de070ccfa6
Review URL: http://codereview.chromium.org/669061 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@4108 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
8807 lines
289 KiB
C++
8807 lines
289 KiB
C++
// Copyright 2006-2009 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include "v8.h"
|
|
|
|
#include "accessors.h"
|
|
#include "api.h"
|
|
#include "arguments.h"
|
|
#include "codegen.h"
|
|
#include "compiler.h"
|
|
#include "cpu.h"
|
|
#include "dateparser-inl.h"
|
|
#include "debug.h"
|
|
#include "execution.h"
|
|
#include "jsregexp.h"
|
|
#include "liveedit.h"
|
|
#include "parser.h"
|
|
#include "platform.h"
|
|
#include "runtime.h"
|
|
#include "scopeinfo.h"
|
|
#include "smart-pointer.h"
|
|
#include "stub-cache.h"
|
|
#include "v8threads.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
#define RUNTIME_ASSERT(value) \
|
|
if (!(value)) return Top::ThrowIllegalOperation();
|
|
|
|
// Cast the given object to a value of the specified type and store
|
|
// it in a variable with the given name. If the object is not of the
|
|
// expected type call IllegalOperation and return.
|
|
#define CONVERT_CHECKED(Type, name, obj) \
|
|
RUNTIME_ASSERT(obj->Is##Type()); \
|
|
Type* name = Type::cast(obj);
|
|
|
|
#define CONVERT_ARG_CHECKED(Type, name, index) \
|
|
RUNTIME_ASSERT(args[index]->Is##Type()); \
|
|
Handle<Type> name = args.at<Type>(index);
|
|
|
|
// Cast the given object to a boolean and store it in a variable with
|
|
// the given name. If the object is not a boolean call IllegalOperation
|
|
// and return.
|
|
#define CONVERT_BOOLEAN_CHECKED(name, obj) \
|
|
RUNTIME_ASSERT(obj->IsBoolean()); \
|
|
bool name = (obj)->IsTrue();
|
|
|
|
// Cast the given object to a Smi and store its value in an int variable
|
|
// with the given name. If the object is not a Smi call IllegalOperation
|
|
// and return.
|
|
#define CONVERT_SMI_CHECKED(name, obj) \
|
|
RUNTIME_ASSERT(obj->IsSmi()); \
|
|
int name = Smi::cast(obj)->value();
|
|
|
|
// Cast the given object to a double and store it in a variable with
|
|
// the given name. If the object is not a number (as opposed to
|
|
// the number not-a-number) call IllegalOperation and return.
|
|
#define CONVERT_DOUBLE_CHECKED(name, obj) \
|
|
RUNTIME_ASSERT(obj->IsNumber()); \
|
|
double name = (obj)->Number();
|
|
|
|
// Call the specified converter on the object *comand store the result in
|
|
// a variable of the specified type with the given name. If the
|
|
// object is not a Number call IllegalOperation and return.
|
|
#define CONVERT_NUMBER_CHECKED(type, name, Type, obj) \
|
|
RUNTIME_ASSERT(obj->IsNumber()); \
|
|
type name = NumberTo##Type(obj);
|
|
|
|
// Non-reentrant string buffer for efficient general use in this file.
|
|
static StaticResource<StringInputBuffer> runtime_string_input_buffer;
|
|
|
|
|
|
static Object* DeepCopyBoilerplate(JSObject* boilerplate) {
|
|
StackLimitCheck check;
|
|
if (check.HasOverflowed()) return Top::StackOverflow();
|
|
|
|
Object* result = Heap::CopyJSObject(boilerplate);
|
|
if (result->IsFailure()) return result;
|
|
JSObject* copy = JSObject::cast(result);
|
|
|
|
// Deep copy local properties.
|
|
if (copy->HasFastProperties()) {
|
|
FixedArray* properties = copy->properties();
|
|
for (int i = 0; i < properties->length(); i++) {
|
|
Object* value = properties->get(i);
|
|
if (value->IsJSObject()) {
|
|
JSObject* js_object = JSObject::cast(value);
|
|
result = DeepCopyBoilerplate(js_object);
|
|
if (result->IsFailure()) return result;
|
|
properties->set(i, result);
|
|
}
|
|
}
|
|
int nof = copy->map()->inobject_properties();
|
|
for (int i = 0; i < nof; i++) {
|
|
Object* value = copy->InObjectPropertyAt(i);
|
|
if (value->IsJSObject()) {
|
|
JSObject* js_object = JSObject::cast(value);
|
|
result = DeepCopyBoilerplate(js_object);
|
|
if (result->IsFailure()) return result;
|
|
copy->InObjectPropertyAtPut(i, result);
|
|
}
|
|
}
|
|
} else {
|
|
result = Heap::AllocateFixedArray(copy->NumberOfLocalProperties(NONE));
|
|
if (result->IsFailure()) return result;
|
|
FixedArray* names = FixedArray::cast(result);
|
|
copy->GetLocalPropertyNames(names, 0);
|
|
for (int i = 0; i < names->length(); i++) {
|
|
ASSERT(names->get(i)->IsString());
|
|
String* key_string = String::cast(names->get(i));
|
|
PropertyAttributes attributes =
|
|
copy->GetLocalPropertyAttribute(key_string);
|
|
// Only deep copy fields from the object literal expression.
|
|
// In particular, don't try to copy the length attribute of
|
|
// an array.
|
|
if (attributes != NONE) continue;
|
|
Object* value = copy->GetProperty(key_string, &attributes);
|
|
ASSERT(!value->IsFailure());
|
|
if (value->IsJSObject()) {
|
|
JSObject* js_object = JSObject::cast(value);
|
|
result = DeepCopyBoilerplate(js_object);
|
|
if (result->IsFailure()) return result;
|
|
result = copy->SetProperty(key_string, result, NONE);
|
|
if (result->IsFailure()) return result;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Deep copy local elements.
|
|
// Pixel elements cannot be created using an object literal.
|
|
ASSERT(!copy->HasPixelElements() && !copy->HasExternalArrayElements());
|
|
switch (copy->GetElementsKind()) {
|
|
case JSObject::FAST_ELEMENTS: {
|
|
FixedArray* elements = FixedArray::cast(copy->elements());
|
|
for (int i = 0; i < elements->length(); i++) {
|
|
Object* value = elements->get(i);
|
|
if (value->IsJSObject()) {
|
|
JSObject* js_object = JSObject::cast(value);
|
|
result = DeepCopyBoilerplate(js_object);
|
|
if (result->IsFailure()) return result;
|
|
elements->set(i, result);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case JSObject::DICTIONARY_ELEMENTS: {
|
|
NumberDictionary* element_dictionary = copy->element_dictionary();
|
|
int capacity = element_dictionary->Capacity();
|
|
for (int i = 0; i < capacity; i++) {
|
|
Object* k = element_dictionary->KeyAt(i);
|
|
if (element_dictionary->IsKey(k)) {
|
|
Object* value = element_dictionary->ValueAt(i);
|
|
if (value->IsJSObject()) {
|
|
JSObject* js_object = JSObject::cast(value);
|
|
result = DeepCopyBoilerplate(js_object);
|
|
if (result->IsFailure()) return result;
|
|
element_dictionary->ValueAtPut(i, result);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
return copy;
|
|
}
|
|
|
|
|
|
static Object* Runtime_CloneLiteralBoilerplate(Arguments args) {
|
|
CONVERT_CHECKED(JSObject, boilerplate, args[0]);
|
|
return DeepCopyBoilerplate(boilerplate);
|
|
}
|
|
|
|
|
|
static Object* Runtime_CloneShallowLiteralBoilerplate(Arguments args) {
|
|
CONVERT_CHECKED(JSObject, boilerplate, args[0]);
|
|
return Heap::CopyJSObject(boilerplate);
|
|
}
|
|
|
|
|
|
static Handle<Map> ComputeObjectLiteralMap(
|
|
Handle<Context> context,
|
|
Handle<FixedArray> constant_properties,
|
|
bool* is_result_from_cache) {
|
|
int number_of_properties = constant_properties->length() / 2;
|
|
if (FLAG_canonicalize_object_literal_maps) {
|
|
// First find prefix of consecutive symbol keys.
|
|
int number_of_symbol_keys = 0;
|
|
while ((number_of_symbol_keys < number_of_properties) &&
|
|
(constant_properties->get(number_of_symbol_keys*2)->IsSymbol())) {
|
|
number_of_symbol_keys++;
|
|
}
|
|
// Based on the number of prefix symbols key we decide whether
|
|
// to use the map cache in the global context.
|
|
const int kMaxKeys = 10;
|
|
if ((number_of_symbol_keys == number_of_properties) &&
|
|
(number_of_symbol_keys < kMaxKeys)) {
|
|
// Create the fixed array with the key.
|
|
Handle<FixedArray> keys = Factory::NewFixedArray(number_of_symbol_keys);
|
|
for (int i = 0; i < number_of_symbol_keys; i++) {
|
|
keys->set(i, constant_properties->get(i*2));
|
|
}
|
|
*is_result_from_cache = true;
|
|
return Factory::ObjectLiteralMapFromCache(context, keys);
|
|
}
|
|
}
|
|
*is_result_from_cache = false;
|
|
return Factory::CopyMap(
|
|
Handle<Map>(context->object_function()->initial_map()),
|
|
number_of_properties);
|
|
}
|
|
|
|
|
|
static Handle<Object> CreateLiteralBoilerplate(
|
|
Handle<FixedArray> literals,
|
|
Handle<FixedArray> constant_properties);
|
|
|
|
|
|
static Handle<Object> CreateObjectLiteralBoilerplate(
|
|
Handle<FixedArray> literals,
|
|
Handle<FixedArray> constant_properties,
|
|
bool should_have_fast_elements) {
|
|
// Get the global context from the literals array. This is the
|
|
// context in which the function was created and we use the object
|
|
// function from this context to create the object literal. We do
|
|
// not use the object function from the current global context
|
|
// because this might be the object function from another context
|
|
// which we should not have access to.
|
|
Handle<Context> context =
|
|
Handle<Context>(JSFunction::GlobalContextFromLiterals(*literals));
|
|
|
|
bool is_result_from_cache;
|
|
Handle<Map> map = ComputeObjectLiteralMap(context,
|
|
constant_properties,
|
|
&is_result_from_cache);
|
|
|
|
Handle<JSObject> boilerplate = Factory::NewJSObjectFromMap(map);
|
|
|
|
// Normalize the elements of the boilerplate to save space if needed.
|
|
if (!should_have_fast_elements) NormalizeElements(boilerplate);
|
|
|
|
{ // Add the constant properties to the boilerplate.
|
|
int length = constant_properties->length();
|
|
OptimizedObjectForAddingMultipleProperties opt(boilerplate,
|
|
length / 2,
|
|
!is_result_from_cache);
|
|
for (int index = 0; index < length; index +=2) {
|
|
Handle<Object> key(constant_properties->get(index+0));
|
|
Handle<Object> value(constant_properties->get(index+1));
|
|
if (value->IsFixedArray()) {
|
|
// The value contains the constant_properties of a
|
|
// simple object literal.
|
|
Handle<FixedArray> array = Handle<FixedArray>::cast(value);
|
|
value = CreateLiteralBoilerplate(literals, array);
|
|
if (value.is_null()) return value;
|
|
}
|
|
Handle<Object> result;
|
|
uint32_t element_index = 0;
|
|
if (key->IsSymbol()) {
|
|
// If key is a symbol it is not an array element.
|
|
Handle<String> name(String::cast(*key));
|
|
ASSERT(!name->AsArrayIndex(&element_index));
|
|
result = SetProperty(boilerplate, name, value, NONE);
|
|
} else if (Array::IndexFromObject(*key, &element_index)) {
|
|
// Array index (uint32).
|
|
result = SetElement(boilerplate, element_index, value);
|
|
} else {
|
|
// Non-uint32 number.
|
|
ASSERT(key->IsNumber());
|
|
double num = key->Number();
|
|
char arr[100];
|
|
Vector<char> buffer(arr, ARRAY_SIZE(arr));
|
|
const char* str = DoubleToCString(num, buffer);
|
|
Handle<String> name = Factory::NewStringFromAscii(CStrVector(str));
|
|
result = SetProperty(boilerplate, name, value, NONE);
|
|
}
|
|
// If setting the property on the boilerplate throws an
|
|
// exception, the exception is converted to an empty handle in
|
|
// the handle based operations. In that case, we need to
|
|
// convert back to an exception.
|
|
if (result.is_null()) return result;
|
|
}
|
|
}
|
|
|
|
return boilerplate;
|
|
}
|
|
|
|
|
|
static Handle<Object> CreateArrayLiteralBoilerplate(
|
|
Handle<FixedArray> literals,
|
|
Handle<FixedArray> elements) {
|
|
// Create the JSArray.
|
|
Handle<JSFunction> constructor(
|
|
JSFunction::GlobalContextFromLiterals(*literals)->array_function());
|
|
Handle<Object> object = Factory::NewJSObject(constructor);
|
|
|
|
Handle<Object> copied_elements = Factory::CopyFixedArray(elements);
|
|
|
|
Handle<FixedArray> content = Handle<FixedArray>::cast(copied_elements);
|
|
for (int i = 0; i < content->length(); i++) {
|
|
if (content->get(i)->IsFixedArray()) {
|
|
// The value contains the constant_properties of a
|
|
// simple object literal.
|
|
Handle<FixedArray> fa(FixedArray::cast(content->get(i)));
|
|
Handle<Object> result =
|
|
CreateLiteralBoilerplate(literals, fa);
|
|
if (result.is_null()) return result;
|
|
content->set(i, *result);
|
|
}
|
|
}
|
|
|
|
// Set the elements.
|
|
Handle<JSArray>::cast(object)->SetContent(*content);
|
|
return object;
|
|
}
|
|
|
|
|
|
static Handle<Object> CreateLiteralBoilerplate(
|
|
Handle<FixedArray> literals,
|
|
Handle<FixedArray> array) {
|
|
Handle<FixedArray> elements = CompileTimeValue::GetElements(array);
|
|
switch (CompileTimeValue::GetType(array)) {
|
|
case CompileTimeValue::OBJECT_LITERAL_FAST_ELEMENTS:
|
|
return CreateObjectLiteralBoilerplate(literals, elements, true);
|
|
case CompileTimeValue::OBJECT_LITERAL_SLOW_ELEMENTS:
|
|
return CreateObjectLiteralBoilerplate(literals, elements, false);
|
|
case CompileTimeValue::ARRAY_LITERAL:
|
|
return CreateArrayLiteralBoilerplate(literals, elements);
|
|
default:
|
|
UNREACHABLE();
|
|
return Handle<Object>::null();
|
|
}
|
|
}
|
|
|
|
|
|
static Object* Runtime_CreateArrayLiteralBoilerplate(Arguments args) {
|
|
// Takes a FixedArray of elements containing the literal elements of
|
|
// the array literal and produces JSArray with those elements.
|
|
// Additionally takes the literals array of the surrounding function
|
|
// which contains the context from which to get the Array function
|
|
// to use for creating the array literal.
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 3);
|
|
CONVERT_ARG_CHECKED(FixedArray, literals, 0);
|
|
CONVERT_SMI_CHECKED(literals_index, args[1]);
|
|
CONVERT_ARG_CHECKED(FixedArray, elements, 2);
|
|
|
|
Handle<Object> object = CreateArrayLiteralBoilerplate(literals, elements);
|
|
if (object.is_null()) return Failure::Exception();
|
|
|
|
// Update the functions literal and return the boilerplate.
|
|
literals->set(literals_index, *object);
|
|
return *object;
|
|
}
|
|
|
|
|
|
static Object* Runtime_CreateObjectLiteral(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 4);
|
|
CONVERT_ARG_CHECKED(FixedArray, literals, 0);
|
|
CONVERT_SMI_CHECKED(literals_index, args[1]);
|
|
CONVERT_ARG_CHECKED(FixedArray, constant_properties, 2);
|
|
CONVERT_SMI_CHECKED(fast_elements, args[3]);
|
|
bool should_have_fast_elements = fast_elements == 1;
|
|
|
|
// Check if boilerplate exists. If not, create it first.
|
|
Handle<Object> boilerplate(literals->get(literals_index));
|
|
if (*boilerplate == Heap::undefined_value()) {
|
|
boilerplate = CreateObjectLiteralBoilerplate(literals,
|
|
constant_properties,
|
|
should_have_fast_elements);
|
|
if (boilerplate.is_null()) return Failure::Exception();
|
|
// Update the functions literal and return the boilerplate.
|
|
literals->set(literals_index, *boilerplate);
|
|
}
|
|
return DeepCopyBoilerplate(JSObject::cast(*boilerplate));
|
|
}
|
|
|
|
|
|
static Object* Runtime_CreateObjectLiteralShallow(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 4);
|
|
CONVERT_ARG_CHECKED(FixedArray, literals, 0);
|
|
CONVERT_SMI_CHECKED(literals_index, args[1]);
|
|
CONVERT_ARG_CHECKED(FixedArray, constant_properties, 2);
|
|
CONVERT_SMI_CHECKED(fast_elements, args[3]);
|
|
bool should_have_fast_elements = fast_elements == 1;
|
|
|
|
// Check if boilerplate exists. If not, create it first.
|
|
Handle<Object> boilerplate(literals->get(literals_index));
|
|
if (*boilerplate == Heap::undefined_value()) {
|
|
boilerplate = CreateObjectLiteralBoilerplate(literals,
|
|
constant_properties,
|
|
should_have_fast_elements);
|
|
if (boilerplate.is_null()) return Failure::Exception();
|
|
// Update the functions literal and return the boilerplate.
|
|
literals->set(literals_index, *boilerplate);
|
|
}
|
|
return Heap::CopyJSObject(JSObject::cast(*boilerplate));
|
|
}
|
|
|
|
|
|
static Object* Runtime_CreateArrayLiteral(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 3);
|
|
CONVERT_ARG_CHECKED(FixedArray, literals, 0);
|
|
CONVERT_SMI_CHECKED(literals_index, args[1]);
|
|
CONVERT_ARG_CHECKED(FixedArray, elements, 2);
|
|
|
|
// Check if boilerplate exists. If not, create it first.
|
|
Handle<Object> boilerplate(literals->get(literals_index));
|
|
if (*boilerplate == Heap::undefined_value()) {
|
|
boilerplate = CreateArrayLiteralBoilerplate(literals, elements);
|
|
if (boilerplate.is_null()) return Failure::Exception();
|
|
// Update the functions literal and return the boilerplate.
|
|
literals->set(literals_index, *boilerplate);
|
|
}
|
|
return DeepCopyBoilerplate(JSObject::cast(*boilerplate));
|
|
}
|
|
|
|
|
|
static Object* Runtime_CreateArrayLiteralShallow(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 3);
|
|
CONVERT_ARG_CHECKED(FixedArray, literals, 0);
|
|
CONVERT_SMI_CHECKED(literals_index, args[1]);
|
|
CONVERT_ARG_CHECKED(FixedArray, elements, 2);
|
|
|
|
// Check if boilerplate exists. If not, create it first.
|
|
Handle<Object> boilerplate(literals->get(literals_index));
|
|
if (*boilerplate == Heap::undefined_value()) {
|
|
boilerplate = CreateArrayLiteralBoilerplate(literals, elements);
|
|
if (boilerplate.is_null()) return Failure::Exception();
|
|
// Update the functions literal and return the boilerplate.
|
|
literals->set(literals_index, *boilerplate);
|
|
}
|
|
return Heap::CopyJSObject(JSObject::cast(*boilerplate));
|
|
}
|
|
|
|
|
|
static Object* Runtime_CreateCatchExtensionObject(Arguments args) {
|
|
ASSERT(args.length() == 2);
|
|
CONVERT_CHECKED(String, key, args[0]);
|
|
Object* value = args[1];
|
|
// Create a catch context extension object.
|
|
JSFunction* constructor =
|
|
Top::context()->global_context()->context_extension_function();
|
|
Object* object = Heap::AllocateJSObject(constructor);
|
|
if (object->IsFailure()) return object;
|
|
// Assign the exception value to the catch variable and make sure
|
|
// that the catch variable is DontDelete.
|
|
value = JSObject::cast(object)->SetProperty(key, value, DONT_DELETE);
|
|
if (value->IsFailure()) return value;
|
|
return object;
|
|
}
|
|
|
|
|
|
static Object* Runtime_ClassOf(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
Object* obj = args[0];
|
|
if (!obj->IsJSObject()) return Heap::null_value();
|
|
return JSObject::cast(obj)->class_name();
|
|
}
|
|
|
|
|
|
static Object* Runtime_IsInPrototypeChain(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
// See ECMA-262, section 15.3.5.3, page 88 (steps 5 - 8).
|
|
Object* O = args[0];
|
|
Object* V = args[1];
|
|
while (true) {
|
|
Object* prototype = V->GetPrototype();
|
|
if (prototype->IsNull()) return Heap::false_value();
|
|
if (O == prototype) return Heap::true_value();
|
|
V = prototype;
|
|
}
|
|
}
|
|
|
|
|
|
// Inserts an object as the hidden prototype of another object.
|
|
static Object* Runtime_SetHiddenPrototype(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
CONVERT_CHECKED(JSObject, jsobject, args[0]);
|
|
CONVERT_CHECKED(JSObject, proto, args[1]);
|
|
|
|
// Sanity checks. The old prototype (that we are replacing) could
|
|
// theoretically be null, but if it is not null then check that we
|
|
// didn't already install a hidden prototype here.
|
|
RUNTIME_ASSERT(!jsobject->GetPrototype()->IsHeapObject() ||
|
|
!HeapObject::cast(jsobject->GetPrototype())->map()->is_hidden_prototype());
|
|
RUNTIME_ASSERT(!proto->map()->is_hidden_prototype());
|
|
|
|
// Allocate up front before we start altering state in case we get a GC.
|
|
Object* map_or_failure = proto->map()->CopyDropTransitions();
|
|
if (map_or_failure->IsFailure()) return map_or_failure;
|
|
Map* new_proto_map = Map::cast(map_or_failure);
|
|
|
|
map_or_failure = jsobject->map()->CopyDropTransitions();
|
|
if (map_or_failure->IsFailure()) return map_or_failure;
|
|
Map* new_map = Map::cast(map_or_failure);
|
|
|
|
// Set proto's prototype to be the old prototype of the object.
|
|
new_proto_map->set_prototype(jsobject->GetPrototype());
|
|
proto->set_map(new_proto_map);
|
|
new_proto_map->set_is_hidden_prototype();
|
|
|
|
// Set the object's prototype to proto.
|
|
new_map->set_prototype(proto);
|
|
jsobject->set_map(new_map);
|
|
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_IsConstructCall(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 0);
|
|
JavaScriptFrameIterator it;
|
|
return Heap::ToBoolean(it.frame()->IsConstructor());
|
|
}
|
|
|
|
|
|
// Recursively traverses hidden prototypes if property is not found
|
|
static void GetOwnPropertyImplementation(JSObject* obj,
|
|
String* name,
|
|
LookupResult* result) {
|
|
obj->LocalLookupRealNamedProperty(name, result);
|
|
|
|
if (!result->IsProperty()) {
|
|
Object* proto = obj->GetPrototype();
|
|
if (proto->IsJSObject() &&
|
|
JSObject::cast(proto)->map()->is_hidden_prototype())
|
|
GetOwnPropertyImplementation(JSObject::cast(proto),
|
|
name, result);
|
|
}
|
|
}
|
|
|
|
|
|
// Returns an array with the property description:
|
|
// if args[1] is not a property on args[0]
|
|
// returns undefined
|
|
// if args[1] is a data property on args[0]
|
|
// [false, value, Writeable, Enumerable, Configurable]
|
|
// if args[1] is an accessor on args[0]
|
|
// [true, GetFunction, SetFunction, Enumerable, Configurable]
|
|
static Object* Runtime_GetOwnProperty(Arguments args) {
|
|
ASSERT(args.length() == 2);
|
|
HandleScope scope;
|
|
Handle<FixedArray> elms = Factory::NewFixedArray(5);
|
|
Handle<JSArray> desc = Factory::NewJSArrayWithElements(elms);
|
|
LookupResult result;
|
|
CONVERT_CHECKED(JSObject, obj, args[0]);
|
|
CONVERT_CHECKED(String, name, args[1]);
|
|
|
|
// Use recursive implementation to also traverse hidden prototypes
|
|
GetOwnPropertyImplementation(obj, name, &result);
|
|
|
|
if (!result.IsProperty())
|
|
return Heap::undefined_value();
|
|
|
|
if (result.type() == CALLBACKS) {
|
|
Object* structure = result.GetCallbackObject();
|
|
if (structure->IsProxy() || structure->IsAccessorInfo()) {
|
|
// Property that is internally implemented as a callback or
|
|
// an API defined callback.
|
|
Object* value = obj->GetPropertyWithCallback(
|
|
obj, structure, name, result.holder());
|
|
elms->set(0, Heap::false_value());
|
|
elms->set(1, value);
|
|
elms->set(2, Heap::ToBoolean(!result.IsReadOnly()));
|
|
} else if (structure->IsFixedArray()) {
|
|
// __defineGetter__/__defineSetter__ callback.
|
|
elms->set(0, Heap::true_value());
|
|
elms->set(1, FixedArray::cast(structure)->get(0));
|
|
elms->set(2, FixedArray::cast(structure)->get(1));
|
|
} else {
|
|
return Heap::undefined_value();
|
|
}
|
|
} else {
|
|
elms->set(0, Heap::false_value());
|
|
elms->set(1, result.GetLazyValue());
|
|
elms->set(2, Heap::ToBoolean(!result.IsReadOnly()));
|
|
}
|
|
|
|
elms->set(3, Heap::ToBoolean(!result.IsDontEnum()));
|
|
elms->set(4, Heap::ToBoolean(!result.IsDontDelete()));
|
|
return *desc;
|
|
}
|
|
|
|
|
|
static Object* Runtime_IsExtensible(Arguments args) {
|
|
ASSERT(args.length() == 1);
|
|
CONVERT_CHECKED(JSObject, obj, args[0]);
|
|
return obj->map()->is_extensible() ? Heap::true_value()
|
|
: Heap::false_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_RegExpCompile(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 3);
|
|
CONVERT_ARG_CHECKED(JSRegExp, re, 0);
|
|
CONVERT_ARG_CHECKED(String, pattern, 1);
|
|
CONVERT_ARG_CHECKED(String, flags, 2);
|
|
Handle<Object> result = RegExpImpl::Compile(re, pattern, flags);
|
|
if (result.is_null()) return Failure::Exception();
|
|
return *result;
|
|
}
|
|
|
|
|
|
static Object* Runtime_CreateApiFunction(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
CONVERT_ARG_CHECKED(FunctionTemplateInfo, data, 0);
|
|
return *Factory::CreateApiFunction(data);
|
|
}
|
|
|
|
|
|
static Object* Runtime_IsTemplate(Arguments args) {
|
|
ASSERT(args.length() == 1);
|
|
Object* arg = args[0];
|
|
bool result = arg->IsObjectTemplateInfo() || arg->IsFunctionTemplateInfo();
|
|
return Heap::ToBoolean(result);
|
|
}
|
|
|
|
|
|
static Object* Runtime_GetTemplateField(Arguments args) {
|
|
ASSERT(args.length() == 2);
|
|
CONVERT_CHECKED(HeapObject, templ, args[0]);
|
|
CONVERT_CHECKED(Smi, field, args[1]);
|
|
int index = field->value();
|
|
int offset = index * kPointerSize + HeapObject::kHeaderSize;
|
|
InstanceType type = templ->map()->instance_type();
|
|
RUNTIME_ASSERT(type == FUNCTION_TEMPLATE_INFO_TYPE ||
|
|
type == OBJECT_TEMPLATE_INFO_TYPE);
|
|
RUNTIME_ASSERT(offset > 0);
|
|
if (type == FUNCTION_TEMPLATE_INFO_TYPE) {
|
|
RUNTIME_ASSERT(offset < FunctionTemplateInfo::kSize);
|
|
} else {
|
|
RUNTIME_ASSERT(offset < ObjectTemplateInfo::kSize);
|
|
}
|
|
return *HeapObject::RawField(templ, offset);
|
|
}
|
|
|
|
|
|
static Object* Runtime_DisableAccessChecks(Arguments args) {
|
|
ASSERT(args.length() == 1);
|
|
CONVERT_CHECKED(HeapObject, object, args[0]);
|
|
Map* old_map = object->map();
|
|
bool needs_access_checks = old_map->is_access_check_needed();
|
|
if (needs_access_checks) {
|
|
// Copy map so it won't interfere constructor's initial map.
|
|
Object* new_map = old_map->CopyDropTransitions();
|
|
if (new_map->IsFailure()) return new_map;
|
|
|
|
Map::cast(new_map)->set_is_access_check_needed(false);
|
|
object->set_map(Map::cast(new_map));
|
|
}
|
|
return needs_access_checks ? Heap::true_value() : Heap::false_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_EnableAccessChecks(Arguments args) {
|
|
ASSERT(args.length() == 1);
|
|
CONVERT_CHECKED(HeapObject, object, args[0]);
|
|
Map* old_map = object->map();
|
|
if (!old_map->is_access_check_needed()) {
|
|
// Copy map so it won't interfere constructor's initial map.
|
|
Object* new_map = old_map->CopyDropTransitions();
|
|
if (new_map->IsFailure()) return new_map;
|
|
|
|
Map::cast(new_map)->set_is_access_check_needed(true);
|
|
object->set_map(Map::cast(new_map));
|
|
}
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static Object* ThrowRedeclarationError(const char* type, Handle<String> name) {
|
|
HandleScope scope;
|
|
Handle<Object> type_handle = Factory::NewStringFromAscii(CStrVector(type));
|
|
Handle<Object> args[2] = { type_handle, name };
|
|
Handle<Object> error =
|
|
Factory::NewTypeError("redeclaration", HandleVector(args, 2));
|
|
return Top::Throw(*error);
|
|
}
|
|
|
|
|
|
static Object* Runtime_DeclareGlobals(Arguments args) {
|
|
HandleScope scope;
|
|
Handle<GlobalObject> global = Handle<GlobalObject>(Top::context()->global());
|
|
|
|
Handle<Context> context = args.at<Context>(0);
|
|
CONVERT_ARG_CHECKED(FixedArray, pairs, 1);
|
|
bool is_eval = Smi::cast(args[2])->value() == 1;
|
|
|
|
// Compute the property attributes. According to ECMA-262, section
|
|
// 13, page 71, the property must be read-only and
|
|
// non-deletable. However, neither SpiderMonkey nor KJS creates the
|
|
// property as read-only, so we don't either.
|
|
PropertyAttributes base = is_eval ? NONE : DONT_DELETE;
|
|
|
|
// Traverse the name/value pairs and set the properties.
|
|
int length = pairs->length();
|
|
for (int i = 0; i < length; i += 2) {
|
|
HandleScope scope;
|
|
Handle<String> name(String::cast(pairs->get(i)));
|
|
Handle<Object> value(pairs->get(i + 1));
|
|
|
|
// We have to declare a global const property. To capture we only
|
|
// assign to it when evaluating the assignment for "const x =
|
|
// <expr>" the initial value is the hole.
|
|
bool is_const_property = value->IsTheHole();
|
|
|
|
if (value->IsUndefined() || is_const_property) {
|
|
// Lookup the property in the global object, and don't set the
|
|
// value of the variable if the property is already there.
|
|
LookupResult lookup;
|
|
global->Lookup(*name, &lookup);
|
|
if (lookup.IsProperty()) {
|
|
// Determine if the property is local by comparing the holder
|
|
// against the global object. The information will be used to
|
|
// avoid throwing re-declaration errors when declaring
|
|
// variables or constants that exist in the prototype chain.
|
|
bool is_local = (*global == lookup.holder());
|
|
// Get the property attributes and determine if the property is
|
|
// read-only.
|
|
PropertyAttributes attributes = global->GetPropertyAttribute(*name);
|
|
bool is_read_only = (attributes & READ_ONLY) != 0;
|
|
if (lookup.type() == INTERCEPTOR) {
|
|
// If the interceptor says the property is there, we
|
|
// just return undefined without overwriting the property.
|
|
// Otherwise, we continue to setting the property.
|
|
if (attributes != ABSENT) {
|
|
// Check if the existing property conflicts with regards to const.
|
|
if (is_local && (is_read_only || is_const_property)) {
|
|
const char* type = (is_read_only) ? "const" : "var";
|
|
return ThrowRedeclarationError(type, name);
|
|
};
|
|
// The property already exists without conflicting: Go to
|
|
// the next declaration.
|
|
continue;
|
|
}
|
|
// Fall-through and introduce the absent property by using
|
|
// SetProperty.
|
|
} else {
|
|
if (is_local && (is_read_only || is_const_property)) {
|
|
const char* type = (is_read_only) ? "const" : "var";
|
|
return ThrowRedeclarationError(type, name);
|
|
}
|
|
// The property already exists without conflicting: Go to
|
|
// the next declaration.
|
|
continue;
|
|
}
|
|
}
|
|
} else {
|
|
// Copy the function and update its context. Use it as value.
|
|
Handle<JSFunction> boilerplate = Handle<JSFunction>::cast(value);
|
|
Handle<JSFunction> function =
|
|
Factory::NewFunctionFromBoilerplate(boilerplate, context, TENURED);
|
|
value = function;
|
|
}
|
|
|
|
LookupResult lookup;
|
|
global->LocalLookup(*name, &lookup);
|
|
|
|
PropertyAttributes attributes = is_const_property
|
|
? static_cast<PropertyAttributes>(base | READ_ONLY)
|
|
: base;
|
|
|
|
if (lookup.IsProperty()) {
|
|
// There's a local property that we need to overwrite because
|
|
// we're either declaring a function or there's an interceptor
|
|
// that claims the property is absent.
|
|
|
|
// Check for conflicting re-declarations. We cannot have
|
|
// conflicting types in case of intercepted properties because
|
|
// they are absent.
|
|
if (lookup.type() != INTERCEPTOR &&
|
|
(lookup.IsReadOnly() || is_const_property)) {
|
|
const char* type = (lookup.IsReadOnly()) ? "const" : "var";
|
|
return ThrowRedeclarationError(type, name);
|
|
}
|
|
SetProperty(global, name, value, attributes);
|
|
} else {
|
|
// If a property with this name does not already exist on the
|
|
// global object add the property locally. We take special
|
|
// precautions to always add it as a local property even in case
|
|
// of callbacks in the prototype chain (this rules out using
|
|
// SetProperty). Also, we must use the handle-based version to
|
|
// avoid GC issues.
|
|
IgnoreAttributesAndSetLocalProperty(global, name, value, attributes);
|
|
}
|
|
}
|
|
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_DeclareContextSlot(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 4);
|
|
|
|
CONVERT_ARG_CHECKED(Context, context, 0);
|
|
Handle<String> name(String::cast(args[1]));
|
|
PropertyAttributes mode =
|
|
static_cast<PropertyAttributes>(Smi::cast(args[2])->value());
|
|
ASSERT(mode == READ_ONLY || mode == NONE);
|
|
Handle<Object> initial_value(args[3]);
|
|
|
|
// Declarations are always done in the function context.
|
|
context = Handle<Context>(context->fcontext());
|
|
|
|
int index;
|
|
PropertyAttributes attributes;
|
|
ContextLookupFlags flags = DONT_FOLLOW_CHAINS;
|
|
Handle<Object> holder =
|
|
context->Lookup(name, flags, &index, &attributes);
|
|
|
|
if (attributes != ABSENT) {
|
|
// The name was declared before; check for conflicting
|
|
// re-declarations: This is similar to the code in parser.cc in
|
|
// the AstBuildingParser::Declare function.
|
|
if (((attributes & READ_ONLY) != 0) || (mode == READ_ONLY)) {
|
|
// Functions are not read-only.
|
|
ASSERT(mode != READ_ONLY || initial_value->IsTheHole());
|
|
const char* type = ((attributes & READ_ONLY) != 0) ? "const" : "var";
|
|
return ThrowRedeclarationError(type, name);
|
|
}
|
|
|
|
// Initialize it if necessary.
|
|
if (*initial_value != NULL) {
|
|
if (index >= 0) {
|
|
// The variable or constant context slot should always be in
|
|
// the function context or the arguments object.
|
|
if (holder->IsContext()) {
|
|
ASSERT(holder.is_identical_to(context));
|
|
if (((attributes & READ_ONLY) == 0) ||
|
|
context->get(index)->IsTheHole()) {
|
|
context->set(index, *initial_value);
|
|
}
|
|
} else {
|
|
Handle<JSObject>::cast(holder)->SetElement(index, *initial_value);
|
|
}
|
|
} else {
|
|
// Slow case: The property is not in the FixedArray part of the context.
|
|
Handle<JSObject> context_ext = Handle<JSObject>::cast(holder);
|
|
SetProperty(context_ext, name, initial_value, mode);
|
|
}
|
|
}
|
|
|
|
} else {
|
|
// The property is not in the function context. It needs to be
|
|
// "declared" in the function context's extension context, or in the
|
|
// global context.
|
|
Handle<JSObject> context_ext;
|
|
if (context->has_extension()) {
|
|
// The function context's extension context exists - use it.
|
|
context_ext = Handle<JSObject>(context->extension());
|
|
} else {
|
|
// The function context's extension context does not exists - allocate
|
|
// it.
|
|
context_ext = Factory::NewJSObject(Top::context_extension_function());
|
|
// And store it in the extension slot.
|
|
context->set_extension(*context_ext);
|
|
}
|
|
ASSERT(*context_ext != NULL);
|
|
|
|
// Declare the property by setting it to the initial value if provided,
|
|
// or undefined, and use the correct mode (e.g. READ_ONLY attribute for
|
|
// constant declarations).
|
|
ASSERT(!context_ext->HasLocalProperty(*name));
|
|
Handle<Object> value(Heap::undefined_value());
|
|
if (*initial_value != NULL) value = initial_value;
|
|
SetProperty(context_ext, name, value, mode);
|
|
ASSERT(context_ext->GetLocalPropertyAttribute(*name) == mode);
|
|
}
|
|
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_InitializeVarGlobal(Arguments args) {
|
|
NoHandleAllocation nha;
|
|
|
|
// Determine if we need to assign to the variable if it already
|
|
// exists (based on the number of arguments).
|
|
RUNTIME_ASSERT(args.length() == 1 || args.length() == 2);
|
|
bool assign = args.length() == 2;
|
|
|
|
CONVERT_ARG_CHECKED(String, name, 0);
|
|
GlobalObject* global = Top::context()->global();
|
|
|
|
// According to ECMA-262, section 12.2, page 62, the property must
|
|
// not be deletable.
|
|
PropertyAttributes attributes = DONT_DELETE;
|
|
|
|
// Lookup the property locally in the global object. If it isn't
|
|
// there, there is a property with this name in the prototype chain.
|
|
// We follow Safari and Firefox behavior and only set the property
|
|
// locally if there is an explicit initialization value that we have
|
|
// to assign to the property. When adding the property we take
|
|
// special precautions to always add it as a local property even in
|
|
// case of callbacks in the prototype chain (this rules out using
|
|
// SetProperty). We have IgnoreAttributesAndSetLocalProperty for
|
|
// this.
|
|
// Note that objects can have hidden prototypes, so we need to traverse
|
|
// the whole chain of hidden prototypes to do a 'local' lookup.
|
|
JSObject* real_holder = global;
|
|
LookupResult lookup;
|
|
while (true) {
|
|
real_holder->LocalLookup(*name, &lookup);
|
|
if (lookup.IsProperty()) {
|
|
// Determine if this is a redeclaration of something read-only.
|
|
if (lookup.IsReadOnly()) {
|
|
// If we found readonly property on one of hidden prototypes,
|
|
// just shadow it.
|
|
if (real_holder != Top::context()->global()) break;
|
|
return ThrowRedeclarationError("const", name);
|
|
}
|
|
|
|
// Determine if this is a redeclaration of an intercepted read-only
|
|
// property and figure out if the property exists at all.
|
|
bool found = true;
|
|
PropertyType type = lookup.type();
|
|
if (type == INTERCEPTOR) {
|
|
HandleScope handle_scope;
|
|
Handle<JSObject> holder(real_holder);
|
|
PropertyAttributes intercepted = holder->GetPropertyAttribute(*name);
|
|
real_holder = *holder;
|
|
if (intercepted == ABSENT) {
|
|
// The interceptor claims the property isn't there. We need to
|
|
// make sure to introduce it.
|
|
found = false;
|
|
} else if ((intercepted & READ_ONLY) != 0) {
|
|
// The property is present, but read-only. Since we're trying to
|
|
// overwrite it with a variable declaration we must throw a
|
|
// re-declaration error. However if we found readonly property
|
|
// on one of hidden prototypes, just shadow it.
|
|
if (real_holder != Top::context()->global()) break;
|
|
return ThrowRedeclarationError("const", name);
|
|
}
|
|
}
|
|
|
|
if (found && !assign) {
|
|
// The global property is there and we're not assigning any value
|
|
// to it. Just return.
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
// Assign the value (or undefined) to the property.
|
|
Object* value = (assign) ? args[1] : Heap::undefined_value();
|
|
return real_holder->SetProperty(&lookup, *name, value, attributes);
|
|
}
|
|
|
|
Object* proto = real_holder->GetPrototype();
|
|
if (!proto->IsJSObject())
|
|
break;
|
|
|
|
if (!JSObject::cast(proto)->map()->is_hidden_prototype())
|
|
break;
|
|
|
|
real_holder = JSObject::cast(proto);
|
|
}
|
|
|
|
global = Top::context()->global();
|
|
if (assign) {
|
|
return global->IgnoreAttributesAndSetLocalProperty(*name,
|
|
args[1],
|
|
attributes);
|
|
}
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_InitializeConstGlobal(Arguments args) {
|
|
// All constants are declared with an initial value. The name
|
|
// of the constant is the first argument and the initial value
|
|
// is the second.
|
|
RUNTIME_ASSERT(args.length() == 2);
|
|
CONVERT_ARG_CHECKED(String, name, 0);
|
|
Handle<Object> value = args.at<Object>(1);
|
|
|
|
// Get the current global object from top.
|
|
GlobalObject* global = Top::context()->global();
|
|
|
|
// According to ECMA-262, section 12.2, page 62, the property must
|
|
// not be deletable. Since it's a const, it must be READ_ONLY too.
|
|
PropertyAttributes attributes =
|
|
static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY);
|
|
|
|
// Lookup the property locally in the global object. If it isn't
|
|
// there, we add the property and take special precautions to always
|
|
// add it as a local property even in case of callbacks in the
|
|
// prototype chain (this rules out using SetProperty).
|
|
// We use IgnoreAttributesAndSetLocalProperty instead
|
|
LookupResult lookup;
|
|
global->LocalLookup(*name, &lookup);
|
|
if (!lookup.IsProperty()) {
|
|
return global->IgnoreAttributesAndSetLocalProperty(*name,
|
|
*value,
|
|
attributes);
|
|
}
|
|
|
|
// Determine if this is a redeclaration of something not
|
|
// read-only. In case the result is hidden behind an interceptor we
|
|
// need to ask it for the property attributes.
|
|
if (!lookup.IsReadOnly()) {
|
|
if (lookup.type() != INTERCEPTOR) {
|
|
return ThrowRedeclarationError("var", name);
|
|
}
|
|
|
|
PropertyAttributes intercepted = global->GetPropertyAttribute(*name);
|
|
|
|
// Throw re-declaration error if the intercepted property is present
|
|
// but not read-only.
|
|
if (intercepted != ABSENT && (intercepted & READ_ONLY) == 0) {
|
|
return ThrowRedeclarationError("var", name);
|
|
}
|
|
|
|
// Restore global object from context (in case of GC) and continue
|
|
// with setting the value because the property is either absent or
|
|
// read-only. We also have to do redo the lookup.
|
|
global = Top::context()->global();
|
|
|
|
// BUG 1213579: Handle the case where we have to set a read-only
|
|
// property through an interceptor and only do it if it's
|
|
// uninitialized, e.g. the hole. Nirk...
|
|
global->SetProperty(*name, *value, attributes);
|
|
return *value;
|
|
}
|
|
|
|
// Set the value, but only we're assigning the initial value to a
|
|
// constant. For now, we determine this by checking if the
|
|
// current value is the hole.
|
|
PropertyType type = lookup.type();
|
|
if (type == FIELD) {
|
|
FixedArray* properties = global->properties();
|
|
int index = lookup.GetFieldIndex();
|
|
if (properties->get(index)->IsTheHole()) {
|
|
properties->set(index, *value);
|
|
}
|
|
} else if (type == NORMAL) {
|
|
if (global->GetNormalizedProperty(&lookup)->IsTheHole()) {
|
|
global->SetNormalizedProperty(&lookup, *value);
|
|
}
|
|
} else {
|
|
// Ignore re-initialization of constants that have already been
|
|
// assigned a function value.
|
|
ASSERT(lookup.IsReadOnly() && type == CONSTANT_FUNCTION);
|
|
}
|
|
|
|
// Use the set value as the result of the operation.
|
|
return *value;
|
|
}
|
|
|
|
|
|
static Object* Runtime_InitializeConstContextSlot(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 3);
|
|
|
|
Handle<Object> value(args[0]);
|
|
ASSERT(!value->IsTheHole());
|
|
CONVERT_ARG_CHECKED(Context, context, 1);
|
|
Handle<String> name(String::cast(args[2]));
|
|
|
|
// Initializations are always done in the function context.
|
|
context = Handle<Context>(context->fcontext());
|
|
|
|
int index;
|
|
PropertyAttributes attributes;
|
|
ContextLookupFlags flags = FOLLOW_CHAINS;
|
|
Handle<Object> holder =
|
|
context->Lookup(name, flags, &index, &attributes);
|
|
|
|
// In most situations, the property introduced by the const
|
|
// declaration should be present in the context extension object.
|
|
// However, because declaration and initialization are separate, the
|
|
// property might have been deleted (if it was introduced by eval)
|
|
// before we reach the initialization point.
|
|
//
|
|
// Example:
|
|
//
|
|
// function f() { eval("delete x; const x;"); }
|
|
//
|
|
// In that case, the initialization behaves like a normal assignment
|
|
// to property 'x'.
|
|
if (index >= 0) {
|
|
// Property was found in a context.
|
|
if (holder->IsContext()) {
|
|
// The holder cannot be the function context. If it is, there
|
|
// should have been a const redeclaration error when declaring
|
|
// the const property.
|
|
ASSERT(!holder.is_identical_to(context));
|
|
if ((attributes & READ_ONLY) == 0) {
|
|
Handle<Context>::cast(holder)->set(index, *value);
|
|
}
|
|
} else {
|
|
// The holder is an arguments object.
|
|
ASSERT((attributes & READ_ONLY) == 0);
|
|
Handle<JSObject>::cast(holder)->SetElement(index, *value);
|
|
}
|
|
return *value;
|
|
}
|
|
|
|
// The property could not be found, we introduce it in the global
|
|
// context.
|
|
if (attributes == ABSENT) {
|
|
Handle<JSObject> global = Handle<JSObject>(Top::context()->global());
|
|
SetProperty(global, name, value, NONE);
|
|
return *value;
|
|
}
|
|
|
|
// The property was present in a context extension object.
|
|
Handle<JSObject> context_ext = Handle<JSObject>::cast(holder);
|
|
|
|
if (*context_ext == context->extension()) {
|
|
// This is the property that was introduced by the const
|
|
// declaration. Set it if it hasn't been set before. NOTE: We
|
|
// cannot use GetProperty() to get the current value as it
|
|
// 'unholes' the value.
|
|
LookupResult lookup;
|
|
context_ext->LocalLookupRealNamedProperty(*name, &lookup);
|
|
ASSERT(lookup.IsProperty()); // the property was declared
|
|
ASSERT(lookup.IsReadOnly()); // and it was declared as read-only
|
|
|
|
PropertyType type = lookup.type();
|
|
if (type == FIELD) {
|
|
FixedArray* properties = context_ext->properties();
|
|
int index = lookup.GetFieldIndex();
|
|
if (properties->get(index)->IsTheHole()) {
|
|
properties->set(index, *value);
|
|
}
|
|
} else if (type == NORMAL) {
|
|
if (context_ext->GetNormalizedProperty(&lookup)->IsTheHole()) {
|
|
context_ext->SetNormalizedProperty(&lookup, *value);
|
|
}
|
|
} else {
|
|
// We should not reach here. Any real, named property should be
|
|
// either a field or a dictionary slot.
|
|
UNREACHABLE();
|
|
}
|
|
} else {
|
|
// The property was found in a different context extension object.
|
|
// Set it if it is not a read-only property.
|
|
if ((attributes & READ_ONLY) == 0) {
|
|
Handle<Object> set = SetProperty(context_ext, name, value, attributes);
|
|
// Setting a property might throw an exception. Exceptions
|
|
// are converted to empty handles in handle operations. We
|
|
// need to convert back to exceptions here.
|
|
if (set.is_null()) {
|
|
ASSERT(Top::has_pending_exception());
|
|
return Failure::Exception();
|
|
}
|
|
}
|
|
}
|
|
|
|
return *value;
|
|
}
|
|
|
|
|
|
static Object* Runtime_OptimizeObjectForAddingMultipleProperties(
|
|
Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 2);
|
|
CONVERT_ARG_CHECKED(JSObject, object, 0);
|
|
CONVERT_SMI_CHECKED(properties, args[1]);
|
|
if (object->HasFastProperties()) {
|
|
NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, properties);
|
|
}
|
|
return *object;
|
|
}
|
|
|
|
|
|
static Object* Runtime_RegExpExec(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 4);
|
|
CONVERT_ARG_CHECKED(JSRegExp, regexp, 0);
|
|
CONVERT_ARG_CHECKED(String, subject, 1);
|
|
// Due to the way the JS calls are constructed this must be less than the
|
|
// length of a string, i.e. it is always a Smi. We check anyway for security.
|
|
CONVERT_SMI_CHECKED(index, args[2]);
|
|
CONVERT_ARG_CHECKED(JSArray, last_match_info, 3);
|
|
RUNTIME_ASSERT(last_match_info->HasFastElements());
|
|
RUNTIME_ASSERT(index >= 0);
|
|
RUNTIME_ASSERT(index <= subject->length());
|
|
Counters::regexp_entry_runtime.Increment();
|
|
Handle<Object> result = RegExpImpl::Exec(regexp,
|
|
subject,
|
|
index,
|
|
last_match_info);
|
|
if (result.is_null()) return Failure::Exception();
|
|
return *result;
|
|
}
|
|
|
|
|
|
static Object* Runtime_FinishArrayPrototypeSetup(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
CONVERT_ARG_CHECKED(JSArray, prototype, 0);
|
|
// This is necessary to enable fast checks for absence of elements
|
|
// on Array.prototype and below.
|
|
prototype->set_elements(Heap::empty_fixed_array());
|
|
return Smi::FromInt(0);
|
|
}
|
|
|
|
|
|
static void SetCustomCallGenerator(Handle<JSFunction> function,
|
|
CustomCallGenerator generator) {
|
|
if (function->shared()->function_data()->IsUndefined()) {
|
|
function->shared()->set_function_data(*FromCData(generator));
|
|
}
|
|
}
|
|
|
|
|
|
static Handle<JSFunction> InstallBuiltin(Handle<JSObject> holder,
|
|
const char* name,
|
|
Builtins::Name builtin_name,
|
|
CustomCallGenerator generator = NULL) {
|
|
Handle<String> key = Factory::LookupAsciiSymbol(name);
|
|
Handle<Code> code(Builtins::builtin(builtin_name));
|
|
Handle<JSFunction> optimized = Factory::NewFunction(key,
|
|
JS_OBJECT_TYPE,
|
|
JSObject::kHeaderSize,
|
|
code,
|
|
false);
|
|
optimized->shared()->DontAdaptArguments();
|
|
if (generator != NULL) {
|
|
SetCustomCallGenerator(optimized, generator);
|
|
}
|
|
SetProperty(holder, key, optimized, NONE);
|
|
return optimized;
|
|
}
|
|
|
|
|
|
static Object* CompileArrayPushCall(CallStubCompiler* compiler,
|
|
Object* object,
|
|
JSObject* holder,
|
|
JSFunction* function,
|
|
String* name,
|
|
StubCompiler::CheckType check) {
|
|
return compiler->CompileArrayPushCall(object, holder, function, name, check);
|
|
}
|
|
|
|
|
|
static Object* Runtime_SpecialArrayFunctions(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
CONVERT_ARG_CHECKED(JSObject, holder, 0);
|
|
|
|
InstallBuiltin(holder, "pop", Builtins::ArrayPop);
|
|
InstallBuiltin(holder, "push", Builtins::ArrayPush, CompileArrayPushCall);
|
|
InstallBuiltin(holder, "shift", Builtins::ArrayShift);
|
|
InstallBuiltin(holder, "unshift", Builtins::ArrayUnshift);
|
|
InstallBuiltin(holder, "slice", Builtins::ArraySlice);
|
|
InstallBuiltin(holder, "splice", Builtins::ArraySplice);
|
|
|
|
return *holder;
|
|
}
|
|
|
|
|
|
static Object* Runtime_MaterializeRegExpLiteral(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 4);
|
|
CONVERT_ARG_CHECKED(FixedArray, literals, 0);
|
|
int index = Smi::cast(args[1])->value();
|
|
Handle<String> pattern = args.at<String>(2);
|
|
Handle<String> flags = args.at<String>(3);
|
|
|
|
// Get the RegExp function from the context in the literals array.
|
|
// This is the RegExp function from the context in which the
|
|
// function was created. We do not use the RegExp function from the
|
|
// current global context because this might be the RegExp function
|
|
// from another context which we should not have access to.
|
|
Handle<JSFunction> constructor =
|
|
Handle<JSFunction>(
|
|
JSFunction::GlobalContextFromLiterals(*literals)->regexp_function());
|
|
// Compute the regular expression literal.
|
|
bool has_pending_exception;
|
|
Handle<Object> regexp =
|
|
RegExpImpl::CreateRegExpLiteral(constructor, pattern, flags,
|
|
&has_pending_exception);
|
|
if (has_pending_exception) {
|
|
ASSERT(Top::has_pending_exception());
|
|
return Failure::Exception();
|
|
}
|
|
literals->set(index, *regexp);
|
|
return *regexp;
|
|
}
|
|
|
|
|
|
static Object* Runtime_FunctionGetName(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_CHECKED(JSFunction, f, args[0]);
|
|
return f->shared()->name();
|
|
}
|
|
|
|
|
|
static Object* Runtime_FunctionSetName(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_CHECKED(JSFunction, f, args[0]);
|
|
CONVERT_CHECKED(String, name, args[1]);
|
|
f->shared()->set_name(name);
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_FunctionGetScript(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_CHECKED(JSFunction, fun, args[0]);
|
|
Handle<Object> script = Handle<Object>(fun->shared()->script());
|
|
if (!script->IsScript()) return Heap::undefined_value();
|
|
|
|
return *GetScriptWrapper(Handle<Script>::cast(script));
|
|
}
|
|
|
|
|
|
static Object* Runtime_FunctionGetSourceCode(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_CHECKED(JSFunction, f, args[0]);
|
|
return f->shared()->GetSourceCode();
|
|
}
|
|
|
|
|
|
static Object* Runtime_FunctionGetScriptSourcePosition(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_CHECKED(JSFunction, fun, args[0]);
|
|
int pos = fun->shared()->start_position();
|
|
return Smi::FromInt(pos);
|
|
}
|
|
|
|
|
|
static Object* Runtime_FunctionGetPositionForOffset(Arguments args) {
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_CHECKED(JSFunction, fun, args[0]);
|
|
CONVERT_NUMBER_CHECKED(int, offset, Int32, args[1]);
|
|
|
|
Code* code = fun->code();
|
|
RUNTIME_ASSERT(0 <= offset && offset < code->Size());
|
|
|
|
Address pc = code->address() + offset;
|
|
return Smi::FromInt(fun->code()->SourcePosition(pc));
|
|
}
|
|
|
|
|
|
|
|
static Object* Runtime_FunctionSetInstanceClassName(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_CHECKED(JSFunction, fun, args[0]);
|
|
CONVERT_CHECKED(String, name, args[1]);
|
|
fun->SetInstanceClassName(name);
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_FunctionSetLength(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_CHECKED(JSFunction, fun, args[0]);
|
|
CONVERT_CHECKED(Smi, length, args[1]);
|
|
fun->shared()->set_length(length->value());
|
|
return length;
|
|
}
|
|
|
|
|
|
static Object* Runtime_FunctionSetPrototype(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_CHECKED(JSFunction, fun, args[0]);
|
|
Object* obj = Accessors::FunctionSetPrototype(fun, args[1], NULL);
|
|
if (obj->IsFailure()) return obj;
|
|
return args[0]; // return TOS
|
|
}
|
|
|
|
|
|
static Object* Runtime_FunctionIsAPIFunction(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_CHECKED(JSFunction, f, args[0]);
|
|
return f->shared()->IsApiFunction() ? Heap::true_value()
|
|
: Heap::false_value();
|
|
}
|
|
|
|
static Object* Runtime_FunctionIsBuiltin(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_CHECKED(JSFunction, f, args[0]);
|
|
return f->IsBuiltin() ? Heap::true_value() : Heap::false_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_SetCode(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_ARG_CHECKED(JSFunction, target, 0);
|
|
Handle<Object> code = args.at<Object>(1);
|
|
|
|
Handle<Context> context(target->context());
|
|
|
|
if (!code->IsNull()) {
|
|
RUNTIME_ASSERT(code->IsJSFunction());
|
|
Handle<JSFunction> fun = Handle<JSFunction>::cast(code);
|
|
Handle<SharedFunctionInfo> shared(fun->shared());
|
|
SetExpectedNofProperties(target, shared->expected_nof_properties());
|
|
|
|
if (!EnsureCompiled(shared, KEEP_EXCEPTION)) {
|
|
return Failure::Exception();
|
|
}
|
|
// Set the code, formal parameter count, and the length of the target
|
|
// function.
|
|
target->set_code(fun->code());
|
|
target->shared()->set_length(shared->length());
|
|
target->shared()->set_formal_parameter_count(
|
|
shared->formal_parameter_count());
|
|
// Set the source code of the target function to undefined.
|
|
// SetCode is only used for built-in constructors like String,
|
|
// Array, and Object, and some web code
|
|
// doesn't like seeing source code for constructors.
|
|
target->shared()->set_script(Heap::undefined_value());
|
|
// Clear the optimization hints related to the compiled code as these are no
|
|
// longer valid when the code is overwritten.
|
|
target->shared()->ClearThisPropertyAssignmentsInfo();
|
|
context = Handle<Context>(fun->context());
|
|
|
|
// Make sure we get a fresh copy of the literal vector to avoid
|
|
// cross context contamination.
|
|
int number_of_literals = fun->NumberOfLiterals();
|
|
Handle<FixedArray> literals =
|
|
Factory::NewFixedArray(number_of_literals, TENURED);
|
|
if (number_of_literals > 0) {
|
|
// Insert the object, regexp and array functions in the literals
|
|
// array prefix. These are the functions that will be used when
|
|
// creating object, regexp and array literals.
|
|
literals->set(JSFunction::kLiteralGlobalContextIndex,
|
|
context->global_context());
|
|
}
|
|
// It's okay to skip the write barrier here because the literals
|
|
// are guaranteed to be in old space.
|
|
target->set_literals(*literals, SKIP_WRITE_BARRIER);
|
|
}
|
|
|
|
target->set_context(*context);
|
|
return *target;
|
|
}
|
|
|
|
|
|
static Object* CharCodeAt(String* subject, Object* index) {
|
|
uint32_t i = 0;
|
|
if (!Array::IndexFromObject(index, &i)) return Heap::nan_value();
|
|
// Flatten the string. If someone wants to get a char at an index
|
|
// in a cons string, it is likely that more indices will be
|
|
// accessed.
|
|
Object* flat = subject->TryFlatten();
|
|
if (flat->IsFailure()) return flat;
|
|
subject = String::cast(flat);
|
|
if (i >= static_cast<uint32_t>(subject->length())) {
|
|
return Heap::nan_value();
|
|
}
|
|
return Smi::FromInt(subject->Get(i));
|
|
}
|
|
|
|
|
|
static Object* CharFromCode(Object* char_code) {
|
|
uint32_t code;
|
|
if (Array::IndexFromObject(char_code, &code)) {
|
|
if (code <= 0xffff) {
|
|
return Heap::LookupSingleCharacterStringFromCode(code);
|
|
}
|
|
}
|
|
return Heap::empty_string();
|
|
}
|
|
|
|
|
|
static Object* Runtime_StringCharCodeAt(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_CHECKED(String, subject, args[0]);
|
|
Object* index = args[1];
|
|
return CharCodeAt(subject, index);
|
|
}
|
|
|
|
|
|
static Object* Runtime_StringCharAt(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_CHECKED(String, subject, args[0]);
|
|
Object* index = args[1];
|
|
Object* code = CharCodeAt(subject, index);
|
|
if (code == Heap::nan_value()) {
|
|
return Heap::undefined_value();
|
|
}
|
|
return CharFromCode(code);
|
|
}
|
|
|
|
|
|
static Object* Runtime_CharFromCode(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
return CharFromCode(args[0]);
|
|
}
|
|
|
|
// Forward declarations.
|
|
static const int kStringBuilderConcatHelperLengthBits = 11;
|
|
static const int kStringBuilderConcatHelperPositionBits = 19;
|
|
|
|
template <typename schar>
|
|
static inline void StringBuilderConcatHelper(String*,
|
|
schar*,
|
|
FixedArray*,
|
|
int);
|
|
|
|
typedef BitField<int, 0, 11> StringBuilderSubstringLength;
|
|
typedef BitField<int, 11, 19> StringBuilderSubstringPosition;
|
|
|
|
class ReplacementStringBuilder {
|
|
public:
|
|
ReplacementStringBuilder(Handle<String> subject, int estimated_part_count)
|
|
: subject_(subject),
|
|
parts_(Factory::NewFixedArray(estimated_part_count)),
|
|
part_count_(0),
|
|
character_count_(0),
|
|
is_ascii_(subject->IsAsciiRepresentation()) {
|
|
// Require a non-zero initial size. Ensures that doubling the size to
|
|
// extend the array will work.
|
|
ASSERT(estimated_part_count > 0);
|
|
}
|
|
|
|
void EnsureCapacity(int elements) {
|
|
int length = parts_->length();
|
|
int required_length = part_count_ + elements;
|
|
if (length < required_length) {
|
|
int new_length = length;
|
|
do {
|
|
new_length *= 2;
|
|
} while (new_length < required_length);
|
|
Handle<FixedArray> extended_array =
|
|
Factory::NewFixedArray(new_length);
|
|
parts_->CopyTo(0, *extended_array, 0, part_count_);
|
|
parts_ = extended_array;
|
|
}
|
|
}
|
|
|
|
void AddSubjectSlice(int from, int to) {
|
|
ASSERT(from >= 0);
|
|
int length = to - from;
|
|
ASSERT(length > 0);
|
|
// Can we encode the slice in 11 bits for length and 19 bits for
|
|
// start position - as used by StringBuilderConcatHelper?
|
|
if (StringBuilderSubstringLength::is_valid(length) &&
|
|
StringBuilderSubstringPosition::is_valid(from)) {
|
|
int encoded_slice = StringBuilderSubstringLength::encode(length) |
|
|
StringBuilderSubstringPosition::encode(from);
|
|
AddElement(Smi::FromInt(encoded_slice));
|
|
} else {
|
|
// Otherwise encode as two smis.
|
|
AddElement(Smi::FromInt(-length));
|
|
AddElement(Smi::FromInt(from));
|
|
}
|
|
IncrementCharacterCount(length);
|
|
}
|
|
|
|
|
|
void AddString(Handle<String> string) {
|
|
int length = string->length();
|
|
ASSERT(length > 0);
|
|
AddElement(*string);
|
|
if (!string->IsAsciiRepresentation()) {
|
|
is_ascii_ = false;
|
|
}
|
|
IncrementCharacterCount(length);
|
|
}
|
|
|
|
|
|
Handle<String> ToString() {
|
|
if (part_count_ == 0) {
|
|
return Factory::empty_string();
|
|
}
|
|
|
|
Handle<String> joined_string;
|
|
if (is_ascii_) {
|
|
joined_string = NewRawAsciiString(character_count_);
|
|
AssertNoAllocation no_alloc;
|
|
SeqAsciiString* seq = SeqAsciiString::cast(*joined_string);
|
|
char* char_buffer = seq->GetChars();
|
|
StringBuilderConcatHelper(*subject_,
|
|
char_buffer,
|
|
*parts_,
|
|
part_count_);
|
|
} else {
|
|
// Non-ASCII.
|
|
joined_string = NewRawTwoByteString(character_count_);
|
|
AssertNoAllocation no_alloc;
|
|
SeqTwoByteString* seq = SeqTwoByteString::cast(*joined_string);
|
|
uc16* char_buffer = seq->GetChars();
|
|
StringBuilderConcatHelper(*subject_,
|
|
char_buffer,
|
|
*parts_,
|
|
part_count_);
|
|
}
|
|
return joined_string;
|
|
}
|
|
|
|
|
|
void IncrementCharacterCount(int by) {
|
|
if (character_count_ > String::kMaxLength - by) {
|
|
V8::FatalProcessOutOfMemory("String.replace result too large.");
|
|
}
|
|
character_count_ += by;
|
|
}
|
|
|
|
private:
|
|
|
|
Handle<String> NewRawAsciiString(int size) {
|
|
CALL_HEAP_FUNCTION(Heap::AllocateRawAsciiString(size), String);
|
|
}
|
|
|
|
|
|
Handle<String> NewRawTwoByteString(int size) {
|
|
CALL_HEAP_FUNCTION(Heap::AllocateRawTwoByteString(size), String);
|
|
}
|
|
|
|
|
|
void AddElement(Object* element) {
|
|
ASSERT(element->IsSmi() || element->IsString());
|
|
ASSERT(parts_->length() > part_count_);
|
|
parts_->set(part_count_, element);
|
|
part_count_++;
|
|
}
|
|
|
|
Handle<String> subject_;
|
|
Handle<FixedArray> parts_;
|
|
int part_count_;
|
|
int character_count_;
|
|
bool is_ascii_;
|
|
};
|
|
|
|
|
|
class CompiledReplacement {
|
|
public:
|
|
CompiledReplacement()
|
|
: parts_(1), replacement_substrings_(0) {}
|
|
|
|
void Compile(Handle<String> replacement,
|
|
int capture_count,
|
|
int subject_length);
|
|
|
|
void Apply(ReplacementStringBuilder* builder,
|
|
int match_from,
|
|
int match_to,
|
|
Handle<JSArray> last_match_info);
|
|
|
|
// Number of distinct parts of the replacement pattern.
|
|
int parts() {
|
|
return parts_.length();
|
|
}
|
|
private:
|
|
enum PartType {
|
|
SUBJECT_PREFIX = 1,
|
|
SUBJECT_SUFFIX,
|
|
SUBJECT_CAPTURE,
|
|
REPLACEMENT_SUBSTRING,
|
|
REPLACEMENT_STRING,
|
|
|
|
NUMBER_OF_PART_TYPES
|
|
};
|
|
|
|
struct ReplacementPart {
|
|
static inline ReplacementPart SubjectMatch() {
|
|
return ReplacementPart(SUBJECT_CAPTURE, 0);
|
|
}
|
|
static inline ReplacementPart SubjectCapture(int capture_index) {
|
|
return ReplacementPart(SUBJECT_CAPTURE, capture_index);
|
|
}
|
|
static inline ReplacementPart SubjectPrefix() {
|
|
return ReplacementPart(SUBJECT_PREFIX, 0);
|
|
}
|
|
static inline ReplacementPart SubjectSuffix(int subject_length) {
|
|
return ReplacementPart(SUBJECT_SUFFIX, subject_length);
|
|
}
|
|
static inline ReplacementPart ReplacementString() {
|
|
return ReplacementPart(REPLACEMENT_STRING, 0);
|
|
}
|
|
static inline ReplacementPart ReplacementSubString(int from, int to) {
|
|
ASSERT(from >= 0);
|
|
ASSERT(to > from);
|
|
return ReplacementPart(-from, to);
|
|
}
|
|
|
|
// If tag <= 0 then it is the negation of a start index of a substring of
|
|
// the replacement pattern, otherwise it's a value from PartType.
|
|
ReplacementPart(int tag, int data)
|
|
: tag(tag), data(data) {
|
|
// Must be non-positive or a PartType value.
|
|
ASSERT(tag < NUMBER_OF_PART_TYPES);
|
|
}
|
|
// Either a value of PartType or a non-positive number that is
|
|
// the negation of an index into the replacement string.
|
|
int tag;
|
|
// The data value's interpretation depends on the value of tag:
|
|
// tag == SUBJECT_PREFIX ||
|
|
// tag == SUBJECT_SUFFIX: data is unused.
|
|
// tag == SUBJECT_CAPTURE: data is the number of the capture.
|
|
// tag == REPLACEMENT_SUBSTRING ||
|
|
// tag == REPLACEMENT_STRING: data is index into array of substrings
|
|
// of the replacement string.
|
|
// tag <= 0: Temporary representation of the substring of the replacement
|
|
// string ranging over -tag .. data.
|
|
// Is replaced by REPLACEMENT_{SUB,}STRING when we create the
|
|
// substring objects.
|
|
int data;
|
|
};
|
|
|
|
template<typename Char>
|
|
static void ParseReplacementPattern(ZoneList<ReplacementPart>* parts,
|
|
Vector<Char> characters,
|
|
int capture_count,
|
|
int subject_length) {
|
|
int length = characters.length();
|
|
int last = 0;
|
|
for (int i = 0; i < length; i++) {
|
|
Char c = characters[i];
|
|
if (c == '$') {
|
|
int next_index = i + 1;
|
|
if (next_index == length) { // No next character!
|
|
break;
|
|
}
|
|
Char c2 = characters[next_index];
|
|
switch (c2) {
|
|
case '$':
|
|
if (i > last) {
|
|
// There is a substring before. Include the first "$".
|
|
parts->Add(ReplacementPart::ReplacementSubString(last, next_index));
|
|
last = next_index + 1; // Continue after the second "$".
|
|
} else {
|
|
// Let the next substring start with the second "$".
|
|
last = next_index;
|
|
}
|
|
i = next_index;
|
|
break;
|
|
case '`':
|
|
if (i > last) {
|
|
parts->Add(ReplacementPart::ReplacementSubString(last, i));
|
|
}
|
|
parts->Add(ReplacementPart::SubjectPrefix());
|
|
i = next_index;
|
|
last = i + 1;
|
|
break;
|
|
case '\'':
|
|
if (i > last) {
|
|
parts->Add(ReplacementPart::ReplacementSubString(last, i));
|
|
}
|
|
parts->Add(ReplacementPart::SubjectSuffix(subject_length));
|
|
i = next_index;
|
|
last = i + 1;
|
|
break;
|
|
case '&':
|
|
if (i > last) {
|
|
parts->Add(ReplacementPart::ReplacementSubString(last, i));
|
|
}
|
|
parts->Add(ReplacementPart::SubjectMatch());
|
|
i = next_index;
|
|
last = i + 1;
|
|
break;
|
|
case '0':
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
case '8':
|
|
case '9': {
|
|
int capture_ref = c2 - '0';
|
|
if (capture_ref > capture_count) {
|
|
i = next_index;
|
|
continue;
|
|
}
|
|
int second_digit_index = next_index + 1;
|
|
if (second_digit_index < length) {
|
|
// Peek ahead to see if we have two digits.
|
|
Char c3 = characters[second_digit_index];
|
|
if ('0' <= c3 && c3 <= '9') { // Double digits.
|
|
int double_digit_ref = capture_ref * 10 + c3 - '0';
|
|
if (double_digit_ref <= capture_count) {
|
|
next_index = second_digit_index;
|
|
capture_ref = double_digit_ref;
|
|
}
|
|
}
|
|
}
|
|
if (capture_ref > 0) {
|
|
if (i > last) {
|
|
parts->Add(ReplacementPart::ReplacementSubString(last, i));
|
|
}
|
|
ASSERT(capture_ref <= capture_count);
|
|
parts->Add(ReplacementPart::SubjectCapture(capture_ref));
|
|
last = next_index + 1;
|
|
}
|
|
i = next_index;
|
|
break;
|
|
}
|
|
default:
|
|
i = next_index;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (length > last) {
|
|
if (last == 0) {
|
|
parts->Add(ReplacementPart::ReplacementString());
|
|
} else {
|
|
parts->Add(ReplacementPart::ReplacementSubString(last, length));
|
|
}
|
|
}
|
|
}
|
|
|
|
ZoneList<ReplacementPart> parts_;
|
|
ZoneList<Handle<String> > replacement_substrings_;
|
|
};
|
|
|
|
|
|
void CompiledReplacement::Compile(Handle<String> replacement,
|
|
int capture_count,
|
|
int subject_length) {
|
|
ASSERT(replacement->IsFlat());
|
|
if (replacement->IsAsciiRepresentation()) {
|
|
AssertNoAllocation no_alloc;
|
|
ParseReplacementPattern(&parts_,
|
|
replacement->ToAsciiVector(),
|
|
capture_count,
|
|
subject_length);
|
|
} else {
|
|
ASSERT(replacement->IsTwoByteRepresentation());
|
|
AssertNoAllocation no_alloc;
|
|
|
|
ParseReplacementPattern(&parts_,
|
|
replacement->ToUC16Vector(),
|
|
capture_count,
|
|
subject_length);
|
|
}
|
|
// Find substrings of replacement string and create them as String objects.
|
|
int substring_index = 0;
|
|
for (int i = 0, n = parts_.length(); i < n; i++) {
|
|
int tag = parts_[i].tag;
|
|
if (tag <= 0) { // A replacement string slice.
|
|
int from = -tag;
|
|
int to = parts_[i].data;
|
|
replacement_substrings_.Add(Factory::NewSubString(replacement, from, to));
|
|
parts_[i].tag = REPLACEMENT_SUBSTRING;
|
|
parts_[i].data = substring_index;
|
|
substring_index++;
|
|
} else if (tag == REPLACEMENT_STRING) {
|
|
replacement_substrings_.Add(replacement);
|
|
parts_[i].data = substring_index;
|
|
substring_index++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void CompiledReplacement::Apply(ReplacementStringBuilder* builder,
|
|
int match_from,
|
|
int match_to,
|
|
Handle<JSArray> last_match_info) {
|
|
for (int i = 0, n = parts_.length(); i < n; i++) {
|
|
ReplacementPart part = parts_[i];
|
|
switch (part.tag) {
|
|
case SUBJECT_PREFIX:
|
|
if (match_from > 0) builder->AddSubjectSlice(0, match_from);
|
|
break;
|
|
case SUBJECT_SUFFIX: {
|
|
int subject_length = part.data;
|
|
if (match_to < subject_length) {
|
|
builder->AddSubjectSlice(match_to, subject_length);
|
|
}
|
|
break;
|
|
}
|
|
case SUBJECT_CAPTURE: {
|
|
int capture = part.data;
|
|
FixedArray* match_info = FixedArray::cast(last_match_info->elements());
|
|
int from = RegExpImpl::GetCapture(match_info, capture * 2);
|
|
int to = RegExpImpl::GetCapture(match_info, capture * 2 + 1);
|
|
if (from >= 0 && to > from) {
|
|
builder->AddSubjectSlice(from, to);
|
|
}
|
|
break;
|
|
}
|
|
case REPLACEMENT_SUBSTRING:
|
|
case REPLACEMENT_STRING:
|
|
builder->AddString(replacement_substrings_[part.data]);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static Object* StringReplaceRegExpWithString(String* subject,
|
|
JSRegExp* regexp,
|
|
String* replacement,
|
|
JSArray* last_match_info) {
|
|
ASSERT(subject->IsFlat());
|
|
ASSERT(replacement->IsFlat());
|
|
|
|
HandleScope handles;
|
|
|
|
int length = subject->length();
|
|
Handle<String> subject_handle(subject);
|
|
Handle<JSRegExp> regexp_handle(regexp);
|
|
Handle<String> replacement_handle(replacement);
|
|
Handle<JSArray> last_match_info_handle(last_match_info);
|
|
Handle<Object> match = RegExpImpl::Exec(regexp_handle,
|
|
subject_handle,
|
|
0,
|
|
last_match_info_handle);
|
|
if (match.is_null()) {
|
|
return Failure::Exception();
|
|
}
|
|
if (match->IsNull()) {
|
|
return *subject_handle;
|
|
}
|
|
|
|
int capture_count = regexp_handle->CaptureCount();
|
|
|
|
// CompiledReplacement uses zone allocation.
|
|
CompilationZoneScope zone(DELETE_ON_EXIT);
|
|
CompiledReplacement compiled_replacement;
|
|
compiled_replacement.Compile(replacement_handle,
|
|
capture_count,
|
|
length);
|
|
|
|
bool is_global = regexp_handle->GetFlags().is_global();
|
|
|
|
// Guessing the number of parts that the final result string is built
|
|
// from. Global regexps can match any number of times, so we guess
|
|
// conservatively.
|
|
int expected_parts =
|
|
(compiled_replacement.parts() + 1) * (is_global ? 4 : 1) + 1;
|
|
ReplacementStringBuilder builder(subject_handle, expected_parts);
|
|
|
|
// Index of end of last match.
|
|
int prev = 0;
|
|
|
|
// Number of parts added by compiled replacement plus preceeding
|
|
// string and possibly suffix after last match. It is possible for
|
|
// all components to use two elements when encoded as two smis.
|
|
const int parts_added_per_loop = 2 * (compiled_replacement.parts() + 2);
|
|
bool matched = true;
|
|
do {
|
|
ASSERT(last_match_info_handle->HasFastElements());
|
|
// Increase the capacity of the builder before entering local handle-scope,
|
|
// so its internal buffer can safely allocate a new handle if it grows.
|
|
builder.EnsureCapacity(parts_added_per_loop);
|
|
|
|
HandleScope loop_scope;
|
|
int start, end;
|
|
{
|
|
AssertNoAllocation match_info_array_is_not_in_a_handle;
|
|
FixedArray* match_info_array =
|
|
FixedArray::cast(last_match_info_handle->elements());
|
|
|
|
ASSERT_EQ(capture_count * 2 + 2,
|
|
RegExpImpl::GetLastCaptureCount(match_info_array));
|
|
start = RegExpImpl::GetCapture(match_info_array, 0);
|
|
end = RegExpImpl::GetCapture(match_info_array, 1);
|
|
}
|
|
|
|
if (prev < start) {
|
|
builder.AddSubjectSlice(prev, start);
|
|
}
|
|
compiled_replacement.Apply(&builder,
|
|
start,
|
|
end,
|
|
last_match_info_handle);
|
|
prev = end;
|
|
|
|
// Only continue checking for global regexps.
|
|
if (!is_global) break;
|
|
|
|
// Continue from where the match ended, unless it was an empty match.
|
|
int next = end;
|
|
if (start == end) {
|
|
next = end + 1;
|
|
if (next > length) break;
|
|
}
|
|
|
|
match = RegExpImpl::Exec(regexp_handle,
|
|
subject_handle,
|
|
next,
|
|
last_match_info_handle);
|
|
if (match.is_null()) {
|
|
return Failure::Exception();
|
|
}
|
|
matched = !match->IsNull();
|
|
} while (matched);
|
|
|
|
if (prev < length) {
|
|
builder.AddSubjectSlice(prev, length);
|
|
}
|
|
|
|
return *(builder.ToString());
|
|
}
|
|
|
|
|
|
static Object* Runtime_StringReplaceRegExpWithString(Arguments args) {
|
|
ASSERT(args.length() == 4);
|
|
|
|
CONVERT_CHECKED(String, subject, args[0]);
|
|
if (!subject->IsFlat()) {
|
|
Object* flat_subject = subject->TryFlatten();
|
|
if (flat_subject->IsFailure()) {
|
|
return flat_subject;
|
|
}
|
|
subject = String::cast(flat_subject);
|
|
}
|
|
|
|
CONVERT_CHECKED(String, replacement, args[2]);
|
|
if (!replacement->IsFlat()) {
|
|
Object* flat_replacement = replacement->TryFlatten();
|
|
if (flat_replacement->IsFailure()) {
|
|
return flat_replacement;
|
|
}
|
|
replacement = String::cast(flat_replacement);
|
|
}
|
|
|
|
CONVERT_CHECKED(JSRegExp, regexp, args[1]);
|
|
CONVERT_CHECKED(JSArray, last_match_info, args[3]);
|
|
|
|
ASSERT(last_match_info->HasFastElements());
|
|
|
|
return StringReplaceRegExpWithString(subject,
|
|
regexp,
|
|
replacement,
|
|
last_match_info);
|
|
}
|
|
|
|
|
|
|
|
// Cap on the maximal shift in the Boyer-Moore implementation. By setting a
|
|
// limit, we can fix the size of tables.
|
|
static const int kBMMaxShift = 0xff;
|
|
// Reduce alphabet to this size.
|
|
static const int kBMAlphabetSize = 0x100;
|
|
// For patterns below this length, the skip length of Boyer-Moore is too short
|
|
// to compensate for the algorithmic overhead compared to simple brute force.
|
|
static const int kBMMinPatternLength = 5;
|
|
|
|
// Holds the two buffers used by Boyer-Moore string search's Good Suffix
|
|
// shift. Only allows the last kBMMaxShift characters of the needle
|
|
// to be indexed.
|
|
class BMGoodSuffixBuffers {
|
|
public:
|
|
BMGoodSuffixBuffers() {}
|
|
inline void init(int needle_length) {
|
|
ASSERT(needle_length > 1);
|
|
int start = needle_length < kBMMaxShift ? 0 : needle_length - kBMMaxShift;
|
|
int len = needle_length - start;
|
|
biased_suffixes_ = suffixes_ - start;
|
|
biased_good_suffix_shift_ = good_suffix_shift_ - start;
|
|
for (int i = 0; i <= len; i++) {
|
|
good_suffix_shift_[i] = len;
|
|
}
|
|
}
|
|
inline int& suffix(int index) {
|
|
ASSERT(biased_suffixes_ + index >= suffixes_);
|
|
return biased_suffixes_[index];
|
|
}
|
|
inline int& shift(int index) {
|
|
ASSERT(biased_good_suffix_shift_ + index >= good_suffix_shift_);
|
|
return biased_good_suffix_shift_[index];
|
|
}
|
|
private:
|
|
int suffixes_[kBMMaxShift + 1];
|
|
int good_suffix_shift_[kBMMaxShift + 1];
|
|
int* biased_suffixes_;
|
|
int* biased_good_suffix_shift_;
|
|
DISALLOW_COPY_AND_ASSIGN(BMGoodSuffixBuffers);
|
|
};
|
|
|
|
// buffers reused by BoyerMoore
|
|
static int bad_char_occurrence[kBMAlphabetSize];
|
|
static BMGoodSuffixBuffers bmgs_buffers;
|
|
|
|
// Compute the bad-char table for Boyer-Moore in the static buffer.
|
|
template <typename pchar>
|
|
static void BoyerMoorePopulateBadCharTable(Vector<const pchar> pattern,
|
|
int start) {
|
|
// Run forwards to populate bad_char_table, so that *last* instance
|
|
// of character equivalence class is the one registered.
|
|
// Notice: Doesn't include the last character.
|
|
int table_size = (sizeof(pchar) == 1) ? String::kMaxAsciiCharCode + 1
|
|
: kBMAlphabetSize;
|
|
if (start == 0) { // All patterns less than kBMMaxShift in length.
|
|
memset(bad_char_occurrence, -1, table_size * sizeof(*bad_char_occurrence));
|
|
} else {
|
|
for (int i = 0; i < table_size; i++) {
|
|
bad_char_occurrence[i] = start - 1;
|
|
}
|
|
}
|
|
for (int i = start; i < pattern.length() - 1; i++) {
|
|
pchar c = pattern[i];
|
|
int bucket = (sizeof(pchar) ==1) ? c : c % kBMAlphabetSize;
|
|
bad_char_occurrence[bucket] = i;
|
|
}
|
|
}
|
|
|
|
template <typename pchar>
|
|
static void BoyerMoorePopulateGoodSuffixTable(Vector<const pchar> pattern,
|
|
int start) {
|
|
int m = pattern.length();
|
|
int len = m - start;
|
|
// Compute Good Suffix tables.
|
|
bmgs_buffers.init(m);
|
|
|
|
bmgs_buffers.shift(m-1) = 1;
|
|
bmgs_buffers.suffix(m) = m + 1;
|
|
pchar last_char = pattern[m - 1];
|
|
int suffix = m + 1;
|
|
for (int i = m; i > start;) {
|
|
for (pchar c = pattern[i - 1]; suffix <= m && c != pattern[suffix - 1];) {
|
|
if (bmgs_buffers.shift(suffix) == len) {
|
|
bmgs_buffers.shift(suffix) = suffix - i;
|
|
}
|
|
suffix = bmgs_buffers.suffix(suffix);
|
|
}
|
|
i--;
|
|
suffix--;
|
|
bmgs_buffers.suffix(i) = suffix;
|
|
if (suffix == m) {
|
|
// No suffix to extend, so we check against last_char only.
|
|
while (i > start && pattern[i - 1] != last_char) {
|
|
if (bmgs_buffers.shift(m) == len) {
|
|
bmgs_buffers.shift(m) = m - i;
|
|
}
|
|
i--;
|
|
bmgs_buffers.suffix(i) = m;
|
|
}
|
|
if (i > start) {
|
|
i--;
|
|
suffix--;
|
|
bmgs_buffers.suffix(i) = suffix;
|
|
}
|
|
}
|
|
}
|
|
if (suffix < m) {
|
|
for (int i = start; i <= m; i++) {
|
|
if (bmgs_buffers.shift(i) == len) {
|
|
bmgs_buffers.shift(i) = suffix - start;
|
|
}
|
|
if (i == suffix) {
|
|
suffix = bmgs_buffers.suffix(suffix);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename schar, typename pchar>
|
|
static inline int CharOccurrence(int char_code) {
|
|
if (sizeof(schar) == 1) {
|
|
return bad_char_occurrence[char_code];
|
|
}
|
|
if (sizeof(pchar) == 1) {
|
|
if (char_code > String::kMaxAsciiCharCode) {
|
|
return -1;
|
|
}
|
|
return bad_char_occurrence[char_code];
|
|
}
|
|
return bad_char_occurrence[char_code % kBMAlphabetSize];
|
|
}
|
|
|
|
// Restricted simplified Boyer-Moore string matching.
|
|
// Uses only the bad-shift table of Boyer-Moore and only uses it
|
|
// for the character compared to the last character of the needle.
|
|
template <typename schar, typename pchar>
|
|
static int BoyerMooreHorspool(Vector<const schar> subject,
|
|
Vector<const pchar> pattern,
|
|
int start_index,
|
|
bool* complete) {
|
|
int n = subject.length();
|
|
int m = pattern.length();
|
|
// Only preprocess at most kBMMaxShift last characters of pattern.
|
|
int start = m < kBMMaxShift ? 0 : m - kBMMaxShift;
|
|
|
|
BoyerMoorePopulateBadCharTable(pattern, start);
|
|
|
|
int badness = -m; // How bad we are doing without a good-suffix table.
|
|
int idx; // No matches found prior to this index.
|
|
pchar last_char = pattern[m - 1];
|
|
int last_char_shift = m - 1 - CharOccurrence<schar, pchar>(last_char);
|
|
// Perform search
|
|
for (idx = start_index; idx <= n - m;) {
|
|
int j = m - 1;
|
|
int c;
|
|
while (last_char != (c = subject[idx + j])) {
|
|
int bc_occ = CharOccurrence<schar, pchar>(c);
|
|
int shift = j - bc_occ;
|
|
idx += shift;
|
|
badness += 1 - shift; // at most zero, so badness cannot increase.
|
|
if (idx > n - m) {
|
|
*complete = true;
|
|
return -1;
|
|
}
|
|
}
|
|
j--;
|
|
while (j >= 0 && pattern[j] == (subject[idx + j])) j--;
|
|
if (j < 0) {
|
|
*complete = true;
|
|
return idx;
|
|
} else {
|
|
idx += last_char_shift;
|
|
// Badness increases by the number of characters we have
|
|
// checked, and decreases by the number of characters we
|
|
// can skip by shifting. It's a measure of how we are doing
|
|
// compared to reading each character exactly once.
|
|
badness += (m - j) - last_char_shift;
|
|
if (badness > 0) {
|
|
*complete = false;
|
|
return idx;
|
|
}
|
|
}
|
|
}
|
|
*complete = true;
|
|
return -1;
|
|
}
|
|
|
|
|
|
template <typename schar, typename pchar>
|
|
static int BoyerMooreIndexOf(Vector<const schar> subject,
|
|
Vector<const pchar> pattern,
|
|
int idx) {
|
|
int n = subject.length();
|
|
int m = pattern.length();
|
|
// Only preprocess at most kBMMaxShift last characters of pattern.
|
|
int start = m < kBMMaxShift ? 0 : m - kBMMaxShift;
|
|
|
|
// Build the Good Suffix table and continue searching.
|
|
BoyerMoorePopulateGoodSuffixTable(pattern, start);
|
|
pchar last_char = pattern[m - 1];
|
|
// Continue search from i.
|
|
while (idx <= n - m) {
|
|
int j = m - 1;
|
|
schar c;
|
|
while (last_char != (c = subject[idx + j])) {
|
|
int shift = j - CharOccurrence<schar, pchar>(c);
|
|
idx += shift;
|
|
if (idx > n - m) {
|
|
return -1;
|
|
}
|
|
}
|
|
while (j >= 0 && pattern[j] == (c = subject[idx + j])) j--;
|
|
if (j < 0) {
|
|
return idx;
|
|
} else if (j < start) {
|
|
// we have matched more than our tables allow us to be smart about.
|
|
// Fall back on BMH shift.
|
|
idx += m - 1 - CharOccurrence<schar, pchar>(last_char);
|
|
} else {
|
|
int gs_shift = bmgs_buffers.shift(j + 1); // Good suffix shift.
|
|
int bc_occ = CharOccurrence<schar, pchar>(c);
|
|
int shift = j - bc_occ; // Bad-char shift.
|
|
if (gs_shift > shift) {
|
|
shift = gs_shift;
|
|
}
|
|
idx += shift;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
|
|
template <typename schar>
|
|
static int SingleCharIndexOf(Vector<const schar> string,
|
|
schar pattern_char,
|
|
int start_index) {
|
|
for (int i = start_index, n = string.length(); i < n; i++) {
|
|
if (pattern_char == string[i]) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
template <typename schar>
|
|
static int SingleCharLastIndexOf(Vector<const schar> string,
|
|
schar pattern_char,
|
|
int start_index) {
|
|
for (int i = start_index; i >= 0; i--) {
|
|
if (pattern_char == string[i]) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
// Trivial string search for shorter strings.
|
|
// On return, if "complete" is set to true, the return value is the
|
|
// final result of searching for the patter in the subject.
|
|
// If "complete" is set to false, the return value is the index where
|
|
// further checking should start, i.e., it's guaranteed that the pattern
|
|
// does not occur at a position prior to the returned index.
|
|
template <typename pchar, typename schar>
|
|
static int SimpleIndexOf(Vector<const schar> subject,
|
|
Vector<const pchar> pattern,
|
|
int idx,
|
|
bool* complete) {
|
|
// Badness is a count of how much work we have done. When we have
|
|
// done enough work we decide it's probably worth switching to a better
|
|
// algorithm.
|
|
int badness = -10 - (pattern.length() << 2);
|
|
// We know our pattern is at least 2 characters, we cache the first so
|
|
// the common case of the first character not matching is faster.
|
|
pchar pattern_first_char = pattern[0];
|
|
|
|
for (int i = idx, n = subject.length() - pattern.length(); i <= n; i++) {
|
|
badness++;
|
|
if (badness > 0) {
|
|
*complete = false;
|
|
return i;
|
|
}
|
|
if (subject[i] != pattern_first_char) continue;
|
|
int j = 1;
|
|
do {
|
|
if (pattern[j] != subject[i+j]) {
|
|
break;
|
|
}
|
|
j++;
|
|
} while (j < pattern.length());
|
|
if (j == pattern.length()) {
|
|
*complete = true;
|
|
return i;
|
|
}
|
|
badness += j;
|
|
}
|
|
*complete = true;
|
|
return -1;
|
|
}
|
|
|
|
// Simple indexOf that never bails out. For short patterns only.
|
|
template <typename pchar, typename schar>
|
|
static int SimpleIndexOf(Vector<const schar> subject,
|
|
Vector<const pchar> pattern,
|
|
int idx) {
|
|
pchar pattern_first_char = pattern[0];
|
|
for (int i = idx, n = subject.length() - pattern.length(); i <= n; i++) {
|
|
if (subject[i] != pattern_first_char) continue;
|
|
int j = 1;
|
|
do {
|
|
if (pattern[j] != subject[i+j]) {
|
|
break;
|
|
}
|
|
j++;
|
|
} while (j < pattern.length());
|
|
if (j == pattern.length()) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
// Dispatch to different algorithms.
|
|
template <typename schar, typename pchar>
|
|
static int StringMatchStrategy(Vector<const schar> sub,
|
|
Vector<const pchar> pat,
|
|
int start_index) {
|
|
ASSERT(pat.length() > 1);
|
|
|
|
// We have an ASCII haystack and a non-ASCII needle. Check if there
|
|
// really is a non-ASCII character in the needle and bail out if there
|
|
// is.
|
|
if (sizeof(schar) == 1 && sizeof(pchar) > 1) {
|
|
for (int i = 0; i < pat.length(); i++) {
|
|
uc16 c = pat[i];
|
|
if (c > String::kMaxAsciiCharCode) {
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
if (pat.length() < kBMMinPatternLength) {
|
|
// We don't believe fancy searching can ever be more efficient.
|
|
// The max shift of Boyer-Moore on a pattern of this length does
|
|
// not compensate for the overhead.
|
|
return SimpleIndexOf(sub, pat, start_index);
|
|
}
|
|
// Try algorithms in order of increasing setup cost and expected performance.
|
|
bool complete;
|
|
int idx = SimpleIndexOf(sub, pat, start_index, &complete);
|
|
if (complete) return idx;
|
|
idx = BoyerMooreHorspool(sub, pat, idx, &complete);
|
|
if (complete) return idx;
|
|
return BoyerMooreIndexOf(sub, pat, idx);
|
|
}
|
|
|
|
// Perform string match of pattern on subject, starting at start index.
|
|
// Caller must ensure that 0 <= start_index <= sub->length(),
|
|
// and should check that pat->length() + start_index <= sub->length()
|
|
int Runtime::StringMatch(Handle<String> sub,
|
|
Handle<String> pat,
|
|
int start_index) {
|
|
ASSERT(0 <= start_index);
|
|
ASSERT(start_index <= sub->length());
|
|
|
|
int pattern_length = pat->length();
|
|
if (pattern_length == 0) return start_index;
|
|
|
|
int subject_length = sub->length();
|
|
if (start_index + pattern_length > subject_length) return -1;
|
|
|
|
if (!sub->IsFlat()) {
|
|
FlattenString(sub);
|
|
}
|
|
// Searching for one specific character is common. For one
|
|
// character patterns linear search is necessary, so any smart
|
|
// algorithm is unnecessary overhead.
|
|
if (pattern_length == 1) {
|
|
AssertNoAllocation no_heap_allocation; // ensure vectors stay valid
|
|
if (sub->IsAsciiRepresentation()) {
|
|
uc16 pchar = pat->Get(0);
|
|
if (pchar > String::kMaxAsciiCharCode) {
|
|
return -1;
|
|
}
|
|
Vector<const char> ascii_vector =
|
|
sub->ToAsciiVector().SubVector(start_index, subject_length);
|
|
const void* pos = memchr(ascii_vector.start(),
|
|
static_cast<const char>(pchar),
|
|
static_cast<size_t>(ascii_vector.length()));
|
|
if (pos == NULL) {
|
|
return -1;
|
|
}
|
|
return static_cast<int>(reinterpret_cast<const char*>(pos)
|
|
- ascii_vector.start() + start_index);
|
|
}
|
|
return SingleCharIndexOf(sub->ToUC16Vector(), pat->Get(0), start_index);
|
|
}
|
|
|
|
if (!pat->IsFlat()) {
|
|
FlattenString(pat);
|
|
}
|
|
|
|
AssertNoAllocation no_heap_allocation; // ensure vectors stay valid
|
|
// dispatch on type of strings
|
|
if (pat->IsAsciiRepresentation()) {
|
|
Vector<const char> pat_vector = pat->ToAsciiVector();
|
|
if (sub->IsAsciiRepresentation()) {
|
|
return StringMatchStrategy(sub->ToAsciiVector(), pat_vector, start_index);
|
|
}
|
|
return StringMatchStrategy(sub->ToUC16Vector(), pat_vector, start_index);
|
|
}
|
|
Vector<const uc16> pat_vector = pat->ToUC16Vector();
|
|
if (sub->IsAsciiRepresentation()) {
|
|
return StringMatchStrategy(sub->ToAsciiVector(), pat_vector, start_index);
|
|
}
|
|
return StringMatchStrategy(sub->ToUC16Vector(), pat_vector, start_index);
|
|
}
|
|
|
|
|
|
static Object* Runtime_StringIndexOf(Arguments args) {
|
|
HandleScope scope; // create a new handle scope
|
|
ASSERT(args.length() == 3);
|
|
|
|
CONVERT_ARG_CHECKED(String, sub, 0);
|
|
CONVERT_ARG_CHECKED(String, pat, 1);
|
|
|
|
Object* index = args[2];
|
|
uint32_t start_index;
|
|
if (!Array::IndexFromObject(index, &start_index)) return Smi::FromInt(-1);
|
|
|
|
RUNTIME_ASSERT(start_index <= static_cast<uint32_t>(sub->length()));
|
|
int position = Runtime::StringMatch(sub, pat, start_index);
|
|
return Smi::FromInt(position);
|
|
}
|
|
|
|
|
|
template <typename schar, typename pchar>
|
|
static int StringMatchBackwards(Vector<const schar> sub,
|
|
Vector<const pchar> pat,
|
|
int idx) {
|
|
ASSERT(pat.length() >= 1);
|
|
ASSERT(idx + pat.length() <= sub.length());
|
|
|
|
if (sizeof(schar) == 1 && sizeof(pchar) > 1) {
|
|
for (int i = 0; i < pat.length(); i++) {
|
|
uc16 c = pat[i];
|
|
if (c > String::kMaxAsciiCharCode) {
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
pchar pattern_first_char = pat[0];
|
|
for (int i = idx; i >= 0; i--) {
|
|
if (sub[i] != pattern_first_char) continue;
|
|
int j = 1;
|
|
while (j < pat.length()) {
|
|
if (pat[j] != sub[i+j]) {
|
|
break;
|
|
}
|
|
j++;
|
|
}
|
|
if (j == pat.length()) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static Object* Runtime_StringLastIndexOf(Arguments args) {
|
|
HandleScope scope; // create a new handle scope
|
|
ASSERT(args.length() == 3);
|
|
|
|
CONVERT_ARG_CHECKED(String, sub, 0);
|
|
CONVERT_ARG_CHECKED(String, pat, 1);
|
|
|
|
Object* index = args[2];
|
|
uint32_t start_index;
|
|
if (!Array::IndexFromObject(index, &start_index)) return Smi::FromInt(-1);
|
|
|
|
uint32_t pat_length = pat->length();
|
|
uint32_t sub_length = sub->length();
|
|
|
|
if (start_index + pat_length > sub_length) {
|
|
start_index = sub_length - pat_length;
|
|
}
|
|
|
|
if (pat_length == 0) {
|
|
return Smi::FromInt(start_index);
|
|
}
|
|
|
|
if (!sub->IsFlat()) {
|
|
FlattenString(sub);
|
|
}
|
|
|
|
if (pat_length == 1) {
|
|
AssertNoAllocation no_heap_allocation; // ensure vectors stay valid
|
|
if (sub->IsAsciiRepresentation()) {
|
|
uc16 pchar = pat->Get(0);
|
|
if (pchar > String::kMaxAsciiCharCode) {
|
|
return Smi::FromInt(-1);
|
|
}
|
|
return Smi::FromInt(SingleCharLastIndexOf(sub->ToAsciiVector(),
|
|
static_cast<char>(pat->Get(0)),
|
|
start_index));
|
|
} else {
|
|
return Smi::FromInt(SingleCharLastIndexOf(sub->ToUC16Vector(),
|
|
pat->Get(0),
|
|
start_index));
|
|
}
|
|
}
|
|
|
|
if (!pat->IsFlat()) {
|
|
FlattenString(pat);
|
|
}
|
|
|
|
AssertNoAllocation no_heap_allocation; // ensure vectors stay valid
|
|
|
|
int position = -1;
|
|
|
|
if (pat->IsAsciiRepresentation()) {
|
|
Vector<const char> pat_vector = pat->ToAsciiVector();
|
|
if (sub->IsAsciiRepresentation()) {
|
|
position = StringMatchBackwards(sub->ToAsciiVector(),
|
|
pat_vector,
|
|
start_index);
|
|
} else {
|
|
position = StringMatchBackwards(sub->ToUC16Vector(),
|
|
pat_vector,
|
|
start_index);
|
|
}
|
|
} else {
|
|
Vector<const uc16> pat_vector = pat->ToUC16Vector();
|
|
if (sub->IsAsciiRepresentation()) {
|
|
position = StringMatchBackwards(sub->ToAsciiVector(),
|
|
pat_vector,
|
|
start_index);
|
|
} else {
|
|
position = StringMatchBackwards(sub->ToUC16Vector(),
|
|
pat_vector,
|
|
start_index);
|
|
}
|
|
}
|
|
|
|
return Smi::FromInt(position);
|
|
}
|
|
|
|
|
|
static Object* Runtime_StringLocaleCompare(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_CHECKED(String, str1, args[0]);
|
|
CONVERT_CHECKED(String, str2, args[1]);
|
|
|
|
if (str1 == str2) return Smi::FromInt(0); // Equal.
|
|
int str1_length = str1->length();
|
|
int str2_length = str2->length();
|
|
|
|
// Decide trivial cases without flattening.
|
|
if (str1_length == 0) {
|
|
if (str2_length == 0) return Smi::FromInt(0); // Equal.
|
|
return Smi::FromInt(-str2_length);
|
|
} else {
|
|
if (str2_length == 0) return Smi::FromInt(str1_length);
|
|
}
|
|
|
|
int end = str1_length < str2_length ? str1_length : str2_length;
|
|
|
|
// No need to flatten if we are going to find the answer on the first
|
|
// character. At this point we know there is at least one character
|
|
// in each string, due to the trivial case handling above.
|
|
int d = str1->Get(0) - str2->Get(0);
|
|
if (d != 0) return Smi::FromInt(d);
|
|
|
|
str1->TryFlatten();
|
|
str2->TryFlatten();
|
|
|
|
static StringInputBuffer buf1;
|
|
static StringInputBuffer buf2;
|
|
|
|
buf1.Reset(str1);
|
|
buf2.Reset(str2);
|
|
|
|
for (int i = 0; i < end; i++) {
|
|
uint16_t char1 = buf1.GetNext();
|
|
uint16_t char2 = buf2.GetNext();
|
|
if (char1 != char2) return Smi::FromInt(char1 - char2);
|
|
}
|
|
|
|
return Smi::FromInt(str1_length - str2_length);
|
|
}
|
|
|
|
|
|
static Object* Runtime_SubString(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 3);
|
|
|
|
CONVERT_CHECKED(String, value, args[0]);
|
|
Object* from = args[1];
|
|
Object* to = args[2];
|
|
int start, end;
|
|
// We have a fast integer-only case here to avoid a conversion to double in
|
|
// the common case where from and to are Smis.
|
|
if (from->IsSmi() && to->IsSmi()) {
|
|
start = Smi::cast(from)->value();
|
|
end = Smi::cast(to)->value();
|
|
} else {
|
|
CONVERT_DOUBLE_CHECKED(from_number, from);
|
|
CONVERT_DOUBLE_CHECKED(to_number, to);
|
|
start = FastD2I(from_number);
|
|
end = FastD2I(to_number);
|
|
}
|
|
RUNTIME_ASSERT(end >= start);
|
|
RUNTIME_ASSERT(start >= 0);
|
|
RUNTIME_ASSERT(end <= value->length());
|
|
Counters::sub_string_runtime.Increment();
|
|
return value->SubString(start, end);
|
|
}
|
|
|
|
|
|
static Object* Runtime_StringMatch(Arguments args) {
|
|
ASSERT_EQ(3, args.length());
|
|
|
|
CONVERT_ARG_CHECKED(String, subject, 0);
|
|
CONVERT_ARG_CHECKED(JSRegExp, regexp, 1);
|
|
CONVERT_ARG_CHECKED(JSArray, regexp_info, 2);
|
|
HandleScope handles;
|
|
|
|
Handle<Object> match = RegExpImpl::Exec(regexp, subject, 0, regexp_info);
|
|
|
|
if (match.is_null()) {
|
|
return Failure::Exception();
|
|
}
|
|
if (match->IsNull()) {
|
|
return Heap::null_value();
|
|
}
|
|
int length = subject->length();
|
|
|
|
CompilationZoneScope zone_space(DELETE_ON_EXIT);
|
|
ZoneList<int> offsets(8);
|
|
do {
|
|
int start;
|
|
int end;
|
|
{
|
|
AssertNoAllocation no_alloc;
|
|
FixedArray* elements = FixedArray::cast(regexp_info->elements());
|
|
start = Smi::cast(elements->get(RegExpImpl::kFirstCapture))->value();
|
|
end = Smi::cast(elements->get(RegExpImpl::kFirstCapture + 1))->value();
|
|
}
|
|
offsets.Add(start);
|
|
offsets.Add(end);
|
|
int index = start < end ? end : end + 1;
|
|
if (index > length) break;
|
|
match = RegExpImpl::Exec(regexp, subject, index, regexp_info);
|
|
if (match.is_null()) {
|
|
return Failure::Exception();
|
|
}
|
|
} while (!match->IsNull());
|
|
int matches = offsets.length() / 2;
|
|
Handle<FixedArray> elements = Factory::NewFixedArray(matches);
|
|
for (int i = 0; i < matches ; i++) {
|
|
int from = offsets.at(i * 2);
|
|
int to = offsets.at(i * 2 + 1);
|
|
elements->set(i, *Factory::NewSubString(subject, from, to));
|
|
}
|
|
Handle<JSArray> result = Factory::NewJSArrayWithElements(elements);
|
|
result->set_length(Smi::FromInt(matches));
|
|
return *result;
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberToRadixString(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
// Fast case where the result is a one character string.
|
|
if (args[0]->IsSmi() && args[1]->IsSmi()) {
|
|
int value = Smi::cast(args[0])->value();
|
|
int radix = Smi::cast(args[1])->value();
|
|
if (value >= 0 && value < radix) {
|
|
RUNTIME_ASSERT(radix <= 36);
|
|
// Character array used for conversion.
|
|
static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz";
|
|
return Heap::LookupSingleCharacterStringFromCode(kCharTable[value]);
|
|
}
|
|
}
|
|
|
|
// Slow case.
|
|
CONVERT_DOUBLE_CHECKED(value, args[0]);
|
|
if (isnan(value)) {
|
|
return Heap::AllocateStringFromAscii(CStrVector("NaN"));
|
|
}
|
|
if (isinf(value)) {
|
|
if (value < 0) {
|
|
return Heap::AllocateStringFromAscii(CStrVector("-Infinity"));
|
|
}
|
|
return Heap::AllocateStringFromAscii(CStrVector("Infinity"));
|
|
}
|
|
CONVERT_DOUBLE_CHECKED(radix_number, args[1]);
|
|
int radix = FastD2I(radix_number);
|
|
RUNTIME_ASSERT(2 <= radix && radix <= 36);
|
|
char* str = DoubleToRadixCString(value, radix);
|
|
Object* result = Heap::AllocateStringFromAscii(CStrVector(str));
|
|
DeleteArray(str);
|
|
return result;
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberToFixed(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_DOUBLE_CHECKED(value, args[0]);
|
|
if (isnan(value)) {
|
|
return Heap::AllocateStringFromAscii(CStrVector("NaN"));
|
|
}
|
|
if (isinf(value)) {
|
|
if (value < 0) {
|
|
return Heap::AllocateStringFromAscii(CStrVector("-Infinity"));
|
|
}
|
|
return Heap::AllocateStringFromAscii(CStrVector("Infinity"));
|
|
}
|
|
CONVERT_DOUBLE_CHECKED(f_number, args[1]);
|
|
int f = FastD2I(f_number);
|
|
RUNTIME_ASSERT(f >= 0);
|
|
char* str = DoubleToFixedCString(value, f);
|
|
Object* res = Heap::AllocateStringFromAscii(CStrVector(str));
|
|
DeleteArray(str);
|
|
return res;
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberToExponential(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_DOUBLE_CHECKED(value, args[0]);
|
|
if (isnan(value)) {
|
|
return Heap::AllocateStringFromAscii(CStrVector("NaN"));
|
|
}
|
|
if (isinf(value)) {
|
|
if (value < 0) {
|
|
return Heap::AllocateStringFromAscii(CStrVector("-Infinity"));
|
|
}
|
|
return Heap::AllocateStringFromAscii(CStrVector("Infinity"));
|
|
}
|
|
CONVERT_DOUBLE_CHECKED(f_number, args[1]);
|
|
int f = FastD2I(f_number);
|
|
RUNTIME_ASSERT(f >= -1 && f <= 20);
|
|
char* str = DoubleToExponentialCString(value, f);
|
|
Object* res = Heap::AllocateStringFromAscii(CStrVector(str));
|
|
DeleteArray(str);
|
|
return res;
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberToPrecision(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_DOUBLE_CHECKED(value, args[0]);
|
|
if (isnan(value)) {
|
|
return Heap::AllocateStringFromAscii(CStrVector("NaN"));
|
|
}
|
|
if (isinf(value)) {
|
|
if (value < 0) {
|
|
return Heap::AllocateStringFromAscii(CStrVector("-Infinity"));
|
|
}
|
|
return Heap::AllocateStringFromAscii(CStrVector("Infinity"));
|
|
}
|
|
CONVERT_DOUBLE_CHECKED(f_number, args[1]);
|
|
int f = FastD2I(f_number);
|
|
RUNTIME_ASSERT(f >= 1 && f <= 21);
|
|
char* str = DoubleToPrecisionCString(value, f);
|
|
Object* res = Heap::AllocateStringFromAscii(CStrVector(str));
|
|
DeleteArray(str);
|
|
return res;
|
|
}
|
|
|
|
|
|
// Returns a single character string where first character equals
|
|
// string->Get(index).
|
|
static Handle<Object> GetCharAt(Handle<String> string, uint32_t index) {
|
|
if (index < static_cast<uint32_t>(string->length())) {
|
|
string->TryFlatten();
|
|
return LookupSingleCharacterStringFromCode(
|
|
string->Get(index));
|
|
}
|
|
return Execution::CharAt(string, index);
|
|
}
|
|
|
|
|
|
Object* Runtime::GetElementOrCharAt(Handle<Object> object, uint32_t index) {
|
|
// Handle [] indexing on Strings
|
|
if (object->IsString()) {
|
|
Handle<Object> result = GetCharAt(Handle<String>::cast(object), index);
|
|
if (!result->IsUndefined()) return *result;
|
|
}
|
|
|
|
// Handle [] indexing on String objects
|
|
if (object->IsStringObjectWithCharacterAt(index)) {
|
|
Handle<JSValue> js_value = Handle<JSValue>::cast(object);
|
|
Handle<Object> result =
|
|
GetCharAt(Handle<String>(String::cast(js_value->value())), index);
|
|
if (!result->IsUndefined()) return *result;
|
|
}
|
|
|
|
if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
|
|
Handle<Object> prototype = GetPrototype(object);
|
|
return prototype->GetElement(index);
|
|
}
|
|
|
|
return GetElement(object, index);
|
|
}
|
|
|
|
|
|
Object* Runtime::GetElement(Handle<Object> object, uint32_t index) {
|
|
return object->GetElement(index);
|
|
}
|
|
|
|
|
|
Object* Runtime::GetObjectProperty(Handle<Object> object, Handle<Object> key) {
|
|
HandleScope scope;
|
|
|
|
if (object->IsUndefined() || object->IsNull()) {
|
|
Handle<Object> args[2] = { key, object };
|
|
Handle<Object> error =
|
|
Factory::NewTypeError("non_object_property_load",
|
|
HandleVector(args, 2));
|
|
return Top::Throw(*error);
|
|
}
|
|
|
|
// Check if the given key is an array index.
|
|
uint32_t index;
|
|
if (Array::IndexFromObject(*key, &index)) {
|
|
return GetElementOrCharAt(object, index);
|
|
}
|
|
|
|
// Convert the key to a string - possibly by calling back into JavaScript.
|
|
Handle<String> name;
|
|
if (key->IsString()) {
|
|
name = Handle<String>::cast(key);
|
|
} else {
|
|
bool has_pending_exception = false;
|
|
Handle<Object> converted =
|
|
Execution::ToString(key, &has_pending_exception);
|
|
if (has_pending_exception) return Failure::Exception();
|
|
name = Handle<String>::cast(converted);
|
|
}
|
|
|
|
// Check if the name is trivially convertible to an index and get
|
|
// the element if so.
|
|
if (name->AsArrayIndex(&index)) {
|
|
return GetElementOrCharAt(object, index);
|
|
} else {
|
|
PropertyAttributes attr;
|
|
return object->GetProperty(*name, &attr);
|
|
}
|
|
}
|
|
|
|
|
|
static Object* Runtime_GetProperty(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
Handle<Object> object = args.at<Object>(0);
|
|
Handle<Object> key = args.at<Object>(1);
|
|
|
|
return Runtime::GetObjectProperty(object, key);
|
|
}
|
|
|
|
|
|
// KeyedStringGetProperty is called from KeyedLoadIC::GenerateGeneric.
|
|
static Object* Runtime_KeyedGetProperty(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
// Fast cases for getting named properties of the receiver JSObject
|
|
// itself.
|
|
//
|
|
// The global proxy objects has to be excluded since LocalLookup on
|
|
// the global proxy object can return a valid result even though the
|
|
// global proxy object never has properties. This is the case
|
|
// because the global proxy object forwards everything to its hidden
|
|
// prototype including local lookups.
|
|
//
|
|
// Additionally, we need to make sure that we do not cache results
|
|
// for objects that require access checks.
|
|
if (args[0]->IsJSObject() &&
|
|
!args[0]->IsJSGlobalProxy() &&
|
|
!args[0]->IsAccessCheckNeeded() &&
|
|
args[1]->IsString()) {
|
|
JSObject* receiver = JSObject::cast(args[0]);
|
|
String* key = String::cast(args[1]);
|
|
if (receiver->HasFastProperties()) {
|
|
// Attempt to use lookup cache.
|
|
Map* receiver_map = receiver->map();
|
|
int offset = KeyedLookupCache::Lookup(receiver_map, key);
|
|
if (offset != -1) {
|
|
Object* value = receiver->FastPropertyAt(offset);
|
|
return value->IsTheHole() ? Heap::undefined_value() : value;
|
|
}
|
|
// Lookup cache miss. Perform lookup and update the cache if appropriate.
|
|
LookupResult result;
|
|
receiver->LocalLookup(key, &result);
|
|
if (result.IsProperty() && result.IsLoaded() && result.type() == FIELD) {
|
|
int offset = result.GetFieldIndex();
|
|
KeyedLookupCache::Update(receiver_map, key, offset);
|
|
return receiver->FastPropertyAt(offset);
|
|
}
|
|
} else {
|
|
// Attempt dictionary lookup.
|
|
StringDictionary* dictionary = receiver->property_dictionary();
|
|
int entry = dictionary->FindEntry(key);
|
|
if ((entry != StringDictionary::kNotFound) &&
|
|
(dictionary->DetailsAt(entry).type() == NORMAL)) {
|
|
Object* value = dictionary->ValueAt(entry);
|
|
if (!receiver->IsGlobalObject()) return value;
|
|
value = JSGlobalPropertyCell::cast(value)->value();
|
|
if (!value->IsTheHole()) return value;
|
|
// If value is the hole do the general lookup.
|
|
}
|
|
}
|
|
} else if (args[0]->IsString() && args[1]->IsSmi()) {
|
|
// Fast case for string indexing using [] with a smi index.
|
|
HandleScope scope;
|
|
Handle<String> str = args.at<String>(0);
|
|
int index = Smi::cast(args[1])->value();
|
|
Handle<Object> result = GetCharAt(str, index);
|
|
return *result;
|
|
}
|
|
|
|
// Fall back to GetObjectProperty.
|
|
return Runtime::GetObjectProperty(args.at<Object>(0),
|
|
args.at<Object>(1));
|
|
}
|
|
|
|
|
|
static Object* Runtime_DefineOrRedefineAccessorProperty(Arguments args) {
|
|
ASSERT(args.length() == 5);
|
|
HandleScope scope;
|
|
CONVERT_ARG_CHECKED(JSObject, obj, 0);
|
|
CONVERT_CHECKED(String, name, args[1]);
|
|
CONVERT_CHECKED(Smi, flag_setter, args[2]);
|
|
CONVERT_CHECKED(JSFunction, fun, args[3]);
|
|
CONVERT_CHECKED(Smi, flag_attr, args[4]);
|
|
int unchecked = flag_attr->value();
|
|
RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
|
|
RUNTIME_ASSERT(!obj->IsNull());
|
|
LookupResult result;
|
|
obj->LocalLookupRealNamedProperty(name, &result);
|
|
|
|
PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
|
|
// If an existing property is either FIELD, NORMAL or CONSTANT_FUNCTION
|
|
// delete it to avoid running into trouble in DefineAccessor, which
|
|
// handles this incorrectly if the property is readonly (does nothing)
|
|
if (result.IsProperty() &&
|
|
(result.type() == FIELD || result.type() == NORMAL
|
|
|| result.type() == CONSTANT_FUNCTION)) {
|
|
obj->DeleteProperty(name, JSObject::NORMAL_DELETION);
|
|
}
|
|
return obj->DefineAccessor(name, flag_setter->value() == 0, fun, attr);
|
|
}
|
|
|
|
static Object* Runtime_DefineOrRedefineDataProperty(Arguments args) {
|
|
ASSERT(args.length() == 4);
|
|
HandleScope scope;
|
|
CONVERT_ARG_CHECKED(JSObject, js_object, 0);
|
|
CONVERT_ARG_CHECKED(String, name, 1);
|
|
Handle<Object> obj_value = args.at<Object>(2);
|
|
|
|
CONVERT_CHECKED(Smi, flag, args[3]);
|
|
int unchecked = flag->value();
|
|
RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
|
|
|
|
LookupResult result;
|
|
js_object->LocalLookupRealNamedProperty(*name, &result);
|
|
|
|
PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
|
|
|
|
// Take special care when attributes are different and there is already
|
|
// a property. For simplicity we normalize the property which enables us
|
|
// to not worry about changing the instance_descriptor and creating a new
|
|
// map. The current version of SetObjectProperty does not handle attributes
|
|
// correctly in the case where a property is a field and is reset with
|
|
// new attributes.
|
|
if (result.IsProperty() && attr != result.GetAttributes()) {
|
|
// New attributes - normalize to avoid writing to instance descriptor
|
|
js_object->NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
|
|
// Use IgnoreAttributes version since a readonly property may be
|
|
// overridden and SetProperty does not allow this.
|
|
return js_object->IgnoreAttributesAndSetLocalProperty(*name,
|
|
*obj_value,
|
|
attr);
|
|
}
|
|
return Runtime::SetObjectProperty(js_object, name, obj_value, attr);
|
|
}
|
|
|
|
|
|
Object* Runtime::SetObjectProperty(Handle<Object> object,
|
|
Handle<Object> key,
|
|
Handle<Object> value,
|
|
PropertyAttributes attr) {
|
|
HandleScope scope;
|
|
|
|
if (object->IsUndefined() || object->IsNull()) {
|
|
Handle<Object> args[2] = { key, object };
|
|
Handle<Object> error =
|
|
Factory::NewTypeError("non_object_property_store",
|
|
HandleVector(args, 2));
|
|
return Top::Throw(*error);
|
|
}
|
|
|
|
// If the object isn't a JavaScript object, we ignore the store.
|
|
if (!object->IsJSObject()) return *value;
|
|
|
|
Handle<JSObject> js_object = Handle<JSObject>::cast(object);
|
|
|
|
// Check if the given key is an array index.
|
|
uint32_t index;
|
|
if (Array::IndexFromObject(*key, &index)) {
|
|
// In Firefox/SpiderMonkey, Safari and Opera you can access the characters
|
|
// of a string using [] notation. We need to support this too in
|
|
// JavaScript.
|
|
// In the case of a String object we just need to redirect the assignment to
|
|
// the underlying string if the index is in range. Since the underlying
|
|
// string does nothing with the assignment then we can ignore such
|
|
// assignments.
|
|
if (js_object->IsStringObjectWithCharacterAt(index)) {
|
|
return *value;
|
|
}
|
|
|
|
Handle<Object> result = SetElement(js_object, index, value);
|
|
if (result.is_null()) return Failure::Exception();
|
|
return *value;
|
|
}
|
|
|
|
if (key->IsString()) {
|
|
Handle<Object> result;
|
|
if (Handle<String>::cast(key)->AsArrayIndex(&index)) {
|
|
result = SetElement(js_object, index, value);
|
|
} else {
|
|
Handle<String> key_string = Handle<String>::cast(key);
|
|
key_string->TryFlatten();
|
|
result = SetProperty(js_object, key_string, value, attr);
|
|
}
|
|
if (result.is_null()) return Failure::Exception();
|
|
return *value;
|
|
}
|
|
|
|
// Call-back into JavaScript to convert the key to a string.
|
|
bool has_pending_exception = false;
|
|
Handle<Object> converted = Execution::ToString(key, &has_pending_exception);
|
|
if (has_pending_exception) return Failure::Exception();
|
|
Handle<String> name = Handle<String>::cast(converted);
|
|
|
|
if (name->AsArrayIndex(&index)) {
|
|
return js_object->SetElement(index, *value);
|
|
} else {
|
|
return js_object->SetProperty(*name, *value, attr);
|
|
}
|
|
}
|
|
|
|
|
|
Object* Runtime::ForceSetObjectProperty(Handle<JSObject> js_object,
|
|
Handle<Object> key,
|
|
Handle<Object> value,
|
|
PropertyAttributes attr) {
|
|
HandleScope scope;
|
|
|
|
// Check if the given key is an array index.
|
|
uint32_t index;
|
|
if (Array::IndexFromObject(*key, &index)) {
|
|
// In Firefox/SpiderMonkey, Safari and Opera you can access the characters
|
|
// of a string using [] notation. We need to support this too in
|
|
// JavaScript.
|
|
// In the case of a String object we just need to redirect the assignment to
|
|
// the underlying string if the index is in range. Since the underlying
|
|
// string does nothing with the assignment then we can ignore such
|
|
// assignments.
|
|
if (js_object->IsStringObjectWithCharacterAt(index)) {
|
|
return *value;
|
|
}
|
|
|
|
return js_object->SetElement(index, *value);
|
|
}
|
|
|
|
if (key->IsString()) {
|
|
if (Handle<String>::cast(key)->AsArrayIndex(&index)) {
|
|
return js_object->SetElement(index, *value);
|
|
} else {
|
|
Handle<String> key_string = Handle<String>::cast(key);
|
|
key_string->TryFlatten();
|
|
return js_object->IgnoreAttributesAndSetLocalProperty(*key_string,
|
|
*value,
|
|
attr);
|
|
}
|
|
}
|
|
|
|
// Call-back into JavaScript to convert the key to a string.
|
|
bool has_pending_exception = false;
|
|
Handle<Object> converted = Execution::ToString(key, &has_pending_exception);
|
|
if (has_pending_exception) return Failure::Exception();
|
|
Handle<String> name = Handle<String>::cast(converted);
|
|
|
|
if (name->AsArrayIndex(&index)) {
|
|
return js_object->SetElement(index, *value);
|
|
} else {
|
|
return js_object->IgnoreAttributesAndSetLocalProperty(*name, *value, attr);
|
|
}
|
|
}
|
|
|
|
|
|
Object* Runtime::ForceDeleteObjectProperty(Handle<JSObject> js_object,
|
|
Handle<Object> key) {
|
|
HandleScope scope;
|
|
|
|
// Check if the given key is an array index.
|
|
uint32_t index;
|
|
if (Array::IndexFromObject(*key, &index)) {
|
|
// In Firefox/SpiderMonkey, Safari and Opera you can access the
|
|
// characters of a string using [] notation. In the case of a
|
|
// String object we just need to redirect the deletion to the
|
|
// underlying string if the index is in range. Since the
|
|
// underlying string does nothing with the deletion, we can ignore
|
|
// such deletions.
|
|
if (js_object->IsStringObjectWithCharacterAt(index)) {
|
|
return Heap::true_value();
|
|
}
|
|
|
|
return js_object->DeleteElement(index, JSObject::FORCE_DELETION);
|
|
}
|
|
|
|
Handle<String> key_string;
|
|
if (key->IsString()) {
|
|
key_string = Handle<String>::cast(key);
|
|
} else {
|
|
// Call-back into JavaScript to convert the key to a string.
|
|
bool has_pending_exception = false;
|
|
Handle<Object> converted = Execution::ToString(key, &has_pending_exception);
|
|
if (has_pending_exception) return Failure::Exception();
|
|
key_string = Handle<String>::cast(converted);
|
|
}
|
|
|
|
key_string->TryFlatten();
|
|
return js_object->DeleteProperty(*key_string, JSObject::FORCE_DELETION);
|
|
}
|
|
|
|
|
|
static Object* Runtime_SetProperty(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
RUNTIME_ASSERT(args.length() == 3 || args.length() == 4);
|
|
|
|
Handle<Object> object = args.at<Object>(0);
|
|
Handle<Object> key = args.at<Object>(1);
|
|
Handle<Object> value = args.at<Object>(2);
|
|
|
|
// Compute attributes.
|
|
PropertyAttributes attributes = NONE;
|
|
if (args.length() == 4) {
|
|
CONVERT_CHECKED(Smi, value_obj, args[3]);
|
|
int unchecked_value = value_obj->value();
|
|
// Only attribute bits should be set.
|
|
RUNTIME_ASSERT(
|
|
(unchecked_value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
|
|
attributes = static_cast<PropertyAttributes>(unchecked_value);
|
|
}
|
|
return Runtime::SetObjectProperty(object, key, value, attributes);
|
|
}
|
|
|
|
|
|
// Set a local property, even if it is READ_ONLY. If the property does not
|
|
// exist, it will be added with attributes NONE.
|
|
static Object* Runtime_IgnoreAttributesAndSetProperty(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
RUNTIME_ASSERT(args.length() == 3 || args.length() == 4);
|
|
CONVERT_CHECKED(JSObject, object, args[0]);
|
|
CONVERT_CHECKED(String, name, args[1]);
|
|
// Compute attributes.
|
|
PropertyAttributes attributes = NONE;
|
|
if (args.length() == 4) {
|
|
CONVERT_CHECKED(Smi, value_obj, args[3]);
|
|
int unchecked_value = value_obj->value();
|
|
// Only attribute bits should be set.
|
|
RUNTIME_ASSERT(
|
|
(unchecked_value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
|
|
attributes = static_cast<PropertyAttributes>(unchecked_value);
|
|
}
|
|
|
|
return object->
|
|
IgnoreAttributesAndSetLocalProperty(name, args[2], attributes);
|
|
}
|
|
|
|
|
|
static Object* Runtime_DeleteProperty(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_CHECKED(JSObject, object, args[0]);
|
|
CONVERT_CHECKED(String, key, args[1]);
|
|
return object->DeleteProperty(key, JSObject::NORMAL_DELETION);
|
|
}
|
|
|
|
|
|
static Object* HasLocalPropertyImplementation(Handle<JSObject> object,
|
|
Handle<String> key) {
|
|
if (object->HasLocalProperty(*key)) return Heap::true_value();
|
|
// Handle hidden prototypes. If there's a hidden prototype above this thing
|
|
// then we have to check it for properties, because they are supposed to
|
|
// look like they are on this object.
|
|
Handle<Object> proto(object->GetPrototype());
|
|
if (proto->IsJSObject() &&
|
|
Handle<JSObject>::cast(proto)->map()->is_hidden_prototype()) {
|
|
return HasLocalPropertyImplementation(Handle<JSObject>::cast(proto), key);
|
|
}
|
|
return Heap::false_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_HasLocalProperty(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
CONVERT_CHECKED(String, key, args[1]);
|
|
|
|
Object* obj = args[0];
|
|
// Only JS objects can have properties.
|
|
if (obj->IsJSObject()) {
|
|
JSObject* object = JSObject::cast(obj);
|
|
// Fast case - no interceptors.
|
|
if (object->HasRealNamedProperty(key)) return Heap::true_value();
|
|
// Slow case. Either it's not there or we have an interceptor. We should
|
|
// have handles for this kind of deal.
|
|
HandleScope scope;
|
|
return HasLocalPropertyImplementation(Handle<JSObject>(object),
|
|
Handle<String>(key));
|
|
} else if (obj->IsString()) {
|
|
// Well, there is one exception: Handle [] on strings.
|
|
uint32_t index;
|
|
if (key->AsArrayIndex(&index)) {
|
|
String* string = String::cast(obj);
|
|
if (index < static_cast<uint32_t>(string->length()))
|
|
return Heap::true_value();
|
|
}
|
|
}
|
|
return Heap::false_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_HasProperty(Arguments args) {
|
|
NoHandleAllocation na;
|
|
ASSERT(args.length() == 2);
|
|
|
|
// Only JS objects can have properties.
|
|
if (args[0]->IsJSObject()) {
|
|
JSObject* object = JSObject::cast(args[0]);
|
|
CONVERT_CHECKED(String, key, args[1]);
|
|
if (object->HasProperty(key)) return Heap::true_value();
|
|
}
|
|
return Heap::false_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_HasElement(Arguments args) {
|
|
NoHandleAllocation na;
|
|
ASSERT(args.length() == 2);
|
|
|
|
// Only JS objects can have elements.
|
|
if (args[0]->IsJSObject()) {
|
|
JSObject* object = JSObject::cast(args[0]);
|
|
CONVERT_CHECKED(Smi, index_obj, args[1]);
|
|
uint32_t index = index_obj->value();
|
|
if (object->HasElement(index)) return Heap::true_value();
|
|
}
|
|
return Heap::false_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_IsPropertyEnumerable(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_CHECKED(JSObject, object, args[0]);
|
|
CONVERT_CHECKED(String, key, args[1]);
|
|
|
|
uint32_t index;
|
|
if (key->AsArrayIndex(&index)) {
|
|
return Heap::ToBoolean(object->HasElement(index));
|
|
}
|
|
|
|
PropertyAttributes att = object->GetLocalPropertyAttribute(key);
|
|
return Heap::ToBoolean(att != ABSENT && (att & DONT_ENUM) == 0);
|
|
}
|
|
|
|
|
|
static Object* Runtime_GetPropertyNames(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
CONVERT_ARG_CHECKED(JSObject, object, 0);
|
|
return *GetKeysFor(object);
|
|
}
|
|
|
|
|
|
// Returns either a FixedArray as Runtime_GetPropertyNames,
|
|
// or, if the given object has an enum cache that contains
|
|
// all enumerable properties of the object and its prototypes
|
|
// have none, the map of the object. This is used to speed up
|
|
// the check for deletions during a for-in.
|
|
static Object* Runtime_GetPropertyNamesFast(Arguments args) {
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_CHECKED(JSObject, raw_object, args[0]);
|
|
|
|
if (raw_object->IsSimpleEnum()) return raw_object->map();
|
|
|
|
HandleScope scope;
|
|
Handle<JSObject> object(raw_object);
|
|
Handle<FixedArray> content = GetKeysInFixedArrayFor(object,
|
|
INCLUDE_PROTOS);
|
|
|
|
// Test again, since cache may have been built by preceding call.
|
|
if (object->IsSimpleEnum()) return object->map();
|
|
|
|
return *content;
|
|
}
|
|
|
|
|
|
// Find the length of the prototype chain that is to to handled as one. If a
|
|
// prototype object is hidden it is to be viewed as part of the the object it
|
|
// is prototype for.
|
|
static int LocalPrototypeChainLength(JSObject* obj) {
|
|
int count = 1;
|
|
Object* proto = obj->GetPrototype();
|
|
while (proto->IsJSObject() &&
|
|
JSObject::cast(proto)->map()->is_hidden_prototype()) {
|
|
count++;
|
|
proto = JSObject::cast(proto)->GetPrototype();
|
|
}
|
|
return count;
|
|
}
|
|
|
|
|
|
// Return the names of the local named properties.
|
|
// args[0]: object
|
|
static Object* Runtime_GetLocalPropertyNames(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
if (!args[0]->IsJSObject()) {
|
|
return Heap::undefined_value();
|
|
}
|
|
CONVERT_ARG_CHECKED(JSObject, obj, 0);
|
|
|
|
// Skip the global proxy as it has no properties and always delegates to the
|
|
// real global object.
|
|
if (obj->IsJSGlobalProxy()) {
|
|
// Only collect names if access is permitted.
|
|
if (obj->IsAccessCheckNeeded() &&
|
|
!Top::MayNamedAccess(*obj, Heap::undefined_value(), v8::ACCESS_KEYS)) {
|
|
Top::ReportFailedAccessCheck(*obj, v8::ACCESS_KEYS);
|
|
return *Factory::NewJSArray(0);
|
|
}
|
|
obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype()));
|
|
}
|
|
|
|
// Find the number of objects making up this.
|
|
int length = LocalPrototypeChainLength(*obj);
|
|
|
|
// Find the number of local properties for each of the objects.
|
|
int* local_property_count = NewArray<int>(length);
|
|
int total_property_count = 0;
|
|
Handle<JSObject> jsproto = obj;
|
|
for (int i = 0; i < length; i++) {
|
|
// Only collect names if access is permitted.
|
|
if (jsproto->IsAccessCheckNeeded() &&
|
|
!Top::MayNamedAccess(*jsproto,
|
|
Heap::undefined_value(),
|
|
v8::ACCESS_KEYS)) {
|
|
Top::ReportFailedAccessCheck(*jsproto, v8::ACCESS_KEYS);
|
|
return *Factory::NewJSArray(0);
|
|
}
|
|
int n;
|
|
n = jsproto->NumberOfLocalProperties(static_cast<PropertyAttributes>(NONE));
|
|
local_property_count[i] = n;
|
|
total_property_count += n;
|
|
if (i < length - 1) {
|
|
jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype()));
|
|
}
|
|
}
|
|
|
|
// Allocate an array with storage for all the property names.
|
|
Handle<FixedArray> names = Factory::NewFixedArray(total_property_count);
|
|
|
|
// Get the property names.
|
|
jsproto = obj;
|
|
int proto_with_hidden_properties = 0;
|
|
for (int i = 0; i < length; i++) {
|
|
jsproto->GetLocalPropertyNames(*names,
|
|
i == 0 ? 0 : local_property_count[i - 1]);
|
|
if (!GetHiddenProperties(jsproto, false)->IsUndefined()) {
|
|
proto_with_hidden_properties++;
|
|
}
|
|
if (i < length - 1) {
|
|
jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype()));
|
|
}
|
|
}
|
|
|
|
// Filter out name of hidden propeties object.
|
|
if (proto_with_hidden_properties > 0) {
|
|
Handle<FixedArray> old_names = names;
|
|
names = Factory::NewFixedArray(
|
|
names->length() - proto_with_hidden_properties);
|
|
int dest_pos = 0;
|
|
for (int i = 0; i < total_property_count; i++) {
|
|
Object* name = old_names->get(i);
|
|
if (name == Heap::hidden_symbol()) {
|
|
continue;
|
|
}
|
|
names->set(dest_pos++, name);
|
|
}
|
|
}
|
|
|
|
DeleteArray(local_property_count);
|
|
return *Factory::NewJSArrayWithElements(names);
|
|
}
|
|
|
|
|
|
// Return the names of the local indexed properties.
|
|
// args[0]: object
|
|
static Object* Runtime_GetLocalElementNames(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
if (!args[0]->IsJSObject()) {
|
|
return Heap::undefined_value();
|
|
}
|
|
CONVERT_ARG_CHECKED(JSObject, obj, 0);
|
|
|
|
int n = obj->NumberOfLocalElements(static_cast<PropertyAttributes>(NONE));
|
|
Handle<FixedArray> names = Factory::NewFixedArray(n);
|
|
obj->GetLocalElementKeys(*names, static_cast<PropertyAttributes>(NONE));
|
|
return *Factory::NewJSArrayWithElements(names);
|
|
}
|
|
|
|
|
|
// Return information on whether an object has a named or indexed interceptor.
|
|
// args[0]: object
|
|
static Object* Runtime_GetInterceptorInfo(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
if (!args[0]->IsJSObject()) {
|
|
return Smi::FromInt(0);
|
|
}
|
|
CONVERT_ARG_CHECKED(JSObject, obj, 0);
|
|
|
|
int result = 0;
|
|
if (obj->HasNamedInterceptor()) result |= 2;
|
|
if (obj->HasIndexedInterceptor()) result |= 1;
|
|
|
|
return Smi::FromInt(result);
|
|
}
|
|
|
|
|
|
// Return property names from named interceptor.
|
|
// args[0]: object
|
|
static Object* Runtime_GetNamedInterceptorPropertyNames(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
CONVERT_ARG_CHECKED(JSObject, obj, 0);
|
|
|
|
if (obj->HasNamedInterceptor()) {
|
|
v8::Handle<v8::Array> result = GetKeysForNamedInterceptor(obj, obj);
|
|
if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result);
|
|
}
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
// Return element names from indexed interceptor.
|
|
// args[0]: object
|
|
static Object* Runtime_GetIndexedInterceptorElementNames(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
CONVERT_ARG_CHECKED(JSObject, obj, 0);
|
|
|
|
if (obj->HasIndexedInterceptor()) {
|
|
v8::Handle<v8::Array> result = GetKeysForIndexedInterceptor(obj, obj);
|
|
if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result);
|
|
}
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_LocalKeys(Arguments args) {
|
|
ASSERT_EQ(args.length(), 1);
|
|
CONVERT_CHECKED(JSObject, raw_object, args[0]);
|
|
HandleScope scope;
|
|
Handle<JSObject> object(raw_object);
|
|
Handle<FixedArray> contents = GetKeysInFixedArrayFor(object,
|
|
LOCAL_ONLY);
|
|
// Some fast paths through GetKeysInFixedArrayFor reuse a cached
|
|
// property array and since the result is mutable we have to create
|
|
// a fresh clone on each invocation.
|
|
int length = contents->length();
|
|
Handle<FixedArray> copy = Factory::NewFixedArray(length);
|
|
for (int i = 0; i < length; i++) {
|
|
Object* entry = contents->get(i);
|
|
if (entry->IsString()) {
|
|
copy->set(i, entry);
|
|
} else {
|
|
ASSERT(entry->IsNumber());
|
|
HandleScope scope;
|
|
Handle<Object> entry_handle(entry);
|
|
Handle<Object> entry_str = Factory::NumberToString(entry_handle);
|
|
copy->set(i, *entry_str);
|
|
}
|
|
}
|
|
return *Factory::NewJSArrayWithElements(copy);
|
|
}
|
|
|
|
|
|
static Object* Runtime_GetArgumentsProperty(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
// Compute the frame holding the arguments.
|
|
JavaScriptFrameIterator it;
|
|
it.AdvanceToArgumentsFrame();
|
|
JavaScriptFrame* frame = it.frame();
|
|
|
|
// Get the actual number of provided arguments.
|
|
const uint32_t n = frame->GetProvidedParametersCount();
|
|
|
|
// Try to convert the key to an index. If successful and within
|
|
// index return the the argument from the frame.
|
|
uint32_t index;
|
|
if (Array::IndexFromObject(args[0], &index) && index < n) {
|
|
return frame->GetParameter(index);
|
|
}
|
|
|
|
// Convert the key to a string.
|
|
HandleScope scope;
|
|
bool exception = false;
|
|
Handle<Object> converted =
|
|
Execution::ToString(args.at<Object>(0), &exception);
|
|
if (exception) return Failure::Exception();
|
|
Handle<String> key = Handle<String>::cast(converted);
|
|
|
|
// Try to convert the string key into an array index.
|
|
if (key->AsArrayIndex(&index)) {
|
|
if (index < n) {
|
|
return frame->GetParameter(index);
|
|
} else {
|
|
return Top::initial_object_prototype()->GetElement(index);
|
|
}
|
|
}
|
|
|
|
// Handle special arguments properties.
|
|
if (key->Equals(Heap::length_symbol())) return Smi::FromInt(n);
|
|
if (key->Equals(Heap::callee_symbol())) return frame->function();
|
|
|
|
// Lookup in the initial Object.prototype object.
|
|
return Top::initial_object_prototype()->GetProperty(*key);
|
|
}
|
|
|
|
|
|
static Object* Runtime_ToFastProperties(Arguments args) {
|
|
HandleScope scope;
|
|
|
|
ASSERT(args.length() == 1);
|
|
Handle<Object> object = args.at<Object>(0);
|
|
if (object->IsJSObject()) {
|
|
Handle<JSObject> js_object = Handle<JSObject>::cast(object);
|
|
if (!js_object->HasFastProperties() && !js_object->IsGlobalObject()) {
|
|
js_object->TransformToFastProperties(0);
|
|
}
|
|
}
|
|
return *object;
|
|
}
|
|
|
|
|
|
static Object* Runtime_ToSlowProperties(Arguments args) {
|
|
HandleScope scope;
|
|
|
|
ASSERT(args.length() == 1);
|
|
Handle<Object> object = args.at<Object>(0);
|
|
if (object->IsJSObject()) {
|
|
Handle<JSObject> js_object = Handle<JSObject>::cast(object);
|
|
js_object->NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
|
|
}
|
|
return *object;
|
|
}
|
|
|
|
|
|
static Object* Runtime_ToBool(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
return args[0]->ToBoolean();
|
|
}
|
|
|
|
|
|
// Returns the type string of a value; see ECMA-262, 11.4.3 (p 47).
|
|
// Possible optimizations: put the type string into the oddballs.
|
|
static Object* Runtime_Typeof(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
|
|
Object* obj = args[0];
|
|
if (obj->IsNumber()) return Heap::number_symbol();
|
|
HeapObject* heap_obj = HeapObject::cast(obj);
|
|
|
|
// typeof an undetectable object is 'undefined'
|
|
if (heap_obj->map()->is_undetectable()) return Heap::undefined_symbol();
|
|
|
|
InstanceType instance_type = heap_obj->map()->instance_type();
|
|
if (instance_type < FIRST_NONSTRING_TYPE) {
|
|
return Heap::string_symbol();
|
|
}
|
|
|
|
switch (instance_type) {
|
|
case ODDBALL_TYPE:
|
|
if (heap_obj->IsTrue() || heap_obj->IsFalse()) {
|
|
return Heap::boolean_symbol();
|
|
}
|
|
if (heap_obj->IsNull()) {
|
|
return Heap::object_symbol();
|
|
}
|
|
ASSERT(heap_obj->IsUndefined());
|
|
return Heap::undefined_symbol();
|
|
case JS_FUNCTION_TYPE: case JS_REGEXP_TYPE:
|
|
return Heap::function_symbol();
|
|
default:
|
|
// For any kind of object not handled above, the spec rule for
|
|
// host objects gives that it is okay to return "object"
|
|
return Heap::object_symbol();
|
|
}
|
|
}
|
|
|
|
|
|
static Object* Runtime_StringToNumber(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
CONVERT_CHECKED(String, subject, args[0]);
|
|
subject->TryFlatten();
|
|
return Heap::NumberFromDouble(StringToDouble(subject, ALLOW_HEX));
|
|
}
|
|
|
|
|
|
static Object* Runtime_StringFromCharCodeArray(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_CHECKED(JSArray, codes, args[0]);
|
|
int length = Smi::cast(codes->length())->value();
|
|
|
|
// Check if the string can be ASCII.
|
|
int i;
|
|
for (i = 0; i < length; i++) {
|
|
Object* element = codes->GetElement(i);
|
|
CONVERT_NUMBER_CHECKED(int, chr, Int32, element);
|
|
if ((chr & 0xffff) > String::kMaxAsciiCharCode)
|
|
break;
|
|
}
|
|
|
|
Object* object = NULL;
|
|
if (i == length) { // The string is ASCII.
|
|
object = Heap::AllocateRawAsciiString(length);
|
|
} else { // The string is not ASCII.
|
|
object = Heap::AllocateRawTwoByteString(length);
|
|
}
|
|
|
|
if (object->IsFailure()) return object;
|
|
String* result = String::cast(object);
|
|
for (int i = 0; i < length; i++) {
|
|
Object* element = codes->GetElement(i);
|
|
CONVERT_NUMBER_CHECKED(int, chr, Int32, element);
|
|
result->Set(i, chr & 0xffff);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
// kNotEscaped is generated by the following:
|
|
//
|
|
// #!/bin/perl
|
|
// for (my $i = 0; $i < 256; $i++) {
|
|
// print "\n" if $i % 16 == 0;
|
|
// my $c = chr($i);
|
|
// my $escaped = 1;
|
|
// $escaped = 0 if $c =~ m#[A-Za-z0-9@*_+./-]#;
|
|
// print $escaped ? "0, " : "1, ";
|
|
// }
|
|
|
|
|
|
static bool IsNotEscaped(uint16_t character) {
|
|
// Only for 8 bit characters, the rest are always escaped (in a different way)
|
|
ASSERT(character < 256);
|
|
static const char kNotEscaped[256] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
};
|
|
return kNotEscaped[character] != 0;
|
|
}
|
|
|
|
|
|
static Object* Runtime_URIEscape(Arguments args) {
|
|
const char hex_chars[] = "0123456789ABCDEF";
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
CONVERT_CHECKED(String, source, args[0]);
|
|
|
|
source->TryFlatten();
|
|
|
|
int escaped_length = 0;
|
|
int length = source->length();
|
|
{
|
|
Access<StringInputBuffer> buffer(&runtime_string_input_buffer);
|
|
buffer->Reset(source);
|
|
while (buffer->has_more()) {
|
|
uint16_t character = buffer->GetNext();
|
|
if (character >= 256) {
|
|
escaped_length += 6;
|
|
} else if (IsNotEscaped(character)) {
|
|
escaped_length++;
|
|
} else {
|
|
escaped_length += 3;
|
|
}
|
|
// We don't allow strings that are longer than a maximal length.
|
|
ASSERT(String::kMaxLength < 0x7fffffff - 6); // Cannot overflow.
|
|
if (escaped_length > String::kMaxLength) {
|
|
Top::context()->mark_out_of_memory();
|
|
return Failure::OutOfMemoryException();
|
|
}
|
|
}
|
|
}
|
|
// No length change implies no change. Return original string if no change.
|
|
if (escaped_length == length) {
|
|
return source;
|
|
}
|
|
Object* o = Heap::AllocateRawAsciiString(escaped_length);
|
|
if (o->IsFailure()) return o;
|
|
String* destination = String::cast(o);
|
|
int dest_position = 0;
|
|
|
|
Access<StringInputBuffer> buffer(&runtime_string_input_buffer);
|
|
buffer->Rewind();
|
|
while (buffer->has_more()) {
|
|
uint16_t chr = buffer->GetNext();
|
|
if (chr >= 256) {
|
|
destination->Set(dest_position, '%');
|
|
destination->Set(dest_position+1, 'u');
|
|
destination->Set(dest_position+2, hex_chars[chr >> 12]);
|
|
destination->Set(dest_position+3, hex_chars[(chr >> 8) & 0xf]);
|
|
destination->Set(dest_position+4, hex_chars[(chr >> 4) & 0xf]);
|
|
destination->Set(dest_position+5, hex_chars[chr & 0xf]);
|
|
dest_position += 6;
|
|
} else if (IsNotEscaped(chr)) {
|
|
destination->Set(dest_position, chr);
|
|
dest_position++;
|
|
} else {
|
|
destination->Set(dest_position, '%');
|
|
destination->Set(dest_position+1, hex_chars[chr >> 4]);
|
|
destination->Set(dest_position+2, hex_chars[chr & 0xf]);
|
|
dest_position += 3;
|
|
}
|
|
}
|
|
return destination;
|
|
}
|
|
|
|
|
|
static inline int TwoDigitHex(uint16_t character1, uint16_t character2) {
|
|
static const signed char kHexValue['g'] = {
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1,
|
|
-1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, 10, 11, 12, 13, 14, 15 };
|
|
|
|
if (character1 > 'f') return -1;
|
|
int hi = kHexValue[character1];
|
|
if (hi == -1) return -1;
|
|
if (character2 > 'f') return -1;
|
|
int lo = kHexValue[character2];
|
|
if (lo == -1) return -1;
|
|
return (hi << 4) + lo;
|
|
}
|
|
|
|
|
|
static inline int Unescape(String* source,
|
|
int i,
|
|
int length,
|
|
int* step) {
|
|
uint16_t character = source->Get(i);
|
|
int32_t hi = 0;
|
|
int32_t lo = 0;
|
|
if (character == '%' &&
|
|
i <= length - 6 &&
|
|
source->Get(i + 1) == 'u' &&
|
|
(hi = TwoDigitHex(source->Get(i + 2),
|
|
source->Get(i + 3))) != -1 &&
|
|
(lo = TwoDigitHex(source->Get(i + 4),
|
|
source->Get(i + 5))) != -1) {
|
|
*step = 6;
|
|
return (hi << 8) + lo;
|
|
} else if (character == '%' &&
|
|
i <= length - 3 &&
|
|
(lo = TwoDigitHex(source->Get(i + 1),
|
|
source->Get(i + 2))) != -1) {
|
|
*step = 3;
|
|
return lo;
|
|
} else {
|
|
*step = 1;
|
|
return character;
|
|
}
|
|
}
|
|
|
|
|
|
static Object* Runtime_URIUnescape(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
CONVERT_CHECKED(String, source, args[0]);
|
|
|
|
source->TryFlatten();
|
|
|
|
bool ascii = true;
|
|
int length = source->length();
|
|
|
|
int unescaped_length = 0;
|
|
for (int i = 0; i < length; unescaped_length++) {
|
|
int step;
|
|
if (Unescape(source, i, length, &step) > String::kMaxAsciiCharCode) {
|
|
ascii = false;
|
|
}
|
|
i += step;
|
|
}
|
|
|
|
// No length change implies no change. Return original string if no change.
|
|
if (unescaped_length == length)
|
|
return source;
|
|
|
|
Object* o = ascii ?
|
|
Heap::AllocateRawAsciiString(unescaped_length) :
|
|
Heap::AllocateRawTwoByteString(unescaped_length);
|
|
if (o->IsFailure()) return o;
|
|
String* destination = String::cast(o);
|
|
|
|
int dest_position = 0;
|
|
for (int i = 0; i < length; dest_position++) {
|
|
int step;
|
|
destination->Set(dest_position, Unescape(source, i, length, &step));
|
|
i += step;
|
|
}
|
|
return destination;
|
|
}
|
|
|
|
|
|
static Object* Runtime_StringParseInt(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
|
|
CONVERT_CHECKED(String, s, args[0]);
|
|
CONVERT_SMI_CHECKED(radix, args[1]);
|
|
|
|
s->TryFlatten();
|
|
|
|
int len = s->length();
|
|
int i;
|
|
|
|
// Skip leading white space.
|
|
for (i = 0; i < len && Scanner::kIsWhiteSpace.get(s->Get(i)); i++) ;
|
|
if (i == len) return Heap::nan_value();
|
|
|
|
// Compute the sign (default to +).
|
|
int sign = 1;
|
|
if (s->Get(i) == '-') {
|
|
sign = -1;
|
|
i++;
|
|
} else if (s->Get(i) == '+') {
|
|
i++;
|
|
}
|
|
|
|
// Compute the radix if 0.
|
|
if (radix == 0) {
|
|
radix = 10;
|
|
if (i < len && s->Get(i) == '0') {
|
|
radix = 8;
|
|
if (i + 1 < len) {
|
|
int c = s->Get(i + 1);
|
|
if (c == 'x' || c == 'X') {
|
|
radix = 16;
|
|
i += 2;
|
|
}
|
|
}
|
|
}
|
|
} else if (radix == 16) {
|
|
// Allow 0x or 0X prefix if radix is 16.
|
|
if (i + 1 < len && s->Get(i) == '0') {
|
|
int c = s->Get(i + 1);
|
|
if (c == 'x' || c == 'X') i += 2;
|
|
}
|
|
}
|
|
|
|
RUNTIME_ASSERT(2 <= radix && radix <= 36);
|
|
double value;
|
|
int end_index = StringToInt(s, i, radix, &value);
|
|
if (end_index != i) {
|
|
return Heap::NumberFromDouble(sign * value);
|
|
}
|
|
return Heap::nan_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_StringParseFloat(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
CONVERT_CHECKED(String, str, args[0]);
|
|
|
|
// ECMA-262 section 15.1.2.3, empty string is NaN
|
|
double value = StringToDouble(str, ALLOW_TRAILING_JUNK, OS::nan_value());
|
|
|
|
// Create a number object from the value.
|
|
return Heap::NumberFromDouble(value);
|
|
}
|
|
|
|
|
|
static unibrow::Mapping<unibrow::ToUppercase, 128> to_upper_mapping;
|
|
static unibrow::Mapping<unibrow::ToLowercase, 128> to_lower_mapping;
|
|
|
|
|
|
template <class Converter>
|
|
static Object* ConvertCaseHelper(String* s,
|
|
int length,
|
|
int input_string_length,
|
|
unibrow::Mapping<Converter, 128>* mapping) {
|
|
// We try this twice, once with the assumption that the result is no longer
|
|
// than the input and, if that assumption breaks, again with the exact
|
|
// length. This may not be pretty, but it is nicer than what was here before
|
|
// and I hereby claim my vaffel-is.
|
|
//
|
|
// Allocate the resulting string.
|
|
//
|
|
// NOTE: This assumes that the upper/lower case of an ascii
|
|
// character is also ascii. This is currently the case, but it
|
|
// might break in the future if we implement more context and locale
|
|
// dependent upper/lower conversions.
|
|
Object* o = s->IsAsciiRepresentation()
|
|
? Heap::AllocateRawAsciiString(length)
|
|
: Heap::AllocateRawTwoByteString(length);
|
|
if (o->IsFailure()) return o;
|
|
String* result = String::cast(o);
|
|
bool has_changed_character = false;
|
|
|
|
// Convert all characters to upper case, assuming that they will fit
|
|
// in the buffer
|
|
Access<StringInputBuffer> buffer(&runtime_string_input_buffer);
|
|
buffer->Reset(s);
|
|
unibrow::uchar chars[Converter::kMaxWidth];
|
|
// We can assume that the string is not empty
|
|
uc32 current = buffer->GetNext();
|
|
for (int i = 0; i < length;) {
|
|
bool has_next = buffer->has_more();
|
|
uc32 next = has_next ? buffer->GetNext() : 0;
|
|
int char_length = mapping->get(current, next, chars);
|
|
if (char_length == 0) {
|
|
// The case conversion of this character is the character itself.
|
|
result->Set(i, current);
|
|
i++;
|
|
} else if (char_length == 1) {
|
|
// Common case: converting the letter resulted in one character.
|
|
ASSERT(static_cast<uc32>(chars[0]) != current);
|
|
result->Set(i, chars[0]);
|
|
has_changed_character = true;
|
|
i++;
|
|
} else if (length == input_string_length) {
|
|
// We've assumed that the result would be as long as the
|
|
// input but here is a character that converts to several
|
|
// characters. No matter, we calculate the exact length
|
|
// of the result and try the whole thing again.
|
|
//
|
|
// Note that this leaves room for optimization. We could just
|
|
// memcpy what we already have to the result string. Also,
|
|
// the result string is the last object allocated we could
|
|
// "realloc" it and probably, in the vast majority of cases,
|
|
// extend the existing string to be able to hold the full
|
|
// result.
|
|
int next_length = 0;
|
|
if (has_next) {
|
|
next_length = mapping->get(next, 0, chars);
|
|
if (next_length == 0) next_length = 1;
|
|
}
|
|
int current_length = i + char_length + next_length;
|
|
while (buffer->has_more()) {
|
|
current = buffer->GetNext();
|
|
// NOTE: we use 0 as the next character here because, while
|
|
// the next character may affect what a character converts to,
|
|
// it does not in any case affect the length of what it convert
|
|
// to.
|
|
int char_length = mapping->get(current, 0, chars);
|
|
if (char_length == 0) char_length = 1;
|
|
current_length += char_length;
|
|
if (current_length > Smi::kMaxValue) {
|
|
Top::context()->mark_out_of_memory();
|
|
return Failure::OutOfMemoryException();
|
|
}
|
|
}
|
|
// Try again with the real length.
|
|
return Smi::FromInt(current_length);
|
|
} else {
|
|
for (int j = 0; j < char_length; j++) {
|
|
result->Set(i, chars[j]);
|
|
i++;
|
|
}
|
|
has_changed_character = true;
|
|
}
|
|
current = next;
|
|
}
|
|
if (has_changed_character) {
|
|
return result;
|
|
} else {
|
|
// If we didn't actually change anything in doing the conversion
|
|
// we simple return the result and let the converted string
|
|
// become garbage; there is no reason to keep two identical strings
|
|
// alive.
|
|
return s;
|
|
}
|
|
}
|
|
|
|
|
|
static inline SeqAsciiString* TryGetSeqAsciiString(String* s) {
|
|
if (!s->IsFlat() || !s->IsAsciiRepresentation()) return NULL;
|
|
if (s->IsConsString()) {
|
|
ASSERT(ConsString::cast(s)->second()->length() == 0);
|
|
return SeqAsciiString::cast(ConsString::cast(s)->first());
|
|
}
|
|
return SeqAsciiString::cast(s);
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
struct ToLowerTraits {
|
|
typedef unibrow::ToLowercase UnibrowConverter;
|
|
|
|
static bool ConvertAscii(char* dst, char* src, int length) {
|
|
bool changed = false;
|
|
for (int i = 0; i < length; ++i) {
|
|
char c = src[i];
|
|
if ('A' <= c && c <= 'Z') {
|
|
c += ('a' - 'A');
|
|
changed = true;
|
|
}
|
|
dst[i] = c;
|
|
}
|
|
return changed;
|
|
}
|
|
};
|
|
|
|
|
|
struct ToUpperTraits {
|
|
typedef unibrow::ToUppercase UnibrowConverter;
|
|
|
|
static bool ConvertAscii(char* dst, char* src, int length) {
|
|
bool changed = false;
|
|
for (int i = 0; i < length; ++i) {
|
|
char c = src[i];
|
|
if ('a' <= c && c <= 'z') {
|
|
c -= ('a' - 'A');
|
|
changed = true;
|
|
}
|
|
dst[i] = c;
|
|
}
|
|
return changed;
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
|
template <typename ConvertTraits>
|
|
static Object* ConvertCase(
|
|
Arguments args,
|
|
unibrow::Mapping<typename ConvertTraits::UnibrowConverter, 128>* mapping) {
|
|
NoHandleAllocation ha;
|
|
CONVERT_CHECKED(String, s, args[0]);
|
|
s->TryFlatten();
|
|
|
|
const int length = s->length();
|
|
// Assume that the string is not empty; we need this assumption later
|
|
if (length == 0) return s;
|
|
|
|
// Simpler handling of ascii strings.
|
|
//
|
|
// NOTE: This assumes that the upper/lower case of an ascii
|
|
// character is also ascii. This is currently the case, but it
|
|
// might break in the future if we implement more context and locale
|
|
// dependent upper/lower conversions.
|
|
SeqAsciiString* seq_ascii = TryGetSeqAsciiString(s);
|
|
if (seq_ascii != NULL) {
|
|
Object* o = Heap::AllocateRawAsciiString(length);
|
|
if (o->IsFailure()) return o;
|
|
SeqAsciiString* result = SeqAsciiString::cast(o);
|
|
bool has_changed_character = ConvertTraits::ConvertAscii(
|
|
result->GetChars(), seq_ascii->GetChars(), length);
|
|
return has_changed_character ? result : s;
|
|
}
|
|
|
|
Object* answer = ConvertCaseHelper(s, length, length, mapping);
|
|
if (answer->IsSmi()) {
|
|
// Retry with correct length.
|
|
answer = ConvertCaseHelper(s, Smi::cast(answer)->value(), length, mapping);
|
|
}
|
|
return answer; // This may be a failure.
|
|
}
|
|
|
|
|
|
static Object* Runtime_StringToLowerCase(Arguments args) {
|
|
return ConvertCase<ToLowerTraits>(args, &to_lower_mapping);
|
|
}
|
|
|
|
|
|
static Object* Runtime_StringToUpperCase(Arguments args) {
|
|
return ConvertCase<ToUpperTraits>(args, &to_upper_mapping);
|
|
}
|
|
|
|
|
|
static inline bool IsTrimWhiteSpace(unibrow::uchar c) {
|
|
return unibrow::WhiteSpace::Is(c) || c == 0x200b;
|
|
}
|
|
|
|
|
|
static Object* Runtime_StringTrim(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 3);
|
|
|
|
CONVERT_CHECKED(String, s, args[0]);
|
|
CONVERT_BOOLEAN_CHECKED(trimLeft, args[1]);
|
|
CONVERT_BOOLEAN_CHECKED(trimRight, args[2]);
|
|
|
|
s->TryFlatten();
|
|
int length = s->length();
|
|
|
|
int left = 0;
|
|
if (trimLeft) {
|
|
while (left < length && IsTrimWhiteSpace(s->Get(left))) {
|
|
left++;
|
|
}
|
|
}
|
|
|
|
int right = length;
|
|
if (trimRight) {
|
|
while (right > left && IsTrimWhiteSpace(s->Get(right - 1))) {
|
|
right--;
|
|
}
|
|
}
|
|
return s->SubString(left, right);
|
|
}
|
|
|
|
|
|
// Copies ascii characters to the given fixed array looking up
|
|
// one-char strings in the cache. Gives up on the first char that is
|
|
// not in the cache and fills the remainder with smi zeros. Returns
|
|
// the length of the successfully copied prefix.
|
|
static int CopyCachedAsciiCharsToArray(const char* chars,
|
|
FixedArray* elements,
|
|
int length) {
|
|
AssertNoAllocation nogc;
|
|
FixedArray* ascii_cache = Heap::single_character_string_cache();
|
|
Object* undefined = Heap::undefined_value();
|
|
int i;
|
|
for (i = 0; i < length; ++i) {
|
|
Object* value = ascii_cache->get(chars[i]);
|
|
if (value == undefined) break;
|
|
ASSERT(!Heap::InNewSpace(value));
|
|
elements->set(i, value, SKIP_WRITE_BARRIER);
|
|
}
|
|
if (i < length) {
|
|
ASSERT(Smi::FromInt(0) == 0);
|
|
memset(elements->data_start() + i, 0, kPointerSize * (length - i));
|
|
}
|
|
#ifdef DEBUG
|
|
for (int j = 0; j < length; ++j) {
|
|
Object* element = elements->get(j);
|
|
ASSERT(element == Smi::FromInt(0) ||
|
|
(element->IsString() && String::cast(element)->LooksValid()));
|
|
}
|
|
#endif
|
|
return i;
|
|
}
|
|
|
|
|
|
// Converts a String to JSArray.
|
|
// For example, "foo" => ["f", "o", "o"].
|
|
static Object* Runtime_StringToArray(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
CONVERT_ARG_CHECKED(String, s, 0);
|
|
|
|
s->TryFlatten();
|
|
const int length = s->length();
|
|
|
|
Handle<FixedArray> elements;
|
|
if (s->IsFlat() && s->IsAsciiRepresentation()) {
|
|
Object* obj = Heap::AllocateUninitializedFixedArray(length);
|
|
if (obj->IsFailure()) return obj;
|
|
elements = Handle<FixedArray>(FixedArray::cast(obj));
|
|
|
|
Vector<const char> chars = s->ToAsciiVector();
|
|
// Note, this will initialize all elements (not only the prefix)
|
|
// to prevent GC from seeing partially initialized array.
|
|
int num_copied_from_cache = CopyCachedAsciiCharsToArray(chars.start(),
|
|
*elements,
|
|
length);
|
|
|
|
for (int i = num_copied_from_cache; i < length; ++i) {
|
|
elements->set(i, *LookupSingleCharacterStringFromCode(chars[i]));
|
|
}
|
|
} else {
|
|
elements = Factory::NewFixedArray(length);
|
|
for (int i = 0; i < length; ++i) {
|
|
elements->set(i, *LookupSingleCharacterStringFromCode(s->Get(i)));
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
for (int i = 0; i < length; ++i) {
|
|
ASSERT(String::cast(elements->get(i))->length() == 1);
|
|
}
|
|
#endif
|
|
|
|
return *Factory::NewJSArrayWithElements(elements);
|
|
}
|
|
|
|
|
|
bool Runtime::IsUpperCaseChar(uint16_t ch) {
|
|
unibrow::uchar chars[unibrow::ToUppercase::kMaxWidth];
|
|
int char_length = to_upper_mapping.get(ch, 0, chars);
|
|
return char_length == 0;
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberToString(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
Object* number = args[0];
|
|
RUNTIME_ASSERT(number->IsNumber());
|
|
|
|
return Heap::NumberToString(number);
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberToInteger(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_DOUBLE_CHECKED(number, args[0]);
|
|
|
|
// We do not include 0 so that we don't have to treat +0 / -0 cases.
|
|
if (number > 0 && number <= Smi::kMaxValue) {
|
|
return Smi::FromInt(static_cast<int>(number));
|
|
}
|
|
return Heap::NumberFromDouble(DoubleToInteger(number));
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberToJSUint32(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, args[0]);
|
|
return Heap::NumberFromUint32(number);
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberToJSInt32(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_DOUBLE_CHECKED(number, args[0]);
|
|
|
|
// We do not include 0 so that we don't have to treat +0 / -0 cases.
|
|
if (number > 0 && number <= Smi::kMaxValue) {
|
|
return Smi::FromInt(static_cast<int>(number));
|
|
}
|
|
return Heap::NumberFromInt32(DoubleToInt32(number));
|
|
}
|
|
|
|
|
|
// Converts a Number to a Smi, if possible. Returns NaN if the number is not
|
|
// a small integer.
|
|
static Object* Runtime_NumberToSmi(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
Object* obj = args[0];
|
|
if (obj->IsSmi()) {
|
|
return obj;
|
|
}
|
|
if (obj->IsHeapNumber()) {
|
|
double value = HeapNumber::cast(obj)->value();
|
|
int int_value = FastD2I(value);
|
|
if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
|
|
return Smi::FromInt(int_value);
|
|
}
|
|
}
|
|
return Heap::nan_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberAdd(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
CONVERT_DOUBLE_CHECKED(y, args[1]);
|
|
return Heap::AllocateHeapNumber(x + y);
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberSub(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
CONVERT_DOUBLE_CHECKED(y, args[1]);
|
|
return Heap::AllocateHeapNumber(x - y);
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberMul(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
CONVERT_DOUBLE_CHECKED(y, args[1]);
|
|
return Heap::AllocateHeapNumber(x * y);
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberUnaryMinus(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
return Heap::AllocateHeapNumber(-x);
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberDiv(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
CONVERT_DOUBLE_CHECKED(y, args[1]);
|
|
return Heap::NewNumberFromDouble(x / y);
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberMod(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
CONVERT_DOUBLE_CHECKED(y, args[1]);
|
|
|
|
x = modulo(x, y);
|
|
// NewNumberFromDouble may return a Smi instead of a Number object
|
|
return Heap::NewNumberFromDouble(x);
|
|
}
|
|
|
|
|
|
static Object* Runtime_StringAdd(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
CONVERT_CHECKED(String, str1, args[0]);
|
|
CONVERT_CHECKED(String, str2, args[1]);
|
|
Counters::string_add_runtime.Increment();
|
|
return Heap::AllocateConsString(str1, str2);
|
|
}
|
|
|
|
|
|
template<typename sinkchar>
|
|
static inline void StringBuilderConcatHelper(String* special,
|
|
sinkchar* sink,
|
|
FixedArray* fixed_array,
|
|
int array_length) {
|
|
int position = 0;
|
|
for (int i = 0; i < array_length; i++) {
|
|
Object* element = fixed_array->get(i);
|
|
if (element->IsSmi()) {
|
|
// Smi encoding of position and length.
|
|
int encoded_slice = Smi::cast(element)->value();
|
|
int pos;
|
|
int len;
|
|
if (encoded_slice > 0) {
|
|
// Position and length encoded in one smi.
|
|
pos = StringBuilderSubstringPosition::decode(encoded_slice);
|
|
len = StringBuilderSubstringLength::decode(encoded_slice);
|
|
} else {
|
|
// Position and length encoded in two smis.
|
|
Object* obj = fixed_array->get(++i);
|
|
ASSERT(obj->IsSmi());
|
|
pos = Smi::cast(obj)->value();
|
|
len = -encoded_slice;
|
|
}
|
|
String::WriteToFlat(special,
|
|
sink + position,
|
|
pos,
|
|
pos + len);
|
|
position += len;
|
|
} else {
|
|
String* string = String::cast(element);
|
|
int element_length = string->length();
|
|
String::WriteToFlat(string, sink + position, 0, element_length);
|
|
position += element_length;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static Object* Runtime_StringBuilderConcat(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 3);
|
|
CONVERT_CHECKED(JSArray, array, args[0]);
|
|
if (!args[1]->IsSmi()) {
|
|
Top::context()->mark_out_of_memory();
|
|
return Failure::OutOfMemoryException();
|
|
}
|
|
int array_length = Smi::cast(args[1])->value();
|
|
CONVERT_CHECKED(String, special, args[2]);
|
|
|
|
// This assumption is used by the slice encoding in one or two smis.
|
|
ASSERT(Smi::kMaxValue >= String::kMaxLength);
|
|
|
|
int special_length = special->length();
|
|
if (!array->HasFastElements()) {
|
|
return Top::Throw(Heap::illegal_argument_symbol());
|
|
}
|
|
FixedArray* fixed_array = FixedArray::cast(array->elements());
|
|
if (fixed_array->length() < array_length) {
|
|
array_length = fixed_array->length();
|
|
}
|
|
|
|
if (array_length == 0) {
|
|
return Heap::empty_string();
|
|
} else if (array_length == 1) {
|
|
Object* first = fixed_array->get(0);
|
|
if (first->IsString()) return first;
|
|
}
|
|
|
|
bool ascii = special->IsAsciiRepresentation();
|
|
int position = 0;
|
|
int increment = 0;
|
|
for (int i = 0; i < array_length; i++) {
|
|
Object* elt = fixed_array->get(i);
|
|
if (elt->IsSmi()) {
|
|
// Smi encoding of position and length.
|
|
int len = Smi::cast(elt)->value();
|
|
if (len > 0) {
|
|
// Position and length encoded in one smi.
|
|
int pos = len >> 11;
|
|
len &= 0x7ff;
|
|
if (pos + len > special_length) {
|
|
return Top::Throw(Heap::illegal_argument_symbol());
|
|
}
|
|
increment = len;
|
|
} else {
|
|
// Position and length encoded in two smis.
|
|
increment = (-len);
|
|
// Get the position and check that it is also a smi.
|
|
i++;
|
|
if (i >= array_length) {
|
|
return Top::Throw(Heap::illegal_argument_symbol());
|
|
}
|
|
Object* pos = fixed_array->get(i);
|
|
if (!pos->IsSmi()) {
|
|
return Top::Throw(Heap::illegal_argument_symbol());
|
|
}
|
|
}
|
|
} else if (elt->IsString()) {
|
|
String* element = String::cast(elt);
|
|
int element_length = element->length();
|
|
increment = element_length;
|
|
if (ascii && !element->IsAsciiRepresentation()) {
|
|
ascii = false;
|
|
}
|
|
} else {
|
|
return Top::Throw(Heap::illegal_argument_symbol());
|
|
}
|
|
if (increment > String::kMaxLength - position) {
|
|
Top::context()->mark_out_of_memory();
|
|
return Failure::OutOfMemoryException();
|
|
}
|
|
position += increment;
|
|
}
|
|
|
|
int length = position;
|
|
Object* object;
|
|
|
|
if (ascii) {
|
|
object = Heap::AllocateRawAsciiString(length);
|
|
if (object->IsFailure()) return object;
|
|
SeqAsciiString* answer = SeqAsciiString::cast(object);
|
|
StringBuilderConcatHelper(special,
|
|
answer->GetChars(),
|
|
fixed_array,
|
|
array_length);
|
|
return answer;
|
|
} else {
|
|
object = Heap::AllocateRawTwoByteString(length);
|
|
if (object->IsFailure()) return object;
|
|
SeqTwoByteString* answer = SeqTwoByteString::cast(object);
|
|
StringBuilderConcatHelper(special,
|
|
answer->GetChars(),
|
|
fixed_array,
|
|
array_length);
|
|
return answer;
|
|
}
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberOr(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
|
|
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
|
|
return Heap::NumberFromInt32(x | y);
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberAnd(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
|
|
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
|
|
return Heap::NumberFromInt32(x & y);
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberXor(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
|
|
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
|
|
return Heap::NumberFromInt32(x ^ y);
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberNot(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
|
|
return Heap::NumberFromInt32(~x);
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberShl(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
|
|
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
|
|
return Heap::NumberFromInt32(x << (y & 0x1f));
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberShr(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]);
|
|
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
|
|
return Heap::NumberFromUint32(x >> (y & 0x1f));
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberSar(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
|
|
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
|
|
return Heap::NumberFromInt32(ArithmeticShiftRight(x, y & 0x1f));
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberEquals(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
CONVERT_DOUBLE_CHECKED(y, args[1]);
|
|
if (isnan(x)) return Smi::FromInt(NOT_EQUAL);
|
|
if (isnan(y)) return Smi::FromInt(NOT_EQUAL);
|
|
if (x == y) return Smi::FromInt(EQUAL);
|
|
Object* result;
|
|
if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) {
|
|
result = Smi::FromInt(EQUAL);
|
|
} else {
|
|
result = Smi::FromInt(NOT_EQUAL);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
static Object* Runtime_StringEquals(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_CHECKED(String, x, args[0]);
|
|
CONVERT_CHECKED(String, y, args[1]);
|
|
|
|
bool not_equal = !x->Equals(y);
|
|
// This is slightly convoluted because the value that signifies
|
|
// equality is 0 and inequality is 1 so we have to negate the result
|
|
// from String::Equals.
|
|
ASSERT(not_equal == 0 || not_equal == 1);
|
|
STATIC_CHECK(EQUAL == 0);
|
|
STATIC_CHECK(NOT_EQUAL == 1);
|
|
return Smi::FromInt(not_equal);
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberCompare(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 3);
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
CONVERT_DOUBLE_CHECKED(y, args[1]);
|
|
if (isnan(x) || isnan(y)) return args[2];
|
|
if (x == y) return Smi::FromInt(EQUAL);
|
|
if (isless(x, y)) return Smi::FromInt(LESS);
|
|
return Smi::FromInt(GREATER);
|
|
}
|
|
|
|
|
|
// Compare two Smis as if they were converted to strings and then
|
|
// compared lexicographically.
|
|
static Object* Runtime_SmiLexicographicCompare(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
// Arrays for the individual characters of the two Smis. Smis are
|
|
// 31 bit integers and 10 decimal digits are therefore enough.
|
|
static int x_elms[10];
|
|
static int y_elms[10];
|
|
|
|
// Extract the integer values from the Smis.
|
|
CONVERT_CHECKED(Smi, x, args[0]);
|
|
CONVERT_CHECKED(Smi, y, args[1]);
|
|
int x_value = x->value();
|
|
int y_value = y->value();
|
|
|
|
// If the integers are equal so are the string representations.
|
|
if (x_value == y_value) return Smi::FromInt(EQUAL);
|
|
|
|
// If one of the integers are zero the normal integer order is the
|
|
// same as the lexicographic order of the string representations.
|
|
if (x_value == 0 || y_value == 0) return Smi::FromInt(x_value - y_value);
|
|
|
|
// If only one of the integers is negative the negative number is
|
|
// smallest because the char code of '-' is less than the char code
|
|
// of any digit. Otherwise, we make both values positive.
|
|
if (x_value < 0 || y_value < 0) {
|
|
if (y_value >= 0) return Smi::FromInt(LESS);
|
|
if (x_value >= 0) return Smi::FromInt(GREATER);
|
|
x_value = -x_value;
|
|
y_value = -y_value;
|
|
}
|
|
|
|
// Convert the integers to arrays of their decimal digits.
|
|
int x_index = 0;
|
|
int y_index = 0;
|
|
while (x_value > 0) {
|
|
x_elms[x_index++] = x_value % 10;
|
|
x_value /= 10;
|
|
}
|
|
while (y_value > 0) {
|
|
y_elms[y_index++] = y_value % 10;
|
|
y_value /= 10;
|
|
}
|
|
|
|
// Loop through the arrays of decimal digits finding the first place
|
|
// where they differ.
|
|
while (--x_index >= 0 && --y_index >= 0) {
|
|
int diff = x_elms[x_index] - y_elms[y_index];
|
|
if (diff != 0) return Smi::FromInt(diff);
|
|
}
|
|
|
|
// If one array is a suffix of the other array, the longest array is
|
|
// the representation of the largest of the Smis in the
|
|
// lexicographic ordering.
|
|
return Smi::FromInt(x_index - y_index);
|
|
}
|
|
|
|
|
|
static Object* StringInputBufferCompare(String* x, String* y) {
|
|
static StringInputBuffer bufx;
|
|
static StringInputBuffer bufy;
|
|
bufx.Reset(x);
|
|
bufy.Reset(y);
|
|
while (bufx.has_more() && bufy.has_more()) {
|
|
int d = bufx.GetNext() - bufy.GetNext();
|
|
if (d < 0) return Smi::FromInt(LESS);
|
|
else if (d > 0) return Smi::FromInt(GREATER);
|
|
}
|
|
|
|
// x is (non-trivial) prefix of y:
|
|
if (bufy.has_more()) return Smi::FromInt(LESS);
|
|
// y is prefix of x:
|
|
return Smi::FromInt(bufx.has_more() ? GREATER : EQUAL);
|
|
}
|
|
|
|
|
|
static Object* FlatStringCompare(String* x, String* y) {
|
|
ASSERT(x->IsFlat());
|
|
ASSERT(y->IsFlat());
|
|
Object* equal_prefix_result = Smi::FromInt(EQUAL);
|
|
int prefix_length = x->length();
|
|
if (y->length() < prefix_length) {
|
|
prefix_length = y->length();
|
|
equal_prefix_result = Smi::FromInt(GREATER);
|
|
} else if (y->length() > prefix_length) {
|
|
equal_prefix_result = Smi::FromInt(LESS);
|
|
}
|
|
int r;
|
|
if (x->IsAsciiRepresentation()) {
|
|
Vector<const char> x_chars = x->ToAsciiVector();
|
|
if (y->IsAsciiRepresentation()) {
|
|
Vector<const char> y_chars = y->ToAsciiVector();
|
|
r = memcmp(x_chars.start(), y_chars.start(), prefix_length);
|
|
} else {
|
|
Vector<const uc16> y_chars = y->ToUC16Vector();
|
|
r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
|
|
}
|
|
} else {
|
|
Vector<const uc16> x_chars = x->ToUC16Vector();
|
|
if (y->IsAsciiRepresentation()) {
|
|
Vector<const char> y_chars = y->ToAsciiVector();
|
|
r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
|
|
} else {
|
|
Vector<const uc16> y_chars = y->ToUC16Vector();
|
|
r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
|
|
}
|
|
}
|
|
Object* result;
|
|
if (r == 0) {
|
|
result = equal_prefix_result;
|
|
} else {
|
|
result = (r < 0) ? Smi::FromInt(LESS) : Smi::FromInt(GREATER);
|
|
}
|
|
ASSERT(result == StringInputBufferCompare(x, y));
|
|
return result;
|
|
}
|
|
|
|
|
|
static Object* Runtime_StringCompare(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_CHECKED(String, x, args[0]);
|
|
CONVERT_CHECKED(String, y, args[1]);
|
|
|
|
Counters::string_compare_runtime.Increment();
|
|
|
|
// A few fast case tests before we flatten.
|
|
if (x == y) return Smi::FromInt(EQUAL);
|
|
if (y->length() == 0) {
|
|
if (x->length() == 0) return Smi::FromInt(EQUAL);
|
|
return Smi::FromInt(GREATER);
|
|
} else if (x->length() == 0) {
|
|
return Smi::FromInt(LESS);
|
|
}
|
|
|
|
int d = x->Get(0) - y->Get(0);
|
|
if (d < 0) return Smi::FromInt(LESS);
|
|
else if (d > 0) return Smi::FromInt(GREATER);
|
|
|
|
x->TryFlatten();
|
|
y->TryFlatten();
|
|
|
|
return (x->IsFlat() && y->IsFlat()) ? FlatStringCompare(x, y)
|
|
: StringInputBufferCompare(x, y);
|
|
}
|
|
|
|
|
|
static Object* Runtime_Math_acos(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
Counters::math_acos.Increment();
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
return TranscendentalCache::Get(TranscendentalCache::ACOS, x);
|
|
}
|
|
|
|
|
|
static Object* Runtime_Math_asin(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
Counters::math_asin.Increment();
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
return TranscendentalCache::Get(TranscendentalCache::ASIN, x);
|
|
}
|
|
|
|
|
|
static Object* Runtime_Math_atan(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
Counters::math_atan.Increment();
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
return TranscendentalCache::Get(TranscendentalCache::ATAN, x);
|
|
}
|
|
|
|
|
|
static Object* Runtime_Math_atan2(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
Counters::math_atan2.Increment();
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
CONVERT_DOUBLE_CHECKED(y, args[1]);
|
|
double result;
|
|
if (isinf(x) && isinf(y)) {
|
|
// Make sure that the result in case of two infinite arguments
|
|
// is a multiple of Pi / 4. The sign of the result is determined
|
|
// by the first argument (x) and the sign of the second argument
|
|
// determines the multiplier: one or three.
|
|
static double kPiDividedBy4 = 0.78539816339744830962;
|
|
int multiplier = (x < 0) ? -1 : 1;
|
|
if (y < 0) multiplier *= 3;
|
|
result = multiplier * kPiDividedBy4;
|
|
} else {
|
|
result = atan2(x, y);
|
|
}
|
|
return Heap::AllocateHeapNumber(result);
|
|
}
|
|
|
|
|
|
static Object* Runtime_Math_ceil(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
Counters::math_ceil.Increment();
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
return Heap::NumberFromDouble(ceiling(x));
|
|
}
|
|
|
|
|
|
static Object* Runtime_Math_cos(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
Counters::math_cos.Increment();
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
return TranscendentalCache::Get(TranscendentalCache::COS, x);
|
|
}
|
|
|
|
|
|
static Object* Runtime_Math_exp(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
Counters::math_exp.Increment();
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
return TranscendentalCache::Get(TranscendentalCache::EXP, x);
|
|
}
|
|
|
|
|
|
static Object* Runtime_Math_floor(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
Counters::math_floor.Increment();
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
return Heap::NumberFromDouble(floor(x));
|
|
}
|
|
|
|
|
|
static Object* Runtime_Math_log(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
Counters::math_log.Increment();
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
return TranscendentalCache::Get(TranscendentalCache::LOG, x);
|
|
}
|
|
|
|
|
|
// Helper function to compute x^y, where y is known to be an
|
|
// integer. Uses binary decomposition to limit the number of
|
|
// multiplications; see the discussion in "Hacker's Delight" by Henry
|
|
// S. Warren, Jr., figure 11-6, page 213.
|
|
static double powi(double x, int y) {
|
|
ASSERT(y != kMinInt);
|
|
unsigned n = (y < 0) ? -y : y;
|
|
double m = x;
|
|
double p = 1;
|
|
while (true) {
|
|
if ((n & 1) != 0) p *= m;
|
|
n >>= 1;
|
|
if (n == 0) {
|
|
if (y < 0) {
|
|
// Unfortunately, we have to be careful when p has reached
|
|
// infinity in the computation, because sometimes the higher
|
|
// internal precision in the pow() implementation would have
|
|
// given us a finite p. This happens very rarely.
|
|
double result = 1.0 / p;
|
|
return (result == 0 && isinf(p))
|
|
? pow(x, static_cast<double>(y)) // Avoid pow(double, int).
|
|
: result;
|
|
} else {
|
|
return p;
|
|
}
|
|
}
|
|
m *= m;
|
|
}
|
|
}
|
|
|
|
|
|
static Object* Runtime_Math_pow(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
Counters::math_pow.Increment();
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
|
|
// If the second argument is a smi, it is much faster to call the
|
|
// custom powi() function than the generic pow().
|
|
if (args[1]->IsSmi()) {
|
|
int y = Smi::cast(args[1])->value();
|
|
return Heap::AllocateHeapNumber(powi(x, y));
|
|
}
|
|
|
|
CONVERT_DOUBLE_CHECKED(y, args[1]);
|
|
|
|
if (!isinf(x)) {
|
|
if (y == 0.5) {
|
|
// It's not uncommon to use Math.pow(x, 0.5) to compute the
|
|
// square root of a number. To speed up such computations, we
|
|
// explictly check for this case and use the sqrt() function
|
|
// which is faster than pow().
|
|
return Heap::AllocateHeapNumber(sqrt(x));
|
|
} else if (y == -0.5) {
|
|
// Optimized using Math.pow(x, -0.5) == 1 / Math.pow(x, 0.5).
|
|
return Heap::AllocateHeapNumber(1.0 / sqrt(x));
|
|
}
|
|
}
|
|
|
|
if (y == 0) {
|
|
return Smi::FromInt(1);
|
|
} else if (isnan(y) || ((x == 1 || x == -1) && isinf(y))) {
|
|
return Heap::nan_value();
|
|
} else {
|
|
return Heap::AllocateHeapNumber(pow(x, y));
|
|
}
|
|
}
|
|
|
|
// Fast version of Math.pow if we know that y is not an integer and
|
|
// y is not -0.5 or 0.5. Used as slowcase from codegen.
|
|
static Object* Runtime_Math_pow_cfunction(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
CONVERT_DOUBLE_CHECKED(y, args[1]);
|
|
if (y == 0) {
|
|
return Smi::FromInt(1);
|
|
} else if (isnan(y) || ((x == 1 || x == -1) && isinf(y))) {
|
|
return Heap::nan_value();
|
|
} else {
|
|
return Heap::AllocateHeapNumber(pow(x, y));
|
|
}
|
|
}
|
|
|
|
|
|
static Object* Runtime_Math_round(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
Counters::math_round.Increment();
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
if (signbit(x) && x >= -0.5) return Heap::minus_zero_value();
|
|
double integer = ceil(x);
|
|
if (integer - x > 0.5) { integer -= 1.0; }
|
|
return Heap::NumberFromDouble(integer);
|
|
}
|
|
|
|
|
|
static Object* Runtime_Math_sin(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
Counters::math_sin.Increment();
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
return TranscendentalCache::Get(TranscendentalCache::SIN, x);
|
|
}
|
|
|
|
|
|
static Object* Runtime_Math_sqrt(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
Counters::math_sqrt.Increment();
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
return Heap::AllocateHeapNumber(sqrt(x));
|
|
}
|
|
|
|
|
|
static Object* Runtime_Math_tan(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
Counters::math_tan.Increment();
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
return TranscendentalCache::Get(TranscendentalCache::TAN, x);
|
|
}
|
|
|
|
|
|
static Object* Runtime_DateMakeDay(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 3);
|
|
|
|
CONVERT_SMI_CHECKED(year, args[0]);
|
|
CONVERT_SMI_CHECKED(month, args[1]);
|
|
CONVERT_SMI_CHECKED(date, args[2]);
|
|
|
|
static const int day_from_month[] = {0, 31, 59, 90, 120, 151,
|
|
181, 212, 243, 273, 304, 334};
|
|
static const int day_from_month_leap[] = {0, 31, 60, 91, 121, 152,
|
|
182, 213, 244, 274, 305, 335};
|
|
|
|
year += month / 12;
|
|
month %= 12;
|
|
if (month < 0) {
|
|
year--;
|
|
month += 12;
|
|
}
|
|
|
|
ASSERT(month >= 0);
|
|
ASSERT(month < 12);
|
|
|
|
// year_delta is an arbitrary number such that:
|
|
// a) year_delta = -1 (mod 400)
|
|
// b) year + year_delta > 0 for years in the range defined by
|
|
// ECMA 262 - 15.9.1.1, i.e. upto 100,000,000 days on either side of
|
|
// Jan 1 1970. This is required so that we don't run into integer
|
|
// division of negative numbers.
|
|
// c) there shouldn't be overflow for 32-bit integers in the following
|
|
// operations.
|
|
static const int year_delta = 399999;
|
|
static const int base_day = 365 * (1970 + year_delta) +
|
|
(1970 + year_delta) / 4 -
|
|
(1970 + year_delta) / 100 +
|
|
(1970 + year_delta) / 400;
|
|
|
|
int year1 = year + year_delta;
|
|
int day_from_year = 365 * year1 +
|
|
year1 / 4 -
|
|
year1 / 100 +
|
|
year1 / 400 -
|
|
base_day;
|
|
|
|
if (year % 4 || (year % 100 == 0 && year % 400 != 0)) {
|
|
return Smi::FromInt(day_from_year + day_from_month[month] + date - 1);
|
|
}
|
|
|
|
return Smi::FromInt(day_from_year + day_from_month_leap[month] + date - 1);
|
|
}
|
|
|
|
|
|
static Object* Runtime_NewArgumentsFast(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 3);
|
|
|
|
JSFunction* callee = JSFunction::cast(args[0]);
|
|
Object** parameters = reinterpret_cast<Object**>(args[1]);
|
|
const int length = Smi::cast(args[2])->value();
|
|
|
|
Object* result = Heap::AllocateArgumentsObject(callee, length);
|
|
if (result->IsFailure()) return result;
|
|
// Allocate the elements if needed.
|
|
if (length > 0) {
|
|
// Allocate the fixed array.
|
|
Object* obj = Heap::AllocateRawFixedArray(length);
|
|
if (obj->IsFailure()) return obj;
|
|
|
|
AssertNoAllocation no_gc;
|
|
reinterpret_cast<Array*>(obj)->set_map(Heap::fixed_array_map());
|
|
FixedArray* array = FixedArray::cast(obj);
|
|
array->set_length(length);
|
|
|
|
WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc);
|
|
for (int i = 0; i < length; i++) {
|
|
array->set(i, *--parameters, mode);
|
|
}
|
|
JSObject::cast(result)->set_elements(FixedArray::cast(obj));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
static Object* Runtime_NewClosure(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 2);
|
|
CONVERT_ARG_CHECKED(Context, context, 0);
|
|
CONVERT_ARG_CHECKED(JSFunction, boilerplate, 1);
|
|
|
|
PretenureFlag pretenure = (context->global_context() == *context)
|
|
? TENURED // Allocate global closures in old space.
|
|
: NOT_TENURED; // Allocate local closures in new space.
|
|
Handle<JSFunction> result =
|
|
Factory::NewFunctionFromBoilerplate(boilerplate, context, pretenure);
|
|
return *result;
|
|
}
|
|
|
|
|
|
static Code* ComputeConstructStub(Handle<JSFunction> function) {
|
|
Handle<Object> prototype = Factory::null_value();
|
|
if (function->has_instance_prototype()) {
|
|
prototype = Handle<Object>(function->instance_prototype());
|
|
}
|
|
if (function->shared()->CanGenerateInlineConstructor(*prototype)) {
|
|
ConstructStubCompiler compiler;
|
|
Object* code = compiler.CompileConstructStub(function->shared());
|
|
if (code->IsFailure()) {
|
|
return Builtins::builtin(Builtins::JSConstructStubGeneric);
|
|
}
|
|
return Code::cast(code);
|
|
}
|
|
|
|
return function->shared()->construct_stub();
|
|
}
|
|
|
|
|
|
static Object* Runtime_NewObject(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
|
|
Handle<Object> constructor = args.at<Object>(0);
|
|
|
|
// If the constructor isn't a proper function we throw a type error.
|
|
if (!constructor->IsJSFunction()) {
|
|
Vector< Handle<Object> > arguments = HandleVector(&constructor, 1);
|
|
Handle<Object> type_error =
|
|
Factory::NewTypeError("not_constructor", arguments);
|
|
return Top::Throw(*type_error);
|
|
}
|
|
|
|
Handle<JSFunction> function = Handle<JSFunction>::cast(constructor);
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
// Handle stepping into constructors if step into is active.
|
|
if (Debug::StepInActive()) {
|
|
Debug::HandleStepIn(function, Handle<Object>::null(), 0, true);
|
|
}
|
|
#endif
|
|
|
|
if (function->has_initial_map()) {
|
|
if (function->initial_map()->instance_type() == JS_FUNCTION_TYPE) {
|
|
// The 'Function' function ignores the receiver object when
|
|
// called using 'new' and creates a new JSFunction object that
|
|
// is returned. The receiver object is only used for error
|
|
// reporting if an error occurs when constructing the new
|
|
// JSFunction. Factory::NewJSObject() should not be used to
|
|
// allocate JSFunctions since it does not properly initialize
|
|
// the shared part of the function. Since the receiver is
|
|
// ignored anyway, we use the global object as the receiver
|
|
// instead of a new JSFunction object. This way, errors are
|
|
// reported the same way whether or not 'Function' is called
|
|
// using 'new'.
|
|
return Top::context()->global();
|
|
}
|
|
}
|
|
|
|
// The function should be compiled for the optimization hints to be available.
|
|
Handle<SharedFunctionInfo> shared(function->shared());
|
|
EnsureCompiled(shared, CLEAR_EXCEPTION);
|
|
|
|
bool first_allocation = !function->has_initial_map();
|
|
Handle<JSObject> result = Factory::NewJSObject(function);
|
|
if (first_allocation) {
|
|
Handle<Code> stub = Handle<Code>(
|
|
ComputeConstructStub(Handle<JSFunction>(function)));
|
|
shared->set_construct_stub(*stub);
|
|
}
|
|
|
|
Counters::constructed_objects.Increment();
|
|
Counters::constructed_objects_runtime.Increment();
|
|
|
|
return *result;
|
|
}
|
|
|
|
|
|
static Object* Runtime_LazyCompile(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
|
|
Handle<JSFunction> function = args.at<JSFunction>(0);
|
|
#ifdef DEBUG
|
|
if (FLAG_trace_lazy) {
|
|
PrintF("[lazy: ");
|
|
function->shared()->name()->Print();
|
|
PrintF("]\n");
|
|
}
|
|
#endif
|
|
|
|
// Compile the target function. Here we compile using CompileLazyInLoop in
|
|
// order to get the optimized version. This helps code like delta-blue
|
|
// that calls performance-critical routines through constructors. A
|
|
// constructor call doesn't use a CallIC, it uses a LoadIC followed by a
|
|
// direct call. Since the in-loop tracking takes place through CallICs
|
|
// this means that things called through constructors are never known to
|
|
// be in loops. We compile them as if they are in loops here just in case.
|
|
ASSERT(!function->is_compiled());
|
|
if (!CompileLazyInLoop(function, Handle<Object>::null(), KEEP_EXCEPTION)) {
|
|
return Failure::Exception();
|
|
}
|
|
|
|
return function->code();
|
|
}
|
|
|
|
|
|
static Object* Runtime_GetFunctionDelegate(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
RUNTIME_ASSERT(!args[0]->IsJSFunction());
|
|
return *Execution::GetFunctionDelegate(args.at<Object>(0));
|
|
}
|
|
|
|
|
|
static Object* Runtime_GetConstructorDelegate(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
RUNTIME_ASSERT(!args[0]->IsJSFunction());
|
|
return *Execution::GetConstructorDelegate(args.at<Object>(0));
|
|
}
|
|
|
|
|
|
static Object* Runtime_NewContext(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_CHECKED(JSFunction, function, args[0]);
|
|
int length = ScopeInfo<>::NumberOfContextSlots(function->code());
|
|
Object* result = Heap::AllocateFunctionContext(length, function);
|
|
if (result->IsFailure()) return result;
|
|
|
|
Top::set_context(Context::cast(result));
|
|
|
|
return result; // non-failure
|
|
}
|
|
|
|
static Object* PushContextHelper(Object* object, bool is_catch_context) {
|
|
// Convert the object to a proper JavaScript object.
|
|
Object* js_object = object;
|
|
if (!js_object->IsJSObject()) {
|
|
js_object = js_object->ToObject();
|
|
if (js_object->IsFailure()) {
|
|
if (!Failure::cast(js_object)->IsInternalError()) return js_object;
|
|
HandleScope scope;
|
|
Handle<Object> handle(object);
|
|
Handle<Object> result =
|
|
Factory::NewTypeError("with_expression", HandleVector(&handle, 1));
|
|
return Top::Throw(*result);
|
|
}
|
|
}
|
|
|
|
Object* result =
|
|
Heap::AllocateWithContext(Top::context(),
|
|
JSObject::cast(js_object),
|
|
is_catch_context);
|
|
if (result->IsFailure()) return result;
|
|
|
|
Context* context = Context::cast(result);
|
|
Top::set_context(context);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
static Object* Runtime_PushContext(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
return PushContextHelper(args[0], false);
|
|
}
|
|
|
|
|
|
static Object* Runtime_PushCatchContext(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
return PushContextHelper(args[0], true);
|
|
}
|
|
|
|
|
|
static Object* Runtime_LookupContext(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_ARG_CHECKED(Context, context, 0);
|
|
CONVERT_ARG_CHECKED(String, name, 1);
|
|
|
|
int index;
|
|
PropertyAttributes attributes;
|
|
ContextLookupFlags flags = FOLLOW_CHAINS;
|
|
Handle<Object> holder =
|
|
context->Lookup(name, flags, &index, &attributes);
|
|
|
|
if (index < 0 && !holder.is_null()) {
|
|
ASSERT(holder->IsJSObject());
|
|
return *holder;
|
|
}
|
|
|
|
// No intermediate context found. Use global object by default.
|
|
return Top::context()->global();
|
|
}
|
|
|
|
|
|
// A mechanism to return a pair of Object pointers in registers (if possible).
|
|
// How this is achieved is calling convention-dependent.
|
|
// All currently supported x86 compiles uses calling conventions that are cdecl
|
|
// variants where a 64-bit value is returned in two 32-bit registers
|
|
// (edx:eax on ia32, r1:r0 on ARM).
|
|
// In AMD-64 calling convention a struct of two pointers is returned in rdx:rax.
|
|
// In Win64 calling convention, a struct of two pointers is returned in memory,
|
|
// allocated by the caller, and passed as a pointer in a hidden first parameter.
|
|
#ifdef V8_HOST_ARCH_64_BIT
|
|
struct ObjectPair {
|
|
Object* x;
|
|
Object* y;
|
|
};
|
|
|
|
static inline ObjectPair MakePair(Object* x, Object* y) {
|
|
ObjectPair result = {x, y};
|
|
// Pointers x and y returned in rax and rdx, in AMD-x64-abi.
|
|
// In Win64 they are assigned to a hidden first argument.
|
|
return result;
|
|
}
|
|
#else
|
|
typedef uint64_t ObjectPair;
|
|
static inline ObjectPair MakePair(Object* x, Object* y) {
|
|
return reinterpret_cast<uint32_t>(x) |
|
|
(reinterpret_cast<ObjectPair>(y) << 32);
|
|
}
|
|
#endif
|
|
|
|
|
|
static inline Object* Unhole(Object* x, PropertyAttributes attributes) {
|
|
ASSERT(!x->IsTheHole() || (attributes & READ_ONLY) != 0);
|
|
USE(attributes);
|
|
return x->IsTheHole() ? Heap::undefined_value() : x;
|
|
}
|
|
|
|
|
|
static JSObject* ComputeReceiverForNonGlobal(JSObject* holder) {
|
|
ASSERT(!holder->IsGlobalObject());
|
|
Context* top = Top::context();
|
|
// Get the context extension function.
|
|
JSFunction* context_extension_function =
|
|
top->global_context()->context_extension_function();
|
|
// If the holder isn't a context extension object, we just return it
|
|
// as the receiver. This allows arguments objects to be used as
|
|
// receivers, but only if they are put in the context scope chain
|
|
// explicitly via a with-statement.
|
|
Object* constructor = holder->map()->constructor();
|
|
if (constructor != context_extension_function) return holder;
|
|
// Fall back to using the global object as the receiver if the
|
|
// property turns out to be a local variable allocated in a context
|
|
// extension object - introduced via eval.
|
|
return top->global()->global_receiver();
|
|
}
|
|
|
|
|
|
static ObjectPair LoadContextSlotHelper(Arguments args, bool throw_error) {
|
|
HandleScope scope;
|
|
ASSERT_EQ(2, args.length());
|
|
|
|
if (!args[0]->IsContext() || !args[1]->IsString()) {
|
|
return MakePair(Top::ThrowIllegalOperation(), NULL);
|
|
}
|
|
Handle<Context> context = args.at<Context>(0);
|
|
Handle<String> name = args.at<String>(1);
|
|
|
|
int index;
|
|
PropertyAttributes attributes;
|
|
ContextLookupFlags flags = FOLLOW_CHAINS;
|
|
Handle<Object> holder =
|
|
context->Lookup(name, flags, &index, &attributes);
|
|
|
|
// If the index is non-negative, the slot has been found in a local
|
|
// variable or a parameter. Read it from the context object or the
|
|
// arguments object.
|
|
if (index >= 0) {
|
|
// If the "property" we were looking for is a local variable or an
|
|
// argument in a context, the receiver is the global object; see
|
|
// ECMA-262, 3rd., 10.1.6 and 10.2.3.
|
|
JSObject* receiver = Top::context()->global()->global_receiver();
|
|
Object* value = (holder->IsContext())
|
|
? Context::cast(*holder)->get(index)
|
|
: JSObject::cast(*holder)->GetElement(index);
|
|
return MakePair(Unhole(value, attributes), receiver);
|
|
}
|
|
|
|
// If the holder is found, we read the property from it.
|
|
if (!holder.is_null() && holder->IsJSObject()) {
|
|
ASSERT(Handle<JSObject>::cast(holder)->HasProperty(*name));
|
|
JSObject* object = JSObject::cast(*holder);
|
|
JSObject* receiver;
|
|
if (object->IsGlobalObject()) {
|
|
receiver = GlobalObject::cast(object)->global_receiver();
|
|
} else if (context->is_exception_holder(*holder)) {
|
|
receiver = Top::context()->global()->global_receiver();
|
|
} else {
|
|
receiver = ComputeReceiverForNonGlobal(object);
|
|
}
|
|
// No need to unhole the value here. This is taken care of by the
|
|
// GetProperty function.
|
|
Object* value = object->GetProperty(*name);
|
|
return MakePair(value, receiver);
|
|
}
|
|
|
|
if (throw_error) {
|
|
// The property doesn't exist - throw exception.
|
|
Handle<Object> reference_error =
|
|
Factory::NewReferenceError("not_defined", HandleVector(&name, 1));
|
|
return MakePair(Top::Throw(*reference_error), NULL);
|
|
} else {
|
|
// The property doesn't exist - return undefined
|
|
return MakePair(Heap::undefined_value(), Heap::undefined_value());
|
|
}
|
|
}
|
|
|
|
|
|
static ObjectPair Runtime_LoadContextSlot(Arguments args) {
|
|
return LoadContextSlotHelper(args, true);
|
|
}
|
|
|
|
|
|
static ObjectPair Runtime_LoadContextSlotNoReferenceError(Arguments args) {
|
|
return LoadContextSlotHelper(args, false);
|
|
}
|
|
|
|
|
|
static Object* Runtime_StoreContextSlot(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 3);
|
|
|
|
Handle<Object> value(args[0]);
|
|
CONVERT_ARG_CHECKED(Context, context, 1);
|
|
CONVERT_ARG_CHECKED(String, name, 2);
|
|
|
|
int index;
|
|
PropertyAttributes attributes;
|
|
ContextLookupFlags flags = FOLLOW_CHAINS;
|
|
Handle<Object> holder =
|
|
context->Lookup(name, flags, &index, &attributes);
|
|
|
|
if (index >= 0) {
|
|
if (holder->IsContext()) {
|
|
// Ignore if read_only variable.
|
|
if ((attributes & READ_ONLY) == 0) {
|
|
Handle<Context>::cast(holder)->set(index, *value);
|
|
}
|
|
} else {
|
|
ASSERT((attributes & READ_ONLY) == 0);
|
|
Object* result =
|
|
Handle<JSObject>::cast(holder)->SetElement(index, *value);
|
|
USE(result);
|
|
ASSERT(!result->IsFailure());
|
|
}
|
|
return *value;
|
|
}
|
|
|
|
// Slow case: The property is not in a FixedArray context.
|
|
// It is either in an JSObject extension context or it was not found.
|
|
Handle<JSObject> context_ext;
|
|
|
|
if (!holder.is_null()) {
|
|
// The property exists in the extension context.
|
|
context_ext = Handle<JSObject>::cast(holder);
|
|
} else {
|
|
// The property was not found. It needs to be stored in the global context.
|
|
ASSERT(attributes == ABSENT);
|
|
attributes = NONE;
|
|
context_ext = Handle<JSObject>(Top::context()->global());
|
|
}
|
|
|
|
// Set the property, but ignore if read_only variable on the context
|
|
// extension object itself.
|
|
if ((attributes & READ_ONLY) == 0 ||
|
|
(context_ext->GetLocalPropertyAttribute(*name) == ABSENT)) {
|
|
Handle<Object> set = SetProperty(context_ext, name, value, attributes);
|
|
if (set.is_null()) {
|
|
// Failure::Exception is converted to a null handle in the
|
|
// handle-based methods such as SetProperty. We therefore need
|
|
// to convert null handles back to exceptions.
|
|
ASSERT(Top::has_pending_exception());
|
|
return Failure::Exception();
|
|
}
|
|
}
|
|
return *value;
|
|
}
|
|
|
|
|
|
static Object* Runtime_Throw(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
|
|
return Top::Throw(args[0]);
|
|
}
|
|
|
|
|
|
static Object* Runtime_ReThrow(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
|
|
return Top::ReThrow(args[0]);
|
|
}
|
|
|
|
|
|
static Object* Runtime_PromoteScheduledException(Arguments args) {
|
|
ASSERT_EQ(0, args.length());
|
|
return Top::PromoteScheduledException();
|
|
}
|
|
|
|
|
|
static Object* Runtime_ThrowReferenceError(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
|
|
Handle<Object> name(args[0]);
|
|
Handle<Object> reference_error =
|
|
Factory::NewReferenceError("not_defined", HandleVector(&name, 1));
|
|
return Top::Throw(*reference_error);
|
|
}
|
|
|
|
|
|
static Object* Runtime_StackOverflow(Arguments args) {
|
|
NoHandleAllocation na;
|
|
return Top::StackOverflow();
|
|
}
|
|
|
|
|
|
static Object* Runtime_StackGuard(Arguments args) {
|
|
ASSERT(args.length() == 1);
|
|
|
|
// First check if this is a real stack overflow.
|
|
if (StackGuard::IsStackOverflow()) {
|
|
return Runtime_StackOverflow(args);
|
|
}
|
|
|
|
return Execution::HandleStackGuardInterrupt();
|
|
}
|
|
|
|
|
|
// NOTE: These PrintXXX functions are defined for all builds (not just
|
|
// DEBUG builds) because we may want to be able to trace function
|
|
// calls in all modes.
|
|
static void PrintString(String* str) {
|
|
// not uncommon to have empty strings
|
|
if (str->length() > 0) {
|
|
SmartPointer<char> s =
|
|
str->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
|
|
PrintF("%s", *s);
|
|
}
|
|
}
|
|
|
|
|
|
static void PrintObject(Object* obj) {
|
|
if (obj->IsSmi()) {
|
|
PrintF("%d", Smi::cast(obj)->value());
|
|
} else if (obj->IsString() || obj->IsSymbol()) {
|
|
PrintString(String::cast(obj));
|
|
} else if (obj->IsNumber()) {
|
|
PrintF("%g", obj->Number());
|
|
} else if (obj->IsFailure()) {
|
|
PrintF("<failure>");
|
|
} else if (obj->IsUndefined()) {
|
|
PrintF("<undefined>");
|
|
} else if (obj->IsNull()) {
|
|
PrintF("<null>");
|
|
} else if (obj->IsTrue()) {
|
|
PrintF("<true>");
|
|
} else if (obj->IsFalse()) {
|
|
PrintF("<false>");
|
|
} else {
|
|
PrintF("%p", obj);
|
|
}
|
|
}
|
|
|
|
|
|
static int StackSize() {
|
|
int n = 0;
|
|
for (JavaScriptFrameIterator it; !it.done(); it.Advance()) n++;
|
|
return n;
|
|
}
|
|
|
|
|
|
static void PrintTransition(Object* result) {
|
|
// indentation
|
|
{ const int nmax = 80;
|
|
int n = StackSize();
|
|
if (n <= nmax)
|
|
PrintF("%4d:%*s", n, n, "");
|
|
else
|
|
PrintF("%4d:%*s", n, nmax, "...");
|
|
}
|
|
|
|
if (result == NULL) {
|
|
// constructor calls
|
|
JavaScriptFrameIterator it;
|
|
JavaScriptFrame* frame = it.frame();
|
|
if (frame->IsConstructor()) PrintF("new ");
|
|
// function name
|
|
Object* fun = frame->function();
|
|
if (fun->IsJSFunction()) {
|
|
PrintObject(JSFunction::cast(fun)->shared()->name());
|
|
} else {
|
|
PrintObject(fun);
|
|
}
|
|
// function arguments
|
|
// (we are intentionally only printing the actually
|
|
// supplied parameters, not all parameters required)
|
|
PrintF("(this=");
|
|
PrintObject(frame->receiver());
|
|
const int length = frame->GetProvidedParametersCount();
|
|
for (int i = 0; i < length; i++) {
|
|
PrintF(", ");
|
|
PrintObject(frame->GetParameter(i));
|
|
}
|
|
PrintF(") {\n");
|
|
|
|
} else {
|
|
// function result
|
|
PrintF("} -> ");
|
|
PrintObject(result);
|
|
PrintF("\n");
|
|
}
|
|
}
|
|
|
|
|
|
static Object* Runtime_TraceEnter(Arguments args) {
|
|
ASSERT(args.length() == 0);
|
|
NoHandleAllocation ha;
|
|
PrintTransition(NULL);
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_TraceExit(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
PrintTransition(args[0]);
|
|
return args[0]; // return TOS
|
|
}
|
|
|
|
|
|
static Object* Runtime_DebugPrint(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
#ifdef DEBUG
|
|
if (args[0]->IsString()) {
|
|
// If we have a string, assume it's a code "marker"
|
|
// and print some interesting cpu debugging info.
|
|
JavaScriptFrameIterator it;
|
|
JavaScriptFrame* frame = it.frame();
|
|
PrintF("fp = %p, sp = %p, caller_sp = %p: ",
|
|
frame->fp(), frame->sp(), frame->caller_sp());
|
|
} else {
|
|
PrintF("DebugPrint: ");
|
|
}
|
|
args[0]->Print();
|
|
if (args[0]->IsHeapObject()) {
|
|
PrintF("\n");
|
|
HeapObject::cast(args[0])->map()->Print();
|
|
}
|
|
#else
|
|
// ShortPrint is available in release mode. Print is not.
|
|
args[0]->ShortPrint();
|
|
#endif
|
|
PrintF("\n");
|
|
Flush();
|
|
|
|
return args[0]; // return TOS
|
|
}
|
|
|
|
|
|
static Object* Runtime_DebugTrace(Arguments args) {
|
|
ASSERT(args.length() == 0);
|
|
NoHandleAllocation ha;
|
|
Top::PrintStack();
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_DateCurrentTime(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 0);
|
|
|
|
// According to ECMA-262, section 15.9.1, page 117, the precision of
|
|
// the number in a Date object representing a particular instant in
|
|
// time is milliseconds. Therefore, we floor the result of getting
|
|
// the OS time.
|
|
double millis = floor(OS::TimeCurrentMillis());
|
|
return Heap::NumberFromDouble(millis);
|
|
}
|
|
|
|
|
|
static Object* Runtime_DateParseString(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_ARG_CHECKED(String, str, 0);
|
|
FlattenString(str);
|
|
|
|
CONVERT_ARG_CHECKED(JSArray, output, 1);
|
|
RUNTIME_ASSERT(output->HasFastElements());
|
|
|
|
AssertNoAllocation no_allocation;
|
|
|
|
FixedArray* output_array = FixedArray::cast(output->elements());
|
|
RUNTIME_ASSERT(output_array->length() >= DateParser::OUTPUT_SIZE);
|
|
bool result;
|
|
if (str->IsAsciiRepresentation()) {
|
|
result = DateParser::Parse(str->ToAsciiVector(), output_array);
|
|
} else {
|
|
ASSERT(str->IsTwoByteRepresentation());
|
|
result = DateParser::Parse(str->ToUC16Vector(), output_array);
|
|
}
|
|
|
|
if (result) {
|
|
return *output;
|
|
} else {
|
|
return Heap::null_value();
|
|
}
|
|
}
|
|
|
|
|
|
static Object* Runtime_DateLocalTimezone(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
const char* zone = OS::LocalTimezone(x);
|
|
return Heap::AllocateStringFromUtf8(CStrVector(zone));
|
|
}
|
|
|
|
|
|
static Object* Runtime_DateLocalTimeOffset(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 0);
|
|
|
|
return Heap::NumberFromDouble(OS::LocalTimeOffset());
|
|
}
|
|
|
|
|
|
static Object* Runtime_DateDaylightSavingsOffset(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_DOUBLE_CHECKED(x, args[0]);
|
|
return Heap::NumberFromDouble(OS::DaylightSavingsOffset(x));
|
|
}
|
|
|
|
|
|
static Object* Runtime_NumberIsFinite(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_DOUBLE_CHECKED(value, args[0]);
|
|
Object* result;
|
|
if (isnan(value) || (fpclassify(value) == FP_INFINITE)) {
|
|
result = Heap::false_value();
|
|
} else {
|
|
result = Heap::true_value();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
static Object* Runtime_GlobalReceiver(Arguments args) {
|
|
ASSERT(args.length() == 1);
|
|
Object* global = args[0];
|
|
if (!global->IsJSGlobalObject()) return Heap::null_value();
|
|
return JSGlobalObject::cast(global)->global_receiver();
|
|
}
|
|
|
|
|
|
static Object* Runtime_CompileString(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT_EQ(2, args.length());
|
|
CONVERT_ARG_CHECKED(String, source, 0);
|
|
CONVERT_ARG_CHECKED(Oddball, is_json, 1)
|
|
|
|
// Compile source string in the global context.
|
|
Handle<Context> context(Top::context()->global_context());
|
|
Compiler::ValidationState validate = (is_json->IsTrue())
|
|
? Compiler::VALIDATE_JSON : Compiler::DONT_VALIDATE_JSON;
|
|
Handle<JSFunction> boilerplate = Compiler::CompileEval(source,
|
|
context,
|
|
true,
|
|
validate);
|
|
if (boilerplate.is_null()) return Failure::Exception();
|
|
Handle<JSFunction> fun =
|
|
Factory::NewFunctionFromBoilerplate(boilerplate, context, NOT_TENURED);
|
|
return *fun;
|
|
}
|
|
|
|
|
|
static ObjectPair Runtime_ResolvePossiblyDirectEval(Arguments args) {
|
|
ASSERT(args.length() == 3);
|
|
if (!args[0]->IsJSFunction()) {
|
|
return MakePair(Top::ThrowIllegalOperation(), NULL);
|
|
}
|
|
|
|
HandleScope scope;
|
|
Handle<JSFunction> callee = args.at<JSFunction>(0);
|
|
Handle<Object> receiver; // Will be overwritten.
|
|
|
|
// Compute the calling context.
|
|
Handle<Context> context = Handle<Context>(Top::context());
|
|
#ifdef DEBUG
|
|
// Make sure Top::context() agrees with the old code that traversed
|
|
// the stack frames to compute the context.
|
|
StackFrameLocator locator;
|
|
JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
|
|
ASSERT(Context::cast(frame->context()) == *context);
|
|
#endif
|
|
|
|
// Find where the 'eval' symbol is bound. It is unaliased only if
|
|
// it is bound in the global context.
|
|
int index = -1;
|
|
PropertyAttributes attributes = ABSENT;
|
|
while (true) {
|
|
receiver = context->Lookup(Factory::eval_symbol(), FOLLOW_PROTOTYPE_CHAIN,
|
|
&index, &attributes);
|
|
// Stop search when eval is found or when the global context is
|
|
// reached.
|
|
if (attributes != ABSENT || context->IsGlobalContext()) break;
|
|
if (context->is_function_context()) {
|
|
context = Handle<Context>(Context::cast(context->closure()->context()));
|
|
} else {
|
|
context = Handle<Context>(context->previous());
|
|
}
|
|
}
|
|
|
|
// If eval could not be resolved, it has been deleted and we need to
|
|
// throw a reference error.
|
|
if (attributes == ABSENT) {
|
|
Handle<Object> name = Factory::eval_symbol();
|
|
Handle<Object> reference_error =
|
|
Factory::NewReferenceError("not_defined", HandleVector(&name, 1));
|
|
return MakePair(Top::Throw(*reference_error), NULL);
|
|
}
|
|
|
|
if (!context->IsGlobalContext()) {
|
|
// 'eval' is not bound in the global context. Just call the function
|
|
// with the given arguments. This is not necessarily the global eval.
|
|
if (receiver->IsContext()) {
|
|
context = Handle<Context>::cast(receiver);
|
|
receiver = Handle<Object>(context->get(index));
|
|
} else if (receiver->IsJSContextExtensionObject()) {
|
|
receiver = Handle<JSObject>(Top::context()->global()->global_receiver());
|
|
}
|
|
return MakePair(*callee, *receiver);
|
|
}
|
|
|
|
// 'eval' is bound in the global context, but it may have been overwritten.
|
|
// Compare it to the builtin 'GlobalEval' function to make sure.
|
|
if (*callee != Top::global_context()->global_eval_fun() ||
|
|
!args[1]->IsString()) {
|
|
return MakePair(*callee, Top::context()->global()->global_receiver());
|
|
}
|
|
|
|
// Deal with a normal eval call with a string argument. Compile it
|
|
// and return the compiled function bound in the local context.
|
|
Handle<String> source = args.at<String>(1);
|
|
Handle<JSFunction> boilerplate = Compiler::CompileEval(
|
|
source,
|
|
Handle<Context>(Top::context()),
|
|
Top::context()->IsGlobalContext(),
|
|
Compiler::DONT_VALIDATE_JSON);
|
|
if (boilerplate.is_null()) return MakePair(Failure::Exception(), NULL);
|
|
callee = Factory::NewFunctionFromBoilerplate(
|
|
boilerplate,
|
|
Handle<Context>(Top::context()),
|
|
NOT_TENURED);
|
|
return MakePair(*callee, args[2]);
|
|
}
|
|
|
|
|
|
static Object* Runtime_SetNewFunctionAttributes(Arguments args) {
|
|
// This utility adjusts the property attributes for newly created Function
|
|
// object ("new Function(...)") by changing the map.
|
|
// All it does is changing the prototype property to enumerable
|
|
// as specified in ECMA262, 15.3.5.2.
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
CONVERT_ARG_CHECKED(JSFunction, func, 0);
|
|
ASSERT(func->map()->instance_type() ==
|
|
Top::function_instance_map()->instance_type());
|
|
ASSERT(func->map()->instance_size() ==
|
|
Top::function_instance_map()->instance_size());
|
|
func->set_map(*Top::function_instance_map());
|
|
return *func;
|
|
}
|
|
|
|
|
|
// Push an array unto an array of arrays if it is not already in the
|
|
// array. Returns true if the element was pushed on the stack and
|
|
// false otherwise.
|
|
static Object* Runtime_PushIfAbsent(Arguments args) {
|
|
ASSERT(args.length() == 2);
|
|
CONVERT_CHECKED(JSArray, array, args[0]);
|
|
CONVERT_CHECKED(JSArray, element, args[1]);
|
|
RUNTIME_ASSERT(array->HasFastElements());
|
|
int length = Smi::cast(array->length())->value();
|
|
FixedArray* elements = FixedArray::cast(array->elements());
|
|
for (int i = 0; i < length; i++) {
|
|
if (elements->get(i) == element) return Heap::false_value();
|
|
}
|
|
Object* obj = array->SetFastElement(length, element);
|
|
if (obj->IsFailure()) return obj;
|
|
return Heap::true_value();
|
|
}
|
|
|
|
|
|
/**
|
|
* A simple visitor visits every element of Array's.
|
|
* The backend storage can be a fixed array for fast elements case,
|
|
* or a dictionary for sparse array. Since Dictionary is a subtype
|
|
* of FixedArray, the class can be used by both fast and slow cases.
|
|
* The second parameter of the constructor, fast_elements, specifies
|
|
* whether the storage is a FixedArray or Dictionary.
|
|
*
|
|
* An index limit is used to deal with the situation that a result array
|
|
* length overflows 32-bit non-negative integer.
|
|
*/
|
|
class ArrayConcatVisitor {
|
|
public:
|
|
ArrayConcatVisitor(Handle<FixedArray> storage,
|
|
uint32_t index_limit,
|
|
bool fast_elements) :
|
|
storage_(storage), index_limit_(index_limit),
|
|
index_offset_(0), fast_elements_(fast_elements) { }
|
|
|
|
void visit(uint32_t i, Handle<Object> elm) {
|
|
if (i >= index_limit_ - index_offset_) return;
|
|
uint32_t index = index_offset_ + i;
|
|
|
|
if (fast_elements_) {
|
|
ASSERT(index < static_cast<uint32_t>(storage_->length()));
|
|
storage_->set(index, *elm);
|
|
|
|
} else {
|
|
Handle<NumberDictionary> dict = Handle<NumberDictionary>::cast(storage_);
|
|
Handle<NumberDictionary> result =
|
|
Factory::DictionaryAtNumberPut(dict, index, elm);
|
|
if (!result.is_identical_to(dict))
|
|
storage_ = result;
|
|
}
|
|
}
|
|
|
|
void increase_index_offset(uint32_t delta) {
|
|
if (index_limit_ - index_offset_ < delta) {
|
|
index_offset_ = index_limit_;
|
|
} else {
|
|
index_offset_ += delta;
|
|
}
|
|
}
|
|
|
|
Handle<FixedArray> storage() { return storage_; }
|
|
|
|
private:
|
|
Handle<FixedArray> storage_;
|
|
// Limit on the accepted indices. Elements with indices larger than the
|
|
// limit are ignored by the visitor.
|
|
uint32_t index_limit_;
|
|
// Index after last seen index. Always less than or equal to index_limit_.
|
|
uint32_t index_offset_;
|
|
bool fast_elements_;
|
|
};
|
|
|
|
|
|
template<class ExternalArrayClass, class ElementType>
|
|
static uint32_t IterateExternalArrayElements(Handle<JSObject> receiver,
|
|
bool elements_are_ints,
|
|
bool elements_are_guaranteed_smis,
|
|
uint32_t range,
|
|
ArrayConcatVisitor* visitor) {
|
|
Handle<ExternalArrayClass> array(
|
|
ExternalArrayClass::cast(receiver->elements()));
|
|
uint32_t len = Min(static_cast<uint32_t>(array->length()), range);
|
|
|
|
if (visitor != NULL) {
|
|
if (elements_are_ints) {
|
|
if (elements_are_guaranteed_smis) {
|
|
for (uint32_t j = 0; j < len; j++) {
|
|
Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get(j))));
|
|
visitor->visit(j, e);
|
|
}
|
|
} else {
|
|
for (uint32_t j = 0; j < len; j++) {
|
|
int64_t val = static_cast<int64_t>(array->get(j));
|
|
if (Smi::IsValid(static_cast<intptr_t>(val))) {
|
|
Handle<Smi> e(Smi::FromInt(static_cast<int>(val)));
|
|
visitor->visit(j, e);
|
|
} else {
|
|
Handle<Object> e(
|
|
Heap::AllocateHeapNumber(static_cast<ElementType>(val)));
|
|
visitor->visit(j, e);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (uint32_t j = 0; j < len; j++) {
|
|
Handle<Object> e(Heap::AllocateHeapNumber(array->get(j)));
|
|
visitor->visit(j, e);
|
|
}
|
|
}
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
/**
|
|
* A helper function that visits elements of a JSObject. Only elements
|
|
* whose index between 0 and range (exclusive) are visited.
|
|
*
|
|
* If the third parameter, visitor, is not NULL, the visitor is called
|
|
* with parameters, 'visitor_index_offset + element index' and the element.
|
|
*
|
|
* It returns the number of visisted elements.
|
|
*/
|
|
static uint32_t IterateElements(Handle<JSObject> receiver,
|
|
uint32_t range,
|
|
ArrayConcatVisitor* visitor) {
|
|
uint32_t num_of_elements = 0;
|
|
|
|
switch (receiver->GetElementsKind()) {
|
|
case JSObject::FAST_ELEMENTS: {
|
|
Handle<FixedArray> elements(FixedArray::cast(receiver->elements()));
|
|
uint32_t len = elements->length();
|
|
if (range < len) {
|
|
len = range;
|
|
}
|
|
|
|
for (uint32_t j = 0; j < len; j++) {
|
|
Handle<Object> e(elements->get(j));
|
|
if (!e->IsTheHole()) {
|
|
num_of_elements++;
|
|
if (visitor) {
|
|
visitor->visit(j, e);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case JSObject::PIXEL_ELEMENTS: {
|
|
Handle<PixelArray> pixels(PixelArray::cast(receiver->elements()));
|
|
uint32_t len = pixels->length();
|
|
if (range < len) {
|
|
len = range;
|
|
}
|
|
|
|
for (uint32_t j = 0; j < len; j++) {
|
|
num_of_elements++;
|
|
if (visitor != NULL) {
|
|
Handle<Smi> e(Smi::FromInt(pixels->get(j)));
|
|
visitor->visit(j, e);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case JSObject::EXTERNAL_BYTE_ELEMENTS: {
|
|
num_of_elements =
|
|
IterateExternalArrayElements<ExternalByteArray, int8_t>(
|
|
receiver, true, true, range, visitor);
|
|
break;
|
|
}
|
|
case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS: {
|
|
num_of_elements =
|
|
IterateExternalArrayElements<ExternalUnsignedByteArray, uint8_t>(
|
|
receiver, true, true, range, visitor);
|
|
break;
|
|
}
|
|
case JSObject::EXTERNAL_SHORT_ELEMENTS: {
|
|
num_of_elements =
|
|
IterateExternalArrayElements<ExternalShortArray, int16_t>(
|
|
receiver, true, true, range, visitor);
|
|
break;
|
|
}
|
|
case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS: {
|
|
num_of_elements =
|
|
IterateExternalArrayElements<ExternalUnsignedShortArray, uint16_t>(
|
|
receiver, true, true, range, visitor);
|
|
break;
|
|
}
|
|
case JSObject::EXTERNAL_INT_ELEMENTS: {
|
|
num_of_elements =
|
|
IterateExternalArrayElements<ExternalIntArray, int32_t>(
|
|
receiver, true, false, range, visitor);
|
|
break;
|
|
}
|
|
case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS: {
|
|
num_of_elements =
|
|
IterateExternalArrayElements<ExternalUnsignedIntArray, uint32_t>(
|
|
receiver, true, false, range, visitor);
|
|
break;
|
|
}
|
|
case JSObject::EXTERNAL_FLOAT_ELEMENTS: {
|
|
num_of_elements =
|
|
IterateExternalArrayElements<ExternalFloatArray, float>(
|
|
receiver, false, false, range, visitor);
|
|
break;
|
|
}
|
|
case JSObject::DICTIONARY_ELEMENTS: {
|
|
Handle<NumberDictionary> dict(receiver->element_dictionary());
|
|
uint32_t capacity = dict->Capacity();
|
|
for (uint32_t j = 0; j < capacity; j++) {
|
|
Handle<Object> k(dict->KeyAt(j));
|
|
if (dict->IsKey(*k)) {
|
|
ASSERT(k->IsNumber());
|
|
uint32_t index = static_cast<uint32_t>(k->Number());
|
|
if (index < range) {
|
|
num_of_elements++;
|
|
if (visitor) {
|
|
visitor->visit(index, Handle<Object>(dict->ValueAt(j)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
|
|
return num_of_elements;
|
|
}
|
|
|
|
|
|
/**
|
|
* A helper function that visits elements of an Array object, and elements
|
|
* on its prototypes.
|
|
*
|
|
* Elements on prototypes are visited first, and only elements whose indices
|
|
* less than Array length are visited.
|
|
*
|
|
* If a ArrayConcatVisitor object is given, the visitor is called with
|
|
* parameters, element's index + visitor_index_offset and the element.
|
|
*
|
|
* The returned number of elements is an upper bound on the actual number
|
|
* of elements added. If the same element occurs in more than one object
|
|
* in the array's prototype chain, it will be counted more than once, but
|
|
* will only occur once in the result.
|
|
*/
|
|
static uint32_t IterateArrayAndPrototypeElements(Handle<JSArray> array,
|
|
ArrayConcatVisitor* visitor) {
|
|
uint32_t range = static_cast<uint32_t>(array->length()->Number());
|
|
Handle<Object> obj = array;
|
|
|
|
static const int kEstimatedPrototypes = 3;
|
|
List< Handle<JSObject> > objects(kEstimatedPrototypes);
|
|
|
|
// Visit prototype first. If an element on the prototype is shadowed by
|
|
// the inheritor using the same index, the ArrayConcatVisitor visits
|
|
// the prototype element before the shadowing element.
|
|
// The visitor can simply overwrite the old value by new value using
|
|
// the same index. This follows Array::concat semantics.
|
|
while (!obj->IsNull()) {
|
|
objects.Add(Handle<JSObject>::cast(obj));
|
|
obj = Handle<Object>(obj->GetPrototype());
|
|
}
|
|
|
|
uint32_t nof_elements = 0;
|
|
for (int i = objects.length() - 1; i >= 0; i--) {
|
|
Handle<JSObject> obj = objects[i];
|
|
uint32_t encountered_elements =
|
|
IterateElements(Handle<JSObject>::cast(obj), range, visitor);
|
|
|
|
if (encountered_elements > JSObject::kMaxElementCount - nof_elements) {
|
|
nof_elements = JSObject::kMaxElementCount;
|
|
} else {
|
|
nof_elements += encountered_elements;
|
|
}
|
|
}
|
|
|
|
return nof_elements;
|
|
}
|
|
|
|
|
|
/**
|
|
* A helper function of Runtime_ArrayConcat.
|
|
*
|
|
* The first argument is an Array of arrays and objects. It is the
|
|
* same as the arguments array of Array::concat JS function.
|
|
*
|
|
* If an argument is an Array object, the function visits array
|
|
* elements. If an argument is not an Array object, the function
|
|
* visits the object as if it is an one-element array.
|
|
*
|
|
* If the result array index overflows 32-bit unsigned integer, the rounded
|
|
* non-negative number is used as new length. For example, if one
|
|
* array length is 2^32 - 1, second array length is 1, the
|
|
* concatenated array length is 0.
|
|
* TODO(lrn) Change length behavior to ECMAScript 5 specification (length
|
|
* is one more than the last array index to get a value assigned).
|
|
*/
|
|
static uint32_t IterateArguments(Handle<JSArray> arguments,
|
|
ArrayConcatVisitor* visitor) {
|
|
uint32_t visited_elements = 0;
|
|
uint32_t num_of_args = static_cast<uint32_t>(arguments->length()->Number());
|
|
|
|
for (uint32_t i = 0; i < num_of_args; i++) {
|
|
Handle<Object> obj(arguments->GetElement(i));
|
|
if (obj->IsJSArray()) {
|
|
Handle<JSArray> array = Handle<JSArray>::cast(obj);
|
|
uint32_t len = static_cast<uint32_t>(array->length()->Number());
|
|
uint32_t nof_elements =
|
|
IterateArrayAndPrototypeElements(array, visitor);
|
|
// Total elements of array and its prototype chain can be more than
|
|
// the array length, but ArrayConcat can only concatenate at most
|
|
// the array length number of elements. We use the length as an estimate
|
|
// for the actual number of elements added.
|
|
uint32_t added_elements = (nof_elements > len) ? len : nof_elements;
|
|
if (JSArray::kMaxElementCount - visited_elements < added_elements) {
|
|
visited_elements = JSArray::kMaxElementCount;
|
|
} else {
|
|
visited_elements += added_elements;
|
|
}
|
|
if (visitor) visitor->increase_index_offset(len);
|
|
} else {
|
|
if (visitor) {
|
|
visitor->visit(0, obj);
|
|
visitor->increase_index_offset(1);
|
|
}
|
|
if (visited_elements < JSArray::kMaxElementCount) {
|
|
visited_elements++;
|
|
}
|
|
}
|
|
}
|
|
return visited_elements;
|
|
}
|
|
|
|
|
|
/**
|
|
* Array::concat implementation.
|
|
* See ECMAScript 262, 15.4.4.4.
|
|
* TODO(lrn): Fix non-compliance for very large concatenations and update to
|
|
* following the ECMAScript 5 specification.
|
|
*/
|
|
static Object* Runtime_ArrayConcat(Arguments args) {
|
|
ASSERT(args.length() == 1);
|
|
HandleScope handle_scope;
|
|
|
|
CONVERT_CHECKED(JSArray, arg_arrays, args[0]);
|
|
Handle<JSArray> arguments(arg_arrays);
|
|
|
|
// Pass 1: estimate the number of elements of the result
|
|
// (it could be more than real numbers if prototype has elements).
|
|
uint32_t result_length = 0;
|
|
uint32_t num_of_args = static_cast<uint32_t>(arguments->length()->Number());
|
|
|
|
{ AssertNoAllocation nogc;
|
|
for (uint32_t i = 0; i < num_of_args; i++) {
|
|
Object* obj = arguments->GetElement(i);
|
|
uint32_t length_estimate;
|
|
if (obj->IsJSArray()) {
|
|
length_estimate =
|
|
static_cast<uint32_t>(JSArray::cast(obj)->length()->Number());
|
|
} else {
|
|
length_estimate = 1;
|
|
}
|
|
if (JSObject::kMaxElementCount - result_length < length_estimate) {
|
|
result_length = JSObject::kMaxElementCount;
|
|
break;
|
|
}
|
|
result_length += length_estimate;
|
|
}
|
|
}
|
|
|
|
// Allocate an empty array, will set length and content later.
|
|
Handle<JSArray> result = Factory::NewJSArray(0);
|
|
|
|
uint32_t estimate_nof_elements = IterateArguments(arguments, NULL);
|
|
// If estimated number of elements is more than half of length, a
|
|
// fixed array (fast case) is more time and space-efficient than a
|
|
// dictionary.
|
|
bool fast_case = (estimate_nof_elements * 2) >= result_length;
|
|
|
|
Handle<FixedArray> storage;
|
|
if (fast_case) {
|
|
// The backing storage array must have non-existing elements to
|
|
// preserve holes across concat operations.
|
|
storage = Factory::NewFixedArrayWithHoles(result_length);
|
|
|
|
} else {
|
|
// TODO(126): move 25% pre-allocation logic into Dictionary::Allocate
|
|
uint32_t at_least_space_for = estimate_nof_elements +
|
|
(estimate_nof_elements >> 2);
|
|
storage = Handle<FixedArray>::cast(
|
|
Factory::NewNumberDictionary(at_least_space_for));
|
|
}
|
|
|
|
Handle<Object> len = Factory::NewNumber(static_cast<double>(result_length));
|
|
|
|
ArrayConcatVisitor visitor(storage, result_length, fast_case);
|
|
|
|
IterateArguments(arguments, &visitor);
|
|
|
|
result->set_length(*len);
|
|
// Please note the storage might have changed in the visitor.
|
|
result->set_elements(*visitor.storage());
|
|
|
|
return *result;
|
|
}
|
|
|
|
|
|
// This will not allocate (flatten the string), but it may run
|
|
// very slowly for very deeply nested ConsStrings. For debugging use only.
|
|
static Object* Runtime_GlobalPrint(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_CHECKED(String, string, args[0]);
|
|
StringInputBuffer buffer(string);
|
|
while (buffer.has_more()) {
|
|
uint16_t character = buffer.GetNext();
|
|
PrintF("%c", character);
|
|
}
|
|
return string;
|
|
}
|
|
|
|
// Moves all own elements of an object, that are below a limit, to positions
|
|
// starting at zero. All undefined values are placed after non-undefined values,
|
|
// and are followed by non-existing element. Does not change the length
|
|
// property.
|
|
// Returns the number of non-undefined elements collected.
|
|
static Object* Runtime_RemoveArrayHoles(Arguments args) {
|
|
ASSERT(args.length() == 2);
|
|
CONVERT_CHECKED(JSObject, object, args[0]);
|
|
CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
|
|
return object->PrepareElementsForSort(limit);
|
|
}
|
|
|
|
|
|
// Move contents of argument 0 (an array) to argument 1 (an array)
|
|
static Object* Runtime_MoveArrayContents(Arguments args) {
|
|
ASSERT(args.length() == 2);
|
|
CONVERT_CHECKED(JSArray, from, args[0]);
|
|
CONVERT_CHECKED(JSArray, to, args[1]);
|
|
to->SetContent(FixedArray::cast(from->elements()));
|
|
to->set_length(from->length());
|
|
from->SetContent(Heap::empty_fixed_array());
|
|
from->set_length(Smi::FromInt(0));
|
|
return to;
|
|
}
|
|
|
|
|
|
// How many elements does this array have?
|
|
static Object* Runtime_EstimateNumberOfElements(Arguments args) {
|
|
ASSERT(args.length() == 1);
|
|
CONVERT_CHECKED(JSArray, array, args[0]);
|
|
HeapObject* elements = array->elements();
|
|
if (elements->IsDictionary()) {
|
|
return Smi::FromInt(NumberDictionary::cast(elements)->NumberOfElements());
|
|
} else {
|
|
return array->length();
|
|
}
|
|
}
|
|
|
|
|
|
// Returns an array that tells you where in the [0, length) interval an array
|
|
// might have elements. Can either return keys or intervals. Keys can have
|
|
// gaps in (undefined). Intervals can also span over some undefined keys.
|
|
static Object* Runtime_GetArrayKeys(Arguments args) {
|
|
ASSERT(args.length() == 2);
|
|
HandleScope scope;
|
|
CONVERT_ARG_CHECKED(JSObject, array, 0);
|
|
CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]);
|
|
if (array->elements()->IsDictionary()) {
|
|
// Create an array and get all the keys into it, then remove all the
|
|
// keys that are not integers in the range 0 to length-1.
|
|
Handle<FixedArray> keys = GetKeysInFixedArrayFor(array, INCLUDE_PROTOS);
|
|
int keys_length = keys->length();
|
|
for (int i = 0; i < keys_length; i++) {
|
|
Object* key = keys->get(i);
|
|
uint32_t index;
|
|
if (!Array::IndexFromObject(key, &index) || index >= length) {
|
|
// Zap invalid keys.
|
|
keys->set_undefined(i);
|
|
}
|
|
}
|
|
return *Factory::NewJSArrayWithElements(keys);
|
|
} else {
|
|
Handle<FixedArray> single_interval = Factory::NewFixedArray(2);
|
|
// -1 means start of array.
|
|
single_interval->set(0, Smi::FromInt(-1));
|
|
uint32_t actual_length = static_cast<uint32_t>(array->elements()->length());
|
|
uint32_t min_length = actual_length < length ? actual_length : length;
|
|
Handle<Object> length_object =
|
|
Factory::NewNumber(static_cast<double>(min_length));
|
|
single_interval->set(1, *length_object);
|
|
return *Factory::NewJSArrayWithElements(single_interval);
|
|
}
|
|
}
|
|
|
|
|
|
// DefineAccessor takes an optional final argument which is the
|
|
// property attributes (eg, DONT_ENUM, DONT_DELETE). IMPORTANT: due
|
|
// to the way accessors are implemented, it is set for both the getter
|
|
// and setter on the first call to DefineAccessor and ignored on
|
|
// subsequent calls.
|
|
static Object* Runtime_DefineAccessor(Arguments args) {
|
|
RUNTIME_ASSERT(args.length() == 4 || args.length() == 5);
|
|
// Compute attributes.
|
|
PropertyAttributes attributes = NONE;
|
|
if (args.length() == 5) {
|
|
CONVERT_CHECKED(Smi, attrs, args[4]);
|
|
int value = attrs->value();
|
|
// Only attribute bits should be set.
|
|
ASSERT((value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
|
|
attributes = static_cast<PropertyAttributes>(value);
|
|
}
|
|
|
|
CONVERT_CHECKED(JSObject, obj, args[0]);
|
|
CONVERT_CHECKED(String, name, args[1]);
|
|
CONVERT_CHECKED(Smi, flag, args[2]);
|
|
CONVERT_CHECKED(JSFunction, fun, args[3]);
|
|
return obj->DefineAccessor(name, flag->value() == 0, fun, attributes);
|
|
}
|
|
|
|
|
|
static Object* Runtime_LookupAccessor(Arguments args) {
|
|
ASSERT(args.length() == 3);
|
|
CONVERT_CHECKED(JSObject, obj, args[0]);
|
|
CONVERT_CHECKED(String, name, args[1]);
|
|
CONVERT_CHECKED(Smi, flag, args[2]);
|
|
return obj->LookupAccessor(name, flag->value() == 0);
|
|
}
|
|
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
static Object* Runtime_DebugBreak(Arguments args) {
|
|
ASSERT(args.length() == 0);
|
|
return Execution::DebugBreakHelper();
|
|
}
|
|
|
|
|
|
// Helper functions for wrapping and unwrapping stack frame ids.
|
|
static Smi* WrapFrameId(StackFrame::Id id) {
|
|
ASSERT(IsAligned(OffsetFrom(id), static_cast<intptr_t>(4)));
|
|
return Smi::FromInt(id >> 2);
|
|
}
|
|
|
|
|
|
static StackFrame::Id UnwrapFrameId(Smi* wrapped) {
|
|
return static_cast<StackFrame::Id>(wrapped->value() << 2);
|
|
}
|
|
|
|
|
|
// Adds a JavaScript function as a debug event listener.
|
|
// args[0]: debug event listener function to set or null or undefined for
|
|
// clearing the event listener function
|
|
// args[1]: object supplied during callback
|
|
static Object* Runtime_SetDebugEventListener(Arguments args) {
|
|
ASSERT(args.length() == 2);
|
|
RUNTIME_ASSERT(args[0]->IsJSFunction() ||
|
|
args[0]->IsUndefined() ||
|
|
args[0]->IsNull());
|
|
Handle<Object> callback = args.at<Object>(0);
|
|
Handle<Object> data = args.at<Object>(1);
|
|
Debugger::SetEventListener(callback, data);
|
|
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_Break(Arguments args) {
|
|
ASSERT(args.length() == 0);
|
|
StackGuard::DebugBreak();
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static Object* DebugLookupResultValue(Object* receiver, String* name,
|
|
LookupResult* result,
|
|
bool* caught_exception) {
|
|
Object* value;
|
|
switch (result->type()) {
|
|
case NORMAL:
|
|
value = result->holder()->GetNormalizedProperty(result);
|
|
if (value->IsTheHole()) {
|
|
return Heap::undefined_value();
|
|
}
|
|
return value;
|
|
case FIELD:
|
|
value =
|
|
JSObject::cast(
|
|
result->holder())->FastPropertyAt(result->GetFieldIndex());
|
|
if (value->IsTheHole()) {
|
|
return Heap::undefined_value();
|
|
}
|
|
return value;
|
|
case CONSTANT_FUNCTION:
|
|
return result->GetConstantFunction();
|
|
case CALLBACKS: {
|
|
Object* structure = result->GetCallbackObject();
|
|
if (structure->IsProxy() || structure->IsAccessorInfo()) {
|
|
value = receiver->GetPropertyWithCallback(
|
|
receiver, structure, name, result->holder());
|
|
if (value->IsException()) {
|
|
value = Top::pending_exception();
|
|
Top::clear_pending_exception();
|
|
if (caught_exception != NULL) {
|
|
*caught_exception = true;
|
|
}
|
|
}
|
|
return value;
|
|
} else {
|
|
return Heap::undefined_value();
|
|
}
|
|
}
|
|
case INTERCEPTOR:
|
|
case MAP_TRANSITION:
|
|
case CONSTANT_TRANSITION:
|
|
case NULL_DESCRIPTOR:
|
|
return Heap::undefined_value();
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
UNREACHABLE();
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
// Get debugger related details for an object property.
|
|
// args[0]: object holding property
|
|
// args[1]: name of the property
|
|
//
|
|
// The array returned contains the following information:
|
|
// 0: Property value
|
|
// 1: Property details
|
|
// 2: Property value is exception
|
|
// 3: Getter function if defined
|
|
// 4: Setter function if defined
|
|
// Items 2-4 are only filled if the property has either a getter or a setter
|
|
// defined through __defineGetter__ and/or __defineSetter__.
|
|
static Object* Runtime_DebugGetPropertyDetails(Arguments args) {
|
|
HandleScope scope;
|
|
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_ARG_CHECKED(JSObject, obj, 0);
|
|
CONVERT_ARG_CHECKED(String, name, 1);
|
|
|
|
// Make sure to set the current context to the context before the debugger was
|
|
// entered (if the debugger is entered). The reason for switching context here
|
|
// is that for some property lookups (accessors and interceptors) callbacks
|
|
// into the embedding application can occour, and the embedding application
|
|
// could have the assumption that its own global context is the current
|
|
// context and not some internal debugger context.
|
|
SaveContext save;
|
|
if (Debug::InDebugger()) {
|
|
Top::set_context(*Debug::debugger_entry()->GetContext());
|
|
}
|
|
|
|
// Skip the global proxy as it has no properties and always delegates to the
|
|
// real global object.
|
|
if (obj->IsJSGlobalProxy()) {
|
|
obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype()));
|
|
}
|
|
|
|
|
|
// Check if the name is trivially convertible to an index and get the element
|
|
// if so.
|
|
uint32_t index;
|
|
if (name->AsArrayIndex(&index)) {
|
|
Handle<FixedArray> details = Factory::NewFixedArray(2);
|
|
details->set(0, Runtime::GetElementOrCharAt(obj, index));
|
|
details->set(1, PropertyDetails(NONE, NORMAL).AsSmi());
|
|
return *Factory::NewJSArrayWithElements(details);
|
|
}
|
|
|
|
// Find the number of objects making up this.
|
|
int length = LocalPrototypeChainLength(*obj);
|
|
|
|
// Try local lookup on each of the objects.
|
|
Handle<JSObject> jsproto = obj;
|
|
for (int i = 0; i < length; i++) {
|
|
LookupResult result;
|
|
jsproto->LocalLookup(*name, &result);
|
|
if (result.IsProperty()) {
|
|
// LookupResult is not GC safe as it holds raw object pointers.
|
|
// GC can happen later in this code so put the required fields into
|
|
// local variables using handles when required for later use.
|
|
PropertyType result_type = result.type();
|
|
Handle<Object> result_callback_obj;
|
|
if (result_type == CALLBACKS) {
|
|
result_callback_obj = Handle<Object>(result.GetCallbackObject());
|
|
}
|
|
Smi* property_details = result.GetPropertyDetails().AsSmi();
|
|
// DebugLookupResultValue can cause GC so details from LookupResult needs
|
|
// to be copied to handles before this.
|
|
bool caught_exception = false;
|
|
Object* raw_value = DebugLookupResultValue(*obj, *name, &result,
|
|
&caught_exception);
|
|
if (raw_value->IsFailure()) return raw_value;
|
|
Handle<Object> value(raw_value);
|
|
|
|
// If the callback object is a fixed array then it contains JavaScript
|
|
// getter and/or setter.
|
|
bool hasJavaScriptAccessors = result_type == CALLBACKS &&
|
|
result_callback_obj->IsFixedArray();
|
|
Handle<FixedArray> details =
|
|
Factory::NewFixedArray(hasJavaScriptAccessors ? 5 : 2);
|
|
details->set(0, *value);
|
|
details->set(1, property_details);
|
|
if (hasJavaScriptAccessors) {
|
|
details->set(2,
|
|
caught_exception ? Heap::true_value()
|
|
: Heap::false_value());
|
|
details->set(3, FixedArray::cast(*result_callback_obj)->get(0));
|
|
details->set(4, FixedArray::cast(*result_callback_obj)->get(1));
|
|
}
|
|
|
|
return *Factory::NewJSArrayWithElements(details);
|
|
}
|
|
if (i < length - 1) {
|
|
jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype()));
|
|
}
|
|
}
|
|
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_DebugGetProperty(Arguments args) {
|
|
HandleScope scope;
|
|
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_ARG_CHECKED(JSObject, obj, 0);
|
|
CONVERT_ARG_CHECKED(String, name, 1);
|
|
|
|
LookupResult result;
|
|
obj->Lookup(*name, &result);
|
|
if (result.IsProperty()) {
|
|
return DebugLookupResultValue(*obj, *name, &result, NULL);
|
|
}
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
// Return the property type calculated from the property details.
|
|
// args[0]: smi with property details.
|
|
static Object* Runtime_DebugPropertyTypeFromDetails(Arguments args) {
|
|
ASSERT(args.length() == 1);
|
|
CONVERT_CHECKED(Smi, details, args[0]);
|
|
PropertyType type = PropertyDetails(details).type();
|
|
return Smi::FromInt(static_cast<int>(type));
|
|
}
|
|
|
|
|
|
// Return the property attribute calculated from the property details.
|
|
// args[0]: smi with property details.
|
|
static Object* Runtime_DebugPropertyAttributesFromDetails(Arguments args) {
|
|
ASSERT(args.length() == 1);
|
|
CONVERT_CHECKED(Smi, details, args[0]);
|
|
PropertyAttributes attributes = PropertyDetails(details).attributes();
|
|
return Smi::FromInt(static_cast<int>(attributes));
|
|
}
|
|
|
|
|
|
// Return the property insertion index calculated from the property details.
|
|
// args[0]: smi with property details.
|
|
static Object* Runtime_DebugPropertyIndexFromDetails(Arguments args) {
|
|
ASSERT(args.length() == 1);
|
|
CONVERT_CHECKED(Smi, details, args[0]);
|
|
int index = PropertyDetails(details).index();
|
|
return Smi::FromInt(index);
|
|
}
|
|
|
|
|
|
// Return property value from named interceptor.
|
|
// args[0]: object
|
|
// args[1]: property name
|
|
static Object* Runtime_DebugNamedInterceptorPropertyValue(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 2);
|
|
CONVERT_ARG_CHECKED(JSObject, obj, 0);
|
|
RUNTIME_ASSERT(obj->HasNamedInterceptor());
|
|
CONVERT_ARG_CHECKED(String, name, 1);
|
|
|
|
PropertyAttributes attributes;
|
|
return obj->GetPropertyWithInterceptor(*obj, *name, &attributes);
|
|
}
|
|
|
|
|
|
// Return element value from indexed interceptor.
|
|
// args[0]: object
|
|
// args[1]: index
|
|
static Object* Runtime_DebugIndexedInterceptorElementValue(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 2);
|
|
CONVERT_ARG_CHECKED(JSObject, obj, 0);
|
|
RUNTIME_ASSERT(obj->HasIndexedInterceptor());
|
|
CONVERT_NUMBER_CHECKED(uint32_t, index, Uint32, args[1]);
|
|
|
|
return obj->GetElementWithInterceptor(*obj, index);
|
|
}
|
|
|
|
|
|
static Object* Runtime_CheckExecutionState(Arguments args) {
|
|
ASSERT(args.length() >= 1);
|
|
CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
|
|
// Check that the break id is valid.
|
|
if (Debug::break_id() == 0 || break_id != Debug::break_id()) {
|
|
return Top::Throw(Heap::illegal_execution_state_symbol());
|
|
}
|
|
|
|
return Heap::true_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_GetFrameCount(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
|
|
// Check arguments.
|
|
Object* result = Runtime_CheckExecutionState(args);
|
|
if (result->IsFailure()) return result;
|
|
|
|
// Count all frames which are relevant to debugging stack trace.
|
|
int n = 0;
|
|
StackFrame::Id id = Debug::break_frame_id();
|
|
if (id == StackFrame::NO_ID) {
|
|
// If there is no JavaScript stack frame count is 0.
|
|
return Smi::FromInt(0);
|
|
}
|
|
for (JavaScriptFrameIterator it(id); !it.done(); it.Advance()) n++;
|
|
return Smi::FromInt(n);
|
|
}
|
|
|
|
|
|
static const int kFrameDetailsFrameIdIndex = 0;
|
|
static const int kFrameDetailsReceiverIndex = 1;
|
|
static const int kFrameDetailsFunctionIndex = 2;
|
|
static const int kFrameDetailsArgumentCountIndex = 3;
|
|
static const int kFrameDetailsLocalCountIndex = 4;
|
|
static const int kFrameDetailsSourcePositionIndex = 5;
|
|
static const int kFrameDetailsConstructCallIndex = 6;
|
|
static const int kFrameDetailsDebuggerFrameIndex = 7;
|
|
static const int kFrameDetailsFirstDynamicIndex = 8;
|
|
|
|
// Return an array with frame details
|
|
// args[0]: number: break id
|
|
// args[1]: number: frame index
|
|
//
|
|
// The array returned contains the following information:
|
|
// 0: Frame id
|
|
// 1: Receiver
|
|
// 2: Function
|
|
// 3: Argument count
|
|
// 4: Local count
|
|
// 5: Source position
|
|
// 6: Constructor call
|
|
// 7: Debugger frame
|
|
// Arguments name, value
|
|
// Locals name, value
|
|
static Object* Runtime_GetFrameDetails(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 2);
|
|
|
|
// Check arguments.
|
|
Object* check = Runtime_CheckExecutionState(args);
|
|
if (check->IsFailure()) return check;
|
|
CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
|
|
|
|
// Find the relevant frame with the requested index.
|
|
StackFrame::Id id = Debug::break_frame_id();
|
|
if (id == StackFrame::NO_ID) {
|
|
// If there are no JavaScript stack frames return undefined.
|
|
return Heap::undefined_value();
|
|
}
|
|
int count = 0;
|
|
JavaScriptFrameIterator it(id);
|
|
for (; !it.done(); it.Advance()) {
|
|
if (count == index) break;
|
|
count++;
|
|
}
|
|
if (it.done()) return Heap::undefined_value();
|
|
|
|
// Traverse the saved contexts chain to find the active context for the
|
|
// selected frame.
|
|
SaveContext* save = Top::save_context();
|
|
while (save != NULL && !save->below(it.frame())) {
|
|
save = save->prev();
|
|
}
|
|
ASSERT(save != NULL);
|
|
|
|
// Get the frame id.
|
|
Handle<Object> frame_id(WrapFrameId(it.frame()->id()));
|
|
|
|
// Find source position.
|
|
int position = it.frame()->code()->SourcePosition(it.frame()->pc());
|
|
|
|
// Check for constructor frame.
|
|
bool constructor = it.frame()->IsConstructor();
|
|
|
|
// Get code and read scope info from it for local variable information.
|
|
Handle<Code> code(it.frame()->code());
|
|
ScopeInfo<> info(*code);
|
|
|
|
// Get the context.
|
|
Handle<Context> context(Context::cast(it.frame()->context()));
|
|
|
|
// Get the locals names and values into a temporary array.
|
|
//
|
|
// TODO(1240907): Hide compiler-introduced stack variables
|
|
// (e.g. .result)? For users of the debugger, they will probably be
|
|
// confusing.
|
|
Handle<FixedArray> locals = Factory::NewFixedArray(info.NumberOfLocals() * 2);
|
|
for (int i = 0; i < info.NumberOfLocals(); i++) {
|
|
// Name of the local.
|
|
locals->set(i * 2, *info.LocalName(i));
|
|
|
|
// Fetch the value of the local - either from the stack or from a
|
|
// heap-allocated context.
|
|
if (i < info.number_of_stack_slots()) {
|
|
locals->set(i * 2 + 1, it.frame()->GetExpression(i));
|
|
} else {
|
|
Handle<String> name = info.LocalName(i);
|
|
// Traverse the context chain to the function context as all local
|
|
// variables stored in the context will be on the function context.
|
|
while (!context->is_function_context()) {
|
|
context = Handle<Context>(context->previous());
|
|
}
|
|
ASSERT(context->is_function_context());
|
|
locals->set(i * 2 + 1,
|
|
context->get(ScopeInfo<>::ContextSlotIndex(*code, *name,
|
|
NULL)));
|
|
}
|
|
}
|
|
|
|
// Now advance to the arguments adapter frame (if any). If contains all
|
|
// the provided parameters and
|
|
|
|
// Now advance to the arguments adapter frame (if any). It contains all
|
|
// the provided parameters whereas the function frame always have the number
|
|
// of arguments matching the functions parameters. The rest of the
|
|
// information (except for what is collected above) is the same.
|
|
it.AdvanceToArgumentsFrame();
|
|
|
|
// Find the number of arguments to fill. At least fill the number of
|
|
// parameters for the function and fill more if more parameters are provided.
|
|
int argument_count = info.number_of_parameters();
|
|
if (argument_count < it.frame()->GetProvidedParametersCount()) {
|
|
argument_count = it.frame()->GetProvidedParametersCount();
|
|
}
|
|
|
|
// Calculate the size of the result.
|
|
int details_size = kFrameDetailsFirstDynamicIndex +
|
|
2 * (argument_count + info.NumberOfLocals());
|
|
Handle<FixedArray> details = Factory::NewFixedArray(details_size);
|
|
|
|
// Add the frame id.
|
|
details->set(kFrameDetailsFrameIdIndex, *frame_id);
|
|
|
|
// Add the function (same as in function frame).
|
|
details->set(kFrameDetailsFunctionIndex, it.frame()->function());
|
|
|
|
// Add the arguments count.
|
|
details->set(kFrameDetailsArgumentCountIndex, Smi::FromInt(argument_count));
|
|
|
|
// Add the locals count
|
|
details->set(kFrameDetailsLocalCountIndex,
|
|
Smi::FromInt(info.NumberOfLocals()));
|
|
|
|
// Add the source position.
|
|
if (position != RelocInfo::kNoPosition) {
|
|
details->set(kFrameDetailsSourcePositionIndex, Smi::FromInt(position));
|
|
} else {
|
|
details->set(kFrameDetailsSourcePositionIndex, Heap::undefined_value());
|
|
}
|
|
|
|
// Add the constructor information.
|
|
details->set(kFrameDetailsConstructCallIndex, Heap::ToBoolean(constructor));
|
|
|
|
// Add information on whether this frame is invoked in the debugger context.
|
|
details->set(kFrameDetailsDebuggerFrameIndex,
|
|
Heap::ToBoolean(*save->context() == *Debug::debug_context()));
|
|
|
|
// Fill the dynamic part.
|
|
int details_index = kFrameDetailsFirstDynamicIndex;
|
|
|
|
// Add arguments name and value.
|
|
for (int i = 0; i < argument_count; i++) {
|
|
// Name of the argument.
|
|
if (i < info.number_of_parameters()) {
|
|
details->set(details_index++, *info.parameter_name(i));
|
|
} else {
|
|
details->set(details_index++, Heap::undefined_value());
|
|
}
|
|
|
|
// Parameter value.
|
|
if (i < it.frame()->GetProvidedParametersCount()) {
|
|
details->set(details_index++, it.frame()->GetParameter(i));
|
|
} else {
|
|
details->set(details_index++, Heap::undefined_value());
|
|
}
|
|
}
|
|
|
|
// Add locals name and value from the temporary copy from the function frame.
|
|
for (int i = 0; i < info.NumberOfLocals() * 2; i++) {
|
|
details->set(details_index++, locals->get(i));
|
|
}
|
|
|
|
// Add the receiver (same as in function frame).
|
|
// THIS MUST BE DONE LAST SINCE WE MIGHT ADVANCE
|
|
// THE FRAME ITERATOR TO WRAP THE RECEIVER.
|
|
Handle<Object> receiver(it.frame()->receiver());
|
|
if (!receiver->IsJSObject()) {
|
|
// If the receiver is NOT a JSObject we have hit an optimization
|
|
// where a value object is not converted into a wrapped JS objects.
|
|
// To hide this optimization from the debugger, we wrap the receiver
|
|
// by creating correct wrapper object based on the calling frame's
|
|
// global context.
|
|
it.Advance();
|
|
Handle<Context> calling_frames_global_context(
|
|
Context::cast(Context::cast(it.frame()->context())->global_context()));
|
|
receiver = Factory::ToObject(receiver, calling_frames_global_context);
|
|
}
|
|
details->set(kFrameDetailsReceiverIndex, *receiver);
|
|
|
|
ASSERT_EQ(details_size, details_index);
|
|
return *Factory::NewJSArrayWithElements(details);
|
|
}
|
|
|
|
|
|
// Copy all the context locals into an object used to materialize a scope.
|
|
static void CopyContextLocalsToScopeObject(Handle<Code> code,
|
|
ScopeInfo<>& scope_info,
|
|
Handle<Context> context,
|
|
Handle<JSObject> scope_object) {
|
|
// Fill all context locals to the context extension.
|
|
for (int i = Context::MIN_CONTEXT_SLOTS;
|
|
i < scope_info.number_of_context_slots();
|
|
i++) {
|
|
int context_index =
|
|
ScopeInfo<>::ContextSlotIndex(*code,
|
|
*scope_info.context_slot_name(i),
|
|
NULL);
|
|
|
|
// Don't include the arguments shadow (.arguments) context variable.
|
|
if (*scope_info.context_slot_name(i) != Heap::arguments_shadow_symbol()) {
|
|
SetProperty(scope_object,
|
|
scope_info.context_slot_name(i),
|
|
Handle<Object>(context->get(context_index)), NONE);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Create a plain JSObject which materializes the local scope for the specified
|
|
// frame.
|
|
static Handle<JSObject> MaterializeLocalScope(JavaScriptFrame* frame) {
|
|
Handle<JSFunction> function(JSFunction::cast(frame->function()));
|
|
Handle<Code> code(function->code());
|
|
ScopeInfo<> scope_info(*code);
|
|
|
|
// Allocate and initialize a JSObject with all the arguments, stack locals
|
|
// heap locals and extension properties of the debugged function.
|
|
Handle<JSObject> local_scope = Factory::NewJSObject(Top::object_function());
|
|
|
|
// First fill all parameters.
|
|
for (int i = 0; i < scope_info.number_of_parameters(); ++i) {
|
|
SetProperty(local_scope,
|
|
scope_info.parameter_name(i),
|
|
Handle<Object>(frame->GetParameter(i)), NONE);
|
|
}
|
|
|
|
// Second fill all stack locals.
|
|
for (int i = 0; i < scope_info.number_of_stack_slots(); i++) {
|
|
SetProperty(local_scope,
|
|
scope_info.stack_slot_name(i),
|
|
Handle<Object>(frame->GetExpression(i)), NONE);
|
|
}
|
|
|
|
// Third fill all context locals.
|
|
Handle<Context> frame_context(Context::cast(frame->context()));
|
|
Handle<Context> function_context(frame_context->fcontext());
|
|
CopyContextLocalsToScopeObject(code, scope_info,
|
|
function_context, local_scope);
|
|
|
|
// Finally copy any properties from the function context extension. This will
|
|
// be variables introduced by eval.
|
|
if (function_context->closure() == *function) {
|
|
if (function_context->has_extension() &&
|
|
!function_context->IsGlobalContext()) {
|
|
Handle<JSObject> ext(JSObject::cast(function_context->extension()));
|
|
Handle<FixedArray> keys = GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS);
|
|
for (int i = 0; i < keys->length(); i++) {
|
|
// Names of variables introduced by eval are strings.
|
|
ASSERT(keys->get(i)->IsString());
|
|
Handle<String> key(String::cast(keys->get(i)));
|
|
SetProperty(local_scope, key, GetProperty(ext, key), NONE);
|
|
}
|
|
}
|
|
}
|
|
return local_scope;
|
|
}
|
|
|
|
|
|
// Create a plain JSObject which materializes the closure content for the
|
|
// context.
|
|
static Handle<JSObject> MaterializeClosure(Handle<Context> context) {
|
|
ASSERT(context->is_function_context());
|
|
|
|
Handle<Code> code(context->closure()->code());
|
|
ScopeInfo<> scope_info(*code);
|
|
|
|
// Allocate and initialize a JSObject with all the content of theis function
|
|
// closure.
|
|
Handle<JSObject> closure_scope = Factory::NewJSObject(Top::object_function());
|
|
|
|
// Check whether the arguments shadow object exists.
|
|
int arguments_shadow_index =
|
|
ScopeInfo<>::ContextSlotIndex(*code,
|
|
Heap::arguments_shadow_symbol(),
|
|
NULL);
|
|
if (arguments_shadow_index >= 0) {
|
|
// In this case all the arguments are available in the arguments shadow
|
|
// object.
|
|
Handle<JSObject> arguments_shadow(
|
|
JSObject::cast(context->get(arguments_shadow_index)));
|
|
for (int i = 0; i < scope_info.number_of_parameters(); ++i) {
|
|
SetProperty(closure_scope,
|
|
scope_info.parameter_name(i),
|
|
Handle<Object>(arguments_shadow->GetElement(i)), NONE);
|
|
}
|
|
}
|
|
|
|
// Fill all context locals to the context extension.
|
|
CopyContextLocalsToScopeObject(code, scope_info, context, closure_scope);
|
|
|
|
// Finally copy any properties from the function context extension. This will
|
|
// be variables introduced by eval.
|
|
if (context->has_extension()) {
|
|
Handle<JSObject> ext(JSObject::cast(context->extension()));
|
|
Handle<FixedArray> keys = GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS);
|
|
for (int i = 0; i < keys->length(); i++) {
|
|
// Names of variables introduced by eval are strings.
|
|
ASSERT(keys->get(i)->IsString());
|
|
Handle<String> key(String::cast(keys->get(i)));
|
|
SetProperty(closure_scope, key, GetProperty(ext, key), NONE);
|
|
}
|
|
}
|
|
|
|
return closure_scope;
|
|
}
|
|
|
|
|
|
// Iterate over the actual scopes visible from a stack frame. All scopes are
|
|
// backed by an actual context except the local scope, which is inserted
|
|
// "artifically" in the context chain.
|
|
class ScopeIterator {
|
|
public:
|
|
enum ScopeType {
|
|
ScopeTypeGlobal = 0,
|
|
ScopeTypeLocal,
|
|
ScopeTypeWith,
|
|
ScopeTypeClosure,
|
|
// Every catch block contains an implicit with block (its parameter is
|
|
// a JSContextExtensionObject) that extends current scope with a variable
|
|
// holding exception object. Such with blocks are treated as scopes of their
|
|
// own type.
|
|
ScopeTypeCatch
|
|
};
|
|
|
|
explicit ScopeIterator(JavaScriptFrame* frame)
|
|
: frame_(frame),
|
|
function_(JSFunction::cast(frame->function())),
|
|
context_(Context::cast(frame->context())),
|
|
local_done_(false),
|
|
at_local_(false) {
|
|
|
|
// Check whether the first scope is actually a local scope.
|
|
if (context_->IsGlobalContext()) {
|
|
// If there is a stack slot for .result then this local scope has been
|
|
// created for evaluating top level code and it is not a real local scope.
|
|
// Checking for the existence of .result seems fragile, but the scope info
|
|
// saved with the code object does not otherwise have that information.
|
|
Handle<Code> code(function_->code());
|
|
int index = ScopeInfo<>::StackSlotIndex(*code, Heap::result_symbol());
|
|
at_local_ = index < 0;
|
|
} else if (context_->is_function_context()) {
|
|
at_local_ = true;
|
|
}
|
|
}
|
|
|
|
// More scopes?
|
|
bool Done() { return context_.is_null(); }
|
|
|
|
// Move to the next scope.
|
|
void Next() {
|
|
// If at a local scope mark the local scope as passed.
|
|
if (at_local_) {
|
|
at_local_ = false;
|
|
local_done_ = true;
|
|
|
|
// If the current context is not associated with the local scope the
|
|
// current context is the next real scope, so don't move to the next
|
|
// context in this case.
|
|
if (context_->closure() != *function_) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// The global scope is always the last in the chain.
|
|
if (context_->IsGlobalContext()) {
|
|
context_ = Handle<Context>();
|
|
return;
|
|
}
|
|
|
|
// Move to the next context.
|
|
if (context_->is_function_context()) {
|
|
context_ = Handle<Context>(Context::cast(context_->closure()->context()));
|
|
} else {
|
|
context_ = Handle<Context>(context_->previous());
|
|
}
|
|
|
|
// If passing the local scope indicate that the current scope is now the
|
|
// local scope.
|
|
if (!local_done_ &&
|
|
(context_->IsGlobalContext() || (context_->is_function_context()))) {
|
|
at_local_ = true;
|
|
}
|
|
}
|
|
|
|
// Return the type of the current scope.
|
|
int Type() {
|
|
if (at_local_) {
|
|
return ScopeTypeLocal;
|
|
}
|
|
if (context_->IsGlobalContext()) {
|
|
ASSERT(context_->global()->IsGlobalObject());
|
|
return ScopeTypeGlobal;
|
|
}
|
|
if (context_->is_function_context()) {
|
|
return ScopeTypeClosure;
|
|
}
|
|
ASSERT(context_->has_extension());
|
|
// Current scope is either an explicit with statement or a with statement
|
|
// implicitely generated for a catch block.
|
|
// If the extension object here is a JSContextExtensionObject then
|
|
// current with statement is one frome a catch block otherwise it's a
|
|
// regular with statement.
|
|
if (context_->extension()->IsJSContextExtensionObject()) {
|
|
return ScopeTypeCatch;
|
|
}
|
|
return ScopeTypeWith;
|
|
}
|
|
|
|
// Return the JavaScript object with the content of the current scope.
|
|
Handle<JSObject> ScopeObject() {
|
|
switch (Type()) {
|
|
case ScopeIterator::ScopeTypeGlobal:
|
|
return Handle<JSObject>(CurrentContext()->global());
|
|
break;
|
|
case ScopeIterator::ScopeTypeLocal:
|
|
// Materialize the content of the local scope into a JSObject.
|
|
return MaterializeLocalScope(frame_);
|
|
break;
|
|
case ScopeIterator::ScopeTypeWith:
|
|
case ScopeIterator::ScopeTypeCatch:
|
|
// Return the with object.
|
|
return Handle<JSObject>(CurrentContext()->extension());
|
|
break;
|
|
case ScopeIterator::ScopeTypeClosure:
|
|
// Materialize the content of the closure scope into a JSObject.
|
|
return MaterializeClosure(CurrentContext());
|
|
break;
|
|
}
|
|
UNREACHABLE();
|
|
return Handle<JSObject>();
|
|
}
|
|
|
|
// Return the context for this scope. For the local context there might not
|
|
// be an actual context.
|
|
Handle<Context> CurrentContext() {
|
|
if (at_local_ && context_->closure() != *function_) {
|
|
return Handle<Context>();
|
|
}
|
|
return context_;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
// Debug print of the content of the current scope.
|
|
void DebugPrint() {
|
|
switch (Type()) {
|
|
case ScopeIterator::ScopeTypeGlobal:
|
|
PrintF("Global:\n");
|
|
CurrentContext()->Print();
|
|
break;
|
|
|
|
case ScopeIterator::ScopeTypeLocal: {
|
|
PrintF("Local:\n");
|
|
Handle<Code> code(function_->code());
|
|
ScopeInfo<> scope_info(*code);
|
|
scope_info.Print();
|
|
if (!CurrentContext().is_null()) {
|
|
CurrentContext()->Print();
|
|
if (CurrentContext()->has_extension()) {
|
|
Handle<JSObject> extension =
|
|
Handle<JSObject>(CurrentContext()->extension());
|
|
if (extension->IsJSContextExtensionObject()) {
|
|
extension->Print();
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ScopeIterator::ScopeTypeWith: {
|
|
PrintF("With:\n");
|
|
Handle<JSObject> extension =
|
|
Handle<JSObject>(CurrentContext()->extension());
|
|
extension->Print();
|
|
break;
|
|
}
|
|
|
|
case ScopeIterator::ScopeTypeCatch: {
|
|
PrintF("Catch:\n");
|
|
Handle<JSObject> extension =
|
|
Handle<JSObject>(CurrentContext()->extension());
|
|
extension->Print();
|
|
break;
|
|
}
|
|
|
|
case ScopeIterator::ScopeTypeClosure: {
|
|
PrintF("Closure:\n");
|
|
CurrentContext()->Print();
|
|
if (CurrentContext()->has_extension()) {
|
|
Handle<JSObject> extension =
|
|
Handle<JSObject>(CurrentContext()->extension());
|
|
if (extension->IsJSContextExtensionObject()) {
|
|
extension->Print();
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
PrintF("\n");
|
|
}
|
|
#endif
|
|
|
|
private:
|
|
JavaScriptFrame* frame_;
|
|
Handle<JSFunction> function_;
|
|
Handle<Context> context_;
|
|
bool local_done_;
|
|
bool at_local_;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ScopeIterator);
|
|
};
|
|
|
|
|
|
static Object* Runtime_GetScopeCount(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 2);
|
|
|
|
// Check arguments.
|
|
Object* check = Runtime_CheckExecutionState(args);
|
|
if (check->IsFailure()) return check;
|
|
CONVERT_CHECKED(Smi, wrapped_id, args[1]);
|
|
|
|
// Get the frame where the debugging is performed.
|
|
StackFrame::Id id = UnwrapFrameId(wrapped_id);
|
|
JavaScriptFrameIterator it(id);
|
|
JavaScriptFrame* frame = it.frame();
|
|
|
|
// Count the visible scopes.
|
|
int n = 0;
|
|
for (ScopeIterator it(frame); !it.Done(); it.Next()) {
|
|
n++;
|
|
}
|
|
|
|
return Smi::FromInt(n);
|
|
}
|
|
|
|
|
|
static const int kScopeDetailsTypeIndex = 0;
|
|
static const int kScopeDetailsObjectIndex = 1;
|
|
static const int kScopeDetailsSize = 2;
|
|
|
|
// Return an array with scope details
|
|
// args[0]: number: break id
|
|
// args[1]: number: frame index
|
|
// args[2]: number: scope index
|
|
//
|
|
// The array returned contains the following information:
|
|
// 0: Scope type
|
|
// 1: Scope object
|
|
static Object* Runtime_GetScopeDetails(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 3);
|
|
|
|
// Check arguments.
|
|
Object* check = Runtime_CheckExecutionState(args);
|
|
if (check->IsFailure()) return check;
|
|
CONVERT_CHECKED(Smi, wrapped_id, args[1]);
|
|
CONVERT_NUMBER_CHECKED(int, index, Int32, args[2]);
|
|
|
|
// Get the frame where the debugging is performed.
|
|
StackFrame::Id id = UnwrapFrameId(wrapped_id);
|
|
JavaScriptFrameIterator frame_it(id);
|
|
JavaScriptFrame* frame = frame_it.frame();
|
|
|
|
// Find the requested scope.
|
|
int n = 0;
|
|
ScopeIterator it(frame);
|
|
for (; !it.Done() && n < index; it.Next()) {
|
|
n++;
|
|
}
|
|
if (it.Done()) {
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
// Calculate the size of the result.
|
|
int details_size = kScopeDetailsSize;
|
|
Handle<FixedArray> details = Factory::NewFixedArray(details_size);
|
|
|
|
// Fill in scope details.
|
|
details->set(kScopeDetailsTypeIndex, Smi::FromInt(it.Type()));
|
|
details->set(kScopeDetailsObjectIndex, *it.ScopeObject());
|
|
|
|
return *Factory::NewJSArrayWithElements(details);
|
|
}
|
|
|
|
|
|
static Object* Runtime_DebugPrintScopes(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 0);
|
|
|
|
#ifdef DEBUG
|
|
// Print the scopes for the top frame.
|
|
StackFrameLocator locator;
|
|
JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
|
|
for (ScopeIterator it(frame); !it.Done(); it.Next()) {
|
|
it.DebugPrint();
|
|
}
|
|
#endif
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_GetCFrames(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
Object* result = Runtime_CheckExecutionState(args);
|
|
if (result->IsFailure()) return result;
|
|
|
|
#if V8_HOST_ARCH_64_BIT
|
|
UNIMPLEMENTED();
|
|
return Heap::undefined_value();
|
|
#else
|
|
|
|
static const int kMaxCFramesSize = 200;
|
|
ScopedVector<OS::StackFrame> frames(kMaxCFramesSize);
|
|
int frames_count = OS::StackWalk(frames);
|
|
if (frames_count == OS::kStackWalkError) {
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
Handle<String> address_str = Factory::LookupAsciiSymbol("address");
|
|
Handle<String> text_str = Factory::LookupAsciiSymbol("text");
|
|
Handle<FixedArray> frames_array = Factory::NewFixedArray(frames_count);
|
|
for (int i = 0; i < frames_count; i++) {
|
|
Handle<JSObject> frame_value = Factory::NewJSObject(Top::object_function());
|
|
frame_value->SetProperty(
|
|
*address_str,
|
|
*Factory::NewNumberFromInt(reinterpret_cast<int>(frames[i].address)),
|
|
NONE);
|
|
|
|
// Get the stack walk text for this frame.
|
|
Handle<String> frame_text;
|
|
int frame_text_length = StrLength(frames[i].text);
|
|
if (frame_text_length > 0) {
|
|
Vector<const char> str(frames[i].text, frame_text_length);
|
|
frame_text = Factory::NewStringFromAscii(str);
|
|
}
|
|
|
|
if (!frame_text.is_null()) {
|
|
frame_value->SetProperty(*text_str, *frame_text, NONE);
|
|
}
|
|
|
|
frames_array->set(i, *frame_value);
|
|
}
|
|
return *Factory::NewJSArrayWithElements(frames_array);
|
|
#endif // V8_HOST_ARCH_64_BIT
|
|
}
|
|
|
|
|
|
static Object* Runtime_GetThreadCount(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
|
|
// Check arguments.
|
|
Object* result = Runtime_CheckExecutionState(args);
|
|
if (result->IsFailure()) return result;
|
|
|
|
// Count all archived V8 threads.
|
|
int n = 0;
|
|
for (ThreadState* thread = ThreadState::FirstInUse();
|
|
thread != NULL;
|
|
thread = thread->Next()) {
|
|
n++;
|
|
}
|
|
|
|
// Total number of threads is current thread and archived threads.
|
|
return Smi::FromInt(n + 1);
|
|
}
|
|
|
|
|
|
static const int kThreadDetailsCurrentThreadIndex = 0;
|
|
static const int kThreadDetailsThreadIdIndex = 1;
|
|
static const int kThreadDetailsSize = 2;
|
|
|
|
// Return an array with thread details
|
|
// args[0]: number: break id
|
|
// args[1]: number: thread index
|
|
//
|
|
// The array returned contains the following information:
|
|
// 0: Is current thread?
|
|
// 1: Thread id
|
|
static Object* Runtime_GetThreadDetails(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 2);
|
|
|
|
// Check arguments.
|
|
Object* check = Runtime_CheckExecutionState(args);
|
|
if (check->IsFailure()) return check;
|
|
CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
|
|
|
|
// Allocate array for result.
|
|
Handle<FixedArray> details = Factory::NewFixedArray(kThreadDetailsSize);
|
|
|
|
// Thread index 0 is current thread.
|
|
if (index == 0) {
|
|
// Fill the details.
|
|
details->set(kThreadDetailsCurrentThreadIndex, Heap::true_value());
|
|
details->set(kThreadDetailsThreadIdIndex,
|
|
Smi::FromInt(ThreadManager::CurrentId()));
|
|
} else {
|
|
// Find the thread with the requested index.
|
|
int n = 1;
|
|
ThreadState* thread = ThreadState::FirstInUse();
|
|
while (index != n && thread != NULL) {
|
|
thread = thread->Next();
|
|
n++;
|
|
}
|
|
if (thread == NULL) {
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
// Fill the details.
|
|
details->set(kThreadDetailsCurrentThreadIndex, Heap::false_value());
|
|
details->set(kThreadDetailsThreadIdIndex, Smi::FromInt(thread->id()));
|
|
}
|
|
|
|
// Convert to JS array and return.
|
|
return *Factory::NewJSArrayWithElements(details);
|
|
}
|
|
|
|
|
|
static Object* Runtime_GetBreakLocations(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_ARG_CHECKED(JSFunction, fun, 0);
|
|
Handle<SharedFunctionInfo> shared(fun->shared());
|
|
// Find the number of break points
|
|
Handle<Object> break_locations = Debug::GetSourceBreakLocations(shared);
|
|
if (break_locations->IsUndefined()) return Heap::undefined_value();
|
|
// Return array as JS array
|
|
return *Factory::NewJSArrayWithElements(
|
|
Handle<FixedArray>::cast(break_locations));
|
|
}
|
|
|
|
|
|
// Set a break point in a function
|
|
// args[0]: function
|
|
// args[1]: number: break source position (within the function source)
|
|
// args[2]: number: break point object
|
|
static Object* Runtime_SetFunctionBreakPoint(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 3);
|
|
CONVERT_ARG_CHECKED(JSFunction, fun, 0);
|
|
Handle<SharedFunctionInfo> shared(fun->shared());
|
|
CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
|
|
RUNTIME_ASSERT(source_position >= 0);
|
|
Handle<Object> break_point_object_arg = args.at<Object>(2);
|
|
|
|
// Set break point.
|
|
Debug::SetBreakPoint(shared, source_position, break_point_object_arg);
|
|
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
Object* Runtime::FindSharedFunctionInfoInScript(Handle<Script> script,
|
|
int position) {
|
|
// Iterate the heap looking for SharedFunctionInfo generated from the
|
|
// script. The inner most SharedFunctionInfo containing the source position
|
|
// for the requested break point is found.
|
|
// NOTE: This might reqire several heap iterations. If the SharedFunctionInfo
|
|
// which is found is not compiled it is compiled and the heap is iterated
|
|
// again as the compilation might create inner functions from the newly
|
|
// compiled function and the actual requested break point might be in one of
|
|
// these functions.
|
|
bool done = false;
|
|
// The current candidate for the source position:
|
|
int target_start_position = RelocInfo::kNoPosition;
|
|
Handle<SharedFunctionInfo> target;
|
|
// The current candidate for the last function in script:
|
|
Handle<SharedFunctionInfo> last;
|
|
while (!done) {
|
|
HeapIterator iterator;
|
|
for (HeapObject* obj = iterator.next();
|
|
obj != NULL; obj = iterator.next()) {
|
|
if (obj->IsSharedFunctionInfo()) {
|
|
Handle<SharedFunctionInfo> shared(SharedFunctionInfo::cast(obj));
|
|
if (shared->script() == *script) {
|
|
// If the SharedFunctionInfo found has the requested script data and
|
|
// contains the source position it is a candidate.
|
|
int start_position = shared->function_token_position();
|
|
if (start_position == RelocInfo::kNoPosition) {
|
|
start_position = shared->start_position();
|
|
}
|
|
if (start_position <= position &&
|
|
position <= shared->end_position()) {
|
|
// If there is no candidate or this function is within the current
|
|
// candidate this is the new candidate.
|
|
if (target.is_null()) {
|
|
target_start_position = start_position;
|
|
target = shared;
|
|
} else {
|
|
if (target_start_position == start_position &&
|
|
shared->end_position() == target->end_position()) {
|
|
// If a top-level function contain only one function
|
|
// declartion the source for the top-level and the function is
|
|
// the same. In that case prefer the non top-level function.
|
|
if (!shared->is_toplevel()) {
|
|
target_start_position = start_position;
|
|
target = shared;
|
|
}
|
|
} else if (target_start_position <= start_position &&
|
|
shared->end_position() <= target->end_position()) {
|
|
// This containment check includes equality as a function inside
|
|
// a top-level function can share either start or end position
|
|
// with the top-level function.
|
|
target_start_position = start_position;
|
|
target = shared;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Keep track of the last function in the script.
|
|
if (last.is_null() ||
|
|
shared->end_position() > last->start_position()) {
|
|
last = shared;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Make sure some candidate is selected.
|
|
if (target.is_null()) {
|
|
if (!last.is_null()) {
|
|
// Position after the last function - use last.
|
|
target = last;
|
|
} else {
|
|
// Unable to find function - possibly script without any function.
|
|
return Heap::undefined_value();
|
|
}
|
|
}
|
|
|
|
// If the candidate found is compiled we are done. NOTE: when lazy
|
|
// compilation of inner functions is introduced some additional checking
|
|
// needs to be done here to compile inner functions.
|
|
done = target->is_compiled();
|
|
if (!done) {
|
|
// If the candidate is not compiled compile it to reveal any inner
|
|
// functions which might contain the requested source position.
|
|
CompileLazyShared(target, KEEP_EXCEPTION);
|
|
}
|
|
}
|
|
|
|
return *target;
|
|
}
|
|
|
|
|
|
// Change the state of a break point in a script. NOTE: Regarding performance
|
|
// see the NOTE for GetScriptFromScriptData.
|
|
// args[0]: script to set break point in
|
|
// args[1]: number: break source position (within the script source)
|
|
// args[2]: number: break point object
|
|
static Object* Runtime_SetScriptBreakPoint(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 3);
|
|
CONVERT_ARG_CHECKED(JSValue, wrapper, 0);
|
|
CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
|
|
RUNTIME_ASSERT(source_position >= 0);
|
|
Handle<Object> break_point_object_arg = args.at<Object>(2);
|
|
|
|
// Get the script from the script wrapper.
|
|
RUNTIME_ASSERT(wrapper->value()->IsScript());
|
|
Handle<Script> script(Script::cast(wrapper->value()));
|
|
|
|
Object* result = Runtime::FindSharedFunctionInfoInScript(
|
|
script, source_position);
|
|
if (!result->IsUndefined()) {
|
|
Handle<SharedFunctionInfo> shared(SharedFunctionInfo::cast(result));
|
|
// Find position within function. The script position might be before the
|
|
// source position of the first function.
|
|
int position;
|
|
if (shared->start_position() > source_position) {
|
|
position = 0;
|
|
} else {
|
|
position = source_position - shared->start_position();
|
|
}
|
|
Debug::SetBreakPoint(shared, position, break_point_object_arg);
|
|
}
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
// Clear a break point
|
|
// args[0]: number: break point object
|
|
static Object* Runtime_ClearBreakPoint(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
Handle<Object> break_point_object_arg = args.at<Object>(0);
|
|
|
|
// Clear break point.
|
|
Debug::ClearBreakPoint(break_point_object_arg);
|
|
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
// Change the state of break on exceptions
|
|
// args[0]: boolean indicating uncaught exceptions
|
|
// args[1]: boolean indicating on/off
|
|
static Object* Runtime_ChangeBreakOnException(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 2);
|
|
ASSERT(args[0]->IsNumber());
|
|
ASSERT(args[1]->IsBoolean());
|
|
|
|
// Update break point state
|
|
ExceptionBreakType type =
|
|
static_cast<ExceptionBreakType>(NumberToUint32(args[0]));
|
|
bool enable = args[1]->ToBoolean()->IsTrue();
|
|
Debug::ChangeBreakOnException(type, enable);
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
// Prepare for stepping
|
|
// args[0]: break id for checking execution state
|
|
// args[1]: step action from the enumeration StepAction
|
|
// args[2]: number of times to perform the step, for step out it is the number
|
|
// of frames to step down.
|
|
static Object* Runtime_PrepareStep(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 3);
|
|
// Check arguments.
|
|
Object* check = Runtime_CheckExecutionState(args);
|
|
if (check->IsFailure()) return check;
|
|
if (!args[1]->IsNumber() || !args[2]->IsNumber()) {
|
|
return Top::Throw(Heap::illegal_argument_symbol());
|
|
}
|
|
|
|
// Get the step action and check validity.
|
|
StepAction step_action = static_cast<StepAction>(NumberToInt32(args[1]));
|
|
if (step_action != StepIn &&
|
|
step_action != StepNext &&
|
|
step_action != StepOut &&
|
|
step_action != StepInMin &&
|
|
step_action != StepMin) {
|
|
return Top::Throw(Heap::illegal_argument_symbol());
|
|
}
|
|
|
|
// Get the number of steps.
|
|
int step_count = NumberToInt32(args[2]);
|
|
if (step_count < 1) {
|
|
return Top::Throw(Heap::illegal_argument_symbol());
|
|
}
|
|
|
|
// Clear all current stepping setup.
|
|
Debug::ClearStepping();
|
|
|
|
// Prepare step.
|
|
Debug::PrepareStep(static_cast<StepAction>(step_action), step_count);
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
// Clear all stepping set by PrepareStep.
|
|
static Object* Runtime_ClearStepping(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 0);
|
|
Debug::ClearStepping();
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
// Creates a copy of the with context chain. The copy of the context chain is
|
|
// is linked to the function context supplied.
|
|
static Handle<Context> CopyWithContextChain(Handle<Context> context_chain,
|
|
Handle<Context> function_context) {
|
|
// At the bottom of the chain. Return the function context to link to.
|
|
if (context_chain->is_function_context()) {
|
|
return function_context;
|
|
}
|
|
|
|
// Recursively copy the with contexts.
|
|
Handle<Context> previous(context_chain->previous());
|
|
Handle<JSObject> extension(JSObject::cast(context_chain->extension()));
|
|
return Factory::NewWithContext(
|
|
CopyWithContextChain(function_context, previous),
|
|
extension,
|
|
context_chain->IsCatchContext());
|
|
}
|
|
|
|
|
|
// Helper function to find or create the arguments object for
|
|
// Runtime_DebugEvaluate.
|
|
static Handle<Object> GetArgumentsObject(JavaScriptFrame* frame,
|
|
Handle<JSFunction> function,
|
|
Handle<Code> code,
|
|
const ScopeInfo<>* sinfo,
|
|
Handle<Context> function_context) {
|
|
// Try to find the value of 'arguments' to pass as parameter. If it is not
|
|
// found (that is the debugged function does not reference 'arguments' and
|
|
// does not support eval) then create an 'arguments' object.
|
|
int index;
|
|
if (sinfo->number_of_stack_slots() > 0) {
|
|
index = ScopeInfo<>::StackSlotIndex(*code, Heap::arguments_symbol());
|
|
if (index != -1) {
|
|
return Handle<Object>(frame->GetExpression(index));
|
|
}
|
|
}
|
|
|
|
if (sinfo->number_of_context_slots() > Context::MIN_CONTEXT_SLOTS) {
|
|
index = ScopeInfo<>::ContextSlotIndex(*code, Heap::arguments_symbol(),
|
|
NULL);
|
|
if (index != -1) {
|
|
return Handle<Object>(function_context->get(index));
|
|
}
|
|
}
|
|
|
|
const int length = frame->GetProvidedParametersCount();
|
|
Handle<JSObject> arguments = Factory::NewArgumentsObject(function, length);
|
|
Handle<FixedArray> array = Factory::NewFixedArray(length);
|
|
|
|
AssertNoAllocation no_gc;
|
|
WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc);
|
|
for (int i = 0; i < length; i++) {
|
|
array->set(i, frame->GetParameter(i), mode);
|
|
}
|
|
arguments->set_elements(*array);
|
|
return arguments;
|
|
}
|
|
|
|
|
|
// Evaluate a piece of JavaScript in the context of a stack frame for
|
|
// debugging. This is accomplished by creating a new context which in its
|
|
// extension part has all the parameters and locals of the function on the
|
|
// stack frame. A function which calls eval with the code to evaluate is then
|
|
// compiled in this context and called in this context. As this context
|
|
// replaces the context of the function on the stack frame a new (empty)
|
|
// function is created as well to be used as the closure for the context.
|
|
// This function and the context acts as replacements for the function on the
|
|
// stack frame presenting the same view of the values of parameters and
|
|
// local variables as if the piece of JavaScript was evaluated at the point
|
|
// where the function on the stack frame is currently stopped.
|
|
static Object* Runtime_DebugEvaluate(Arguments args) {
|
|
HandleScope scope;
|
|
|
|
// Check the execution state and decode arguments frame and source to be
|
|
// evaluated.
|
|
ASSERT(args.length() == 4);
|
|
Object* check_result = Runtime_CheckExecutionState(args);
|
|
if (check_result->IsFailure()) return check_result;
|
|
CONVERT_CHECKED(Smi, wrapped_id, args[1]);
|
|
CONVERT_ARG_CHECKED(String, source, 2);
|
|
CONVERT_BOOLEAN_CHECKED(disable_break, args[3]);
|
|
|
|
// Handle the processing of break.
|
|
DisableBreak disable_break_save(disable_break);
|
|
|
|
// Get the frame where the debugging is performed.
|
|
StackFrame::Id id = UnwrapFrameId(wrapped_id);
|
|
JavaScriptFrameIterator it(id);
|
|
JavaScriptFrame* frame = it.frame();
|
|
Handle<JSFunction> function(JSFunction::cast(frame->function()));
|
|
Handle<Code> code(function->code());
|
|
ScopeInfo<> sinfo(*code);
|
|
|
|
// Traverse the saved contexts chain to find the active context for the
|
|
// selected frame.
|
|
SaveContext* save = Top::save_context();
|
|
while (save != NULL && !save->below(frame)) {
|
|
save = save->prev();
|
|
}
|
|
ASSERT(save != NULL);
|
|
SaveContext savex;
|
|
Top::set_context(*(save->context()));
|
|
|
|
// Create the (empty) function replacing the function on the stack frame for
|
|
// the purpose of evaluating in the context created below. It is important
|
|
// that this function does not describe any parameters and local variables
|
|
// in the context. If it does then this will cause problems with the lookup
|
|
// in Context::Lookup, where context slots for parameters and local variables
|
|
// are looked at before the extension object.
|
|
Handle<JSFunction> go_between =
|
|
Factory::NewFunction(Factory::empty_string(), Factory::undefined_value());
|
|
go_between->set_context(function->context());
|
|
#ifdef DEBUG
|
|
ScopeInfo<> go_between_sinfo(go_between->shared()->code());
|
|
ASSERT(go_between_sinfo.number_of_parameters() == 0);
|
|
ASSERT(go_between_sinfo.number_of_context_slots() == 0);
|
|
#endif
|
|
|
|
// Materialize the content of the local scope into a JSObject.
|
|
Handle<JSObject> local_scope = MaterializeLocalScope(frame);
|
|
|
|
// Allocate a new context for the debug evaluation and set the extension
|
|
// object build.
|
|
Handle<Context> context =
|
|
Factory::NewFunctionContext(Context::MIN_CONTEXT_SLOTS, go_between);
|
|
context->set_extension(*local_scope);
|
|
// Copy any with contexts present and chain them in front of this context.
|
|
Handle<Context> frame_context(Context::cast(frame->context()));
|
|
Handle<Context> function_context(frame_context->fcontext());
|
|
context = CopyWithContextChain(frame_context, context);
|
|
|
|
// Wrap the evaluation statement in a new function compiled in the newly
|
|
// created context. The function has one parameter which has to be called
|
|
// 'arguments'. This it to have access to what would have been 'arguments' in
|
|
// the function being debugged.
|
|
// function(arguments,__source__) {return eval(__source__);}
|
|
static const char* source_str =
|
|
"(function(arguments,__source__){return eval(__source__);})";
|
|
static const int source_str_length = StrLength(source_str);
|
|
Handle<String> function_source =
|
|
Factory::NewStringFromAscii(Vector<const char>(source_str,
|
|
source_str_length));
|
|
Handle<JSFunction> boilerplate =
|
|
Compiler::CompileEval(function_source,
|
|
context,
|
|
context->IsGlobalContext(),
|
|
Compiler::DONT_VALIDATE_JSON);
|
|
if (boilerplate.is_null()) return Failure::Exception();
|
|
Handle<JSFunction> compiled_function =
|
|
Factory::NewFunctionFromBoilerplate(boilerplate, context);
|
|
|
|
// Invoke the result of the compilation to get the evaluation function.
|
|
bool has_pending_exception;
|
|
Handle<Object> receiver(frame->receiver());
|
|
Handle<Object> evaluation_function =
|
|
Execution::Call(compiled_function, receiver, 0, NULL,
|
|
&has_pending_exception);
|
|
if (has_pending_exception) return Failure::Exception();
|
|
|
|
Handle<Object> arguments = GetArgumentsObject(frame, function, code, &sinfo,
|
|
function_context);
|
|
|
|
// Invoke the evaluation function and return the result.
|
|
const int argc = 2;
|
|
Object** argv[argc] = { arguments.location(),
|
|
Handle<Object>::cast(source).location() };
|
|
Handle<Object> result =
|
|
Execution::Call(Handle<JSFunction>::cast(evaluation_function), receiver,
|
|
argc, argv, &has_pending_exception);
|
|
if (has_pending_exception) return Failure::Exception();
|
|
|
|
// Skip the global proxy as it has no properties and always delegates to the
|
|
// real global object.
|
|
if (result->IsJSGlobalProxy()) {
|
|
result = Handle<JSObject>(JSObject::cast(result->GetPrototype()));
|
|
}
|
|
|
|
return *result;
|
|
}
|
|
|
|
|
|
static Object* Runtime_DebugEvaluateGlobal(Arguments args) {
|
|
HandleScope scope;
|
|
|
|
// Check the execution state and decode arguments frame and source to be
|
|
// evaluated.
|
|
ASSERT(args.length() == 3);
|
|
Object* check_result = Runtime_CheckExecutionState(args);
|
|
if (check_result->IsFailure()) return check_result;
|
|
CONVERT_ARG_CHECKED(String, source, 1);
|
|
CONVERT_BOOLEAN_CHECKED(disable_break, args[2]);
|
|
|
|
// Handle the processing of break.
|
|
DisableBreak disable_break_save(disable_break);
|
|
|
|
// Enter the top context from before the debugger was invoked.
|
|
SaveContext save;
|
|
SaveContext* top = &save;
|
|
while (top != NULL && *top->context() == *Debug::debug_context()) {
|
|
top = top->prev();
|
|
}
|
|
if (top != NULL) {
|
|
Top::set_context(*top->context());
|
|
}
|
|
|
|
// Get the global context now set to the top context from before the
|
|
// debugger was invoked.
|
|
Handle<Context> context = Top::global_context();
|
|
|
|
// Compile the source to be evaluated.
|
|
Handle<JSFunction> boilerplate =
|
|
Handle<JSFunction>(Compiler::CompileEval(source,
|
|
context,
|
|
true,
|
|
Compiler::DONT_VALIDATE_JSON));
|
|
if (boilerplate.is_null()) return Failure::Exception();
|
|
Handle<JSFunction> compiled_function =
|
|
Handle<JSFunction>(Factory::NewFunctionFromBoilerplate(boilerplate,
|
|
context));
|
|
|
|
// Invoke the result of the compilation to get the evaluation function.
|
|
bool has_pending_exception;
|
|
Handle<Object> receiver = Top::global();
|
|
Handle<Object> result =
|
|
Execution::Call(compiled_function, receiver, 0, NULL,
|
|
&has_pending_exception);
|
|
if (has_pending_exception) return Failure::Exception();
|
|
return *result;
|
|
}
|
|
|
|
|
|
static Object* Runtime_DebugGetLoadedScripts(Arguments args) {
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 0);
|
|
|
|
// Fill the script objects.
|
|
Handle<FixedArray> instances = Debug::GetLoadedScripts();
|
|
|
|
// Convert the script objects to proper JS objects.
|
|
for (int i = 0; i < instances->length(); i++) {
|
|
Handle<Script> script = Handle<Script>(Script::cast(instances->get(i)));
|
|
// Get the script wrapper in a local handle before calling GetScriptWrapper,
|
|
// because using
|
|
// instances->set(i, *GetScriptWrapper(script))
|
|
// is unsafe as GetScriptWrapper might call GC and the C++ compiler might
|
|
// already have deferenced the instances handle.
|
|
Handle<JSValue> wrapper = GetScriptWrapper(script);
|
|
instances->set(i, *wrapper);
|
|
}
|
|
|
|
// Return result as a JS array.
|
|
Handle<JSObject> result = Factory::NewJSObject(Top::array_function());
|
|
Handle<JSArray>::cast(result)->SetContent(*instances);
|
|
return *result;
|
|
}
|
|
|
|
|
|
// Helper function used by Runtime_DebugReferencedBy below.
|
|
static int DebugReferencedBy(JSObject* target,
|
|
Object* instance_filter, int max_references,
|
|
FixedArray* instances, int instances_size,
|
|
JSFunction* arguments_function) {
|
|
NoHandleAllocation ha;
|
|
AssertNoAllocation no_alloc;
|
|
|
|
// Iterate the heap.
|
|
int count = 0;
|
|
JSObject* last = NULL;
|
|
HeapIterator iterator;
|
|
HeapObject* heap_obj = NULL;
|
|
while (((heap_obj = iterator.next()) != NULL) &&
|
|
(max_references == 0 || count < max_references)) {
|
|
// Only look at all JSObjects.
|
|
if (heap_obj->IsJSObject()) {
|
|
// Skip context extension objects and argument arrays as these are
|
|
// checked in the context of functions using them.
|
|
JSObject* obj = JSObject::cast(heap_obj);
|
|
if (obj->IsJSContextExtensionObject() ||
|
|
obj->map()->constructor() == arguments_function) {
|
|
continue;
|
|
}
|
|
|
|
// Check if the JS object has a reference to the object looked for.
|
|
if (obj->ReferencesObject(target)) {
|
|
// Check instance filter if supplied. This is normally used to avoid
|
|
// references from mirror objects (see Runtime_IsInPrototypeChain).
|
|
if (!instance_filter->IsUndefined()) {
|
|
Object* V = obj;
|
|
while (true) {
|
|
Object* prototype = V->GetPrototype();
|
|
if (prototype->IsNull()) {
|
|
break;
|
|
}
|
|
if (instance_filter == prototype) {
|
|
obj = NULL; // Don't add this object.
|
|
break;
|
|
}
|
|
V = prototype;
|
|
}
|
|
}
|
|
|
|
if (obj != NULL) {
|
|
// Valid reference found add to instance array if supplied an update
|
|
// count.
|
|
if (instances != NULL && count < instances_size) {
|
|
instances->set(count, obj);
|
|
}
|
|
last = obj;
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check for circular reference only. This can happen when the object is only
|
|
// referenced from mirrors and has a circular reference in which case the
|
|
// object is not really alive and would have been garbage collected if not
|
|
// referenced from the mirror.
|
|
if (count == 1 && last == target) {
|
|
count = 0;
|
|
}
|
|
|
|
// Return the number of referencing objects found.
|
|
return count;
|
|
}
|
|
|
|
|
|
// Scan the heap for objects with direct references to an object
|
|
// args[0]: the object to find references to
|
|
// args[1]: constructor function for instances to exclude (Mirror)
|
|
// args[2]: the the maximum number of objects to return
|
|
static Object* Runtime_DebugReferencedBy(Arguments args) {
|
|
ASSERT(args.length() == 3);
|
|
|
|
// First perform a full GC in order to avoid references from dead objects.
|
|
Heap::CollectAllGarbage(false);
|
|
|
|
// Check parameters.
|
|
CONVERT_CHECKED(JSObject, target, args[0]);
|
|
Object* instance_filter = args[1];
|
|
RUNTIME_ASSERT(instance_filter->IsUndefined() ||
|
|
instance_filter->IsJSObject());
|
|
CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[2]);
|
|
RUNTIME_ASSERT(max_references >= 0);
|
|
|
|
// Get the constructor function for context extension and arguments array.
|
|
JSObject* arguments_boilerplate =
|
|
Top::context()->global_context()->arguments_boilerplate();
|
|
JSFunction* arguments_function =
|
|
JSFunction::cast(arguments_boilerplate->map()->constructor());
|
|
|
|
// Get the number of referencing objects.
|
|
int count;
|
|
count = DebugReferencedBy(target, instance_filter, max_references,
|
|
NULL, 0, arguments_function);
|
|
|
|
// Allocate an array to hold the result.
|
|
Object* object = Heap::AllocateFixedArray(count);
|
|
if (object->IsFailure()) return object;
|
|
FixedArray* instances = FixedArray::cast(object);
|
|
|
|
// Fill the referencing objects.
|
|
count = DebugReferencedBy(target, instance_filter, max_references,
|
|
instances, count, arguments_function);
|
|
|
|
// Return result as JS array.
|
|
Object* result =
|
|
Heap::AllocateJSObject(
|
|
Top::context()->global_context()->array_function());
|
|
if (!result->IsFailure()) JSArray::cast(result)->SetContent(instances);
|
|
return result;
|
|
}
|
|
|
|
|
|
// Helper function used by Runtime_DebugConstructedBy below.
|
|
static int DebugConstructedBy(JSFunction* constructor, int max_references,
|
|
FixedArray* instances, int instances_size) {
|
|
AssertNoAllocation no_alloc;
|
|
|
|
// Iterate the heap.
|
|
int count = 0;
|
|
HeapIterator iterator;
|
|
HeapObject* heap_obj = NULL;
|
|
while (((heap_obj = iterator.next()) != NULL) &&
|
|
(max_references == 0 || count < max_references)) {
|
|
// Only look at all JSObjects.
|
|
if (heap_obj->IsJSObject()) {
|
|
JSObject* obj = JSObject::cast(heap_obj);
|
|
if (obj->map()->constructor() == constructor) {
|
|
// Valid reference found add to instance array if supplied an update
|
|
// count.
|
|
if (instances != NULL && count < instances_size) {
|
|
instances->set(count, obj);
|
|
}
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return the number of referencing objects found.
|
|
return count;
|
|
}
|
|
|
|
|
|
// Scan the heap for objects constructed by a specific function.
|
|
// args[0]: the constructor to find instances of
|
|
// args[1]: the the maximum number of objects to return
|
|
static Object* Runtime_DebugConstructedBy(Arguments args) {
|
|
ASSERT(args.length() == 2);
|
|
|
|
// First perform a full GC in order to avoid dead objects.
|
|
Heap::CollectAllGarbage(false);
|
|
|
|
// Check parameters.
|
|
CONVERT_CHECKED(JSFunction, constructor, args[0]);
|
|
CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[1]);
|
|
RUNTIME_ASSERT(max_references >= 0);
|
|
|
|
// Get the number of referencing objects.
|
|
int count;
|
|
count = DebugConstructedBy(constructor, max_references, NULL, 0);
|
|
|
|
// Allocate an array to hold the result.
|
|
Object* object = Heap::AllocateFixedArray(count);
|
|
if (object->IsFailure()) return object;
|
|
FixedArray* instances = FixedArray::cast(object);
|
|
|
|
// Fill the referencing objects.
|
|
count = DebugConstructedBy(constructor, max_references, instances, count);
|
|
|
|
// Return result as JS array.
|
|
Object* result =
|
|
Heap::AllocateJSObject(
|
|
Top::context()->global_context()->array_function());
|
|
if (!result->IsFailure()) JSArray::cast(result)->SetContent(instances);
|
|
return result;
|
|
}
|
|
|
|
|
|
// Find the effective prototype object as returned by __proto__.
|
|
// args[0]: the object to find the prototype for.
|
|
static Object* Runtime_DebugGetPrototype(Arguments args) {
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_CHECKED(JSObject, obj, args[0]);
|
|
|
|
// Use the __proto__ accessor.
|
|
return Accessors::ObjectPrototype.getter(obj, NULL);
|
|
}
|
|
|
|
|
|
static Object* Runtime_SystemBreak(Arguments args) {
|
|
ASSERT(args.length() == 0);
|
|
CPU::DebugBreak();
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_DebugDisassembleFunction(Arguments args) {
|
|
#ifdef DEBUG
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
// Get the function and make sure it is compiled.
|
|
CONVERT_ARG_CHECKED(JSFunction, func, 0);
|
|
Handle<SharedFunctionInfo> shared(func->shared());
|
|
if (!EnsureCompiled(shared, KEEP_EXCEPTION)) {
|
|
return Failure::Exception();
|
|
}
|
|
func->code()->PrintLn();
|
|
#endif // DEBUG
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_DebugDisassembleConstructor(Arguments args) {
|
|
#ifdef DEBUG
|
|
HandleScope scope;
|
|
ASSERT(args.length() == 1);
|
|
// Get the function and make sure it is compiled.
|
|
CONVERT_ARG_CHECKED(JSFunction, func, 0);
|
|
Handle<SharedFunctionInfo> shared(func->shared());
|
|
if (!EnsureCompiled(shared, KEEP_EXCEPTION)) {
|
|
return Failure::Exception();
|
|
}
|
|
shared->construct_stub()->PrintLn();
|
|
#endif // DEBUG
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_FunctionGetInferredName(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_CHECKED(JSFunction, f, args[0]);
|
|
return f->shared()->inferred_name();
|
|
}
|
|
|
|
|
|
static int FindSharedFunctionInfosForScript(Script* script,
|
|
FixedArray* buffer) {
|
|
AssertNoAllocation no_allocations;
|
|
|
|
int counter = 0;
|
|
int buffer_size = buffer->length();
|
|
HeapIterator iterator;
|
|
for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) {
|
|
ASSERT(obj != NULL);
|
|
if (!obj->IsSharedFunctionInfo()) {
|
|
continue;
|
|
}
|
|
SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj);
|
|
if (shared->script() != script) {
|
|
continue;
|
|
}
|
|
if (counter < buffer_size) {
|
|
buffer->set(counter, shared);
|
|
}
|
|
counter++;
|
|
}
|
|
return counter;
|
|
}
|
|
|
|
// For a script finds all SharedFunctionInfo's in the heap that points
|
|
// to this script. Returns JSArray of SharedFunctionInfo wrapped
|
|
// in OpaqueReferences.
|
|
static Object* Runtime_LiveEditFindSharedFunctionInfosForScript(
|
|
Arguments args) {
|
|
ASSERT(args.length() == 1);
|
|
HandleScope scope;
|
|
CONVERT_CHECKED(JSValue, script_value, args[0]);
|
|
|
|
Handle<Script> script = Handle<Script>(Script::cast(script_value->value()));
|
|
|
|
const int kBufferSize = 32;
|
|
|
|
Handle<FixedArray> array;
|
|
array = Factory::NewFixedArray(kBufferSize);
|
|
int number = FindSharedFunctionInfosForScript(*script, *array);
|
|
if (number > kBufferSize) {
|
|
array = Factory::NewFixedArray(number);
|
|
FindSharedFunctionInfosForScript(*script, *array);
|
|
}
|
|
|
|
Handle<JSArray> result = Factory::NewJSArrayWithElements(array);
|
|
result->set_length(Smi::FromInt(number));
|
|
|
|
LiveEdit::WrapSharedFunctionInfos(result);
|
|
|
|
return *result;
|
|
}
|
|
|
|
// For a script calculates compilation information about all its functions.
|
|
// The script source is explicitly specified by the second argument.
|
|
// The source of the actual script is not used, however it is important that
|
|
// all generated code keeps references to this particular instance of script.
|
|
// Returns a JSArray of compilation infos. The array is ordered so that
|
|
// each function with all its descendant is always stored in a continues range
|
|
// with the function itself going first. The root function is a script function.
|
|
static Object* Runtime_LiveEditGatherCompileInfo(Arguments args) {
|
|
ASSERT(args.length() == 2);
|
|
HandleScope scope;
|
|
CONVERT_CHECKED(JSValue, script, args[0]);
|
|
CONVERT_ARG_CHECKED(String, source, 1);
|
|
Handle<Script> script_handle = Handle<Script>(Script::cast(script->value()));
|
|
|
|
JSArray* result = LiveEdit::GatherCompileInfo(script_handle, source);
|
|
|
|
if (Top::has_pending_exception()) {
|
|
return Failure::Exception();
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// Changes the source of the script to a new_source and creates a new
|
|
// script representing the old version of the script source.
|
|
static Object* Runtime_LiveEditReplaceScript(Arguments args) {
|
|
ASSERT(args.length() == 3);
|
|
HandleScope scope;
|
|
CONVERT_CHECKED(JSValue, original_script_value, args[0]);
|
|
CONVERT_ARG_CHECKED(String, new_source, 1);
|
|
CONVERT_ARG_CHECKED(String, old_script_name, 2);
|
|
Handle<Script> original_script =
|
|
Handle<Script>(Script::cast(original_script_value->value()));
|
|
|
|
Handle<String> original_source(String::cast(original_script->source()));
|
|
|
|
original_script->set_source(*new_source);
|
|
Handle<Script> old_script = Factory::NewScript(original_source);
|
|
old_script->set_name(*old_script_name);
|
|
old_script->set_line_offset(original_script->line_offset());
|
|
old_script->set_column_offset(original_script->column_offset());
|
|
old_script->set_data(original_script->data());
|
|
old_script->set_type(original_script->type());
|
|
old_script->set_context_data(original_script->context_data());
|
|
old_script->set_compilation_type(original_script->compilation_type());
|
|
old_script->set_eval_from_shared(original_script->eval_from_shared());
|
|
old_script->set_eval_from_instructions_offset(
|
|
original_script->eval_from_instructions_offset());
|
|
|
|
|
|
Debugger::OnAfterCompile(old_script, Debugger::SEND_WHEN_DEBUGGING);
|
|
|
|
return *(GetScriptWrapper(old_script));
|
|
}
|
|
|
|
// Replaces code of SharedFunctionInfo with a new one.
|
|
static Object* Runtime_LiveEditReplaceFunctionCode(Arguments args) {
|
|
ASSERT(args.length() == 2);
|
|
HandleScope scope;
|
|
CONVERT_ARG_CHECKED(JSArray, new_compile_info, 0);
|
|
CONVERT_ARG_CHECKED(JSArray, shared_info, 1);
|
|
|
|
LiveEdit::ReplaceFunctionCode(new_compile_info, shared_info);
|
|
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
// Connects SharedFunctionInfo to another script.
|
|
static Object* Runtime_LiveEditRelinkFunctionToScript(Arguments args) {
|
|
ASSERT(args.length() == 2);
|
|
HandleScope scope;
|
|
CONVERT_ARG_CHECKED(JSArray, shared_info_array, 0);
|
|
CONVERT_ARG_CHECKED(JSValue, script_value, 1);
|
|
Handle<Script> script = Handle<Script>(Script::cast(script_value->value()));
|
|
|
|
LiveEdit::RelinkFunctionToScript(shared_info_array, script);
|
|
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
// Updates positions of a shared function info (first parameter) according
|
|
// to script source change. Text change is described in second parameter as
|
|
// array of groups of 3 numbers:
|
|
// (change_begin, change_end, change_end_new_position).
|
|
// Each group describes a change in text; groups are sorted by change_begin.
|
|
static Object* Runtime_LiveEditPatchFunctionPositions(Arguments args) {
|
|
ASSERT(args.length() == 2);
|
|
HandleScope scope;
|
|
CONVERT_ARG_CHECKED(JSArray, shared_array, 0);
|
|
CONVERT_ARG_CHECKED(JSArray, position_change_array, 1);
|
|
|
|
LiveEdit::PatchFunctionPositions(shared_array, position_change_array);
|
|
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static LiveEdit::FunctionPatchabilityStatus FindFunctionCodeOnStacks(
|
|
Handle<SharedFunctionInfo> shared) {
|
|
// TODO(635): check all threads, not only the current one.
|
|
for (StackFrameIterator it; !it.done(); it.Advance()) {
|
|
StackFrame* frame = it.frame();
|
|
if (frame->code() == shared->code()) {
|
|
return LiveEdit::FUNCTION_BLOCKED_ON_STACK;
|
|
}
|
|
}
|
|
return LiveEdit::FUNCTION_AVAILABLE_FOR_PATCH;
|
|
}
|
|
|
|
// For array of SharedFunctionInfo's (each wrapped in JSValue)
|
|
// checks that none of them have activations on stacks (of any thread).
|
|
// Returns array of the same length with corresponding results of
|
|
// LiveEdit::FunctionPatchabilityStatus type.
|
|
static Object* Runtime_LiveEditCheckStackActivations(Arguments args) {
|
|
ASSERT(args.length() == 1);
|
|
HandleScope scope;
|
|
CONVERT_ARG_CHECKED(JSArray, shared_array, 0);
|
|
|
|
|
|
int len = Smi::cast(shared_array->length())->value();
|
|
Handle<JSArray> result = Factory::NewJSArray(len);
|
|
|
|
for (int i = 0; i < len; i++) {
|
|
JSValue* wrapper = JSValue::cast(shared_array->GetElement(i));
|
|
Handle<SharedFunctionInfo> shared(
|
|
SharedFunctionInfo::cast(wrapper->value()));
|
|
LiveEdit::FunctionPatchabilityStatus check_res =
|
|
FindFunctionCodeOnStacks(shared);
|
|
SetElement(result, i, Handle<Smi>(Smi::FromInt(check_res)));
|
|
}
|
|
|
|
return *result;
|
|
}
|
|
|
|
|
|
#endif // ENABLE_DEBUGGER_SUPPORT
|
|
|
|
#ifdef ENABLE_LOGGING_AND_PROFILING
|
|
|
|
static Object* Runtime_ProfilerResume(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_CHECKED(Smi, smi_modules, args[0]);
|
|
CONVERT_CHECKED(Smi, smi_tag, args[1]);
|
|
v8::V8::ResumeProfilerEx(smi_modules->value(), smi_tag->value());
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_ProfilerPause(Arguments args) {
|
|
NoHandleAllocation ha;
|
|
ASSERT(args.length() == 2);
|
|
|
|
CONVERT_CHECKED(Smi, smi_modules, args[0]);
|
|
CONVERT_CHECKED(Smi, smi_tag, args[1]);
|
|
v8::V8::PauseProfilerEx(smi_modules->value(), smi_tag->value());
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
#endif // ENABLE_LOGGING_AND_PROFILING
|
|
|
|
// Finds the script object from the script data. NOTE: This operation uses
|
|
// heap traversal to find the function generated for the source position
|
|
// for the requested break point. For lazily compiled functions several heap
|
|
// traversals might be required rendering this operation as a rather slow
|
|
// operation. However for setting break points which is normally done through
|
|
// some kind of user interaction the performance is not crucial.
|
|
static Handle<Object> Runtime_GetScriptFromScriptName(
|
|
Handle<String> script_name) {
|
|
// Scan the heap for Script objects to find the script with the requested
|
|
// script data.
|
|
Handle<Script> script;
|
|
HeapIterator iterator;
|
|
HeapObject* obj = NULL;
|
|
while (script.is_null() && ((obj = iterator.next()) != NULL)) {
|
|
// If a script is found check if it has the script data requested.
|
|
if (obj->IsScript()) {
|
|
if (Script::cast(obj)->name()->IsString()) {
|
|
if (String::cast(Script::cast(obj)->name())->Equals(*script_name)) {
|
|
script = Handle<Script>(Script::cast(obj));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If no script with the requested script data is found return undefined.
|
|
if (script.is_null()) return Factory::undefined_value();
|
|
|
|
// Return the script found.
|
|
return GetScriptWrapper(script);
|
|
}
|
|
|
|
|
|
// Get the script object from script data. NOTE: Regarding performance
|
|
// see the NOTE for GetScriptFromScriptData.
|
|
// args[0]: script data for the script to find the source for
|
|
static Object* Runtime_GetScript(Arguments args) {
|
|
HandleScope scope;
|
|
|
|
ASSERT(args.length() == 1);
|
|
|
|
CONVERT_CHECKED(String, script_name, args[0]);
|
|
|
|
// Find the requested script.
|
|
Handle<Object> result =
|
|
Runtime_GetScriptFromScriptName(Handle<String>(script_name));
|
|
return *result;
|
|
}
|
|
|
|
|
|
// Determines whether the given stack frame should be displayed in
|
|
// a stack trace. The caller is the error constructor that asked
|
|
// for the stack trace to be collected. The first time a construct
|
|
// call to this function is encountered it is skipped. The seen_caller
|
|
// in/out parameter is used to remember if the caller has been seen
|
|
// yet.
|
|
static bool ShowFrameInStackTrace(StackFrame* raw_frame, Object* caller,
|
|
bool* seen_caller) {
|
|
// Only display JS frames.
|
|
if (!raw_frame->is_java_script())
|
|
return false;
|
|
JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame);
|
|
Object* raw_fun = frame->function();
|
|
// Not sure when this can happen but skip it just in case.
|
|
if (!raw_fun->IsJSFunction())
|
|
return false;
|
|
if ((raw_fun == caller) && !(*seen_caller)) {
|
|
*seen_caller = true;
|
|
return false;
|
|
}
|
|
// Skip all frames until we've seen the caller. Also, skip the most
|
|
// obvious builtin calls. Some builtin calls (such as Number.ADD
|
|
// which is invoked using 'call') are very difficult to recognize
|
|
// so we're leaving them in for now.
|
|
return *seen_caller && !frame->receiver()->IsJSBuiltinsObject();
|
|
}
|
|
|
|
|
|
// Collect the raw data for a stack trace. Returns an array of three
|
|
// element segments each containing a receiver, function and native
|
|
// code offset.
|
|
static Object* Runtime_CollectStackTrace(Arguments args) {
|
|
ASSERT_EQ(args.length(), 2);
|
|
Handle<Object> caller = args.at<Object>(0);
|
|
CONVERT_NUMBER_CHECKED(int32_t, limit, Int32, args[1]);
|
|
|
|
HandleScope scope;
|
|
|
|
limit = Max(limit, 0); // Ensure that limit is not negative.
|
|
int initial_size = Min(limit, 10);
|
|
Handle<JSArray> result = Factory::NewJSArray(initial_size * 3);
|
|
|
|
StackFrameIterator iter;
|
|
// If the caller parameter is a function we skip frames until we're
|
|
// under it before starting to collect.
|
|
bool seen_caller = !caller->IsJSFunction();
|
|
int cursor = 0;
|
|
int frames_seen = 0;
|
|
while (!iter.done() && frames_seen < limit) {
|
|
StackFrame* raw_frame = iter.frame();
|
|
if (ShowFrameInStackTrace(raw_frame, *caller, &seen_caller)) {
|
|
frames_seen++;
|
|
JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame);
|
|
Object* recv = frame->receiver();
|
|
Object* fun = frame->function();
|
|
Address pc = frame->pc();
|
|
Address start = frame->code()->address();
|
|
Smi* offset = Smi::FromInt(static_cast<int>(pc - start));
|
|
FixedArray* elements = FixedArray::cast(result->elements());
|
|
if (cursor + 2 < elements->length()) {
|
|
elements->set(cursor++, recv);
|
|
elements->set(cursor++, fun);
|
|
elements->set(cursor++, offset);
|
|
} else {
|
|
HandleScope scope;
|
|
Handle<Object> recv_handle(recv);
|
|
Handle<Object> fun_handle(fun);
|
|
SetElement(result, cursor++, recv_handle);
|
|
SetElement(result, cursor++, fun_handle);
|
|
SetElement(result, cursor++, Handle<Smi>(offset));
|
|
}
|
|
}
|
|
iter.Advance();
|
|
}
|
|
|
|
result->set_length(Smi::FromInt(cursor));
|
|
return *result;
|
|
}
|
|
|
|
|
|
// Returns V8 version as a string.
|
|
static Object* Runtime_GetV8Version(Arguments args) {
|
|
ASSERT_EQ(args.length(), 0);
|
|
|
|
NoHandleAllocation ha;
|
|
|
|
const char* version_string = v8::V8::GetVersion();
|
|
|
|
return Heap::AllocateStringFromAscii(CStrVector(version_string), NOT_TENURED);
|
|
}
|
|
|
|
|
|
static Object* Runtime_Abort(Arguments args) {
|
|
ASSERT(args.length() == 2);
|
|
OS::PrintError("abort: %s\n", reinterpret_cast<char*>(args[0]) +
|
|
Smi::cast(args[1])->value());
|
|
Top::PrintStack();
|
|
OS::Abort();
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static Object* Runtime_DeleteHandleScopeExtensions(Arguments args) {
|
|
ASSERT(args.length() == 0);
|
|
HandleScope::DeleteExtensions();
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
// ListNatives is ONLY used by the fuzz-natives.js in debug mode
|
|
// Exclude the code in release mode.
|
|
static Object* Runtime_ListNatives(Arguments args) {
|
|
ASSERT(args.length() == 0);
|
|
HandleScope scope;
|
|
Handle<JSArray> result = Factory::NewJSArray(0);
|
|
int index = 0;
|
|
bool inline_runtime_functions = false;
|
|
#define ADD_ENTRY(Name, argc, ressize) \
|
|
{ \
|
|
HandleScope inner; \
|
|
Handle<String> name; \
|
|
/* Inline runtime functions have an underscore in front of the name. */ \
|
|
if (inline_runtime_functions) { \
|
|
name = Factory::NewStringFromAscii( \
|
|
Vector<const char>("_" #Name, StrLength("_" #Name))); \
|
|
} else { \
|
|
name = Factory::NewStringFromAscii( \
|
|
Vector<const char>(#Name, StrLength(#Name))); \
|
|
} \
|
|
Handle<JSArray> pair = Factory::NewJSArray(0); \
|
|
SetElement(pair, 0, name); \
|
|
SetElement(pair, 1, Handle<Smi>(Smi::FromInt(argc))); \
|
|
SetElement(result, index++, pair); \
|
|
}
|
|
inline_runtime_functions = false;
|
|
RUNTIME_FUNCTION_LIST(ADD_ENTRY)
|
|
inline_runtime_functions = true;
|
|
INLINE_RUNTIME_FUNCTION_LIST(ADD_ENTRY)
|
|
#undef ADD_ENTRY
|
|
return *result;
|
|
}
|
|
#endif
|
|
|
|
|
|
static Object* Runtime_Log(Arguments args) {
|
|
ASSERT(args.length() == 2);
|
|
CONVERT_CHECKED(String, format, args[0]);
|
|
CONVERT_CHECKED(JSArray, elms, args[1]);
|
|
Vector<const char> chars = format->ToAsciiVector();
|
|
Logger::LogRuntime(chars, elms);
|
|
return Heap::undefined_value();
|
|
}
|
|
|
|
|
|
static Object* Runtime_IS_VAR(Arguments args) {
|
|
UNREACHABLE(); // implemented as macro in the parser
|
|
return NULL;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Implementation of Runtime
|
|
|
|
#define F(name, nargs, ressize) \
|
|
{ #name, FUNCTION_ADDR(Runtime_##name), nargs, \
|
|
static_cast<int>(Runtime::k##name), ressize },
|
|
|
|
static Runtime::Function Runtime_functions[] = {
|
|
RUNTIME_FUNCTION_LIST(F)
|
|
{ NULL, NULL, 0, -1, 0 }
|
|
};
|
|
|
|
#undef F
|
|
|
|
|
|
Runtime::Function* Runtime::FunctionForId(FunctionId fid) {
|
|
ASSERT(0 <= fid && fid < kNofFunctions);
|
|
return &Runtime_functions[fid];
|
|
}
|
|
|
|
|
|
Runtime::Function* Runtime::FunctionForName(const char* name) {
|
|
for (Function* f = Runtime_functions; f->name != NULL; f++) {
|
|
if (strcmp(f->name, name) == 0) {
|
|
return f;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void Runtime::PerformGC(Object* result) {
|
|
Failure* failure = Failure::cast(result);
|
|
if (failure->IsRetryAfterGC()) {
|
|
// Try to do a garbage collection; ignore it if it fails. The C
|
|
// entry stub will throw an out-of-memory exception in that case.
|
|
Heap::CollectGarbage(failure->requested(), failure->allocation_space());
|
|
} else {
|
|
// Handle last resort GC and make sure to allow future allocations
|
|
// to grow the heap without causing GCs (if possible).
|
|
Counters::gc_last_resort_from_js.Increment();
|
|
Heap::CollectAllGarbage(false);
|
|
}
|
|
}
|
|
|
|
|
|
} } // namespace v8::internal
|