v8/test/unittests/interpreter/interpreter-assembler-unittest.cc
machenbach 1f81574911 Revert of [Interpreter] Map runtime id's to intrinsic id's in InvokeIntrinsic bytecode. (patchset #3 id:40001 of https://codereview.chromium.org/2084623002/ )
Reason for revert:
[Sheriff] Breaks gc stress:
https://build.chromium.org/p/client.v8/builders/V8%20Linux64%20GC%20Stress%20-%20custom%20snapshot/builds/6304

Original issue's description:
> [Interpreter] Map runtime id's to intrinsic id's in InvokeIntrinsic bytecode.
>
> Make intrinsic ids a contiguous set of ids so that the switch statement can build
> a table switch rather than doing a large if/else tree.
>
> BUG=v8:4822
> LOG=N
>
> Committed: https://crrev.com/36abd28a8d9932eb55d7c2bf3ad5e7cfe3eb99ea
> Cr-Commit-Position: refs/heads/master@{#37135}

TBR=epertoso@chromium.org,oth@chromium.org,rmcilroy@chromium.org
# Skipping CQ checks because original CL landed less than 1 days ago.
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=v8:4822

Review-Url: https://codereview.chromium.org/2085823003
Cr-Commit-Position: refs/heads/master@{#37137}
2016-06-21 11:53:00 +00:00

709 lines
26 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/interpreter/interpreter-assembler-unittest.h"
#include "src/code-factory.h"
#include "src/compiler/graph.h"
#include "src/compiler/node.h"
#include "src/interface-descriptors.h"
#include "src/isolate.h"
#include "test/unittests/compiler/compiler-test-utils.h"
#include "test/unittests/compiler/node-test-utils.h"
using ::testing::_;
namespace v8 {
namespace internal {
using namespace compiler;
namespace interpreter {
const interpreter::Bytecode kBytecodes[] = {
#define DEFINE_BYTECODE(Name, ...) interpreter::Bytecode::k##Name,
BYTECODE_LIST(DEFINE_BYTECODE)
#undef DEFINE_BYTECODE
};
Matcher<Node*> IsIntPtrConstant(const intptr_t value) {
return kPointerSize == 8 ? IsInt64Constant(static_cast<int64_t>(value))
: IsInt32Constant(static_cast<int32_t>(value));
}
Matcher<Node*> IsIntPtrAdd(const Matcher<Node*>& lhs_matcher,
const Matcher<Node*>& rhs_matcher) {
return kPointerSize == 8 ? IsInt64Add(lhs_matcher, rhs_matcher)
: IsInt32Add(lhs_matcher, rhs_matcher);
}
Matcher<Node*> IsIntPtrSub(const Matcher<Node*>& lhs_matcher,
const Matcher<Node*>& rhs_matcher) {
return kPointerSize == 8 ? IsInt64Sub(lhs_matcher, rhs_matcher)
: IsInt32Sub(lhs_matcher, rhs_matcher);
}
Matcher<Node*> IsWordShl(const Matcher<Node*>& lhs_matcher,
const Matcher<Node*>& rhs_matcher) {
return kPointerSize == 8 ? IsWord64Shl(lhs_matcher, rhs_matcher)
: IsWord32Shl(lhs_matcher, rhs_matcher);
}
Matcher<Node*> IsWordSar(const Matcher<Node*>& lhs_matcher,
const Matcher<Node*>& rhs_matcher) {
return kPointerSize == 8 ? IsWord64Sar(lhs_matcher, rhs_matcher)
: IsWord32Sar(lhs_matcher, rhs_matcher);
}
Matcher<Node*> IsWordOr(const Matcher<Node*>& lhs_matcher,
const Matcher<Node*>& rhs_matcher) {
return kPointerSize == 8 ? IsWord64Or(lhs_matcher, rhs_matcher)
: IsWord32Or(lhs_matcher, rhs_matcher);
}
InterpreterAssemblerTest::InterpreterAssemblerForTest::
~InterpreterAssemblerForTest() {
// Tests don't necessarily read and write accumulator but
// InterpreterAssembler checks accumulator uses.
if (Bytecodes::ReadsAccumulator(bytecode())) {
GetAccumulator();
}
if (Bytecodes::WritesAccumulator(bytecode())) {
SetAccumulator(nullptr);
}
}
Matcher<Node*> InterpreterAssemblerTest::InterpreterAssemblerForTest::IsLoad(
const Matcher<LoadRepresentation>& rep_matcher,
const Matcher<Node*>& base_matcher, const Matcher<Node*>& index_matcher) {
return ::i::compiler::IsLoad(rep_matcher, base_matcher, index_matcher, _, _);
}
Matcher<Node*> InterpreterAssemblerTest::InterpreterAssemblerForTest::IsStore(
const Matcher<StoreRepresentation>& rep_matcher,
const Matcher<Node*>& base_matcher, const Matcher<Node*>& index_matcher,
const Matcher<Node*>& value_matcher) {
return ::i::compiler::IsStore(rep_matcher, base_matcher, index_matcher,
value_matcher, _, _);
}
Matcher<Node*>
InterpreterAssemblerTest::InterpreterAssemblerForTest::IsUnsignedByteOperand(
int offset) {
return IsLoad(
MachineType::Uint8(),
IsParameter(InterpreterDispatchDescriptor::kBytecodeArrayParameter),
IsIntPtrAdd(
IsParameter(InterpreterDispatchDescriptor::kBytecodeOffsetParameter),
IsIntPtrConstant(offset)));
}
Matcher<Node*>
InterpreterAssemblerTest::InterpreterAssemblerForTest::IsSignedByteOperand(
int offset) {
Matcher<Node*> load_matcher = IsLoad(
MachineType::Int8(),
IsParameter(InterpreterDispatchDescriptor::kBytecodeArrayParameter),
IsIntPtrAdd(
IsParameter(InterpreterDispatchDescriptor::kBytecodeOffsetParameter),
IsIntPtrConstant(offset)));
if (kPointerSize == 8) {
load_matcher = IsChangeInt32ToInt64(load_matcher);
}
return load_matcher;
}
Matcher<Node*>
InterpreterAssemblerTest::InterpreterAssemblerForTest::IsUnsignedShortOperand(
int offset) {
if (TargetSupportsUnalignedAccess()) {
return IsLoad(
MachineType::Uint16(),
IsParameter(InterpreterDispatchDescriptor::kBytecodeArrayParameter),
IsIntPtrAdd(
IsParameter(
InterpreterDispatchDescriptor::kBytecodeOffsetParameter),
IsIntPtrConstant(offset)));
} else {
#if V8_TARGET_LITTLE_ENDIAN
const int kStep = -1;
const int kMsbOffset = 1;
#elif V8_TARGET_BIG_ENDIAN
const int kStep = 1;
const int kMsbOffset = 0;
#else
#error "Unknown Architecture"
#endif
Matcher<Node*> bytes[2];
for (int i = 0; i < static_cast<int>(arraysize(bytes)); i++) {
bytes[i] = IsLoad(
MachineType::Uint8(),
IsParameter(InterpreterDispatchDescriptor::kBytecodeArrayParameter),
IsIntPtrAdd(
IsParameter(
InterpreterDispatchDescriptor::kBytecodeOffsetParameter),
IsIntPtrConstant(offset + kMsbOffset + kStep * i)));
}
return IsWord32Or(IsWord32Shl(bytes[0], IsInt32Constant(kBitsPerByte)),
bytes[1]);
}
}
Matcher<Node*>
InterpreterAssemblerTest::InterpreterAssemblerForTest::IsSignedShortOperand(
int offset) {
Matcher<Node*> load_matcher;
if (TargetSupportsUnalignedAccess()) {
load_matcher = IsLoad(
MachineType::Int16(),
IsParameter(InterpreterDispatchDescriptor::kBytecodeArrayParameter),
IsIntPtrAdd(
IsParameter(
InterpreterDispatchDescriptor::kBytecodeOffsetParameter),
IsIntPtrConstant(offset)));
} else {
#if V8_TARGET_LITTLE_ENDIAN
const int kStep = -1;
const int kMsbOffset = 1;
#elif V8_TARGET_BIG_ENDIAN
const int kStep = 1;
const int kMsbOffset = 0;
#else
#error "Unknown Architecture"
#endif
Matcher<Node*> bytes[2];
for (int i = 0; i < static_cast<int>(arraysize(bytes)); i++) {
bytes[i] = IsLoad(
(i == 0) ? MachineType::Int8() : MachineType::Uint8(),
IsParameter(InterpreterDispatchDescriptor::kBytecodeArrayParameter),
IsIntPtrAdd(
IsParameter(
InterpreterDispatchDescriptor::kBytecodeOffsetParameter),
IsIntPtrConstant(offset + kMsbOffset + kStep * i)));
}
load_matcher = IsWord32Or(
IsWord32Shl(bytes[0], IsInt32Constant(kBitsPerByte)), bytes[1]);
}
if (kPointerSize == 8) {
load_matcher = IsChangeInt32ToInt64(load_matcher);
}
return load_matcher;
}
Matcher<Node*>
InterpreterAssemblerTest::InterpreterAssemblerForTest::IsUnsignedQuadOperand(
int offset) {
if (TargetSupportsUnalignedAccess()) {
return IsLoad(
MachineType::Uint32(),
IsParameter(InterpreterDispatchDescriptor::kBytecodeArrayParameter),
IsIntPtrAdd(
IsParameter(
InterpreterDispatchDescriptor::kBytecodeOffsetParameter),
IsIntPtrConstant(offset)));
} else {
#if V8_TARGET_LITTLE_ENDIAN
const int kStep = -1;
const int kMsbOffset = 3;
#elif V8_TARGET_BIG_ENDIAN
const int kStep = 1;
const int kMsbOffset = 0;
#else
#error "Unknown Architecture"
#endif
Matcher<Node*> bytes[4];
for (int i = 0; i < static_cast<int>(arraysize(bytes)); i++) {
bytes[i] = IsLoad(
MachineType::Uint8(),
IsParameter(InterpreterDispatchDescriptor::kBytecodeArrayParameter),
IsIntPtrAdd(
IsParameter(
InterpreterDispatchDescriptor::kBytecodeOffsetParameter),
IsIntPtrConstant(offset + kMsbOffset + kStep * i)));
}
return IsWord32Or(
IsWord32Shl(bytes[0], IsInt32Constant(3 * kBitsPerByte)),
IsWord32Or(
IsWord32Shl(bytes[1], IsInt32Constant(2 * kBitsPerByte)),
IsWord32Or(IsWord32Shl(bytes[2], IsInt32Constant(1 * kBitsPerByte)),
bytes[3])));
}
}
Matcher<Node*>
InterpreterAssemblerTest::InterpreterAssemblerForTest::IsSignedQuadOperand(
int offset) {
Matcher<Node*> load_matcher;
if (TargetSupportsUnalignedAccess()) {
load_matcher = IsLoad(
MachineType::Int32(),
IsParameter(InterpreterDispatchDescriptor::kBytecodeArrayParameter),
IsIntPtrAdd(
IsParameter(
InterpreterDispatchDescriptor::kBytecodeOffsetParameter),
IsIntPtrConstant(offset)));
} else {
#if V8_TARGET_LITTLE_ENDIAN
const int kStep = -1;
int kMsbOffset = 3;
#elif V8_TARGET_BIG_ENDIAN
const int kStep = 1;
int kMsbOffset = 0;
#else
#error "Unknown Architecture"
#endif
Matcher<Node*> bytes[4];
for (int i = 0; i < static_cast<int>(arraysize(bytes)); i++) {
bytes[i] = IsLoad(
(i == 0) ? MachineType::Int8() : MachineType::Uint8(),
IsParameter(InterpreterDispatchDescriptor::kBytecodeArrayParameter),
IsIntPtrAdd(
IsParameter(
InterpreterDispatchDescriptor::kBytecodeOffsetParameter),
IsIntPtrConstant(offset + kMsbOffset + kStep * i)));
}
load_matcher = IsWord32Or(
IsWord32Shl(bytes[0], IsInt32Constant(3 * kBitsPerByte)),
IsWord32Or(
IsWord32Shl(bytes[1], IsInt32Constant(2 * kBitsPerByte)),
IsWord32Or(IsWord32Shl(bytes[2], IsInt32Constant(1 * kBitsPerByte)),
bytes[3])));
}
if (kPointerSize == 8) {
load_matcher = IsChangeInt32ToInt64(load_matcher);
}
return load_matcher;
}
Matcher<Node*>
InterpreterAssemblerTest::InterpreterAssemblerForTest::IsSignedOperand(
int offset, OperandSize operand_size) {
switch (operand_size) {
case OperandSize::kByte:
return IsSignedByteOperand(offset);
case OperandSize::kShort:
return IsSignedShortOperand(offset);
case OperandSize::kQuad:
return IsSignedQuadOperand(offset);
case OperandSize::kNone:
UNREACHABLE();
}
return nullptr;
}
Matcher<Node*>
InterpreterAssemblerTest::InterpreterAssemblerForTest::IsUnsignedOperand(
int offset, OperandSize operand_size) {
switch (operand_size) {
case OperandSize::kByte:
return IsUnsignedByteOperand(offset);
case OperandSize::kShort:
return IsUnsignedShortOperand(offset);
case OperandSize::kQuad:
return IsUnsignedQuadOperand(offset);
case OperandSize::kNone:
UNREACHABLE();
}
return nullptr;
}
TARGET_TEST_F(InterpreterAssemblerTest, Dispatch) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerForTest m(this, bytecode);
Node* tail_call_node = m.Dispatch();
OperandScale operand_scale = OperandScale::kSingle;
Matcher<Node*> next_bytecode_offset_matcher = IsIntPtrAdd(
IsParameter(InterpreterDispatchDescriptor::kBytecodeOffsetParameter),
IsIntPtrConstant(
interpreter::Bytecodes::Size(bytecode, operand_scale)));
Matcher<Node*> target_bytecode_matcher = m.IsLoad(
MachineType::Uint8(),
IsParameter(InterpreterDispatchDescriptor::kBytecodeArrayParameter),
next_bytecode_offset_matcher);
if (kPointerSize == 8) {
target_bytecode_matcher = IsChangeUint32ToUint64(target_bytecode_matcher);
}
Matcher<Node*> code_target_matcher = m.IsLoad(
MachineType::Pointer(),
IsParameter(InterpreterDispatchDescriptor::kDispatchTableParameter),
IsWordShl(target_bytecode_matcher, IsIntPtrConstant(kPointerSizeLog2)));
EXPECT_THAT(
tail_call_node,
IsTailCall(
_, code_target_matcher,
IsParameter(InterpreterDispatchDescriptor::kAccumulatorParameter),
next_bytecode_offset_matcher,
IsParameter(InterpreterDispatchDescriptor::kBytecodeArrayParameter),
IsParameter(InterpreterDispatchDescriptor::kDispatchTableParameter),
_, _));
}
}
TARGET_TEST_F(InterpreterAssemblerTest, Jump) {
// If debug code is enabled we emit extra code in Jump.
if (FLAG_debug_code) return;
int jump_offsets[] = {-9710, -77, 0, +3, +97109};
TRACED_FOREACH(int, jump_offset, jump_offsets) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerForTest m(this, bytecode);
Node* tail_call_node = m.Jump(m.IntPtrConstant(jump_offset));
Matcher<Node*> next_bytecode_offset_matcher = IsIntPtrAdd(
IsParameter(InterpreterDispatchDescriptor::kBytecodeOffsetParameter),
IsIntPtrConstant(jump_offset));
Matcher<Node*> target_bytecode_matcher =
m.IsLoad(MachineType::Uint8(), _, next_bytecode_offset_matcher);
if (kPointerSize == 8) {
target_bytecode_matcher =
IsChangeUint32ToUint64(target_bytecode_matcher);
}
Matcher<Node*> code_target_matcher = m.IsLoad(
MachineType::Pointer(),
IsParameter(InterpreterDispatchDescriptor::kDispatchTableParameter),
IsWordShl(target_bytecode_matcher,
IsIntPtrConstant(kPointerSizeLog2)));
EXPECT_THAT(
tail_call_node,
IsTailCall(
_, code_target_matcher,
IsParameter(InterpreterDispatchDescriptor::kAccumulatorParameter),
next_bytecode_offset_matcher, _,
IsParameter(
InterpreterDispatchDescriptor::kDispatchTableParameter),
_, _));
}
}
}
TARGET_TEST_F(InterpreterAssemblerTest, BytecodeOperand) {
static const OperandScale kOperandScales[] = {
OperandScale::kSingle, OperandScale::kDouble, OperandScale::kQuadruple};
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
TRACED_FOREACH(interpreter::OperandScale, operand_scale, kOperandScales) {
InterpreterAssemblerForTest m(this, bytecode, operand_scale);
int number_of_operands =
interpreter::Bytecodes::NumberOfOperands(bytecode);
for (int i = 0; i < number_of_operands; i++) {
int offset = interpreter::Bytecodes::GetOperandOffset(bytecode, i,
operand_scale);
OperandType operand_type =
interpreter::Bytecodes::GetOperandType(bytecode, i);
OperandSize operand_size =
Bytecodes::SizeOfOperand(operand_type, operand_scale);
switch (interpreter::Bytecodes::GetOperandType(bytecode, i)) {
case interpreter::OperandType::kRegCount:
EXPECT_THAT(m.BytecodeOperandCount(i),
m.IsUnsignedOperand(offset, operand_size));
break;
case interpreter::OperandType::kFlag8:
EXPECT_THAT(m.BytecodeOperandFlag(i),
m.IsUnsignedOperand(offset, operand_size));
break;
case interpreter::OperandType::kIdx:
EXPECT_THAT(m.BytecodeOperandIdx(i),
m.IsUnsignedOperand(offset, operand_size));
break;
case interpreter::OperandType::kImm: {
EXPECT_THAT(m.BytecodeOperandImm(i),
m.IsSignedOperand(offset, operand_size));
break;
}
case interpreter::OperandType::kMaybeReg:
case interpreter::OperandType::kReg:
case interpreter::OperandType::kRegOut:
case interpreter::OperandType::kRegOutPair:
case interpreter::OperandType::kRegOutTriple:
case interpreter::OperandType::kRegPair:
EXPECT_THAT(m.BytecodeOperandReg(i),
m.IsSignedOperand(offset, operand_size));
break;
case interpreter::OperandType::kRuntimeId:
EXPECT_THAT(m.BytecodeOperandRuntimeId(i),
m.IsUnsignedOperand(offset, operand_size));
break;
case interpreter::OperandType::kNone:
UNREACHABLE();
break;
}
}
}
}
}
TARGET_TEST_F(InterpreterAssemblerTest, GetSetAccumulator) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
if (!interpreter::Bytecodes::ReadsAccumulator(bytecode) ||
!interpreter::Bytecodes::WritesAccumulator(bytecode)) {
continue;
}
InterpreterAssemblerForTest m(this, bytecode);
// Should be incoming accumulator if not set.
EXPECT_THAT(
m.GetAccumulator(),
IsParameter(InterpreterDispatchDescriptor::kAccumulatorParameter));
// Should be set by SetAccumulator.
Node* accumulator_value_1 = m.Int32Constant(0xdeadbeef);
m.SetAccumulator(accumulator_value_1);
EXPECT_THAT(m.GetAccumulator(), accumulator_value_1);
Node* accumulator_value_2 = m.Int32Constant(42);
m.SetAccumulator(accumulator_value_2);
EXPECT_THAT(m.GetAccumulator(), accumulator_value_2);
// Should be passed to next bytecode handler on dispatch.
Node* tail_call_node = m.Dispatch();
EXPECT_THAT(tail_call_node,
IsTailCall(_, _, accumulator_value_2, _, _, _, _));
}
}
TARGET_TEST_F(InterpreterAssemblerTest, GetContext) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerForTest m(this, bytecode);
EXPECT_THAT(
m.GetContext(),
m.IsLoad(MachineType::AnyTagged(), IsLoadParentFramePointer(),
IsIntPtrConstant(Register::current_context().ToOperand()
<< kPointerSizeLog2)));
}
}
TARGET_TEST_F(InterpreterAssemblerTest, RegisterLocation) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerForTest m(this, bytecode);
Node* reg_index_node = m.IntPtrConstant(44);
Node* reg_location_node = m.RegisterLocation(reg_index_node);
EXPECT_THAT(reg_location_node,
IsIntPtrAdd(IsLoadParentFramePointer(),
IsWordShl(reg_index_node,
IsIntPtrConstant(kPointerSizeLog2))));
}
}
TARGET_TEST_F(InterpreterAssemblerTest, LoadRegister) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerForTest m(this, bytecode);
Node* reg_index_node = m.IntPtrConstant(44);
Node* load_reg_node = m.LoadRegister(reg_index_node);
EXPECT_THAT(load_reg_node,
m.IsLoad(MachineType::AnyTagged(), IsLoadParentFramePointer(),
IsWordShl(reg_index_node,
IsIntPtrConstant(kPointerSizeLog2))));
}
}
TARGET_TEST_F(InterpreterAssemblerTest, StoreRegister) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerForTest m(this, bytecode);
Node* store_value = m.Int32Constant(0xdeadbeef);
Node* reg_index_node = m.IntPtrConstant(44);
Node* store_reg_node = m.StoreRegister(store_value, reg_index_node);
EXPECT_THAT(
store_reg_node,
m.IsStore(StoreRepresentation(MachineRepresentation::kTagged,
kNoWriteBarrier),
IsLoadParentFramePointer(),
IsWordShl(reg_index_node, IsIntPtrConstant(kPointerSizeLog2)),
store_value));
}
}
TARGET_TEST_F(InterpreterAssemblerTest, SmiTag) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerForTest m(this, bytecode);
Node* value = m.Int32Constant(44);
EXPECT_THAT(m.SmiTag(value),
IsIntPtrConstant(static_cast<intptr_t>(44)
<< (kSmiShiftSize + kSmiTagSize)));
EXPECT_THAT(
m.SmiUntag(value),
IsWordSar(value, IsIntPtrConstant(kSmiShiftSize + kSmiTagSize)));
}
}
TARGET_TEST_F(InterpreterAssemblerTest, IntPtrAdd) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerForTest m(this, bytecode);
Node* a = m.Int32Constant(0);
Node* b = m.Int32Constant(1);
Node* add = m.IntPtrAdd(a, b);
EXPECT_THAT(add, IsIntPtrAdd(a, b));
}
}
TARGET_TEST_F(InterpreterAssemblerTest, IntPtrSub) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerForTest m(this, bytecode);
Node* a = m.Int32Constant(0);
Node* b = m.Int32Constant(1);
Node* add = m.IntPtrSub(a, b);
EXPECT_THAT(add, IsIntPtrSub(a, b));
}
}
TARGET_TEST_F(InterpreterAssemblerTest, WordShl) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerForTest m(this, bytecode);
Node* a = m.IntPtrConstant(0);
Node* add = m.WordShl(a, 10);
EXPECT_THAT(add, IsWordShl(a, IsIntPtrConstant(10)));
}
}
TARGET_TEST_F(InterpreterAssemblerTest, LoadConstantPoolEntry) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerForTest m(this, bytecode);
Node* index = m.IntPtrConstant(2);
Node* load_constant = m.LoadConstantPoolEntry(index);
Matcher<Node*> constant_pool_matcher = m.IsLoad(
MachineType::AnyTagged(),
IsParameter(InterpreterDispatchDescriptor::kBytecodeArrayParameter),
IsIntPtrConstant(BytecodeArray::kConstantPoolOffset - kHeapObjectTag));
EXPECT_THAT(
load_constant,
m.IsLoad(MachineType::AnyTagged(), constant_pool_matcher,
IsIntPtrAdd(
IsIntPtrConstant(FixedArray::kHeaderSize - kHeapObjectTag),
IsWordShl(index, IsIntPtrConstant(kPointerSizeLog2)))));
}
}
TARGET_TEST_F(InterpreterAssemblerTest, LoadObjectField) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerForTest m(this, bytecode);
Node* object = m.IntPtrConstant(0xdeadbeef);
int offset = 16;
Node* load_field = m.LoadObjectField(object, offset);
EXPECT_THAT(load_field,
m.IsLoad(MachineType::AnyTagged(), object,
IsIntPtrConstant(offset - kHeapObjectTag)));
}
}
TARGET_TEST_F(InterpreterAssemblerTest, LoadContextSlot) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerForTest m(this, bytecode);
Node* context = m.IntPtrConstant(1);
Node* slot_index = m.IntPtrConstant(22);
Node* load_context_slot = m.LoadContextSlot(context, slot_index);
Matcher<Node*> offset =
IsIntPtrAdd(IsWordShl(slot_index, IsIntPtrConstant(kPointerSizeLog2)),
IsIntPtrConstant(Context::kHeaderSize - kHeapObjectTag));
EXPECT_THAT(load_context_slot,
m.IsLoad(MachineType::AnyTagged(), context, offset));
}
}
TARGET_TEST_F(InterpreterAssemblerTest, StoreContextSlot) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerForTest m(this, bytecode);
Node* context = m.IntPtrConstant(1);
Node* slot_index = m.IntPtrConstant(22);
Node* value = m.SmiConstant(Smi::FromInt(100));
Node* store_context_slot = m.StoreContextSlot(context, slot_index, value);
Matcher<Node*> offset =
IsIntPtrAdd(IsWordShl(slot_index, IsIntPtrConstant(kPointerSizeLog2)),
IsIntPtrConstant(Context::kHeaderSize - kHeapObjectTag));
EXPECT_THAT(store_context_slot,
m.IsStore(StoreRepresentation(MachineRepresentation::kTagged,
kFullWriteBarrier),
context, offset, value));
}
}
TARGET_TEST_F(InterpreterAssemblerTest, CallRuntime2) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerForTest m(this, bytecode);
Node* arg1 = m.Int32Constant(2);
Node* arg2 = m.Int32Constant(3);
Node* context = m.Int32Constant(4);
Node* call_runtime = m.CallRuntime(Runtime::kAdd, context, arg1, arg2);
EXPECT_THAT(call_runtime,
IsCall(_, _, arg1, arg2, _, IsInt32Constant(2), context, _, _));
}
}
TARGET_TEST_F(InterpreterAssemblerTest, CallRuntime) {
const int kResultSizes[] = {1, 2};
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
TRACED_FOREACH(int, result_size, kResultSizes) {
InterpreterAssemblerForTest m(this, bytecode);
Callable builtin = CodeFactory::InterpreterCEntry(isolate(), result_size);
Node* function_id = m.Int32Constant(0);
Node* first_arg = m.Int32Constant(1);
Node* arg_count = m.Int32Constant(2);
Node* context = m.Int32Constant(4);
Matcher<Node*> function_table = IsExternalConstant(
ExternalReference::runtime_function_table_address(isolate()));
Matcher<Node*> function = IsIntPtrAdd(
function_table,
IsInt32Mul(function_id, IsInt32Constant(sizeof(Runtime::Function))));
Matcher<Node*> function_entry =
m.IsLoad(MachineType::Pointer(), function,
IsIntPtrConstant(offsetof(Runtime::Function, entry)));
Node* call_runtime = m.CallRuntimeN(function_id, context, first_arg,
arg_count, result_size);
EXPECT_THAT(call_runtime,
IsCall(_, IsHeapConstant(builtin.code()), arg_count,
first_arg, function_entry, context, _, _));
}
}
}
TARGET_TEST_F(InterpreterAssemblerTest, CallJS) {
TailCallMode tail_call_modes[] = {TailCallMode::kDisallow,
TailCallMode::kAllow};
TRACED_FOREACH(TailCallMode, tail_call_mode, tail_call_modes) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerForTest m(this, bytecode);
Callable builtin =
CodeFactory::InterpreterPushArgsAndCall(isolate(), tail_call_mode);
Node* function = m.Int32Constant(0);
Node* first_arg = m.Int32Constant(1);
Node* arg_count = m.Int32Constant(2);
Node* context = m.Int32Constant(3);
Node* call_js =
m.CallJS(function, context, first_arg, arg_count, tail_call_mode);
EXPECT_THAT(call_js, IsCall(_, IsHeapConstant(builtin.code()), arg_count,
first_arg, function, context, _, _));
}
}
}
TARGET_TEST_F(InterpreterAssemblerTest, LoadTypeFeedbackVector) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerForTest m(this, bytecode);
Node* feedback_vector = m.LoadTypeFeedbackVector();
Matcher<Node*> load_function_matcher =
m.IsLoad(MachineType::AnyTagged(), IsLoadParentFramePointer(),
IsIntPtrConstant(Register::function_closure().ToOperand()
<< kPointerSizeLog2));
Matcher<Node*> load_literals_matcher = m.IsLoad(
MachineType::AnyTagged(), load_function_matcher,
IsIntPtrConstant(JSFunction::kLiteralsOffset - kHeapObjectTag));
EXPECT_THAT(feedback_vector,
m.IsLoad(MachineType::AnyTagged(), load_literals_matcher,
IsIntPtrConstant(LiteralsArray::kFeedbackVectorOffset -
kHeapObjectTag)));
}
}
} // namespace interpreter
} // namespace internal
} // namespace v8