(Second try, with fixes. First try: https://codereview.chromium.org/149913006/ ) The long-term goal is to move all recursive descent functions from Parser and PreParser into ParserBase, but first they need to be unified. Notes: - The functions moved in this CL: ParseIdentifier, ParseIdentifierName, ParseIdentifierNameOrGetOrSet, ParseIdentifierOrStrictReservedWord. - IOW, this CL removes Parser::ParseIdentifier and PreParser::ParseIdentifier and adds ParserBase::ParseIdentifier, etc. - Error reporting used to require virtual funcs; now error reporting is moved to the Traits too, and ParserBase no longer needs to be virtual. - I had to move PreParser::Identifier out of the PreParser class, because otherwise PreParserTraits cannot use it in a typedef. BUG=v8:3126 LOG=N R=mstarzinger@chromium.org Review URL: https://codereview.chromium.org/158913003 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@19265 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
889 lines
30 KiB
C++
889 lines
30 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_PREPARSER_H
|
|
#define V8_PREPARSER_H
|
|
|
|
#include "hashmap.h"
|
|
#include "token.h"
|
|
#include "scanner.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// Common base class shared between parser and pre-parser.
|
|
template <typename Traits>
|
|
class ParserBase : public Traits {
|
|
public:
|
|
ParserBase(Scanner* scanner, uintptr_t stack_limit,
|
|
typename Traits::ParserType this_object)
|
|
: Traits(this_object),
|
|
scanner_(scanner),
|
|
stack_limit_(stack_limit),
|
|
stack_overflow_(false),
|
|
allow_lazy_(false),
|
|
allow_natives_syntax_(false),
|
|
allow_generators_(false),
|
|
allow_for_of_(false) { }
|
|
|
|
// Getters that indicate whether certain syntactical constructs are
|
|
// allowed to be parsed by this instance of the parser.
|
|
bool allow_lazy() const { return allow_lazy_; }
|
|
bool allow_natives_syntax() const { return allow_natives_syntax_; }
|
|
bool allow_generators() const { return allow_generators_; }
|
|
bool allow_for_of() const { return allow_for_of_; }
|
|
bool allow_modules() const { return scanner()->HarmonyModules(); }
|
|
bool allow_harmony_scoping() const { return scanner()->HarmonyScoping(); }
|
|
bool allow_harmony_numeric_literals() const {
|
|
return scanner()->HarmonyNumericLiterals();
|
|
}
|
|
|
|
// Setters that determine whether certain syntactical constructs are
|
|
// allowed to be parsed by this instance of the parser.
|
|
void set_allow_lazy(bool allow) { allow_lazy_ = allow; }
|
|
void set_allow_natives_syntax(bool allow) { allow_natives_syntax_ = allow; }
|
|
void set_allow_generators(bool allow) { allow_generators_ = allow; }
|
|
void set_allow_for_of(bool allow) { allow_for_of_ = allow; }
|
|
void set_allow_modules(bool allow) { scanner()->SetHarmonyModules(allow); }
|
|
void set_allow_harmony_scoping(bool allow) {
|
|
scanner()->SetHarmonyScoping(allow);
|
|
}
|
|
void set_allow_harmony_numeric_literals(bool allow) {
|
|
scanner()->SetHarmonyNumericLiterals(allow);
|
|
}
|
|
|
|
protected:
|
|
enum AllowEvalOrArgumentsAsIdentifier {
|
|
kAllowEvalOrArguments,
|
|
kDontAllowEvalOrArguments
|
|
};
|
|
|
|
Scanner* scanner() const { return scanner_; }
|
|
int position() { return scanner_->location().beg_pos; }
|
|
int peek_position() { return scanner_->peek_location().beg_pos; }
|
|
bool stack_overflow() const { return stack_overflow_; }
|
|
void set_stack_overflow() { stack_overflow_ = true; }
|
|
|
|
INLINE(Token::Value peek()) {
|
|
if (stack_overflow_) return Token::ILLEGAL;
|
|
return scanner()->peek();
|
|
}
|
|
|
|
INLINE(Token::Value Next()) {
|
|
if (stack_overflow_) return Token::ILLEGAL;
|
|
{
|
|
int marker;
|
|
if (reinterpret_cast<uintptr_t>(&marker) < stack_limit_) {
|
|
// Any further calls to Next or peek will return the illegal token.
|
|
// The current call must return the next token, which might already
|
|
// have been peek'ed.
|
|
stack_overflow_ = true;
|
|
}
|
|
}
|
|
return scanner()->Next();
|
|
}
|
|
|
|
void Consume(Token::Value token) {
|
|
Token::Value next = Next();
|
|
USE(next);
|
|
USE(token);
|
|
ASSERT(next == token);
|
|
}
|
|
|
|
bool Check(Token::Value token) {
|
|
Token::Value next = peek();
|
|
if (next == token) {
|
|
Consume(next);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Expect(Token::Value token, bool* ok) {
|
|
Token::Value next = Next();
|
|
if (next != token) {
|
|
ReportUnexpectedToken(next);
|
|
*ok = false;
|
|
}
|
|
}
|
|
|
|
void ExpectSemicolon(bool* ok) {
|
|
// Check for automatic semicolon insertion according to
|
|
// the rules given in ECMA-262, section 7.9, page 21.
|
|
Token::Value tok = peek();
|
|
if (tok == Token::SEMICOLON) {
|
|
Next();
|
|
return;
|
|
}
|
|
if (scanner()->HasAnyLineTerminatorBeforeNext() ||
|
|
tok == Token::RBRACE ||
|
|
tok == Token::EOS) {
|
|
return;
|
|
}
|
|
Expect(Token::SEMICOLON, ok);
|
|
}
|
|
|
|
bool peek_any_identifier() {
|
|
Token::Value next = peek();
|
|
return next == Token::IDENTIFIER ||
|
|
next == Token::FUTURE_RESERVED_WORD ||
|
|
next == Token::FUTURE_STRICT_RESERVED_WORD ||
|
|
next == Token::YIELD;
|
|
}
|
|
|
|
bool CheckContextualKeyword(Vector<const char> keyword) {
|
|
if (peek() == Token::IDENTIFIER &&
|
|
scanner()->is_next_contextual_keyword(keyword)) {
|
|
Consume(Token::IDENTIFIER);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void ExpectContextualKeyword(Vector<const char> keyword, bool* ok) {
|
|
Expect(Token::IDENTIFIER, ok);
|
|
if (!*ok) return;
|
|
if (!scanner()->is_literal_contextual_keyword(keyword)) {
|
|
ReportUnexpectedToken(scanner()->current_token());
|
|
*ok = false;
|
|
}
|
|
}
|
|
|
|
// Checks whether an octal literal was last seen between beg_pos and end_pos.
|
|
// If so, reports an error. Only called for strict mode.
|
|
void CheckOctalLiteral(int beg_pos, int end_pos, bool* ok) {
|
|
Scanner::Location octal = scanner()->octal_position();
|
|
if (octal.IsValid() && beg_pos <= octal.beg_pos &&
|
|
octal.end_pos <= end_pos) {
|
|
ReportMessageAt(octal, "strict_octal_literal");
|
|
scanner()->clear_octal_position();
|
|
*ok = false;
|
|
}
|
|
}
|
|
|
|
// Determine precedence of given token.
|
|
static int Precedence(Token::Value token, bool accept_IN) {
|
|
if (token == Token::IN && !accept_IN)
|
|
return 0; // 0 precedence will terminate binary expression parsing
|
|
return Token::Precedence(token);
|
|
}
|
|
|
|
// Report syntax errors.
|
|
void ReportMessage(const char* message, Vector<const char*> args) {
|
|
Scanner::Location source_location = scanner()->location();
|
|
Traits::ReportMessageAt(source_location, message, args);
|
|
}
|
|
|
|
void ReportMessageAt(Scanner::Location location, const char* message) {
|
|
Traits::ReportMessageAt(location, message, Vector<const char*>::empty());
|
|
}
|
|
|
|
void ReportUnexpectedToken(Token::Value token);
|
|
|
|
// Recursive descent functions:
|
|
|
|
// Parses an identifier that is valid for the current scope, in particular it
|
|
// fails on strict mode future reserved keywords in a strict scope. If
|
|
// allow_eval_or_arguments is kAllowEvalOrArguments, we allow "eval" or
|
|
// "arguments" as identifier even in strict mode (this is needed in cases like
|
|
// "var foo = eval;").
|
|
typename Traits::IdentifierType ParseIdentifier(
|
|
AllowEvalOrArgumentsAsIdentifier,
|
|
bool* ok);
|
|
// Parses an identifier or a strict mode future reserved word, and indicate
|
|
// whether it is strict mode future reserved.
|
|
typename Traits::IdentifierType ParseIdentifierOrStrictReservedWord(
|
|
bool* is_strict_reserved,
|
|
bool* ok);
|
|
typename Traits::IdentifierType ParseIdentifierName(bool* ok);
|
|
// Parses an identifier and determines whether or not it is 'get' or 'set'.
|
|
typename Traits::IdentifierType ParseIdentifierNameOrGetOrSet(bool* is_get,
|
|
bool* is_set,
|
|
bool* ok);
|
|
|
|
// Used to detect duplicates in object literals. Each of the values
|
|
// kGetterProperty, kSetterProperty and kValueProperty represents
|
|
// a type of object literal property. When parsing a property, its
|
|
// type value is stored in the DuplicateFinder for the property name.
|
|
// Values are chosen so that having intersection bits means the there is
|
|
// an incompatibility.
|
|
// I.e., you can add a getter to a property that already has a setter, since
|
|
// kGetterProperty and kSetterProperty doesn't intersect, but not if it
|
|
// already has a getter or a value. Adding the getter to an existing
|
|
// setter will store the value (kGetterProperty | kSetterProperty), which
|
|
// is incompatible with adding any further properties.
|
|
enum PropertyKind {
|
|
kNone = 0,
|
|
// Bit patterns representing different object literal property types.
|
|
kGetterProperty = 1,
|
|
kSetterProperty = 2,
|
|
kValueProperty = 7,
|
|
// Helper constants.
|
|
kValueFlag = 4
|
|
};
|
|
|
|
// Validation per ECMA 262 - 11.1.5 "Object Initialiser".
|
|
class ObjectLiteralChecker {
|
|
public:
|
|
ObjectLiteralChecker(ParserBase* parser, LanguageMode mode)
|
|
: parser_(parser),
|
|
finder_(scanner()->unicode_cache()),
|
|
language_mode_(mode) { }
|
|
|
|
void CheckProperty(Token::Value property, PropertyKind type, bool* ok);
|
|
|
|
private:
|
|
ParserBase* parser() const { return parser_; }
|
|
Scanner* scanner() const { return parser_->scanner(); }
|
|
|
|
// Checks the type of conflict based on values coming from PropertyType.
|
|
bool HasConflict(PropertyKind type1, PropertyKind type2) {
|
|
return (type1 & type2) != 0;
|
|
}
|
|
bool IsDataDataConflict(PropertyKind type1, PropertyKind type2) {
|
|
return ((type1 & type2) & kValueFlag) != 0;
|
|
}
|
|
bool IsDataAccessorConflict(PropertyKind type1, PropertyKind type2) {
|
|
return ((type1 ^ type2) & kValueFlag) != 0;
|
|
}
|
|
bool IsAccessorAccessorConflict(PropertyKind type1, PropertyKind type2) {
|
|
return ((type1 | type2) & kValueFlag) == 0;
|
|
}
|
|
|
|
ParserBase* parser_;
|
|
DuplicateFinder finder_;
|
|
LanguageMode language_mode_;
|
|
};
|
|
|
|
private:
|
|
Scanner* scanner_;
|
|
uintptr_t stack_limit_;
|
|
bool stack_overflow_;
|
|
|
|
bool allow_lazy_;
|
|
bool allow_natives_syntax_;
|
|
bool allow_generators_;
|
|
bool allow_for_of_;
|
|
};
|
|
|
|
|
|
class PreParserIdentifier {
|
|
public:
|
|
static PreParserIdentifier Default() {
|
|
return PreParserIdentifier(kUnknownIdentifier);
|
|
}
|
|
static PreParserIdentifier Eval() {
|
|
return PreParserIdentifier(kEvalIdentifier);
|
|
}
|
|
static PreParserIdentifier Arguments() {
|
|
return PreParserIdentifier(kArgumentsIdentifier);
|
|
}
|
|
static PreParserIdentifier FutureReserved() {
|
|
return PreParserIdentifier(kFutureReservedIdentifier);
|
|
}
|
|
static PreParserIdentifier FutureStrictReserved() {
|
|
return PreParserIdentifier(kFutureStrictReservedIdentifier);
|
|
}
|
|
static PreParserIdentifier Yield() {
|
|
return PreParserIdentifier(kYieldIdentifier);
|
|
}
|
|
bool IsEval() { return type_ == kEvalIdentifier; }
|
|
bool IsArguments() { return type_ == kArgumentsIdentifier; }
|
|
bool IsEvalOrArguments() { return type_ >= kEvalIdentifier; }
|
|
bool IsYield() { return type_ == kYieldIdentifier; }
|
|
bool IsFutureReserved() { return type_ == kFutureReservedIdentifier; }
|
|
bool IsFutureStrictReserved() {
|
|
return type_ == kFutureStrictReservedIdentifier;
|
|
}
|
|
bool IsValidStrictVariable() { return type_ == kUnknownIdentifier; }
|
|
|
|
private:
|
|
enum Type {
|
|
kUnknownIdentifier,
|
|
kFutureReservedIdentifier,
|
|
kFutureStrictReservedIdentifier,
|
|
kYieldIdentifier,
|
|
kEvalIdentifier,
|
|
kArgumentsIdentifier
|
|
};
|
|
explicit PreParserIdentifier(Type type) : type_(type) {}
|
|
Type type_;
|
|
|
|
friend class PreParserExpression;
|
|
};
|
|
|
|
|
|
// Bits 0 and 1 are used to identify the type of expression:
|
|
// If bit 0 is set, it's an identifier.
|
|
// if bit 1 is set, it's a string literal.
|
|
// If neither is set, it's no particular type, and both set isn't
|
|
// use yet.
|
|
class PreParserExpression {
|
|
public:
|
|
static PreParserExpression Default() {
|
|
return PreParserExpression(kUnknownExpression);
|
|
}
|
|
|
|
static PreParserExpression FromIdentifier(PreParserIdentifier id) {
|
|
return PreParserExpression(kIdentifierFlag |
|
|
(id.type_ << kIdentifierShift));
|
|
}
|
|
|
|
static PreParserExpression StringLiteral() {
|
|
return PreParserExpression(kUnknownStringLiteral);
|
|
}
|
|
|
|
static PreParserExpression UseStrictStringLiteral() {
|
|
return PreParserExpression(kUseStrictString);
|
|
}
|
|
|
|
static PreParserExpression This() {
|
|
return PreParserExpression(kThisExpression);
|
|
}
|
|
|
|
static PreParserExpression ThisProperty() {
|
|
return PreParserExpression(kThisPropertyExpression);
|
|
}
|
|
|
|
static PreParserExpression StrictFunction() {
|
|
return PreParserExpression(kStrictFunctionExpression);
|
|
}
|
|
|
|
bool IsIdentifier() { return (code_ & kIdentifierFlag) != 0; }
|
|
|
|
// Only works corretly if it is actually an identifier expression.
|
|
PreParserIdentifier AsIdentifier() {
|
|
return PreParserIdentifier(
|
|
static_cast<PreParserIdentifier::Type>(code_ >> kIdentifierShift));
|
|
}
|
|
|
|
bool IsStringLiteral() { return (code_ & kStringLiteralFlag) != 0; }
|
|
|
|
bool IsUseStrictLiteral() {
|
|
return (code_ & kStringLiteralMask) == kUseStrictString;
|
|
}
|
|
|
|
bool IsThis() { return code_ == kThisExpression; }
|
|
|
|
bool IsThisProperty() { return code_ == kThisPropertyExpression; }
|
|
|
|
bool IsStrictFunction() { return code_ == kStrictFunctionExpression; }
|
|
|
|
private:
|
|
// First two/three bits are used as flags.
|
|
// Bit 0 and 1 represent identifiers or strings literals, and are
|
|
// mutually exclusive, but can both be absent.
|
|
enum {
|
|
kUnknownExpression = 0,
|
|
// Identifiers
|
|
kIdentifierFlag = 1, // Used to detect labels.
|
|
kIdentifierShift = 3,
|
|
|
|
kStringLiteralFlag = 2, // Used to detect directive prologue.
|
|
kUnknownStringLiteral = kStringLiteralFlag,
|
|
kUseStrictString = kStringLiteralFlag | 8,
|
|
kStringLiteralMask = kUseStrictString,
|
|
|
|
// Below here applies if neither identifier nor string literal.
|
|
kThisExpression = 4,
|
|
kThisPropertyExpression = 8,
|
|
kStrictFunctionExpression = 12
|
|
};
|
|
|
|
explicit PreParserExpression(int expression_code) : code_(expression_code) {}
|
|
|
|
int code_;
|
|
};
|
|
|
|
class PreParser;
|
|
|
|
|
|
class PreParserTraits {
|
|
public:
|
|
typedef PreParser* ParserType;
|
|
// Return types for traversing functions.
|
|
typedef PreParserIdentifier IdentifierType;
|
|
|
|
explicit PreParserTraits(PreParser* pre_parser) : pre_parser_(pre_parser) {}
|
|
|
|
// Helper functions for recursive descent.
|
|
bool is_classic_mode() const;
|
|
bool is_generator() const;
|
|
static bool IsEvalOrArguments(IdentifierType identifier) {
|
|
return identifier.IsEvalOrArguments();
|
|
}
|
|
|
|
// Reporting errors.
|
|
void ReportMessageAt(Scanner::Location location,
|
|
const char* message,
|
|
Vector<const char*> args);
|
|
void ReportMessageAt(Scanner::Location location,
|
|
const char* type,
|
|
const char* name_opt);
|
|
void ReportMessageAt(int start_pos,
|
|
int end_pos,
|
|
const char* type,
|
|
const char* name_opt);
|
|
|
|
// Identifiers:
|
|
static IdentifierType EmptyIdentifier() {
|
|
return PreParserIdentifier::Default();
|
|
}
|
|
|
|
IdentifierType GetSymbol();
|
|
|
|
private:
|
|
PreParser* pre_parser_;
|
|
};
|
|
|
|
|
|
// Preparsing checks a JavaScript program and emits preparse-data that helps
|
|
// a later parsing to be faster.
|
|
// See preparse-data-format.h for the data format.
|
|
|
|
// The PreParser checks that the syntax follows the grammar for JavaScript,
|
|
// and collects some information about the program along the way.
|
|
// The grammar check is only performed in order to understand the program
|
|
// sufficiently to deduce some information about it, that can be used
|
|
// to speed up later parsing. Finding errors is not the goal of pre-parsing,
|
|
// rather it is to speed up properly written and correct programs.
|
|
// That means that contextual checks (like a label being declared where
|
|
// it is used) are generally omitted.
|
|
class PreParser : public ParserBase<PreParserTraits> {
|
|
public:
|
|
typedef PreParserIdentifier Identifier;
|
|
typedef PreParserExpression Expression;
|
|
|
|
enum PreParseResult {
|
|
kPreParseStackOverflow,
|
|
kPreParseSuccess
|
|
};
|
|
|
|
PreParser(Scanner* scanner,
|
|
ParserRecorder* log,
|
|
uintptr_t stack_limit)
|
|
: ParserBase<PreParserTraits>(scanner, stack_limit, this),
|
|
log_(log),
|
|
scope_(NULL),
|
|
parenthesized_function_(false) { }
|
|
|
|
~PreParser() {}
|
|
|
|
// Pre-parse the program from the character stream; returns true on
|
|
// success (even if parsing failed, the pre-parse data successfully
|
|
// captured the syntax error), and false if a stack-overflow happened
|
|
// during parsing.
|
|
PreParseResult PreParseProgram() {
|
|
Scope top_scope(&scope_, kTopLevelScope);
|
|
bool ok = true;
|
|
int start_position = scanner()->peek_location().beg_pos;
|
|
ParseSourceElements(Token::EOS, &ok);
|
|
if (stack_overflow()) return kPreParseStackOverflow;
|
|
if (!ok) {
|
|
ReportUnexpectedToken(scanner()->current_token());
|
|
} else if (!scope_->is_classic_mode()) {
|
|
CheckOctalLiteral(start_position, scanner()->location().end_pos, &ok);
|
|
}
|
|
return kPreParseSuccess;
|
|
}
|
|
|
|
// Parses a single function literal, from the opening parentheses before
|
|
// parameters to the closing brace after the body.
|
|
// Returns a FunctionEntry describing the body of the function in enough
|
|
// detail that it can be lazily compiled.
|
|
// The scanner is expected to have matched the "function" or "function*"
|
|
// keyword and parameters, and have consumed the initial '{'.
|
|
// At return, unless an error occurred, the scanner is positioned before the
|
|
// the final '}'.
|
|
PreParseResult PreParseLazyFunction(LanguageMode mode,
|
|
bool is_generator,
|
|
ParserRecorder* log);
|
|
|
|
private:
|
|
friend class PreParserTraits;
|
|
|
|
// These types form an algebra over syntactic categories that is just
|
|
// rich enough to let us recognize and propagate the constructs that
|
|
// are either being counted in the preparser data, or is important
|
|
// to throw the correct syntax error exceptions.
|
|
|
|
enum ScopeType {
|
|
kTopLevelScope,
|
|
kFunctionScope
|
|
};
|
|
|
|
enum VariableDeclarationContext {
|
|
kSourceElement,
|
|
kStatement,
|
|
kForStatement
|
|
};
|
|
|
|
// If a list of variable declarations includes any initializers.
|
|
enum VariableDeclarationProperties {
|
|
kHasInitializers,
|
|
kHasNoInitializers
|
|
};
|
|
|
|
class Statement {
|
|
public:
|
|
static Statement Default() {
|
|
return Statement(kUnknownStatement);
|
|
}
|
|
|
|
static Statement FunctionDeclaration() {
|
|
return Statement(kFunctionDeclaration);
|
|
}
|
|
|
|
// Creates expression statement from expression.
|
|
// Preserves being an unparenthesized string literal, possibly
|
|
// "use strict".
|
|
static Statement ExpressionStatement(Expression expression) {
|
|
if (expression.IsUseStrictLiteral()) {
|
|
return Statement(kUseStrictExpressionStatement);
|
|
}
|
|
if (expression.IsStringLiteral()) {
|
|
return Statement(kStringLiteralExpressionStatement);
|
|
}
|
|
return Default();
|
|
}
|
|
|
|
bool IsStringLiteral() {
|
|
return code_ == kStringLiteralExpressionStatement;
|
|
}
|
|
|
|
bool IsUseStrictLiteral() {
|
|
return code_ == kUseStrictExpressionStatement;
|
|
}
|
|
|
|
bool IsFunctionDeclaration() {
|
|
return code_ == kFunctionDeclaration;
|
|
}
|
|
|
|
private:
|
|
enum Type {
|
|
kUnknownStatement,
|
|
kStringLiteralExpressionStatement,
|
|
kUseStrictExpressionStatement,
|
|
kFunctionDeclaration
|
|
};
|
|
|
|
explicit Statement(Type code) : code_(code) {}
|
|
Type code_;
|
|
};
|
|
|
|
enum SourceElements {
|
|
kUnknownSourceElements
|
|
};
|
|
|
|
typedef int Arguments;
|
|
|
|
class Scope {
|
|
public:
|
|
Scope(Scope** variable, ScopeType type)
|
|
: variable_(variable),
|
|
prev_(*variable),
|
|
type_(type),
|
|
materialized_literal_count_(0),
|
|
expected_properties_(0),
|
|
with_nesting_count_(0),
|
|
language_mode_(
|
|
(prev_ != NULL) ? prev_->language_mode() : CLASSIC_MODE),
|
|
is_generator_(false) {
|
|
*variable = this;
|
|
}
|
|
~Scope() { *variable_ = prev_; }
|
|
void NextMaterializedLiteralIndex() { materialized_literal_count_++; }
|
|
void AddProperty() { expected_properties_++; }
|
|
ScopeType type() { return type_; }
|
|
int expected_properties() { return expected_properties_; }
|
|
int materialized_literal_count() { return materialized_literal_count_; }
|
|
bool IsInsideWith() { return with_nesting_count_ != 0; }
|
|
bool is_generator() { return is_generator_; }
|
|
void set_is_generator(bool is_generator) { is_generator_ = is_generator; }
|
|
bool is_classic_mode() {
|
|
return language_mode_ == CLASSIC_MODE;
|
|
}
|
|
LanguageMode language_mode() {
|
|
return language_mode_;
|
|
}
|
|
void set_language_mode(LanguageMode language_mode) {
|
|
language_mode_ = language_mode;
|
|
}
|
|
|
|
class InsideWith {
|
|
public:
|
|
explicit InsideWith(Scope* scope) : scope_(scope) {
|
|
scope->with_nesting_count_++;
|
|
}
|
|
|
|
~InsideWith() { scope_->with_nesting_count_--; }
|
|
|
|
private:
|
|
Scope* scope_;
|
|
DISALLOW_COPY_AND_ASSIGN(InsideWith);
|
|
};
|
|
|
|
private:
|
|
Scope** const variable_;
|
|
Scope* const prev_;
|
|
const ScopeType type_;
|
|
int materialized_literal_count_;
|
|
int expected_properties_;
|
|
int with_nesting_count_;
|
|
LanguageMode language_mode_;
|
|
bool is_generator_;
|
|
};
|
|
|
|
// All ParseXXX functions take as the last argument an *ok parameter
|
|
// which is set to false if parsing failed; it is unchanged otherwise.
|
|
// By making the 'exception handling' explicit, we are forced to check
|
|
// for failure at the call sites.
|
|
Statement ParseSourceElement(bool* ok);
|
|
SourceElements ParseSourceElements(int end_token, bool* ok);
|
|
Statement ParseStatement(bool* ok);
|
|
Statement ParseFunctionDeclaration(bool* ok);
|
|
Statement ParseBlock(bool* ok);
|
|
Statement ParseVariableStatement(VariableDeclarationContext var_context,
|
|
bool* ok);
|
|
Statement ParseVariableDeclarations(VariableDeclarationContext var_context,
|
|
VariableDeclarationProperties* decl_props,
|
|
int* num_decl,
|
|
bool* ok);
|
|
Statement ParseExpressionOrLabelledStatement(bool* ok);
|
|
Statement ParseIfStatement(bool* ok);
|
|
Statement ParseContinueStatement(bool* ok);
|
|
Statement ParseBreakStatement(bool* ok);
|
|
Statement ParseReturnStatement(bool* ok);
|
|
Statement ParseWithStatement(bool* ok);
|
|
Statement ParseSwitchStatement(bool* ok);
|
|
Statement ParseDoWhileStatement(bool* ok);
|
|
Statement ParseWhileStatement(bool* ok);
|
|
Statement ParseForStatement(bool* ok);
|
|
Statement ParseThrowStatement(bool* ok);
|
|
Statement ParseTryStatement(bool* ok);
|
|
Statement ParseDebuggerStatement(bool* ok);
|
|
|
|
Expression ParseExpression(bool accept_IN, bool* ok);
|
|
Expression ParseAssignmentExpression(bool accept_IN, bool* ok);
|
|
Expression ParseYieldExpression(bool* ok);
|
|
Expression ParseConditionalExpression(bool accept_IN, bool* ok);
|
|
Expression ParseBinaryExpression(int prec, bool accept_IN, bool* ok);
|
|
Expression ParseUnaryExpression(bool* ok);
|
|
Expression ParsePostfixExpression(bool* ok);
|
|
Expression ParseLeftHandSideExpression(bool* ok);
|
|
Expression ParseNewExpression(bool* ok);
|
|
Expression ParseMemberExpression(bool* ok);
|
|
Expression ParseMemberWithNewPrefixesExpression(unsigned new_count, bool* ok);
|
|
Expression ParsePrimaryExpression(bool* ok);
|
|
Expression ParseArrayLiteral(bool* ok);
|
|
Expression ParseObjectLiteral(bool* ok);
|
|
Expression ParseRegExpLiteral(bool seen_equal, bool* ok);
|
|
Expression ParseV8Intrinsic(bool* ok);
|
|
|
|
Arguments ParseArguments(bool* ok);
|
|
Expression ParseFunctionLiteral(
|
|
Identifier name,
|
|
Scanner::Location function_name_location,
|
|
bool name_is_strict_reserved,
|
|
bool is_generator,
|
|
bool* ok);
|
|
void ParseLazyFunctionLiteralBody(bool* ok);
|
|
|
|
// Logs the currently parsed literal as a symbol in the preparser data.
|
|
void LogSymbol();
|
|
// Log the currently parsed string literal.
|
|
Expression GetStringSymbol();
|
|
|
|
void set_language_mode(LanguageMode language_mode) {
|
|
scope_->set_language_mode(language_mode);
|
|
}
|
|
|
|
bool is_extended_mode() {
|
|
return scope_->language_mode() == EXTENDED_MODE;
|
|
}
|
|
|
|
LanguageMode language_mode() { return scope_->language_mode(); }
|
|
|
|
bool CheckInOrOf(bool accept_OF);
|
|
|
|
ParserRecorder* log_;
|
|
Scope* scope_;
|
|
bool parenthesized_function_;
|
|
};
|
|
|
|
|
|
template<class Traits>
|
|
void ParserBase<Traits>::ReportUnexpectedToken(Token::Value token) {
|
|
// We don't report stack overflows here, to avoid increasing the
|
|
// stack depth even further. Instead we report it after parsing is
|
|
// over, in ParseProgram.
|
|
if (token == Token::ILLEGAL && stack_overflow()) {
|
|
return;
|
|
}
|
|
Scanner::Location source_location = scanner()->location();
|
|
|
|
// Four of the tokens are treated specially
|
|
switch (token) {
|
|
case Token::EOS:
|
|
return ReportMessageAt(source_location, "unexpected_eos");
|
|
case Token::NUMBER:
|
|
return ReportMessageAt(source_location, "unexpected_token_number");
|
|
case Token::STRING:
|
|
return ReportMessageAt(source_location, "unexpected_token_string");
|
|
case Token::IDENTIFIER:
|
|
return ReportMessageAt(source_location, "unexpected_token_identifier");
|
|
case Token::FUTURE_RESERVED_WORD:
|
|
return ReportMessageAt(source_location, "unexpected_reserved");
|
|
case Token::YIELD:
|
|
case Token::FUTURE_STRICT_RESERVED_WORD:
|
|
return ReportMessageAt(
|
|
source_location,
|
|
this->is_classic_mode() ? "unexpected_token_identifier"
|
|
: "unexpected_strict_reserved");
|
|
default:
|
|
const char* name = Token::String(token);
|
|
ASSERT(name != NULL);
|
|
Traits::ReportMessageAt(
|
|
source_location, "unexpected_token", Vector<const char*>(&name, 1));
|
|
}
|
|
}
|
|
|
|
|
|
template<class Traits>
|
|
typename Traits::IdentifierType ParserBase<Traits>::ParseIdentifier(
|
|
AllowEvalOrArgumentsAsIdentifier allow_eval_or_arguments,
|
|
bool* ok) {
|
|
Token::Value next = Next();
|
|
if (next == Token::IDENTIFIER) {
|
|
typename Traits::IdentifierType name = this->GetSymbol();
|
|
if (allow_eval_or_arguments == kDontAllowEvalOrArguments &&
|
|
!this->is_classic_mode() && this->IsEvalOrArguments(name)) {
|
|
ReportMessageAt(scanner()->location(), "strict_eval_arguments");
|
|
*ok = false;
|
|
}
|
|
return name;
|
|
} else if (this->is_classic_mode() &&
|
|
(next == Token::FUTURE_STRICT_RESERVED_WORD ||
|
|
(next == Token::YIELD && !this->is_generator()))) {
|
|
return this->GetSymbol();
|
|
} else {
|
|
this->ReportUnexpectedToken(next);
|
|
*ok = false;
|
|
return Traits::EmptyIdentifier();
|
|
}
|
|
}
|
|
|
|
|
|
template <class Traits>
|
|
typename Traits::IdentifierType ParserBase<
|
|
Traits>::ParseIdentifierOrStrictReservedWord(bool* is_strict_reserved,
|
|
bool* ok) {
|
|
Token::Value next = Next();
|
|
if (next == Token::IDENTIFIER) {
|
|
*is_strict_reserved = false;
|
|
} else if (next == Token::FUTURE_STRICT_RESERVED_WORD ||
|
|
(next == Token::YIELD && !this->is_generator())) {
|
|
*is_strict_reserved = true;
|
|
} else {
|
|
ReportUnexpectedToken(next);
|
|
*ok = false;
|
|
return Traits::EmptyIdentifier();
|
|
}
|
|
return this->GetSymbol();
|
|
}
|
|
|
|
|
|
template <class Traits>
|
|
typename Traits::IdentifierType ParserBase<Traits>::ParseIdentifierName(
|
|
bool* ok) {
|
|
Token::Value next = Next();
|
|
if (next != Token::IDENTIFIER && next != Token::FUTURE_RESERVED_WORD &&
|
|
next != Token::FUTURE_STRICT_RESERVED_WORD && !Token::IsKeyword(next)) {
|
|
this->ReportUnexpectedToken(next);
|
|
*ok = false;
|
|
return Traits::EmptyIdentifier();
|
|
}
|
|
return this->GetSymbol();
|
|
}
|
|
|
|
|
|
template <class Traits>
|
|
typename Traits::IdentifierType
|
|
ParserBase<Traits>::ParseIdentifierNameOrGetOrSet(bool* is_get,
|
|
bool* is_set,
|
|
bool* ok) {
|
|
typename Traits::IdentifierType result = ParseIdentifierName(ok);
|
|
if (!*ok) return Traits::EmptyIdentifier();
|
|
if (scanner()->is_literal_ascii() &&
|
|
scanner()->literal_length() == 3) {
|
|
const char* token = scanner()->literal_ascii_string().start();
|
|
*is_get = strncmp(token, "get", 3) == 0;
|
|
*is_set = !*is_get && strncmp(token, "set", 3) == 0;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
template <typename Traits>
|
|
void ParserBase<Traits>::ObjectLiteralChecker::CheckProperty(
|
|
Token::Value property,
|
|
PropertyKind type,
|
|
bool* ok) {
|
|
int old;
|
|
if (property == Token::NUMBER) {
|
|
old = finder_.AddNumber(scanner()->literal_ascii_string(), type);
|
|
} else if (scanner()->is_literal_ascii()) {
|
|
old = finder_.AddAsciiSymbol(scanner()->literal_ascii_string(), type);
|
|
} else {
|
|
old = finder_.AddUtf16Symbol(scanner()->literal_utf16_string(), type);
|
|
}
|
|
PropertyKind old_type = static_cast<PropertyKind>(old);
|
|
if (HasConflict(old_type, type)) {
|
|
if (IsDataDataConflict(old_type, type)) {
|
|
// Both are data properties.
|
|
if (language_mode_ == CLASSIC_MODE) return;
|
|
parser()->ReportMessageAt(scanner()->location(),
|
|
"strict_duplicate_property");
|
|
} else if (IsDataAccessorConflict(old_type, type)) {
|
|
// Both a data and an accessor property with the same name.
|
|
parser()->ReportMessageAt(scanner()->location(),
|
|
"accessor_data_property");
|
|
} else {
|
|
ASSERT(IsAccessorAccessorConflict(old_type, type));
|
|
// Both accessors of the same type.
|
|
parser()->ReportMessageAt(scanner()->location(),
|
|
"accessor_get_set");
|
|
}
|
|
*ok = false;
|
|
}
|
|
}
|
|
|
|
|
|
} } // v8::internal
|
|
|
|
#endif // V8_PREPARSER_H
|