, x28);
ASSERT_EQUAL_64(0, x29);
ASSERT_EQUAL_64(0, x18);
ASSERT_EQUAL_64(0, x19);
ASSERT_EQUAL_64(0, x20);
ASSERT_EQUAL_64(0, x21);
TEARDOWN();
}
TEST(rbit_rev) {
INIT_V8();
SETUP();
START();
__ Mov(x24, 0xfedcba9876543210UL);
__ Rbit(w0, w24);
__ Rbit(x1, x24);
__ Rev16(w2, w24);
__ Rev16(x3, x24);
__ Rev(w4, w24);
__ Rev32(x5, x24);
__ Rev(x6, x24);
END();
RUN();
ASSERT_EQUAL_64(0x084c2a6e, x0);
ASSERT_EQUAL_64(0x084c2a6e195d3b7fUL, x1);
ASSERT_EQUAL_64(0x54761032, x2);
ASSERT_EQUAL_64(0xdcfe98ba54761032UL, x3);
ASSERT_EQUAL_64(0x10325476, x4);
ASSERT_EQUAL_64(0x98badcfe10325476UL, x5);
ASSERT_EQUAL_64(0x1032547698badcfeUL, x6);
TEARDOWN();
}
TEST(clz_cls) {
INIT_V8();
SETUP();
START();
__ Mov(x24, 0x0008000000800000UL);
__ Mov(x25, 0xff800000fff80000UL);
__ Mov(x26, 0);
__ Clz(w0, w24);
__ Clz(x1, x24);
__ Clz(w2, w25);
__ Clz(x3, x25);
__ Clz(w4, w26);
__ Clz(x5, x26);
__ Cls(w6, w24);
__ Cls(x7, x24);
__ Cls(w8, w25);
__ Cls(x9, x25);
__ Cls(w10, w26);
__ Cls(x11, x26);
END();
RUN();
ASSERT_EQUAL_64(8, x0);
ASSERT_EQUAL_64(12, x1);
ASSERT_EQUAL_64(0, x2);
ASSERT_EQUAL_64(0, x3);
ASSERT_EQUAL_64(32, x4);
ASSERT_EQUAL_64(64, x5);
ASSERT_EQUAL_64(7, x6);
ASSERT_EQUAL_64(11, x7);
ASSERT_EQUAL_64(12, x8);
ASSERT_EQUAL_64(8, x9);
ASSERT_EQUAL_64(31, x10);
ASSERT_EQUAL_64(63, x11);
TEARDOWN();
}
TEST(label) {
INIT_V8();
SETUP();
Label label_1, label_2, label_3, label_4;
START();
__ Mov(x0, 0x1);
__ Mov(x1, 0x0);
__ Mov(x22, lr); // Save lr.
__ B(&label_1);
__ B(&label_1);
__ B(&label_1); // Multiple branches to the same label.
__ Mov(x0, 0x0);
__ Bind(&label_2);
__ B(&label_3); // Forward branch.
__ Mov(x0, 0x0);
__ Bind(&label_1);
__ B(&label_2); // Backward branch.
__ Mov(x0, 0x0);
__ Bind(&label_3);
__ Bl(&label_4);
END();
__ Bind(&label_4);
__ Mov(x1, 0x1);
__ Mov(lr, x22);
END();
RUN();
ASSERT_EQUAL_64(0x1, x0);
ASSERT_EQUAL_64(0x1, x1);
TEARDOWN();
}
TEST(branch_at_start) {
INIT_V8();
SETUP();
Label good, exit;
// Test that branches can exist at the start of the buffer. (This is a
// boundary condition in the label-handling code.) To achieve this, we have
// to work around the code generated by START.
RESET();
__ B(&good);
START_AFTER_RESET();
__ Mov(x0, 0x0);
END();
__ Bind(&exit);
START_AFTER_RESET();
__ Mov(x0, 0x1);
END();
__ Bind(&good);
__ B(&exit);
END();
RUN();
ASSERT_EQUAL_64(0x1, x0);
TEARDOWN();
}
TEST(adr) {
INIT_V8();
SETUP();
Label label_1, label_2, label_3, label_4;
START();
__ Mov(x0, 0x0); // Set to non-zero to indicate failure.
__ Adr(x1, &label_3); // Set to zero to indicate success.
__ Adr(x2, &label_1); // Multiple forward references to the same label.
__ Adr(x3, &label_1);
__ Adr(x4, &label_1);
__ Bind(&label_2);
__ Eor(x5, x2, Operand(x3)); // Ensure that x2,x3 and x4 are identical.
__ Eor(x6, x2, Operand(x4));
__ Orr(x0, x0, Operand(x5));
__ Orr(x0, x0, Operand(x6));
__ Br(x2); // label_1, label_3
__ Bind(&label_3);
__ Adr(x2, &label_3); // Self-reference (offset 0).
__ Eor(x1, x1, Operand(x2));
__ Adr(x2, &label_4); // Simple forward reference.
__ Br(x2); // label_4
__ Bind(&label_1);
__ Adr(x2, &label_3); // Multiple reverse references to the same label.
__ Adr(x3, &label_3);
__ Adr(x4, &label_3);
__ Adr(x5, &label_2); // Simple reverse reference.
__ Br(x5); // label_2
__ Bind(&label_4);
END();
RUN();
ASSERT_EQUAL_64(0x0, x0);
ASSERT_EQUAL_64(0x0, x1);
TEARDOWN();
}
TEST(branch_cond) {
INIT_V8();
SETUP();
Label wrong;
START();
__ Mov(x0, 0x1);
__ Mov(x1, 0x1);
__ Mov(x2, 0x8000000000000000L);
// For each 'cmp' instruction below, condition codes other than the ones
// following it would branch.
__ Cmp(x1, 0);
__ B(&wrong, eq);
__ B(&wrong, lo);
__ B(&wrong, mi);
__ B(&wrong, vs);
__ B(&wrong, ls);
__ B(&wrong, lt);
__ B(&wrong, le);
Label ok_1;
__ B(&ok_1, ne);
__ Mov(x0, 0x0);
__ Bind(&ok_1);
__ Cmp(x1, 1);
__ B(&wrong, ne);
__ B(&wrong, lo);
__ B(&wrong, mi);
__ B(&wrong, vs);
__ B(&wrong, hi);
__ B(&wrong, lt);
__ B(&wrong, gt);
Label ok_2;
__ B(&ok_2, pl);
__ Mov(x0, 0x0);
__ Bind(&ok_2);
__ Cmp(x1, 2);
__ B(&wrong, eq);
__ B(&wrong, hs);
__ B(&wrong, pl);
__ B(&wrong, vs);
__ B(&wrong, hi);
__ B(&wrong, ge);
__ B(&wrong, gt);
Label ok_3;
__ B(&ok_3, vc);
__ Mov(x0, 0x0);
__ Bind(&ok_3);
__ Cmp(x2, 1);
__ B(&wrong, eq);
__ B(&wrong, lo);
__ B(&wrong, mi);
__ B(&wrong, vc);
__ B(&wrong, ls);
__ B(&wrong, ge);
__ B(&wrong, gt);
Label ok_4;
__ B(&ok_4, le);
__ Mov(x0, 0x0);
__ Bind(&ok_4);
Label ok_5;
__ b(&ok_5, al);
__ Mov(x0, 0x0);
__ Bind(&ok_5);
Label ok_6;
__ b(&ok_6, nv);
__ Mov(x0, 0x0);
__ Bind(&ok_6);
END();
__ Bind(&wrong);
__ Mov(x0, 0x0);
END();
RUN();
ASSERT_EQUAL_64(0x1, x0);
TEARDOWN();
}
TEST(branch_to_reg) {
INIT_V8();
SETUP();
// Test br.
Label fn1, after_fn1;
START();
__ Mov(x29, lr);
__ Mov(x1, 0);
__ B(&after_fn1);
__ Bind(&fn1);
__ Mov(x0, lr);
__ Mov(x1, 42);
__ Br(x0);
__ Bind(&after_fn1);
__ Bl(&fn1);
// Test blr.
Label fn2, after_fn2;
__ Mov(x2, 0);
__ B(&after_fn2);
__ Bind(&fn2);
__ Mov(x0, lr);
__ Mov(x2, 84);
__ Blr(x0);
__ Bind(&after_fn2);
__ Bl(&fn2);
__ Mov(x3, lr);
__ Mov(lr, x29);
END();
RUN();
ASSERT_EQUAL_64(core.xreg(3) + kInstructionSize, x0);
ASSERT_EQUAL_64(42, x1);
ASSERT_EQUAL_64(84, x2);
TEARDOWN();
}
TEST(compare_branch) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0);
__ Mov(x2, 0);
__ Mov(x3, 0);
__ Mov(x4, 0);
__ Mov(x5, 0);
__ Mov(x16, 0);
__ Mov(x17, 42);
Label zt, zt_end;
__ Cbz(w16, &zt);
__ B(&zt_end);
__ Bind(&zt);
__ Mov(x0, 1);
__ Bind(&zt_end);
Label zf, zf_end;
__ Cbz(x17, &zf);
__ B(&zf_end);
__ Bind(&zf);
__ Mov(x1, 1);
__ Bind(&zf_end);
Label nzt, nzt_end;
__ Cbnz(w17, &nzt);
__ B(&nzt_end);
__ Bind(&nzt);
__ Mov(x2, 1);
__ Bind(&nzt_end);
Label nzf, nzf_end;
__ Cbnz(x16, &nzf);
__ B(&nzf_end);
__ Bind(&nzf);
__ Mov(x3, 1);
__ Bind(&nzf_end);
__ Mov(x18, 0xffffffff00000000UL);
Label a, a_end;
__ Cbz(w18, &a);
__ B(&a_end);
__ Bind(&a);
__ Mov(x4, 1);
__ Bind(&a_end);
Label b, b_end;
__ Cbnz(w18, &b);
__ B(&b_end);
__ Bind(&b);
__ Mov(x5, 1);
__ Bind(&b_end);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(0, x1);
ASSERT_EQUAL_64(1, x2);
ASSERT_EQUAL_64(0, x3);
ASSERT_EQUAL_64(1, x4);
ASSERT_EQUAL_64(0, x5);
TEARDOWN();
}
TEST(test_branch) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0);
__ Mov(x2, 0);
__ Mov(x3, 0);
__ Mov(x16, 0xaaaaaaaaaaaaaaaaUL);
Label bz, bz_end;
__ Tbz(w16, 0, &bz);
__ B(&bz_end);
__ Bind(&bz);
__ Mov(x0, 1);
__ Bind(&bz_end);
Label bo, bo_end;
__ Tbz(x16, 63, &bo);
__ B(&bo_end);
__ Bind(&bo);
__ Mov(x1, 1);
__ Bind(&bo_end);
Label nbz, nbz_end;
__ Tbnz(x16, 61, &nbz);
__ B(&nbz_end);
__ Bind(&nbz);
__ Mov(x2, 1);
__ Bind(&nbz_end);
Label nbo, nbo_end;
__ Tbnz(w16, 2, &nbo);
__ B(&nbo_end);
__ Bind(&nbo);
__ Mov(x3, 1);
__ Bind(&nbo_end);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(0, x1);
ASSERT_EQUAL_64(1, x2);
ASSERT_EQUAL_64(0, x3);
TEARDOWN();
}
TEST(far_branch_backward) {
INIT_V8();
// Test that the MacroAssembler correctly resolves backward branches to labels
// that are outside the immediate range of branch instructions.
int max_range =
std::max(Instruction::ImmBranchRange(TestBranchType),
std::max(Instruction::ImmBranchRange(CompareBranchType),
Instruction::ImmBranchRange(CondBranchType)));
SETUP_SIZE(max_range + 1000 * kInstructionSize);
START();
Label done, fail;
Label test_tbz, test_cbz, test_bcond;
Label success_tbz, success_cbz, success_bcond;
__ Mov(x0, 0);
__ Mov(x1, 1);
__ Mov(x10, 0);
__ B(&test_tbz);
__ Bind(&success_tbz);
__ Orr(x0, x0, 1 << 0);
__ B(&test_cbz);
__ Bind(&success_cbz);
__ Orr(x0, x0, 1 << 1);
__ B(&test_bcond);
__ Bind(&success_bcond);
__ Orr(x0, x0, 1 << 2);
__ B(&done);
// Generate enough code to overflow the immediate range of the three types of
// branches below.
for (unsigned i = 0; i < max_range / kInstructionSize + 1; ++i) {
if (i % 100 == 0) {
// If we do land in this code, we do not want to execute so many nops
// before reaching the end of test (especially if tracing is activated).
__ B(&fail);
} else {
__ Nop();
}
}
__ B(&fail);
__ Bind(&test_tbz);
__ Tbz(x10, 7, &success_tbz);
__ Bind(&test_cbz);
__ Cbz(x10, &success_cbz);
__ Bind(&test_bcond);
__ Cmp(x10, 0);
__ B(eq, &success_bcond);
// For each out-of-range branch instructions, at least two instructions should
// have been generated.
CHECK_GE(7 * kInstructionSize, __ SizeOfCodeGeneratedSince(&test_tbz));
__ Bind(&fail);
__ Mov(x1, 0);
__ Bind(&done);
END();
RUN();
ASSERT_EQUAL_64(0x7, x0);
ASSERT_EQUAL_64(0x1, x1);
TEARDOWN();
}
TEST(far_branch_simple_veneer) {
INIT_V8();
// Test that the MacroAssembler correctly emits veneers for forward branches
// to labels that are outside the immediate range of branch instructions.
int max_range =
std::max(Instruction::ImmBranchRange(TestBranchType),
std::max(Instruction::ImmBranchRange(CompareBranchType),
Instruction::ImmBranchRange(CondBranchType)));
SETUP_SIZE(max_range + 1000 * kInstructionSize);
START();
Label done, fail;
Label test_tbz, test_cbz, test_bcond;
Label success_tbz, success_cbz, success_bcond;
__ Mov(x0, 0);
__ Mov(x1, 1);
__ Mov(x10, 0);
__ Bind(&test_tbz);
__ Tbz(x10, 7, &success_tbz);
__ Bind(&test_cbz);
__ Cbz(x10, &success_cbz);
__ Bind(&test_bcond);
__ Cmp(x10, 0);
__ B(eq, &success_bcond);
// Generate enough code to overflow the immediate range of the three types of
// branches below.
for (unsigned i = 0; i < max_range / kInstructionSize + 1; ++i) {
if (i % 100 == 0) {
// If we do land in this code, we do not want to execute so many nops
// before reaching the end of test (especially if tracing is activated).
// Also, the branches give the MacroAssembler the opportunity to emit the
// veneers.
__ B(&fail);
} else {
__ Nop();
}
}
__ B(&fail);
__ Bind(&success_tbz);
__ Orr(x0, x0, 1 << 0);
__ B(&test_cbz);
__ Bind(&success_cbz);
__ Orr(x0, x0, 1 << 1);
__ B(&test_bcond);
__ Bind(&success_bcond);
__ Orr(x0, x0, 1 << 2);
__ B(&done);
__ Bind(&fail);
__ Mov(x1, 0);
__ Bind(&done);
END();
RUN();
ASSERT_EQUAL_64(0x7, x0);
ASSERT_EQUAL_64(0x1, x1);
TEARDOWN();
}
TEST(far_branch_veneer_link_chain) {
INIT_V8();
// Test that the MacroAssembler correctly emits veneers for forward branches
// that target out-of-range labels and are part of multiple instructions
// jumping to that label.
//
// We test the three situations with the different types of instruction:
// (1)- When the branch is at the start of the chain with tbz.
// (2)- When the branch is in the middle of the chain with cbz.
// (3)- When the branch is at the end of the chain with bcond.
int max_range =
std::max(Instruction::ImmBranchRange(TestBranchType),
std::max(Instruction::ImmBranchRange(CompareBranchType),
Instruction::ImmBranchRange(CondBranchType)));
SETUP_SIZE(max_range + 1000 * kInstructionSize);
START();
Label skip, fail, done;
Label test_tbz, test_cbz, test_bcond;
Label success_tbz, success_cbz, success_bcond;
__ Mov(x0, 0);
__ Mov(x1, 1);
__ Mov(x10, 0);
__ B(&skip);
// Branches at the start of the chain for situations (2) and (3).
__ B(&success_cbz);
__ B(&success_bcond);
__ Nop();
__ B(&success_bcond);
__ B(&success_cbz);
__ Bind(&skip);
__ Bind(&test_tbz);
__ Tbz(x10, 7, &success_tbz);
__ Bind(&test_cbz);
__ Cbz(x10, &success_cbz);
__ Bind(&test_bcond);
__ Cmp(x10, 0);
__ B(eq, &success_bcond);
skip.Unuse();
__ B(&skip);
// Branches at the end of the chain for situations (1) and (2).
__ B(&success_cbz);
__ B(&success_tbz);
__ Nop();
__ B(&success_tbz);
__ B(&success_cbz);
__ Bind(&skip);
// Generate enough code to overflow the immediate range of the three types of
// branches below.
for (unsigned i = 0; i < max_range / kInstructionSize + 1; ++i) {
if (i % 100 == 0) {
// If we do land in this code, we do not want to execute so many nops
// before reaching the end of test (especially if tracing is activated).
// Also, the branches give the MacroAssembler the opportunity to emit the
// veneers.
__ B(&fail);
} else {
__ Nop();
}
}
__ B(&fail);
__ Bind(&success_tbz);
__ Orr(x0, x0, 1 << 0);
__ B(&test_cbz);
__ Bind(&success_cbz);
__ Orr(x0, x0, 1 << 1);
__ B(&test_bcond);
__ Bind(&success_bcond);
__ Orr(x0, x0, 1 << 2);
__ B(&done);
__ Bind(&fail);
__ Mov(x1, 0);
__ Bind(&done);
END();
RUN();
ASSERT_EQUAL_64(0x7, x0);
ASSERT_EQUAL_64(0x1, x1);
TEARDOWN();
}
TEST(far_branch_veneer_broken_link_chain) {
INIT_V8();
// Check that the MacroAssembler correctly handles the situation when removing
// a branch from the link chain of a label and the two links on each side of
// the removed branch cannot be linked together (out of range).
//
// We test with tbz because it has a small range.
int max_range = Instruction::ImmBranchRange(TestBranchType);
int inter_range = max_range / 2 + max_range / 10;
SETUP_SIZE(3 * inter_range + 1000 * kInstructionSize);
START();
Label skip, fail, done;
Label test_1, test_2, test_3;
Label far_target;
__ Mov(x0, 0); // Indicates the origin of the branch.
__ Mov(x1, 1);
__ Mov(x10, 0);
// First instruction in the label chain.
__ Bind(&test_1);
__ Mov(x0, 1);
__ B(&far_target);
for (unsigned i = 0; i < inter_range / kInstructionSize; ++i) {
if (i % 100 == 0) {
// Do not allow generating veneers. They should not be needed.
__ b(&fail);
} else {
__ Nop();
}
}
// Will need a veneer to point to reach the target.
__ Bind(&test_2);
__ Mov(x0, 2);
__ Tbz(x10, 7, &far_target);
for (unsigned i = 0; i < inter_range / kInstructionSize; ++i) {
if (i % 100 == 0) {
// Do not allow generating veneers. They should not be needed.
__ b(&fail);
} else {
__ Nop();
}
}
// Does not need a veneer to reach the target, but the initial branch
// instruction is out of range.
__ Bind(&test_3);
__ Mov(x0, 3);
__ Tbz(x10, 7, &far_target);
for (unsigned i = 0; i < inter_range / kInstructionSize; ++i) {
if (i % 100 == 0) {
// Allow generating veneers.
__ B(&fail);
} else {
__ Nop();
}
}
__ B(&fail);
__ Bind(&far_target);
__ Cmp(x0, 1);
__ B(eq, &test_2);
__ Cmp(x0, 2);
__ B(eq, &test_3);
__ B(&done);
__ Bind(&fail);
__ Mov(x1, 0);
__ Bind(&done);
END();
RUN();
ASSERT_EQUAL_64(0x3, x0);
ASSERT_EQUAL_64(0x1, x1);
TEARDOWN();
}
TEST(branch_type) {
INIT_V8();
SETUP();
Label fail, done;
START();
__ Mov(x0, 0x0);
__ Mov(x10, 0x7);
__ Mov(x11, 0x0);
// Test non taken branches.
__ Cmp(x10, 0x7);
__ B(&fail, ne);
__ B(&fail, never);
__ B(&fail, reg_zero, x10);
__ B(&fail, reg_not_zero, x11);
__ B(&fail, reg_bit_clear, x10, 0);
__ B(&fail, reg_bit_set, x10, 3);
// Test taken branches.
Label l1, l2, l3, l4, l5;
__ Cmp(x10, 0x7);
__ B(&l1, eq);
__ B(&fail);
__ Bind(&l1);
__ B(&l2, always);
__ B(&fail);
__ Bind(&l2);
__ B(&l3, reg_not_zero, x10);
__ B(&fail);
__ Bind(&l3);
__ B(&l4, reg_bit_clear, x10, 15);
__ B(&fail);
__ Bind(&l4);
__ B(&l5, reg_bit_set, x10, 1);
__ B(&fail);
__ Bind(&l5);
__ B(&done);
__ Bind(&fail);
__ Mov(x0, 0x1);
__ Bind(&done);
END();
RUN();
ASSERT_EQUAL_64(0x0, x0);
TEARDOWN();
}
TEST(ldr_str_offset) {
INIT_V8();
SETUP();
uint64_t src[2] = {0xfedcba9876543210UL, 0x0123456789abcdefUL};
uint64_t dst[5] = {0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x18, dst_base);
__ Ldr(w0, MemOperand(x17));
__ Str(w0, MemOperand(x18));
__ Ldr(w1, MemOperand(x17, 4));
__ Str(w1, MemOperand(x18, 12));
__ Ldr(x2, MemOperand(x17, 8));
__ Str(x2, MemOperand(x18, 16));
__ Ldrb(w3, MemOperand(x17, 1));
__ Strb(w3, MemOperand(x18, 25));
__ Ldrh(w4, MemOperand(x17, 2));
__ Strh(w4, MemOperand(x18, 33));
END();
RUN();
ASSERT_EQUAL_64(0x76543210, x0);
ASSERT_EQUAL_64(0x76543210, dst[0]);
ASSERT_EQUAL_64(0xfedcba98, x1);
ASSERT_EQUAL_64(0xfedcba9800000000UL, dst[1]);
ASSERT_EQUAL_64(0x0123456789abcdefUL, x2);
ASSERT_EQUAL_64(0x0123456789abcdefUL, dst[2]);
ASSERT_EQUAL_64(0x32, x3);
ASSERT_EQUAL_64(0x3200, dst[3]);
ASSERT_EQUAL_64(0x7654, x4);
ASSERT_EQUAL_64(0x765400, dst[4]);
ASSERT_EQUAL_64(src_base, x17);
ASSERT_EQUAL_64(dst_base, x18);
TEARDOWN();
}
TEST(ldr_str_wide) {
INIT_V8();
SETUP();
uint32_t src[8192];
uint32_t dst[8192];
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
memset(src, 0xaa, 8192 * sizeof(src[0]));
memset(dst, 0xaa, 8192 * sizeof(dst[0]));
src[0] = 0;
src[6144] = 6144;
src[8191] = 8191;
START();
__ Mov(x22, src_base);
__ Mov(x23, dst_base);
__ Mov(x24, src_base);
__ Mov(x25, dst_base);
__ Mov(x26, src_base);
__ Mov(x27, dst_base);
__ Ldr(w0, MemOperand(x22, 8191 * sizeof(src[0])));
__ Str(w0, MemOperand(x23, 8191 * sizeof(dst[0])));
__ Ldr(w1, MemOperand(x24, 4096 * sizeof(src[0]), PostIndex));
__ Str(w1, MemOperand(x25, 4096 * sizeof(dst[0]), PostIndex));
__ Ldr(w2, MemOperand(x26, 6144 * sizeof(src[0]), PreIndex));
__ Str(w2, MemOperand(x27, 6144 * sizeof(dst[0]), PreIndex));
END();
RUN();
ASSERT_EQUAL_32(8191, w0);
ASSERT_EQUAL_32(8191, dst[8191]);
ASSERT_EQUAL_64(src_base, x22);
ASSERT_EQUAL_64(dst_base, x23);
ASSERT_EQUAL_32(0, w1);
ASSERT_EQUAL_32(0, dst[0]);
ASSERT_EQUAL_64(src_base + 4096 * sizeof(src[0]), x24);
ASSERT_EQUAL_64(dst_base + 4096 * sizeof(dst[0]), x25);
ASSERT_EQUAL_32(6144, w2);
ASSERT_EQUAL_32(6144, dst[6144]);
ASSERT_EQUAL_64(src_base + 6144 * sizeof(src[0]), x26);
ASSERT_EQUAL_64(dst_base + 6144 * sizeof(dst[0]), x27);
TEARDOWN();
}
TEST(ldr_str_preindex) {
INIT_V8();
SETUP();
uint64_t src[2] = {0xfedcba9876543210UL, 0x0123456789abcdefUL};
uint64_t dst[6] = {0, 0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x18, dst_base);
__ Mov(x19, src_base);
__ Mov(x20, dst_base);
__ Mov(x21, src_base + 16);
__ Mov(x22, dst_base + 40);
__ Mov(x23, src_base);
__ Mov(x24, dst_base);
__ Mov(x25, src_base);
__ Mov(x26, dst_base);
__ Ldr(w0, MemOperand(x17, 4, PreIndex));
__ Str(w0, MemOperand(x18, 12, PreIndex));
__ Ldr(x1, MemOperand(x19, 8, PreIndex));
__ Str(x1, MemOperand(x20, 16, PreIndex));
__ Ldr(w2, MemOperand(x21, -4, PreIndex));
__ Str(w2, MemOperand(x22, -4, PreIndex));
__ Ldrb(w3, MemOperand(x23, 1, PreIndex));
__ Strb(w3, MemOperand(x24, 25, PreIndex));
__ Ldrh(w4, MemOperand(x25, 3, PreIndex));
__ Strh(w4, MemOperand(x26, 41, PreIndex));
END();
RUN();
ASSERT_EQUAL_64(0xfedcba98, x0);
ASSERT_EQUAL_64(0xfedcba9800000000UL, dst[1]);
ASSERT_EQUAL_64(0x0123456789abcdefUL, x1);
ASSERT_EQUAL_64(0x0123456789abcdefUL, dst[2]);
ASSERT_EQUAL_64(0x01234567, x2);
ASSERT_EQUAL_64(0x0123456700000000UL, dst[4]);
ASSERT_EQUAL_64(0x32, x3);
ASSERT_EQUAL_64(0x3200, dst[3]);
ASSERT_EQUAL_64(0x9876, x4);
ASSERT_EQUAL_64(0x987600, dst[5]);
ASSERT_EQUAL_64(src_base + 4, x17);
ASSERT_EQUAL_64(dst_base + 12, x18);
ASSERT_EQUAL_64(src_base + 8, x19);
ASSERT_EQUAL_64(dst_base + 16, x20);
ASSERT_EQUAL_64(src_base + 12, x21);
ASSERT_EQUAL_64(dst_base + 36, x22);
ASSERT_EQUAL_64(src_base + 1, x23);
ASSERT_EQUAL_64(dst_base + 25, x24);
ASSERT_EQUAL_64(src_base + 3, x25);
ASSERT_EQUAL_64(dst_base + 41, x26);
TEARDOWN();
}
TEST(ldr_str_postindex) {
INIT_V8();
SETUP();
uint64_t src[2] = {0xfedcba9876543210UL, 0x0123456789abcdefUL};
uint64_t dst[6] = {0, 0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base + 4);
__ Mov(x18, dst_base + 12);
__ Mov(x19, src_base + 8);
__ Mov(x20, dst_base + 16);
__ Mov(x21, src_base + 8);
__ Mov(x22, dst_base + 32);
__ Mov(x23, src_base + 1);
__ Mov(x24, dst_base + 25);
__ Mov(x25, src_base + 3);
__ Mov(x26, dst_base + 41);
__ Ldr(w0, MemOperand(x17, 4, PostIndex));
__ Str(w0, MemOperand(x18, 12, PostIndex));
__ Ldr(x1, MemOperand(x19, 8, PostIndex));
__ Str(x1, MemOperand(x20, 16, PostIndex));
__ Ldr(x2, MemOperand(x21, -8, PostIndex));
__ Str(x2, MemOperand(x22, -32, PostIndex));
__ Ldrb(w3, MemOperand(x23, 1, PostIndex));
__ Strb(w3, MemOperand(x24, 5, PostIndex));
__ Ldrh(w4, MemOperand(x25, -3, PostIndex));
__ Strh(w4, MemOperand(x26, -41, PostIndex));
END();
RUN();
ASSERT_EQUAL_64(0xfedcba98, x0);
ASSERT_EQUAL_64(0xfedcba9800000000UL, dst[1]);
ASSERT_EQUAL_64(0x0123456789abcdefUL, x1);
ASSERT_EQUAL_64(0x0123456789abcdefUL, dst[2]);
ASSERT_EQUAL_64(0x0123456789abcdefUL, x2);
ASSERT_EQUAL_64(0x0123456789abcdefUL, dst[4]);
ASSERT_EQUAL_64(0x32, x3);
ASSERT_EQUAL_64(0x3200, dst[3]);
ASSERT_EQUAL_64(0x9876, x4);
ASSERT_EQUAL_64(0x987600, dst[5]);
ASSERT_EQUAL_64(src_base + 8, x17);
ASSERT_EQUAL_64(dst_base + 24, x18);
ASSERT_EQUAL_64(src_base + 16, x19);
ASSERT_EQUAL_64(dst_base + 32, x20);
ASSERT_EQUAL_64(src_base, x21);
ASSERT_EQUAL_64(dst_base, x22);
ASSERT_EQUAL_64(src_base + 2, x23);
ASSERT_EQUAL_64(dst_base + 30, x24);
ASSERT_EQUAL_64(src_base, x25);
ASSERT_EQUAL_64(dst_base, x26);
TEARDOWN();
}
TEST(load_signed) {
INIT_V8();
SETUP();
uint32_t src[2] = {0x80008080, 0x7fff7f7f};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x24, src_base);
__ Ldrsb(w0, MemOperand(x24));
__ Ldrsb(w1, MemOperand(x24, 4));
__ Ldrsh(w2, MemOperand(x24));
__ Ldrsh(w3, MemOperand(x24, 4));
__ Ldrsb(x4, MemOperand(x24));
__ Ldrsb(x5, MemOperand(x24, 4));
__ Ldrsh(x6, MemOperand(x24));
__ Ldrsh(x7, MemOperand(x24, 4));
__ Ldrsw(x8, MemOperand(x24));
__ Ldrsw(x9, MemOperand(x24, 4));
END();
RUN();
ASSERT_EQUAL_64(0xffffff80, x0);
ASSERT_EQUAL_64(0x0000007f, x1);
ASSERT_EQUAL_64(0xffff8080, x2);
ASSERT_EQUAL_64(0x00007f7f, x3);
ASSERT_EQUAL_64(0xffffffffffffff80UL, x4);
ASSERT_EQUAL_64(0x000000000000007fUL, x5);
ASSERT_EQUAL_64(0xffffffffffff8080UL, x6);
ASSERT_EQUAL_64(0x0000000000007f7fUL, x7);
ASSERT_EQUAL_64(0xffffffff80008080UL, x8);
ASSERT_EQUAL_64(0x000000007fff7f7fUL, x9);
TEARDOWN();
}
TEST(load_store_regoffset) {
INIT_V8();
SETUP();
uint32_t src[3] = {1, 2, 3};
uint32_t dst[4] = {0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Mov(x18, src_base + 3 * sizeof(src[0]));
__ Mov(x19, dst_base + 3 * sizeof(dst[0]));
__ Mov(x20, dst_base + 4 * sizeof(dst[0]));
__ Mov(x24, 0);
__ Mov(x25, 4);
__ Mov(x26, -4);
__ Mov(x27, 0xfffffffc); // 32-bit -4.
__ Mov(x28, 0xfffffffe); // 32-bit -2.
__ Mov(x29, 0xffffffff); // 32-bit -1.
__ Ldr(w0, MemOperand(x16, x24));
__ Ldr(x1, MemOperand(x16, x25));
__ Ldr(w2, MemOperand(x18, x26));
__ Ldr(w3, MemOperand(x18, x27, SXTW));
__ Ldr(w4, MemOperand(x18, x28, SXTW, 2));
__ Str(w0, MemOperand(x17, x24));
__ Str(x1, MemOperand(x17, x25));
__ Str(w2, MemOperand(x20, x29, SXTW, 2));
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(0x0000000300000002UL, x1);
ASSERT_EQUAL_64(3, x2);
ASSERT_EQUAL_64(3, x3);
ASSERT_EQUAL_64(2, x4);
ASSERT_EQUAL_32(1, dst[0]);
ASSERT_EQUAL_32(2, dst[1]);
ASSERT_EQUAL_32(3, dst[2]);
ASSERT_EQUAL_32(3, dst[3]);
TEARDOWN();
}
TEST(load_store_float) {
INIT_V8();
SETUP();
float src[3] = {1.0, 2.0, 3.0};
float dst[3] = {0.0, 0.0, 0.0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x18, dst_base);
__ Mov(x19, src_base);
__ Mov(x20, dst_base);
__ Mov(x21, src_base);
__ Mov(x22, dst_base);
__ Ldr(s0, MemOperand(x17, sizeof(src[0])));
__ Str(s0, MemOperand(x18, sizeof(dst[0]), PostIndex));
__ Ldr(s1, MemOperand(x19, sizeof(src[0]), PostIndex));
__ Str(s1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex));
__ Ldr(s2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex));
__ Str(s2, MemOperand(x22, sizeof(dst[0])));
END();
RUN();
ASSERT_EQUAL_FP32(2.0, s0);
ASSERT_EQUAL_FP32(2.0, dst[0]);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(1.0, dst[2]);
ASSERT_EQUAL_FP32(3.0, s2);
ASSERT_EQUAL_FP32(3.0, dst[1]);
ASSERT_EQUAL_64(src_base, x17);
ASSERT_EQUAL_64(dst_base + sizeof(dst[0]), x18);
ASSERT_EQUAL_64(src_base + sizeof(src[0]), x19);
ASSERT_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20);
ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x21);
ASSERT_EQUAL_64(dst_base, x22);
TEARDOWN();
}
TEST(load_store_double) {
INIT_V8();
SETUP();
double src[3] = {1.0, 2.0, 3.0};
double dst[3] = {0.0, 0.0, 0.0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x18, dst_base);
__ Mov(x19, src_base);
__ Mov(x20, dst_base);
__ Mov(x21, src_base);
__ Mov(x22, dst_base);
__ Ldr(d0, MemOperand(x17, sizeof(src[0])));
__ Str(d0, MemOperand(x18, sizeof(dst[0]), PostIndex));
__ Ldr(d1, MemOperand(x19, sizeof(src[0]), PostIndex));
__ Str(d1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex));
__ Ldr(d2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex));
__ Str(d2, MemOperand(x22, sizeof(dst[0])));
END();
RUN();
ASSERT_EQUAL_FP64(2.0, d0);
ASSERT_EQUAL_FP64(2.0, dst[0]);
ASSERT_EQUAL_FP64(1.0, d1);
ASSERT_EQUAL_FP64(1.0, dst[2]);
ASSERT_EQUAL_FP64(3.0, d2);
ASSERT_EQUAL_FP64(3.0, dst[1]);
ASSERT_EQUAL_64(src_base, x17);
ASSERT_EQUAL_64(dst_base + sizeof(dst[0]), x18);
ASSERT_EQUAL_64(src_base + sizeof(src[0]), x19);
ASSERT_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20);
ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x21);
ASSERT_EQUAL_64(dst_base, x22);
TEARDOWN();
}
TEST(ldp_stp_float) {
INIT_V8();
SETUP();
float src[2] = {1.0, 2.0};
float dst[3] = {0.0, 0.0, 0.0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Ldp(s31, s0, MemOperand(x16, 2 * sizeof(src[0]), PostIndex));
__ Stp(s0, s31, MemOperand(x17, sizeof(dst[1]), PreIndex));
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s31);
ASSERT_EQUAL_FP32(2.0, s0);
ASSERT_EQUAL_FP32(0.0, dst[0]);
ASSERT_EQUAL_FP32(2.0, dst[1]);
ASSERT_EQUAL_FP32(1.0, dst[2]);
ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x16);
ASSERT_EQUAL_64(dst_base + sizeof(dst[1]), x17);
TEARDOWN();
}
TEST(ldp_stp_double) {
INIT_V8();
SETUP();
double src[2] = {1.0, 2.0};
double dst[3] = {0.0, 0.0, 0.0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Ldp(d31, d0, MemOperand(x16, 2 * sizeof(src[0]), PostIndex));
__ Stp(d0, d31, MemOperand(x17, sizeof(dst[1]), PreIndex));
END();
RUN();
ASSERT_EQUAL_FP64(1.0, d31);
ASSERT_EQUAL_FP64(2.0, d0);
ASSERT_EQUAL_FP64(0.0, dst[0]);
ASSERT_EQUAL_FP64(2.0, dst[1]);
ASSERT_EQUAL_FP64(1.0, dst[2]);
ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x16);
ASSERT_EQUAL_64(dst_base + sizeof(dst[1]), x17);
TEARDOWN();
}
TEST(ldp_stp_offset) {
INIT_V8();
SETUP();
uint64_t src[3] = {0x0011223344556677UL, 0x8899aabbccddeeffUL,
0xffeeddccbbaa9988UL};
uint64_t dst[7] = {0, 0, 0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Mov(x18, src_base + 24);
__ Mov(x19, dst_base + 56);
__ Ldp(w0, w1, MemOperand(x16));
__ Ldp(w2, w3, MemOperand(x16, 4));
__ Ldp(x4, x5, MemOperand(x16, 8));
__ Ldp(w6, w7, MemOperand(x18, -12));
__ Ldp(x8, x9, MemOperand(x18, -16));
__ Stp(w0, w1, MemOperand(x17));
__ Stp(w2, w3, MemOperand(x17, 8));
__ Stp(x4, x5, MemOperand(x17, 16));
__ Stp(w6, w7, MemOperand(x19, -24));
__ Stp(x8, x9, MemOperand(x19, -16));
END();
RUN();
ASSERT_EQUAL_64(0x44556677, x0);
ASSERT_EQUAL_64(0x00112233, x1);
ASSERT_EQUAL_64(0x0011223344556677UL, dst[0]);
ASSERT_EQUAL_64(0x00112233, x2);
ASSERT_EQUAL_64(0xccddeeff, x3);
ASSERT_EQUAL_64(0xccddeeff00112233UL, dst[1]);
ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x4);
ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[2]);
ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x5);
ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[3]);
ASSERT_EQUAL_64(0x8899aabb, x6);
ASSERT_EQUAL_64(0xbbaa9988, x7);
ASSERT_EQUAL_64(0xbbaa99888899aabbUL, dst[4]);
ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x8);
ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[5]);
ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x9);
ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[6]);
ASSERT_EQUAL_64(src_base, x16);
ASSERT_EQUAL_64(dst_base, x17);
ASSERT_EQUAL_64(src_base + 24, x18);
ASSERT_EQUAL_64(dst_base + 56, x19);
TEARDOWN();
}
TEST(ldnp_stnp_offset) {
INIT_V8();
SETUP();
uint64_t src[3] = {0x0011223344556677UL, 0x8899aabbccddeeffUL,
0xffeeddccbbaa9988UL};
uint64_t dst[7] = {0, 0, 0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Mov(x18, src_base + 24);
__ Mov(x19, dst_base + 56);
__ Ldnp(w0, w1, MemOperand(x16));
__ Ldnp(w2, w3, MemOperand(x16, 4));
__ Ldnp(x4, x5, MemOperand(x16, 8));
__ Ldnp(w6, w7, MemOperand(x18, -12));
__ Ldnp(x8, x9, MemOperand(x18, -16));
__ Stnp(w0, w1, MemOperand(x17));
__ Stnp(w2, w3, MemOperand(x17, 8));
__ Stnp(x4, x5, MemOperand(x17, 16));
__ Stnp(w6, w7, MemOperand(x19, -24));
__ Stnp(x8, x9, MemOperand(x19, -16));
END();
RUN();
ASSERT_EQUAL_64(0x44556677, x0);
ASSERT_EQUAL_64(0x00112233, x1);
ASSERT_EQUAL_64(0x0011223344556677UL, dst[0]);
ASSERT_EQUAL_64(0x00112233, x2);
ASSERT_EQUAL_64(0xccddeeff, x3);
ASSERT_EQUAL_64(0xccddeeff00112233UL, dst[1]);
ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x4);
ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[2]);
ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x5);
ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[3]);
ASSERT_EQUAL_64(0x8899aabb, x6);
ASSERT_EQUAL_64(0xbbaa9988, x7);
ASSERT_EQUAL_64(0xbbaa99888899aabbUL, dst[4]);
ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x8);
ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[5]);
ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x9);
ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[6]);
ASSERT_EQUAL_64(src_base, x16);
ASSERT_EQUAL_64(dst_base, x17);
ASSERT_EQUAL_64(src_base + 24, x18);
ASSERT_EQUAL_64(dst_base + 56, x19);
TEARDOWN();
}
TEST(ldp_stp_preindex) {
INIT_V8();
SETUP();
uint64_t src[3] = {0x0011223344556677UL, 0x8899aabbccddeeffUL,
0xffeeddccbbaa9988UL};
uint64_t dst[5] = {0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Mov(x18, dst_base + 16);
__ Ldp(w0, w1, MemOperand(x16, 4, PreIndex));
__ Mov(x19, x16);
__ Ldp(w2, w3, MemOperand(x16, -4, PreIndex));
__ Stp(w2, w3, MemOperand(x17, 4, PreIndex));
__ Mov(x20, x17);
__ Stp(w0, w1, MemOperand(x17, -4, PreIndex));
__ Ldp(x4, x5, MemOperand(x16, 8, PreIndex));
__ Mov(x21, x16);
__ Ldp(x6, x7, MemOperand(x16, -8, PreIndex));
__ Stp(x7, x6, MemOperand(x18, 8, PreIndex));
__ Mov(x22, x18);
__ Stp(x5, x4, MemOperand(x18, -8, PreIndex));
END();
RUN();
ASSERT_EQUAL_64(0x00112233, x0);
ASSERT_EQUAL_64(0xccddeeff, x1);
ASSERT_EQUAL_64(0x44556677, x2);
ASSERT_EQUAL_64(0x00112233, x3);
ASSERT_EQUAL_64(0xccddeeff00112233UL, dst[0]);
ASSERT_EQUAL_64(0x0000000000112233UL, dst[1]);
ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x4);
ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x5);
ASSERT_EQUAL_64(0x0011223344556677UL, x6);
ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x7);
ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[2]);
ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[3]);
ASSERT_EQUAL_64(0x0011223344556677UL, dst[4]);
ASSERT_EQUAL_64(src_base, x16);
ASSERT_EQUAL_64(dst_base, x17);
ASSERT_EQUAL_64(dst_base + 16, x18);
ASSERT_EQUAL_64(src_base + 4, x19);
ASSERT_EQUAL_64(dst_base + 4, x20);
ASSERT_EQUAL_64(src_base + 8, x21);
ASSERT_EQUAL_64(dst_base + 24, x22);
TEARDOWN();
}
TEST(ldp_stp_postindex) {
INIT_V8();
SETUP();
uint64_t src[4] = {0x0011223344556677UL, 0x8899aabbccddeeffUL,
0xffeeddccbbaa9988UL, 0x7766554433221100UL};
uint64_t dst[5] = {0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Mov(x18, dst_base + 16);
__ Ldp(w0, w1, MemOperand(x16, 4, PostIndex));
__ Mov(x19, x16);
__ Ldp(w2, w3, MemOperand(x16, -4, PostIndex));
__ Stp(w2, w3, MemOperand(x17, 4, PostIndex));
__ Mov(x20, x17);
__ Stp(w0, w1, MemOperand(x17, -4, PostIndex));
__ Ldp(x4, x5, MemOperand(x16, 8, PostIndex));
__ Mov(x21, x16);
__ Ldp(x6, x7, MemOperand(x16, -8, PostIndex));
__ Stp(x7, x6, MemOperand(x18, 8, PostIndex));
__ Mov(x22, x18);
__ Stp(x5, x4, MemOperand(x18, -8, PostIndex));
END();
RUN();
ASSERT_EQUAL_64(0x44556677, x0);
ASSERT_EQUAL_64(0x00112233, x1);
ASSERT_EQUAL_64(0x00112233, x2);
ASSERT_EQUAL_64(0xccddeeff, x3);
ASSERT_EQUAL_64(0x4455667700112233UL, dst[0]);
ASSERT_EQUAL_64(0x0000000000112233UL, dst[1]);
ASSERT_EQUAL_64(0x0011223344556677UL, x4);
ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x5);
ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x6);
ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x7);
ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[2]);
ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[3]);
ASSERT_EQUAL_64(0x0011223344556677UL, dst[4]);
ASSERT_EQUAL_64(src_base, x16);
ASSERT_EQUAL_64(dst_base, x17);
ASSERT_EQUAL_64(dst_base + 16, x18);
ASSERT_EQUAL_64(src_base + 4, x19);
ASSERT_EQUAL_64(dst_base + 4, x20);
ASSERT_EQUAL_64(src_base + 8, x21);
ASSERT_EQUAL_64(dst_base + 24, x22);
TEARDOWN();
}
TEST(ldp_sign_extend) {
INIT_V8();
SETUP();
uint32_t src[2] = {0x80000000, 0x7fffffff};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x24, src_base);
__ Ldpsw(x0, x1, MemOperand(x24));
END();
RUN();
ASSERT_EQUAL_64(0xffffffff80000000UL, x0);
ASSERT_EQUAL_64(0x000000007fffffffUL, x1);
TEARDOWN();
}
TEST(ldur_stur) {
INIT_V8();
SETUP();
int64_t src[2] = {0x0123456789abcdefUL, 0x0123456789abcdefUL};
int64_t dst[5] = {0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x18, dst_base);
__ Mov(x19, src_base + 16);
__ Mov(x20, dst_base + 32);
__ Mov(x21, dst_base + 40);
__ Ldr(w0, MemOperand(x17, 1));
__ Str(w0, MemOperand(x18, 2));
__ Ldr(x1, MemOperand(x17, 3));
__ Str(x1, MemOperand(x18, 9));
__ Ldr(w2, MemOperand(x19, -9));
__ Str(w2, MemOperand(x20, -5));
__ Ldrb(w3, MemOperand(x19, -1));
__ Strb(w3, MemOperand(x21, -1));
END();
RUN();
ASSERT_EQUAL_64(0x6789abcd, x0);
ASSERT_EQUAL_64(0x6789abcd0000L, dst[0]);
ASSERT_EQUAL_64(0xabcdef0123456789L, x1);
ASSERT_EQUAL_64(0xcdef012345678900L, dst[1]);
ASSERT_EQUAL_64(0x000000ab, dst[2]);
ASSERT_EQUAL_64(0xabcdef01, x2);
ASSERT_EQUAL_64(0x00abcdef01000000L, dst[3]);
ASSERT_EQUAL_64(0x00000001, x3);
ASSERT_EQUAL_64(0x0100000000000000L, dst[4]);
ASSERT_EQUAL_64(src_base, x17);
ASSERT_EQUAL_64(dst_base, x18);
ASSERT_EQUAL_64(src_base + 16, x19);
ASSERT_EQUAL_64(dst_base + 32, x20);
TEARDOWN();
}
#if 0 // TODO(all) enable.
// TODO(rodolph): Adapt w16 Literal tests for RelocInfo.
TEST(ldr_literal) {
INIT_V8();
SETUP();
START();
__ Ldr(x2, 0x1234567890abcdefUL);
__ Ldr(w3, 0xfedcba09);
__ Ldr(d13, 1.234);
__ Ldr(s25, 2.5);
END();
RUN();
ASSERT_EQUAL_64(0x1234567890abcdefUL, x2);
ASSERT_EQUAL_64(0xfedcba09, x3);
ASSERT_EQUAL_FP64(1.234, d13);
ASSERT_EQUAL_FP32(2.5, s25);
TEARDOWN();
}
static void LdrLiteralRangeHelper(ptrdiff_t range_,
LiteralPoolEmitOption option,
bool expect_dump) {
ASSERT(range_ > 0);
SETUP_SIZE(range_ + 1024);
Label label_1, label_2;
size_t range = static_cast<size_t>(range_);
size_t code_size = 0;
size_t pool_guard_size;
if (option == NoJumpRequired) {
// Space for an explicit branch.
pool_guard_size = sizeof(Instr);
} else {
pool_guard_size = 0;
}
START();
// Force a pool dump so the pool starts off empty.
__ EmitLiteralPool(JumpRequired);
ASSERT_LITERAL_POOL_SIZE(0);
__ Ldr(x0, 0x1234567890abcdefUL);
__ Ldr(w1, 0xfedcba09);
__ Ldr(d0, 1.234);
__ Ldr(s1, 2.5);
ASSERT_LITERAL_POOL_SIZE(4);
code_size += 4 * sizeof(Instr);
// Check that the requested range (allowing space for a branch over the pool)
// can be handled by this test.
ASSERT((code_size + pool_guard_size) <= range);
// Emit NOPs up to 'range', leaving space for the pool guard.
while ((code_size + pool_guard_size) < range) {
__ Nop();
code_size += sizeof(Instr);
}
// Emit the guard sequence before the literal pool.
if (option == NoJumpRequired) {
__ B(&label_1);
code_size += sizeof(Instr);
}
ASSERT(code_size == range);
ASSERT_LITERAL_POOL_SIZE(4);
// Possibly generate a literal pool.
__ CheckLiteralPool(option);
__ Bind(&label_1);
if (expect_dump) {
ASSERT_LITERAL_POOL_SIZE(0);
} else {
ASSERT_LITERAL_POOL_SIZE(4);
}
// Force a pool flush to check that a second pool functions correctly.
__ EmitLiteralPool(JumpRequired);
ASSERT_LITERAL_POOL_SIZE(0);
// These loads should be after the pool (and will require a new one).
__ Ldr(x4, 0x34567890abcdef12UL);
__ Ldr(w5, 0xdcba09fe);
__ Ldr(d4, 123.4);
__ Ldr(s5, 250.0);
ASSERT_LITERAL_POOL_SIZE(4);
END();
RUN();
// Check that the literals loaded correctly.
ASSERT_EQUAL_64(0x1234567890abcdefUL, x0);
ASSERT_EQUAL_64(0xfedcba09, x1);
ASSERT_EQUAL_FP64(1.234, d0);
ASSERT_EQUAL_FP32(2.5, s1);
ASSERT_EQUAL_64(0x34567890abcdef12UL, x4);
ASSERT_EQUAL_64(0xdcba09fe, x5);
ASSERT_EQUAL_FP64(123.4, d4);
ASSERT_EQUAL_FP32(250.0, s5);
TEARDOWN();
}
TEST(ldr_literal_range_1) {
INIT_V8();
LdrLiteralRangeHelper(kRecommendedLiteralPoolRange,
NoJumpRequired,
true);
}
TEST(ldr_literal_range_2) {
INIT_V8();
LdrLiteralRangeHelper(kRecommendedLiteralPoolRange-sizeof(Instr),
NoJumpRequired,
false);
}
TEST(ldr_literal_range_3) {
INIT_V8();
LdrLiteralRangeHelper(2 * kRecommendedLiteralPoolRange,
JumpRequired,
true);
}
TEST(ldr_literal_range_4) {
INIT_V8();
LdrLiteralRangeHelper(2 * kRecommendedLiteralPoolRange-sizeof(Instr),
JumpRequired,
false);
}
TEST(ldr_literal_range_5) {
INIT_V8();
LdrLiteralRangeHelper(kLiteralPoolCheckInterval,
JumpRequired,
false);
}
TEST(ldr_literal_range_6) {
INIT_V8();
LdrLiteralRangeHelper(kLiteralPoolCheckInterval-sizeof(Instr),
JumpRequired,
false);
}
#endif
TEST(add_sub_imm) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0x0);
__ Mov(x1, 0x1111);
__ Mov(x2, 0xffffffffffffffffL);
__ Mov(x3, 0x8000000000000000L);
__ Add(x10, x0, Operand(0x123));
__ Add(x11, x1, Operand(0x122000));
__ Add(x12, x0, Operand(0xabc << 12));
__ Add(x13, x2, Operand(1));
__ Add(w14, w0, Operand(0x123));
__ Add(w15, w1, Operand(0x122000));
__ Add(w16, w0, Operand(0xabc << 12));
__ Add(w17, w2, Operand(1));
__ Sub(x20, x0, Operand(0x1));
__ Sub(x21, x1, Operand(0x111));
__ Sub(x22, x1, Operand(0x1 << 12));
__ Sub(x23, x3, Operand(1));
__ Sub(w24, w0, Operand(0x1));
__ Sub(w25, w1, Operand(0x111));
__ Sub(w26, w1, Operand(0x1 << 12));
__ Sub(w27, w3, Operand(1));
END();
RUN();
ASSERT_EQUAL_64(0x123, x10);
ASSERT_EQUAL_64(0x123111, x11);
ASSERT_EQUAL_64(0xabc000, x12);
ASSERT_EQUAL_64(0x0, x13);
ASSERT_EQUAL_32(0x123, w14);
ASSERT_EQUAL_32(0x123111, w15);
ASSERT_EQUAL_32(0xabc000, w16);
ASSERT_EQUAL_32(0x0, w17);
ASSERT_EQUAL_64(0xffffffffffffffffL, x20);
ASSERT_EQUAL_64(0x1000, x21);
ASSERT_EQUAL_64(0x111, x22);
ASSERT_EQUAL_64(0x7fffffffffffffffL, x23);
ASSERT_EQUAL_32(0xffffffff, w24);
ASSERT_EQUAL_32(0x1000, w25);
ASSERT_EQUAL_32(0x111, w26);
ASSERT_EQUAL_32(0xffffffff, w27);
TEARDOWN();
}
TEST(add_sub_wide_imm) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0x0);
__ Mov(x1, 0x1);
__ Add(x10, x0, Operand(0x1234567890abcdefUL));
__ Add(x11, x1, Operand(0xffffffff));
__ Add(w12, w0, Operand(0x12345678));
__ Add(w13, w1, Operand(0xffffffff));
__ Sub(x20, x0, Operand(0x1234567890abcdefUL));
__ Sub(w21, w0, Operand(0x12345678));
END();
RUN();
ASSERT_EQUAL_64(0x1234567890abcdefUL, x10);
ASSERT_EQUAL_64(0x100000000UL, x11);
ASSERT_EQUAL_32(0x12345678, w12);
ASSERT_EQUAL_64(0x0, x13);
ASSERT_EQUAL_64(-0x1234567890abcdefUL, x20);
ASSERT_EQUAL_32(-0x12345678, w21);
TEARDOWN();
}
TEST(add_sub_shifted) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0x0123456789abcdefL);
__ Mov(x2, 0xfedcba9876543210L);
__ Mov(x3, 0xffffffffffffffffL);
__ Add(x10, x1, Operand(x2));
__ Add(x11, x0, Operand(x1, LSL, 8));
__ Add(x12, x0, Operand(x1, LSR, 8));
__ Add(x13, x0, Operand(x1, ASR, 8));
__ Add(x14, x0, Operand(x2, ASR, 8));
__ Add(w15, w0, Operand(w1, ASR, 8));
__ Add(w18, w3, Operand(w1, ROR, 8));
__ Add(x19, x3, Operand(x1, ROR, 8));
__ Sub(x20, x3, Operand(x2));
__ Sub(x21, x3, Operand(x1, LSL, 8));
__ Sub(x22, x3, Operand(x1, LSR, 8));
__ Sub(x23, x3, Operand(x1, ASR, 8));
__ Sub(x24, x3, Operand(x2, ASR, 8));
__ Sub(w25, w3, Operand(w1, ASR, 8));
__ Sub(w26, w3, Operand(w1, ROR, 8));
__ Sub(x27, x3, Operand(x1, ROR, 8));
END();
RUN();
ASSERT_EQUAL_64(0xffffffffffffffffL, x10);
ASSERT_EQUAL_64(0x23456789abcdef00L, x11);
ASSERT_EQUAL_64(0x000123456789abcdL, x12);
ASSERT_EQUAL_64(0x000123456789abcdL, x13);
ASSERT_EQUAL_64(0xfffedcba98765432L, x14);
ASSERT_EQUAL_64(0xff89abcd, x15);
ASSERT_EQUAL_64(0xef89abcc, x18);
ASSERT_EQUAL_64(0xef0123456789abccL, x19);
ASSERT_EQUAL_64(0x0123456789abcdefL, x20);
ASSERT_EQUAL_64(0xdcba9876543210ffL, x21);
ASSERT_EQUAL_64(0xfffedcba98765432L, x22);
ASSERT_EQUAL_64(0xfffedcba98765432L, x23);
ASSERT_EQUAL_64(0x000123456789abcdL, x24);
ASSERT_EQUAL_64(0x00765432, x25);
ASSERT_EQUAL_64(0x10765432, x26);
ASSERT_EQUAL_64(0x10fedcba98765432L, x27);
TEARDOWN();
}
TEST(add_sub_extended) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0x0123456789abcdefL);
__ Mov(x2, 0xfedcba9876543210L);
__ Mov(w3, 0x80);
__ Add(x10, x0, Operand(x1, UXTB, 0));
__ Add(x11, x0, Operand(x1, UXTB, 1));
__ Add(x12, x0, Operand(x1, UXTH, 2));
__ Add(x13, x0, Operand(x1, UXTW, 4));
__ Add(x14, x0, Operand(x1, SXTB, 0));
__ Add(x15, x0, Operand(x1, SXTB, 1));
__ Add(x16, x0, Operand(x1, SXTH, 2));
__ Add(x17, x0, Operand(x1, SXTW, 3));
__ Add(x18, x0, Operand(x2, SXTB, 0));
__ Add(x19, x0, Operand(x2, SXTB, 1));
__ Add(x20, x0, Operand(x2, SXTH, 2));
__ Add(x21, x0, Operand(x2, SXTW, 3));
__ Add(x22, x1, Operand(x2, SXTB, 1));
__ Sub(x23, x1, Operand(x2, SXTB, 1));
__ Add(w24, w1, Operand(w2, UXTB, 2));
__ Add(w25, w0, Operand(w1, SXTB, 0));
__ Add(w26, w0, Operand(w1, SXTB, 1));
__ Add(w27, w2, Operand(w1, SXTW, 3));
__ Add(w28, w0, Operand(w1, SXTW, 3));
__ Add(x29, x0, Operand(w1, SXTW, 3));
__ Sub(x30, x0, Operand(w3, SXTB, 1));
END();
RUN();
ASSERT_EQUAL_64(0xefL, x10);
ASSERT_EQUAL_64(0x1deL, x11);
ASSERT_EQUAL_64(0x337bcL, x12);
ASSERT_EQUAL_64(0x89abcdef0L, x13);
ASSERT_EQUAL_64(0xffffffffffffffefL, x14);
ASSERT_EQUAL_64(0xffffffffffffffdeL, x15);
ASSERT_EQUAL_64(0xffffffffffff37bcL, x16);
ASSERT_EQUAL_64(0xfffffffc4d5e6f78L, x17);
ASSERT_EQUAL_64(0x10L, x18);
ASSERT_EQUAL_64(0x20L, x19);
ASSERT_EQUAL_64(0xc840L, x20);
ASSERT_EQUAL_64(0x3b2a19080L, x21);
ASSERT_EQUAL_64(0x0123456789abce0fL, x22);
ASSERT_EQUAL_64(0x0123456789abcdcfL, x23);
ASSERT_EQUAL_32(0x89abce2f, w24);
ASSERT_EQUAL_32(0xffffffef, w25);
ASSERT_EQUAL_32(0xffffffde, w26);
ASSERT_EQUAL_32(0xc3b2a188, w27);
ASSERT_EQUAL_32(0x4d5e6f78, w28);
ASSERT_EQUAL_64(0xfffffffc4d5e6f78L, x29);
ASSERT_EQUAL_64(256, x30);
TEARDOWN();
}
TEST(add_sub_negative) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 4687);
__ Mov(x2, 0x1122334455667788);
__ Mov(w3, 0x11223344);
__ Mov(w4, 400000);
__ Add(x10, x0, -42);
__ Add(x11, x1, -687);
__ Add(x12, x2, -0x88);
__ Sub(x13, x0, -600);
__ Sub(x14, x1, -313);
__ Sub(x15, x2, -0x555);
__ Add(w19, w3, -0x344);
__ Add(w20, w4, -2000);
__ Sub(w21, w3, -0xbc);
__ Sub(w22, w4, -2000);
END();
RUN();
ASSERT_EQUAL_64(-42, x10);
ASSERT_EQUAL_64(4000, x11);
ASSERT_EQUAL_64(0x1122334455667700, x12);
ASSERT_EQUAL_64(600, x13);
ASSERT_EQUAL_64(5000, x14);
ASSERT_EQUAL_64(0x1122334455667cdd, x15);
ASSERT_EQUAL_32(0x11223000, w19);
ASSERT_EQUAL_32(398000, w20);
ASSERT_EQUAL_32(0x11223400, w21);
ASSERT_EQUAL_32(402000, w22);
TEARDOWN();
}
TEST(add_sub_zero) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0);
__ Mov(x2, 0);
Label blob1;
__ Bind(&blob1);
__ Add(x0, x0, 0);
__ Sub(x1, x1, 0);
__ Sub(x2, x2, xzr);
CHECK_EQ(0, __ SizeOfCodeGeneratedSince(&blob1));
Label blob2;
__ Bind(&blob2);
__ Add(w3, w3, 0);
CHECK_NE(0, __ SizeOfCodeGeneratedSince(&blob2));
Label blob3;
__ Bind(&blob3);
__ Sub(w3, w3, wzr);
CHECK_NE(0, __ SizeOfCodeGeneratedSince(&blob3));
END();
RUN();
ASSERT_EQUAL_64(0, x0);
ASSERT_EQUAL_64(0, x1);
ASSERT_EQUAL_64(0, x2);
TEARDOWN();
}
TEST(claim_drop_zero) {
INIT_V8();
SETUP();
START();
Label start;
__ Bind(&start);
__ Claim(0);
__ Drop(0);
__ Claim(xzr, 8);
__ Drop(xzr, 8);
__ Claim(xzr, 0);
__ Drop(xzr, 0);
__ Claim(x7, 0);
__ Drop(x7, 0);
__ ClaimBySMI(xzr, 8);
__ DropBySMI(xzr, 8);
__ ClaimBySMI(xzr, 0);
__ DropBySMI(xzr, 0);
CHECK_EQ(0, __ SizeOfCodeGeneratedSince(&start));
END();
RUN();
TEARDOWN();
}
TEST(neg) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xf123456789abcdefL);
// Immediate.
__ Neg(x1, 0x123);
__ Neg(w2, 0x123);
// Shifted.
__ Neg(x3, Operand(x0, LSL, 1));
__ Neg(w4, Operand(w0, LSL, 2));
__ Neg(x5, Operand(x0, LSR, 3));
__ Neg(w6, Operand(w0, LSR, 4));
__ Neg(x7, Operand(x0, ASR, 5));
__ Neg(w8, Operand(w0, ASR, 6));
// Extended.
__ Neg(w9, Operand(w0, UXTB));
__ Neg(x10, Operand(x0, SXTB, 1));
__ Neg(w11, Operand(w0, UXTH, 2));
__ Neg(x12, Operand(x0, SXTH, 3));
__ Neg(w13, Operand(w0, UXTW, 4));
__ Neg(x14, Operand(x0, SXTW, 4));
END();
RUN();
ASSERT_EQUAL_64(0xfffffffffffffeddUL, x1);
ASSERT_EQUAL_64(0xfffffedd, x2);
ASSERT_EQUAL_64(0x1db97530eca86422UL, x3);
ASSERT_EQUAL_64(0xd950c844, x4);
ASSERT_EQUAL_64(0xe1db97530eca8643UL, x5);
ASSERT_EQUAL_64(0xf7654322, x6);
ASSERT_EQUAL_64(0x0076e5d4c3b2a191UL, x7);
ASSERT_EQUAL_64(0x01d950c9, x8);
ASSERT_EQUAL_64(0xffffff11, x9);
ASSERT_EQUAL_64(0x0000000000000022UL, x10);
ASSERT_EQUAL_64(0xfffcc844, x11);
ASSERT_EQUAL_64(0x0000000000019088UL, x12);
ASSERT_EQUAL_64(0x65432110, x13);
ASSERT_EQUAL_64(0x0000000765432110UL, x14);
TEARDOWN();
}
TEST(adc_sbc_shift) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 1);
__ Mov(x2, 0x0123456789abcdefL);
__ Mov(x3, 0xfedcba9876543210L);
__ Mov(x4, 0xffffffffffffffffL);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Adc(x5, x2, Operand(x3));
__ Adc(x6, x0, Operand(x1, LSL, 60));
__ Sbc(x7, x4, Operand(x3, LSR, 4));
__ Adc(x8, x2, Operand(x3, ASR, 4));
__ Adc(x9, x2, Operand(x3, ROR, 8));
__ Adc(w10, w2, Operand(w3));
__ Adc(w11, w0, Operand(w1, LSL, 30));
__ Sbc(w12, w4, Operand(w3, LSR, 4));
__ Adc(w13, w2, Operand(w3, ASR, 4));
__ Adc(w14, w2, Operand(w3, ROR, 8));
// Set the C flag.
__ Cmp(w0, Operand(w0));
__ Adc(x18, x2, Operand(x3));
__ Adc(x19, x0, Operand(x1, LSL, 60));
__ Sbc(x20, x4, Operand(x3, LSR, 4));
__ Adc(x21, x2, Operand(x3, ASR, 4));
__ Adc(x22, x2, Operand(x3, ROR, 8));
__ Adc(w23, w2, Operand(w3));
__ Adc(w24, w0, Operand(w1, LSL, 30));
__ Sbc(w25, w4, Operand(w3, LSR, 4));
__ Adc(w26, w2, Operand(w3, ASR, 4));
__ Adc(w27, w2, Operand(w3, ROR, 8));
END();
RUN();
ASSERT_EQUAL_64(0xffffffffffffffffL, x5);
ASSERT_EQUAL_64(1L << 60, x6);
ASSERT_EQUAL_64(0xf0123456789abcddL, x7);
ASSERT_EQUAL_64(0x0111111111111110L, x8);
ASSERT_EQUAL_64(0x1222222222222221L, x9);
ASSERT_EQUAL_32(0xffffffff, w10);
ASSERT_EQUAL_32(1 << 30, w11);
ASSERT_EQUAL_32(0xf89abcdd, w12);
ASSERT_EQUAL_32(0x91111110, w13);
ASSERT_EQUAL_32(0x9a222221, w14);
ASSERT_EQUAL_64(0xffffffffffffffffL + 1, x18);
ASSERT_EQUAL_64((1L << 60) + 1, x19);
ASSERT_EQUAL_64(0xf0123456789abcddL + 1, x20);
ASSERT_EQUAL_64(0x0111111111111110L + 1, x21);
ASSERT_EQUAL_64(0x1222222222222221L + 1, x22);
ASSERT_EQUAL_32(0xffffffff + 1, w23);
ASSERT_EQUAL_32((1 << 30) + 1, w24);
ASSERT_EQUAL_32(0xf89abcdd + 1, w25);
ASSERT_EQUAL_32(0x91111110 + 1, w26);
ASSERT_EQUAL_32(0x9a222221 + 1, w27);
// Check that adc correctly sets the condition flags.
START();
__ Mov(x0, 1);
__ Mov(x1, 0xffffffffffffffffL);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Adcs(x10, x0, Operand(x1));
END();
RUN();
ASSERT_EQUAL_NZCV(ZCFlag);
ASSERT_EQUAL_64(0, x10);
START();
__ Mov(x0, 1);
__ Mov(x1, 0x8000000000000000L);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Adcs(x10, x0, Operand(x1, ASR, 63));
END();
RUN();
ASSERT_EQUAL_NZCV(ZCFlag);
ASSERT_EQUAL_64(0, x10);
START();
__ Mov(x0, 0x10);
__ Mov(x1, 0x07ffffffffffffffL);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Adcs(x10, x0, Operand(x1, LSL, 4));
END();
RUN();
ASSERT_EQUAL_NZCV(NVFlag);
ASSERT_EQUAL_64(0x8000000000000000L, x10);
// Check that sbc correctly sets the condition flags.
START();
__ Mov(x0, 0);
__ Mov(x1, 0xffffffffffffffffL);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Sbcs(x10, x0, Operand(x1));
END();
RUN();
ASSERT_EQUAL_NZCV(ZFlag);
ASSERT_EQUAL_64(0, x10);
START();
__ Mov(x0, 1);
__ Mov(x1, 0xffffffffffffffffL);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Sbcs(x10, x0, Operand(x1, LSR, 1));
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
ASSERT_EQUAL_64(0x8000000000000001L, x10);
START();
__ Mov(x0, 0);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Sbcs(x10, x0, Operand(0xffffffffffffffffL));
END();
RUN();
ASSERT_EQUAL_NZCV(ZFlag);
ASSERT_EQUAL_64(0, x10);
START()
__ Mov(w0, 0x7fffffff);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Ngcs(w10, w0);
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
ASSERT_EQUAL_64(0x80000000, x10);
START();
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Ngcs(x10, 0x7fffffffffffffffL);
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
ASSERT_EQUAL_64(0x8000000000000000L, x10);
START()
__ Mov(x0, 0);
// Set the C flag.
__ Cmp(x0, Operand(x0));
__ Sbcs(x10, x0, Operand(1));
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
ASSERT_EQUAL_64(0xffffffffffffffffL, x10);
START()
__ Mov(x0, 0);
// Set the C flag.
__ Cmp(x0, Operand(x0));
__ Ngcs(x10, 0x7fffffffffffffffL);
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
ASSERT_EQUAL_64(0x8000000000000001L, x10);
TEARDOWN();
}
TEST(adc_sbc_extend) {
INIT_V8();
SETUP();
START();
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Mov(x0, 0);
__ Mov(x1, 1);
__ Mov(x2, 0x0123456789abcdefL);
__ Adc(x10, x1, Operand(w2, UXTB, 1));
__ Adc(x11, x1, Operand(x2, SXTH, 2));
__ Sbc(x12, x1, Operand(w2, UXTW, 4));
__ Adc(x13, x1, Operand(x2, UXTX, 4));
__ Adc(w14, w1, Operand(w2, UXTB, 1));
__ Adc(w15, w1, Operand(w2, SXTH, 2));
__ Adc(w9, w1, Operand(w2, UXTW, 4));
// Set the C flag.
__ Cmp(w0, Operand(w0));
__ Adc(x20, x1, Operand(w2, UXTB, 1));
__ Adc(x21, x1, Operand(x2, SXTH, 2));
__ Sbc(x22, x1, Operand(w2, UXTW, 4));
__ Adc(x23, x1, Operand(x2, UXTX, 4));
__ Adc(w24, w1, Operand(w2, UXTB, 1));
__ Adc(w25, w1, Operand(w2, SXTH, 2));
__ Adc(w26, w1, Operand(w2, UXTW, 4));
END();
RUN();
ASSERT_EQUAL_64(0x1df, x10);
ASSERT_EQUAL_64(0xffffffffffff37bdL, x11);
ASSERT_EQUAL_64(0xfffffff765432110L, x12);
ASSERT_EQUAL_64(0x123456789abcdef1L, x13);
ASSERT_EQUAL_32(0x1df, w14);
ASSERT_EQUAL_32(0xffff37bd, w15);
ASSERT_EQUAL_32(0x9abcdef1, w9);
ASSERT_EQUAL_64(0x1df + 1, x20);
ASSERT_EQUAL_64(0xffffffffffff37bdL + 1, x21);
ASSERT_EQUAL_64(0xfffffff765432110L + 1, x22);
ASSERT_EQUAL_64(0x123456789abcdef1L + 1, x23);
ASSERT_EQUAL_32(0x1df + 1, w24);
ASSERT_EQUAL_32(0xffff37bd + 1, w25);
ASSERT_EQUAL_32(0x9abcdef1 + 1, w26);
// Check that adc correctly sets the condition flags.
START();
__ Mov(x0, 0xff);
__ Mov(x1, 0xffffffffffffffffL);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Adcs(x10, x0, Operand(x1, SXTX, 1));
END();
RUN();
ASSERT_EQUAL_NZCV(CFlag);
START();
__ Mov(x0, 0x7fffffffffffffffL);
__ Mov(x1, 1);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Adcs(x10, x0, Operand(x1, UXTB, 2));
END();
RUN();
ASSERT_EQUAL_NZCV(NVFlag);
START();
__ Mov(x0, 0x7fffffffffffffffL);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Adcs(x10, x0, Operand(1));
END();
RUN();
ASSERT_EQUAL_NZCV(NVFlag);
TEARDOWN();
}
TEST(adc_sbc_wide_imm) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Adc(x7, x0, Operand(0x1234567890abcdefUL));
__ Adc(w8, w0, Operand(0xffffffff));
__ Sbc(x9, x0, Operand(0x1234567890abcdefUL));
__ Sbc(w10, w0, Operand(0xffffffff));
__ Ngc(x11, Operand(0xffffffff00000000UL));
__ Ngc(w12, Operand(0xffff0000));
// Set the C flag.
__ Cmp(w0, Operand(w0));
__ Adc(x18, x0, Operand(0x1234567890abcdefUL));
__ Adc(w19, w0, Operand(0xffffffff));
__ Sbc(x20, x0, Operand(0x1234567890abcdefUL));
__ Sbc(w21, w0, Operand(0xffffffff));
__ Ngc(x22, Operand(0xffffffff00000000UL));
__ Ngc(w23, Operand(0xffff0000));
END();
RUN();
ASSERT_EQUAL_64(0x1234567890abcdefUL, x7);
ASSERT_EQUAL_64(0xffffffff, x8);
ASSERT_EQUAL_64(0xedcba9876f543210UL, x9);
ASSERT_EQUAL_64(0, x10);
ASSERT_EQUAL_64(0xffffffff, x11);
ASSERT_EQUAL_64(0xffff, x12);
ASSERT_EQUAL_64(0x1234567890abcdefUL + 1, x18);
ASSERT_EQUAL_64(0, x19);
ASSERT_EQUAL_64(0xedcba9876f543211UL, x20);
ASSERT_EQUAL_64(1, x21);
ASSERT_EQUAL_64(0x100000000UL, x22);
ASSERT_EQUAL_64(0x10000, x23);
TEARDOWN();
}
TEST(flags) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0x1111111111111111L);
__ Neg(x10, Operand(x0));
__ Neg(x11, Operand(x1));
__ Neg(w12, Operand(w1));
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Ngc(x13, Operand(x0));
// Set the C flag.
__ Cmp(x0, Operand(x0));
__ Ngc(w14, Operand(w0));
END();
RUN();
ASSERT_EQUAL_64(0, x10);
ASSERT_EQUAL_64(-0x1111111111111111L, x11);
ASSERT_EQUAL_32(-0x11111111, w12);
ASSERT_EQUAL_64(-1L, x13);
ASSERT_EQUAL_32(0, w14);
START();
__ Mov(x0, 0);
__ Cmp(x0, Operand(x0));
END();
RUN();
ASSERT_EQUAL_NZCV(ZCFlag);
START();
__ Mov(w0, 0);
__ Cmp(w0, Operand(w0));
END();
RUN();
ASSERT_EQUAL_NZCV(ZCFlag);
START();
__ Mov(x0, 0);
__ Mov(x1, 0x1111111111111111L);
__ Cmp(x0, Operand(x1));
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
START();
__ Mov(w0, 0);
__ Mov(w1, 0x11111111);
__ Cmp(w0, Operand(w1));
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
START();
__ Mov(x1, 0x1111111111111111L);
__ Cmp(x1, Operand(0));
END();
RUN();
ASSERT_EQUAL_NZCV(CFlag);
START();
__ Mov(w1, 0x11111111);
__ Cmp(w1, Operand(0));
END();
RUN();
ASSERT_EQUAL_NZCV(CFlag);
START();
__ Mov(x0, 1);
__ Mov(x1, 0x7fffffffffffffffL);
__ Cmn(x1, Operand(x0));
END();
RUN();
ASSERT_EQUAL_NZCV(NVFlag);
START();
__ Mov(w0, 1);
__ Mov(w1, 0x7fffffff);
__ Cmn(w1, Operand(w0));
END();
RUN();
ASSERT_EQUAL_NZCV(NVFlag);
START();
__ Mov(x0, 1);
__ Mov(x1, 0xffffffffffffffffL);
__ Cmn(x1, Operand(x0));
END();
RUN();
ASSERT_EQUAL_NZCV(ZCFlag);
START();
__ Mov(w0, 1);
__ Mov(w1, 0xffffffff);
__ Cmn(w1, Operand(w0));
END();
RUN();
ASSERT_EQUAL_NZCV(ZCFlag);
START();
__ Mov(w0, 0);
__ Mov(w1, 1);
// Clear the C flag.
__ Adds(w0, w0, Operand(0));
__ Ngcs(w0, Operand(w1));
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
START();
__ Mov(w0, 0);
__ Mov(w1, 0);
// Set the C flag.
__ Cmp(w0, Operand(w0));
__ Ngcs(w0, Operand(w1));
END();
RUN();
ASSERT_EQUAL_NZCV(ZCFlag);
TEARDOWN();
}
TEST(cmp_shift) {
INIT_V8();
SETUP();
START();
__ Mov(x18, 0xf0000000);
__ Mov(x19, 0xf000000010000000UL);
__ Mov(x20, 0xf0000000f0000000UL);
__ Mov(x21, 0x7800000078000000UL);
__ Mov(x22, 0x3c0000003c000000UL);
__ Mov(x23, 0x8000000780000000UL);
__ Mov(x24, 0x0000000f00000000UL);
__ Mov(x25, 0x00000003c0000000UL);
__ Mov(x26, 0x8000000780000000UL);
__ Mov(x27, 0xc0000003);
__ Cmp(w20, Operand(w21, LSL, 1));
__ Mrs(x0, NZCV);
__ Cmp(x20, Operand(x22, LSL, 2));
__ Mrs(x1, NZCV);
__ Cmp(w19, Operand(w23, LSR, 3));
__ Mrs(x2, NZCV);
__ Cmp(x18, Operand(x24, LSR, 4));
__ Mrs(x3, NZCV);
__ Cmp(w20, Operand(w25, ASR, 2));
__ Mrs(x4, NZCV);
__ Cmp(x20, Operand(x26, ASR, 3));
__ Mrs(x5, NZCV);
__ Cmp(w27, Operand(w22, ROR, 28));
__ Mrs(x6, NZCV);
__ Cmp(x20, Operand(x21, ROR, 31));
__ Mrs(x7, NZCV);
END();
RUN();
ASSERT_EQUAL_32(ZCFlag, w0);
ASSERT_EQUAL_32(ZCFlag, w1);
ASSERT_EQUAL_32(ZCFlag, w2);
ASSERT_EQUAL_32(ZCFlag, w3);
ASSERT_EQUAL_32(ZCFlag, w4);
ASSERT_EQUAL_32(ZCFlag, w5);
ASSERT_EQUAL_32(ZCFlag, w6);
ASSERT_EQUAL_32(ZCFlag, w7);
TEARDOWN();
}
TEST(cmp_extend) {
INIT_V8();
SETUP();
START();
__ Mov(w20, 0x2);
__ Mov(w21, 0x1);
__ Mov(x22, 0xffffffffffffffffUL);
__ Mov(x23, 0xff);
__ Mov(x24, 0xfffffffffffffffeUL);
__ Mov(x25, 0xffff);
__ Mov(x26, 0xffffffff);
__ Cmp(w20, Operand(w21, LSL, 1));
__ Mrs(x0, NZCV);
__ Cmp(x22, Operand(x23, SXTB, 0));
__ Mrs(x1, NZCV);
__ Cmp(x24, Operand(x23, SXTB, 1));
__ Mrs(x2, NZCV);
__ Cmp(x24, Operand(x23, UXTB, 1));
__ Mrs(x3, NZCV);
__ Cmp(w22, Operand(w25, UXTH));
__ Mrs(x4, NZCV);
__ Cmp(x22, Operand(x25, SXTH));
__ Mrs(x5, NZCV);
__ Cmp(x22, Operand(x26, UXTW));
__ Mrs(x6, NZCV);
__ Cmp(x24, Operand(x26, SXTW, 1));
__ Mrs(x7, NZCV);
END();
RUN();
ASSERT_EQUAL_32(ZCFlag, w0);
ASSERT_EQUAL_32(ZCFlag, w1);
ASSERT_EQUAL_32(ZCFlag, w2);
ASSERT_EQUAL_32(NCFlag, w3);
ASSERT_EQUAL_32(NCFlag, w4);
ASSERT_EQUAL_32(ZCFlag, w5);
ASSERT_EQUAL_32(NCFlag, w6);
ASSERT_EQUAL_32(ZCFlag, w7);
TEARDOWN();
}
TEST(ccmp) {
INIT_V8();
SETUP();
START();
__ Mov(w16, 0);
__ Mov(w17, 1);
__ Cmp(w16, w16);
__ Ccmp(w16, w17, NCFlag, eq);
__ Mrs(x0, NZCV);
__ Cmp(w16, w16);
__ Ccmp(w16, w17, NCFlag, ne);
__ Mrs(x1, NZCV);
__ Cmp(x16, x16);
__ Ccmn(x16, 2, NZCVFlag, eq);
__ Mrs(x2, NZCV);
__ Cmp(x16, x16);
__ Ccmn(x16, 2, NZCVFlag, ne);
__ Mrs(x3, NZCV);
__ ccmp(x16, x16, NZCVFlag, al);
__ Mrs(x4, NZCV);
__ ccmp(x16, x16, NZCVFlag, nv);
__ Mrs(x5, NZCV);
END();
RUN();
ASSERT_EQUAL_32(NFlag, w0);
ASSERT_EQUAL_32(NCFlag, w1);
ASSERT_EQUAL_32(NoFlag, w2);
ASSERT_EQUAL_32(NZCVFlag, w3);
ASSERT_EQUAL_32(ZCFlag, w4);
ASSERT_EQUAL_32(ZCFlag, w5);
TEARDOWN();
}
TEST(ccmp_wide_imm) {
INIT_V8();
SETUP();
START();
__ Mov(w20, 0);
__ Cmp(w20, Operand(w20));
__ Ccmp(w20, Operand(0x12345678), NZCVFlag, eq);
__ Mrs(x0, NZCV);
__ Cmp(w20, Operand(w20));
__ Ccmp(x20, Operand(0xffffffffffffffffUL), NZCVFlag, eq);
__ Mrs(x1, NZCV);
END();
RUN();
ASSERT_EQUAL_32(NFlag, w0);
ASSERT_EQUAL_32(NoFlag, w1);
TEARDOWN();
}
TEST(ccmp_shift_extend) {
INIT_V8();
SETUP();
START();
__ Mov(w20, 0x2);
__ Mov(w21, 0x1);
__ Mov(x22, 0xffffffffffffffffUL);
__ Mov(x23, 0xff);
__ Mov(x24, 0xfffffffffffffffeUL);
__ Cmp(w20, Operand(w20));
__ Ccmp(w20, Operand(w21, LSL, 1), NZCVFlag, eq);
__ Mrs(x0, NZCV);
__ Cmp(w20, Operand(w20));
__ Ccmp(x22, Operand(x23, SXTB, 0), NZCVFlag, eq);
__ Mrs(x1, NZCV);
__ Cmp(w20, Operand(w20));
__ Ccmp(x24, Operand(x23, SXTB, 1), NZCVFlag, eq);
__ Mrs(x2, NZCV);
__ Cmp(w20, Operand(w20));
__ Ccmp(x24, Operand(x23, UXTB, 1), NZCVFlag, eq);
__ Mrs(x3, NZCV);
__ Cmp(w20, Operand(w20));
__ Ccmp(x24, Operand(x23, UXTB, 1), NZCVFlag, ne);
__ Mrs(x4, NZCV);
END();
RUN();
ASSERT_EQUAL_32(ZCFlag, w0);
ASSERT_EQUAL_32(ZCFlag, w1);
ASSERT_EQUAL_32(ZCFlag, w2);
ASSERT_EQUAL_32(NCFlag, w3);
ASSERT_EQUAL_32(NZCVFlag, w4);
TEARDOWN();
}
TEST(csel) {
INIT_V8();
SETUP();
START();
__ Mov(x16, 0);
__ Mov(x24, 0x0000000f0000000fUL);
__ Mov(x25, 0x0000001f0000001fUL);
__ Mov(x26, 0);
__ Mov(x27, 0);
__ Cmp(w16, 0);
__ Csel(w0, w24, w25, eq);
__ Csel(w1, w24, w25, ne);
__ Csinc(w2, w24, w25, mi);
__ Csinc(w3, w24, w25, pl);
__ csel(w13, w24, w25, al);
__ csel(x14, x24, x25, nv);
__ Cmp(x16, 1);
__ Csinv(x4, x24, x25, gt);
__ Csinv(x5, x24, x25, le);
__ Csneg(x6, x24, x25, hs);
__ Csneg(x7, x24, x25, lo);
__ Cset(w8, ne);
__ Csetm(w9, ne);
__ Cinc(x10, x25, ne);
__ Cinv(x11, x24, ne);
__ Cneg(x12, x24, ne);
__ csel(w15, w24, w25, al);
__ csel(x18, x24, x25, nv);
__ CzeroX(x24, ne);
__ CzeroX(x25, eq);
__ CmovX(x26, x25, ne);
__ CmovX(x27, x25, eq);
END();
RUN();
ASSERT_EQUAL_64(0x0000000f, x0);
ASSERT_EQUAL_64(0x0000001f, x1);
ASSERT_EQUAL_64(0x00000020, x2);
ASSERT_EQUAL_64(0x0000000f, x3);
ASSERT_EQUAL_64(0xffffffe0ffffffe0UL, x4);
ASSERT_EQUAL_64(0x0000000f0000000fUL, x5);
ASSERT_EQUAL_64(0xffffffe0ffffffe1UL, x6);
ASSERT_EQUAL_64(0x0000000f0000000fUL, x7);
ASSERT_EQUAL_64(0x00000001, x8);
ASSERT_EQUAL_64(0xffffffff, x9);
ASSERT_EQUAL_64(0x0000001f00000020UL, x10);
ASSERT_EQUAL_64(0xfffffff0fffffff0UL, x11);
ASSERT_EQUAL_64(0xfffffff0fffffff1UL, x12);
ASSERT_EQUAL_64(0x0000000f, x13);
ASSERT_EQUAL_64(0x0000000f0000000fUL, x14);
ASSERT_EQUAL_64(0x0000000f, x15);
ASSERT_EQUAL_64(0x0000000f0000000fUL, x18);
ASSERT_EQUAL_64(0, x24);
ASSERT_EQUAL_64(0x0000001f0000001fUL, x25);
ASSERT_EQUAL_64(0x0000001f0000001fUL, x26);
ASSERT_EQUAL_64(0, x27);
TEARDOWN();
}
TEST(csel_imm) {
INIT_V8();
SETUP();
START();
__ Mov(x18, 0);
__ Mov(x19, 0x80000000);
__ Mov(x20, 0x8000000000000000UL);
__ Cmp(x18, Operand(0));
__ Csel(w0, w19, -2, ne);
__ Csel(w1, w19, -1, ne);
__ Csel(w2, w19, 0, ne);
__ Csel(w3, w19, 1, ne);
__ Csel(w4, w19, 2, ne);
__ Csel(w5, w19, Operand(w19, ASR, 31), ne);
__ Csel(w6, w19, Operand(w19, ROR, 1), ne);
__ Csel(w7, w19, 3, eq);
__ Csel(x8, x20, -2, ne);
__ Csel(x9, x20, -1, ne);
__ Csel(x10, x20, 0, ne);
__ Csel(x11, x20, 1, ne);
__ Csel(x12, x20, 2, ne);
__ Csel(x13, x20, Operand(x20, ASR, 63), ne);
__ Csel(x14, x20, Operand(x20, ROR, 1), ne);
__ Csel(x15, x20, 3, eq);
END();
RUN();
ASSERT_EQUAL_32(-2, w0);
ASSERT_EQUAL_32(-1, w1);
ASSERT_EQUAL_32(0, w2);
ASSERT_EQUAL_32(1, w3);
ASSERT_EQUAL_32(2, w4);
ASSERT_EQUAL_32(-1, w5);
ASSERT_EQUAL_32(0x40000000, w6);
ASSERT_EQUAL_32(0x80000000, w7);
ASSERT_EQUAL_64(-2, x8);
ASSERT_EQUAL_64(-1, x9);
ASSERT_EQUAL_64(0, x10);
ASSERT_EQUAL_64(1, x11);
ASSERT_EQUAL_64(2, x12);
ASSERT_EQUAL_64(-1, x13);
ASSERT_EQUAL_64(0x4000000000000000UL, x14);
ASSERT_EQUAL_64(0x8000000000000000UL, x15);
TEARDOWN();
}
TEST(lslv) {
INIT_V8();
SETUP();
uint64_t value = 0x0123456789abcdefUL;
int shift[] = {1, 3, 5, 9, 17, 33};
START();
__ Mov(x0, value);
__ Mov(w1, shift[0]);
__ Mov(w2, shift[1]);
__ Mov(w3, shift[2]);
__ Mov(w4, shift[3]);
__ Mov(w5, shift[4]);
__ Mov(w6, shift[5]);
__ lslv(x0, x0, xzr);
__ Lsl(x16, x0, x1);
__ Lsl(x17, x0, x2);
__ Lsl(x18, x0, x3);
__ Lsl(x19, x0, x4);
__ Lsl(x20, x0, x5);
__ Lsl(x21, x0, x6);
__ Lsl(w22, w0, w1);
__ Lsl(w23, w0, w2);
__ Lsl(w24, w0, w3);
__ Lsl(w25, w0, w4);
__ Lsl(w26, w0, w5);
__ Lsl(w27, w0, w6);
END();
RUN();
ASSERT_EQUAL_64(value, x0);
ASSERT_EQUAL_64(value << (shift[0] & 63), x16);
ASSERT_EQUAL_64(value << (shift[1] & 63), x17);
ASSERT_EQUAL_64(value << (shift[2] & 63), x18);
ASSERT_EQUAL_64(value << (shift[3] & 63), x19);
ASSERT_EQUAL_64(value << (shift[4] & 63), x20);
ASSERT_EQUAL_64(value << (shift[5] & 63), x21);
ASSERT_EQUAL_32(value << (shift[0] & 31), w22);
ASSERT_EQUAL_32(value << (shift[1] & 31), w23);
ASSERT_EQUAL_32(value << (shift[2] & 31), w24);
ASSERT_EQUAL_32(value << (shift[3] & 31), w25);
ASSERT_EQUAL_32(value << (shift[4] & 31), w26);
ASSERT_EQUAL_32(value << (shift[5] & 31), w27);
TEARDOWN();
}
TEST(lsrv) {
INIT_V8();
SETUP();
uint64_t value = 0x0123456789abcdefUL;
int shift[] = {1, 3, 5, 9, 17, 33};
START();
__ Mov(x0, value);
__ Mov(w1, shift[0]);
__ Mov(w2, shift[1]);
__ Mov(w3, shift[2]);
__ Mov(w4, shift[3]);
__ Mov(w5, shift[4]);
__ Mov(w6, shift[5]);
__ lsrv(x0, x0, xzr);
__ Lsr(x16, x0, x1);
__ Lsr(x17, x0, x2);
__ Lsr(x18, x0, x3);
__ Lsr(x19, x0, x4);
__ Lsr(x20, x0, x5);
__ Lsr(x21, x0, x6);
__ Lsr(w22, w0, w1);
__ Lsr(w23, w0, w2);
__ Lsr(w24, w0, w3);
__ Lsr(w25, w0, w4);
__ Lsr(w26, w0, w5);
__ Lsr(w27, w0, w6);
END();
RUN();
ASSERT_EQUAL_64(value, x0);
ASSERT_EQUAL_64(value >> (shift[0] & 63), x16);
ASSERT_EQUAL_64(value >> (shift[1] & 63), x17);
ASSERT_EQUAL_64(value >> (shift[2] & 63), x18);
ASSERT_EQUAL_64(value >> (shift[3] & 63), x19);
ASSERT_EQUAL_64(value >> (shift[4] & 63), x20);
ASSERT_EQUAL_64(value >> (shift[5] & 63), x21);
value &= 0xffffffffUL;
ASSERT_EQUAL_32(value >> (shift[0] & 31), w22);
ASSERT_EQUAL_32(value >> (shift[1] & 31), w23);
ASSERT_EQUAL_32(value >> (shift[2] & 31), w24);
ASSERT_EQUAL_32(value >> (shift[3] & 31), w25);
ASSERT_EQUAL_32(value >> (shift[4] & 31), w26);
ASSERT_EQUAL_32(value >> (shift[5] & 31), w27);
TEARDOWN();
}
TEST(asrv) {
INIT_V8();
SETUP();
int64_t value = 0xfedcba98fedcba98UL;
int shift[] = {1, 3, 5, 9, 17, 33};
START();
__ Mov(x0, value);
__ Mov(w1, shift[0]);
__ Mov(w2, shift[1]);
__ Mov(w3, shift[2]);
__ Mov(w4, shift[3]);
__ Mov(w5, shift[4]);
__ Mov(w6, shift[5]);
__ asrv(x0, x0, xzr);
__ Asr(x16, x0, x1);
__ Asr(x17, x0, x2);
__ Asr(x18, x0, x3);
__ Asr(x19, x0, x4);
__ Asr(x20, x0, x5);
__ Asr(x21, x0, x6);
__ Asr(w22, w0, w1);
__ Asr(w23, w0, w2);
__ Asr(w24, w0, w3);
__ Asr(w25, w0, w4);
__ Asr(w26, w0, w5);
__ Asr(w27, w0, w6);
END();
RUN();
ASSERT_EQUAL_64(value, x0);
ASSERT_EQUAL_64(value >> (shift[0] & 63), x16);
ASSERT_EQUAL_64(value >> (shift[1] & 63), x17);
ASSERT_EQUAL_64(value >> (shift[2] & 63), x18);
ASSERT_EQUAL_64(value >> (shift[3] & 63), x19);
ASSERT_EQUAL_64(value >> (shift[4] & 63), x20);
ASSERT_EQUAL_64(value >> (shift[5] & 63), x21);
int32_t value32 = static_cast<int32_t>(value & 0xffffffffUL);
ASSERT_EQUAL_32(value32 >> (shift[0] & 31), w22);
ASSERT_EQUAL_32(value32 >> (shift[1] & 31), w23);
ASSERT_EQUAL_32(value32 >> (shift[2] & 31), w24);
ASSERT_EQUAL_32(value32 >> (shift[3] & 31), w25);
ASSERT_EQUAL_32(value32 >> (shift[4] & 31), w26);
ASSERT_EQUAL_32(value32 >> (shift[5] & 31), w27);
TEARDOWN();
}
TEST(rorv) {
INIT_V8();
SETUP();
uint64_t value = 0x0123456789abcdefUL;
int shift[] = {4, 8, 12, 16, 24, 36};
START();
__ Mov(x0, value);
__ Mov(w1, shift[0]);
__ Mov(w2, shift[1]);
__ Mov(w3, shift[2]);
__ Mov(w4, shift[3]);
__ Mov(w5, shift[4]);
__ Mov(w6, shift[5]);
__ rorv(x0, x0, xzr);
__ Ror(x16, x0, x1);
__ Ror(x17, x0, x2);
__ Ror(x18, x0, x3);
__ Ror(x19, x0, x4);
__ Ror(x20, x0, x5);
__ Ror(x21, x0, x6);
__ Ror(w22, w0, w1);
__ Ror(w23, w0, w2);
__ Ror(w24, w0, w3);
__ Ror(w25, w0, w4);
__ Ror(w26, w0, w5);
__ Ror(w27, w0, w6);
END();
RUN();
ASSERT_EQUAL_64(value, x0);
ASSERT_EQUAL_64(0xf0123456789abcdeUL, x16);
ASSERT_EQUAL_64(0xef0123456789abcdUL, x17);
ASSERT_EQUAL_64(0xdef0123456789abcUL, x18);
ASSERT_EQUAL_64(0xcdef0123456789abUL, x19);
ASSERT_EQUAL_64(0xabcdef0123456789UL, x20);
ASSERT_EQUAL_64(0x789abcdef0123456UL, x21);
ASSERT_EQUAL_32(0xf89abcde, w22);
ASSERT_EQUAL_32(0xef89abcd, w23);
ASSERT_EQUAL_32(0xdef89abc, w24);
ASSERT_EQUAL_32(0xcdef89ab, w25);
ASSERT_EQUAL_32(0xabcdef89, w26);
ASSERT_EQUAL_32(0xf89abcde, w27);
TEARDOWN();
}
TEST(bfm) {
INIT_V8();
SETUP();
START();
__ Mov(x1, 0x0123456789abcdefL);
__ Mov(x10, 0x8888888888888888L);
__ Mov(x11, 0x8888888888888888L);
__ Mov(x12, 0x8888888888888888L);
__ Mov(x13, 0x8888888888888888L);
__ Mov(w20, 0x88888888);
__ Mov(w21, 0x88888888);
__ bfm(x10, x1, 16, 31);
__ bfm(x11, x1, 32, 15);
__ bfm(w20, w1, 16, 23);
__ bfm(w21, w1, 24, 15);
// Aliases.
__ Bfi(x12, x1, 16, 8);
__ Bfxil(x13, x1, 16, 8);
END();
RUN();
ASSERT_EQUAL_64(0x88888888888889abL, x10);
ASSERT_EQUAL_64(0x8888cdef88888888L, x11);
ASSERT_EQUAL_32(0x888888ab, w20);
ASSERT_EQUAL_32(0x88cdef88, w21);
ASSERT_EQUAL_64(0x8888888888ef8888L, x12);
ASSERT_EQUAL_64(0x88888888888888abL, x13);
TEARDOWN();
}
TEST(sbfm) {
INIT_V8();
SETUP();
START();
__ Mov(x1, 0x0123456789abcdefL);
__ Mov(x2, 0xfedcba9876543210L);
__ sbfm(x10, x1, 16, 31);
__ sbfm(x11, x1, 32, 15);
__ sbfm(x12, x1, 32, 47);
__ sbfm(x13, x1, 48, 35);
__ sbfm(w14, w1, 16, 23);
__ sbfm(w15, w1, 24, 15);
__ sbfm(w16, w2, 16, 23);
__ sbfm(w17, w2, 24, 15);
// Aliases.
__ Asr(x18, x1, 32);
__ Asr(x19, x2, 32);
__ Sbfiz(x20, x1, 8, 16);
__ Sbfiz(x21, x2, 8, 16);
__ Sbfx(x22, x1, 8, 16);
__ Sbfx(x23, x2, 8, 16);
__ Sxtb(x24, w1);
__ Sxtb(x25, x2);
__ Sxth(x26, w1);
__ Sxth(x27, x2);
__ Sxtw(x28, w1);
__ Sxtw(x29, x2);
END();
RUN();
ASSERT_EQUAL_64(0xffffffffffff89abL, x10);
ASSERT_EQUAL_64(0xffffcdef00000000L, x11);
ASSERT_EQUAL_64(0x4567L, x12);
ASSERT_EQUAL_64(0x789abcdef0000L, x13);
ASSERT_EQUAL_32(0xffffffab, w14);
ASSERT_EQUAL_32(0xffcdef00, w15);
ASSERT_EQUAL_32(0x54, w16);
ASSERT_EQUAL_32(0x00321000, w17);
ASSERT_EQUAL_64(0x01234567L, x18);
ASSERT_EQUAL_64(0xfffffffffedcba98L, x19);
ASSERT_EQUAL_64(0xffffffffffcdef00L, x20);
ASSERT_EQUAL_64(0x321000L, x21);
ASSERT_EQUAL_64(0xffffffffffffabcdL, x22);
ASSERT_EQUAL_64(0x5432L, x23);
ASSERT_EQUAL_64(0xffffffffffffffefL, x24);
ASSERT_EQUAL_64(0x10, x25);
ASSERT_EQUAL_64(0xffffffffffffcdefL, x26);
ASSERT_EQUAL_64(0x3210, x27);
ASSERT_EQUAL_64(0xffffffff89abcdefL, x28);
ASSERT_EQUAL_64(0x76543210, x29);
TEARDOWN();
}
TEST(ubfm) {
INIT_V8();
SETUP();
START();
__ Mov(x1, 0x0123456789abcdefL);
__ Mov(x2, 0xfedcba9876543210L);
__ Mov(x10, 0x8888888888888888L);
__ Mov(x11, 0x8888888888888888L);
__ ubfm(x10, x1, 16, 31);
__ ubfm(x11, x1, 32, 15);
__ ubfm(x12, x1, 32, 47);
__ ubfm(x13, x1, 48, 35);
__ ubfm(w25, w1, 16, 23);
__ ubfm(w26, w1, 24, 15);
__ ubfm(w27, w2, 16, 23);
__ ubfm(w28, w2, 24, 15);
// Aliases
__ Lsl(x15, x1, 63);
__ Lsl(x16, x1, 0);
__ Lsr(x17, x1, 32);
__ Ubfiz(x18, x1, 8, 16);
__ Ubfx(x19, x1, 8, 16);
__ Uxtb(x20, x1);
__ Uxth(x21, x1);
__ Uxtw(x22, x1);
END();
RUN();
ASSERT_EQUAL_64(0x00000000000089abL, x10);
ASSERT_EQUAL_64(0x0000cdef00000000L, x11);
ASSERT_EQUAL_64(0x4567L, x12);
ASSERT_EQUAL_64(0x789abcdef0000L, x13);
ASSERT_EQUAL_32(0x000000ab, w25);
ASSERT_EQUAL_32(0x00cdef00, w26);
ASSERT_EQUAL_32(0x54, w27);
ASSERT_EQUAL_32(0x00321000, w28);
ASSERT_EQUAL_64(0x8000000000000000L, x15);
ASSERT_EQUAL_64(0x0123456789abcdefL, x16);
ASSERT_EQUAL_64(0x01234567L, x17);
ASSERT_EQUAL_64(0xcdef00L, x18);
ASSERT_EQUAL_64(0xabcdL, x19);
ASSERT_EQUAL_64(0xefL, x20);
ASSERT_EQUAL_64(0xcdefL, x21);
ASSERT_EQUAL_64(0x89abcdefL, x22);
TEARDOWN();
}
TEST(extr) {
INIT_V8();
SETUP();
START();
__ Mov(x1, 0x0123456789abcdefL);
__ Mov(x2, 0xfedcba9876543210L);
__ Extr(w10, w1, w2, 0);
__ Extr(w11, w1, w2, 1);
__ Extr(x12, x2, x1, 2);
__ Ror(w13, w1, 0);
__ Ror(w14, w2, 17);
__ Ror(w15, w1, 31);
__ Ror(x18, x2, 1);
__ Ror(x19, x1, 63);
END();
RUN();
ASSERT_EQUAL_64(0x76543210, x10);
ASSERT_EQUAL_64(0xbb2a1908, x11);
ASSERT_EQUAL_64(0x0048d159e26af37bUL, x12);
ASSERT_EQUAL_64(0x89abcdef, x13);
ASSERT_EQUAL_64(0x19083b2a, x14);
ASSERT_EQUAL_64(0x13579bdf, x15);
ASSERT_EQUAL_64(0x7f6e5d4c3b2a1908UL, x18);
ASSERT_EQUAL_64(0x02468acf13579bdeUL, x19);
TEARDOWN();
}
TEST(fmov_imm) {
INIT_V8();
SETUP();
START();
__ Fmov(s11, 1.0);
__ Fmov(d22, -13.0);
__ Fmov(s1, 255.0);
__ Fmov(d2, 12.34567);
__ Fmov(s3, 0.0);
__ Fmov(d4, 0.0);
__ Fmov(s5, kFP32PositiveInfinity);
__ Fmov(d6, kFP64NegativeInfinity);
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s11);
ASSERT_EQUAL_FP64(-13.0, d22);
ASSERT_EQUAL_FP32(255.0, s1);
ASSERT_EQUAL_FP64(12.34567, d2);
ASSERT_EQUAL_FP32(0.0, s3);
ASSERT_EQUAL_FP64(0.0, d4);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s5);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d6);
TEARDOWN();
}
TEST(fmov_reg) {
INIT_V8();
SETUP();
START();
__ Fmov(s20, 1.0);
__ Fmov(w10, s20);
__ Fmov(s30, w10);
__ Fmov(s5, s20);
__ Fmov(d1, -13.0);
__ Fmov(x1, d1);
__ Fmov(d2, x1);
__ Fmov(d4, d1);
__ Fmov(d6, rawbits_to_double(0x0123456789abcdefL));
__ Fmov(s6, s6);
END();
RUN();
ASSERT_EQUAL_32(float_to_rawbits(1.0), w10);
ASSERT_EQUAL_FP32(1.0, s30);
ASSERT_EQUAL_FP32(1.0, s5);
ASSERT_EQUAL_64(double_to_rawbits(-13.0), x1);
ASSERT_EQUAL_FP64(-13.0, d2);
ASSERT_EQUAL_FP64(-13.0, d4);
ASSERT_EQUAL_FP32(rawbits_to_float(0x89abcdef), s6);
TEARDOWN();
}
TEST(fadd) {
INIT_V8();
SETUP();
START();
__ Fmov(s14, -0.0f);
__ Fmov(s15, kFP32PositiveInfinity);
__ Fmov(s16, kFP32NegativeInfinity);
__ Fmov(s17, 3.25f);
__ Fmov(s18, 1.0f);
__ Fmov(s19, 0.0f);
__ Fmov(d26, -0.0);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0.0);
__ Fmov(d30, -2.0);
__ Fmov(d31, 2.25);
__ Fadd(s0, s17, s18);
__ Fadd(s1, s18, s19);
__ Fadd(s2, s14, s18);
__ Fadd(s3, s15, s18);
__ Fadd(s4, s16, s18);
__ Fadd(s5, s15, s16);
__ Fadd(s6, s16, s15);
__ Fadd(d7, d30, d31);
__ Fadd(d8, d29, d31);
__ Fadd(d9, d26, d31);
__ Fadd(d10, d27, d31);
__ Fadd(d11, d28, d31);
__ Fadd(d12, d27, d28);
__ Fadd(d13, d28, d27);
END();
RUN();
ASSERT_EQUAL_FP32(4.25, s0);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(1.0, s2);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s3);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s4);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s5);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s6);
ASSERT_EQUAL_FP64(0.25, d7);
ASSERT_EQUAL_FP64(2.25, d8);
ASSERT_EQUAL_FP64(2.25, d9);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d10);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d11);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d12);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d13);
TEARDOWN();
}
TEST(fsub) {
INIT_V8();
SETUP();
START();
__ Fmov(s14, -0.0f);
__ Fmov(s15, kFP32PositiveInfinity);
__ Fmov(s16, kFP32NegativeInfinity);
__ Fmov(s17, 3.25f);
__ Fmov(s18, 1.0f);
__ Fmov(s19, 0.0f);
__ Fmov(d26, -0.0);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0.0);
__ Fmov(d30, -2.0);
__ Fmov(d31, 2.25);
__ Fsub(s0, s17, s18);
__ Fsub(s1, s18, s19);
__ Fsub(s2, s14, s18);
__ Fsub(s3, s18, s15);
__ Fsub(s4, s18, s16);
__ Fsub(s5, s15, s15);
__ Fsub(s6, s16, s16);
__ Fsub(d7, d30, d31);
__ Fsub(d8, d29, d31);
__ Fsub(d9, d26, d31);
__ Fsub(d10, d31, d27);
__ Fsub(d11, d31, d28);
__ Fsub(d12, d27, d27);
__ Fsub(d13, d28, d28);
END();
RUN();
ASSERT_EQUAL_FP32(2.25, s0);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(-1.0, s2);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s3);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s4);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s5);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s6);
ASSERT_EQUAL_FP64(-4.25, d7);
ASSERT_EQUAL_FP64(-2.25, d8);
ASSERT_EQUAL_FP64(-2.25, d9);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d10);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d11);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d12);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d13);
TEARDOWN();
}
TEST(fmul) {
INIT_V8();
SETUP();
START();
__ Fmov(s14, -0.0f);
__ Fmov(s15, kFP32PositiveInfinity);
__ Fmov(s16, kFP32NegativeInfinity);
__ Fmov(s17, 3.25f);
__ Fmov(s18, 2.0f);
__ Fmov(s19, 0.0f);
__ Fmov(s20, -2.0f);
__ Fmov(d26, -0.0);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0.0);
__ Fmov(d30, -2.0);
__ Fmov(d31, 2.25);
__ Fmul(s0, s17, s18);
__ Fmul(s1, s18, s19);
__ Fmul(s2, s14, s14);
__ Fmul(s3, s15, s20);
__ Fmul(s4, s16, s20);
__ Fmul(s5, s15, s19);
__ Fmul(s6, s19, s16);
__ Fmul(d7, d30, d31);
__ Fmul(d8, d29, d31);
__ Fmul(d9, d26, d26);
__ Fmul(d10, d27, d30);
__ Fmul(d11, d28, d30);
__ Fmul(d12, d27, d29);
__ Fmul(d13, d29, d28);
END();
RUN();
ASSERT_EQUAL_FP32(6.5, s0);
ASSERT_EQUAL_FP32(0.0, s1);
ASSERT_EQUAL_FP32(0.0, s2);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s3);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s4);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s5);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s6);
ASSERT_EQUAL_FP64(-4.5, d7);
ASSERT_EQUAL_FP64(0.0, d8);
ASSERT_EQUAL_FP64(0.0, d9);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d10);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d11);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d12);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d13);
TEARDOWN();
}
static void FmaddFmsubHelper(double n, double m, double a,
double fmadd, double fmsub,
double fnmadd, double fnmsub) {
SETUP();
START();
__ Fmov(d0, n);
__ Fmov(d1, m);
__ Fmov(d2, a);
__ Fmadd(d28, d0, d1, d2);
__ Fmsub(d29, d0, d1, d2);
__ Fnmadd(d30, d0, d1, d2);
__ Fnmsub(d31, d0, d1, d2);
END();
RUN();
ASSERT_EQUAL_FP64(fmadd, d28);
ASSERT_EQUAL_FP64(fmsub, d29);
ASSERT_EQUAL_FP64(fnmadd, d30);
ASSERT_EQUAL_FP64(fnmsub, d31);
TEARDOWN();
}
TEST(fmadd_fmsub_double) {
INIT_V8();
// It's hard to check the result of fused operations because the only way to
// calculate the result is using fma, which is what the simulator uses anyway.
// TODO(jbramley): Add tests to check behaviour against a hardware trace.
// Basic operation.
FmaddFmsubHelper(1.0, 2.0, 3.0, 5.0, 1.0, -5.0, -1.0);
FmaddFmsubHelper(-1.0, 2.0, 3.0, 1.0, 5.0, -1.0, -5.0);
// Check the sign of exact zeroes.
// n m a fmadd fmsub fnmadd fnmsub
FmaddFmsubHelper(-0.0, +0.0, -0.0, -0.0, +0.0, +0.0, +0.0);
FmaddFmsubHelper(+0.0, +0.0, -0.0, +0.0, -0.0, +0.0, +0.0);
FmaddFmsubHelper(+0.0, +0.0, +0.0, +0.0, +0.0, -0.0, +0.0);
FmaddFmsubHelper(-0.0, +0.0, +0.0, +0.0, +0.0, +0.0, -0.0);
FmaddFmsubHelper(+0.0, -0.0, -0.0, -0.0, +0.0, +0.0, +0.0);
FmaddFmsubHelper(-0.0, -0.0, -0.0, +0.0, -0.0, +0.0, +0.0);
FmaddFmsubHelper(-0.0, -0.0, +0.0, +0.0, +0.0, -0.0, +0.0);
FmaddFmsubHelper(+0.0, -0.0, +0.0, +0.0, +0.0, +0.0, -0.0);
// Check NaN generation.
FmaddFmsubHelper(kFP64PositiveInfinity, 0.0, 42.0,
kFP64DefaultNaN, kFP64DefaultNaN,
kFP64DefaultNaN, kFP64DefaultNaN);
FmaddFmsubHelper(0.0, kFP64PositiveInfinity, 42.0,
kFP64DefaultNaN, kFP64DefaultNaN,
kFP64DefaultNaN, kFP64DefaultNaN);
FmaddFmsubHelper(kFP64PositiveInfinity, 1.0, kFP64PositiveInfinity,
kFP64PositiveInfinity, // inf + ( inf * 1) = inf
kFP64DefaultNaN, // inf + (-inf * 1) = NaN
kFP64NegativeInfinity, // -inf + (-inf * 1) = -inf
kFP64DefaultNaN); // -inf + ( inf * 1) = NaN
FmaddFmsubHelper(kFP64NegativeInfinity, 1.0, kFP64PositiveInfinity,
kFP64DefaultNaN, // inf + (-inf * 1) = NaN
kFP64PositiveInfinity, // inf + ( inf * 1) = inf
kFP64DefaultNaN, // -inf + ( inf * 1) = NaN
kFP64NegativeInfinity); // -inf + (-inf * 1) = -inf
}
static void FmaddFmsubHelper(float n, float m, float a,
float fmadd, float fmsub,
float fnmadd, float fnmsub) {
SETUP();
START();
__ Fmov(s0, n);
__ Fmov(s1, m);
__ Fmov(s2, a);
__ Fmadd(s28, s0, s1, s2);
__ Fmsub(s29, s0, s1, s2);
__ Fnmadd(s30, s0, s1, s2);
__ Fnmsub(s31, s0, s1, s2);
END();
RUN();
ASSERT_EQUAL_FP32(fmadd, s28);
ASSERT_EQUAL_FP32(fmsub, s29);
ASSERT_EQUAL_FP32(fnmadd, s30);
ASSERT_EQUAL_FP32(fnmsub, s31);
TEARDOWN();
}
TEST(fmadd_fmsub_float) {
INIT_V8();
// It's hard to check the result of fused operations because the only way to
// calculate the result is using fma, which is what the simulator uses anyway.
// TODO(jbramley): Add tests to check behaviour against a hardware trace.
// Basic operation.
FmaddFmsubHelper(1.0f, 2.0f, 3.0f, 5.0f, 1.0f, -5.0f, -1.0f);
FmaddFmsubHelper(-1.0f, 2.0f, 3.0f, 1.0f, 5.0f, -1.0f, -5.0f);
// Check the sign of exact zeroes.
// n m a fmadd fmsub fnmadd fnmsub
FmaddFmsubHelper(-0.0f, +0.0f, -0.0f, -0.0f, +0.0f, +0.0f, +0.0f);
FmaddFmsubHelper(+0.0f, +0.0f, -0.0f, +0.0f, -0.0f, +0.0f, +0.0f);
FmaddFmsubHelper(+0.0f, +0.0f, +0.0f, +0.0f, +0.0f, -0.0f, +0.0f);
FmaddFmsubHelper(-0.0f, +0.0f, +0.0f, +0.0f, +0.0f, +0.0f, -0.0f);
FmaddFmsubHelper(+0.0f, -0.0f, -0.0f, -0.0f, +0.0f, +0.0f, +0.0f);
FmaddFmsubHelper(-0.0f, -0.0f, -0.0f, +0.0f, -0.0f, +0.0f, +0.0f);
FmaddFmsubHelper(-0.0f, -0.0f, +0.0f, +0.0f, +0.0f, -0.0f, +0.0f);
FmaddFmsubHelper(+0.0f, -0.0f, +0.0f, +0.0f, +0.0f, +0.0f, -0.0f);
// Check NaN generation.
FmaddFmsubHelper(kFP32PositiveInfinity, 0.0f, 42.0f,
kFP32DefaultNaN, kFP32DefaultNaN,
kFP32DefaultNaN, kFP32DefaultNaN);
FmaddFmsubHelper(0.0f, kFP32PositiveInfinity, 42.0f,
kFP32DefaultNaN, kFP32DefaultNaN,
kFP32DefaultNaN, kFP32DefaultNaN);
FmaddFmsubHelper(kFP32PositiveInfinity, 1.0f, kFP32PositiveInfinity,
kFP32PositiveInfinity, // inf + ( inf * 1) = inf
kFP32DefaultNaN, // inf + (-inf * 1) = NaN
kFP32NegativeInfinity, // -inf + (-inf * 1) = -inf
kFP32DefaultNaN); // -inf + ( inf * 1) = NaN
FmaddFmsubHelper(kFP32NegativeInfinity, 1.0f, kFP32PositiveInfinity,
kFP32DefaultNaN, // inf + (-inf * 1) = NaN
kFP32PositiveInfinity, // inf + ( inf * 1) = inf
kFP32DefaultNaN, // -inf + ( inf * 1) = NaN
kFP32NegativeInfinity); // -inf + (-inf * 1) = -inf
}
TEST(fmadd_fmsub_double_nans) {
INIT_V8();
// Make sure that NaN propagation works correctly.
double s1 = rawbits_to_double(0x7ff5555511111111);
double s2 = rawbits_to_double(0x7ff5555522222222);
double sa = rawbits_to_double(0x7ff55555aaaaaaaa);
double q1 = rawbits_to_double(0x7ffaaaaa11111111);
double q2 = rawbits_to_double(0x7ffaaaaa22222222);
double qa = rawbits_to_double(0x7ffaaaaaaaaaaaaa);
ASSERT(IsSignallingNaN(s1));
ASSERT(IsSignallingNaN(s2));
ASSERT(IsSignallingNaN(sa));
ASSERT(IsQuietNaN(q1));
ASSERT(IsQuietNaN(q2));
ASSERT(IsQuietNaN(qa));
// The input NaNs after passing through ProcessNaN.
double s1_proc = rawbits_to_double(0x7ffd555511111111);
double s2_proc = rawbits_to_double(0x7ffd555522222222);
double sa_proc = rawbits_to_double(0x7ffd5555aaaaaaaa);
double q1_proc = q1;
double q2_proc = q2;
double qa_proc = qa;
ASSERT(IsQuietNaN(s1_proc));
ASSERT(IsQuietNaN(s2_proc));
ASSERT(IsQuietNaN(sa_proc));
ASSERT(IsQuietNaN(q1_proc));
ASSERT(IsQuietNaN(q2_proc));
ASSERT(IsQuietNaN(qa_proc));
// Quiet NaNs are propagated.
FmaddFmsubHelper(q1, 0, 0, q1_proc, -q1_proc, -q1_proc, q1_proc);
FmaddFmsubHelper(0, q2, 0, q2_proc, q2_proc, q2_proc, q2_proc);
FmaddFmsubHelper(0, 0, qa, qa_proc, qa_proc, -qa_proc, -qa_proc);
FmaddFmsubHelper(q1, q2, 0, q1_proc, -q1_proc, -q1_proc, q1_proc);
FmaddFmsubHelper(0, q2, qa, qa_proc, qa_proc, -qa_proc, -qa_proc);
FmaddFmsubHelper(q1, 0, qa, qa_proc, qa_proc, -qa_proc, -qa_proc);
FmaddFmsubHelper(q1, q2, qa, qa_proc, qa_proc, -qa_proc, -qa_proc);
// Signalling NaNs are propagated, and made quiet.
FmaddFmsubHelper(s1, 0, 0, s1_proc, -s1_proc, -s1_proc, s1_proc);
FmaddFmsubHelper(0, s2, 0, s2_proc, s2_proc, s2_proc, s2_proc);
FmaddFmsubHelper(0, 0, sa, sa_proc, sa_proc, -sa_proc, -sa_proc);
FmaddFmsubHelper(s1, s2, 0, s1_proc, -s1_proc, -s1_proc, s1_proc);
FmaddFmsubHelper(0, s2, sa, sa_proc, sa_proc, -sa_proc, -sa_proc);
FmaddFmsubHelper(s1, 0, sa, sa_proc, sa_proc, -sa_proc, -sa_proc);
FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, -sa_proc, -sa_proc);
// Signalling NaNs take precedence over quiet NaNs.
FmaddFmsubHelper(s1, q2, qa, s1_proc, -s1_proc, -s1_proc, s1_proc);
FmaddFmsubHelper(q1, s2, qa, s2_proc, s2_proc, s2_proc, s2_proc);
FmaddFmsubHelper(q1, q2, sa, sa_proc, sa_proc, -sa_proc, -sa_proc);
FmaddFmsubHelper(s1, s2, qa, s1_proc, -s1_proc, -s1_proc, s1_proc);
FmaddFmsubHelper(q1, s2, sa, sa_proc, sa_proc, -sa_proc, -sa_proc);
FmaddFmsubHelper(s1, q2, sa, sa_proc, sa_proc, -sa_proc, -sa_proc);
FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, -sa_proc, -sa_proc);
// A NaN generated by the intermediate op1 * op2 overrides a quiet NaN in a.
FmaddFmsubHelper(0, kFP64PositiveInfinity, qa,
kFP64DefaultNaN, kFP64DefaultNaN,
kFP64DefaultNaN, kFP64DefaultNaN);
FmaddFmsubHelper(kFP64PositiveInfinity, 0, qa,
kFP64DefaultNaN, kFP64DefaultNaN,
kFP64DefaultNaN, kFP64DefaultNaN);
FmaddFmsubHelper(0, kFP64NegativeInfinity, qa,
kFP64DefaultNaN, kFP64DefaultNaN,
kFP64DefaultNaN, kFP64DefaultNaN);
FmaddFmsubHelper(kFP64NegativeInfinity, 0, qa,
kFP64DefaultNaN, kFP64DefaultNaN,
kFP64DefaultNaN, kFP64DefaultNaN);
}
TEST(fmadd_fmsub_float_nans) {
INIT_V8();
// Make sure that NaN propagation works correctly.
float s1 = rawbits_to_float(0x7f951111);
float s2 = rawbits_to_float(0x7f952222);
float sa = rawbits_to_float(0x7f95aaaa);
float q1 = rawbits_to_float(0x7fea1111);
float q2 = rawbits_to_float(0x7fea2222);
float qa = rawbits_to_float(0x7feaaaaa);
ASSERT(IsSignallingNaN(s1));
ASSERT(IsSignallingNaN(s2));
ASSERT(IsSignallingNaN(sa));
ASSERT(IsQuietNaN(q1));
ASSERT(IsQuietNaN(q2));
ASSERT(IsQuietNaN(qa));
// The input NaNs after passing through ProcessNaN.
float s1_proc = rawbits_to_float(0x7fd51111);
float s2_proc = rawbits_to_float(0x7fd52222);
float sa_proc = rawbits_to_float(0x7fd5aaaa);
float q1_proc = q1;
float q2_proc = q2;
float qa_proc = qa;
ASSERT(IsQuietNaN(s1_proc));
ASSERT(IsQuietNaN(s2_proc));
ASSERT(IsQuietNaN(sa_proc));
ASSERT(IsQuietNaN(q1_proc));
ASSERT(IsQuietNaN(q2_proc));
ASSERT(IsQuietNaN(qa_proc));
// Quiet NaNs are propagated.
FmaddFmsubHelper(q1, 0, 0, q1_proc, -q1_proc, -q1_proc, q1_proc);
FmaddFmsubHelper(0, q2, 0, q2_proc, q2_proc, q2_proc, q2_proc);
FmaddFmsubHelper(0, 0, qa, qa_proc, qa_proc, -qa_proc, -qa_proc);
FmaddFmsubHelper(q1, q2, 0, q1_proc, -q1_proc, -q1_proc, q1_proc);
FmaddFmsubHelper(0, q2, qa, qa_proc, qa_proc, -qa_proc, -qa_proc);
FmaddFmsubHelper(q1, 0, qa, qa_proc, qa_proc, -qa_proc, -qa_proc);
FmaddFmsubHelper(q1, q2, qa, qa_proc, qa_proc, -qa_proc, -qa_proc);
// Signalling NaNs are propagated, and made quiet.
FmaddFmsubHelper(s1, 0, 0, s1_proc, -s1_proc, -s1_proc, s1_proc);
FmaddFmsubHelper(0, s2, 0, s2_proc, s2_proc, s2_proc, s2_proc);
FmaddFmsubHelper(0, 0, sa, sa_proc, sa_proc, -sa_proc, -sa_proc);
FmaddFmsubHelper(s1, s2, 0, s1_proc, -s1_proc, -s1_proc, s1_proc);
FmaddFmsubHelper(0, s2, sa, sa_proc, sa_proc, -sa_proc, -sa_proc);
FmaddFmsubHelper(s1, 0, sa, sa_proc, sa_proc, -sa_proc, -sa_proc);
FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, -sa_proc, -sa_proc);
// Signalling NaNs take precedence over quiet NaNs.
FmaddFmsubHelper(s1, q2, qa, s1_proc, -s1_proc, -s1_proc, s1_proc);
FmaddFmsubHelper(q1, s2, qa, s2_proc, s2_proc, s2_proc, s2_proc);
FmaddFmsubHelper(q1, q2, sa, sa_proc, sa_proc, -sa_proc, -sa_proc);
FmaddFmsubHelper(s1, s2, qa, s1_proc, -s1_proc, -s1_proc, s1_proc);
FmaddFmsubHelper(q1, s2, sa, sa_proc, sa_proc, -sa_proc, -sa_proc);
FmaddFmsubHelper(s1, q2, sa, sa_proc, sa_proc, -sa_proc, -sa_proc);
FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, -sa_proc, -sa_proc);
// A NaN generated by the intermediate op1 * op2 overrides a quiet NaN in a.
FmaddFmsubHelper(0, kFP32PositiveInfinity, qa,
kFP32DefaultNaN, kFP32DefaultNaN,
kFP32DefaultNaN, kFP32DefaultNaN);
FmaddFmsubHelper(kFP32PositiveInfinity, 0, qa,
kFP32DefaultNaN, kFP32DefaultNaN,
kFP32DefaultNaN, kFP32DefaultNaN);
FmaddFmsubHelper(0, kFP32NegativeInfinity, qa,
kFP32DefaultNaN, kFP32DefaultNaN,
kFP32DefaultNaN, kFP32DefaultNaN);
FmaddFmsubHelper(kFP32NegativeInfinity, 0, qa,
kFP32DefaultNaN, kFP32DefaultNaN,
kFP32DefaultNaN, kFP32DefaultNaN);
}
TEST(fdiv) {
INIT_V8();
SETUP();
START();
__ Fmov(s14, -0.0f);
__ Fmov(s15, kFP32PositiveInfinity);
__ Fmov(s16, kFP32NegativeInfinity);
__ Fmov(s17, 3.25f);
__ Fmov(s18, 2.0f);
__ Fmov(s19, 2.0f);
__ Fmov(s20, -2.0f);
__ Fmov(d26, -0.0);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0.0);
__ Fmov(d30, -2.0);
__ Fmov(d31, 2.25);
__ Fdiv(s0, s17, s18);
__ Fdiv(s1, s18, s19);
__ Fdiv(s2, s14, s18);
__ Fdiv(s3, s18, s15);
__ Fdiv(s4, s18, s16);
__ Fdiv(s5, s15, s16);
__ Fdiv(s6, s14, s14);
__ Fdiv(d7, d31, d30);
__ Fdiv(d8, d29, d31);
__ Fdiv(d9, d26, d31);
__ Fdiv(d10, d31, d27);
__ Fdiv(d11, d31, d28);
__ Fdiv(d12, d28, d27);
__ Fdiv(d13, d29, d29);
END();
RUN();
ASSERT_EQUAL_FP32(1.625f, s0);
ASSERT_EQUAL_FP32(1.0f, s1);
ASSERT_EQUAL_FP32(-0.0f, s2);
ASSERT_EQUAL_FP32(0.0f, s3);
ASSERT_EQUAL_FP32(-0.0f, s4);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s5);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s6);
ASSERT_EQUAL_FP64(-1.125, d7);
ASSERT_EQUAL_FP64(0.0, d8);
ASSERT_EQUAL_FP64(-0.0, d9);
ASSERT_EQUAL_FP64(0.0, d10);
ASSERT_EQUAL_FP64(-0.0, d11);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d12);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d13);
TEARDOWN();
}
static float MinMaxHelper(float n,
float m,
bool min,
float quiet_nan_substitute = 0.0) {
uint32_t raw_n = float_to_rawbits(n);
uint32_t raw_m = float_to_rawbits(m);
if (std::isnan(n) && ((raw_n & kSQuietNanMask) == 0)) {
// n is signalling NaN.
return rawbits_to_float(raw_n | kSQuietNanMask);
} else if (std::isnan(m) && ((raw_m & kSQuietNanMask) == 0)) {
// m is signalling NaN.
return rawbits_to_float(raw_m | kSQuietNanMask);
} else if (quiet_nan_substitute == 0.0) {
if (std::isnan(n)) {
// n is quiet NaN.
return n;
} else if (std::isnan(m)) {
// m is quiet NaN.
return m;
}
} else {
// Substitute n or m if one is quiet, but not both.
if (std::isnan(n) && !std::isnan(m)) {
// n is quiet NaN: replace with substitute.
n = quiet_nan_substitute;
} else if (!std::isnan(n) && std::isnan(m)) {
// m is quiet NaN: replace with substitute.
m = quiet_nan_substitute;
}
}
if ((n == 0.0) && (m == 0.0) &&
(copysign(1.0, n) != copysign(1.0, m))) {
return min ? -0.0 : 0.0;
}
return min ? fminf(n, m) : fmaxf(n, m);
}
static double MinMaxHelper(double n,
double m,
bool min,
double quiet_nan_substitute = 0.0) {
uint64_t raw_n = double_to_rawbits(n);
uint64_t raw_m = double_to_rawbits(m);
if (std::isnan(n) && ((raw_n & kDQuietNanMask) == 0)) {
// n is signalling NaN.
return rawbits_to_double(raw_n | kDQuietNanMask);
} else if (std::isnan(m) && ((raw_m & kDQuietNanMask) == 0)) {
// m is signalling NaN.
return rawbits_to_double(raw_m | kDQuietNanMask);
} else if (quiet_nan_substitute == 0.0) {
if (std::isnan(n)) {
// n is quiet NaN.
return n;
} else if (std::isnan(m)) {
// m is quiet NaN.
return m;
}
} else {
// Substitute n or m if one is quiet, but not both.
if (std::isnan(n) && !std::isnan(m)) {
// n is quiet NaN: replace with substitute.
n = quiet_nan_substitute;
} else if (!std::isnan(n) && std::isnan(m)) {
// m is quiet NaN: replace with substitute.
m = quiet_nan_substitute;
}
}
if ((n == 0.0) && (m == 0.0) &&
(copysign(1.0, n) != copysign(1.0, m))) {
return min ? -0.0 : 0.0;
}
return min ? fmin(n, m) : fmax(n, m);
}
static void FminFmaxDoubleHelper(double n, double m, double min, double max,
double minnm, double maxnm) {
SETUP();
START();
__ Fmov(d0, n);
__ Fmov(d1, m);
__ Fmin(d28, d0, d1);
__ Fmax(d29, d0, d1);
__ Fminnm(d30, d0, d1);
__ Fmaxnm(d31, d0, d1);
END();
RUN();
ASSERT_EQUAL_FP64(min, d28);
ASSERT_EQUAL_FP64(max, d29);
ASSERT_EQUAL_FP64(minnm, d30);
ASSERT_EQUAL_FP64(maxnm, d31);
TEARDOWN();
}
TEST(fmax_fmin_d) {
INIT_V8();
// Use non-standard NaNs to check that the payload bits are preserved.
double snan = rawbits_to_double(0x7ff5555512345678);
double qnan = rawbits_to_double(0x7ffaaaaa87654321);
double snan_processed = rawbits_to_double(0x7ffd555512345678);
double qnan_processed = qnan;
ASSERT(IsSignallingNaN(snan));
ASSERT(IsQuietNaN(qnan));
ASSERT(IsQuietNaN(snan_processed));
ASSERT(IsQuietNaN(qnan_processed));
// Bootstrap tests.
FminFmaxDoubleHelper(0, 0, 0, 0, 0, 0);
FminFmaxDoubleHelper(0, 1, 0, 1, 0, 1);
FminFmaxDoubleHelper(kFP64PositiveInfinity, kFP64NegativeInfinity,
kFP64NegativeInfinity, kFP64PositiveInfinity,
kFP64NegativeInfinity, kFP64PositiveInfinity);
FminFmaxDoubleHelper(snan, 0,
snan_processed, snan_processed,
snan_processed, snan_processed);
FminFmaxDoubleHelper(0, snan,
snan_processed, snan_processed,
snan_processed, snan_processed);
FminFmaxDoubleHelper(qnan, 0,
qnan_processed, qnan_processed,
0, 0);
FminFmaxDoubleHelper(0, qnan,
qnan_processed, qnan_processed,
0, 0);
FminFmaxDoubleHelper(qnan, snan,
snan_processed, snan_processed,
snan_processed, snan_processed);
FminFmaxDoubleHelper(snan, qnan,
snan_processed, snan_processed,
snan_processed, snan_processed);
// Iterate over all combinations of inputs.
double inputs[] = { DBL_MAX, DBL_MIN, 1.0, 0.0,
-DBL_MAX, -DBL_MIN, -1.0, -0.0,
kFP64PositiveInfinity, kFP64NegativeInfinity,
kFP64QuietNaN, kFP64SignallingNaN };
const int count = sizeof(inputs) / sizeof(inputs[0]);
for (int in = 0; in < count; in++) {
double n = inputs[in];
for (int im = 0; im < count; im++) {
double m = inputs[im];
FminFmaxDoubleHelper(n, m,
MinMaxHelper(n, m, true),
MinMaxHelper(n, m, false),
MinMaxHelper(n, m, true, kFP64PositiveInfinity),
MinMaxHelper(n, m, false, kFP64NegativeInfinity));
}
}
}
static void FminFmaxFloatHelper(float n, float m, float min, float max,
float minnm, float maxnm) {
SETUP();
START();
__ Fmov(s0, n);
__ Fmov(s1, m);
__ Fmin(s28, s0, s1);
__ Fmax(s29, s0, s1);
__ Fminnm(s30, s0, s1);
__ Fmaxnm(s31, s0, s1);
END();
RUN();
ASSERT_EQUAL_FP32(min, s28);
ASSERT_EQUAL_FP32(max, s29);
ASSERT_EQUAL_FP32(minnm, s30);
ASSERT_EQUAL_FP32(maxnm, s31);
TEARDOWN();
}
TEST(fmax_fmin_s) {
INIT_V8();
// Use non-standard NaNs to check that the payload bits are preserved.
float snan = rawbits_to_float(0x7f951234);
float qnan = rawbits_to_float(0x7fea8765);
float snan_processed = rawbits_to_float(0x7fd51234);
float qnan_processed = qnan;
ASSERT(IsSignallingNaN(snan));
ASSERT(IsQuietNaN(qnan));
ASSERT(IsQuietNaN(snan_processed));
ASSERT(IsQuietNaN(qnan_processed));
// Bootstrap tests.
FminFmaxFloatHelper(0, 0, 0, 0, 0, 0);
FminFmaxFloatHelper(0, 1, 0, 1, 0, 1);
FminFmaxFloatHelper(kFP32PositiveInfinity, kFP32NegativeInfinity,
kFP32NegativeInfinity, kFP32PositiveInfinity,
kFP32NegativeInfinity, kFP32PositiveInfinity);
FminFmaxFloatHelper(snan, 0,
snan_processed, snan_processed,
snan_processed, snan_processed);
FminFmaxFloatHelper(0, snan,
snan_processed, snan_processed,
snan_processed, snan_processed);
FminFmaxFloatHelper(qnan, 0,
qnan_processed, qnan_processed,
0, 0);
FminFmaxFloatHelper(0, qnan,
qnan_processed, qnan_processed,
0, 0);
FminFmaxFloatHelper(qnan, snan,
snan_processed, snan_processed,
snan_processed, snan_processed);
FminFmaxFloatHelper(snan, qnan,
snan_processed, snan_processed,
snan_processed, snan_processed);
// Iterate over all combinations of inputs.
float inputs[] = { FLT_MAX, FLT_MIN, 1.0, 0.0,
-FLT_MAX, -FLT_MIN, -1.0, -0.0,
kFP32PositiveInfinity, kFP32NegativeInfinity,
kFP32QuietNaN, kFP32SignallingNaN };
const int count = sizeof(inputs) / sizeof(inputs[0]);
for (int in = 0; in < count; in++) {
float n = inputs[in];
for (int im = 0; im < count; im++) {
float m = inputs[im];
FminFmaxFloatHelper(n, m,
MinMaxHelper(n, m, true),
MinMaxHelper(n, m, false),
MinMaxHelper(n, m, true, kFP32PositiveInfinity),
MinMaxHelper(n, m, false, kFP32NegativeInfinity));
}
}
}
TEST(fccmp) {
INIT_V8();
SETUP();
START();
__ Fmov(s16, 0.0);
__ Fmov(s17, 0.5);
__ Fmov(d18, -0.5);
__ Fmov(d19, -1.0);
__ Mov(x20, 0);
__ Cmp(x20, 0);
__ Fccmp(s16, s16, NoFlag, eq);
__ Mrs(x0, NZCV);
__ Cmp(x20, 0);
__ Fccmp(s16, s16, VFlag, ne);
__ Mrs(x1, NZCV);
__ Cmp(x20, 0);
__ Fccmp(s16, s17, CFlag, ge);
__ Mrs(x2, NZCV);
__ Cmp(x20, 0);
__ Fccmp(s16, s17, CVFlag, lt);
__ Mrs(x3, NZCV);
__ Cmp(x20, 0);
__ Fccmp(d18, d18, ZFlag, le);
__ Mrs(x4, NZCV);
__ Cmp(x20, 0);
__ Fccmp(d18, d18, ZVFlag, gt);
__ Mrs(x5, NZCV);
__ Cmp(x20, 0);
__ Fccmp(d18, d19, ZCVFlag, ls);
__ Mrs(x6, NZCV);
__ Cmp(x20, 0);
__ Fccmp(d18, d19, NFlag, hi);
__ Mrs(x7, NZCV);
__ fccmp(s16, s16, NFlag, al);
__ Mrs(x8, NZCV);
__ fccmp(d18, d18, NFlag, nv);
__ Mrs(x9, NZCV);
END();
RUN();
ASSERT_EQUAL_32(ZCFlag, w0);
ASSERT_EQUAL_32(VFlag, w1);
ASSERT_EQUAL_32(NFlag, w2);
ASSERT_EQUAL_32(CVFlag, w3);
ASSERT_EQUAL_32(ZCFlag, w4);
ASSERT_EQUAL_32(ZVFlag, w5);
ASSERT_EQUAL_32(CFlag, w6);
ASSERT_EQUAL_32(NFlag, w7);
ASSERT_EQUAL_32(ZCFlag, w8);
ASSERT_EQUAL_32(ZCFlag, w9);
TEARDOWN();
}
TEST(fcmp) {
INIT_V8();
SETUP();
START();
// Some of these tests require a floating-point scratch register assigned to
// the macro assembler, but most do not.
{
// We're going to mess around with the available scratch registers in this
// test. A UseScratchRegisterScope will make sure that they are restored to
// the default values once we're finished.
UseScratchRegisterScope temps(&masm);
masm.FPTmpList()->set_list(0);
__ Fmov(s8, 0.0);
__ Fmov(s9, 0.5);
__ Mov(w18, 0x7f800001); // Single precision NaN.
__ Fmov(s18, w18);
__ Fcmp(s8, s8);
__ Mrs(x0, NZCV);
__ Fcmp(s8, s9);
__ Mrs(x1, NZCV);
__ Fcmp(s9, s8);
__ Mrs(x2, NZCV);
__ Fcmp(s8, s18);
__ Mrs(x3, NZCV);
__ Fcmp(s18, s18);
__ Mrs(x4, NZCV);
__ Fcmp(s8, 0.0);
__ Mrs(x5, NZCV);
masm.FPTmpList()->set_list(d0.Bit());
__ Fcmp(s8, 255.0);
masm.FPTmpList()->set_list(0);
__ Mrs(x6, NZCV);
__ Fmov(d19, 0.0);
__ Fmov(d20, 0.5);
__ Mov(x21, 0x7ff0000000000001UL); // Double precision NaN.
__ Fmov(d21, x21);
__ Fcmp(d19, d19);
__ Mrs(x10, NZCV);
__ Fcmp(d19, d20);
__ Mrs(x11, NZCV);
__ Fcmp(d20, d19);
__ Mrs(x12, NZCV);
__ Fcmp(d19, d21);
__ Mrs(x13, NZCV);
__ Fcmp(d21, d21);
__ Mrs(x14, NZCV);
__ Fcmp(d19, 0.0);
__ Mrs(x15, NZCV);
masm.FPTmpList()->set_list(d0.Bit());
__ Fcmp(d19, 12.3456);
masm.FPTmpList()->set_list(0);
__ Mrs(x16, NZCV);
}
END();
RUN();
ASSERT_EQUAL_32(ZCFlag, w0);
ASSERT_EQUAL_32(NFlag, w1);
ASSERT_EQUAL_32(CFlag, w2);
ASSERT_EQUAL_32(CVFlag, w3);
ASSERT_EQUAL_32(CVFlag, w4);
ASSERT_EQUAL_32(ZCFlag, w5);
ASSERT_EQUAL_32(NFlag, w6);
ASSERT_EQUAL_32(ZCFlag, w10);
ASSERT_EQUAL_32(NFlag, w11);
ASSERT_EQUAL_32(CFlag, w12);
ASSERT_EQUAL_32(CVFlag, w13);
ASSERT_EQUAL_32(CVFlag, w14);
ASSERT_EQUAL_32(ZCFlag, w15);
ASSERT_EQUAL_32(NFlag, w16);
TEARDOWN();
}
TEST(fcsel) {
INIT_V8();
SETUP();
START();
__ Mov(x16, 0);
__ Fmov(s16, 1.0);
__ Fmov(s17, 2.0);
__ Fmov(d18, 3.0);
__ Fmov(d19, 4.0);
__ Cmp(x16, 0);
__ Fcsel(s0, s16, s17, eq);
__ Fcsel(s1, s16, s17, ne);
__ Fcsel(d2, d18, d19, eq);
__ Fcsel(d3, d18, d19, ne);
__ fcsel(s4, s16, s17, al);
__ fcsel(d5, d18, d19, nv);
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s0);
ASSERT_EQUAL_FP32(2.0, s1);
ASSERT_EQUAL_FP64(3.0, d2);
ASSERT_EQUAL_FP64(4.0, d3);
ASSERT_EQUAL_FP32(1.0, s4);
ASSERT_EQUAL_FP64(3.0, d5);
TEARDOWN();
}
TEST(fneg) {
INIT_V8();
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 0.0);
__ Fmov(s18, kFP32PositiveInfinity);
__ Fmov(d19, 1.0);
__ Fmov(d20, 0.0);
__ Fmov(d21, kFP64PositiveInfinity);
__ Fneg(s0, s16);
__ Fneg(s1, s0);
__ Fneg(s2, s17);
__ Fneg(s3, s2);
__ Fneg(s4, s18);
__ Fneg(s5, s4);
__ Fneg(d6, d19);
__ Fneg(d7, d6);
__ Fneg(d8, d20);
__ Fneg(d9, d8);
__ Fneg(d10, d21);
__ Fneg(d11, d10);
END();
RUN();
ASSERT_EQUAL_FP32(-1.0, s0);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(-0.0, s2);
ASSERT_EQUAL_FP32(0.0, s3);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s4);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s5);
ASSERT_EQUAL_FP64(-1.0, d6);
ASSERT_EQUAL_FP64(1.0, d7);
ASSERT_EQUAL_FP64(-0.0, d8);
ASSERT_EQUAL_FP64(0.0, d9);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d10);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d11);
TEARDOWN();
}
TEST(fabs) {
INIT_V8();
SETUP();
START();
__ Fmov(s16, -1.0);
__ Fmov(s17, -0.0);
__ Fmov(s18, kFP32NegativeInfinity);
__ Fmov(d19, -1.0);
__ Fmov(d20, -0.0);
__ Fmov(d21, kFP64NegativeInfinity);
__ Fabs(s0, s16);
__ Fabs(s1, s0);
__ Fabs(s2, s17);
__ Fabs(s3, s18);
__ Fabs(d4, d19);
__ Fabs(d5, d4);
__ Fabs(d6, d20);
__ Fabs(d7, d21);
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s0);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(0.0, s2);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s3);
ASSERT_EQUAL_FP64(1.0, d4);
ASSERT_EQUAL_FP64(1.0, d5);
ASSERT_EQUAL_FP64(0.0, d6);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d7);
TEARDOWN();
}
TEST(fsqrt) {
INIT_V8();
SETUP();
START();
__ Fmov(s16, 0.0);
__ Fmov(s17, 1.0);
__ Fmov(s18, 0.25);
__ Fmov(s19, 65536.0);
__ Fmov(s20, -0.0);
__ Fmov(s21, kFP32PositiveInfinity);
__ Fmov(s22, -1.0);
__ Fmov(d23, 0.0);
__ Fmov(d24, 1.0);
__ Fmov(d25, 0.25);
__ Fmov(d26, 4294967296.0);
__ Fmov(d27, -0.0);
__ Fmov(d28, kFP64PositiveInfinity);
__ Fmov(d29, -1.0);
__ Fsqrt(s0, s16);
__ Fsqrt(s1, s17);
__ Fsqrt(s2, s18);
__ Fsqrt(s3, s19);
__ Fsqrt(s4, s20);
__ Fsqrt(s5, s21);
__ Fsqrt(s6, s22);
__ Fsqrt(d7, d23);
__ Fsqrt(d8, d24);
__ Fsqrt(d9, d25);
__ Fsqrt(d10, d26);
__ Fsqrt(d11, d27);
__ Fsqrt(d12, d28);
__ Fsqrt(d13, d29);
END();
RUN();
ASSERT_EQUAL_FP32(0.0, s0);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(0.5, s2);
ASSERT_EQUAL_FP32(256.0, s3);
ASSERT_EQUAL_FP32(-0.0, s4);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s5);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s6);
ASSERT_EQUAL_FP64(0.0, d7);
ASSERT_EQUAL_FP64(1.0, d8);
ASSERT_EQUAL_FP64(0.5, d9);
ASSERT_EQUAL_FP64(65536.0, d10);
ASSERT_EQUAL_FP64(-0.0, d11);
ASSERT_EQUAL_FP64(kFP32PositiveInfinity, d12);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d13);
TEARDOWN();
}
TEST(frinta) {
INIT_V8();
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, 1.9);
__ Fmov(s20, 2.5);
__ Fmov(s21, -1.5);
__ Fmov(s22, -2.5);
__ Fmov(s23, kFP32PositiveInfinity);
__ Fmov(s24, kFP32NegativeInfinity);
__ Fmov(s25, 0.0);
__ Fmov(s26, -0.0);
__ Frinta(s0, s16);
__ Frinta(s1, s17);
__ Frinta(s2, s18);
__ Frinta(s3, s19);
__ Frinta(s4, s20);
__ Frinta(s5, s21);
__ Frinta(s6, s22);
__ Frinta(s7, s23);
__ Frinta(s8, s24);
__ Frinta(s9, s25);
__ Frinta(s10, s26);
__ Fmov(d16, 1.0);
__ Fmov(d17, 1.1);
__ Fmov(d18, 1.5);
__ Fmov(d19, 1.9);
__ Fmov(d20, 2.5);
__ Fmov(d21, -1.5);
__ Fmov(d22, -2.5);
__ Fmov(d23, kFP32PositiveInfinity);
__ Fmov(d24, kFP32NegativeInfinity);
__ Fmov(d25, 0.0);
__ Fmov(d26, -0.0);
__ Frinta(d11, d16);
__ Frinta(d12, d17);
__ Frinta(d13, d18);
__ Frinta(d14, d19);
__ Frinta(d15, d20);
__ Frinta(d16, d21);
__ Frinta(d17, d22);
__ Frinta(d18, d23);
__ Frinta(d19, d24);
__ Frinta(d20, d25);
__ Frinta(d21, d26);
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s0);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(2.0, s2);
ASSERT_EQUAL_FP32(2.0, s3);
ASSERT_EQUAL_FP32(3.0, s4);
ASSERT_EQUAL_FP32(-2.0, s5);
ASSERT_EQUAL_FP32(-3.0, s6);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8);
ASSERT_EQUAL_FP32(0.0, s9);
ASSERT_EQUAL_FP32(-0.0, s10);
ASSERT_EQUAL_FP64(1.0, d11);
ASSERT_EQUAL_FP64(1.0, d12);
ASSERT_EQUAL_FP64(2.0, d13);
ASSERT_EQUAL_FP64(2.0, d14);
ASSERT_EQUAL_FP64(3.0, d15);
ASSERT_EQUAL_FP64(-2.0, d16);
ASSERT_EQUAL_FP64(-3.0, d17);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d18);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d19);
ASSERT_EQUAL_FP64(0.0, d20);
ASSERT_EQUAL_FP64(-0.0, d21);
TEARDOWN();
}
TEST(frintn) {
INIT_V8();
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, 1.9);
__ Fmov(s20, 2.5);
__ Fmov(s21, -1.5);
__ Fmov(s22, -2.5);
__ Fmov(s23, kFP32PositiveInfinity);
__ Fmov(s24, kFP32NegativeInfinity);
__ Fmov(s25, 0.0);
__ Fmov(s26, -0.0);
__ Frintn(s0, s16);
__ Frintn(s1, s17);
__ Frintn(s2, s18);
__ Frintn(s3, s19);
__ Frintn(s4, s20);
__ Frintn(s5, s21);
__ Frintn(s6, s22);
__ Frintn(s7, s23);
__ Frintn(s8, s24);
__ Frintn(s9, s25);
__ Frintn(s10, s26);
__ Fmov(d16, 1.0);
__ Fmov(d17, 1.1);
__ Fmov(d18, 1.5);
__ Fmov(d19, 1.9);
__ Fmov(d20, 2.5);
__ Fmov(d21, -1.5);
__ Fmov(d22, -2.5);
__ Fmov(d23, kFP32PositiveInfinity);
__ Fmov(d24, kFP32NegativeInfinity);
__ Fmov(d25, 0.0);
__ Fmov(d26, -0.0);
__ Frintn(d11, d16);
__ Frintn(d12, d17);
__ Frintn(d13, d18);
__ Frintn(d14, d19);
__ Frintn(d15, d20);
__ Frintn(d16, d21);
__ Frintn(d17, d22);
__ Frintn(d18, d23);
__ Frintn(d19, d24);
__ Frintn(d20, d25);
__ Frintn(d21, d26);
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s0);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(2.0, s2);
ASSERT_EQUAL_FP32(2.0, s3);
ASSERT_EQUAL_FP32(2.0, s4);
ASSERT_EQUAL_FP32(-2.0, s5);
ASSERT_EQUAL_FP32(-2.0, s6);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8);
ASSERT_EQUAL_FP32(0.0, s9);
ASSERT_EQUAL_FP32(-0.0, s10);
ASSERT_EQUAL_FP64(1.0, d11);
ASSERT_EQUAL_FP64(1.0, d12);
ASSERT_EQUAL_FP64(2.0, d13);
ASSERT_EQUAL_FP64(2.0, d14);
ASSERT_EQUAL_FP64(2.0, d15);
ASSERT_EQUAL_FP64(-2.0, d16);
ASSERT_EQUAL_FP64(-2.0, d17);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d18);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d19);
ASSERT_EQUAL_FP64(0.0, d20);
ASSERT_EQUAL_FP64(-0.0, d21);
TEARDOWN();
}
TEST(frintz) {
INIT_V8();
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, 1.9);
__ Fmov(s20, 2.5);
__ Fmov(s21, -1.5);
__ Fmov(s22, -2.5);
__ Fmov(s23, kFP32PositiveInfinity);
__ Fmov(s24, kFP32NegativeInfinity);
__ Fmov(s25, 0.0);
__ Fmov(s26, -0.0);
__ Frintz(s0, s16);
__ Frintz(s1, s17);
__ Frintz(s2, s18);
__ Frintz(s3, s19);
__ Frintz(s4, s20);
__ Frintz(s5, s21);
__ Frintz(s6, s22);
__ Frintz(s7, s23);
__ Frintz(s8, s24);
__ Frintz(s9, s25);
__ Frintz(s10, s26);
__ Fmov(d16, 1.0);
__ Fmov(d17, 1.1);
__ Fmov(d18, 1.5);
__ Fmov(d19, 1.9);
__ Fmov(d20, 2.5);
__ Fmov(d21, -1.5);
__ Fmov(d22, -2.5);
__ Fmov(d23, kFP32PositiveInfinity);
__ Fmov(d24, kFP32NegativeInfinity);
__ Fmov(d25, 0.0);
__ Fmov(d26, -0.0);
__ Frintz(d11, d16);
__ Frintz(d12, d17);
__ Frintz(d13, d18);
__ Frintz(d14, d19);
__ Frintz(d15, d20);
__ Frintz(d16, d21);
__ Frintz(d17, d22);
__ Frintz(d18, d23);
__ Frintz(d19, d24);
__ Frintz(d20, d25);
__ Frintz(d21, d26);
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s0);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(1.0, s2);
ASSERT_EQUAL_FP32(1.0, s3);
ASSERT_EQUAL_FP32(2.0, s4);
ASSERT_EQUAL_FP32(-1.0, s5);
ASSERT_EQUAL_FP32(-2.0, s6);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8);
ASSERT_EQUAL_FP32(0.0, s9);
ASSERT_EQUAL_FP32(-0.0, s10);
ASSERT_EQUAL_FP64(1.0, d11);
ASSERT_EQUAL_FP64(1.0, d12);
ASSERT_EQUAL_FP64(1.0, d13);
ASSERT_EQUAL_FP64(1.0, d14);
ASSERT_EQUAL_FP64(2.0, d15);
ASSERT_EQUAL_FP64(-1.0, d16);
ASSERT_EQUAL_FP64(-2.0, d17);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d18);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d19);
ASSERT_EQUAL_FP64(0.0, d20);
ASSERT_EQUAL_FP64(-0.0, d21);
TEARDOWN();
}
TEST(fcvt_ds) {
INIT_V8();
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, 1.9);
__ Fmov(s20, 2.5);
__ Fmov(s21, -1.5);
__ Fmov(s22, -2.5);
__ Fmov(s23, kFP32PositiveInfinity);
__ Fmov(s24, kFP32NegativeInfinity);
__ Fmov(s25, 0.0);
__ Fmov(s26, -0.0);
__ Fmov(s27, FLT_MAX);
__ Fmov(s28, FLT_MIN);
__ Fmov(s29, rawbits_to_float(0x7fc12345)); // Quiet NaN.
__ Fmov(s30, rawbits_to_float(0x7f812345)); // Signalling NaN.
__ Fcvt(d0, s16);
__ Fcvt(d1, s17);
__ Fcvt(d2, s18);
__ Fcvt(d3, s19);
__ Fcvt(d4, s20);
__ Fcvt(d5, s21);
__ Fcvt(d6, s22);
__ Fcvt(d7, s23);
__ Fcvt(d8, s24);
__ Fcvt(d9, s25);
__ Fcvt(d10, s26);
__ Fcvt(d11, s27);
__ Fcvt(d12, s28);
__ Fcvt(d13, s29);
__ Fcvt(d14, s30);
END();
RUN();
ASSERT_EQUAL_FP64(1.0f, d0);
ASSERT_EQUAL_FP64(1.1f, d1);
ASSERT_EQUAL_FP64(1.5f, d2);
ASSERT_EQUAL_FP64(1.9f, d3);
ASSERT_EQUAL_FP64(2.5f, d4);
ASSERT_EQUAL_FP64(-1.5f, d5);
ASSERT_EQUAL_FP64(-2.5f, d6);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d7);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d8);
ASSERT_EQUAL_FP64(0.0f, d9);
ASSERT_EQUAL_FP64(-0.0f, d10);
ASSERT_EQUAL_FP64(FLT_MAX, d11);
ASSERT_EQUAL_FP64(FLT_MIN, d12);
// Check that the NaN payload is preserved according to ARM64 conversion
// rules:
// - The sign bit is preserved.
// - The top bit of the mantissa is forced to 1 (making it a quiet NaN).
// - The remaining mantissa bits are copied until they run out.
// - The low-order bits that haven't already been assigned are set to 0.
ASSERT_EQUAL_FP64(rawbits_to_double(0x7ff82468a0000000), d13);
ASSERT_EQUAL_FP64(rawbits_to_double(0x7ff82468a0000000), d14);
TEARDOWN();
}
TEST(fcvt_sd) {
INIT_V8();
// There are a huge number of corner-cases to check, so this test iterates
// through a list. The list is then negated and checked again (since the sign
// is irrelevant in ties-to-even rounding), so the list shouldn't include any
// negative values.
//
// Note that this test only checks ties-to-even rounding, because that is all
// that the simulator supports.
struct {double in; float expected;} test[] = {
// Check some simple conversions.
{0.0, 0.0f},
{1.0, 1.0f},
{1.5, 1.5f},
{2.0, 2.0f},
{FLT_MAX, FLT_MAX},
// - The smallest normalized float.
{pow(2.0, -126), powf(2, -126)},
// - Normal floats that need (ties-to-even) rounding.
// For normalized numbers:
// bit 29 (0x0000000020000000) is the lowest-order bit which will
// fit in the float's mantissa.
{rawbits_to_double(0x3ff0000000000000), rawbits_to_float(0x3f800000)},
{rawbits_to_double(0x3ff0000000000001), rawbits_to_float(0x3f800000)},
{rawbits_to_double(0x3ff0000010000000), rawbits_to_float(0x3f800000)},
{rawbits_to_double(0x3ff0000010000001), rawbits_to_float(0x3f800001)},
{rawbits_to_double(0x3ff0000020000000), rawbits_to_float(0x3f800001)},
{rawbits_to_double(0x3ff0000020000001), rawbits_to_float(0x3f800001)},
{rawbits_to_double(0x3ff0000030000000), rawbits_to_float(0x3f800002)},
{rawbits_to_double(0x3ff0000030000001), rawbits_to_float(0x3f800002)},
{rawbits_to_double(0x3ff0000040000000), rawbits_to_float(0x3f800002)},
{rawbits_to_double(0x3ff0000040000001), rawbits_to_float(0x3f800002)},
{rawbits_to_double(0x3ff0000050000000), rawbits_to_float(0x3f800002)},
{rawbits_to_double(0x3ff0000050000001), rawbits_to_float(0x3f800003)},
{rawbits_to_double(0x3ff0000060000000), rawbits_to_float(0x3f800003)},
// - A mantissa that overflows into the exponent during rounding.
{rawbits_to_double(0x3feffffff0000000), rawbits_to_float(0x3f800000)},
// - The largest double that rounds to a normal float.
{rawbits_to_double(0x47efffffefffffff), rawbits_to_float(0x7f7fffff)},
// Doubles that are too big for a float.
{kFP64PositiveInfinity, kFP32PositiveInfinity},
{DBL_MAX, kFP32PositiveInfinity},
// - The smallest exponent that's too big for a float.
{pow(2.0, 128), kFP32PositiveInfinity},
// - This exponent is in range, but the value rounds to infinity.
{rawbits_to_double(0x47effffff0000000), kFP32PositiveInfinity},
// Doubles that are too small for a float.
// - The smallest (subnormal) double.
{DBL_MIN, 0.0},
// - The largest double which is too small for a subnormal float.
{rawbits_to_double(0x3690000000000000), rawbits_to_float(0x00000000)},
// Normal doubles that become subnormal floats.
// - The largest subnormal float.
{rawbits_to_double(0x380fffffc0000000), rawbits_to_float(0x007fffff)},
// - The smallest subnormal float.
{rawbits_to_double(0x36a0000000000000), rawbits_to_float(0x00000001)},
// - Subnormal floats that need (ties-to-even) rounding.
// For these subnormals:
// bit 34 (0x0000000400000000) is the lowest-order bit which will
// fit in the float's mantissa.
{rawbits_to_double(0x37c159e000000000), rawbits_to_float(0x00045678)},
{rawbits_to_double(0x37c159e000000001), rawbits_to_float(0x00045678)},
{rawbits_to_double(0x37c159e200000000), rawbits_to_float(0x00045678)},
{rawbits_to_double(0x37c159e200000001), rawbits_to_float(0x00045679)},
{rawbits_to_double(0x37c159e400000000), rawbits_to_float(0x00045679)},
{rawbits_to_double(0x37c159e400000001), rawbits_to_float(0x00045679)},
{rawbits_to_double(0x37c159e600000000), rawbits_to_float(0x0004567a)},
{rawbits_to_double(0x37c159e600000001), rawbits_to_float(0x0004567a)},
{rawbits_to_double(0x37c159e800000000), rawbits_to_float(0x0004567a)},
{rawbits_to_double(0x37c159e800000001), rawbits_to_float(0x0004567a)},
{rawbits_to_double(0x37c159ea00000000), rawbits_to_float(0x0004567a)},
{rawbits_to_double(0x37c159ea00000001), rawbits_to_float(0x0004567b)},
{rawbits_to_double(0x37c159ec00000000), rawbits_to_float(0x0004567b)},
// - The smallest double which rounds up to become a subnormal float.
{rawbits_to_double(0x3690000000000001), rawbits_to_float(0x00000001)},
// Check NaN payload preservation.
{rawbits_to_double(0x7ff82468a0000000), rawbits_to_float(0x7fc12345)},
{rawbits_to_double(0x7ff82468bfffffff), rawbits_to_float(0x7fc12345)},
// - Signalling NaNs become quiet NaNs.
{rawbits_to_double(0x7ff02468a0000000), rawbits_to_float(0x7fc12345)},
{rawbits_to_double(0x7ff02468bfffffff), rawbits_to_float(0x7fc12345)},
{rawbits_to_double(0x7ff000001fffffff), rawbits_to_float(0x7fc00000)},
};
int count = sizeof(test) / sizeof(test[0]);
for (int i = 0; i < count; i++) {
double in = test[i].in;
float expected = test[i].expected;
// We only expect positive input.
ASSERT(std::signbit(in) == 0);
ASSERT(std::signbit(expected) == 0);
SETUP();
START();
__ Fmov(d10, in);
__ Fcvt(s20, d10);
__ Fmov(d11, -in);
__ Fcvt(s21, d11);
END();
RUN();
ASSERT_EQUAL_FP32(expected, s20);
ASSERT_EQUAL_FP32(-expected, s21);
TEARDOWN();
}
}
TEST(fcvtas) {
INIT_V8();
SETUP();
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 2.5);
__ Fmov(s3, -2.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX.
__ Fneg(s7, s6); // Smallest float > INT32_MIN.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 2.5);
__ Fmov(d11, -2.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, kWMaxInt - 1);
__ Fmov(d15, kWMinInt + 1);
__ Fmov(s17, 1.1);
__ Fmov(s18, 2.5);
__ Fmov(s19, -2.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX.
__ Fneg(s23, s22); // Smallest float > INT64_MIN.
__ Fmov(d24, 1.1);
__ Fmov(d25, 2.5);
__ Fmov(d26, -2.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX.
__ Fneg(d30, d29); // Smallest double > INT64_MIN.
__ Fcvtas(w0, s0);
__ Fcvtas(w1, s1);
__ Fcvtas(w2, s2);
__ Fcvtas(w3, s3);
__ Fcvtas(w4, s4);
__ Fcvtas(w5, s5);
__ Fcvtas(w6, s6);
__ Fcvtas(w7, s7);
__ Fcvtas(w8, d8);
__ Fcvtas(w9, d9);
__ Fcvtas(w10, d10);
__ Fcvtas(w11, d11);
__ Fcvtas(w12, d12);
__ Fcvtas(w13, d13);
__ Fcvtas(w14, d14);
__ Fcvtas(w15, d15);
__ Fcvtas(x17, s17);
__ Fcvtas(x18, s18);
__ Fcvtas(x19, s19);
__ Fcvtas(x20, s20);
__ Fcvtas(x21, s21);
__ Fcvtas(x22, s22);
__ Fcvtas(x23, s23);
__ Fcvtas(x24, d24);
__ Fcvtas(x25, d25);
__ Fcvtas(x26, d26);
__ Fcvtas(x27, d27);
__ Fcvtas(x28, d28);
__ Fcvtas(x29, d29);
__ Fcvtas(x30, d30);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(3, x2);
ASSERT_EQUAL_64(0xfffffffd, x3);
ASSERT_EQUAL_64(0x7fffffff, x4);
ASSERT_EQUAL_64(0x80000000, x5);
ASSERT_EQUAL_64(0x7fffff80, x6);
ASSERT_EQUAL_64(0x80000080, x7);
ASSERT_EQUAL_64(1, x8);
ASSERT_EQUAL_64(1, x9);
ASSERT_EQUAL_64(3, x10);
ASSERT_EQUAL_64(0xfffffffd, x11);
ASSERT_EQUAL_64(0x7fffffff, x12);
ASSERT_EQUAL_64(0x80000000, x13);
ASSERT_EQUAL_64(0x7ffffffe, x14);
ASSERT_EQUAL_64(0x80000001, x15);
ASSERT_EQUAL_64(1, x17);
ASSERT_EQUAL_64(3, x18);
ASSERT_EQUAL_64(0xfffffffffffffffdUL, x19);
ASSERT_EQUAL_64(0x7fffffffffffffffUL, x20);
ASSERT_EQUAL_64(0x8000000000000000UL, x21);
ASSERT_EQUAL_64(0x7fffff8000000000UL, x22);
ASSERT_EQUAL_64(0x8000008000000000UL, x23);
ASSERT_EQUAL_64(1, x24);
ASSERT_EQUAL_64(3, x25);
ASSERT_EQUAL_64(0xfffffffffffffffdUL, x26);
ASSERT_EQUAL_64(0x7fffffffffffffffUL, x27);
ASSERT_EQUAL_64(0x8000000000000000UL, x28);
ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29);
ASSERT_EQUAL_64(0x8000000000000400UL, x30);
TEARDOWN();
}
TEST(fcvtau) {
INIT_V8();
SETUP();
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 2.5);
__ Fmov(s3, -2.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0xffffff00); // Largest float < UINT32_MAX.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 2.5);
__ Fmov(d11, -2.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, 0xfffffffe);
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 2.5);
__ Fmov(s19, -2.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0xffffff0000000000UL); // Largest float < UINT64_MAX.
__ Fmov(d24, 1.1);
__ Fmov(d25, 2.5);
__ Fmov(d26, -2.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0xfffffffffffff800UL); // Largest double < UINT64_MAX.
__ Fmov(s30, 0x100000000UL);
__ Fcvtau(w0, s0);
__ Fcvtau(w1, s1);
__ Fcvtau(w2, s2);
__ Fcvtau(w3, s3);
__ Fcvtau(w4, s4);
__ Fcvtau(w5, s5);
__ Fcvtau(w6, s6);
__ Fcvtau(w8, d8);
__ Fcvtau(w9, d9);
__ Fcvtau(w10, d10);
__ Fcvtau(w11, d11);
__ Fcvtau(w12, d12);
__ Fcvtau(w13, d13);
__ Fcvtau(w14, d14);
__ Fcvtau(w15, d15);
__ Fcvtau(x16, s16);
__ Fcvtau(x17, s17);
__ Fcvtau(x18, s18);
__ Fcvtau(x19, s19);
__ Fcvtau(x20, s20);
__ Fcvtau(x21, s21);
__ Fcvtau(x22, s22);
__ Fcvtau(x24, d24);
__ Fcvtau(x25, d25);
__ Fcvtau(x26, d26);
__ Fcvtau(x27, d27);
__ Fcvtau(x28, d28);
__ Fcvtau(x29, d29);
__ Fcvtau(w30, s30);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(3, x2);
ASSERT_EQUAL_64(0, x3);
ASSERT_EQUAL_64(0xffffffff, x4);
ASSERT_EQUAL_64(0, x5);
ASSERT_EQUAL_64(0xffffff00, x6);
ASSERT_EQUAL_64(1, x8);
ASSERT_EQUAL_64(1, x9);
ASSERT_EQUAL_64(3, x10);
ASSERT_EQUAL_64(0, x11);
ASSERT_EQUAL_64(0xffffffff, x12);
ASSERT_EQUAL_64(0, x13);
ASSERT_EQUAL_64(0xfffffffe, x14);
ASSERT_EQUAL_64(1, x16);
ASSERT_EQUAL_64(1, x17);
ASSERT_EQUAL_64(3, x18);
ASSERT_EQUAL_64(0, x19);
ASSERT_EQUAL_64(0xffffffffffffffffUL, x20);
ASSERT_EQUAL_64(0, x21);
ASSERT_EQUAL_64(0xffffff0000000000UL, x22);
ASSERT_EQUAL_64(1, x24);
ASSERT_EQUAL_64(3, x25);
ASSERT_EQUAL_64(0, x26);
ASSERT_EQUAL_64(0xffffffffffffffffUL, x27);
ASSERT_EQUAL_64(0, x28);
ASSERT_EQUAL_64(0xfffffffffffff800UL, x29);
ASSERT_EQUAL_64(0xffffffff, x30);
TEARDOWN();
}
TEST(fcvtms) {
INIT_V8();
SETUP();
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 1.5);
__ Fmov(s3, -1.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX.
__ Fneg(s7, s6); // Smallest float > INT32_MIN.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 1.5);
__ Fmov(d11, -1.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, kWMaxInt - 1);
__ Fmov(d15, kWMinInt + 1);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, -1.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX.
__ Fneg(s23, s22); // Smallest float > INT64_MIN.
__ Fmov(d24, 1.1);
__ Fmov(d25, 1.5);
__ Fmov(d26, -1.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX.
__ Fneg(d30, d29); // Smallest double > INT64_MIN.
__ Fcvtms(w0, s0);
__ Fcvtms(w1, s1);
__ Fcvtms(w2, s2);
__ Fcvtms(w3, s3);
__ Fcvtms(w4, s4);
__ Fcvtms(w5, s5);
__ Fcvtms(w6, s6);
__ Fcvtms(w7, s7);
__ Fcvtms(w8, d8);
__ Fcvtms(w9, d9);
__ Fcvtms(w10, d10);
__ Fcvtms(w11, d11);
__ Fcvtms(w12, d12);
__ Fcvtms(w13, d13);
__ Fcvtms(w14, d14);
__ Fcvtms(w15, d15);
__ Fcvtms(x17, s17);
__ Fcvtms(x18, s18);
__ Fcvtms(x19, s19);
__ Fcvtms(x20, s20);
__ Fcvtms(x21, s21);
__ Fcvtms(x22, s22);
__ Fcvtms(x23, s23);
__ Fcvtms(x24, d24);
__ Fcvtms(x25, d25);
__ Fcvtms(x26, d26);
__ Fcvtms(x27, d27);
__ Fcvtms(x28, d28);
__ Fcvtms(x29, d29);
__ Fcvtms(x30, d30);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(1, x2);
ASSERT_EQUAL_64(0xfffffffe, x3);
ASSERT_EQUAL_64(0x7fffffff, x4);
ASSERT_EQUAL_64(0x80000000, x5);
ASSERT_EQUAL_64(0x7fffff80, x6);
ASSERT_EQUAL_64(0x80000080, x7);
ASSERT_EQUAL_64(1, x8);
ASSERT_EQUAL_64(1, x9);
ASSERT_EQUAL_64(1, x10);
ASSERT_EQUAL_64(0xfffffffe, x11);
ASSERT_EQUAL_64(0x7fffffff, x12);
ASSERT_EQUAL_64(0x80000000, x13);
ASSERT_EQUAL_64(0x7ffffffe, x14);
ASSERT_EQUAL_64(0x80000001, x15);
ASSERT_EQUAL_64(1, x17);
ASSERT_EQUAL_64(1, x18);
ASSERT_EQUAL_64(0xfffffffffffffffeUL, x19);
ASSERT_EQUAL_64(0x7fffffffffffffffUL, x20);
ASSERT_EQUAL_64(0x8000000000000000UL, x21);
ASSERT_EQUAL_64(0x7fffff8000000000UL, x22);
ASSERT_EQUAL_64(0x8000008000000000UL, x23);
ASSERT_EQUAL_64(1, x24);
ASSERT_EQUAL_64(1, x25);
ASSERT_EQUAL_64(0xfffffffffffffffeUL, x26);
ASSERT_EQUAL_64(0x7fffffffffffffffUL, x27);
ASSERT_EQUAL_64(0x8000000000000000UL, x28);
ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29);
ASSERT_EQUAL_64(0x8000000000000400UL, x30);
TEARDOWN();
}
TEST(fcvtmu) {
INIT_V8();
SETUP();
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 1.5);
__ Fmov(s3, -1.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX.
__ Fneg(s7, s6); // Smallest float > INT32_MIN.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 1.5);
__ Fmov(d11, -1.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, kWMaxInt - 1);
__ Fmov(d15, kWMinInt + 1);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, -1.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX.
__ Fneg(s23, s22); // Smallest float > INT64_MIN.
__ Fmov(d24, 1.1);
__ Fmov(d25, 1.5);
__ Fmov(d26, -1.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX.
__ Fneg(d30, d29); // Smallest double > INT64_MIN.
__ Fcvtmu(w0, s0);
__ Fcvtmu(w1, s1);
__ Fcvtmu(w2, s2);
__ Fcvtmu(w3, s3);
__ Fcvtmu(w4, s4);
__ Fcvtmu(w5, s5);
__ Fcvtmu(w6, s6);
__ Fcvtmu(w7, s7);
__ Fcvtmu(w8, d8);
__ Fcvtmu(w9, d9);
__ Fcvtmu(w10, d10);
__ Fcvtmu(w11, d11);
__ Fcvtmu(w12, d12);
__ Fcvtmu(w13, d13);
__ Fcvtmu(w14, d14);
__ Fcvtmu(x17, s17);
__ Fcvtmu(x18, s18);
__ Fcvtmu(x19, s19);
__ Fcvtmu(x20, s20);
__ Fcvtmu(x21, s21);
__ Fcvtmu(x22, s22);
__ Fcvtmu(x23, s23);
__ Fcvtmu(x24, d24);
__ Fcvtmu(x25, d25);
__ Fcvtmu(x26, d26);
__ Fcvtmu(x27, d27);
__ Fcvtmu(x28, d28);
__ Fcvtmu(x29, d29);
__ Fcvtmu(x30, d30);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(1, x2);
ASSERT_EQUAL_64(0, x3);
ASSERT_EQUAL_64(0xffffffff, x4);
ASSERT_EQUAL_64(0, x5);
ASSERT_EQUAL_64(0x7fffff80, x6);
ASSERT_EQUAL_64(0, x7);
ASSERT_EQUAL_64(1, x8);
ASSERT_EQUAL_64(1, x9);
ASSERT_EQUAL_64(1, x10);
ASSERT_EQUAL_64(0, x11);
ASSERT_EQUAL_64(0xffffffff, x12);
ASSERT_EQUAL_64(0, x13);
ASSERT_EQUAL_64(0x7ffffffe, x14);
ASSERT_EQUAL_64(1, x17);
ASSERT_EQUAL_64(1, x18);
ASSERT_EQUAL_64(0x0UL, x19);
ASSERT_EQUAL_64(0xffffffffffffffffUL, x20);
ASSERT_EQUAL_64(0x0UL, x21);
ASSERT_EQUAL_64(0x7fffff8000000000UL, x22);
ASSERT_EQUAL_64(0x0UL, x23);
ASSERT_EQUAL_64(1, x24);
ASSERT_EQUAL_64(1, x25);
ASSERT_EQUAL_64(0x0UL, x26);
ASSERT_EQUAL_64(0xffffffffffffffffUL, x27);
ASSERT_EQUAL_64(0x0UL, x28);
ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29);
ASSERT_EQUAL_64(0x0UL, x30);
TEARDOWN();
}
TEST(fcvtns) {
INIT_V8();
SETUP();
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 1.5);
__ Fmov(s3, -1.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX.
__ Fneg(s7, s6); // Smallest float > INT32_MIN.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 1.5);
__ Fmov(d11, -1.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, kWMaxInt - 1);
__ Fmov(d15, kWMinInt + 1);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, -1.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX.
__ Fneg(s23, s22); // Smallest float > INT64_MIN.
__ Fmov(d24, 1.1);
__ Fmov(d25, 1.5);
__ Fmov(d26, -1.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX.
__ Fneg(d30, d29); // Smallest double > INT64_MIN.
__ Fcvtns(w0, s0);
__ Fcvtns(w1, s1);
__ Fcvtns(w2, s2);
__ Fcvtns(w3, s3);
__ Fcvtns(w4, s4);
__ Fcvtns(w5, s5);
__ Fcvtns(w6, s6);
__ Fcvtns(w7, s7);
__ Fcvtns(w8, d8);
__ Fcvtns(w9, d9);
__ Fcvtns(w10, d10);
__ Fcvtns(w11, d11);
__ Fcvtns(w12, d12);
__ Fcvtns(w13, d13);
__ Fcvtns(w14, d14);
__ Fcvtns(w15, d15);
__ Fcvtns(x17, s17);
__ Fcvtns(x18, s18);
__ Fcvtns(x19, s19);
__ Fcvtns(x20, s20);
__ Fcvtns(x21, s21);
__ Fcvtns(x22, s22);
__ Fcvtns(x23, s23);
__ Fcvtns(x24, d24);
__ Fcvtns(x25, d25);
__ Fcvtns(x26, d26);
__ Fcvtns(x27, d27);
// __ Fcvtns(x28, d28);
__ Fcvtns(x29, d29);
__ Fcvtns(x30, d30);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(2, x2);
ASSERT_EQUAL_64(0xfffffffe, x3);
ASSERT_EQUAL_64(0x7fffffff, x4);
ASSERT_EQUAL_64(0x80000000, x5);
ASSERT_EQUAL_64(0x7fffff80, x6);
ASSERT_EQUAL_64(0x80000080, x7);
ASSERT_EQUAL_64(1, x8);
ASSERT_EQUAL_64(1, x9);
ASSERT_EQUAL_64(2, x10);
ASSERT_EQUAL_64(0xfffffffe, x11);
ASSERT_EQUAL_64(0x7fffffff, x12);
ASSERT_EQUAL_64(0x80000000, x13);
ASSERT_EQUAL_64(0x7ffffffe, x14);
ASSERT_EQUAL_64(0x80000001, x15);
ASSERT_EQUAL_64(1, x17);
ASSERT_EQUAL_64(2, x18);
ASSERT_EQUAL_64(0xfffffffffffffffeUL, x19);
ASSERT_EQUAL_64(0x7fffffffffffffffUL, x20);
ASSERT_EQUAL_64(0x8000000000000000UL, x21);
ASSERT_EQUAL_64(0x7fffff8000000000UL, x22);
ASSERT_EQUAL_64(0x8000008000000000UL, x23);
ASSERT_EQUAL_64(1, x24);
ASSERT_EQUAL_64(2, x25);
ASSERT_EQUAL_64(0xfffffffffffffffeUL, x26);
ASSERT_EQUAL_64(0x7fffffffffffffffUL, x27);
// ASSERT_EQUAL_64(0x8000000000000000UL, x28);
ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29);
ASSERT_EQUAL_64(0x8000000000000400UL, x30);
TEARDOWN();
}
TEST(fcvtnu) {
INIT_V8();
SETUP();
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 1.5);
__ Fmov(s3, -1.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0xffffff00); // Largest float < UINT32_MAX.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 1.5);
__ Fmov(d11, -1.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, 0xfffffffe);
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, -1.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0xffffff0000000000UL); // Largest float < UINT64_MAX.
__ Fmov(d24, 1.1);
__ Fmov(d25, 1.5);
__ Fmov(d26, -1.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0xfffffffffffff800UL); // Largest double < UINT64_MAX.
__ Fmov(s30, 0x100000000UL);
__ Fcvtnu(w0, s0);
__ Fcvtnu(w1, s1);
__ Fcvtnu(w2, s2);
__ Fcvtnu(w3, s3);
__ Fcvtnu(w4, s4);
__ Fcvtnu(w5, s5);
__ Fcvtnu(w6, s6);
__ Fcvtnu(w8, d8);
__ Fcvtnu(w9, d9);
__ Fcvtnu(w10, d10);
__ Fcvtnu(w11, d11);
__ Fcvtnu(w12, d12);
__ Fcvtnu(w13, d13);
__ Fcvtnu(w14, d14);
__ Fcvtnu(w15, d15);
__ Fcvtnu(x16, s16);
__ Fcvtnu(x17, s17);
__ Fcvtnu(x18, s18);
__ Fcvtnu(x19, s19);
__ Fcvtnu(x20, s20);
__ Fcvtnu(x21, s21);
__ Fcvtnu(x22, s22);
__ Fcvtnu(x24, d24);
__ Fcvtnu(x25, d25);
__ Fcvtnu(x26, d26);
__ Fcvtnu(x27, d27);
// __ Fcvtnu(x28, d28);
__ Fcvtnu(x29, d29);
__ Fcvtnu(w30, s30);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(2, x2);
ASSERT_EQUAL_64(0, x3);
ASSERT_EQUAL_64(0xffffffff, x4);
ASSERT_EQUAL_64(0, x5);
ASSERT_EQUAL_64(0xffffff00, x6);
ASSERT_EQUAL_64(1, x8);
ASSERT_EQUAL_64(1, x9);
ASSERT_EQUAL_64(2, x10);
ASSERT_EQUAL_64(0, x11);
ASSERT_EQUAL_64(0xffffffff, x12);
ASSERT_EQUAL_64(0, x13);
ASSERT_EQUAL_64(0xfffffffe, x14);
ASSERT_EQUAL_64(1, x16);
ASSERT_EQUAL_64(1, x17);
ASSERT_EQUAL_64(2, x18);
ASSERT_EQUAL_64(0, x19);
ASSERT_EQUAL_64(0xffffffffffffffffUL, x20);
ASSERT_EQUAL_64(0, x21);
ASSERT_EQUAL_64(0xffffff0000000000UL, x22);
ASSERT_EQUAL_64(1, x24);
ASSERT_EQUAL_64(2, x25);
ASSERT_EQUAL_64(0, x26);
ASSERT_EQUAL_64(0xffffffffffffffffUL, x27);
// ASSERT_EQUAL_64(0, x28);
ASSERT_EQUAL_64(0xfffffffffffff800UL, x29);
ASSERT_EQUAL_64(0xffffffff, x30);
TEARDOWN();
}
TEST(fcvtzs) {
INIT_V8();
SETUP();
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 1.5);
__ Fmov(s3, -1.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX.
__ Fneg(s7, s6); // Smallest float > INT32_MIN.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 1.5);
__ Fmov(d11, -1.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, kWMaxInt - 1);
__ Fmov(d15, kWMinInt + 1);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, -1.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX.
__ Fneg(s23, s22); // Smallest float > INT64_MIN.
__ Fmov(d24, 1.1);
__ Fmov(d25, 1.5);
__ Fmov(d26, -1.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX.
__ Fneg(d30, d29); // Smallest double > INT64_MIN.
__ Fcvtzs(w0, s0);
__ Fcvtzs(w1, s1);
__ Fcvtzs(w2, s2);
__ Fcvtzs(w3, s3);
__ Fcvtzs(w4, s4);
__ Fcvtzs(w5, s5);
__ Fcvtzs(w6, s6);
__ Fcvtzs(w7, s7);
__ Fcvtzs(w8, d8);
__ Fcvtzs(w9, d9);
__ Fcvtzs(w10, d10);
__ Fcvtzs(w11, d11);
__ Fcvtzs(w12, d12);
__ Fcvtzs(w13, d13);
__ Fcvtzs(w14, d14);
__ Fcvtzs(w15, d15);
__ Fcvtzs(x17, s17);
__ Fcvtzs(x18, s18);
__ Fcvtzs(x19, s19);
__ Fcvtzs(x20, s20);
__ Fcvtzs(x21, s21);
__ Fcvtzs(x22, s22);
__ Fcvtzs(x23, s23);
__ Fcvtzs(x24, d24);
__ Fcvtzs(x25, d25);
__ Fcvtzs(x26, d26);
__ Fcvtzs(x27, d27);
__ Fcvtzs(x28, d28);
__ Fcvtzs(x29, d29);
__ Fcvtzs(x30, d30);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(1, x2);
ASSERT_EQUAL_64(0xffffffff, x3);
ASSERT_EQUAL_64(0x7fffffff, x4);
ASSERT_EQUAL_64(0x80000000, x5);
ASSERT_EQUAL_64(0x7fffff80, x6);
ASSERT_EQUAL_64(0x80000080, x7);
ASSERT_EQUAL_64(1, x8);
ASSERT_EQUAL_64(1, x9);
ASSERT_EQUAL_64(1, x10);
ASSERT_EQUAL_64(0xffffffff, x11);
ASSERT_EQUAL_64(0x7fffffff, x12);
ASSERT_EQUAL_64(0x80000000, x13);
ASSERT_EQUAL_64(0x7ffffffe, x14);
ASSERT_EQUAL_64(0x80000001, x15);
ASSERT_EQUAL_64(1, x17);
ASSERT_EQUAL_64(1, x18);
ASSERT_EQUAL_64(0xffffffffffffffffUL, x19);
ASSERT_EQUAL_64(0x7fffffffffffffffUL, x20);
ASSERT_EQUAL_64(0x8000000000000000UL, x21);
ASSERT_EQUAL_64(0x7fffff8000000000UL, x22);
ASSERT_EQUAL_64(0x8000008000000000UL, x23);
ASSERT_EQUAL_64(1, x24);
ASSERT_EQUAL_64(1, x25);
ASSERT_EQUAL_64(0xffffffffffffffffUL, x26);
ASSERT_EQUAL_64(0x7fffffffffffffffUL, x27);
ASSERT_EQUAL_64(0x8000000000000000UL, x28);
ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29);
ASSERT_EQUAL_64(0x8000000000000400UL, x30);
TEARDOWN();
}
TEST(fcvtzu) {
INIT_V8();
SETUP();
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 1.5);
__ Fmov(s3, -1.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX.
__ Fneg(s7, s6); // Smallest float > INT32_MIN.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 1.5);
__ Fmov(d11, -1.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, kWMaxInt - 1);
__ Fmov(d15, kWMinInt + 1);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, -1.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX.
__ Fneg(s23, s22); // Smallest float > INT64_MIN.
__ Fmov(d24, 1.1);
__ Fmov(d25, 1.5);
__ Fmov(d26, -1.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX.
__ Fneg(d30, d29); // Smallest double > INT64_MIN.
__ Fcvtzu(w0, s0);
__ Fcvtzu(w1, s1);
__ Fcvtzu(w2, s2);
__ Fcvtzu(w3, s3);
__ Fcvtzu(w4, s4);
__ Fcvtzu(w5, s5);
__ Fcvtzu(w6, s6);
__ Fcvtzu(w7, s7);
__ Fcvtzu(w8, d8);
__ Fcvtzu(w9, d9);
__ Fcvtzu(w10, d10);
__ Fcvtzu(w11, d11);
__ Fcvtzu(w12, d12);
__ Fcvtzu(w13, d13);
__ Fcvtzu(w14, d14);
__ Fcvtzu(x17, s17);
__ Fcvtzu(x18, s18);
__ Fcvtzu(x19, s19);
__ Fcvtzu(x20, s20);
__ Fcvtzu(x21, s21);
__ Fcvtzu(x22, s22);
__ Fcvtzu(x23, s23);
__ Fcvtzu(x24, d24);
__ Fcvtzu(x25, d25);
__ Fcvtzu(x26, d26);
__ Fcvtzu(x27, d27);
__ Fcvtzu(x28, d28);
__ Fcvtzu(x29, d29);
__ Fcvtzu(x30, d30);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(1, x2);
ASSERT_EQUAL_64(0, x3);
ASSERT_EQUAL_64(0xffffffff, x4);
ASSERT_EQUAL_64(0, x5);
ASSERT_EQUAL_64(0x7fffff80, x6);
ASSERT_EQUAL_64(0, x7);
ASSERT_EQUAL_64(1, x8);
ASSERT_EQUAL_64(1, x9);
ASSERT_EQUAL_64(1, x10);
ASSERT_EQUAL_64(0, x11);
ASSERT_EQUAL_64(0xffffffff, x12);
ASSERT_EQUAL_64(0, x13);
ASSERT_EQUAL_64(0x7ffffffe, x14);
ASSERT_EQUAL_64(1, x17);
ASSERT_EQUAL_64(1, x18);
ASSERT_EQUAL_64(0x0UL, x19);
ASSERT_EQUAL_64(0xffffffffffffffffUL, x20);
ASSERT_EQUAL_64(0x0UL, x21);
ASSERT_EQUAL_64(0x7fffff8000000000UL, x22);
ASSERT_EQUAL_64(0x0UL, x23);
ASSERT_EQUAL_64(1, x24);
ASSERT_EQUAL_64(1, x25);
ASSERT_EQUAL_64(0x0UL, x26);
ASSERT_EQUAL_64(0xffffffffffffffffUL, x27);
ASSERT_EQUAL_64(0x0UL, x28);
ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29);
ASSERT_EQUAL_64(0x0UL, x30);
TEARDOWN();
}
// Test that scvtf and ucvtf can convert the 64-bit input into the expected
// value. All possible values of 'fbits' are tested. The expected value is
// modified accordingly in each case.
//
// The expected value is specified as the bit encoding of the expected double
// produced by scvtf (expected_scvtf_bits) as well as ucvtf
// (expected_ucvtf_bits).
//
// Where the input value is representable by int32_t or uint32_t, conversions
// from W registers will also be tested.
static void TestUScvtfHelper(uint64_t in,
uint64_t expected_scvtf_bits,
uint64_t expected_ucvtf_bits) {
uint64_t u64 = in;
uint32_t u32 = u64 & 0xffffffff;
int64_t s64 = static_cast<int64_t>(in);
int32_t s32 = s64 & 0x7fffffff;
bool cvtf_s32 = (s64 == s32);
bool cvtf_u32 = (u64 == u32);
double results_scvtf_x[65];
double results_ucvtf_x[65];
double results_scvtf_w[33];
double results_ucvtf_w[33];
SETUP();
START();
__ Mov(x0, reinterpret_cast<int64_t>(results_scvtf_x));
__ Mov(x1, reinterpret_cast<int64_t>(results_ucvtf_x));
__ Mov(x2, reinterpret_cast<int64_t>(results_scvtf_w));
__ Mov(x3, reinterpret_cast<int64_t>(results_ucvtf_w));
__ Mov(x10, s64);
// Corrupt the top word, in case it is accidentally used during W-register
// conversions.
__ Mov(x11, 0x5555555555555555);
__ Bfi(x11, x10, 0, kWRegSizeInBits);
// Test integer conversions.
__ Scvtf(d0, x10);
__ Ucvtf(d1, x10);
__ Scvtf(d2, w11);
__ Ucvtf(d3, w11);
__ Str(d0, MemOperand(x0));
__ Str(d1, MemOperand(x1));
__ Str(d2, MemOperand(x2));
__ Str(d3, MemOperand(x3));
// Test all possible values of fbits.
for (int fbits = 1; fbits <= 32; fbits++) {
__ Scvtf(d0, x10, fbits);
__ Ucvtf(d1, x10, fbits);
__ Scvtf(d2, w11, fbits);
__ Ucvtf(d3, w11, fbits);
__ Str(d0, MemOperand(x0, fbits * kDRegSize));
__ Str(d1, MemOperand(x1, fbits * kDRegSize));
__ Str(d2, MemOperand(x2, fbits * kDRegSize));
__ Str(d3, MemOperand(x3, fbits * kDRegSize));
}
// Conversions from W registers can only handle fbits values <= 32, so just
// test conversions from X registers for 32 < fbits <= 64.
for (int fbits = 33; fbits <= 64; fbits++) {
__ Scvtf(d0, x10, fbits);
__ Ucvtf(d1, x10, fbits);
__ Str(d0, MemOperand(x0, fbits * kDRegSize));
__ Str(d1, MemOperand(x1, fbits * kDRegSize));
}
END();
RUN();
// Check the results.
double expected_scvtf_base = rawbits_to_double(expected_scvtf_bits);
double expected_ucvtf_base = rawbits_to_double(expected_ucvtf_bits);
for (int fbits = 0; fbits <= 32; fbits++) {
double expected_scvtf = expected_scvtf_base / pow(2.0, fbits);
double expected_ucvtf = expected_ucvtf_base / pow(2.0, fbits);
ASSERT_EQUAL_FP64(expected_scvtf, results_scvtf_x[fbits]);
ASSERT_EQUAL_FP64(expected_ucvtf, results_ucvtf_x[fbits]);
if (cvtf_s32) ASSERT_EQUAL_FP64(expected_scvtf, results_scvtf_w[fbits]);
if (cvtf_u32) ASSERT_EQUAL_FP64(expected_ucvtf, results_ucvtf_w[fbits]);
}
for (int fbits = 33; fbits <= 64; fbits++) {
double expected_scvtf = expected_scvtf_base / pow(2.0, fbits);
double expected_ucvtf = expected_ucvtf_base / pow(2.0, fbits);
ASSERT_EQUAL_FP64(expected_scvtf, results_scvtf_x[fbits]);
ASSERT_EQUAL_FP64(expected_ucvtf, results_ucvtf_x[fbits]);
}
TEARDOWN();
}
TEST(scvtf_ucvtf_double) {
INIT_V8();
// Simple conversions of positive numbers which require no rounding; the
// results should not depened on the rounding mode, and ucvtf and scvtf should
// produce the same result.
TestUScvtfHelper(0x0000000000000000, 0x0000000000000000, 0x0000000000000000);
TestUScvtfHelper(0x0000000000000001, 0x3ff0000000000000, 0x3ff0000000000000);
TestUScvtfHelper(0x0000000040000000, 0x41d0000000000000, 0x41d0000000000000);
TestUScvtfHelper(0x0000000100000000, 0x41f0000000000000, 0x41f0000000000000);
TestUScvtfHelper(0x4000000000000000, 0x43d0000000000000, 0x43d0000000000000);
// Test mantissa extremities.
TestUScvtfHelper(0x4000000000000400, 0x43d0000000000001, 0x43d0000000000001);
// The largest int32_t that fits in a double.
TestUScvtfHelper(0x000000007fffffff, 0x41dfffffffc00000, 0x41dfffffffc00000);
// Values that would be negative if treated as an int32_t.
TestUScvtfHelper(0x00000000ffffffff, 0x41efffffffe00000, 0x41efffffffe00000);
TestUScvtfHelper(0x0000000080000000, 0x41e0000000000000, 0x41e0000000000000);
TestUScvtfHelper(0x0000000080000001, 0x41e0000000200000, 0x41e0000000200000);
// The largest int64_t that fits in a double.
TestUScvtfHelper(0x7ffffffffffffc00, 0x43dfffffffffffff, 0x43dfffffffffffff);
// Check for bit pattern reproduction.
TestUScvtfHelper(0x0123456789abcde0, 0x43723456789abcde, 0x43723456789abcde);
TestUScvtfHelper(0x0000000012345678, 0x41b2345678000000, 0x41b2345678000000);
// Simple conversions of negative int64_t values. These require no rounding,
// and the results should not depend on the rounding mode.
TestUScvtfHelper(0xffffffffc0000000, 0xc1d0000000000000, 0x43effffffff80000);
TestUScvtfHelper(0xffffffff00000000, 0xc1f0000000000000, 0x43efffffffe00000);
TestUScvtfHelper(0xc000000000000000, 0xc3d0000000000000, 0x43e8000000000000);
// Conversions which require rounding.
TestUScvtfHelper(0x1000000000000000, 0x43b0000000000000, 0x43b0000000000000);
TestUScvtfHelper(0x1000000000000001, 0x43b0000000000000, 0x43b0000000000000);
TestUScvtfHelper(0x1000000000000080, 0x43b0000000000000, 0x43b0000000000000);
TestUScvtfHelper(0x1000000000000081, 0x43b0000000000001, 0x43b0000000000001);
TestUScvtfHelper(0x1000000000000100, 0x43b0000000000001, 0x43b0000000000001);
TestUScvtfHelper(0x1000000000000101, 0x43b0000000000001, 0x43b0000000000001);
TestUScvtfHelper(0x1000000000000180, 0x43b0000000000002, 0x43b0000000000002);
TestUScvtfHelper(0x1000000000000181, 0x43b0000000000002, 0x43b0000000000002);
TestUScvtfHelper(0x1000000000000200, 0x43b0000000000002, 0x43b0000000000002);
TestUScvtfHelper(0x1000000000000201, 0x43b0000000000002, 0x43b0000000000002);
TestUScvtfHelper(0x1000000000000280, 0x43b0000000000002, 0x43b0000000000002);
TestUScvtfHelper(0x1000000000000281, 0x43b0000000000003, 0x43b0000000000003);
TestUScvtfHelper(0x1000000000000300, 0x43b0000000000003, 0x43b0000000000003);
// Check rounding of negative int64_t values (and large uint64_t values).
TestUScvtfHelper(0x8000000000000000, 0xc3e0000000000000, 0x43e0000000000000);
TestUScvtfHelper(0x8000000000000001, 0xc3e0000000000000, 0x43e0000000000000);
TestUScvtfHelper(0x8000000000000200, 0xc3e0000000000000, 0x43e0000000000000);
TestUScvtfHelper(0x8000000000000201, 0xc3dfffffffffffff, 0x43e0000000000000);
TestUScvtfHelper(0x8000000000000400, 0xc3dfffffffffffff, 0x43e0000000000000);
TestUScvtfHelper(0x8000000000000401, 0xc3dfffffffffffff, 0x43e0000000000001);
TestUScvtfHelper(0x8000000000000600, 0xc3dffffffffffffe, 0x43e0000000000001);
TestUScvtfHelper(0x8000000000000601, 0xc3dffffffffffffe, 0x43e0000000000001);
TestUScvtfHelper(0x8000000000000800, 0xc3dffffffffffffe, 0x43e0000000000001);
TestUScvtfHelper(0x8000000000000801, 0xc3dffffffffffffe, 0x43e0000000000001);
TestUScvtfHelper(0x8000000000000a00, 0xc3dffffffffffffe, 0x43e0000000000001);
TestUScvtfHelper(0x8000000000000a01, 0xc3dffffffffffffd, 0x43e0000000000001);
TestUScvtfHelper(0x8000000000000c00, 0xc3dffffffffffffd, 0x43e0000000000002);
// Round up to produce a result that's too big for the input to represent.
TestUScvtfHelper(0x7ffffffffffffe00, 0x43e0000000000000, 0x43e0000000000000);
TestUScvtfHelper(0x7fffffffffffffff, 0x43e0000000000000, 0x43e0000000000000);
TestUScvtfHelper(0xfffffffffffffc00, 0xc090000000000000, 0x43f0000000000000);
TestUScvtfHelper(0xffffffffffffffff, 0xbff0000000000000, 0x43f0000000000000);
}
// The same as TestUScvtfHelper, but convert to floats.
static void TestUScvtf32Helper(uint64_t in,
uint32_t expected_scvtf_bits,
uint32_t expected_ucvtf_bits) {
uint64_t u64 = in;
uint32_t u32 = u64 & 0xffffffff;
int64_t s64 = static_cast<int64_t>(in);
int32_t s32 = s64 & 0x7fffffff;
bool cvtf_s32 = (s64 == s32);
bool cvtf_u32 = (u64 == u32);
float results_scvtf_x[65];
float results_ucvtf_x[65];
float results_scvtf_w[33];
float results_ucvtf_w[33];
SETUP();
START();
__ Mov(x0, reinterpret_cast<int64_t>(results_scvtf_x));
__ Mov(x1, reinterpret_cast<int64_t>(results_ucvtf_x));
__ Mov(x2, reinterpret_cast<int64_t>(results_scvtf_w));
__ Mov(x3, reinterpret_cast<int64_t>(results_ucvtf_w));
__ Mov(x10, s64);
// Corrupt the top word, in case it is accidentally used during W-register
// conversions.
__ Mov(x11, 0x5555555555555555);
__ Bfi(x11, x10, 0, kWRegSizeInBits);
// Test integer conversions.
__ Scvtf(s0, x10);
__ Ucvtf(s1, x10);
__ Scvtf(s2, w11);
__ Ucvtf(s3, w11);
__ Str(s0, MemOperand(x0));
__ Str(s1, MemOperand(x1));
__ Str(s2, MemOperand(x2));
__ Str(s3, MemOperand(x3));
// Test all possible values of fbits.
for (int fbits = 1; fbits <= 32; fbits++) {
__ Scvtf(s0, x10, fbits);
__ Ucvtf(s1, x10, fbits);
__ Scvtf(s2, w11, fbits);
__ Ucvtf(s3, w11, fbits);
__ Str(s0, MemOperand(x0, fbits * kSRegSize));
__ Str(s1, MemOperand(x1, fbits * kSRegSize));
__ Str(s2, MemOperand(x2, fbits * kSRegSize));
__ Str(s3, MemOperand(x3, fbits * kSRegSize));
}
// Conversions from W registers can only handle fbits values <= 32, so just
// test conversions from X registers for 32 < fbits <= 64.
for (int fbits = 33; fbits <= 64; fbits++) {
__ Scvtf(s0, x10, fbits);
__ Ucvtf(s1, x10, fbits);
__ Str(s0, MemOperand(x0, fbits * kSRegSize));
__ Str(s1, MemOperand(x1, fbits * kSRegSize));
}
END();
RUN();
// Check the results.
float expected_scvtf_base = rawbits_to_float(expected_scvtf_bits);
float expected_ucvtf_base = rawbits_to_float(expected_ucvtf_bits);
for (int fbits = 0; fbits <= 32; fbits++) {
float expected_scvtf = expected_scvtf_base / powf(2, fbits);
float expected_ucvtf = expected_ucvtf_base / powf(2, fbits);
ASSERT_EQUAL_FP32(expected_scvtf, results_scvtf_x[fbits]);
ASSERT_EQUAL_FP32(expected_ucvtf, results_ucvtf_x[fbits]);
if (cvtf_s32) ASSERT_EQUAL_FP32(expected_scvtf, results_scvtf_w[fbits]);
if (cvtf_u32) ASSERT_EQUAL_FP32(expected_ucvtf, results_ucvtf_w[fbits]);
break;
}
for (int fbits = 33; fbits <= 64; fbits++) {
break;
float expected_scvtf = expected_scvtf_base / powf(2, fbits);
float expected_ucvtf = expected_ucvtf_base / powf(2, fbits);
ASSERT_EQUAL_FP32(expected_scvtf, results_scvtf_x[fbits]);
ASSERT_EQUAL_FP32(expected_ucvtf, results_ucvtf_x[fbits]);
}
TEARDOWN();
}
TEST(scvtf_ucvtf_float) {
INIT_V8();
// Simple conversions of positive numbers which require no rounding; the
// results should not depened on the rounding mode, and ucvtf and scvtf should
// produce the same result.
TestUScvtf32Helper(0x0000000000000000, 0x00000000, 0x00000000);
TestUScvtf32Helper(0x0000000000000001, 0x3f800000, 0x3f800000);
TestUScvtf32Helper(0x0000000040000000, 0x4e800000, 0x4e800000);
TestUScvtf32Helper(0x0000000100000000, 0x4f800000, 0x4f800000);
TestUScvtf32Helper(0x4000000000000000, 0x5e800000, 0x5e800000);
// Test mantissa extremities.
TestUScvtf32Helper(0x0000000000800001, 0x4b000001, 0x4b000001);
TestUScvtf32Helper(0x4000008000000000, 0x5e800001, 0x5e800001);
// The largest int32_t that fits in a float.
TestUScvtf32Helper(0x000000007fffff80, 0x4effffff, 0x4effffff);
// Values that would be negative if treated as an int32_t.
TestUScvtf32Helper(0x00000000ffffff00, 0x4f7fffff, 0x4f7fffff);
TestUScvtf32Helper(0x0000000080000000, 0x4f000000, 0x4f000000);
TestUScvtf32Helper(0x0000000080000100, 0x4f000001, 0x4f000001);
// The largest int64_t that fits in a float.
TestUScvtf32Helper(0x7fffff8000000000, 0x5effffff, 0x5effffff);
// Check for bit pattern reproduction.
TestUScvtf32Helper(0x0000000000876543, 0x4b076543, 0x4b076543);
// Simple conversions of negative int64_t values. These require no rounding,
// and the results should not depend on the rounding mode.
TestUScvtf32Helper(0xfffffc0000000000, 0xd4800000, 0x5f7ffffc);
TestUScvtf32Helper(0xc000000000000000, 0xde800000, 0x5f400000);
// Conversions which require rounding.
TestUScvtf32Helper(0x0000800000000000, 0x57000000, 0x57000000);
TestUScvtf32Helper(0x0000800000000001, 0x57000000, 0x57000000);
TestUScvtf32Helper(0x0000800000800000, 0x57000000, 0x57000000);
TestUScvtf32Helper(0x0000800000800001, 0x57000001, 0x57000001);
TestUScvtf32Helper(0x0000800001000000, 0x57000001, 0x57000001);
TestUScvtf32Helper(0x0000800001000001, 0x57000001, 0x57000001);
TestUScvtf32Helper(0x0000800001800000, 0x57000002, 0x57000002);
TestUScvtf32Helper(0x0000800001800001, 0x57000002, 0x57000002);
TestUScvtf32Helper(0x0000800002000000, 0x57000002, 0x57000002);
TestUScvtf32Helper(0x0000800002000001, 0x57000002, 0x57000002);
TestUScvtf32Helper(0x0000800002800000, 0x57000002, 0x57000002);
TestUScvtf32Helper(0x0000800002800001, 0x57000003, 0x57000003);
TestUScvtf32Helper(0x0000800003000000, 0x57000003, 0x57000003);
// Check rounding of negative int64_t values (and large uint64_t values).
TestUScvtf32Helper(0x8000000000000000, 0xdf000000, 0x5f000000);
TestUScvtf32Helper(0x8000000000000001, 0xdf000000, 0x5f000000);
TestUScvtf32Helper(0x8000004000000000, 0xdf000000, 0x5f000000);
TestUScvtf32Helper(0x8000004000000001, 0xdeffffff, 0x5f000000);
TestUScvtf32Helper(0x8000008000000000, 0xdeffffff, 0x5f000000);
TestUScvtf32Helper(0x8000008000000001, 0xdeffffff, 0x5f000001);
TestUScvtf32Helper(0x800000c000000000, 0xdefffffe, 0x5f000001);
TestUScvtf32Helper(0x800000c000000001, 0xdefffffe, 0x5f000001);
TestUScvtf32Helper(0x8000010000000000, 0xdefffffe, 0x5f000001);
TestUScvtf32Helper(0x8000010000000001, 0xdefffffe, 0x5f000001);
TestUScvtf32Helper(0x8000014000000000, 0xdefffffe, 0x5f000001);
TestUScvtf32Helper(0x8000014000000001, 0xdefffffd, 0x5f000001);
TestUScvtf32Helper(0x8000018000000000, 0xdefffffd, 0x5f000002);
// Round up to produce a result that's too big for the input to represent.
TestUScvtf32Helper(0x000000007fffffc0, 0x4f000000, 0x4f000000);
TestUScvtf32Helper(0x000000007fffffff, 0x4f000000, 0x4f000000);
TestUScvtf32Helper(0x00000000ffffff80, 0x4f800000, 0x4f800000);
TestUScvtf32Helper(0x00000000ffffffff, 0x4f800000, 0x4f800000);
TestUScvtf32Helper(0x7fffffc000000000, 0x5f000000, 0x5f000000);
TestUScvtf32Helper(0x7fffffffffffffff, 0x5f000000, 0x5f000000);
TestUScvtf32Helper(0xffffff8000000000, 0xd3000000, 0x5f800000);
TestUScvtf32Helper(0xffffffffffffffff, 0xbf800000, 0x5f800000);
}
TEST(system_mrs) {
INIT_V8();
SETUP();
START();
__ Mov(w0, 0);
__ Mov(w1, 1);
__ Mov(w2, 0x80000000);
// Set the Z and C flags.
__ Cmp(w0, w0);
__ Mrs(x3, NZCV);
// Set the N flag.
__ Cmp(w0, w1);
__ Mrs(x4, NZCV);
// Set the Z, C and V flags.
__ Adds(w0, w2, w2);
__ Mrs(x5, NZCV);
// Read the default FPCR.
__ Mrs(x6, FPCR);
END();
RUN();
// NZCV
ASSERT_EQUAL_32(ZCFlag, w3);
ASSERT_EQUAL_32(NFlag, w4);
ASSERT_EQUAL_32(ZCVFlag, w5);
// FPCR
// The default FPCR on Linux-based platforms is 0.
ASSERT_EQUAL_32(0, w6);
TEARDOWN();
}
TEST(system_msr) {
INIT_V8();
// All FPCR fields that must be implemented: AHP, DN, FZ, RMode
const uint64_t fpcr_core = 0x07c00000;
// All FPCR fields (including fields which may be read-as-zero):
// Stride, Len
// IDE, IXE, UFE, OFE, DZE, IOE
const uint64_t fpcr_all = fpcr_core | 0x00379f00;
SETUP();
START();
__ Mov(w0, 0);
__ Mov(w1, 0x7fffffff);
__ Mov(x7, 0);
__ Mov(x10, NVFlag);
__ Cmp(w0, w0); // Set Z and C.
__ Msr(NZCV, x10); // Set N and V.
// The Msr should have overwritten every flag set by the Cmp.
__ Cinc(x7, x7, mi); // N
__ Cinc(x7, x7, ne); // !Z
__ Cinc(x7, x7, lo); // !C
__ Cinc(x7, x7, vs); // V
__ Mov(x10, ZCFlag);
__ Cmn(w1, w1); // Set N and V.
__ Msr(NZCV, x10); // Set Z and C.
// The Msr should have overwritten every flag set by the Cmn.
__ Cinc(x7, x7, pl); // !N
__ Cinc(x7, x7, eq); // Z
__ Cinc(x7, x7, hs); // C
__ Cinc(x7, x7, vc); // !V
// All core FPCR fields must be writable.
__ Mov(x8, fpcr_core);
__ Msr(FPCR, x8);
__ Mrs(x8, FPCR);
// All FPCR fields, including optional ones. This part of the test doesn't
// achieve much other than ensuring that supported fields can be cleared by
// the next test.
__ Mov(x9, fpcr_all);
__ Msr(FPCR, x9);
__ Mrs(x9, FPCR);
__ And(x9, x9, fpcr_core);
// The undefined bits must ignore writes.
// It's conceivable that a future version of the architecture could use these
// fields (making this test fail), but in the meantime this is a useful test
// for the simulator.
__ Mov(x10, ~fpcr_all);
__ Msr(FPCR, x10);
__ Mrs(x10, FPCR);
END();
RUN();
// We should have incremented x7 (from 0) exactly 8 times.
ASSERT_EQUAL_64(8, x7);
ASSERT_EQUAL_64(fpcr_core, x8);
ASSERT_EQUAL_64(fpcr_core, x9);
ASSERT_EQUAL_64(0, x10);
TEARDOWN();
}
TEST(system_nop) {
INIT_V8();
SETUP();
RegisterDump before;
START();
before.Dump(&masm);
__ Nop();
END();
RUN();
ASSERT_EQUAL_REGISTERS(before);
ASSERT_EQUAL_NZCV(before.flags_nzcv());
TEARDOWN();
}
TEST(zero_dest) {
INIT_V8();
SETUP();
RegisterDump before;
START();
// Preserve the system stack pointer, in case we clobber it.
__ Mov(x30, csp);
// Initialize the other registers used in this test.
uint64_t literal_base = 0x0100001000100101UL;
__ Mov(x0, 0);
__ Mov(x1, literal_base);
for (unsigned i = 2; i < x30.code(); i++) {
__ Add(Register::XRegFromCode(i), Register::XRegFromCode(i-1), x1);
}
before.Dump(&masm);
// All of these instructions should be NOPs in these forms, but have
// alternate forms which can write into the stack pointer.
__ add(xzr, x0, x1);
__ add(xzr, x1, xzr);
__ add(xzr, xzr, x1);
__ and_(xzr, x0, x2);
__ and_(xzr, x2, xzr);
__ and_(xzr, xzr, x2);
__ bic(xzr, x0, x3);
__ bic(xzr, x3, xzr);
__ bic(xzr, xzr, x3);
__ eon(xzr, x0, x4);
__ eon(xzr, x4, xzr);
__ eon(xzr, xzr, x4);
__ eor(xzr, x0, x5);
__ eor(xzr, x5, xzr);
__ eor(xzr, xzr, x5);
__ orr(xzr, x0, x6);
__ orr(xzr, x6, xzr);
__ orr(xzr, xzr, x6);
__ sub(xzr, x0, x7);
__ sub(xzr, x7, xzr);
__ sub(xzr, xzr, x7);
// Swap the saved system stack pointer with the real one. If csp was written
// during the test, it will show up in x30. This is done because the test
// framework assumes that csp will be valid at the end of the test.
__ Mov(x29, x30);
__ Mov(x30, csp);
__ Mov(csp, x29);
// We used x29 as a scratch register, so reset it to make sure it doesn't
// trigger a test failure.
__ Add(x29, x28, x1);
END();
RUN();
ASSERT_EQUAL_REGISTERS(before);
ASSERT_EQUAL_NZCV(before.flags_nzcv());
TEARDOWN();
}
TEST(zero_dest_setflags) {
INIT_V8();
SETUP();
RegisterDump before;
START();
// Preserve the system stack pointer, in case we clobber it.
__ Mov(x30, csp);
// Initialize the other registers used in this test.
uint64_t literal_base = 0x0100001000100101UL;
__ Mov(x0, 0);
__ Mov(x1, literal_base);
for (int i = 2; i < 30; i++) {
__ Add(Register::XRegFromCode(i), Register::XRegFromCode(i-1), x1);
}
before.Dump(&masm);
// All of these instructions should only write to the flags in these forms,
// but have alternate forms which can write into the stack pointer.
__ adds(xzr, x0, Operand(x1, UXTX));
__ adds(xzr, x1, Operand(xzr, UXTX));
__ adds(xzr, x1, 1234);
__ adds(xzr, x0, x1);
__ adds(xzr, x1, xzr);
__ adds(xzr, xzr, x1);
__ ands(xzr, x2, ~0xf);
__ ands(xzr, xzr, ~0xf);
__ ands(xzr, x0, x2);
__ ands(xzr, x2, xzr);
__ ands(xzr, xzr, x2);
__ bics(xzr, x3, ~0xf);
__ bics(xzr, xzr, ~0xf);
__ bics(xzr, x0, x3);
__ bics(xzr, x3, xzr);
__ bics(xzr, xzr, x3);
__ subs(xzr, x0, Operand(x3, UXTX));
__ subs(xzr, x3, Operand(xzr, UXTX));
__ subs(xzr, x3, 1234);
__ subs(xzr, x0, x3);
__ subs(xzr, x3, xzr);
__ subs(xzr, xzr, x3);
// Swap the saved system stack pointer with the real one. If csp was written
// during the test, it will show up in x30. This is done because the test
// framework assumes that csp will be valid at the end of the test.
__ Mov(x29, x30);
__ Mov(x30, csp);
__ Mov(csp, x29);
// We used x29 as a scratch register, so reset it to make sure it doesn't
// trigger a test failure.
__ Add(x29, x28, x1);
END();
RUN();
ASSERT_EQUAL_REGISTERS(before);
TEARDOWN();
}
TEST(register_bit) {
// No code generation takes place in this test, so no need to setup and
// teardown.
// Simple tests.
CHECK(x0.Bit() == (1UL << 0));
CHECK(x1.Bit() == (1UL << 1));
CHECK(x10.Bit() == (1UL << 10));
// AAPCS64 definitions.
CHECK(fp.Bit() == (1UL << kFramePointerRegCode));
CHECK(lr.Bit() == (1UL << kLinkRegCode));
// Fixed (hardware) definitions.
CHECK(xzr.Bit() == (1UL << kZeroRegCode));
// Internal ABI definitions.
CHECK(jssp.Bit() == (1UL << kJSSPCode));
CHECK(csp.Bit() == (1UL << kSPRegInternalCode));
CHECK(csp.Bit() != xzr.Bit());
// xn.Bit() == wn.Bit() at all times, for the same n.
CHECK(x0.Bit() == w0.Bit());
CHECK(x1.Bit() == w1.Bit());
CHECK(x10.Bit() == w10.Bit());
CHECK(jssp.Bit() == wjssp.Bit());
CHECK(xzr.Bit() == wzr.Bit());
CHECK(csp.Bit() == wcsp.Bit());
}
TEST(stack_pointer_override) {
// This test generates some stack maintenance code, but the test only checks
// the reported state.
INIT_V8();
SETUP();
START();
// The default stack pointer in V8 is jssp, but for compatibility with W16,
// the test framework sets it to csp before calling the test.
CHECK(csp.Is(__ StackPointer()));
__ SetStackPointer(x0);
CHECK(x0.Is(__ StackPointer()));
__ SetStackPointer(jssp);
CHECK(jssp.Is(__ StackPointer()));
__ SetStackPointer(csp);
CHECK(csp.Is(__ StackPointer()));
END();
RUN();
TEARDOWN();
}
TEST(peek_poke_simple) {
INIT_V8();
SETUP();
START();
static const RegList x0_to_x3 = x0.Bit() | x1.Bit() | x2.Bit() | x3.Bit();
static const RegList x10_to_x13 = x10.Bit() | x11.Bit() |
x12.Bit() | x13.Bit();
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t literal_base = 0x0100001000100101UL;
// Initialize the registers.
__ Mov(x0, literal_base);
__ Add(x1, x0, x0);
__ Add(x2, x1, x0);
__ Add(x3, x2, x0);
__ Claim(4);
// Simple exchange.
// After this test:
// x0-x3 should be unchanged.
// w10-w13 should contain the lower words of x0-x3.
__ Poke(x0, 0);
__ Poke(x1, 8);
__ Poke(x2, 16);
__ Poke(x3, 24);
Clobber(&masm, x0_to_x3);
__ Peek(x0, 0);
__ Peek(x1, 8);
__ Peek(x2, 16);
__ Peek(x3, 24);
__ Poke(w0, 0);
__ Poke(w1, 4);
__ Poke(w2, 8);
__ Poke(w3, 12);
Clobber(&masm, x10_to_x13);
__ Peek(w10, 0);
__ Peek(w11, 4);
__ Peek(w12, 8);
__ Peek(w13, 12);
__ Drop(4);
END();
RUN();
ASSERT_EQUAL_64(literal_base * 1, x0);
ASSERT_EQUAL_64(literal_base * 2, x1);
ASSERT_EQUAL_64(literal_base * 3, x2);
ASSERT_EQUAL_64(literal_base * 4, x3);
ASSERT_EQUAL_64((literal_base * 1) & 0xffffffff, x10);
ASSERT_EQUAL_64((literal_base * 2) & 0xffffffff, x11);
ASSERT_EQUAL_64((literal_base * 3) & 0xffffffff, x12);
ASSERT_EQUAL_64((literal_base * 4) & 0xffffffff, x13);
TEARDOWN();
}
TEST(peek_poke_unaligned) {
INIT_V8();
SETUP();
START();
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t literal_base = 0x0100001000100101UL;
// Initialize the registers.
__ Mov(x0, literal_base);
__ Add(x1, x0, x0);
__ Add(x2, x1, x0);
__ Add(x3, x2, x0);
__ Add(x4, x3, x0);
__ Add(x5, x4, x0);
__ Add(x6, x5, x0);
__ Claim(4);
// Unaligned exchanges.
// After this test:
// x0-x6 should be unchanged.
// w10-w12 should contain the lower words of x0-x2.
__ Poke(x0, 1);
Clobber(&masm, x0.Bit());
__ Peek(x0, 1);
__ Poke(x1, 2);
Clobber(&masm, x1.Bit());
__ Peek(x1, 2);
__ Poke(x2, 3);
Clobber(&masm, x2.Bit());
__ Peek(x2, 3);
__ Poke(x3, 4);
Clobber(&masm, x3.Bit());
__ Peek(x3, 4);
__ Poke(x4, 5);
Clobber(&masm, x4.Bit());
__ Peek(x4, 5);
__ Poke(x5, 6);
Clobber(&masm, x5.Bit());
__ Peek(x5, 6);
__ Poke(x6, 7);
Clobber(&masm, x6.Bit());
__ Peek(x6, 7);
__ Poke(w0, 1);
Clobber(&masm, w10.Bit());
__ Peek(w10, 1);
__ Poke(w1, 2);
Clobber(&masm, w11.Bit());
__ Peek(w11, 2);
__ Poke(w2, 3);
Clobber(&masm, w12.Bit());
__ Peek(w12, 3);
__ Drop(4);
END();
RUN();
ASSERT_EQUAL_64(literal_base * 1, x0);
ASSERT_EQUAL_64(literal_base * 2, x1);
ASSERT_EQUAL_64(literal_base * 3, x2);
ASSERT_EQUAL_64(literal_base * 4, x3);
ASSERT_EQUAL_64(literal_base * 5, x4);
ASSERT_EQUAL_64(literal_base * 6, x5);
ASSERT_EQUAL_64(literal_base * 7, x6);
ASSERT_EQUAL_64((literal_base * 1) & 0xffffffff, x10);
ASSERT_EQUAL_64((literal_base * 2) & 0xffffffff, x11);
ASSERT_EQUAL_64((literal_base * 3) & 0xffffffff, x12);
TEARDOWN();
}
TEST(peek_poke_endianness) {
INIT_V8();
SETUP();
START();
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t literal_base = 0x0100001000100101UL;
// Initialize the registers.
__ Mov(x0, literal_base);
__ Add(x1, x0, x0);
__ Claim(4);
// Endianness tests.
// After this section:
// x4 should match x0[31:0]:x0[63:32]
// w5 should match w1[15:0]:w1[31:16]
__ Poke(x0, 0);
__ Poke(x0, 8);
__ Peek(x4, 4);
__ Poke(w1, 0);
__ Poke(w1, 4);
__ Peek(w5, 2);
__ Drop(4);
END();
RUN();
uint64_t x0_expected = literal_base * 1;
uint64_t x1_expected = literal_base * 2;
uint64_t x4_expected = (x0_expected << 32) | (x0_expected >> 32);
uint64_t x5_expected = ((x1_expected << 16) & 0xffff0000) |
((x1_expected >> 16) & 0x0000ffff);
ASSERT_EQUAL_64(x0_expected, x0);
ASSERT_EQUAL_64(x1_expected, x1);
ASSERT_EQUAL_64(x4_expected, x4);
ASSERT_EQUAL_64(x5_expected, x5);
TEARDOWN();
}
TEST(peek_poke_mixed) {
INIT_V8();
SETUP();
START();
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t literal_base = 0x0100001000100101UL;
// Initialize the registers.
__ Mov(x0, literal_base);
__ Add(x1, x0, x0);
__ Add(x2, x1, x0);
__ Add(x3, x2, x0);
__ Claim(4);
// Mix with other stack operations.
// After this section:
// x0-x3 should be unchanged.
// x6 should match x1[31:0]:x0[63:32]
// w7 should match x1[15:0]:x0[63:48]
__ Poke(x1, 8);
__ Poke(x0, 0);
{
ASSERT(__ StackPointer().Is(csp));
__ Mov(x4, __ StackPointer());
__ SetStackPointer(x4);
__ Poke(wzr, 0); // Clobber the space we're about to drop.
__ Drop(1, kWRegSize);
__ Peek(x6, 0);
__ Claim(1);
__ Peek(w7, 10);
__ Poke(x3, 28);
__ Poke(xzr, 0); // Clobber the space we're about to drop.
__ Drop(1);
__ Poke(x2, 12);
__ Push(w0);
__ Mov(csp, __ StackPointer());
__ SetStackPointer(csp);
}
__ Pop(x0, x1, x2, x3);
END();
RUN();
uint64_t x0_expected = literal_base * 1;
uint64_t x1_expected = literal_base * 2;
uint64_t x2_expected = literal_base * 3;
uint64_t x3_expected = literal_base * 4;
uint64_t x6_expected = (x1_expected << 32) | (x0_expected >> 32);
uint64_t x7_expected = ((x1_expected << 16) & 0xffff0000) |
((x0_expected >> 48) & 0x0000ffff);
ASSERT_EQUAL_64(x0_expected, x0);
ASSERT_EQUAL_64(x1_expected, x1);
ASSERT_EQUAL_64(x2_expected, x2);
ASSERT_EQUAL_64(x3_expected, x3);
ASSERT_EQUAL_64(x6_expected, x6);
ASSERT_EQUAL_64(x7_expected, x7);
TEARDOWN();
}
// This enum is used only as an argument to the push-pop test helpers.
enum PushPopMethod {
// Push or Pop using the Push and Pop methods, with blocks of up to four
// registers. (Smaller blocks will be used if necessary.)
PushPopByFour,
// Use Push<Size>RegList and Pop<Size>RegList to transfer the registers.
PushPopRegList
};
// The maximum number of registers that can be used by the PushPopJssp* tests,
// where a reg_count field is provided.
static int const kPushPopJsspMaxRegCount = -1;
// Test a simple push-pop pattern:
// * Claim <claim> bytes to set the stack alignment.
// * Push <reg_count> registers with size <reg_size>.
// * Clobber the register contents.
// * Pop <reg_count> registers to restore the original contents.
// * Drop <claim> bytes to restore the original stack pointer.
//
// Different push and pop methods can be specified independently to test for
// proper word-endian behaviour.
static void PushPopJsspSimpleHelper(int reg_count,
int claim,
int reg_size,
PushPopMethod push_method,
PushPopMethod pop_method) {
SETUP();
START();
// Registers x8 and x9 are used by the macro assembler for debug code (for
// example in 'Pop'), so we can't use them here. We can't use jssp because it
// will be the stack pointer for this test.
static RegList const allowed = ~(x8.Bit() | x9.Bit() | jssp.Bit());
if (reg_count == kPushPopJsspMaxRegCount) {
reg_count = CountSetBits(allowed, kNumberOfRegisters);
}
// Work out which registers to use, based on reg_size.
Register r[kNumberOfRegisters];
Register x[kNumberOfRegisters];
RegList list = PopulateRegisterArray(NULL, x, r, reg_size, reg_count,
allowed);
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t literal_base = 0x0100001000100101UL;
{
ASSERT(__ StackPointer().Is(csp));
__ Mov(jssp, __ StackPointer());
__ SetStackPointer(jssp);
int i;
// Initialize the registers.
for (i = 0; i < reg_count; i++) {
// Always write into the X register, to ensure that the upper word is
// properly ignored by Push when testing W registers.
if (!x[i].IsZero()) {
__ Mov(x[i], literal_base * i);
}
}
// Claim memory first, as requested.
__ Claim(claim, kByteSizeInBytes);
switch (push_method) {
case PushPopByFour:
// Push high-numbered registers first (to the highest addresses).
for (i = reg_count; i >= 4; i -= 4) {
__ Push(r[i-1], r[i-2], r[i-3], r[i-4]);
}
// Finish off the leftovers.
switch (i) {
case 3: __ Push(r[2], r[1], r[0]); break;
case 2: __ Push(r[1], r[0]); break;
case 1: __ Push(r[0]); break;
default: ASSERT(i == 0); break;
}
break;
case PushPopRegList:
__ PushSizeRegList(list, reg_size);
break;
}
// Clobber all the registers, to ensure that they get repopulated by Pop.
Clobber(&masm, list);
switch (pop_method) {
case PushPopByFour:
// Pop low-numbered registers first (from the lowest addresses).
for (i = 0; i <= (reg_count-4); i += 4) {
__ Pop(r[i], r[i+1], r[i+2], r[i+3]);
}
// Finish off the leftovers.
switch (reg_count - i) {
case 3: __ Pop(r[i], r[i+1], r[i+2]); break;
case 2: __ Pop(r[i], r[i+1]); break;
case 1: __ Pop(r[i]); break;
default: ASSERT(i == reg_count); break;
}
break;
case PushPopRegList:
__ PopSizeRegList(list, reg_size);
break;
}
// Drop memory to restore jssp.
__ Drop(claim, kByteSizeInBytes);
__ Mov(csp, __ StackPointer());
__ SetStackPointer(csp);
}
END();
RUN();
// Check that the register contents were preserved.
// Always use ASSERT_EQUAL_64, even when testing W registers, so we can test
// that the upper word was properly cleared by Pop.
literal_base &= (0xffffffffffffffffUL >> (64-reg_size));
for (int i = 0; i < reg_count; i++) {
if (x[i].IsZero()) {
ASSERT_EQUAL_64(0, x[i]);
} else {
ASSERT_EQUAL_64(literal_base * i, x[i]);
}
}
TEARDOWN();
}
TEST(push_pop_jssp_simple_32) {
INIT_V8();
for (int claim = 0; claim <= 8; claim++) {
for (int count = 0; count <= 8; count++) {
PushPopJsspSimpleHelper(count, claim, kWRegSizeInBits,
PushPopByFour, PushPopByFour);
PushPopJsspSimpleHelper(count, claim, kWRegSizeInBits,
PushPopByFour, PushPopRegList);
PushPopJsspSimpleHelper(count, claim, kWRegSizeInBits,
PushPopRegList, PushPopByFour);
PushPopJsspSimpleHelper(count, claim, kWRegSizeInBits,
PushPopRegList, PushPopRegList);
}
// Test with the maximum number of registers.
PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kWRegSizeInBits,
PushPopByFour, PushPopByFour);
PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kWRegSizeInBits,
PushPopByFour, PushPopRegList);
PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kWRegSizeInBits,
PushPopRegList, PushPopByFour);
PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kWRegSizeInBits,
PushPopRegList, PushPopRegList);
}
}
TEST(push_pop_jssp_simple_64) {
INIT_V8();
for (int claim = 0; claim <= 8; claim++) {
for (int count = 0; count <= 8; count++) {
PushPopJsspSimpleHelper(count, claim, kXRegSizeInBits,
PushPopByFour, PushPopByFour);
PushPopJsspSimpleHelper(count, claim, kXRegSizeInBits,
PushPopByFour, PushPopRegList);
PushPopJsspSimpleHelper(count, claim, kXRegSizeInBits,
PushPopRegList, PushPopByFour);
PushPopJsspSimpleHelper(count, claim, kXRegSizeInBits,
PushPopRegList, PushPopRegList);
}
// Test with the maximum number of registers.
PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kXRegSizeInBits,
PushPopByFour, PushPopByFour);
PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kXRegSizeInBits,
PushPopByFour, PushPopRegList);
PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kXRegSizeInBits,
PushPopRegList, PushPopByFour);
PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kXRegSizeInBits,
PushPopRegList, PushPopRegList);
}
}
// The maximum number of registers that can be used by the PushPopFPJssp* tests,
// where a reg_count field is provided.
static int const kPushPopFPJsspMaxRegCount = -1;
// Test a simple push-pop pattern:
// * Claim <claim> bytes to set the stack alignment.
// * Push <reg_count> FP registers with size <reg_size>.
// * Clobber the register contents.
// * Pop <reg_count> FP registers to restore the original contents.
// * Drop <claim> bytes to restore the original stack pointer.
//
// Different push and pop methods can be specified independently to test for
// proper word-endian behaviour.
static void PushPopFPJsspSimpleHelper(int reg_count,
int claim,
int reg_size,
PushPopMethod push_method,
PushPopMethod pop_method) {
SETUP();
START();
// We can use any floating-point register. None of them are reserved for
// debug code, for example.
static RegList const allowed = ~0;
if (reg_count == kPushPopFPJsspMaxRegCount) {
reg_count = CountSetBits(allowed, kNumberOfFPRegisters);
}
// Work out which registers to use, based on reg_size.
FPRegister v[kNumberOfRegisters];
FPRegister d[kNumberOfRegisters];
RegList list = PopulateFPRegisterArray(NULL, d, v, reg_size, reg_count,
allowed);
// The literal base is chosen to have two useful properties:
// * When multiplied (using an integer) by small values (such as a register
// index), this value is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
// * It is never a floating-point NaN, and will therefore always compare
// equal to itself.
uint64_t literal_base = 0x0100001000100101UL;
{
ASSERT(__ StackPointer().Is(csp));
__ Mov(jssp, __ StackPointer());
__ SetStackPointer(jssp);
int i;
// Initialize the registers, using X registers to load the literal.
__ Mov(x0, 0);
__ Mov(x1, literal_base);
for (i = 0; i < reg_count; i++) {
// Always write into the D register, to ensure that the upper word is
// properly ignored by Push when testing S registers.
__ Fmov(d[i], x0);
// Calculate the next literal.
__ Add(x0, x0, x1);
}
// Claim memory first, as requested.
__ Claim(claim, kByteSizeInBytes);
switch (push_method) {
case PushPopByFour:
// Push high-numbered registers first (to the highest addresses).
for (i = reg_count; i >= 4; i -= 4) {
__ Push(v[i-1], v[i-2], v[i-3], v[i-4]);
}
// Finish off the leftovers.
switch (i) {
case 3: __ Push(v[2], v[1], v[0]); break;
case 2: __ Push(v[1], v[0]); break;
case 1: __ Push(v[0]); break;
default: ASSERT(i == 0); break;
}
break;
case PushPopRegList:
__ PushSizeRegList(list, reg_size, CPURegister::kFPRegister);
break;
}
// Clobber all the registers, to ensure that they get repopulated by Pop.
ClobberFP(&masm, list);
switch (pop_method) {
case PushPopByFour:
// Pop low-numbered registers first (from the lowest addresses).
for (i = 0; i <= (reg_count-4); i += 4) {
__ Pop(v[i], v[i+1], v[i+2], v[i+3]);
}
// Finish off the leftovers.
switch (reg_count - i) {
case 3: __ Pop(v[i], v[i+1], v[i+2]); break;
case 2: __ Pop(v[i], v[i+1]); break;
case 1: __ Pop(v[i]); break;
default: ASSERT(i == reg_count); break;
}
break;
case PushPopRegList:
__ PopSizeRegList(list, reg_size, CPURegister::kFPRegister);
break;
}
// Drop memory to restore jssp.
__ Drop(claim, kByteSizeInBytes);
__ Mov(csp, __ StackPointer());
__ SetStackPointer(csp);
}
END();
RUN();
// Check that the register contents were preserved.
// Always use ASSERT_EQUAL_FP64, even when testing S registers, so we can
// test that the upper word was properly cleared by Pop.
literal_base &= (0xffffffffffffffffUL >> (64-reg_size));
for (int i = 0; i < reg_count; i++) {
uint64_t literal = literal_base * i;
double expected;
memcpy(&expected, &literal, sizeof(expected));
ASSERT_EQUAL_FP64(expected, d[i]);
}
TEARDOWN();
}
TEST(push_pop_fp_jssp_simple_32) {
INIT_V8();
for (int claim = 0; claim <= 8; claim++) {
for (int count = 0; count <= 8; count++) {
PushPopFPJsspSimpleHelper(count, claim, kSRegSizeInBits,
PushPopByFour, PushPopByFour);
PushPopFPJsspSimpleHelper(count, claim, kSRegSizeInBits,
PushPopByFour, PushPopRegList);
PushPopFPJsspSimpleHelper(count, claim, kSRegSizeInBits,
PushPopRegList, PushPopByFour);
PushPopFPJsspSimpleHelper(count, claim, kSRegSizeInBits,
PushPopRegList, PushPopRegList);
}
// Test with the maximum number of registers.
PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kSRegSizeInBits,
PushPopByFour, PushPopByFour);
PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kSRegSizeInBits,
PushPopByFour, PushPopRegList);
PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kSRegSizeInBits,
PushPopRegList, PushPopByFour);
PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kSRegSizeInBits,
PushPopRegList, PushPopRegList);
}
}
TEST(push_pop_fp_jssp_simple_64) {
INIT_V8();
for (int claim = 0; claim <= 8; claim++) {
for (int count = 0; count <= 8; count++) {
PushPopFPJsspSimpleHelper(count, claim, kDRegSizeInBits,
PushPopByFour, PushPopByFour);
PushPopFPJsspSimpleHelper(count, claim, kDRegSizeInBits,
PushPopByFour, PushPopRegList);
PushPopFPJsspSimpleHelper(count, claim, kDRegSizeInBits,
PushPopRegList, PushPopByFour);
PushPopFPJsspSimpleHelper(count, claim, kDRegSizeInBits,
PushPopRegList, PushPopRegList);
}
// Test with the maximum number of registers.
PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kDRegSizeInBits,
PushPopByFour, PushPopByFour);
PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kDRegSizeInBits,
PushPopByFour, PushPopRegList);
PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kDRegSizeInBits,
PushPopRegList, PushPopByFour);
PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kDRegSizeInBits,
PushPopRegList, PushPopRegList);
}
}
// Push and pop data using an overlapping combination of Push/Pop and
// RegList-based methods.
static void PushPopJsspMixedMethodsHelper(int claim, int reg_size) {
SETUP();
// Registers x8 and x9 are used by the macro assembler for debug code (for
// example in 'Pop'), so we can't use them here. We can't use jssp because it
// will be the stack pointer for this test.
static RegList const allowed =
~(x8.Bit() | x9.Bit() | jssp.Bit() | xzr.Bit());
// Work out which registers to use, based on reg_size.
Register r[10];
Register x[10];
PopulateRegisterArray(NULL, x, r, reg_size, 10, allowed);
// Calculate some handy register lists.
RegList r0_to_r3 = 0;
for (int i = 0; i <= 3; i++) {
r0_to_r3 |= x[i].Bit();
}
RegList r4_to_r5 = 0;
for (int i = 4; i <= 5; i++) {
r4_to_r5 |= x[i].Bit();
}
RegList r6_to_r9 = 0;
for (int i = 6; i <= 9; i++) {
r6_to_r9 |= x[i].Bit();
}
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t literal_base = 0x0100001000100101UL;
START();
{
ASSERT(__ StackPointer().Is(csp));
__ Mov(jssp, __ StackPointer());
__ SetStackPointer(jssp);
// Claim memory first, as requested.
__ Claim(claim, kByteSizeInBytes);
__ Mov(x[3], literal_base * 3);
__ Mov(x[2], literal_base * 2);
__ Mov(x[1], literal_base * 1);
__ Mov(x[0], literal_base * 0);
__ PushSizeRegList(r0_to_r3, reg_size);
__ Push(r[3], r[2]);
Clobber(&masm, r0_to_r3);
__ PopSizeRegList(r0_to_r3, reg_size);
__ Push(r[2], r[1], r[3], r[0]);
Clobber(&masm, r4_to_r5);
__ Pop(r[4], r[5]);
Clobber(&masm, r6_to_r9);
__ Pop(r[6], r[7], r[8], r[9]);
// Drop memory to restore jssp.
__ Drop(claim, kByteSizeInBytes);
__ Mov(csp, __ StackPointer());
__ SetStackPointer(csp);
}
END();
RUN();
// Always use ASSERT_EQUAL_64, even when testing W registers, so we can test
// that the upper word was properly cleared by Pop.
literal_base &= (0xffffffffffffffffUL >> (64-reg_size));
ASSERT_EQUAL_64(literal_base * 3, x[9]);
ASSERT_EQUAL_64(literal_base * 2, x[8]);
ASSERT_EQUAL_64(literal_base * 0, x[7]);
ASSERT_EQUAL_64(literal_base * 3, x[6]);
ASSERT_EQUAL_64(literal_base * 1, x[5]);
ASSERT_EQUAL_64(literal_base * 2, x[4]);
TEARDOWN();
}
TEST(push_pop_jssp_mixed_methods_64) {
INIT_V8();
for (int claim = 0; claim <= 8; claim++) {
PushPopJsspMixedMethodsHelper(claim, kXRegSizeInBits);
}
}
TEST(push_pop_jssp_mixed_methods_32) {
INIT_V8();
for (int claim = 0; claim <= 8; claim++) {
PushPopJsspMixedMethodsHelper(claim, kWRegSizeInBits);
}
}
// Push and pop data using overlapping X- and W-sized quantities.
static void PushPopJsspWXOverlapHelper(int reg_count, int claim) {
// This test emits rather a lot of code.
SETUP_SIZE(BUF_SIZE * 2);
// Work out which registers to use, based on reg_size.
Register tmp = x8;
static RegList const allowed = ~(tmp.Bit() | jssp.Bit());
if (reg_count == kPushPopJsspMaxRegCount) {
reg_count = CountSetBits(allowed, kNumberOfRegisters);
}
Register w[kNumberOfRegisters];
Register x[kNumberOfRegisters];
RegList list = PopulateRegisterArray(w, x, NULL, 0, reg_count, allowed);
// The number of W-sized slots we expect to pop. When we pop, we alternate
// between W and X registers, so we need reg_count*1.5 W-sized slots.
int const requested_w_slots = reg_count + reg_count / 2;
// Track what _should_ be on the stack, using W-sized slots.
static int const kMaxWSlots = kNumberOfRegisters + kNumberOfRegisters / 2;
uint32_t stack[kMaxWSlots];
for (int i = 0; i < kMaxWSlots; i++) {
stack[i] = 0xdeadbeef;
}
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
static uint64_t const literal_base = 0x0100001000100101UL;
static uint64_t const literal_base_hi = literal_base >> 32;
static uint64_t const literal_base_lo = literal_base & 0xffffffff;
static uint64_t const literal_base_w = literal_base & 0xffffffff;
START();
{
ASSERT(__ StackPointer().Is(csp));
__ Mov(jssp, __ StackPointer());
__ SetStackPointer(jssp);
// Initialize the registers.
for (int i = 0; i < reg_count; i++) {
// Always write into the X register, to ensure that the upper word is
// properly ignored by Push when testing W registers.
if (!x[i].IsZero()) {
__ Mov(x[i], literal_base * i);
}
}
// Claim memory first, as requested.
__ Claim(claim, kByteSizeInBytes);
// The push-pop pattern is as follows:
// Push: Pop:
// x[0](hi) -> w[0]
// x[0](lo) -> x[1](hi)
// w[1] -> x[1](lo)
// w[1] -> w[2]
// x[2](hi) -> x[2](hi)
// x[2](lo) -> x[2](lo)
// x[2](hi) -> w[3]
// x[2](lo) -> x[4](hi)
// x[2](hi) -> x[4](lo)
// x[2](lo) -> w[5]
// w[3] -> x[5](hi)
// w[3] -> x[6](lo)
// w[3] -> w[7]
// w[3] -> x[8](hi)
// x[4](hi) -> x[8](lo)
// x[4](lo) -> w[9]
// ... pattern continues ...
//
// That is, registers are pushed starting with the lower numbers,
// alternating between x and w registers, and pushing i%4+1 copies of each,
// where i is the register number.
// Registers are popped starting with the higher numbers one-by-one,
// alternating between x and w registers, but only popping one at a time.
//
// This pattern provides a wide variety of alignment effects and overlaps.
// ---- Push ----
int active_w_slots = 0;
for (int i = 0; active_w_slots < requested_w_slots; i++) {
ASSERT(i < reg_count);
// In order to test various arguments to PushMultipleTimes, and to try to
// exercise different alignment and overlap effects, we push each
// register a different number of times.
int times = i % 4 + 1;
if (i & 1) {
// Push odd-numbered registers as W registers.
if (i & 2) {
__ PushMultipleTimes(w[i], times);
} else {
// Use a register to specify the count.
__ Mov(tmp.W(), times);
__ PushMultipleTimes(w[i], tmp.W());
}
// Fill in the expected stack slots.
for (int j = 0; j < times; j++) {
if (w[i].Is(wzr)) {
// The zero register always writes zeroes.
stack[active_w_slots++] = 0;
} else {
stack[active_w_slots++] = literal_base_w * i;
}
}
} else {
// Push even-numbered registers as X registers.
if (i & 2) {
__ PushMultipleTimes(x[i], times);
} else {
// Use a register to specify the count.
__ Mov(tmp, times);
__ PushMultipleTimes(x[i], tmp);
}
// Fill in the expected stack slots.
for (int j = 0; j < times; j++) {
if (x[i].IsZero()) {
// The zero register always writes zeroes.
stack[active_w_slots++] = 0;
stack[active_w_slots++] = 0;
} else {
stack[active_w_slots++] = literal_base_hi * i;
stack[active_w_slots++] = literal_base_lo * i;
}
}
}
}
// Because we were pushing several registers at a time, we probably pushed
// more than we needed to.
if (active_w_slots > requested_w_slots) {
__ Drop(active_w_slots - requested_w_slots, kWRegSize);
// Bump the number of active W-sized slots back to where it should be,
// and fill the empty space with a dummy value.
do {
stack[active_w_slots--] = 0xdeadbeef;
} while (active_w_slots > requested_w_slots);
}
// ---- Pop ----
Clobber(&masm, list);
// If popping an even number of registers, the first one will be X-sized.
// Otherwise, the first one will be W-sized.
bool next_is_64 = !(reg_count & 1);
for (int i = reg_count-1; i >= 0; i--) {
if (next_is_64) {
__ Pop(x[i]);
active_w_slots -= 2;
} else {
__ Pop(w[i]);
active_w_slots -= 1;
}
next_is_64 = !next_is_64;
}
ASSERT(active_w_slots == 0);
// Drop memory to restore jssp.
__ Drop(claim, kByteSizeInBytes);
__ Mov(csp, __ StackPointer());
__ SetStackPointer(csp);
}
END();
RUN();
int slot = 0;
for (int i = 0; i < reg_count; i++) {
// Even-numbered registers were written as W registers.
// Odd-numbered registers were written as X registers.
bool expect_64 = (i & 1);
uint64_t expected;
if (expect_64) {
uint64_t hi = stack[slot++];
uint64_t lo = stack[slot++];
expected = (hi << 32) | lo;
} else {
expected = stack[slot++];
}
// Always use ASSERT_EQUAL_64, even when testing W registers, so we can
// test that the upper word was properly cleared by Pop.
if (x[i].IsZero()) {
ASSERT_EQUAL_64(0, x[i]);
} else {
ASSERT_EQUAL_64(expected, x[i]);
}
}
ASSERT(slot == requested_w_slots);
TEARDOWN();
}
TEST(push_pop_jssp_wx_overlap) {
INIT_V8();
for (int claim = 0; claim <= 8; claim++) {
for (int count = 1; count <= 8; count++) {
PushPopJsspWXOverlapHelper(count, claim);
PushPopJsspWXOverlapHelper(count, claim);
PushPopJsspWXOverlapHelper(count, claim);
PushPopJsspWXOverlapHelper(count, claim);
}
// Test with the maximum number of registers.
PushPopJsspWXOverlapHelper(kPushPopJsspMaxRegCount, claim);
PushPopJsspWXOverlapHelper(kPushPopJsspMaxRegCount, claim);
PushPopJsspWXOverlapHelper(kPushPopJsspMaxRegCount, claim);
PushPopJsspWXOverlapHelper(kPushPopJsspMaxRegCount, claim);
}
}
TEST(push_pop_csp) {
INIT_V8();
SETUP();
START();
ASSERT(csp.Is(__ StackPointer()));
__ Mov(x3, 0x3333333333333333UL);
__ Mov(x2, 0x2222222222222222UL);
__ Mov(x1, 0x1111111111111111UL);
__ Mov(x0, 0x0000000000000000UL);
__ Claim(2);
__ PushXRegList(x0.Bit() | x1.Bit() | x2.Bit() | x3.Bit());
__ Push(x3, x2);
__ PopXRegList(x0.Bit() | x1.Bit() | x2.Bit() | x3.Bit());
__ Push(x2, x1, x3, x0);
__ Pop(x4, x5);
__ Pop(x6, x7, x8, x9);
__ Claim(2);
__ PushWRegList(w0.Bit() | w1.Bit() | w2.Bit() | w3.Bit());
__ Push(w3, w1, w2, w0);
__ PopWRegList(w10.Bit() | w11.Bit() | w12.Bit() | w13.Bit());
__ Pop(w14, w15, w16, w17);
__ Claim(2);
__ Push(w2, w2, w1, w1);
__ Push(x3, x3);
__ Pop(w18, w19, w20, w21);
__ Pop(x22, x23);
__ Claim(2);
__ PushXRegList(x1.Bit() | x22.Bit());
__ PopXRegList(x24.Bit() | x26.Bit());
__ Claim(2);
__ PushWRegList(w1.Bit() | w2.Bit() | w4.Bit() | w22.Bit());
__ PopWRegList(w25.Bit() | w27.Bit() | w28.Bit() | w29.Bit());
__ Claim(2);
__ PushXRegList(0);
__ PopXRegList(0);
__ PushXRegList(0xffffffff);
__ PopXRegList(0xffffffff);
__ Drop(12);
END();
RUN();
ASSERT_EQUAL_64(0x1111111111111111UL, x3);
ASSERT_EQUAL_64(0x0000000000000000UL, x2);
ASSERT_EQUAL_64(0x3333333333333333UL, x1);
ASSERT_EQUAL_64(0x2222222222222222UL, x0);
ASSERT_EQUAL_64(0x3333333333333333UL, x9);
ASSERT_EQUAL_64(0x2222222222222222UL, x8);
ASSERT_EQUAL_64(0x0000000000000000UL, x7);
ASSERT_EQUAL_64(0x3333333333333333UL, x6);
ASSERT_EQUAL_64(0x1111111111111111UL, x5);
ASSERT_EQUAL_64(0x2222222222222222UL, x4);
ASSERT_EQUAL_32(0x11111111U, w13);
ASSERT_EQUAL_32(0x33333333U, w12);
ASSERT_EQUAL_32(0x00000000U, w11);
ASSERT_EQUAL_32(0x22222222U, w10);
ASSERT_EQUAL_32(0x11111111U, w17);
ASSERT_EQUAL_32(0x00000000U, w16);
ASSERT_EQUAL_32(0x33333333U, w15);
ASSERT_EQUAL_32(0x22222222U, w14);
ASSERT_EQUAL_32(0x11111111U, w18);
ASSERT_EQUAL_32(0x11111111U, w19);
ASSERT_EQUAL_32(0x11111111U, w20);
ASSERT_EQUAL_32(0x11111111U, w21);
ASSERT_EQUAL_64(0x3333333333333333UL, x22);
ASSERT_EQUAL_64(0x0000000000000000UL, x23);
ASSERT_EQUAL_64(0x3333333333333333UL, x24);
ASSERT_EQUAL_64(0x3333333333333333UL, x26);
ASSERT_EQUAL_32(0x33333333U, w25);
ASSERT_EQUAL_32(0x00000000U, w27);
ASSERT_EQUAL_32(0x22222222U, w28);
ASSERT_EQUAL_32(0x33333333U, w29);
TEARDOWN();
}
TEST(push_queued) {
INIT_V8();
SETUP();
START();
ASSERT(__ StackPointer().Is(csp));
__ Mov(jssp, __ StackPointer());
__ SetStackPointer(jssp);
MacroAssembler::PushPopQueue queue(&masm);
// Queue up registers.
queue.Queue(x0);
queue.Queue(x1);
queue.Queue(x2);
queue.Queue(x3);
queue.Queue(w4);
queue.Queue(w5);
queue.Queue(w6);
queue.Queue(d0);
queue.Queue(d1);
queue.Queue(s2);
__ Mov(x0, 0x1234000000000000);
__ Mov(x1, 0x1234000100010001);
__ Mov(x2, 0x1234000200020002);
__ Mov(x3, 0x1234000300030003);
__ Mov(w4, 0x12340004);
__ Mov(w5, 0x12340005);
__ Mov(w6, 0x12340006);
__ Fmov(d0, 123400.0);
__ Fmov(d1, 123401.0);
__ Fmov(s2, 123402.0);
// Actually push them.
queue.PushQueued();
Clobber(&masm, CPURegList(CPURegister::kRegister, kXRegSizeInBits, 0, 6));
Clobber(&masm, CPURegList(CPURegister::kFPRegister, kDRegSizeInBits, 0, 2));
// Pop them conventionally.
__ Pop(s2);
__ Pop(d1, d0);
__ Pop(w6, w5, w4);
__ Pop(x3, x2, x1, x0);
__ Mov(csp, __ StackPointer());
__ SetStackPointer(csp);
END();
RUN();
ASSERT_EQUAL_64(0x1234000000000000, x0);
ASSERT_EQUAL_64(0x1234000100010001, x1);
ASSERT_EQUAL_64(0x1234000200020002, x2);
ASSERT_EQUAL_64(0x1234000300030003, x3);
ASSERT_EQUAL_32(0x12340004, w4);
ASSERT_EQUAL_32(0x12340005, w5);
ASSERT_EQUAL_32(0x12340006, w6);
ASSERT_EQUAL_FP64(123400.0, d0);
ASSERT_EQUAL_FP64(123401.0, d1);
ASSERT_EQUAL_FP32(123402.0, s2);
TEARDOWN();
}
TEST(pop_queued) {
INIT_V8();
SETUP();
START();
ASSERT(__ StackPointer().Is(csp));
__ Mov(jssp, __ StackPointer());
__ SetStackPointer(jssp);
MacroAssembler::PushPopQueue queue(&masm);
__ Mov(x0, 0x1234000000000000);
__ Mov(x1, 0x1234000100010001);
__ Mov(x2, 0x1234000200020002);
__ Mov(x3, 0x1234000300030003);
__ Mov(w4, 0x12340004);
__ Mov(w5, 0x12340005);
__ Mov(w6, 0x12340006);
__ Fmov(d0, 123400.0);
__ Fmov(d1, 123401.0);
__ Fmov(s2, 123402.0);
// Push registers conventionally.
__ Push(x0, x1, x2, x3);
__ Push(w4, w5, w6);
__ Push(d0, d1);
__ Push(s2);
// Queue up a pop.
queue.Queue(s2);
queue.Queue(d1);
queue.Queue(d0);
queue.Queue(w6);
queue.Queue(w5);
queue.Queue(w4);
queue.Queue(x3);
queue.Queue(x2);
queue.Queue(x1);
queue.Queue(x0);
Clobber(&masm, CPURegList(CPURegister::kRegister, kXRegSizeInBits, 0, 6));
Clobber(&masm, CPURegList(CPURegister::kFPRegister, kDRegSizeInBits, 0, 2));
// Actually pop them.
queue.PopQueued();
__ Mov(csp, __ StackPointer());
__ SetStackPointer(csp);
END();
RUN();
ASSERT_EQUAL_64(0x1234000000000000, x0);
ASSERT_EQUAL_64(0x1234000100010001, x1);
ASSERT_EQUAL_64(0x1234000200020002, x2);
ASSERT_EQUAL_64(0x1234000300030003, x3);
ASSERT_EQUAL_64(0x0000000012340004, x4);
ASSERT_EQUAL_64(0x0000000012340005, x5);
ASSERT_EQUAL_64(0x0000000012340006, x6);
ASSERT_EQUAL_FP64(123400.0, d0);
ASSERT_EQUAL_FP64(123401.0, d1);
ASSERT_EQUAL_FP32(123402.0, s2);
TEARDOWN();
}
TEST(jump_both_smi) {
INIT_V8();
SETUP();
Label cond_pass_00, cond_pass_01, cond_pass_10, cond_pass_11;
Label cond_fail_00, cond_fail_01, cond_fail_10, cond_fail_11;
Label return1, return2, return3, done;
START();
__ Mov(x0, 0x5555555500000001UL); // A pointer.
__ Mov(x1, 0xaaaaaaaa00000001UL); // A pointer.
__ Mov(x2, 0x1234567800000000UL); // A smi.
__ Mov(x3, 0x8765432100000000UL); // A smi.
__ Mov(x4, 0xdead);
__ Mov(x5, 0xdead);
__ Mov(x6, 0xdead);
__ Mov(x7, 0xdead);
__ JumpIfBothSmi(x0, x1, &cond_pass_00, &cond_fail_00);
__ Bind(&return1);
__ JumpIfBothSmi(x0, x2, &cond_pass_01, &cond_fail_01);
__ Bind(&return2);
__ JumpIfBothSmi(x2, x1, &cond_pass_10, &cond_fail_10);
__ Bind(&return3);
__ JumpIfBothSmi(x2, x3, &cond_pass_11, &cond_fail_11);
__ Bind(&cond_fail_00);
__ Mov(x4, 0);
__ B(&return1);
__ Bind(&cond_pass_00);
__ Mov(x4, 1);
__ B(&return1);
__ Bind(&cond_fail_01);
__ Mov(x5, 0);
__ B(&return2);
__ Bind(&cond_pass_01);
__ Mov(x5, 1);
__ B(&return2);
__ Bind(&cond_fail_10);
__ Mov(x6, 0);
__ B(&return3);
__ Bind(&cond_pass_10);
__ Mov(x6, 1);
__ B(&return3);
__ Bind(&cond_fail_11);
__ Mov(x7, 0);
__ B(&done);
__ Bind(&cond_pass_11);
__ Mov(x7, 1);
__ Bind(&done);
END();
RUN();
ASSERT_EQUAL_64(0x5555555500000001UL, x0);
ASSERT_EQUAL_64(0xaaaaaaaa00000001UL, x1);
ASSERT_EQUAL_64(0x1234567800000000UL, x2);
ASSERT_EQUAL_64(0x8765432100000000UL, x3);
ASSERT_EQUAL_64(0, x4);
ASSERT_EQUAL_64(0, x5);
ASSERT_EQUAL_64(0, x6);
ASSERT_EQUAL_64(1, x7);
TEARDOWN();
}
TEST(jump_either_smi) {
INIT_V8();
SETUP();
Label cond_pass_00, cond_pass_01, cond_pass_10, cond_pass_11;
Label cond_fail_00, cond_fail_01, cond_fail_10, cond_fail_11;
Label return1, return2, return3, done;
START();
__ Mov(x0, 0x5555555500000001UL); // A pointer.
__ Mov(x1, 0xaaaaaaaa00000001UL); // A pointer.
__ Mov(x2, 0x1234567800000000UL); // A smi.
__ Mov(x3, 0x8765432100000000UL); // A smi.
__ Mov(x4, 0xdead);
__ Mov(x5, 0xdead);
__ Mov(x6, 0xdead);
__ Mov(x7, 0xdead);
__ JumpIfEitherSmi(x0, x1, &cond_pass_00, &cond_fail_00);
__ Bind(&return1);
__ JumpIfEitherSmi(x0, x2, &cond_pass_01, &cond_fail_01);
__ Bind(&return2);
__ JumpIfEitherSmi(x2, x1, &cond_pass_10, &cond_fail_10);
__ Bind(&return3);
__ JumpIfEitherSmi(x2, x3, &cond_pass_11, &cond_fail_11);
__ Bind(&cond_fail_00);
__ Mov(x4, 0);
__ B(&return1);
__ Bind(&cond_pass_00);
__ Mov(x4, 1);
__ B(&return1);
__ Bind(&cond_fail_01);
__ Mov(x5, 0);
__ B(&return2);
__ Bind(&cond_pass_01);
__ Mov(x5, 1);
__ B(&return2);
__ Bind(&cond_fail_10);
__ Mov(x6, 0);
__ B(&return3);
__ Bind(&cond_pass_10);
__ Mov(x6, 1);
__ B(&return3);
__ Bind(&cond_fail_11);
__ Mov(x7, 0);
__ B(&done);
__ Bind(&cond_pass_11);
__ Mov(x7, 1);
__ Bind(&done);
END();
RUN();
ASSERT_EQUAL_64(0x5555555500000001UL, x0);
ASSERT_EQUAL_64(0xaaaaaaaa00000001UL, x1);
ASSERT_EQUAL_64(0x1234567800000000UL, x2);
ASSERT_EQUAL_64(0x8765432100000000UL, x3);
ASSERT_EQUAL_64(0, x4);
ASSERT_EQUAL_64(1, x5);
ASSERT_EQUAL_64(1, x6);
ASSERT_EQUAL_64(1, x7);
TEARDOWN();
}
TEST(noreg) {
// This test doesn't generate any code, but it verifies some invariants
// related to NoReg.
CHECK(NoReg.Is(NoFPReg));
CHECK(NoFPReg.Is(NoReg));
CHECK(NoReg.Is(NoCPUReg));
CHECK(NoCPUReg.Is(NoReg));
CHECK(NoFPReg.Is(NoCPUReg));
CHECK(NoCPUReg.Is(NoFPReg));
CHECK(NoReg.IsNone());
CHECK(NoFPReg.IsNone());
CHECK(NoCPUReg.IsNone());
}
TEST(isvalid) {
// This test doesn't generate any code, but it verifies some invariants
// related to IsValid().
CHECK(!NoReg.IsValid());
CHECK(!NoFPReg.IsValid());
CHECK(!NoCPUReg.IsValid());
CHECK(x0.IsValid());
CHECK(w0.IsValid());
CHECK(x30.IsValid());
CHECK(w30.IsValid());
CHECK(xzr.IsValid());
CHECK(wzr.IsValid());
CHECK(csp.IsValid());
CHECK(wcsp.IsValid());
CHECK(d0.IsValid());
CHECK(s0.IsValid());
CHECK(d31.IsValid());
CHECK(s31.IsValid());
CHECK(x0.IsValidRegister());
CHECK(w0.IsValidRegister());
CHECK(xzr.IsValidRegister());
CHECK(wzr.IsValidRegister());
CHECK(csp.IsValidRegister());
CHECK(wcsp.IsValidRegister());
CHECK(!x0.IsValidFPRegister());
CHECK(!w0.IsValidFPRegister());
CHECK(!xzr.IsValidFPRegister());
CHECK(!wzr.IsValidFPRegister());
CHECK(!csp.IsValidFPRegister());
CHECK(!wcsp.IsValidFPRegister());
CHECK(d0.IsValidFPRegister());
CHECK(s0.IsValidFPRegister());
CHECK(!d0.IsValidRegister());
CHECK(!s0.IsValidRegister());
// Test the same as before, but using CPURegister types. This shouldn't make
// any difference.
CHECK(static_cast<CPURegister>(x0).IsValid());
CHECK(static_cast<CPURegister>(w0).IsValid());
CHECK(static_cast<CPURegister>(x30).IsValid());
CHECK(static_cast<CPURegister>(w30).IsValid());
CHECK(static_cast<CPURegister>(xzr).IsValid());
CHECK(static_cast<CPURegister>(wzr).IsValid());
CHECK(static_cast<CPURegister>(csp).IsValid());
CHECK(static_cast<CPURegister>(wcsp).IsValid());
CHECK(static_cast<CPURegister>(d0).IsValid());
CHECK(static_cast<CPURegister>(s0).IsValid());
CHECK(static_cast<CPURegister>(d31).IsValid());
CHECK(static_cast<CPURegister>(s31).IsValid());
CHECK(static_cast<CPURegister>(x0).IsValidRegister());
CHECK(static_cast<CPURegister>(w0).IsValidRegister());
CHECK(static_cast<CPURegister>(xzr).IsValidRegister());
CHECK(static_cast<CPURegister>(wzr).IsValidRegister());
CHECK(static_cast<CPURegister>(csp).IsValidRegister());
CHECK(static_cast<CPURegister>(wcsp).IsValidRegister());
CHECK(!static_cast<CPURegister>(x0).IsValidFPRegister());
CHECK(!static_cast<CPURegister>(w0).IsValidFPRegister());
CHECK(!static_cast<CPURegister>(xzr).IsValidFPRegister());
CHECK(!static_cast<CPURegister>(wzr).IsValidFPRegister());
CHECK(!static_cast<CPURegister>(csp).IsValidFPRegister());
CHECK(!static_cast<CPURegister>(wcsp).IsValidFPRegister());
CHECK(static_cast<CPURegister>(d0).IsValidFPRegister());
CHECK(static_cast<CPURegister>(s0).IsValidFPRegister());
CHECK(!static_cast<CPURegister>(d0).IsValidRegister());
CHECK(!static_cast<CPURegister>(s0).IsValidRegister());
}
TEST(cpureglist_utils_x) {
// This test doesn't generate any code, but it verifies the behaviour of
// the CPURegList utility methods.
// Test a list of X registers.
CPURegList test(x0, x1, x2, x3);
CHECK(test.IncludesAliasOf(x0));
CHECK(test.IncludesAliasOf(x1));
CHECK(test.IncludesAliasOf(x2));
CHECK(test.IncludesAliasOf(x3));
CHECK(test.IncludesAliasOf(w0));
CHECK(test.IncludesAliasOf(w1));
CHECK(test.IncludesAliasOf(w2));
CHECK(test.IncludesAliasOf(w3));
CHECK(!test.IncludesAliasOf(x4));
CHECK(!test.IncludesAliasOf(x30));
CHECK(!test.IncludesAliasOf(xzr));
CHECK(!test.IncludesAliasOf(csp));
CHECK(!test.IncludesAliasOf(w4));
CHECK(!test.IncludesAliasOf(w30));
CHECK(!test.IncludesAliasOf(wzr));
CHECK(!test.IncludesAliasOf(wcsp));
CHECK(!test.IncludesAliasOf(d0));
CHECK(!test.IncludesAliasOf(d1));
CHECK(!test.IncludesAliasOf(d2));
CHECK(!test.IncludesAliasOf(d3));
CHECK(!test.IncludesAliasOf(s0));
CHECK(!test.IncludesAliasOf(s1));
CHECK(!test.IncludesAliasOf(s2));
CHECK(!test.IncludesAliasOf(s3));
CHECK(!test.IsEmpty());
CHECK(test.type() == x0.type());
CHECK(test.PopHighestIndex().Is(x3));
CHECK(test.PopLowestIndex().Is(x0));
CHECK(test.IncludesAliasOf(x1));
CHECK(test.IncludesAliasOf(x2));
CHECK(test.IncludesAliasOf(w1));
CHECK(test.IncludesAliasOf(w2));
CHECK(!test.IncludesAliasOf(x0));
CHECK(!test.IncludesAliasOf(x3));
CHECK(!test.IncludesAliasOf(w0));
CHECK(!test.IncludesAliasOf(w3));
CHECK(test.PopHighestIndex().Is(x2));
CHECK(test.PopLowestIndex().Is(x1));
CHECK(!test.IncludesAliasOf(x1));
CHECK(!test.IncludesAliasOf(x2));
CHECK(!test.IncludesAliasOf(w1));
CHECK(!test.IncludesAliasOf(w2));
CHECK(test.IsEmpty());
}
TEST(cpureglist_utils_w) {
// This test doesn't generate any code, but it verifies the behaviour of
// the CPURegList utility methods.
// Test a list of W registers.
CPURegList test(w10, w11, w12, w13);
CHECK(test.IncludesAliasOf(x10));
CHECK(test.IncludesAliasOf(x11));
CHECK(test.IncludesAliasOf(x12));
CHECK(test.IncludesAliasOf(x13));
CHECK(test.IncludesAliasOf(w10));
CHECK(test.IncludesAliasOf(w11));
CHECK(test.IncludesAliasOf(w12));
CHECK(test.IncludesAliasOf(w13));
CHECK(!test.IncludesAliasOf(x0));
CHECK(!test.IncludesAliasOf(x9));
CHECK(!test.IncludesAliasOf(x14));
CHECK(!test.IncludesAliasOf(x30));
CHECK(!test.IncludesAliasOf(xzr));
CHECK(!test.IncludesAliasOf(csp));
CHECK(!test.IncludesAliasOf(w0));
CHECK(!test.IncludesAliasOf(w9));
CHECK(!test.IncludesAliasOf(w14));
CHECK(!test.IncludesAliasOf(w30));
CHECK(!test.IncludesAliasOf(wzr));
CHECK(!test.IncludesAliasOf(wcsp));
CHECK(!test.IncludesAliasOf(d10));
CHECK(!test.IncludesAliasOf(d11));
CHECK(!test.IncludesAliasOf(d12));
CHECK(!test.IncludesAliasOf(d13));
CHECK(!test.IncludesAliasOf(s10));
CHECK(!test.IncludesAliasOf(s11));
CHECK(!test.IncludesAliasOf(s12));
CHECK(!test.IncludesAliasOf(s13));
CHECK(!test.IsEmpty());
CHECK(test.type() == w10.type());
CHECK(test.PopHighestIndex().Is(w13));
CHECK(test.PopLowestIndex().Is(w10));
CHECK(test.IncludesAliasOf(x11));
CHECK(test.IncludesAliasOf(x12));
CHECK(test.IncludesAliasOf(w11));
CHECK(test.IncludesAliasOf(w12));
CHECK(!test.IncludesAliasOf(x10));
CHECK(!test.IncludesAliasOf(x13));
CHECK(!test.IncludesAliasOf(w10));
CHECK(!test.IncludesAliasOf(w13));
CHECK(test.PopHighestIndex().Is(w12));
CHECK(test.PopLowestIndex().Is(w11));
CHECK(!test.IncludesAliasOf(x11));
CHECK(!test.IncludesAliasOf(x12));
CHECK(!test.IncludesAliasOf(w11));
CHECK(!test.IncludesAliasOf(w12));
CHECK(test.IsEmpty());
}
TEST(cpureglist_utils_d) {
// This test doesn't generate any code, but it verifies the behaviour of
// the CPURegList utility methods.
// Test a list of D registers.
CPURegList test(d20, d21, d22, d23);
CHECK(test.IncludesAliasOf(d20));
CHECK(test.IncludesAliasOf(d21));
CHECK(test.IncludesAliasOf(d22));
CHECK(test.IncludesAliasOf(d23));
CHECK(test.IncludesAliasOf(s20));
CHECK(test.IncludesAliasOf(s21));
CHECK(test.IncludesAliasOf(s22));
CHECK(test.IncludesAliasOf(s23));
CHECK(!test.IncludesAliasOf(d0));
CHECK(!test.IncludesAliasOf(d19));
CHECK(!test.IncludesAliasOf(d24));
CHECK(!test.IncludesAliasOf(d31));
CHECK(!test.IncludesAliasOf(s0));
CHECK(!test.IncludesAliasOf(s19));
CHECK(!test.IncludesAliasOf(s24));
CHECK(!test.IncludesAliasOf(s31));
CHECK(!test.IncludesAliasOf(x20));
CHECK(!test.IncludesAliasOf(x21));
CHECK(!test.IncludesAliasOf(x22));
CHECK(!test.IncludesAliasOf(x23));
CHECK(!test.IncludesAliasOf(w20));
CHECK(!test.IncludesAliasOf(w21));
CHECK(!test.IncludesAliasOf(w22));
CHECK(!test.IncludesAliasOf(w23));
CHECK(!test.IncludesAliasOf(xzr));
CHECK(!test.IncludesAliasOf(wzr));
CHECK(!test.IncludesAliasOf(csp));
CHECK(!test.IncludesAliasOf(wcsp));
CHECK(!test.IsEmpty());
CHECK(test.type() == d20.type());
CHECK(test.PopHighestIndex().Is(d23));
CHECK(test.PopLowestIndex().Is(d20));
CHECK(test.IncludesAliasOf(d21));
CHECK(test.IncludesAliasOf(d22));
CHECK(test.IncludesAliasOf(s21));
CHECK(test.IncludesAliasOf(s22));
CHECK(!test.IncludesAliasOf(d20));
CHECK(!test.IncludesAliasOf(d23));
CHECK(!test.IncludesAliasOf(s20));
CHECK(!test.IncludesAliasOf(s23));
CHECK(test.PopHighestIndex().Is(d22));
CHECK(test.PopLowestIndex().Is(d21));
CHECK(!test.IncludesAliasOf(d21));
CHECK(!test.IncludesAliasOf(d22));
CHECK(!test.IncludesAliasOf(s21));
CHECK(!test.IncludesAliasOf(s22));
CHECK(test.IsEmpty());
}
TEST(cpureglist_utils_s) {
// This test doesn't generate any code, but it verifies the behaviour of
// the CPURegList utility methods.
// Test a list of S registers.
CPURegList test(s20, s21, s22, s23);
// The type and size mechanisms are already covered, so here we just test
// that lists of S registers alias individual D registers.
CHECK(test.IncludesAliasOf(d20));
CHECK(test.IncludesAliasOf(d21));
CHECK(test.IncludesAliasOf(d22));
CHECK(test.IncludesAliasOf(d23));
CHECK(test.IncludesAliasOf(s20));
CHECK(test.IncludesAliasOf(s21));
CHECK(test.IncludesAliasOf(s22));
CHECK(test.IncludesAliasOf(s23));
}
TEST(cpureglist_utils_empty) {
// This test doesn't generate any code, but it verifies the behaviour of
// the CPURegList utility methods.
// Test an empty list.
// Empty lists can have type and size properties. Check that we can create
// them, and that they are empty.
CPURegList reg32(CPURegister::kRegister, kWRegSizeInBits, 0);
CPURegList reg64(CPURegister::kRegister, kXRegSizeInBits, 0);
CPURegList fpreg32(CPURegister::kFPRegister, kSRegSizeInBits, 0);
CPURegList fpreg64(CPURegister::kFPRegister, kDRegSizeInBits, 0);
CHECK(reg32.IsEmpty());
CHECK(reg64.IsEmpty());
CHECK(fpreg32.IsEmpty());
CHECK(fpreg64.IsEmpty());
CHECK(reg32.PopLowestIndex().IsNone());
CHECK(reg64.PopLowestIndex().IsNone());
CHECK(fpreg32.PopLowestIndex().IsNone());
CHECK(fpreg64.PopLowestIndex().IsNone());
CHECK(reg32.PopHighestIndex().IsNone());
CHECK(reg64.PopHighestIndex().IsNone());
CHECK(fpreg32.PopHighestIndex().IsNone());
CHECK(fpreg64.PopHighestIndex().IsNone());
CHECK(reg32.IsEmpty());
CHECK(reg64.IsEmpty());
CHECK(fpreg32.IsEmpty());
CHECK(fpreg64.IsEmpty());
}
TEST(printf) {
INIT_V8();
SETUP();
START();
char const * test_plain_string = "Printf with no arguments.\n";
char const * test_substring = "'This is a substring.'";
RegisterDump before;
// Initialize x29 to the value of the stack pointer. We will use x29 as a
// temporary stack pointer later, and initializing it in this way allows the
// RegisterDump check to pass.
__ Mov(x29, __ StackPointer());
// Test simple integer arguments.
__ Mov(x0, 1234);
__ Mov(x1, 0x1234);
// Test simple floating-point arguments.
__ Fmov(d0, 1.234);
// Test pointer (string) arguments.
__ Mov(x2, reinterpret_cast<uintptr_t>(test_substring));
// Test the maximum number of arguments, and sign extension.
__ Mov(w3, 0xffffffff);
__ Mov(w4, 0xffffffff);
__ Mov(x5, 0xffffffffffffffff);
__ Mov(x6, 0xffffffffffffffff);
__ Fmov(s1, 1.234);
__ Fmov(s2, 2.345);
__ Fmov(d3, 3.456);
__ Fmov(d4, 4.567);
// Test printing callee-saved registers.
__ Mov(x28, 0x123456789abcdef);
__ Fmov(d10, 42.0);
// Test with three arguments.
__ Mov(x10, 3);
__ Mov(x11, 40);
__ Mov(x12, 500);
// x8 and x9 are used by debug code in part of the macro assembler. However,
// Printf guarantees to preserve them (so we can use Printf in debug code),
// and we need to test that they are properly preserved. The above code
// shouldn't need to use them, but we initialize x8 and x9 last to be on the
// safe side. This test still assumes that none of the code from
// before->Dump() to the end of the test can clobber x8 or x9, so where
// possible we use the Assembler directly to be safe.
__ orr(x8, xzr, 0x8888888888888888);
__ orr(x9, xzr, 0x9999999999999999);
// Check that we don't clobber any registers, except those that we explicitly
// write results into.
before.Dump(&masm);
__ Printf(test_plain_string); // NOLINT(runtime/printf)
__ Printf("x0: %" PRId64", x1: 0x%08" PRIx64 "\n", x0, x1);
__ Printf("d0: %f\n", d0);
__ Printf("Test %%s: %s\n", x2);
__ Printf("w3(uint32): %" PRIu32 "\nw4(int32): %" PRId32 "\n"
"x5(uint64): %" PRIu64 "\nx6(int64): %" PRId64 "\n",
w3, w4, x5, x6);
__ Printf("%%f: %f\n%%g: %g\n%%e: %e\n%%E: %E\n", s1, s2, d3, d4);
__ Printf("0x%08" PRIx32 ", 0x%016" PRIx64 "\n", x28, x28);
__ Printf("%g\n", d10);
// Test with a different stack pointer.
const Register old_stack_pointer = __ StackPointer();
__ mov(x29, old_stack_pointer);
__ SetStackPointer(x29);
__ Printf("old_stack_pointer: 0x%016" PRIx64 "\n", old_stack_pointer);
__ mov(old_stack_pointer, __ StackPointer());
__ SetStackPointer(old_stack_pointer);
__ Printf("3=%u, 4=%u, 5=%u\n", x10, x11, x12);
END();
RUN();
// We cannot easily test the output of the Printf sequences, and because
// Printf preserves all registers by default, we can't look at the number of
// bytes that were printed. However, the printf_no_preserve test should check
// that, and here we just test that we didn't clobber any registers.
ASSERT_EQUAL_REGISTERS(before);
TEARDOWN();
}
TEST(printf_no_preserve) {
INIT_V8();
SETUP();
START();
char const * test_plain_string = "Printf with no arguments.\n";
char const * test_substring = "'This is a substring.'";
__ PrintfNoPreserve(test_plain_string); // NOLINT(runtime/printf)
__ Mov(x19, x0);
// Test simple integer arguments.
__ Mov(x0, 1234);
__ Mov(x1, 0x1234);
__ PrintfNoPreserve("x0: %" PRId64", x1: 0x%08" PRIx64 "\n", x0, x1);
__ Mov(x20, x0);
// Test simple floating-point arguments.
__ Fmov(d0, 1.234);
__ PrintfNoPreserve("d0: %f\n", d0);
__ Mov(x21, x0);
// Test pointer (string) arguments.
__ Mov(x2, reinterpret_cast<uintptr_t>(test_substring));
__ PrintfNoPreserve("Test %%s: %s\n", x2);
__ Mov(x22, x0);
// Test the maximum number of arguments, and sign extension.
__ Mov(w3, 0xffffffff);
__ Mov(w4, 0xffffffff);
__ Mov(x5, 0xffffffffffffffff);
__ Mov(x6, 0xffffffffffffffff);
__ PrintfNoPreserve("w3(uint32): %" PRIu32 "\nw4(int32): %" PRId32 "\n"
"x5(uint64): %" PRIu64 "\nx6(int64): %" PRId64 "\n",
w3, w4, x5, x6);
__ Mov(x23, x0);
__ Fmov(s1, 1.234);
__ Fmov(s2, 2.345);
__ Fmov(d3, 3.456);
__ Fmov(d4, 4.567);
__ PrintfNoPreserve("%%f: %f\n%%g: %g\n%%e: %e\n%%E: %E\n", s1, s2, d3, d4);
__ Mov(x24, x0);
// Test printing callee-saved registers.
__ Mov(x28, 0x123456789abcdef);
__ PrintfNoPreserve("0x%08" PRIx32 ", 0x%016" PRIx64 "\n", x28, x28);
__ Mov(x25, x0);
__ Fmov(d10, 42.0);
__ PrintfNoPreserve("%g\n", d10);
__ Mov(x26, x0);
// Test with a different stack pointer.
const Register old_stack_pointer = __ StackPointer();
__ Mov(x29, old_stack_pointer);
__ SetStackPointer(x29);
__ PrintfNoPreserve("old_stack_pointer: 0x%016" PRIx64 "\n",
old_stack_pointer);
__ Mov(x27, x0);
__ Mov(old_stack_pointer, __ StackPointer());
__ SetStackPointer(old_stack_pointer);
// Test with three arguments.
__ Mov(x3, 3);
__ Mov(x4, 40);
__ Mov(x5, 500);
__ PrintfNoPreserve("3=%u, 4=%u, 5=%u\n", x3, x4, x5);
__ Mov(x28, x0);
END();
RUN();
// We cannot easily test the exact output of the Printf sequences, but we can
// use the return code to check that the string length was correct.
// Printf with no arguments.
ASSERT_EQUAL_64(strlen(test_plain_string), x19);
// x0: 1234, x1: 0x00001234
ASSERT_EQUAL_64(25, x20);
// d0: 1.234000
ASSERT_EQUAL_64(13, x21);
// Test %s: 'This is a substring.'
ASSERT_EQUAL_64(32, x22);
// w3(uint32): 4294967295
// w4(int32): -1
// x5(uint64): 18446744073709551615
// x6(int64): -1
ASSERT_EQUAL_64(23 + 14 + 33 + 14, x23);
// %f: 1.234000
// %g: 2.345
// %e: 3.456000e+00
// %E: 4.567000E+00
ASSERT_EQUAL_64(13 + 10 + 17 + 17, x24);
// 0x89abcdef, 0x0123456789abcdef
ASSERT_EQUAL_64(31, x25);
// 42
ASSERT_EQUAL_64(3, x26);
// old_stack_pointer: 0x00007fb037ae2370
// Note: This is an example value, but the field width is fixed here so the
// string length is still predictable.
ASSERT_EQUAL_64(38, x27);
// 3=3, 4=40, 5=500
ASSERT_EQUAL_64(17, x28);
TEARDOWN();
}
// This is a V8-specific test.
static void CopyFieldsHelper(CPURegList temps) {
static const uint64_t kLiteralBase = 0x0100001000100101UL;
static const uint64_t src[] = {kLiteralBase * 1,
kLiteralBase * 2,
kLiteralBase * 3,
kLiteralBase * 4,
kLiteralBase * 5,
kLiteralBase * 6,
kLiteralBase * 7,
kLiteralBase * 8,
kLiteralBase * 9,
kLiteralBase * 10,
kLiteralBase * 11};
static const uint64_t src_tagged =
reinterpret_cast<uint64_t>(src) + kHeapObjectTag;
static const unsigned kTestCount = sizeof(src) / sizeof(src[0]) + 1;
uint64_t* dst[kTestCount];
uint64_t dst_tagged[kTestCount];
// The first test will be to copy 0 fields. The destination (and source)
// should not be accessed in any way.
dst[0] = NULL;
dst_tagged[0] = kHeapObjectTag;
// Allocate memory for each other test. Each test <n> will have <n> fields.
// This is intended to exercise as many paths in CopyFields as possible.
for (unsigned i = 1; i < kTestCount; i++) {
dst[i] = new uint64_t[i];
memset(dst[i], 0, i * sizeof(kLiteralBase));
dst_tagged[i] = reinterpret_cast<uint64_t>(dst[i]) + kHeapObjectTag;
}
SETUP();
START();
__ Mov(x0, dst_tagged[0]);
__ Mov(x1, 0);
__ CopyFields(x0, x1, temps, 0);
for (unsigned i = 1; i < kTestCount; i++) {
__ Mov(x0, dst_tagged[i]);
__ Mov(x1, src_tagged);
__ CopyFields(x0, x1, temps, i);
}
END();
RUN();
TEARDOWN();
for (unsigned i = 1; i < kTestCount; i++) {
for (unsigned j = 0; j < i; j++) {
CHECK(src[j] == dst[i][j]);
}
delete [] dst[i];
}
}
// This is a V8-specific test.
TEST(copyfields) {
INIT_V8();
CopyFieldsHelper(CPURegList(x10));
CopyFieldsHelper(CPURegList(x10, x11));
CopyFieldsHelper(CPURegList(x10, x11, x12));
CopyFieldsHelper(CPURegList(x10, x11, x12, x13));
}
static void DoSmiAbsTest(int32_t value, bool must_fail = false) {
SETUP();
START();
Label end, slow;
__ Mov(x2, 0xc001c0de);
__ Mov(x1, value);
__ SmiTag(x1);
__ SmiAbs(x1, &slow);
__ SmiUntag(x1);
__ B(&end);
__ Bind(&slow);
__ Mov(x2, 0xbad);
__ Bind(&end);
END();
RUN();
if (must_fail) {
// We tested an invalid conversion. The code must have jump on slow.
ASSERT_EQUAL_64(0xbad, x2);
} else {
// The conversion is valid, check the result.
int32_t result = (value >= 0) ? value : -value;
ASSERT_EQUAL_64(result, x1);
// Check that we didn't jump on slow.
ASSERT_EQUAL_64(0xc001c0de, x2);
}
TEARDOWN();
}
TEST(smi_abs) {
INIT_V8();
// Simple and edge cases.
DoSmiAbsTest(0);
DoSmiAbsTest(0x12345);
DoSmiAbsTest(0x40000000);
DoSmiAbsTest(0x7fffffff);
DoSmiAbsTest(-1);
DoSmiAbsTest(-12345);
DoSmiAbsTest(0x80000001);
// Check that the most negative SMI is detected.
DoSmiAbsTest(0x80000000, true);
}
TEST(blr_lr) {
// A simple test to check that the simulator correcty handle "blr lr".
INIT_V8();
SETUP();
START();
Label target;
Label end;
__ Mov(x0, 0x0);
__ Adr(lr, &target);
__ Blr(lr);
__ Mov(x0, 0xdeadbeef);
__ B(&end);
__ Bind(&target);
__ Mov(x0, 0xc001c0de);
__ Bind(&end);
END();
RUN();
ASSERT_EQUAL_64(0xc001c0de, x0);
TEARDOWN();
}
TEST(barriers) {
// Generate all supported barriers, this is just a smoke test
INIT_V8();
SETUP();
START();
// DMB
__ Dmb(FullSystem, BarrierAll);
__ Dmb(FullSystem, BarrierReads);
__ Dmb(FullSystem, BarrierWrites);
__ Dmb(FullSystem, BarrierOther);
__ Dmb(InnerShareable, BarrierAll);
__ Dmb(InnerShareable, BarrierReads);
__ Dmb(InnerShareable, BarrierWrites);
__ Dmb(InnerShareable, BarrierOther);
__ Dmb(NonShareable, BarrierAll);
__ Dmb(NonShareable, BarrierReads);
__ Dmb(NonShareable, BarrierWrites);
__ Dmb(NonShareable, BarrierOther);
__ Dmb(OuterShareable, BarrierAll);
__ Dmb(OuterShareable, BarrierReads);
__ Dmb(OuterShareable, BarrierWrites);
__ Dmb(OuterShareable, BarrierOther);
// DSB
__ Dsb(FullSystem, BarrierAll);
__ Dsb(FullSystem, BarrierReads);
__ Dsb(FullSystem, BarrierWrites);
__ Dsb(FullSystem, BarrierOther);
__ Dsb(InnerShareable, BarrierAll);
__ Dsb(InnerShareable, BarrierReads);
__ Dsb(InnerShareable, BarrierWrites);
__ Dsb(InnerShareable, BarrierOther);
__ Dsb(NonShareable, BarrierAll);
__ Dsb(NonShareable, BarrierReads);
__ Dsb(NonShareable, BarrierWrites);
__ Dsb(NonShareable, BarrierOther);
__ Dsb(OuterShareable, BarrierAll);
__ Dsb(OuterShareable, BarrierReads);
__ Dsb(OuterShareable, BarrierWrites);
__ Dsb(OuterShareable, BarrierOther);
// ISB
__ Isb();
END();
RUN();
TEARDOWN();
}
TEST(process_nan_double) {
INIT_V8();
// Make sure that NaN propagation works correctly.
double sn = rawbits_to_double(0x7ff5555511111111);
double qn = rawbits_to_double(0x7ffaaaaa11111111);
ASSERT(IsSignallingNaN(sn));
ASSERT(IsQuietNaN(qn));
// The input NaNs after passing through ProcessNaN.
double sn_proc = rawbits_to_double(0x7ffd555511111111);
double qn_proc = qn;
ASSERT(IsQuietNaN(sn_proc));
ASSERT(IsQuietNaN(qn_proc));
SETUP();
START();
// Execute a number of instructions which all use ProcessNaN, and check that
// they all handle the NaN correctly.
__ Fmov(d0, sn);
__ Fmov(d10, qn);
// Operations that always propagate NaNs unchanged, even signalling NaNs.
// - Signalling NaN
__ Fmov(d1, d0);
__ Fabs(d2, d0);
__ Fneg(d3, d0);
// - Quiet NaN
__ Fmov(d11, d10);
__ Fabs(d12, d10);
__ Fneg(d13, d10);
// Operations that use ProcessNaN.
// - Signalling NaN
__ Fsqrt(d4, d0);
__ Frinta(d5, d0);
__ Frintn(d6, d0);
__ Frintz(d7, d0);
// - Quiet NaN
__ Fsqrt(d14, d10);
__ Frinta(d15, d10);
__ Frintn(d16, d10);
__ Frintz(d17, d10);
// The behaviour of fcvt is checked in TEST(fcvt_sd).
END();
RUN();
uint64_t qn_raw = double_to_rawbits(qn);
uint64_t sn_raw = double_to_rawbits(sn);
// - Signalling NaN
ASSERT_EQUAL_FP64(sn, d1);
ASSERT_EQUAL_FP64(rawbits_to_double(sn_raw & ~kDSignMask), d2);
ASSERT_EQUAL_FP64(rawbits_to_double(sn_raw ^ kDSignMask), d3);
// - Quiet NaN
ASSERT_EQUAL_FP64(qn, d11);
ASSERT_EQUAL_FP64(rawbits_to_double(qn_raw & ~kDSignMask), d12);
ASSERT_EQUAL_FP64(rawbits_to_double(qn_raw ^ kDSignMask), d13);
// - Signalling NaN
ASSERT_EQUAL_FP64(sn_proc, d4);
ASSERT_EQUAL_FP64(sn_proc, d5);
ASSERT_EQUAL_FP64(sn_proc, d6);
ASSERT_EQUAL_FP64(sn_proc, d7);
// - Quiet NaN
ASSERT_EQUAL_FP64(qn_proc, d14);
ASSERT_EQUAL_FP64(qn_proc, d15);
ASSERT_EQUAL_FP64(qn_proc, d16);
ASSERT_EQUAL_FP64(qn_proc, d17);
TEARDOWN();
}
TEST(process_nan_float) {
INIT_V8();
// Make sure that NaN propagation works correctly.
float sn = rawbits_to_float(0x7f951111);
float qn = rawbits_to_float(0x7fea1111);
ASSERT(IsSignallingNaN(sn));
ASSERT(IsQuietNaN(qn));
// The input NaNs after passing through ProcessNaN.
float sn_proc = rawbits_to_float(0x7fd51111);
float qn_proc = qn;
ASSERT(IsQuietNaN(sn_proc));
ASSERT(IsQuietNaN(qn_proc));
SETUP();
START();
// Execute a number of instructions which all use ProcessNaN, and check that
// they all handle the NaN correctly.
__ Fmov(s0, sn);
__ Fmov(s10, qn);
// Operations that always propagate NaNs unchanged, even signalling NaNs.
// - Signalling NaN
__ Fmov(s1, s0);
__ Fabs(s2, s0);
__ Fneg(s3, s0);
// - Quiet NaN
__ Fmov(s11, s10);
__ Fabs(s12, s10);
__ Fneg(s13, s10);
// Operations that use ProcessNaN.
// - Signalling NaN
__ Fsqrt(s4, s0);
__ Frinta(s5, s0);
__ Frintn(s6, s0);
__ Frintz(s7, s0);
// - Quiet NaN
__ Fsqrt(s14, s10);
__ Frinta(s15, s10);
__ Frintn(s16, s10);
__ Frintz(s17, s10);
// The behaviour of fcvt is checked in TEST(fcvt_sd).
END();
RUN();
uint32_t qn_raw = float_to_rawbits(qn);
uint32_t sn_raw = float_to_rawbits(sn);
// - Signalling NaN
ASSERT_EQUAL_FP32(sn, s1);
ASSERT_EQUAL_FP32(rawbits_to_float(sn_raw & ~kSSignMask), s2);
ASSERT_EQUAL_FP32(rawbits_to_float(sn_raw ^ kSSignMask), s3);
// - Quiet NaN
ASSERT_EQUAL_FP32(qn, s11);
ASSERT_EQUAL_FP32(rawbits_to_float(qn_raw & ~kSSignMask), s12);
ASSERT_EQUAL_FP32(rawbits_to_float(qn_raw ^ kSSignMask), s13);
// - Signalling NaN
ASSERT_EQUAL_FP32(sn_proc, s4);
ASSERT_EQUAL_FP32(sn_proc, s5);
ASSERT_EQUAL_FP32(sn_proc, s6);
ASSERT_EQUAL_FP32(sn_proc, s7);
// - Quiet NaN
ASSERT_EQUAL_FP32(qn_proc, s14);
ASSERT_EQUAL_FP32(qn_proc, s15);
ASSERT_EQUAL_FP32(qn_proc, s16);
ASSERT_EQUAL_FP32(qn_proc, s17);
TEARDOWN();
}
static void ProcessNaNsHelper(double n, double m, double expected) {
ASSERT(isnan(n) || isnan(m));
ASSERT(isnan(expected));
SETUP();
START();
// Execute a number of instructions which all use ProcessNaNs, and check that
// they all propagate NaNs correctly.
__ Fmov(d0, n);
__ Fmov(d1, m);
__ Fadd(d2, d0, d1);
__ Fsub(d3, d0, d1);
__ Fmul(d4, d0, d1);
__ Fdiv(d5, d0, d1);
__ Fmax(d6, d0, d1);
__ Fmin(d7, d0, d1);
END();
RUN();
ASSERT_EQUAL_FP64(expected, d2);
ASSERT_EQUAL_FP64(expected, d3);
ASSERT_EQUAL_FP64(expected, d4);
ASSERT_EQUAL_FP64(expected, d5);
ASSERT_EQUAL_FP64(expected, d6);
ASSERT_EQUAL_FP64(expected, d7);
TEARDOWN();
}
TEST(process_nans_double) {
INIT_V8();
// Make sure that NaN propagation works correctly.
double sn = rawbits_to_double(0x7ff5555511111111);
double sm = rawbits_to_double(0x7ff5555522222222);
double qn = rawbits_to_double(0x7ffaaaaa11111111);
double qm = rawbits_to_double(0x7ffaaaaa22222222);
ASSERT(IsSignallingNaN(sn));
ASSERT(IsSignallingNaN(sm));
ASSERT(IsQuietNaN(qn));
ASSERT(IsQuietNaN(qm));
// The input NaNs after passing through ProcessNaN.
double sn_proc = rawbits_to_double(0x7ffd555511111111);
double sm_proc = rawbits_to_double(0x7ffd555522222222);
double qn_proc = qn;
double qm_proc = qm;
ASSERT(IsQuietNaN(sn_proc));
ASSERT(IsQuietNaN(sm_proc));
ASSERT(IsQuietNaN(qn_proc));
ASSERT(IsQuietNaN(qm_proc));
// Quiet NaNs are propagated.
ProcessNaNsHelper(qn, 0, qn_proc);
ProcessNaNsHelper(0, qm, qm_proc);
ProcessNaNsHelper(qn, qm, qn_proc);
// Signalling NaNs are propagated, and made quiet.
ProcessNaNsHelper(sn, 0, sn_proc);
ProcessNaNsHelper(0, sm, sm_proc);
ProcessNaNsHelper(sn, sm, sn_proc);
// Signalling NaNs take precedence over quiet NaNs.
ProcessNaNsHelper(sn, qm, sn_proc);
ProcessNaNsHelper(qn, sm, sm_proc);
ProcessNaNsHelper(sn, sm, sn_proc);
}
static void ProcessNaNsHelper(float n, float m, float expected) {
ASSERT(isnan(n) || isnan(m));
ASSERT(isnan(expected));
SETUP();
START();
// Execute a number of instructions which all use ProcessNaNs, and check that
// they all propagate NaNs correctly.
__ Fmov(s0, n);
__ Fmov(s1, m);
__ Fadd(s2, s0, s1);
__ Fsub(s3, s0, s1);
__ Fmul(s4, s0, s1);
__ Fdiv(s5, s0, s1);
__ Fmax(s6, s0, s1);
__ Fmin(s7, s0, s1);
END();
RUN();
ASSERT_EQUAL_FP32(expected, s2);
ASSERT_EQUAL_FP32(expected, s3);
ASSERT_EQUAL_FP32(expected, s4);
ASSERT_EQUAL_FP32(expected, s5);
ASSERT_EQUAL_FP32(expected, s6);
ASSERT_EQUAL_FP32(expected, s7);
TEARDOWN();
}
TEST(process_nans_float) {
INIT_V8();
// Make sure that NaN propagation works correctly.
float sn = rawbits_to_float(0x7f951111);
float sm = rawbits_to_float(0x7f952222);
float qn = rawbits_to_float(0x7fea1111);
float qm = rawbits_to_float(0x7fea2222);
ASSERT(IsSignallingNaN(sn));
ASSERT(IsSignallingNaN(sm));
ASSERT(IsQuietNaN(qn));
ASSERT(IsQuietNaN(qm));
// The input NaNs after passing through ProcessNaN.
float sn_proc = rawbits_to_float(0x7fd51111);
float sm_proc = rawbits_to_float(0x7fd52222);
float qn_proc = qn;
float qm_proc = qm;
ASSERT(IsQuietNaN(sn_proc));
ASSERT(IsQuietNaN(sm_proc));
ASSERT(IsQuietNaN(qn_proc));
ASSERT(IsQuietNaN(qm_proc));
// Quiet NaNs are propagated.
ProcessNaNsHelper(qn, 0, qn_proc);
ProcessNaNsHelper(0, qm, qm_proc);
ProcessNaNsHelper(qn, qm, qn_proc);
// Signalling NaNs are propagated, and made quiet.
ProcessNaNsHelper(sn, 0, sn_proc);
ProcessNaNsHelper(0, sm, sm_proc);
ProcessNaNsHelper(sn, sm, sn_proc);
// Signalling NaNs take precedence over quiet NaNs.
ProcessNaNsHelper(sn, qm, sn_proc);
ProcessNaNsHelper(qn, sm, sm_proc);
ProcessNaNsHelper(sn, sm, sn_proc);
}
static void DefaultNaNHelper(float n, float m, float a) {
ASSERT(isnan(n) || isnan(m) || isnan(a));
bool test_1op = isnan(n);
bool test_2op = isnan(n) || isnan(m);
SETUP();
START();
// Enable Default-NaN mode in the FPCR.
__ Mrs(x0, FPCR);
__ Orr(x1, x0, DN_mask);
__ Msr(FPCR, x1);
// Execute a number of instructions which all use ProcessNaNs, and check that
// they all produce the default NaN.
__ Fmov(s0, n);
__ Fmov(s1, m);
__ Fmov(s2, a);
if (test_1op) {
// Operations that always propagate NaNs unchanged, even signalling NaNs.
__ Fmov(s10, s0);
__ Fabs(s11, s0);
__ Fneg(s12, s0);
// Operations that use ProcessNaN.
__ Fsqrt(s13, s0);
__ Frinta(s14, s0);
__ Frintn(s15, s0);
__ Frintz(s16, s0);
// Fcvt usually has special NaN handling, but it respects default-NaN mode.
__ Fcvt(d17, s0);
}
if (test_2op) {
__ Fadd(s18, s0, s1);
__ Fsub(s19, s0, s1);
__ Fmul(s20, s0, s1);
__ Fdiv(s21, s0, s1);
__ Fmax(s22, s0, s1);
__ Fmin(s23, s0, s1);
}
__ Fmadd(s24, s0, s1, s2);
__ Fmsub(s25, s0, s1, s2);
__ Fnmadd(s26, s0, s1, s2);
__ Fnmsub(s27, s0, s1, s2);
// Restore FPCR.
__ Msr(FPCR, x0);
END();
RUN();
if (test_1op) {
uint32_t n_raw = float_to_rawbits(n);
ASSERT_EQUAL_FP32(n, s10);
ASSERT_EQUAL_FP32(rawbits_to_float(n_raw & ~kSSignMask), s11);
ASSERT_EQUAL_FP32(rawbits_to_float(n_raw ^ kSSignMask), s12);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s13);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s14);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s15);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s16);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d17);
}
if (test_2op) {
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s18);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s19);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s20);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s21);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s22);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s23);
}
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s24);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s25);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s26);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s27);
TEARDOWN();
}
TEST(default_nan_float) {
INIT_V8();
float sn = rawbits_to_float(0x7f951111);
float sm = rawbits_to_float(0x7f952222);
float sa = rawbits_to_float(0x7f95aaaa);
float qn = rawbits_to_float(0x7fea1111);
float qm = rawbits_to_float(0x7fea2222);
float qa = rawbits_to_float(0x7feaaaaa);
ASSERT(IsSignallingNaN(sn));
ASSERT(IsSignallingNaN(sm));
ASSERT(IsSignallingNaN(sa));
ASSERT(IsQuietNaN(qn));
ASSERT(IsQuietNaN(qm));
ASSERT(IsQuietNaN(qa));
// - Signalling NaNs
DefaultNaNHelper(sn, 0.0f, 0.0f);
DefaultNaNHelper(0.0f, sm, 0.0f);
DefaultNaNHelper(0.0f, 0.0f, sa);
DefaultNaNHelper(sn, sm, 0.0f);
DefaultNaNHelper(0.0f, sm, sa);
DefaultNaNHelper(sn, 0.0f, sa);
DefaultNaNHelper(sn, sm, sa);
// - Quiet NaNs
DefaultNaNHelper(qn, 0.0f, 0.0f);
DefaultNaNHelper(0.0f, qm, 0.0f);
DefaultNaNHelper(0.0f, 0.0f, qa);
DefaultNaNHelper(qn, qm, 0.0f);
DefaultNaNHelper(0.0f, qm, qa);
DefaultNaNHelper(qn, 0.0f, qa);
DefaultNaNHelper(qn, qm, qa);
// - Mixed NaNs
DefaultNaNHelper(qn, sm, sa);
DefaultNaNHelper(sn, qm, sa);
DefaultNaNHelper(sn, sm, qa);
DefaultNaNHelper(qn, qm, sa);
DefaultNaNHelper(sn, qm, qa);
DefaultNaNHelper(qn, sm, qa);
DefaultNaNHelper(qn, qm, qa);
}
static void DefaultNaNHelper(double n, double m, double a) {
ASSERT(isnan(n) || isnan(m) || isnan(a));
bool test_1op = isnan(n);
bool test_2op = isnan(n) || isnan(m);
SETUP();
START();
// Enable Default-NaN mode in the FPCR.
__ Mrs(x0, FPCR);
__ Orr(x1, x0, DN_mask);
__ Msr(FPCR, x1);
// Execute a number of instructions which all use ProcessNaNs, and check that
// they all produce the default NaN.
__ Fmov(d0, n);
__ Fmov(d1, m);
__ Fmov(d2, a);
if (test_1op) {
// Operations that always propagate NaNs unchanged, even signalling NaNs.
__ Fmov(d10, d0);
__ Fabs(d11, d0);
__ Fneg(d12, d0);
// Operations that use ProcessNaN.
__ Fsqrt(d13, d0);
__ Frinta(d14, d0);
__ Frintn(d15, d0);
__ Frintz(d16, d0);
// Fcvt usually has special NaN handling, but it respects default-NaN mode.
__ Fcvt(s17, d0);
}
if (test_2op) {
__ Fadd(d18, d0, d1);
__ Fsub(d19, d0, d1);
__ Fmul(d20, d0, d1);
__ Fdiv(d21, d0, d1);
__ Fmax(d22, d0, d1);
__ Fmin(d23, d0, d1);
}
__ Fmadd(d24, d0, d1, d2);
__ Fmsub(d25, d0, d1, d2);
__ Fnmadd(d26, d0, d1, d2);
__ Fnmsub(d27, d0, d1, d2);
// Restore FPCR.
__ Msr(FPCR, x0);
END();
RUN();
if (test_1op) {
uint64_t n_raw = double_to_rawbits(n);
ASSERT_EQUAL_FP64(n, d10);
ASSERT_EQUAL_FP64(rawbits_to_double(n_raw & ~kDSignMask), d11);
ASSERT_EQUAL_FP64(rawbits_to_double(n_raw ^ kDSignMask), d12);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d13);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d14);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d15);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d16);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s17);
}
if (test_2op) {
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d18);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d19);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d20);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d21);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d22);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d23);
}
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d24);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d25);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d26);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d27);
TEARDOWN();
}
TEST(default_nan_double) {
INIT_V8();
double sn = rawbits_to_double(0x7ff5555511111111);
double sm = rawbits_to_double(0x7ff5555522222222);
double sa = rawbits_to_double(0x7ff55555aaaaaaaa);
double qn = rawbits_to_double(0x7ffaaaaa11111111);
double qm = rawbits_to_double(0x7ffaaaaa22222222);
double qa = rawbits_to_double(0x7ffaaaaaaaaaaaaa);
ASSERT(IsSignallingNaN(sn));
ASSERT(IsSignallingNaN(sm));
ASSERT(IsSignallingNaN(sa));
ASSERT(IsQuietNaN(qn));
ASSERT(IsQuietNaN(qm));
ASSERT(IsQuietNaN(qa));
// - Signalling NaNs
DefaultNaNHelper(sn, 0.0, 0.0);
DefaultNaNHelper(0.0, sm, 0.0);
DefaultNaNHelper(0.0, 0.0, sa);
DefaultNaNHelper(sn, sm, 0.0);
DefaultNaNHelper(0.0, sm, sa);
DefaultNaNHelper(sn, 0.0, sa);
DefaultNaNHelper(sn, sm, sa);
// - Quiet NaNs
DefaultNaNHelper(qn, 0.0, 0.0);
DefaultNaNHelper(0.0, qm, 0.0);
DefaultNaNHelper(0.0, 0.0, qa);
DefaultNaNHelper(qn, qm, 0.0);
DefaultNaNHelper(0.0, qm, qa);
DefaultNaNHelper(qn, 0.0, qa);
DefaultNaNHelper(qn, qm, qa);
// - Mixed NaNs
DefaultNaNHelper(qn, sm, sa);
DefaultNaNHelper(sn, qm, sa);
DefaultNaNHelper(sn, sm, qa);
DefaultNaNHelper(qn, qm, sa);
DefaultNaNHelper(sn, qm, qa);
DefaultNaNHelper(qn, sm, qa);
DefaultNaNHelper(qn, qm, qa);
}
TEST(call_no_relocation) {
Address call_start;
Address return_address;
INIT_V8();
SETUP();
START();
Label function;
Label test;
__ B(&test);
__ Bind(&function);
__ Mov(x0, 0x1);
__ Ret();
__ Bind(&test);
__ Mov(x0, 0x0);
__ Push(lr, xzr);
{
Assembler::BlockConstPoolScope scope(&masm);
call_start = buf + __ pc_offset();
__ Call(buf + function.pos(), RelocInfo::NONE64);
return_address = buf + __ pc_offset();
}
__ Pop(xzr, lr);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
// The return_address_from_call_start function doesn't currently encounter any
// non-relocatable sequences, so we check it here to make sure it works.
// TODO(jbramley): Once Crankshaft is complete, decide if we need to support
// non-relocatable calls at all.
CHECK(return_address ==
Assembler::return_address_from_call_start(call_start));
TEARDOWN();
}
static void AbsHelperX(int64_t value) {
int64_t expected;
SETUP();
START();
Label fail;
Label done;
__ Mov(x0, 0);
__ Mov(x1, value);
if (value != kXMinInt) {
expected = labs(value);
Label next;
// The result is representable.
__ Abs(x10, x1);
__ Abs(x11, x1, &fail);
__ Abs(x12, x1, &fail, &next);
__ Bind(&next);
__ Abs(x13, x1, NULL, &done);
} else {
// labs is undefined for kXMinInt but our implementation in the
// MacroAssembler will return kXMinInt in such a case.
expected = kXMinInt;
Label next;
// The result is not representable.
__ Abs(x10, x1);
__ Abs(x11, x1, NULL, &fail);
__ Abs(x12, x1, &next, &fail);
__ Bind(&next);
__ Abs(x13, x1, &done);
}
__ Bind(&fail);
__ Mov(x0, -1);
__ Bind(&done);
END();
RUN();
ASSERT_EQUAL_64(0, x0);
ASSERT_EQUAL_64(value, x1);
ASSERT_EQUAL_64(expected, x10);
ASSERT_EQUAL_64(expected, x11);
ASSERT_EQUAL_64(expected, x12);
ASSERT_EQUAL_64(expected, x13);
TEARDOWN();
}
static void AbsHelperW(int32_t value) {
int32_t expected;
SETUP();
START();
Label fail;
Label done;
__ Mov(w0, 0);
// TODO(jbramley): The cast is needed to avoid a sign-extension bug in VIXL.
// Once it is fixed, we should remove the cast.
__ Mov(w1, static_cast<uint32_t>(value));
if (value != kWMinInt) {
expected = abs(value);
Label next;
// The result is representable.
__ Abs(w10, w1);
__ Abs(w11, w1, &fail);
__ Abs(w12, w1, &fail, &next);
__ Bind(&next);
__ Abs(w13, w1, NULL, &done);
} else {
// abs is undefined for kWMinInt but our implementation in the
// MacroAssembler will return kWMinInt in such a case.
expected = kWMinInt;
Label next;
// The result is not representable.
__ Abs(w10, w1);
__ Abs(w11, w1, NULL, &fail);
__ Abs(w12, w1, &next, &fail);
__ Bind(&next);
__ Abs(w13, w1, &done);
}
__ Bind(&fail);
__ Mov(w0, -1);
__ Bind(&done);
END();
RUN();
ASSERT_EQUAL_32(0, w0);
ASSERT_EQUAL_32(value, w1);
ASSERT_EQUAL_32(expected, w10);
ASSERT_EQUAL_32(expected, w11);
ASSERT_EQUAL_32(expected, w12);
ASSERT_EQUAL_32(expected, w13);
TEARDOWN();
}
TEST(abs) {
INIT_V8();
AbsHelperX(0);
AbsHelperX(42);
AbsHelperX(-42);
AbsHelperX(kXMinInt);
AbsHelperX(kXMaxInt);
AbsHelperW(0);
AbsHelperW(42);
AbsHelperW(-42);
AbsHelperW(kWMinInt);
AbsHelperW(kWMaxInt);
}
TEST(pool_size) {
INIT_V8();
SETUP();
// This test does not execute any code. It only tests that the size of the
// pools is read correctly from the RelocInfo.
Label exit;
__ b(&exit);
const unsigned constant_pool_size = 312;
const unsigned veneer_pool_size = 184;
__ RecordConstPool(constant_pool_size);
for (unsigned i = 0; i < constant_pool_size / 4; ++i) {
__ dc32(0);
}
__ RecordVeneerPool(masm.pc_offset(), veneer_pool_size);
for (unsigned i = 0; i < veneer_pool_size / kInstructionSize; ++i) {
__ nop();
}
__ bind(&exit);
Heap* heap = isolate->heap();
CodeDesc desc;
Object* code_object = NULL;
Code* code;
masm.GetCode(&desc);
MaybeObject* maybe_code = heap->CreateCode(desc, 0, masm.CodeObject());
maybe_code->ToObject(&code_object);
code = Code::cast(code_object);
unsigned pool_count = 0;
int pool_mask = RelocInfo::ModeMask(RelocInfo::CONST_POOL) |
RelocInfo::ModeMask(RelocInfo::VENEER_POOL);
for (RelocIterator it(code, pool_mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
if (RelocInfo::IsConstPool(info->rmode())) {
ASSERT(info->data() == constant_pool_size);
++pool_count;
}
if (RelocInfo::IsVeneerPool(info->rmode())) {
ASSERT(info->data() == veneer_pool_size);
++pool_count;
}
}
ASSERT(pool_count == 2);
TEARDOWN();
}