v8/test/unittests/parser/scanner-streams-unittest.cc
Clemens Backes f9bb65eb9f [unittests] Use v8_flags for accessing flag values
Avoid the deprecated FLAG_* syntax, access flag values via the
{v8_flags} struct instead.

R=mliedtke@chromium.org

Bug: v8:12887
Change-Id: I06e12314495c2d89135e58e5d3a01310f108e865
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3899303
Reviewed-by: Matthias Liedtke <mliedtke@chromium.org>
Commit-Queue: Matthias Liedtke <mliedtke@chromium.org>
Cr-Commit-Position: refs/heads/main@{#83233}
2022-09-15 17:51:59 +00:00

944 lines
34 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/strings.h"
#include "src/heap/factory-inl.h"
#include "src/objects/objects-inl.h"
#include "src/parsing/scanner-character-streams.h"
#include "src/parsing/scanner.h"
#include "test/unittests/test-utils.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace {
using ScannerStreamsTest = v8::TestWithIsolate;
// Implement ExternalSourceStream based on const char**.
// This will take each string as one chunk. The last chunk must be empty.
class ChunkSource : public v8::ScriptCompiler::ExternalSourceStream {
public:
template <typename Char>
explicit ChunkSource(const Char** chunks) : current_(0) {
do {
chunks_.push_back({reinterpret_cast<const uint8_t*>(*chunks),
(sizeof(Char) / sizeof(uint8_t)) *
std::char_traits<Char>::length(*chunks)});
chunks++;
} while (chunks_.back().len > 0);
}
explicit ChunkSource(const char* chunks) : current_(0) {
do {
chunks_.push_back(
{reinterpret_cast<const uint8_t*>(chunks), strlen(chunks)});
chunks += strlen(chunks) + 1;
} while (chunks_.back().len > 0);
}
ChunkSource(const uint8_t* data, size_t char_size, size_t len,
bool extra_chunky)
: current_(0) {
// If extra_chunky, we'll use increasingly large chunk sizes. If not, we'll
// have a single chunk of full length. Make sure that chunks are always
// aligned to char-size though.
size_t chunk_size = extra_chunky ? char_size : len;
for (size_t i = 0; i < len; i += chunk_size, chunk_size += char_size) {
chunks_.push_back({data + i, std::min(chunk_size, len - i)});
}
chunks_.push_back({nullptr, 0});
}
~ChunkSource() override = default;
size_t GetMoreData(const uint8_t** src) override {
DCHECK_LT(current_, chunks_.size());
Chunk& next = chunks_[current_++];
uint8_t* chunk = new uint8_t[next.len];
if (next.len > 0) {
i::MemMove(chunk, next.ptr, next.len);
}
*src = chunk;
return next.len;
}
private:
struct Chunk {
const uint8_t* ptr;
size_t len;
};
std::vector<Chunk> chunks_;
size_t current_;
};
// Checks that Lock() / Unlock() pairs are balanced. Not thread-safe.
class LockChecker {
public:
LockChecker() : lock_depth_(0) {}
~LockChecker() { CHECK_EQ(0, lock_depth_); }
void Lock() const { lock_depth_++; }
void Unlock() const {
CHECK_GT(lock_depth_, 0);
lock_depth_--;
}
bool IsLocked() const { return lock_depth_ > 0; }
int LockDepth() const { return lock_depth_; }
protected:
mutable int lock_depth_;
};
class TestExternalResource : public v8::String::ExternalStringResource,
public LockChecker {
public:
explicit TestExternalResource(uint16_t* data, int length)
: LockChecker(), data_(data), length_(static_cast<size_t>(length)) {}
const uint16_t* data() const override {
CHECK(IsLocked());
return data_;
}
size_t length() const override { return length_; }
bool IsCacheable() const override { return false; }
void Lock() const override { LockChecker::Lock(); }
void Unlock() const override { LockChecker::Unlock(); }
private:
uint16_t* data_;
size_t length_;
};
class TestExternalOneByteResource
: public v8::String::ExternalOneByteStringResource,
public LockChecker {
public:
TestExternalOneByteResource(const char* data, size_t length)
: data_(data), length_(length) {}
const char* data() const override {
CHECK(IsLocked());
return data_;
}
size_t length() const override { return length_; }
bool IsCacheable() const override { return false; }
void Lock() const override { LockChecker::Lock(); }
void Unlock() const override { LockChecker::Unlock(); }
private:
const char* data_;
size_t length_;
};
// A test string with all lengths of utf-8 encodings.
const char unicode_utf8[] =
"abc" // 3x ascii
"\xc3\xa4" // a Umlaut, code point 228
"\xe2\xa8\xa0" // >> (math symbol), code point 10784
"\xf0\x9f\x92\xa9" // best character, code point 128169,
// as utf-16 surrogates: 55357 56489
"def"; // 3x ascii again.
const uint16_t unicode_ucs2[] = {97, 98, 99, 228, 10784, 55357,
56489, 100, 101, 102, 0};
i::Handle<i::String> NewExternalTwoByteStringFromResource(
i::Isolate* isolate, TestExternalResource* resource) {
i::Factory* factory = isolate->factory();
// String creation accesses the resource.
resource->Lock();
i::Handle<i::String> uc16_string(
factory->NewExternalStringFromTwoByte(resource).ToHandleChecked());
resource->Unlock();
return uc16_string;
}
} // anonymous namespace
TEST_F(ScannerStreamsTest, Utf8StreamAsciiOnly) {
const char* chunks[] = {"abc", "def", "ghi", ""};
ChunkSource chunk_source(chunks);
std::unique_ptr<v8::internal::Utf16CharacterStream> stream(
v8::internal::ScannerStream::For(
&chunk_source, v8::ScriptCompiler::StreamedSource::UTF8));
// Read the data without dying.
v8::base::uc32 c;
do {
c = stream->Advance();
} while (c != v8::internal::Utf16CharacterStream::kEndOfInput);
}
TEST_F(ScannerStreamsTest, Utf8StreamMaxNonSurrogateCharCode) {
const char* chunks[] = {"\uffff\uffff", ""};
ChunkSource chunk_source(chunks);
std::unique_ptr<v8::internal::Utf16CharacterStream> stream(
v8::internal::ScannerStream::For(
&chunk_source, v8::ScriptCompiler::StreamedSource::UTF8));
// Read the correct character.
uint16_t max = unibrow::Utf16::kMaxNonSurrogateCharCode;
CHECK_EQ(max, static_cast<uint32_t>(stream->Advance()));
CHECK_EQ(max, static_cast<uint32_t>(stream->Advance()));
CHECK_EQ(i::Utf16CharacterStream::kEndOfInput, stream->Advance());
}
TEST_F(ScannerStreamsTest, Utf8StreamBOM) {
// Construct test string w/ UTF-8 BOM (byte order mark)
char data[3 + arraysize(unicode_utf8)] = {"\xef\xbb\xbf"};
strncpy(data + 3, unicode_utf8, arraysize(unicode_utf8));
const char* chunks[] = {data, "\0"};
ChunkSource chunk_source(chunks);
std::unique_ptr<v8::internal::Utf16CharacterStream> stream(
v8::internal::ScannerStream::For(
&chunk_source, v8::ScriptCompiler::StreamedSource::UTF8));
// Read the data without tripping over the BOM.
for (size_t i = 0; unicode_ucs2[i]; i++) {
CHECK_EQ(unicode_ucs2[i], stream->Advance());
}
CHECK_EQ(v8::internal::Utf16CharacterStream::kEndOfInput, stream->Advance());
// Make sure seek works.
stream->Seek(0);
CHECK_EQ(unicode_ucs2[0], stream->Advance());
stream->Seek(5);
CHECK_EQ(unicode_ucs2[5], stream->Advance());
// Try again, but make sure we have to seek 'backwards'.
while (v8::internal::Utf16CharacterStream::kEndOfInput != stream->Advance()) {
// Do nothing. We merely advance the stream to the end of its input.
}
stream->Seek(5);
CHECK_EQ(unicode_ucs2[5], stream->Advance());
}
TEST_F(ScannerStreamsTest, Utf8SplitBOM) {
// Construct chunks with a BOM split into two chunks.
char partial_bom[] = "\xef\xbb";
char data[1 + arraysize(unicode_utf8)] = {"\xbf"};
strncpy(data + 1, unicode_utf8, arraysize(unicode_utf8));
{
const char* chunks[] = {partial_bom, data, "\0"};
ChunkSource chunk_source(chunks);
std::unique_ptr<v8::internal::Utf16CharacterStream> stream(
v8::internal::ScannerStream::For(
&chunk_source, v8::ScriptCompiler::StreamedSource::UTF8));
// Read the data without tripping over the BOM.
for (size_t i = 0; unicode_ucs2[i]; i++) {
CHECK_EQ(unicode_ucs2[i], stream->Advance());
}
}
// And now with single-byte BOM chunks.
char bom_byte_1[] = "\xef";
char bom_byte_2[] = "\xbb";
{
const char* chunks[] = {bom_byte_1, bom_byte_2, data, "\0"};
ChunkSource chunk_source(chunks);
std::unique_ptr<v8::internal::Utf16CharacterStream> stream(
v8::internal::ScannerStream::For(
&chunk_source, v8::ScriptCompiler::StreamedSource::UTF8));
// Read the data without tripping over the BOM.
for (size_t i = 0; unicode_ucs2[i]; i++) {
CHECK_EQ(unicode_ucs2[i], stream->Advance());
}
}
}
TEST_F(ScannerStreamsTest, Utf8SplitMultiBOM) {
// Construct chunks with a split BOM followed by another split BOM.
const char* chunks[] = {"\xef\xbb", "\xbf\xef\xbb", "\xbf", ""};
ChunkSource chunk_source(chunks);
std::unique_ptr<i::Utf16CharacterStream> stream(
v8::internal::ScannerStream::For(
&chunk_source, v8::ScriptCompiler::StreamedSource::UTF8));
// Read the data, ensuring we get exactly one of the two BOMs back.
CHECK_EQ(0xFEFF, stream->Advance());
CHECK_EQ(i::Utf16CharacterStream::kEndOfInput, stream->Advance());
}
TEST_F(ScannerStreamsTest, Utf8AdvanceUntil) {
// Test utf-8 advancing until a certain char.
const char line_term = '\n';
const size_t kLen = arraysize(unicode_utf8);
char data[kLen + 1];
strncpy(data, unicode_utf8, kLen);
data[kLen - 1] = line_term;
data[kLen] = '\0';
{
const char* chunks[] = {data, "\0"};
ChunkSource chunk_source(chunks);
std::unique_ptr<v8::internal::Utf16CharacterStream> stream(
v8::internal::ScannerStream::For(
&chunk_source, v8::ScriptCompiler::StreamedSource::UTF8));
int32_t res = stream->AdvanceUntil(
[](int32_t c0_) { return unibrow::IsLineTerminator(c0_); });
CHECK_EQ(line_term, res);
}
}
TEST_F(ScannerStreamsTest, AdvanceMatchAdvanceUntil) {
// Test if single advance and advanceUntil behave the same
char data[] = {'a', 'b', '\n', 'c', '\0'};
{
const char* chunks[] = {data, "\0"};
ChunkSource chunk_source_a(chunks);
std::unique_ptr<v8::internal::Utf16CharacterStream> stream_advance(
v8::internal::ScannerStream::For(
&chunk_source_a, v8::ScriptCompiler::StreamedSource::UTF8));
ChunkSource chunk_source_au(chunks);
std::unique_ptr<v8::internal::Utf16CharacterStream> stream_advance_until(
v8::internal::ScannerStream::For(
&chunk_source_au, v8::ScriptCompiler::StreamedSource::UTF8));
int32_t au_c0_ = stream_advance_until->AdvanceUntil(
[](int32_t c0_) { return unibrow::IsLineTerminator(c0_); });
int32_t a_c0_ = '0';
while (!unibrow::IsLineTerminator(a_c0_)) {
a_c0_ = stream_advance->Advance();
}
// Check both advances methods have the same output
CHECK_EQ(a_c0_, au_c0_);
// Check if both set the cursor to the correct position by advancing both
// streams by one character.
a_c0_ = stream_advance->Advance();
au_c0_ = stream_advance_until->Advance();
CHECK_EQ(a_c0_, au_c0_);
}
}
TEST_F(ScannerStreamsTest, Utf8AdvanceUntilOverChunkBoundaries) {
// Test utf-8 advancing until a certain char, crossing chunk boundaries.
// Split the test string at each byte and pass it to the stream. This way,
// we'll have a split at each possible boundary.
size_t len = strlen(unicode_utf8);
char buffer[arraysize(unicode_utf8) + 4];
for (size_t i = 1; i < len; i++) {
// Copy source string into buffer, splitting it at i.
// Then add three chunks, 0..i-1, i..strlen-1, empty.
memcpy(buffer, unicode_utf8, i);
memcpy(buffer + i + 1, unicode_utf8 + i, len - i);
buffer[i] = '\0';
buffer[len + 1] = '\n';
buffer[len + 2] = '\0';
buffer[len + 3] = '\0';
const char* chunks[] = {buffer, buffer + i + 1, buffer + len + 2};
ChunkSource chunk_source(chunks);
std::unique_ptr<v8::internal::Utf16CharacterStream> stream(
v8::internal::ScannerStream::For(
&chunk_source, v8::ScriptCompiler::StreamedSource::UTF8));
int32_t res = stream->AdvanceUntil(
[](int32_t c0_) { return unibrow::IsLineTerminator(c0_); });
CHECK_EQ(buffer[len + 1], res);
}
}
TEST_F(ScannerStreamsTest, Utf8ChunkBoundaries) {
// Test utf-8 parsing at chunk boundaries.
// Split the test string at each byte and pass it to the stream. This way,
// we'll have a split at each possible boundary.
size_t len = strlen(unicode_utf8);
char buffer[arraysize(unicode_utf8) + 3];
for (size_t i = 1; i < len; i++) {
// Copy source string into buffer, splitting it at i.
// Then add three chunks, 0..i-1, i..strlen-1, empty.
memcpy(buffer, unicode_utf8, i);
memcpy(buffer + i + 1, unicode_utf8 + i, len - i);
buffer[i] = '\0';
buffer[len + 1] = '\0';
buffer[len + 2] = '\0';
const char* chunks[] = {buffer, buffer + i + 1, buffer + len + 2};
ChunkSource chunk_source(chunks);
std::unique_ptr<v8::internal::Utf16CharacterStream> stream(
v8::internal::ScannerStream::For(
&chunk_source, v8::ScriptCompiler::StreamedSource::UTF8));
for (size_t j = 0; unicode_ucs2[j]; j++) {
CHECK_EQ(unicode_ucs2[j], stream->Advance());
}
CHECK_EQ(v8::internal::Utf16CharacterStream::kEndOfInput,
stream->Advance());
}
}
TEST_F(ScannerStreamsTest, Utf8SingleByteChunks) {
// Have each byte as a single-byte chunk.
size_t len = strlen(unicode_utf8);
char buffer[arraysize(unicode_utf8) + 4];
for (size_t i = 1; i < len - 1; i++) {
// Copy source string into buffer, make a single-byte chunk at i.
memcpy(buffer, unicode_utf8, i);
memcpy(buffer + i + 3, unicode_utf8 + i + 1, len - i - 1);
buffer[i] = '\0';
buffer[i + 1] = unicode_utf8[i];
buffer[i + 2] = '\0';
buffer[len + 2] = '\0';
buffer[len + 3] = '\0';
const char* chunks[] = {buffer, buffer + i + 1, buffer + i + 3,
buffer + len + 3};
ChunkSource chunk_source(chunks);
std::unique_ptr<v8::internal::Utf16CharacterStream> stream(
v8::internal::ScannerStream::For(
&chunk_source, v8::ScriptCompiler::StreamedSource::UTF8));
for (size_t j = 0; unicode_ucs2[j]; j++) {
CHECK_EQ(unicode_ucs2[j], stream->Advance());
}
CHECK_EQ(v8::internal::Utf16CharacterStream::kEndOfInput,
stream->Advance());
}
}
#define CHECK_EQU(v1, v2) CHECK_EQ(static_cast<int>(v1), static_cast<int>(v2))
void TestCharacterStream(const char* reference, i::Utf16CharacterStream* stream,
unsigned length, unsigned start, unsigned end) {
// Read streams one char at a time
unsigned i;
for (i = start; i < end; i++) {
CHECK_EQU(i, stream->pos());
CHECK_EQU(reference[i], stream->Advance());
}
CHECK_EQU(end, stream->pos());
CHECK_EQU(i::Utf16CharacterStream::kEndOfInput, stream->Advance());
CHECK_EQU(end + 1, stream->pos());
stream->Back();
// Pushback, re-read, pushback again.
while (i > end / 4) {
int32_t c0 = reference[i - 1];
CHECK_EQU(i, stream->pos());
stream->Back();
i--;
CHECK_EQU(i, stream->pos());
int32_t c1 = stream->Advance();
i++;
CHECK_EQU(i, stream->pos());
CHECK_EQ(c0, c1);
stream->Back();
i--;
CHECK_EQU(i, stream->pos());
}
// Seek + read streams one char at a time.
unsigned halfway = end / 2;
stream->Seek(stream->pos() + halfway - i);
for (i = halfway; i < end; i++) {
CHECK_EQU(i, stream->pos());
CHECK_EQU(reference[i], stream->Advance());
}
CHECK_EQU(i, stream->pos());
CHECK(i::Scanner::IsInvalid(stream->Advance()));
// Seek back, then seek beyond end of stream.
stream->Seek(start);
if (start < length) {
CHECK_EQU(stream->Advance(), reference[start]);
} else {
CHECK(i::Scanner::IsInvalid(stream->Advance()));
}
stream->Seek(length + 5);
CHECK(i::Scanner::IsInvalid(stream->Advance()));
}
void TestCloneCharacterStream(const char* reference,
i::Utf16CharacterStream* stream,
unsigned length) {
// Test original stream through to the end.
TestCharacterStream(reference, stream, length, 0, length);
// Clone the stream after it completes.
std::unique_ptr<i::Utf16CharacterStream> clone = stream->Clone();
// Test that the clone through to the end.
TestCharacterStream(reference, clone.get(), length, 0, length);
// Rewind original stream to a third.
stream->Seek(length / 3);
// Rewind clone stream to two thirds.
clone->Seek(2 * length / 3);
// Test seeking clone didn't affect original stream.
TestCharacterStream(reference, stream, length, length / 3, length);
// Test seeking original stream didn't affect clone.
TestCharacterStream(reference, clone.get(), length, 2 * length / 3, length);
}
#undef CHECK_EQU
void TestCharacterStreams(const char* one_byte_source, unsigned length,
unsigned start = 0, unsigned end = 0) {
if (end == 0) end = length;
i::Isolate* isolate =
reinterpret_cast<i::Isolate*>(v8::Isolate::GetCurrent());
i::Factory* factory = isolate->factory();
// 2-byte external string
std::unique_ptr<v8::base::uc16[]> uc16_buffer(new v8::base::uc16[length]);
v8::base::Vector<const v8::base::uc16> two_byte_vector(
uc16_buffer.get(), static_cast<int>(length));
{
for (unsigned i = 0; i < length; i++) {
uc16_buffer[i] = static_cast<v8::base::uc16>(one_byte_source[i]);
}
TestExternalResource resource(uc16_buffer.get(), length);
i::Handle<i::String> uc16_string(
NewExternalTwoByteStringFromResource(isolate, &resource));
std::unique_ptr<i::Utf16CharacterStream> uc16_stream(
i::ScannerStream::For(isolate, uc16_string, start, end));
TestCharacterStream(one_byte_source, uc16_stream.get(), length, start, end);
// This avoids the GC from trying to free a stack allocated resource.
if (uc16_string->IsExternalString())
i::Handle<i::ExternalTwoByteString>::cast(uc16_string)
->SetResource(isolate, nullptr);
}
// 1-byte external string
v8::base::Vector<const uint8_t> one_byte_vector =
v8::base::OneByteVector(one_byte_source, static_cast<int>(length));
i::Handle<i::String> one_byte_string =
factory->NewStringFromOneByte(one_byte_vector).ToHandleChecked();
{
TestExternalOneByteResource one_byte_resource(one_byte_source, length);
i::Handle<i::String> ext_one_byte_string(
factory->NewExternalStringFromOneByte(&one_byte_resource)
.ToHandleChecked());
std::unique_ptr<i::Utf16CharacterStream> one_byte_stream(
i::ScannerStream::For(isolate, ext_one_byte_string, start, end));
TestCharacterStream(one_byte_source, one_byte_stream.get(), length, start,
end);
// This avoids the GC from trying to free a stack allocated resource.
if (ext_one_byte_string->IsExternalString())
i::Handle<i::ExternalOneByteString>::cast(ext_one_byte_string)
->SetResource(isolate, nullptr);
}
// 1-byte generic i::String
{
std::unique_ptr<i::Utf16CharacterStream> string_stream(
i::ScannerStream::For(isolate, one_byte_string, start, end));
TestCharacterStream(one_byte_source, string_stream.get(), length, start,
end);
}
// 2-byte generic i::String
{
i::Handle<i::String> two_byte_string =
factory->NewStringFromTwoByte(two_byte_vector).ToHandleChecked();
std::unique_ptr<i::Utf16CharacterStream> two_byte_string_stream(
i::ScannerStream::For(isolate, two_byte_string, start, end));
TestCharacterStream(one_byte_source, two_byte_string_stream.get(), length,
start, end);
}
// Streaming has no notion of start/end, so let's skip streaming tests for
// these cases.
if (start != 0 || end != length) return;
// 1-byte streaming stream, single + many chunks.
{
const uint8_t* data = one_byte_vector.begin();
const uint8_t* data_end = one_byte_vector.end();
ChunkSource single_chunk(data, 1, data_end - data, false);
std::unique_ptr<i::Utf16CharacterStream> one_byte_streaming_stream(
i::ScannerStream::For(&single_chunk,
v8::ScriptCompiler::StreamedSource::ONE_BYTE));
TestCharacterStream(one_byte_source, one_byte_streaming_stream.get(),
length, start, end);
ChunkSource many_chunks(data, 1, data_end - data, true);
one_byte_streaming_stream.reset(i::ScannerStream::For(
&many_chunks, v8::ScriptCompiler::StreamedSource::ONE_BYTE));
TestCharacterStream(one_byte_source, one_byte_streaming_stream.get(),
length, start, end);
}
// UTF-8 streaming stream, single + many chunks.
{
const uint8_t* data = one_byte_vector.begin();
const uint8_t* data_end = one_byte_vector.end();
ChunkSource chunks(data, 1, data_end - data, false);
std::unique_ptr<i::Utf16CharacterStream> utf8_streaming_stream(
i::ScannerStream::For(&chunks,
v8::ScriptCompiler::StreamedSource::UTF8));
TestCharacterStream(one_byte_source, utf8_streaming_stream.get(), length,
start, end);
ChunkSource many_chunks(data, 1, data_end - data, true);
utf8_streaming_stream.reset(i::ScannerStream::For(
&many_chunks, v8::ScriptCompiler::StreamedSource::UTF8));
TestCharacterStream(one_byte_source, utf8_streaming_stream.get(), length,
start, end);
}
// 2-byte streaming stream, single + many chunks.
{
const uint8_t* data =
reinterpret_cast<const uint8_t*>(two_byte_vector.begin());
const uint8_t* data_end =
reinterpret_cast<const uint8_t*>(two_byte_vector.end());
ChunkSource chunks(data, 2, data_end - data, false);
std::unique_ptr<i::Utf16CharacterStream> two_byte_streaming_stream(
i::ScannerStream::For(&chunks,
v8::ScriptCompiler::StreamedSource::TWO_BYTE));
TestCharacterStream(one_byte_source, two_byte_streaming_stream.get(),
length, start, end);
ChunkSource many_chunks(data, 2, data_end - data, true);
two_byte_streaming_stream.reset(i::ScannerStream::For(
&many_chunks, v8::ScriptCompiler::StreamedSource::TWO_BYTE));
TestCharacterStream(one_byte_source, two_byte_streaming_stream.get(),
length, start, end);
}
}
TEST_F(ScannerStreamsTest, CharacterStreams) {
v8::HandleScope handles(isolate());
v8::Local<v8::Context> context = v8::Context::New(isolate());
v8::Context::Scope context_scope(context);
TestCharacterStreams("abcdefghi", 9);
TestCharacterStreams("abc\0\n\r\x7f", 7);
TestCharacterStreams("\0", 1);
TestCharacterStreams("", 0);
// 4k large buffer.
char buffer[4096 + 1];
for (unsigned i = 0; i < arraysize(buffer); i++) {
buffer[i] = static_cast<char>(i & 0x7F);
}
buffer[arraysize(buffer) - 1] = '\0';
TestCharacterStreams(buffer, arraysize(buffer) - 1);
TestCharacterStreams(buffer, arraysize(buffer) - 1, 576, 3298);
}
// Regression test for crbug.com/651333. Read invalid utf-8.
TEST_F(ScannerStreamsTest, Regress651333) {
const uint8_t bytes[] =
"A\xf1"
"ad"; // Anad, with n == n-with-tilde.
const uint16_t unicode[] = {65, 65533, 97, 100};
// Run the test for all sub-strings 0..N of bytes, to make sure we hit the
// error condition in and at chunk boundaries.
for (size_t len = 0; len < arraysize(bytes); len++) {
// Read len bytes from bytes, and compare against the expected unicode
// characters. Expect kBadChar ( == Unicode replacement char == code point
// 65533) instead of the incorrectly coded Latin1 char.
ChunkSource chunks(bytes, 1, len, false);
std::unique_ptr<i::Utf16CharacterStream> stream(i::ScannerStream::For(
&chunks, v8::ScriptCompiler::StreamedSource::UTF8));
for (size_t i = 0; i < len; i++) {
CHECK_EQ(unicode[i], stream->Advance());
}
CHECK_EQ(i::Utf16CharacterStream::kEndOfInput, stream->Advance());
}
}
void TestChunkStreamAgainstReference(
const char* cases[],
const std::vector<std::vector<uint16_t>>& unicode_expected) {
for (size_t c = 0; c < unicode_expected.size(); ++c) {
ChunkSource chunk_source(cases[c]);
std::unique_ptr<i::Utf16CharacterStream> stream(i::ScannerStream::For(
&chunk_source, v8::ScriptCompiler::StreamedSource::UTF8));
for (size_t i = 0; i < unicode_expected[c].size(); i++) {
CHECK_EQ(unicode_expected[c][i], stream->Advance());
}
CHECK_EQ(i::Utf16CharacterStream::kEndOfInput, stream->Advance());
stream->Seek(0);
for (size_t i = 0; i < unicode_expected[c].size(); i++) {
CHECK_EQ(unicode_expected[c][i], stream->Advance());
}
CHECK_EQ(i::Utf16CharacterStream::kEndOfInput, stream->Advance());
}
}
TEST_F(ScannerStreamsTest, Regress6377) {
const char* cases[] = {
"\xf0\x90\0" // first chunk - start of 4-byte seq
"\x80\x80" // second chunk - end of 4-byte seq
"a\0", // and an 'a'
"\xe0\xbf\0" // first chunk - start of 3-byte seq
"\xbf" // second chunk - one-byte end of 3-byte seq
"a\0", // and an 'a'
"\xc3\0" // first chunk - start of 2-byte seq
"\xbf" // second chunk - end of 2-byte seq
"a\0", // and an 'a'
"\xf0\x90\x80\0" // first chunk - start of 4-byte seq
"\x80" // second chunk - one-byte end of 4-byte seq
"a\xc3\0" // and an 'a' + start of 2-byte seq
"\xbf\0", // third chunk - end of 2-byte seq
};
const std::vector<std::vector<uint16_t>> unicode_expected = {
{0xD800, 0xDC00, 97},
{0xFFF, 97},
{0xFF, 97},
{0xD800, 0xDC00, 97, 0xFF},
};
CHECK_EQ(unicode_expected.size(), arraysize(cases));
TestChunkStreamAgainstReference(cases, unicode_expected);
}
TEST_F(ScannerStreamsTest, Regress6836) {
const char* cases[] = {
// 0xC2 is a lead byte, but there's no continuation. The bug occurs when
// this happens near the chunk end.
"X\xc2Y\0",
// Last chunk ends with a 2-byte char lead.
"X\xc2\0",
// Last chunk ends with a 3-byte char lead and only one continuation
// character.
"X\xe0\xbf\0",
};
const std::vector<std::vector<uint16_t>> unicode_expected = {
{0x58, 0xFFFD, 0x59},
{0x58, 0xFFFD},
{0x58, 0xFFFD},
};
CHECK_EQ(unicode_expected.size(), arraysize(cases));
TestChunkStreamAgainstReference(cases, unicode_expected);
}
TEST_F(ScannerStreamsTest, TestOverlongAndInvalidSequences) {
const char* cases[] = {
// Overlong 2-byte sequence.
"X\xc0\xbfY\0",
// Another overlong 2-byte sequence.
"X\xc1\xbfY\0",
// Overlong 3-byte sequence.
"X\xe0\x9f\xbfY\0",
// Overlong 4-byte sequence.
"X\xf0\x89\xbf\xbfY\0",
// Invalid 3-byte sequence (reserved for surrogates).
"X\xed\xa0\x80Y\0",
// Invalid 4-bytes sequence (value out of range).
"X\xf4\x90\x80\x80Y\0",
};
const std::vector<std::vector<uint16_t>> unicode_expected = {
{0x58, 0xFFFD, 0xFFFD, 0x59},
{0x58, 0xFFFD, 0xFFFD, 0x59},
{0x58, 0xFFFD, 0xFFFD, 0xFFFD, 0x59},
{0x58, 0xFFFD, 0xFFFD, 0xFFFD, 0xFFFD, 0x59},
{0x58, 0xFFFD, 0xFFFD, 0xFFFD, 0x59},
{0x58, 0xFFFD, 0xFFFD, 0xFFFD, 0xFFFD, 0x59},
};
CHECK_EQ(unicode_expected.size(), arraysize(cases));
TestChunkStreamAgainstReference(cases, unicode_expected);
}
TEST_F(ScannerStreamsTest, RelocatingCharacterStream) {
// This test relies on the invariant that the scavenger will move objects
if (i::v8_flags.single_generation) return;
i::v8_flags.manual_evacuation_candidates_selection = true;
v8::internal::ManualGCScope manual_gc_scope(i_isolate());
v8::HandleScope scope(isolate());
const char* string = "abcd";
int length = static_cast<int>(strlen(string));
std::unique_ptr<v8::base::uc16[]> uc16_buffer(new v8::base::uc16[length]);
for (int i = 0; i < length; i++) {
uc16_buffer[i] = string[i];
}
v8::base::Vector<const v8::base::uc16> two_byte_vector(uc16_buffer.get(),
length);
i::Handle<i::String> two_byte_string =
i_isolate()
->factory()
->NewStringFromTwoByte(two_byte_vector, i::AllocationType::kYoung)
.ToHandleChecked();
std::unique_ptr<i::Utf16CharacterStream> two_byte_string_stream(
i::ScannerStream::For(i_isolate(), two_byte_string, 0, length));
CHECK_EQ('a', two_byte_string_stream->Advance());
CHECK_EQ('b', two_byte_string_stream->Advance());
CHECK_EQ(size_t{2}, two_byte_string_stream->pos());
i::String raw = *two_byte_string;
// 1st GC moves `two_byte_string` to old space and 2nd GC evacuates it within
// old space.
CollectGarbage(i::OLD_SPACE);
i::Page::FromHeapObject(*two_byte_string)
->SetFlag(i::MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
CollectGarbage(i::OLD_SPACE);
// GC moved the string.
CHECK_NE(raw, *two_byte_string);
CHECK_EQ('c', two_byte_string_stream->Advance());
CHECK_EQ('d', two_byte_string_stream->Advance());
}
TEST_F(ScannerStreamsTest, RelocatingUnbufferedCharacterStream) {
// This test relies on the invariant that the scavenger will move objects
if (i::v8_flags.single_generation) return;
i::v8_flags.manual_evacuation_candidates_selection = true;
v8::internal::ManualGCScope manual_gc_scope(i_isolate());
v8::HandleScope scope(isolate());
const char16_t* string = u"abc\u2603";
int length = static_cast<int>(std::char_traits<char16_t>::length(string));
std::unique_ptr<v8::base::uc16[]> uc16_buffer(new v8::base::uc16[length]);
for (int i = 0; i < length; i++) {
uc16_buffer[i] = string[i];
}
v8::base::Vector<const v8::base::uc16> two_byte_vector(uc16_buffer.get(),
length);
i::Handle<i::String> two_byte_string =
i_isolate()
->factory()
->NewStringFromTwoByte(two_byte_vector, i::AllocationType::kYoung)
.ToHandleChecked();
std::unique_ptr<i::Utf16CharacterStream> two_byte_string_stream(
i::ScannerStream::For(i_isolate(), two_byte_string, 0, length));
// Seek to offset 2 so that the buffer_pos_ is not zero initially.
two_byte_string_stream->Seek(2);
CHECK_EQ('c', two_byte_string_stream->Advance());
CHECK_EQ(size_t{3}, two_byte_string_stream->pos());
i::String raw = *two_byte_string;
// 1st GC moves `two_byte_string` to old space and 2nd GC evacuates it within
// old space.
CollectGarbage(i::OLD_SPACE);
i::Page::FromHeapObject(*two_byte_string)
->SetFlag(i::MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
CollectGarbage(i::OLD_SPACE);
// GC moved the string and buffer was updated to the correct location.
CHECK_NE(raw, *two_byte_string);
// Check that we correctly moved based on buffer_pos_, not based on a position
// of zero.
CHECK_EQ(u'\u2603', two_byte_string_stream->Advance());
CHECK_EQ(size_t{4}, two_byte_string_stream->pos());
}
TEST_F(ScannerStreamsTest, CloneCharacterStreams) {
v8::HandleScope handles(isolate());
v8::Local<v8::Context> context = v8::Context::New(isolate());
v8::Context::Scope context_scope(context);
i::Factory* factory = i_isolate()->factory();
const char* one_byte_source = "abcdefghi";
unsigned length = static_cast<unsigned>(strlen(one_byte_source));
// Check that cloning a character stream does not update
// 2-byte external string
std::unique_ptr<v8::base::uc16[]> uc16_buffer(new v8::base::uc16[length]);
v8::base::Vector<const v8::base::uc16> two_byte_vector(
uc16_buffer.get(), static_cast<int>(length));
{
for (unsigned i = 0; i < length; i++) {
uc16_buffer[i] = static_cast<v8::base::uc16>(one_byte_source[i]);
}
TestExternalResource resource(uc16_buffer.get(), length);
i::Handle<i::String> uc16_string(
NewExternalTwoByteStringFromResource(i_isolate(), &resource));
std::unique_ptr<i::Utf16CharacterStream> uc16_stream(
i::ScannerStream::For(i_isolate(), uc16_string, 0, length));
CHECK(resource.IsLocked());
CHECK_EQ(1, resource.LockDepth());
std::unique_ptr<i::Utf16CharacterStream> cloned = uc16_stream->Clone();
CHECK_EQ(2, resource.LockDepth());
uc16_stream = std::move(cloned);
CHECK_EQ(1, resource.LockDepth());
TestCloneCharacterStream(one_byte_source, uc16_stream.get(), length);
// This avoids the GC from trying to free a stack allocated resource.
if (uc16_string->IsExternalString())
i::Handle<i::ExternalTwoByteString>::cast(uc16_string)
->SetResource(i_isolate(), nullptr);
}
// 1-byte external string
v8::base::Vector<const uint8_t> one_byte_vector =
v8::base::OneByteVector(one_byte_source, static_cast<int>(length));
i::Handle<i::String> one_byte_string =
factory->NewStringFromOneByte(one_byte_vector).ToHandleChecked();
{
TestExternalOneByteResource one_byte_resource(one_byte_source, length);
i::Handle<i::String> ext_one_byte_string(
factory->NewExternalStringFromOneByte(&one_byte_resource)
.ToHandleChecked());
std::unique_ptr<i::Utf16CharacterStream> one_byte_stream(
i::ScannerStream::For(i_isolate(), ext_one_byte_string, 0, length));
TestCloneCharacterStream(one_byte_source, one_byte_stream.get(), length);
// This avoids the GC from trying to free a stack allocated resource.
if (ext_one_byte_string->IsExternalString())
i::Handle<i::ExternalOneByteString>::cast(ext_one_byte_string)
->SetResource(i_isolate(), nullptr);
}
// Relocatable streams are't clonable.
{
std::unique_ptr<i::Utf16CharacterStream> string_stream(
i::ScannerStream::For(i_isolate(), one_byte_string, 0, length));
CHECK(!string_stream->can_be_cloned());
i::Handle<i::String> two_byte_string =
factory->NewStringFromTwoByte(two_byte_vector).ToHandleChecked();
std::unique_ptr<i::Utf16CharacterStream> two_byte_string_stream(
i::ScannerStream::For(i_isolate(), two_byte_string, 0, length));
CHECK(!two_byte_string_stream->can_be_cloned());
}
// Chunk sources are cloneable.
{
const char* chunks[] = {"1234", "5678", ""};
ChunkSource chunk_source(chunks);
std::unique_ptr<i::Utf16CharacterStream> one_byte_streaming_stream(
i::ScannerStream::For(&chunk_source,
v8::ScriptCompiler::StreamedSource::ONE_BYTE));
TestCloneCharacterStream("12345678", one_byte_streaming_stream.get(), 8);
}
{
const char* chunks[] = {"1234", "5678", ""};
ChunkSource chunk_source(chunks);
std::unique_ptr<i::Utf16CharacterStream> utf8_streaming_stream(
i::ScannerStream::For(&chunk_source,
v8::ScriptCompiler::StreamedSource::UTF8));
CHECK(utf8_streaming_stream->can_be_cloned());
TestCloneCharacterStream("12345678", utf8_streaming_stream.get(), 8);
}
{
const char16_t* chunks[] = {u"1234", u"5678", u""};
ChunkSource chunk_source(chunks);
std::unique_ptr<i::Utf16CharacterStream> two_byte_streaming_stream(
i::ScannerStream::For(&chunk_source,
v8::ScriptCompiler::StreamedSource::TWO_BYTE));
CHECK(two_byte_streaming_stream->can_be_cloned());
TestCloneCharacterStream("12345678", two_byte_streaming_stream.get(), 8);
}
}