v8/test/cctest/test-code-stub-assembler.cc
Michael Achenbach 4a17cc7c63 Revert "[api] JSFunction PromiseHook for v8::Context"
This reverts commit d5457f5fb7.

Reason for revert:
https://ci.chromium.org/p/v8/builders/ci/V8%20Linux%20-%20gc%20stress/32999

Original change's description:
> [api] JSFunction PromiseHook for v8::Context
>
> This will enable Node.js to get much better performance from async_hooks
> as currently PromiseHook delegates to C++ for the hook function and then
> Node.js delegates it right back to JavaScript, introducing several
> unnecessary barrier hops in code that gets called very, very frequently
> in modern, promise-heavy applications.
>
> This API mirrors the form of the original C++ function based PromiseHook
> API, however it is intentionally separate to allow it to use JSFunctions
> triggered within generated code to, as much as possible, avoid entering
> runtime functions entirely.
>
> Because PromiseHook has internal use also, beyond just the Node.js use,
> I have opted to leave the existing API intact and keep this separate to
> avoid conflicting with any possible behaviour expectations of other API
> users.
>
> The design ideas for this new API stemmed from discussion with some V8
> team members at a previous Node.js Diagnostics Summit hosted by Google
> in Munich, and the relevant documentation of the discussion can be found
> here: https://docs.google.com/document/d/1g8OrG5lMIUhRn1zbkutgY83MiTSMx-0NHDs8Bf-nXxM/edit#heading=h.w1bavzz80l1e
>
> A summary of the reasons for why this new design is important can be
> found here: https://docs.google.com/document/d/1vtgoT4_kjgOr-Bl605HR2T6_SC-C8uWzYaOPDK5pmRo/edit?usp=sharing
>
> Bug: v8:11025
> Change-Id: I0b403b00c37d3020b5af07b654b860659d3a7697
> Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2759188
> Reviewed-by: Marja Hölttä <marja@chromium.org>
> Reviewed-by: Camillo Bruni <cbruni@chromium.org>
> Reviewed-by: Anton Bikineev <bikineev@chromium.org>
> Reviewed-by: Igor Sheludko <ishell@chromium.org>
> Commit-Queue: Camillo Bruni <cbruni@chromium.org>
> Cr-Commit-Position: refs/heads/master@{#73858}

Bug: v8:11025
Change-Id: Ie7345c4505f39c973f9f0dbca745b591cff63f3f
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2814740
Auto-Submit: Michael Achenbach <machenbach@chromium.org>
Commit-Queue: Rubber Stamper <rubber-stamper@appspot.gserviceaccount.com>
Bot-Commit: Rubber Stamper <rubber-stamper@appspot.gserviceaccount.com>
Cr-Commit-Position: refs/heads/master@{#73862}
2021-04-08 15:48:16 +00:00

4333 lines
159 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <cmath>
#include "src/api/api-inl.h"
#include "src/base/utils/random-number-generator.h"
#include "src/builtins/builtins-promise-gen.h"
#include "src/builtins/builtins-promise.h"
#include "src/builtins/builtins-string-gen.h"
#include "src/codegen/code-factory.h"
#include "src/codegen/code-stub-assembler.h"
#include "src/compiler/node.h"
#include "src/debug/debug.h"
#include "src/execution/isolate.h"
#include "src/heap/heap-inl.h"
#include "src/numbers/hash-seed-inl.h"
#include "src/objects/hash-table-inl.h"
#include "src/objects/heap-number-inl.h"
#include "src/objects/js-array-buffer-inl.h"
#include "src/objects/js-array-inl.h"
#include "src/objects/objects-inl.h"
#include "src/objects/ordered-hash-table-inl.h"
#include "src/objects/promise-inl.h"
#include "src/objects/smi.h"
#include "src/objects/struct-inl.h"
#include "src/objects/transitions-inl.h"
#include "src/strings/char-predicates.h"
#include "test/cctest/cctest-utils.h"
#include "test/cctest/compiler/code-assembler-tester.h"
#include "test/cctest/compiler/function-tester.h"
namespace v8 {
namespace internal {
namespace compiler {
namespace {
using Label = CodeAssemblerLabel;
template <class T>
using TVariable = TypedCodeAssemblerVariable<T>;
using PromiseResolvingFunctions = TorqueStructPromiseResolvingFunctions;
intptr_t sum10(intptr_t a0, intptr_t a1, intptr_t a2, intptr_t a3, intptr_t a4,
intptr_t a5, intptr_t a6, intptr_t a7, intptr_t a8,
intptr_t a9) {
return a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9;
}
static int sum3(int a0, int a1, int a2) { return a0 + a1 + a2; }
} // namespace
TEST(CallCFunction) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
const TNode<ExternalReference> fun_constant = m.ExternalConstant(
ExternalReference::Create(reinterpret_cast<Address>(sum10)));
MachineType type_intptr = MachineType::IntPtr();
TNode<IntPtrT> const result = m.UncheckedCast<IntPtrT>(
m.CallCFunction(fun_constant, type_intptr,
std::make_pair(type_intptr, m.IntPtrConstant(0)),
std::make_pair(type_intptr, m.IntPtrConstant(1)),
std::make_pair(type_intptr, m.IntPtrConstant(2)),
std::make_pair(type_intptr, m.IntPtrConstant(3)),
std::make_pair(type_intptr, m.IntPtrConstant(4)),
std::make_pair(type_intptr, m.IntPtrConstant(5)),
std::make_pair(type_intptr, m.IntPtrConstant(6)),
std::make_pair(type_intptr, m.IntPtrConstant(7)),
std::make_pair(type_intptr, m.IntPtrConstant(8)),
std::make_pair(type_intptr, m.IntPtrConstant(9))));
m.Return(m.SmiTag(result));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call().ToHandleChecked();
CHECK_EQ(45, Handle<Smi>::cast(result)->value());
}
TEST(CallCFunctionWithCallerSavedRegisters) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
const TNode<ExternalReference> fun_constant = m.ExternalConstant(
ExternalReference::Create(reinterpret_cast<Address>(sum3)));
MachineType type_intptr = MachineType::IntPtr();
TNode<IntPtrT> const result =
m.UncheckedCast<IntPtrT>(m.CallCFunctionWithCallerSavedRegisters(
fun_constant, type_intptr, kSaveFPRegs,
std::make_pair(type_intptr, m.IntPtrConstant(0)),
std::make_pair(type_intptr, m.IntPtrConstant(1)),
std::make_pair(type_intptr, m.IntPtrConstant(2))));
m.Return(m.SmiTag(result));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call().ToHandleChecked();
CHECK_EQ(3, Handle<Smi>::cast(result)->value());
}
TEST(NumberToString) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
{
auto input = m.Parameter<Number>(1);
Label bailout(&m);
m.Return(m.NumberToString(input, &bailout));
m.BIND(&bailout);
m.Return(m.UndefinedConstant());
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
// clang-format off
double inputs[] = {
1, 2, 42, 153, -1, -100, 0, 51095154, -1241950,
std::nan("-1"), std::nan("1"), std::nan("2"),
-std::numeric_limits<double>::infinity(),
std::numeric_limits<double>::infinity(),
-0.0, -0.001, -0.5, -0.999, -1.0,
0.0, 0.001, 0.5, 0.999, 1.0,
-2147483647.9, -2147483648.0, -2147483648.5, -2147483648.9, // SmiMin.
2147483646.9, 2147483647.0, 2147483647.5, 2147483647.9, // SmiMax.
-4294967295.9, -4294967296.0, -4294967296.5, -4294967297.0, // - 2^32.
4294967295.9, 4294967296.0, 4294967296.5, 4294967297.0, // 2^32.
};
// clang-format on
const int kFullCacheSize = isolate->heap()->MaxNumberToStringCacheSize();
const int test_count = arraysize(inputs);
for (int i = 0; i < test_count; i++) {
int cache_length_before_addition = factory->number_string_cache()->length();
Handle<Object> input = factory->NewNumber(inputs[i]);
Handle<String> expected = factory->NumberToString(input);
Handle<Object> result = ft.Call(input).ToHandleChecked();
if (result->IsUndefined(isolate)) {
// Query may fail if cache was resized, in which case the entry is not
// added to the cache.
CHECK_LT(cache_length_before_addition, kFullCacheSize);
CHECK_EQ(factory->number_string_cache()->length(), kFullCacheSize);
expected = factory->NumberToString(input);
result = ft.Call(input).ToHandleChecked();
}
CHECK(!result->IsUndefined(isolate));
CHECK_EQ(*expected, *result);
}
}
namespace {
void CheckToUint32Result(uint32_t expected, Handle<Object> result) {
const int64_t result_int64 = NumberToInt64(*result);
const uint32_t result_uint32 = NumberToUint32(*result);
CHECK_EQ(static_cast<int64_t>(result_uint32), result_int64);
CHECK_EQ(expected, result_uint32);
// Ensure that the result is normalized to a Smi, i.e. a HeapNumber is only
// returned if the result is not within Smi range.
const bool expected_fits_into_intptr =
static_cast<int64_t>(expected) <=
static_cast<int64_t>(std::numeric_limits<intptr_t>::max());
if (expected_fits_into_intptr &&
Smi::IsValid(static_cast<intptr_t>(expected))) {
CHECK(result->IsSmi());
} else {
CHECK(result->IsHeapNumber());
}
}
} // namespace
TEST(ToUint32) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
const int kContextOffset = 3;
auto context = m.Parameter<Context>(kNumParams + kContextOffset);
auto input = m.Parameter<Object>(1);
m.Return(m.ToUint32(context, input));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
// clang-format off
double inputs[] = {
std::nan("-1"), std::nan("1"), std::nan("2"),
-std::numeric_limits<double>::infinity(),
std::numeric_limits<double>::infinity(),
-0.0, -0.001, -0.5, -0.999, -1.0,
0.0, 0.001, 0.5, 0.999, 1.0,
-2147483647.9, -2147483648.0, -2147483648.5, -2147483648.9, // SmiMin.
2147483646.9, 2147483647.0, 2147483647.5, 2147483647.9, // SmiMax.
-4294967295.9, -4294967296.0, -4294967296.5, -4294967297.0, // - 2^32.
4294967295.9, 4294967296.0, 4294967296.5, 4294967297.0, // 2^32.
};
uint32_t expectations[] = {
0, 0, 0,
0,
0,
0, 0, 0, 0, 4294967295,
0, 0, 0, 0, 1,
2147483649, 2147483648, 2147483648, 2147483648,
2147483646, 2147483647, 2147483647, 2147483647,
1, 0, 0, 4294967295,
4294967295, 0, 0, 1,
};
// clang-format on
STATIC_ASSERT(arraysize(inputs) == arraysize(expectations));
const int test_count = arraysize(inputs);
for (int i = 0; i < test_count; i++) {
Handle<Object> input_obj = factory->NewNumber(inputs[i]);
Handle<HeapNumber> input_num;
// Check with Smi input.
if (input_obj->IsSmi()) {
Handle<Smi> input_smi = Handle<Smi>::cast(input_obj);
Handle<Object> result = ft.Call(input_smi).ToHandleChecked();
CheckToUint32Result(expectations[i], result);
input_num = factory->NewHeapNumber(inputs[i]);
} else {
input_num = Handle<HeapNumber>::cast(input_obj);
}
// Check with HeapNumber input.
{
CHECK(input_num->IsHeapNumber());
Handle<Object> result = ft.Call(input_num).ToHandleChecked();
CheckToUint32Result(expectations[i], result);
}
}
// A couple of final cases for ToNumber conversions.
CheckToUint32Result(0, ft.Call(factory->undefined_value()).ToHandleChecked());
CheckToUint32Result(0, ft.Call(factory->null_value()).ToHandleChecked());
CheckToUint32Result(0, ft.Call(factory->false_value()).ToHandleChecked());
CheckToUint32Result(1, ft.Call(factory->true_value()).ToHandleChecked());
CheckToUint32Result(
42,
ft.Call(factory->NewStringFromAsciiChecked("0x2A")).ToHandleChecked());
ft.CheckThrows(factory->match_symbol());
}
namespace {
void IsValidPositiveSmiCase(Isolate* isolate, intptr_t value) {
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
m.Return(
m.SelectBooleanConstant(m.IsValidPositiveSmi(m.IntPtrConstant(value))));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
MaybeHandle<Object> maybe_handle = ft.Call();
bool expected = i::PlatformSmiTagging::IsValidSmi(value) && (value >= 0);
if (expected) {
CHECK(maybe_handle.ToHandleChecked()->IsTrue(isolate));
} else {
CHECK(maybe_handle.ToHandleChecked()->IsFalse(isolate));
}
}
} // namespace
TEST(IsValidPositiveSmi) {
Isolate* isolate(CcTest::InitIsolateOnce());
IsValidPositiveSmiCase(isolate, -1);
IsValidPositiveSmiCase(isolate, 0);
IsValidPositiveSmiCase(isolate, 1);
IsValidPositiveSmiCase(isolate, 0x3FFFFFFFU);
IsValidPositiveSmiCase(isolate, 0xC0000000U);
IsValidPositiveSmiCase(isolate, 0x40000000U);
IsValidPositiveSmiCase(isolate, 0xBFFFFFFFU);
using int32_limits = std::numeric_limits<int32_t>;
IsValidPositiveSmiCase(isolate, int32_limits::max());
IsValidPositiveSmiCase(isolate, int32_limits::min());
#if V8_TARGET_ARCH_64_BIT
IsValidPositiveSmiCase(isolate,
static_cast<intptr_t>(int32_limits::max()) + 1);
IsValidPositiveSmiCase(isolate,
static_cast<intptr_t>(int32_limits::min()) - 1);
#endif
}
TEST(ConvertToRelativeIndex) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
enum Result { kFound, kNotFound };
{
auto index = m.Parameter<Number>(1);
auto length_number = m.Parameter<Number>(2);
auto expected_relative_index = m.Parameter<Number>(3);
TNode<UintPtrT> length = m.ChangeUintPtrNumberToUintPtr(length_number);
TNode<UintPtrT> expected =
m.ChangeUintPtrNumberToUintPtr(expected_relative_index);
TNode<UintPtrT> result = m.ConvertToRelativeIndex(index, length);
m.Return(m.SelectBooleanConstant(m.WordEqual(result, expected)));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
const double kMaxSmi = static_cast<double>(kSmiMaxValue);
const double kMaxInt32 =
static_cast<double>(std::numeric_limits<int32_t>::max());
const double kMaxUInt32 =
static_cast<double>(std::numeric_limits<uint32_t>::max());
const double kMaxUIntPtr =
static_cast<double>(std::numeric_limits<uintptr_t>::max());
struct {
double index;
double length;
double expected_result;
} test_cases[] = {
// Simple Smi-range cases.
{0, 0, 0},
{0, 42, 0},
{5, 42, 5},
{100, 42, 42},
{-10, 153, 153 - 10},
{-200, 153, 0},
// Beyond Smi-range index cases.
{0, kMaxSmi, 0},
{-153, kMaxSmi, kMaxSmi - 153},
{kMaxSmi + 153, kMaxSmi, kMaxSmi},
{kMaxSmi * 33, kMaxSmi, kMaxSmi},
{-kMaxSmi, kMaxSmi, 0},
{-kMaxSmi - 1, kMaxSmi, 0},
{-kMaxSmi - 153, kMaxSmi, 0},
{-kMaxSmi * 33, kMaxSmi, 0},
{-std::numeric_limits<double>::infinity(), 153, 0},
{std::numeric_limits<double>::infinity(), 424242, 424242},
// Beyond Smi-range length cases.
{kMaxSmi + 2, kMaxSmi + 1, kMaxSmi + 1},
{-kMaxSmi + 2, kMaxSmi + 1, 3},
{kMaxInt32 + 1, kMaxInt32, kMaxInt32},
{-kMaxInt32 + 1, kMaxInt32, 1},
{kMaxUInt32 + 1, kMaxUInt32, kMaxUInt32},
{-42, kMaxUInt32, kMaxUInt32 - 42},
{-kMaxUInt32 - 1, kMaxUInt32, 0},
{-kMaxUInt32, kMaxUInt32, 0},
{-kMaxUInt32 + 1, kMaxUInt32, 1},
{-kMaxUInt32 + 5, kMaxUInt32, 5},
{-kMaxUInt32 + 5, kMaxUInt32 + 1, 6},
{-kMaxSmi * 33, kMaxSmi * 153, kMaxSmi * (153 - 33)},
{0, kMaxSafeInteger, 0},
{kMaxSmi, kMaxSafeInteger, kMaxSmi},
{kMaxSmi * 153, kMaxSafeInteger, kMaxSmi * 153},
{-10, kMaxSafeInteger, kMaxSafeInteger - 10},
{-kMaxSafeInteger, kMaxSafeInteger, 0},
{-kMaxSafeInteger + 1, kMaxSafeInteger, 1},
{-kMaxSafeInteger + 42, kMaxSafeInteger, 42},
{kMaxSafeInteger - 153, kMaxSafeInteger, kMaxSafeInteger - 153},
{kMaxSafeInteger - 1, kMaxSafeInteger, kMaxSafeInteger - 1},
{kMaxSafeInteger, kMaxSafeInteger, kMaxSafeInteger},
{kMaxSafeInteger + 1, kMaxSafeInteger, kMaxSafeInteger},
{kMaxSafeInteger + 42, kMaxSafeInteger, kMaxSafeInteger},
{kMaxSafeInteger * 11, kMaxSafeInteger, kMaxSafeInteger},
};
Factory* factory = isolate->factory();
for (size_t i = 0; i < arraysize(test_cases); i++) {
if (test_cases[i].length > kMaxUIntPtr) {
// Test cases where length does not fit into uintptr are not valid, so
// skip them instead of ifdef'ing the test cases above.
continue;
}
Handle<Object> index = factory->NewNumber(test_cases[i].index);
Handle<Object> length = factory->NewNumber(test_cases[i].length);
Handle<Object> expected = factory->NewNumber(test_cases[i].expected_result);
ft.CheckTrue(index, length, expected);
}
}
TEST(FixedArrayAccessSmiIndex) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
Handle<FixedArray> array = isolate->factory()->NewFixedArray(5);
array->set(4, Smi::FromInt(733));
m.Return(m.LoadFixedArrayElement(m.HeapConstant(array),
m.SmiTag(m.IntPtrConstant(4)), 0));
FunctionTester ft(asm_tester.GenerateCode());
MaybeHandle<Object> result = ft.Call();
CHECK_EQ(733, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(LoadHeapNumberValue) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
Handle<HeapNumber> number = isolate->factory()->NewHeapNumber(1234);
m.Return(m.SmiFromInt32(m.Signed(
m.ChangeFloat64ToUint32(m.LoadHeapNumberValue(m.HeapConstant(number))))));
FunctionTester ft(asm_tester.GenerateCode());
MaybeHandle<Object> result = ft.Call();
CHECK_EQ(1234, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(LoadInstanceType) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
Handle<HeapObject> undefined = isolate->factory()->undefined_value();
m.Return(m.SmiFromInt32(m.LoadInstanceType(m.HeapConstant(undefined))));
FunctionTester ft(asm_tester.GenerateCode());
MaybeHandle<Object> result = ft.Call();
CHECK_EQ(InstanceType::ODDBALL_TYPE,
Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(DecodeWordFromWord32) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
using TestBitField = base::BitField<unsigned, 3, 3>;
m.Return(m.SmiTag(
m.Signed(m.DecodeWordFromWord32<TestBitField>(m.Int32Constant(0x2F)))));
FunctionTester ft(asm_tester.GenerateCode());
MaybeHandle<Object> result = ft.Call();
// value = 00101111
// mask = 00111000
// result = 101
CHECK_EQ(5, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(JSFunction) {
const int kNumParams = 2; // left, right.
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
m.Return(m.SmiFromInt32(m.Int32Add(m.SmiToInt32(m.Parameter<Smi>(1)),
m.SmiToInt32(m.Parameter<Smi>(2)))));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
MaybeHandle<Object> result = ft.Call(handle(Smi::FromInt(23), isolate),
handle(Smi::FromInt(34), isolate));
CHECK_EQ(57, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(ComputeIntegerHash) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
m.Return(m.SmiFromInt32(m.UncheckedCast<Int32T>(
m.ComputeSeededHash(m.SmiUntag(m.Parameter<Smi>(1))))));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
for (int i = 0; i < 1024; i++) {
int k = rand_gen.NextInt(Smi::kMaxValue);
Handle<Smi> key(Smi::FromInt(k), isolate);
Handle<Object> result = ft.Call(key).ToHandleChecked();
uint32_t hash = ComputeSeededHash(k, HashSeed(isolate));
Smi expected = Smi::FromInt(hash);
CHECK_EQ(expected, Smi::cast(*result));
}
}
TEST(ToString) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
m.Return(m.ToStringImpl(m.Parameter<Context>(kNumParams + 3),
m.Parameter<Object>(1)));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> test_cases = isolate->factory()->NewFixedArray(5);
Handle<FixedArray> smi_test = isolate->factory()->NewFixedArray(2);
smi_test->set(0, Smi::FromInt(42));
Handle<String> str(isolate->factory()->InternalizeUtf8String("42"));
smi_test->set(1, *str);
test_cases->set(0, *smi_test);
Handle<FixedArray> number_test = isolate->factory()->NewFixedArray(2);
Handle<HeapNumber> num(isolate->factory()->NewHeapNumber(3.14));
number_test->set(0, *num);
str = isolate->factory()->InternalizeUtf8String("3.14");
number_test->set(1, *str);
test_cases->set(1, *number_test);
Handle<FixedArray> string_test = isolate->factory()->NewFixedArray(2);
str = isolate->factory()->InternalizeUtf8String("test");
string_test->set(0, *str);
string_test->set(1, *str);
test_cases->set(2, *string_test);
Handle<FixedArray> oddball_test = isolate->factory()->NewFixedArray(2);
oddball_test->set(0, ReadOnlyRoots(isolate).undefined_value());
str = isolate->factory()->InternalizeUtf8String("undefined");
oddball_test->set(1, *str);
test_cases->set(3, *oddball_test);
Handle<FixedArray> tostring_test = isolate->factory()->NewFixedArray(2);
Handle<FixedArray> js_array_storage = isolate->factory()->NewFixedArray(2);
js_array_storage->set(0, Smi::FromInt(1));
js_array_storage->set(1, Smi::FromInt(2));
Handle<JSArray> js_array = isolate->factory()->NewJSArray(2);
JSArray::SetContent(js_array, js_array_storage);
tostring_test->set(0, *js_array);
str = isolate->factory()->InternalizeUtf8String("1,2");
tostring_test->set(1, *str);
test_cases->set(4, *tostring_test);
for (int i = 0; i < 5; ++i) {
Handle<FixedArray> test =
handle(FixedArray::cast(test_cases->get(i)), isolate);
Handle<Object> obj = handle(test->get(0), isolate);
Handle<String> expected = handle(String::cast(test->get(1)), isolate);
Handle<Object> result = ft.Call(obj).ToHandleChecked();
CHECK(result->IsString());
CHECK(String::Equals(isolate, Handle<String>::cast(result), expected));
}
}
TEST(TryToName) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
enum Result { kKeyIsIndex, kKeyIsUnique, kBailout };
{
auto key = m.Parameter<Object>(1);
auto expected_result = m.UncheckedParameter<MaybeObject>(2);
auto expected_arg = m.Parameter<Object>(3);
Label passed(&m), failed(&m);
Label if_keyisindex(&m), if_keyisunique(&m), if_bailout(&m);
{
TYPED_VARIABLE_DEF(IntPtrT, var_index, &m);
TYPED_VARIABLE_DEF(Name, var_unique, &m);
TYPED_VARIABLE_DEF(IntPtrT, var_expected, &m);
m.TryToName(key, &if_keyisindex, &var_index, &if_keyisunique, &var_unique,
&if_bailout);
m.BIND(&if_keyisindex);
m.GotoIfNot(m.TaggedEqual(expected_result,
m.SmiConstant(Smi::FromInt(kKeyIsIndex))),
&failed);
Label if_expectedissmi(&m), if_expectedisheapnumber(&m), check_result(&m);
m.Branch(m.TaggedIsSmi(expected_arg), &if_expectedissmi,
&if_expectedisheapnumber);
m.BIND(&if_expectedissmi);
var_expected = m.SmiUntag(m.CAST(expected_arg));
m.Goto(&check_result);
m.BIND(&if_expectedisheapnumber);
CSA_ASSERT(&m, m.IsHeapNumber(m.CAST(expected_arg)));
TNode<Float64T> value = m.LoadHeapNumberValue(m.CAST(expected_arg));
// We know this to be safe as all expected values are in intptr
// range.
var_expected = m.UncheckedCast<IntPtrT>(m.ChangeFloat64ToUintPtr(value));
m.Goto(&check_result);
m.BIND(&check_result);
m.Branch(m.IntPtrEqual(var_expected.value(), var_index.value()), &passed,
&failed);
m.BIND(&if_keyisunique);
m.GotoIfNot(m.TaggedEqual(expected_result,
m.SmiConstant(Smi::FromInt(kKeyIsUnique))),
&failed);
m.Branch(m.TaggedEqual(expected_arg, var_unique.value()), &passed,
&failed);
}
m.BIND(&if_bailout);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kBailout))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_index(Smi::FromInt(kKeyIsIndex), isolate);
Handle<Object> expect_unique(Smi::FromInt(kKeyIsUnique), isolate);
Handle<Object> expect_bailout(Smi::FromInt(kBailout), isolate);
{
// TryToName(<zero smi>) => if_keyisindex: smi value.
Handle<Object> key(Smi::zero(), isolate);
ft.CheckTrue(key, expect_index, key);
}
{
// TryToName(<positive smi>) => if_keyisindex: smi value.
Handle<Object> key(Smi::FromInt(153), isolate);
ft.CheckTrue(key, expect_index, key);
}
{
// TryToName(<negative smi>) => if_keyisindex: smi value.
// A subsequent bounds check needs to take care of this case.
Handle<Object> key(Smi::FromInt(-1), isolate);
ft.CheckTrue(key, expect_index, key);
}
{
// TryToName(<heap number with int value>) => if_keyisindex: number.
Handle<Object> key(isolate->factory()->NewHeapNumber(153));
Handle<Object> index(Smi::FromInt(153), isolate);
ft.CheckTrue(key, expect_index, index);
}
{
// TryToName(<true>) => if_keyisunique: "true".
Handle<Object> key = isolate->factory()->true_value();
Handle<Object> unique = isolate->factory()->InternalizeUtf8String("true");
ft.CheckTrue(key, expect_unique, unique);
}
{
// TryToName(<false>) => if_keyisunique: "false".
Handle<Object> key = isolate->factory()->false_value();
Handle<Object> unique = isolate->factory()->InternalizeUtf8String("false");
ft.CheckTrue(key, expect_unique, unique);
}
{
// TryToName(<null>) => if_keyisunique: "null".
Handle<Object> key = isolate->factory()->null_value();
Handle<Object> unique = isolate->factory()->InternalizeUtf8String("null");
ft.CheckTrue(key, expect_unique, unique);
}
{
// TryToName(<undefined>) => if_keyisunique: "undefined".
Handle<Object> key = isolate->factory()->undefined_value();
Handle<Object> unique =
isolate->factory()->InternalizeUtf8String("undefined");
ft.CheckTrue(key, expect_unique, unique);
}
{
// TryToName(<symbol>) => if_keyisunique: <symbol>.
Handle<Object> key = isolate->factory()->NewSymbol();
ft.CheckTrue(key, expect_unique, key);
}
{
// TryToName(<internalized string>) => if_keyisunique: <internalized string>
Handle<Object> key = isolate->factory()->InternalizeUtf8String("test");
ft.CheckTrue(key, expect_unique, key);
}
{
// TryToName(<internalized number string>) => if_keyisindex: number.
Handle<Object> key = isolate->factory()->InternalizeUtf8String("153");
Handle<Object> index(Smi::FromInt(153), isolate);
ft.CheckTrue(key, expect_index, index);
}
{
// TryToName(<internalized uncacheable number string greater than
// array index but less than MAX_SAFE_INTEGER>) => 32-bit platforms
// take the if_keyisunique path, 64-bit platforms bail out because they
// let the runtime handle the string-to-size_t parsing.
Handle<Object> key =
isolate->factory()->InternalizeUtf8String("4294967296");
#if V8_TARGET_ARCH_64_BIT
ft.CheckTrue(key, expect_bailout);
#else
ft.CheckTrue(key, expect_unique, key);
#endif
}
{
// TryToName(<internalized uncacheable number string greater than
// INT_MAX but less than array index>) => bailout.
Handle<Object> key =
isolate->factory()->InternalizeUtf8String("4294967294");
ft.CheckTrue(key, expect_bailout);
}
{
// TryToName(<internalized uncacheable number string less than
// INT_MAX>) => bailout
Handle<Object> key =
isolate->factory()->InternalizeUtf8String("2147483647");
ft.CheckTrue(key, expect_bailout);
}
{
// TryToName(<non-internalized number string>) => if_keyisindex: number.
Handle<String> key = isolate->factory()->NewStringFromAsciiChecked("153");
uint32_t dummy;
CHECK(key->AsArrayIndex(&dummy));
CHECK(key->HasHashCode());
CHECK(!key->IsInternalizedString());
Handle<Object> index(Smi::FromInt(153), isolate);
ft.CheckTrue(key, expect_index, index);
}
{
// TryToName(<number string without cached index>) => is_keyisindex: number.
Handle<String> key = isolate->factory()->NewStringFromAsciiChecked("153");
CHECK(!key->HasHashCode());
ft.CheckTrue(key, expect_bailout);
}
{
// TryToName(<non-internalized string>) => bailout.
Handle<Object> key = isolate->factory()->NewStringFromAsciiChecked("test");
ft.CheckTrue(key, expect_bailout);
}
if (FLAG_thin_strings) {
// TryToName(<thin string>) => internalized version.
Handle<String> s = isolate->factory()->NewStringFromAsciiChecked("foo");
Handle<String> internalized = isolate->factory()->InternalizeString(s);
ft.CheckTrue(s, expect_unique, internalized);
}
if (FLAG_thin_strings) {
// TryToName(<thin two-byte string>) => internalized version.
uc16 array1[] = {2001, 2002, 2003};
Handle<String> s = isolate->factory()
->NewStringFromTwoByte(ArrayVector(array1))
.ToHandleChecked();
Handle<String> internalized = isolate->factory()->InternalizeString(s);
ft.CheckTrue(s, expect_unique, internalized);
}
}
namespace {
template <typename Dictionary>
void TestEntryToIndex() {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
{
TNode<IntPtrT> entry = m.SmiUntag(m.Parameter<Smi>(1));
TNode<IntPtrT> result = m.EntryToIndex<Dictionary>(entry);
m.Return(m.SmiTag(result));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
// Test a wide range of entries but staying linear in the first 100 entries.
for (int entry = 0; entry < Dictionary::kMaxCapacity;
entry = entry * 1.01 + 1) {
Handle<Object> result =
ft.Call(handle(Smi::FromInt(entry), isolate)).ToHandleChecked();
CHECK_EQ(Dictionary::EntryToIndex(InternalIndex(entry)),
Smi::ToInt(*result));
}
}
TEST(NameDictionaryEntryToIndex) { TestEntryToIndex<NameDictionary>(); }
TEST(GlobalDictionaryEntryToIndex) { TestEntryToIndex<GlobalDictionary>(); }
} // namespace
namespace {
template <typename Dictionary>
void TestNameDictionaryLookup() {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
enum Result { kFound, kNotFound };
{
auto dictionary = m.Parameter<Dictionary>(1);
auto unique_name = m.Parameter<Name>(2);
auto expected_result = m.Parameter<Smi>(3);
auto expected_arg = m.Parameter<Object>(4);
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m);
TVariable<IntPtrT> var_name_index(&m);
m.NameDictionaryLookup<Dictionary>(dictionary, unique_name, &if_found,
&var_name_index, &if_not_found);
m.BIND(&if_found);
m.GotoIfNot(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&failed);
m.Branch(
m.WordEqual(m.SmiUntag(m.CAST(expected_arg)), var_name_index.value()),
&passed, &failed);
m.BIND(&if_not_found);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
Handle<Dictionary> dictionary = Dictionary::New(isolate, 40);
PropertyDetails fake_details = PropertyDetails::Empty();
Factory* factory = isolate->factory();
Handle<Name> keys[] = {
factory->InternalizeUtf8String("0"),
factory->InternalizeUtf8String("42"),
factory->InternalizeUtf8String("-153"),
factory->InternalizeUtf8String("0.0"),
factory->InternalizeUtf8String("4.2"),
factory->InternalizeUtf8String(""),
factory->InternalizeUtf8String("name"),
factory->NewSymbol(),
factory->NewPrivateSymbol(),
};
for (size_t i = 0; i < arraysize(keys); i++) {
Handle<Object> value =
factory->NewPropertyCell(keys[i], fake_details, keys[i]);
dictionary =
Dictionary::Add(isolate, dictionary, keys[i], value, fake_details);
}
for (size_t i = 0; i < arraysize(keys); i++) {
InternalIndex entry = dictionary->FindEntry(isolate, keys[i]);
int name_index =
Dictionary::EntryToIndex(entry) + Dictionary::kEntryKeyIndex;
CHECK(entry.is_found());
Handle<Object> expected_name_index(Smi::FromInt(name_index), isolate);
ft.CheckTrue(dictionary, keys[i], expect_found, expected_name_index);
}
Handle<Name> non_existing_keys[] = {
factory->InternalizeUtf8String("1"),
factory->InternalizeUtf8String("-42"),
factory->InternalizeUtf8String("153"),
factory->InternalizeUtf8String("-1.0"),
factory->InternalizeUtf8String("1.3"),
factory->InternalizeUtf8String("a"),
factory->InternalizeUtf8String("boom"),
factory->NewSymbol(),
factory->NewPrivateSymbol(),
};
for (size_t i = 0; i < arraysize(non_existing_keys); i++) {
InternalIndex entry = dictionary->FindEntry(isolate, non_existing_keys[i]);
CHECK(entry.is_not_found());
ft.CheckTrue(dictionary, non_existing_keys[i], expect_not_found);
}
}
} // namespace
TEST(NameDictionaryLookup) { TestNameDictionaryLookup<NameDictionary>(); }
TEST(GlobalDictionaryLookup) { TestNameDictionaryLookup<GlobalDictionary>(); }
TEST(NumberDictionaryLookup) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
enum Result { kFound, kNotFound };
{
auto dictionary = m.Parameter<NumberDictionary>(1);
TNode<IntPtrT> key = m.SmiUntag(m.Parameter<Smi>(2));
auto expected_result = m.Parameter<Smi>(3);
auto expected_arg = m.Parameter<Object>(4);
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m);
TVariable<IntPtrT> var_entry(&m);
m.NumberDictionaryLookup(dictionary, key, &if_found, &var_entry,
&if_not_found);
m.BIND(&if_found);
m.GotoIfNot(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&failed);
m.Branch(m.WordEqual(m.SmiUntag(m.CAST(expected_arg)), var_entry.value()),
&passed, &failed);
m.BIND(&if_not_found);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
const int kKeysCount = 1000;
Handle<NumberDictionary> dictionary =
NumberDictionary::New(isolate, kKeysCount);
uint32_t keys[kKeysCount];
Handle<Object> fake_value(Smi::FromInt(42), isolate);
PropertyDetails fake_details = PropertyDetails::Empty();
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
for (int i = 0; i < kKeysCount; i++) {
int random_key = rand_gen.NextInt(Smi::kMaxValue);
keys[i] = static_cast<uint32_t>(random_key);
if (dictionary->FindEntry(isolate, keys[i]).is_found()) continue;
dictionary = NumberDictionary::Add(isolate, dictionary, keys[i], fake_value,
fake_details);
}
// Now try querying existing keys.
for (int i = 0; i < kKeysCount; i++) {
InternalIndex entry = dictionary->FindEntry(isolate, keys[i]);
CHECK(entry.is_found());
Handle<Object> key(Smi::FromInt(keys[i]), isolate);
Handle<Object> expected_entry(Smi::FromInt(entry.as_int()), isolate);
ft.CheckTrue(dictionary, key, expect_found, expected_entry);
}
// Now try querying random keys which do not exist in the dictionary.
for (int i = 0; i < kKeysCount;) {
int random_key = rand_gen.NextInt(Smi::kMaxValue);
InternalIndex entry = dictionary->FindEntry(isolate, random_key);
if (entry.is_found()) continue;
i++;
Handle<Object> key(Smi::FromInt(random_key), isolate);
ft.CheckTrue(dictionary, key, expect_not_found);
}
}
TEST(TransitionLookup) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
enum Result { kFound, kNotFound };
class TempAssembler : public CodeStubAssembler {
public:
explicit TempAssembler(compiler::CodeAssemblerState* state)
: CodeStubAssembler(state) {}
void Generate() {
auto transitions = Parameter<TransitionArray>(1);
auto name = Parameter<Name>(2);
auto expected_result = Parameter<Smi>(3);
auto expected_arg = Parameter<Object>(4);
Label passed(this), failed(this);
Label if_found(this), if_not_found(this);
TVARIABLE(IntPtrT, var_transition_index);
TransitionLookup(name, transitions, &if_found, &var_transition_index,
&if_not_found);
BIND(&if_found);
GotoIfNot(TaggedEqual(expected_result, SmiConstant(kFound)), &failed);
Branch(TaggedEqual(expected_arg, SmiTag(var_transition_index.value())),
&passed, &failed);
BIND(&if_not_found);
Branch(TaggedEqual(expected_result, SmiConstant(kNotFound)), &passed,
&failed);
BIND(&passed);
Return(BooleanConstant(true));
BIND(&failed);
Return(BooleanConstant(false));
}
};
TempAssembler(asm_tester.state()).Generate();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
const int ATTRS_COUNT = (READ_ONLY | DONT_ENUM | DONT_DELETE) + 1;
STATIC_ASSERT(ATTRS_COUNT == 8);
const int kKeysCount = 300;
Handle<Map> root_map = Map::Create(isolate, 0);
Handle<Name> keys[kKeysCount];
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
Factory* factory = isolate->factory();
Handle<FieldType> any = FieldType::Any(isolate);
for (int i = 0; i < kKeysCount; i++) {
Handle<Name> name;
if (i % 30 == 0) {
name = factory->NewPrivateSymbol();
} else if (i % 10 == 0) {
name = factory->NewSymbol();
} else {
int random_key = rand_gen.NextInt(Smi::kMaxValue);
name = CcTest::MakeName("p", random_key);
}
keys[i] = name;
bool is_private = name->IsPrivate();
PropertyAttributes base_attributes = is_private ? DONT_ENUM : NONE;
// Ensure that all the combinations of cases are covered:
// 1) there is a "base" attributes transition
// 2) there are other non-base attributes transitions
if ((i & 1) == 0) {
CHECK(!Map::CopyWithField(isolate, root_map, name, any, base_attributes,
PropertyConstness::kMutable,
Representation::Tagged(), INSERT_TRANSITION)
.is_null());
}
if ((i & 2) == 0) {
for (int j = 0; j < ATTRS_COUNT; j++) {
PropertyAttributes attributes = static_cast<PropertyAttributes>(j);
if (attributes == base_attributes) continue;
// Don't add private symbols with enumerable attributes.
if (is_private && ((attributes & DONT_ENUM) == 0)) continue;
CHECK(!Map::CopyWithField(isolate, root_map, name, any, attributes,
PropertyConstness::kMutable,
Representation::Tagged(), INSERT_TRANSITION)
.is_null());
}
}
}
CHECK(root_map->raw_transitions()
->GetHeapObjectAssumeStrong()
.IsTransitionArray());
Handle<TransitionArray> transitions(
TransitionArray::cast(
root_map->raw_transitions()->GetHeapObjectAssumeStrong()),
isolate);
DCHECK(transitions->IsSortedNoDuplicates());
// Ensure we didn't overflow transition array and therefore all the
// combinations of cases are covered.
CHECK(TransitionsAccessor(isolate, root_map).CanHaveMoreTransitions());
// Now try querying keys.
bool positive_lookup_tested = false;
bool negative_lookup_tested = false;
for (int i = 0; i < kKeysCount; i++) {
Handle<Name> name = keys[i];
int transition_number = transitions->SearchNameForTesting(*name);
if (transition_number != TransitionArray::kNotFound) {
Handle<Smi> expected_value(
Smi::FromInt(TransitionArray::ToKeyIndex(transition_number)),
isolate);
ft.CheckTrue(transitions, name, expect_found, expected_value);
positive_lookup_tested = true;
} else {
ft.CheckTrue(transitions, name, expect_not_found);
negative_lookup_tested = true;
}
}
CHECK(positive_lookup_tested);
CHECK(negative_lookup_tested);
}
namespace {
void AddProperties(Handle<JSObject> object, Handle<Name> names[],
size_t count) {
Isolate* isolate = object->GetIsolate();
for (size_t i = 0; i < count; i++) {
Handle<Object> value(Smi::FromInt(static_cast<int>(42 + i)), isolate);
JSObject::AddProperty(isolate, object, names[i], value, NONE);
}
}
Handle<AccessorPair> CreateAccessorPair(FunctionTester* ft,
const char* getter_body,
const char* setter_body) {
Handle<AccessorPair> pair = ft->isolate->factory()->NewAccessorPair();
if (getter_body) {
pair->set_getter(*ft->NewFunction(getter_body));
}
if (setter_body) {
pair->set_setter(*ft->NewFunction(setter_body));
}
return pair;
}
void AddProperties(Handle<JSObject> object, Handle<Name> names[],
size_t names_count, Handle<Object> values[],
size_t values_count, int seed = 0) {
Isolate* isolate = object->GetIsolate();
for (size_t i = 0; i < names_count; i++) {
Handle<Object> value = values[(seed + i) % values_count];
if (value->IsAccessorPair()) {
Handle<AccessorPair> pair = Handle<AccessorPair>::cast(value);
Handle<Object> getter(pair->getter(), isolate);
Handle<Object> setter(pair->setter(), isolate);
JSObject::DefineAccessor(object, names[i], getter, setter, NONE).Check();
} else {
JSObject::AddProperty(isolate, object, names[i], value, NONE);
}
}
}
} // namespace
TEST(TryHasOwnProperty) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
enum Result { kFound, kNotFound, kBailout };
{
auto object = m.Parameter<HeapObject>(1);
auto unique_name = m.Parameter<Name>(2);
TNode<MaybeObject> expected_result = m.UncheckedParameter<MaybeObject>(3);
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m), if_bailout(&m);
TNode<Map> map = m.LoadMap(object);
TNode<Uint16T> instance_type = m.LoadMapInstanceType(map);
m.TryHasOwnProperty(object, map, instance_type, unique_name, &if_found,
&if_not_found, &if_bailout);
m.BIND(&if_found);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&passed, &failed);
m.BIND(&if_not_found);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.BIND(&if_bailout);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kBailout))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
Handle<Object> expect_bailout(Smi::FromInt(kBailout), isolate);
Factory* factory = isolate->factory();
Handle<Name> deleted_property_name =
factory->InternalizeUtf8String("deleted");
Handle<Name> names[] = {
factory->InternalizeUtf8String("a"),
factory->InternalizeUtf8String("bb"),
factory->InternalizeUtf8String("ccc"),
factory->InternalizeUtf8String("dddd"),
factory->InternalizeUtf8String("eeeee"),
factory->InternalizeUtf8String(""),
factory->InternalizeUtf8String("name"),
factory->NewSymbol(),
factory->NewPrivateSymbol(),
};
std::vector<Handle<JSObject>> objects;
{
// Fast object, no inobject properties.
int inobject_properties = 0;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names));
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK_EQ(inobject_properties, object->map().GetInObjectProperties());
CHECK(!object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, all inobject properties.
int inobject_properties = arraysize(names) * 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names));
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK_EQ(inobject_properties, object->map().GetInObjectProperties());
CHECK(!object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, half inobject properties.
int inobject_properties = arraysize(names) / 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names));
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK_EQ(inobject_properties, object->map().GetInObjectProperties());
CHECK(!object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Dictionary mode object.
Handle<JSFunction> function =
factory->NewFunctionForTesting(factory->empty_string());
Handle<JSObject> object = factory->NewJSObject(function);
AddProperties(object, names, arraysize(names));
JSObject::NormalizeProperties(isolate, object, CLEAR_INOBJECT_PROPERTIES, 0,
"test");
JSObject::AddProperty(isolate, object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name,
LanguageMode::kSloppy)
.FromJust());
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK(object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Global object.
Handle<JSFunction> function =
factory->NewFunctionForTesting(factory->empty_string());
JSFunction::EnsureHasInitialMap(function);
function->initial_map().set_instance_type(JS_GLOBAL_OBJECT_TYPE);
function->initial_map().set_is_prototype_map(true);
function->initial_map().set_is_dictionary_map(true);
function->initial_map().set_may_have_interesting_symbols(true);
Handle<JSObject> object = factory->NewJSGlobalObject(function);
AddProperties(object, names, arraysize(names));
JSObject::AddProperty(isolate, object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name,
LanguageMode::kSloppy)
.FromJust());
CHECK_EQ(JS_GLOBAL_OBJECT_TYPE, object->map().instance_type());
CHECK(object->map().is_dictionary_map());
objects.push_back(object);
}
{
for (Handle<JSObject> object : objects) {
for (size_t name_index = 0; name_index < arraysize(names); name_index++) {
Handle<Name> name = names[name_index];
CHECK(JSReceiver::HasProperty(object, name).FromJust());
ft.CheckTrue(object, name, expect_found);
}
}
}
{
Handle<Name> non_existing_names[] = {
factory->NewSymbol(),
factory->InternalizeUtf8String("ne_a"),
factory->InternalizeUtf8String("ne_bb"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("ne_ccc"),
factory->InternalizeUtf8String("ne_dddd"),
deleted_property_name,
};
for (Handle<JSObject> object : objects) {
for (size_t key_index = 0; key_index < arraysize(non_existing_names);
key_index++) {
Handle<Name> name = non_existing_names[key_index];
CHECK(!JSReceiver::HasProperty(object, name).FromJust());
ft.CheckTrue(object, name, expect_not_found);
}
}
}
{
Handle<JSFunction> function =
factory->NewFunctionForTesting(factory->empty_string());
Handle<JSProxy> object = factory->NewJSProxy(function, objects[0]);
CHECK_EQ(JS_PROXY_TYPE, object->map().instance_type());
ft.CheckTrue(object, names[0], expect_bailout);
}
{
Handle<JSObject> object = isolate->global_proxy();
CHECK_EQ(JS_GLOBAL_PROXY_TYPE, object->map().instance_type());
ft.CheckTrue(object, names[0], expect_bailout);
}
}
TEST(TryGetOwnProperty) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
Handle<Symbol> not_found_symbol = factory->NewSymbol();
Handle<Symbol> bailout_symbol = factory->NewSymbol();
{
auto object = m.Parameter<JSReceiver>(1);
auto unique_name = m.Parameter<Name>(2);
auto context = m.Parameter<Context>(kNumParams + 3);
TVariable<Object> var_value(&m);
Label if_found(&m), if_not_found(&m), if_bailout(&m);
TNode<Map> map = m.LoadMap(object);
TNode<Uint16T> instance_type = m.LoadMapInstanceType(map);
m.TryGetOwnProperty(context, object, object, map, instance_type,
unique_name, &if_found, &var_value, &if_not_found,
&if_bailout);
m.BIND(&if_found);
m.Return(m.UncheckedCast<Object>(var_value.value()));
m.BIND(&if_not_found);
m.Return(m.HeapConstant(not_found_symbol));
m.BIND(&if_bailout);
m.Return(m.HeapConstant(bailout_symbol));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Name> deleted_property_name =
factory->InternalizeUtf8String("deleted");
Handle<Name> names[] = {
factory->InternalizeUtf8String("bb"),
factory->NewSymbol(),
factory->InternalizeUtf8String("a"),
factory->InternalizeUtf8String("ccc"),
factory->InternalizeUtf8String("esajefe"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("eeeee"),
factory->InternalizeUtf8String("p1"),
factory->InternalizeUtf8String("acshw23e"),
factory->InternalizeUtf8String(""),
factory->InternalizeUtf8String("dddd"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("name"),
factory->InternalizeUtf8String("p2"),
factory->InternalizeUtf8String("p3"),
factory->InternalizeUtf8String("p4"),
factory->NewPrivateSymbol(),
};
Handle<Object> values[] = {
factory->NewFunctionForTesting(factory->empty_string()),
factory->NewSymbol(),
factory->InternalizeUtf8String("a"),
CreateAccessorPair(&ft, "() => 188;", "() => 199;"),
factory->NewFunctionForTesting(factory->InternalizeUtf8String("bb")),
factory->InternalizeUtf8String("ccc"),
CreateAccessorPair(&ft, "() => 88;", nullptr),
handle(Smi::FromInt(1), isolate),
factory->InternalizeUtf8String(""),
CreateAccessorPair(&ft, nullptr, "() => 99;"),
factory->NewHeapNumber(4.2),
handle(Smi::FromInt(153), isolate),
factory->NewJSObject(
factory->NewFunctionForTesting(factory->empty_string())),
factory->NewPrivateSymbol(),
};
STATIC_ASSERT(arraysize(values) < arraysize(names));
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
std::vector<Handle<JSObject>> objects;
{
// Fast object, no inobject properties.
int inobject_properties = 0;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK_EQ(inobject_properties, object->map().GetInObjectProperties());
CHECK(!object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, all inobject properties.
int inobject_properties = arraysize(names) * 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK_EQ(inobject_properties, object->map().GetInObjectProperties());
CHECK(!object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, half inobject properties.
int inobject_properties = arraysize(names) / 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK_EQ(inobject_properties, object->map().GetInObjectProperties());
CHECK(!object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Dictionary mode object.
Handle<JSFunction> function =
factory->NewFunctionForTesting(factory->empty_string());
Handle<JSObject> object = factory->NewJSObject(function);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
JSObject::NormalizeProperties(isolate, object, CLEAR_INOBJECT_PROPERTIES, 0,
"test");
JSObject::AddProperty(isolate, object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name,
LanguageMode::kSloppy)
.FromJust());
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK(object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Global object.
Handle<JSGlobalObject> object = isolate->global_object();
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
JSObject::AddProperty(isolate, object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name,
LanguageMode::kSloppy)
.FromJust());
CHECK_EQ(JS_GLOBAL_OBJECT_TYPE, object->map().instance_type());
CHECK(object->map().is_dictionary_map());
objects.push_back(object);
}
// TODO(ishell): test proxy and interceptors when they are supported.
{
for (Handle<JSObject> object : objects) {
for (size_t name_index = 0; name_index < arraysize(names); name_index++) {
Handle<Name> name = names[name_index];
Handle<Object> expected_value =
JSReceiver::GetProperty(isolate, object, name).ToHandleChecked();
Handle<Object> value = ft.Call(object, name).ToHandleChecked();
CHECK(expected_value->SameValue(*value));
}
}
}
{
Handle<Name> non_existing_names[] = {
factory->NewSymbol(),
factory->InternalizeUtf8String("ne_a"),
factory->InternalizeUtf8String("ne_bb"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("ne_ccc"),
factory->InternalizeUtf8String("ne_dddd"),
deleted_property_name,
};
for (Handle<JSObject> object : objects) {
for (size_t key_index = 0; key_index < arraysize(non_existing_names);
key_index++) {
Handle<Name> name = non_existing_names[key_index];
Handle<Object> expected_value =
JSReceiver::GetProperty(isolate, object, name).ToHandleChecked();
CHECK(expected_value->IsUndefined(isolate));
Handle<Object> value = ft.Call(object, name).ToHandleChecked();
CHECK_EQ(*not_found_symbol, *value);
}
}
}
{
Handle<JSFunction> function =
factory->NewFunctionForTesting(factory->empty_string());
Handle<JSProxy> object = factory->NewJSProxy(function, objects[0]);
CHECK_EQ(JS_PROXY_TYPE, object->map().instance_type());
Handle<Object> value = ft.Call(object, names[0]).ToHandleChecked();
// Proxies are not supported yet.
CHECK_EQ(*bailout_symbol, *value);
}
{
Handle<JSObject> object = isolate->global_proxy();
CHECK_EQ(JS_GLOBAL_PROXY_TYPE, object->map().instance_type());
// Global proxies are not supported yet.
Handle<Object> value = ft.Call(object, names[0]).ToHandleChecked();
CHECK_EQ(*bailout_symbol, *value);
}
}
namespace {
void AddElement(Handle<JSObject> object, uint32_t index, Handle<Object> value,
PropertyAttributes attributes = NONE) {
JSObject::AddDataElement(object, index, value, attributes);
}
} // namespace
TEST(TryLookupElement) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
enum Result { kFound, kAbsent, kNotFound, kBailout };
{
auto object = m.Parameter<HeapObject>(1);
TNode<IntPtrT> index = m.SmiUntag(m.Parameter<Smi>(2));
TNode<MaybeObject> expected_result = m.UncheckedParameter<MaybeObject>(3);
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m), if_bailout(&m), if_absent(&m);
TNode<Map> map = m.LoadMap(object);
TNode<Uint16T> instance_type = m.LoadMapInstanceType(map);
m.TryLookupElement(object, map, instance_type, index, &if_found, &if_absent,
&if_not_found, &if_bailout);
m.BIND(&if_found);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&passed, &failed);
m.BIND(&if_absent);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kAbsent))),
&passed, &failed);
m.BIND(&if_not_found);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.BIND(&if_bailout);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kBailout))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Factory* factory = isolate->factory();
Handle<Object> smi0(Smi::zero(), isolate);
Handle<Object> smi1(Smi::FromInt(1), isolate);
Handle<Object> smi7(Smi::FromInt(7), isolate);
Handle<Object> smi13(Smi::FromInt(13), isolate);
Handle<Object> smi42(Smi::FromInt(42), isolate);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_absent(Smi::FromInt(kAbsent), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
Handle<Object> expect_bailout(Smi::FromInt(kBailout), isolate);
#define CHECK_FOUND(object, index) \
CHECK(JSReceiver::HasElement(object, index).FromJust()); \
ft.CheckTrue(object, smi##index, expect_found);
#define CHECK_NOT_FOUND(object, index) \
CHECK(!JSReceiver::HasElement(object, index).FromJust()); \
ft.CheckTrue(object, smi##index, expect_not_found);
#define CHECK_ABSENT(object, index) \
{ \
Handle<Smi> smi(Smi::FromInt(index), isolate); \
LookupIterator::Key key(isolate, smi); \
LookupIterator it(isolate, object, key); \
CHECK(!JSReceiver::HasProperty(&it).FromJust()); \
ft.CheckTrue(object, smi, expect_absent); \
}
{
Handle<JSArray> object = factory->NewJSArray(0, PACKED_SMI_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 1, smi0);
CHECK_EQ(PACKED_SMI_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_NOT_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSArray> object = factory->NewJSArray(0, HOLEY_SMI_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 13, smi0);
CHECK_EQ(HOLEY_SMI_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_NOT_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSArray> object = factory->NewJSArray(0, PACKED_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 1, smi0);
CHECK_EQ(PACKED_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_NOT_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSArray> object = factory->NewJSArray(0, HOLEY_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 13, smi0);
CHECK_EQ(HOLEY_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_NOT_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
v8::Local<v8::ArrayBuffer> buffer =
v8::ArrayBuffer::New(reinterpret_cast<v8::Isolate*>(isolate), 8);
Handle<JSTypedArray> object = factory->NewJSTypedArray(
kExternalInt32Array, v8::Utils::OpenHandle(*buffer), 0, 2);
CHECK_EQ(INT32_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_ABSENT(object, -10);
CHECK_ABSENT(object, 13);
CHECK_ABSENT(object, 42);
{
std::shared_ptr<v8::BackingStore> backing_store =
buffer->GetBackingStore();
buffer->Detach();
}
CHECK_ABSENT(object, 0);
CHECK_ABSENT(object, 1);
CHECK_ABSENT(object, -10);
CHECK_ABSENT(object, 13);
CHECK_ABSENT(object, 42);
}
{
Handle<JSFunction> constructor = isolate->string_function();
Handle<JSObject> object = factory->NewJSObject(constructor);
Handle<String> str = factory->InternalizeUtf8String("ab");
Handle<JSPrimitiveWrapper>::cast(object)->set_value(*str);
AddElement(object, 13, smi0);
CHECK_EQ(FAST_STRING_WRAPPER_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSFunction> constructor = isolate->string_function();
Handle<JSObject> object = factory->NewJSObject(constructor);
Handle<String> str = factory->InternalizeUtf8String("ab");
Handle<JSPrimitiveWrapper>::cast(object)->set_value(*str);
AddElement(object, 13, smi0);
JSObject::NormalizeElements(object);
CHECK_EQ(SLOW_STRING_WRAPPER_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
// TODO(ishell): uncomment once NO_ELEMENTS kind is supported.
// {
// Handle<Map> map = Map::Create(isolate, 0);
// map->set_elements_kind(NO_ELEMENTS);
// Handle<JSObject> object = factory->NewJSObjectFromMap(map);
// CHECK_EQ(NO_ELEMENTS, object->map()->elements_kind());
//
// CHECK_NOT_FOUND(object, 0);
// CHECK_NOT_FOUND(object, 1);
// CHECK_NOT_FOUND(object, 7);
// CHECK_NOT_FOUND(object, 13);
// CHECK_NOT_FOUND(object, 42);
// }
#undef CHECK_FOUND
#undef CHECK_NOT_FOUND
#undef CHECK_ABSENT
{
Handle<JSArray> handler = factory->NewJSArray(0);
Handle<JSFunction> function =
factory->NewFunctionForTesting(factory->empty_string());
Handle<JSProxy> object = factory->NewJSProxy(function, handler);
CHECK_EQ(JS_PROXY_TYPE, object->map().instance_type());
ft.CheckTrue(object, smi0, expect_bailout);
}
{
Handle<JSObject> object = isolate->global_object();
CHECK_EQ(JS_GLOBAL_OBJECT_TYPE, object->map().instance_type());
ft.CheckTrue(object, smi0, expect_bailout);
}
{
Handle<JSObject> object = isolate->global_proxy();
CHECK_EQ(JS_GLOBAL_PROXY_TYPE, object->map().instance_type());
ft.CheckTrue(object, smi0, expect_bailout);
}
}
TEST(AllocateJSObjectFromMap) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
{
auto map = m.Parameter<Map>(1);
auto properties = m.Parameter<HeapObject>(2);
auto elements = m.Parameter<FixedArray>(3);
TNode<JSObject> result =
m.AllocateJSObjectFromMap(map, properties, elements);
CodeStubAssembler::Label done(&m);
m.GotoIfNot(m.IsJSArrayMap(map), &done);
// JS array verification requires the length field to be set.
m.StoreObjectFieldNoWriteBarrier(result, JSArray::kLengthOffset,
m.SmiConstant(0));
m.Goto(&done);
m.Bind(&done);
m.Return(result);
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Map> maps[] = {
handle(isolate->object_function()->initial_map(), isolate),
handle(isolate->array_function()->initial_map(), isolate),
};
{
Handle<FixedArray> empty_fixed_array = factory->empty_fixed_array();
Handle<PropertyArray> empty_property_array =
factory->empty_property_array();
for (size_t i = 0; i < arraysize(maps); i++) {
Handle<Map> map = maps[i];
Handle<JSObject> result = Handle<JSObject>::cast(
ft.Call(map, empty_fixed_array, empty_fixed_array).ToHandleChecked());
CHECK_EQ(result->map(), *map);
CHECK_EQ(result->property_array(), *empty_property_array);
CHECK_EQ(result->elements(), *empty_fixed_array);
CHECK(result->HasFastProperties());
#ifdef VERIFY_HEAP
isolate->heap()->Verify();
#endif
}
}
{
// TODO(cbruni): handle in-object properties
Handle<JSObject> object = Handle<JSObject>::cast(
v8::Utils::OpenHandle(*CompileRun("var object = {a:1,b:2, 1:1, 2:2}; "
"object")));
JSObject::NormalizeProperties(isolate, object, KEEP_INOBJECT_PROPERTIES, 0,
"Normalize");
Handle<HeapObject> properties =
V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL
? Handle<HeapObject>(object->property_dictionary_swiss(), isolate)
: handle(object->property_dictionary(), isolate);
Handle<JSObject> result = Handle<JSObject>::cast(
ft.Call(handle(object->map(), isolate), properties,
handle(object->elements(), isolate))
.ToHandleChecked());
CHECK_EQ(result->map(), object->map());
if (V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL) {
CHECK_EQ(result->property_dictionary_swiss(),
object->property_dictionary_swiss());
} else {
CHECK_EQ(result->property_dictionary(), object->property_dictionary());
}
CHECK(!result->HasFastProperties());
#ifdef VERIFY_HEAP
isolate->heap()->Verify();
#endif
}
}
namespace {
template <typename Dictionary>
using CSAAllocator =
std::function<TNode<Dictionary>(CodeStubAssembler&, TNode<IntPtrT>)> const&;
template <typename Dictionary>
using Allocator = std::function<Handle<Dictionary>(Isolate*, int)> const&;
// Tests that allocation code emitted by {csa_alloc} yields ordered hash tables
// identical to those produced by {alloc}.
template <typename Dictionary>
void TestDictionaryAllocation(CSAAllocator<Dictionary> csa_alloc,
Allocator<Dictionary> alloc, int max_capacity) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
{
auto capacity = m.Parameter<Smi>(1);
TNode<Dictionary> result = csa_alloc(m, m.SmiUntag(capacity));
m.Return(result);
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
{
for (int i = 0; i < max_capacity; i = i * 1.1 + 1) {
Handle<HeapObject> result = Handle<HeapObject>::cast(
ft.Call(handle(Smi::FromInt(i), isolate)).ToHandleChecked());
Handle<Dictionary> dict = alloc(isolate, i);
// Both dictionaries should be memory equal.
int size = dict->Size();
CHECK_EQ(0, memcmp(reinterpret_cast<void*>(dict->address()),
reinterpret_cast<void*>(result->address()), size));
}
}
}
} // namespace
TEST(AllocateNameDictionary) {
auto csa_alloc = [](CodeStubAssembler& m, TNode<IntPtrT> cap) {
return m.AllocateNameDictionary(cap);
};
auto alloc = [](Isolate* isolate, int capacity) {
return NameDictionary::New(isolate, capacity);
};
TestDictionaryAllocation<NameDictionary>(csa_alloc, alloc, 256);
}
TEST(AllocateOrderedNameDictionary) {
auto csa_alloc = [](CodeStubAssembler& m, TNode<IntPtrT> cap) {
return m.AllocateOrderedNameDictionary(cap);
};
auto alloc = [](Isolate* isolate, int capacity) {
return OrderedNameDictionary::Allocate(isolate, capacity).ToHandleChecked();
};
TestDictionaryAllocation<OrderedNameDictionary>(csa_alloc, alloc, 256);
}
TEST(AllocateOrderedHashSet) {
// ignoring capacitites, as the API cannot take them
auto csa_alloc = [](CodeStubAssembler& m, TNode<IntPtrT> cap) {
return m.AllocateOrderedHashSet();
};
auto alloc = [](Isolate* isolate, int capacity) {
return OrderedHashSet::Allocate(isolate, OrderedHashSet::kInitialCapacity)
.ToHandleChecked();
};
TestDictionaryAllocation<OrderedHashSet>(csa_alloc, alloc, 1);
}
TEST(AllocateOrderedHashMap) {
// ignoring capacities, as the API cannot take them
auto csa_alloc = [](CodeStubAssembler& m, TNode<IntPtrT> cap) {
return m.AllocateOrderedHashMap();
};
auto alloc = [](Isolate* isolate, int capacity) {
return OrderedHashMap::Allocate(isolate, OrderedHashMap::kInitialCapacity)
.ToHandleChecked();
};
TestDictionaryAllocation<OrderedHashMap>(csa_alloc, alloc, 1);
}
TEST(PopAndReturnFromJSBuiltinWithStackParameters) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumStackParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumStackParams);
{
CodeStubAssembler m(asm_tester.state());
m.PopAndReturn(m.SmiUntag(m.Parameter<Smi>(0)),
m.SmiConstant(Smi::FromInt(1234)));
}
// Attempt to generate code must trigger CHECK failure in RawMachineAssebler.
// PopAndReturn is not allowed in builtins with JS linkage and declared stack
// parameters.
asm_tester.GenerateCode();
}
TEST(PopAndReturnFromTFCBuiltinWithStackParameters) {
Isolate* isolate(CcTest::InitIsolateOnce());
// Setup CSA for creating TFC-style builtin with stack arguments.
// For the testing purposes we need any interface descriptor that has at
// least one argument passed on stack.
using Descriptor = FlatMapIntoArrayDescriptor;
Descriptor descriptor;
CHECK_LT(0, descriptor.GetStackParameterCount());
CodeAssemblerTester asm_tester(isolate, Descriptor());
{
CodeStubAssembler m(asm_tester.state());
m.PopAndReturn(m.SmiUntag(m.Parameter<Smi>(0)),
m.SmiConstant(Smi::FromInt(1234)));
}
// Attempt to generate code must trigger CHECK failure in RawMachineAssebler.
// PopAndReturn is not allowed in builtins with JS linkage and declared stack
// parameters.
asm_tester.GenerateCode();
}
namespace {
TNode<Object> MakeConstantNode(CodeStubAssembler& m, Handle<Object> value) {
if (value->IsSmi()) {
return m.SmiConstant(Smi::ToInt(*value));
}
return m.HeapConstant(Handle<HeapObject>::cast(value));
}
// Buids a CSA function that calls |target| function with given arguments
// |number_of_iterations| times and checks that the stack pointer values before
// the calls and after the calls are the same.
// Then this new function is called multiple times.
template <typename... Args>
void CallFunctionWithStackPointerChecks(Isolate* isolate,
Handle<Object> expected_result,
Handle<Object> target,
Handle<Object> receiver, Args... args) {
// Setup CSA for creating TFJ-style builtin.
using Descriptor = JSTrampolineDescriptor;
CodeAssemblerTester asm_tester(isolate, Descriptor());
{
CodeStubAssembler m(asm_tester.state());
TNode<Context> context = m.Parameter<Context>(Descriptor::kContext);
#ifdef V8_CC_GNU
// GetStackPointer is available only when V8_CC_GNU is defined.
const TNode<ExternalReference> get_stack_ptr = m.ExternalConstant(
ExternalReference::Create(reinterpret_cast<Address>(GetStackPointer)));
// CSA doesn't have instructions for reading current stack pointer value,
// so we use a C function that returns address of its local variable.
// This is a good-enough approximation for the stack pointer.
MachineType type_intptr = MachineType::IntPtr();
TNode<WordT> stack_pointer0 =
m.UncheckedCast<WordT>(m.CallCFunction(get_stack_ptr, type_intptr));
#endif
// CSA::CallCFunction() aligns stack pointer before the call, so off-by one
// errors will not be detected. In order to handle this we do the calls in a
// loop in order to exaggerate the effect of potentially broken stack
// pointer so that the GetStackPointer function will be able to notice it.
m.BuildFastLoop<IntPtrT>(
m.IntPtrConstant(0), m.IntPtrConstant(153),
[&](TNode<IntPtrT> index) {
TNode<Object> result = m.Call(context, MakeConstantNode(m, target),
MakeConstantNode(m, receiver),
MakeConstantNode(m, args)...);
CSA_CHECK(
&m, m.TaggedEqual(result, MakeConstantNode(m, expected_result)));
},
1, CodeStubAssembler::IndexAdvanceMode::kPost);
#ifdef V8_CC_GNU
TNode<WordT> stack_pointer1 =
m.UncheckedCast<WordT>(m.CallCFunction(get_stack_ptr, type_intptr));
CSA_CHECK(&m, m.WordEqual(stack_pointer0, stack_pointer1));
#endif
m.Return(m.SmiConstant(42));
}
FunctionTester ft(asm_tester.GenerateCode(), 1); // Include receiver.
Handle<Object> result;
for (int test_count = 0; test_count < 100; ++test_count) {
result = ft.Call().ToHandleChecked();
CHECK_EQ(Smi::FromInt(42), *result);
}
}
} // namespace
TEST(PopAndReturnConstant) {
Isolate* isolate(CcTest::InitIsolateOnce());
// Setup CSA for creating TFJ-style builtin.
using Descriptor = JSTrampolineDescriptor;
CodeAssemblerTester asm_tester(isolate, Descriptor());
const int kNumParams = 4; // Not including receiver
{
CodeStubAssembler m(asm_tester.state());
TNode<Int32T> argc =
m.UncheckedParameter<Int32T>(Descriptor::kActualArgumentsCount);
CSA_CHECK(&m, m.Word32Equal(argc, m.Int32Constant(kNumParams)));
m.PopAndReturn(m.IntPtrConstant(kNumParams + 1), // Include receiver.
m.SmiConstant(1234));
}
FunctionTester ft(asm_tester.GenerateCode(), 0);
ft.function->shared().DontAdaptArguments();
// Now call this function multiple time also checking that the stack pointer
// didn't change after the calls.
Handle<Object> receiver = isolate->factory()->undefined_value();
Handle<Smi> expected_result(Smi::FromInt(1234), isolate);
CallFunctionWithStackPointerChecks(isolate, expected_result, ft.function,
receiver,
// Pass kNumParams arguments.
Handle<Smi>(Smi::FromInt(1), isolate),
Handle<Smi>(Smi::FromInt(2), isolate),
Handle<Smi>(Smi::FromInt(3), isolate),
Handle<Smi>(Smi::FromInt(4), isolate));
}
TEST(PopAndReturnVariable) {
Isolate* isolate(CcTest::InitIsolateOnce());
// Setup CSA for creating TFJ-style builtin.
using Descriptor = JSTrampolineDescriptor;
CodeAssemblerTester asm_tester(isolate, Descriptor());
const int kNumParams = 4; // Not including receiver
{
CodeStubAssembler m(asm_tester.state());
TNode<Int32T> argc =
m.UncheckedParameter<Int32T>(Descriptor::kActualArgumentsCount);
CSA_CHECK(&m, m.Word32Equal(argc, m.Int32Constant(kNumParams)));
TNode<Int32T> argc_with_receiver = m.Int32Add(argc, m.Int32Constant(1));
m.PopAndReturn(m.ChangeInt32ToIntPtr(argc_with_receiver),
m.SmiConstant(1234));
}
FunctionTester ft(asm_tester.GenerateCode(), 0);
ft.function->shared().DontAdaptArguments();
// Now call this function multiple time also checking that the stack pointer
// didn't change after the calls.
Handle<Object> receiver = isolate->factory()->undefined_value();
Handle<Smi> expected_result(Smi::FromInt(1234), isolate);
CallFunctionWithStackPointerChecks(isolate, expected_result, ft.function,
receiver,
// Pass kNumParams arguments.
Handle<Smi>(Smi::FromInt(1), isolate),
Handle<Smi>(Smi::FromInt(2), isolate),
Handle<Smi>(Smi::FromInt(3), isolate),
Handle<Smi>(Smi::FromInt(4), isolate));
}
TEST(OneToTwoByteStringCopy) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
StringBuiltinsAssembler m(asm_tester.state());
m.CopyStringCharacters<String>(m.Parameter<String>(1), m.Parameter<String>(2),
m.IntPtrConstant(0), m.IntPtrConstant(0),
m.IntPtrConstant(5), String::ONE_BYTE_ENCODING,
String::TWO_BYTE_ENCODING);
m.Return(m.SmiConstant(Smi::FromInt(0)));
Handle<String> string1 = isolate->factory()->InternalizeUtf8String("abcde");
uc16 array[] = {1000, 1001, 1002, 1003, 1004};
Handle<String> string2 = isolate->factory()
->NewStringFromTwoByte(ArrayVector(array))
.ToHandleChecked();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.Call(string1, string2);
DisallowGarbageCollection no_gc;
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[0],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[0]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[1],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[1]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[2],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[2]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[3],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[3]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[4],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[4]);
}
TEST(OneToOneByteStringCopy) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
StringBuiltinsAssembler m(asm_tester.state());
m.CopyStringCharacters<String>(m.Parameter<String>(1), m.Parameter<String>(2),
m.IntPtrConstant(0), m.IntPtrConstant(0),
m.IntPtrConstant(5), String::ONE_BYTE_ENCODING,
String::ONE_BYTE_ENCODING);
m.Return(m.SmiConstant(Smi::FromInt(0)));
Handle<String> string1 = isolate->factory()->InternalizeUtf8String("abcde");
uint8_t array[] = {100, 101, 102, 103, 104};
Handle<String> string2 = isolate->factory()
->NewStringFromOneByte(ArrayVector(array))
.ToHandleChecked();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.Call(string1, string2);
DisallowGarbageCollection no_gc;
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[0],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[0]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[1],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[1]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[2],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[2]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[3],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[3]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[4],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[4]);
}
TEST(OneToOneByteStringCopyNonZeroStart) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
StringBuiltinsAssembler m(asm_tester.state());
m.CopyStringCharacters<String>(m.Parameter<String>(1), m.Parameter<String>(2),
m.IntPtrConstant(0), m.IntPtrConstant(3),
m.IntPtrConstant(2), String::ONE_BYTE_ENCODING,
String::ONE_BYTE_ENCODING);
m.Return(m.SmiConstant(Smi::FromInt(0)));
Handle<String> string1 = isolate->factory()->InternalizeUtf8String("abcde");
uint8_t array[] = {100, 101, 102, 103, 104};
Handle<String> string2 = isolate->factory()
->NewStringFromOneByte(ArrayVector(array))
.ToHandleChecked();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.Call(string1, string2);
DisallowGarbageCollection no_gc;
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[0],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[3]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[1],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[4]);
CHECK_EQ(100, Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[0]);
CHECK_EQ(101, Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[1]);
CHECK_EQ(102, Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[2]);
}
TEST(TwoToTwoByteStringCopy) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
StringBuiltinsAssembler m(asm_tester.state());
m.CopyStringCharacters<String>(m.Parameter<String>(1), m.Parameter<String>(2),
m.IntPtrConstant(0), m.IntPtrConstant(0),
m.IntPtrConstant(5), String::TWO_BYTE_ENCODING,
String::TWO_BYTE_ENCODING);
m.Return(m.SmiConstant(Smi::FromInt(0)));
uc16 array1[] = {2000, 2001, 2002, 2003, 2004};
Handle<String> string1 = isolate->factory()
->NewStringFromTwoByte(ArrayVector(array1))
.ToHandleChecked();
uc16 array2[] = {1000, 1001, 1002, 1003, 1004};
Handle<String> string2 = isolate->factory()
->NewStringFromTwoByte(ArrayVector(array2))
.ToHandleChecked();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.Call(string1, string2);
DisallowGarbageCollection no_gc;
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars(no_gc)[0],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[0]);
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars(no_gc)[1],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[1]);
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars(no_gc)[2],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[2]);
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars(no_gc)[3],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[3]);
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars(no_gc)[4],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[4]);
}
TEST(Arguments) {
Isolate* isolate(CcTest::InitIsolateOnce());
// Setup CSA for creating TFJ-style builtin.
using Descriptor = JSTrampolineDescriptor;
CodeAssemblerTester asm_tester(isolate, Descriptor());
{
CodeStubAssembler m(asm_tester.state());
TNode<Int32T> argc =
m.UncheckedParameter<Int32T>(Descriptor::kActualArgumentsCount);
CodeStubArguments arguments(&m, argc);
CSA_CHECK(&m, m.TaggedEqual(arguments.AtIndex(0), m.SmiConstant(12)));
CSA_CHECK(&m, m.TaggedEqual(arguments.AtIndex(1), m.SmiConstant(13)));
CSA_CHECK(&m, m.TaggedEqual(arguments.AtIndex(2), m.SmiConstant(14)));
arguments.PopAndReturn(arguments.GetReceiver());
}
FunctionTester ft(asm_tester.GenerateCode(), 0);
ft.function->shared().DontAdaptArguments();
Handle<Object> result;
result = ft.Call(Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate))
.ToHandleChecked();
// When calling with undefined object as the receiver, the CallFunction
// builtin swaps it to the global proxy object.
CHECK_EQ(*isolate->global_proxy(), *result);
result = ft.Call(Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate),
Handle<Smi>(Smi::FromInt(15), isolate))
.ToHandleChecked();
CHECK_EQ(*isolate->global_proxy(), *result);
result = ft.Call(Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate),
Handle<Smi>(Smi::FromInt(15), isolate),
Handle<Smi>(Smi::FromInt(16), isolate),
Handle<Smi>(Smi::FromInt(17), isolate),
Handle<Smi>(Smi::FromInt(18), isolate),
Handle<Smi>(Smi::FromInt(19), isolate))
.ToHandleChecked();
CHECK_EQ(*isolate->global_proxy(), *result);
}
TEST(ArgumentsForEach) {
Isolate* isolate(CcTest::InitIsolateOnce());
// Setup CSA for creating TFJ-style builtin.
using Descriptor = JSTrampolineDescriptor;
CodeAssemblerTester asm_tester(isolate, Descriptor());
{
CodeStubAssembler m(asm_tester.state());
TNode<Int32T> argc =
m.UncheckedParameter<Int32T>(Descriptor::kActualArgumentsCount);
CodeStubArguments arguments(&m, argc);
TVariable<Smi> sum(&m);
CodeAssemblerVariableList list({&sum}, m.zone());
sum = m.SmiConstant(0);
arguments.ForEach(list, [&](TNode<Object> arg) {
sum = m.SmiAdd(sum.value(), m.CAST(arg));
});
arguments.PopAndReturn(sum.value());
}
FunctionTester ft(asm_tester.GenerateCode(), 0);
ft.function->shared().DontAdaptArguments();
Handle<Object> result;
result = ft.Call(Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate))
.ToHandleChecked();
CHECK_EQ(Smi::FromInt(12 + 13 + 14), *result);
result = ft.Call(Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate),
Handle<Smi>(Smi::FromInt(15), isolate))
.ToHandleChecked();
CHECK_EQ(Smi::FromInt(12 + 13 + 14 + 15), *result);
result = ft.Call(Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate),
Handle<Smi>(Smi::FromInt(15), isolate),
Handle<Smi>(Smi::FromInt(16), isolate),
Handle<Smi>(Smi::FromInt(17), isolate),
Handle<Smi>(Smi::FromInt(18), isolate),
Handle<Smi>(Smi::FromInt(19), isolate))
.ToHandleChecked();
CHECK_EQ(Smi::FromInt(12 + 13 + 14 + 15 + 16 + 17 + 18 + 19), *result);
}
TEST(IsDebugActive) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
Label if_active(&m), if_not_active(&m);
m.Branch(m.IsDebugActive(), &if_active, &if_not_active);
m.BIND(&if_active);
m.Return(m.TrueConstant());
m.BIND(&if_not_active);
m.Return(m.FalseConstant());
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK(!isolate->debug()->is_active());
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
bool* debug_is_active = reinterpret_cast<bool*>(
ExternalReference::debug_is_active_address(isolate).address());
// Cheat to enable debug (TODO: do this properly).
*debug_is_active = true;
result = ft.Call().ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).true_value(), *result);
// Reset debug mode.
*debug_is_active = false;
}
// Ensure that the kShortBuiltinCallsOldSpaceSizeThreshold constant can be used
// for detecting whether the machine has >= 4GB of physical memory by checking
// the max old space size.
TEST(ShortBuiltinCallsThreshold) {
if (!V8_SHORT_BUILTIN_CALLS_BOOL) return;
const uint64_t kPhysicalMemoryThreshold = size_t{4} * GB;
size_t heap_size, old, young;
// If the physical memory is < kPhysicalMemoryThreshold then the old space
// size must be below the kShortBuiltinCallsOldSpaceThreshold.
heap_size = Heap::HeapSizeFromPhysicalMemory(kPhysicalMemoryThreshold - MB);
i::Heap::GenerationSizesFromHeapSize(heap_size, &young, &old);
CHECK_LT(old, kShortBuiltinCallsOldSpaceSizeThreshold);
// If the physical memory is >= kPhysicalMemoryThreshold then the old space
// size must be below the kShortBuiltinCallsOldSpaceThreshold.
heap_size = Heap::HeapSizeFromPhysicalMemory(kPhysicalMemoryThreshold);
i::Heap::GenerationSizesFromHeapSize(heap_size, &young, &old);
CHECK_GE(old, kShortBuiltinCallsOldSpaceSizeThreshold);
heap_size = Heap::HeapSizeFromPhysicalMemory(kPhysicalMemoryThreshold + MB);
i::Heap::GenerationSizesFromHeapSize(heap_size, &young, &old);
CHECK_GE(old, kShortBuiltinCallsOldSpaceSizeThreshold);
}
TEST(CallBuiltin) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate,
kNumParams + 1); // Include receiver.
PromiseBuiltinsAssembler m(asm_tester.state());
{
auto receiver = m.Parameter<Object>(1);
auto name = m.Parameter<Name>(2);
auto context = m.Parameter<Context>(kNumParams + 3);
auto value = m.CallBuiltin(Builtins::kGetProperty, context, receiver, name);
m.Return(value);
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Factory* factory = isolate->factory();
Handle<Name> name = factory->InternalizeUtf8String("a");
Handle<Object> value(Smi::FromInt(153), isolate);
Handle<JSObject> object = factory->NewJSObjectWithNullProto();
JSObject::AddProperty(isolate, object, name, value, NONE);
Handle<Object> result = ft.Call(object, name).ToHandleChecked();
CHECK_EQ(*value, *result);
}
TEST(TailCallBuiltin) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate,
kNumParams + 1); // Include receiver.
PromiseBuiltinsAssembler m(asm_tester.state());
{
auto receiver = m.Parameter<Object>(1);
auto name = m.Parameter<Name>(2);
auto context = m.Parameter<Context>(kNumParams + 3);
m.TailCallBuiltin(Builtins::kGetProperty, context, receiver, name);
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Factory* factory = isolate->factory();
Handle<Name> name = factory->InternalizeUtf8String("a");
Handle<Object> value(Smi::FromInt(153), isolate);
Handle<JSObject> object = factory->NewJSObjectWithNullProto();
JSObject::AddProperty(isolate, object, name, value, NONE);
Handle<Object> result = ft.Call(object, name).ToHandleChecked();
CHECK_EQ(*value, *result);
}
class AppendJSArrayCodeStubAssembler : public CodeStubAssembler {
public:
AppendJSArrayCodeStubAssembler(compiler::CodeAssemblerState* state,
ElementsKind kind)
: CodeStubAssembler(state), kind_(kind) {}
void TestAppendJSArrayImpl(Isolate* isolate, CodeAssemblerTester* csa_tester,
Handle<Object> o1, Handle<Object> o2,
Handle<Object> o3, Handle<Object> o4,
int initial_size, int result_size) {
Handle<JSArray> array = isolate->factory()->NewJSArray(
kind_, 2, initial_size, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
Object::SetElement(isolate, array, 0, Handle<Smi>(Smi::FromInt(1), isolate),
kDontThrow)
.Check();
Object::SetElement(isolate, array, 1, Handle<Smi>(Smi::FromInt(2), isolate),
kDontThrow)
.Check();
CodeStubArguments args(this, IntPtrConstant(kNumParams));
TVariable<IntPtrT> arg_index(this);
Label bailout(this);
arg_index = IntPtrConstant(0);
TNode<Smi> length = BuildAppendJSArray(kind_, HeapConstant(array), &args,
&arg_index, &bailout);
Return(length);
BIND(&bailout);
Return(SmiTag(IntPtrAdd(arg_index.value(), IntPtrConstant(2))));
FunctionTester ft(csa_tester->GenerateCode(), kNumParams);
Handle<Object> result = ft.Call(o1, o2, o3, o4).ToHandleChecked();
CHECK_EQ(kind_, array->GetElementsKind());
CHECK_EQ(result_size, Handle<Smi>::cast(result)->value());
CHECK_EQ(result_size, Smi::ToInt(array->length()));
Handle<Object> obj =
JSObject::GetElement(isolate, array, 2).ToHandleChecked();
Handle<HeapObject> undefined_value =
Handle<HeapObject>(ReadOnlyRoots(isolate).undefined_value(), isolate);
CHECK_EQ(result_size < 3 ? *undefined_value : *o1, *obj);
obj = JSObject::GetElement(isolate, array, 3).ToHandleChecked();
CHECK_EQ(result_size < 4 ? *undefined_value : *o2, *obj);
obj = JSObject::GetElement(isolate, array, 4).ToHandleChecked();
CHECK_EQ(result_size < 5 ? *undefined_value : *o3, *obj);
obj = JSObject::GetElement(isolate, array, 5).ToHandleChecked();
CHECK_EQ(result_size < 6 ? *undefined_value : *o4, *obj);
}
static void TestAppendJSArray(Isolate* isolate, ElementsKind kind, Object o1,
Object o2, Object o3, Object o4,
int initial_size, int result_size) {
CodeAssemblerTester asm_tester(isolate, kNumParams);
AppendJSArrayCodeStubAssembler m(asm_tester.state(), kind);
m.TestAppendJSArrayImpl(
isolate, &asm_tester, Handle<Object>(o1, isolate),
Handle<Object>(o2, isolate), Handle<Object>(o3, isolate),
Handle<Object>(o4, isolate), initial_size, result_size);
}
private:
static const int kNumParams = 4;
ElementsKind kind_;
};
TEST(BuildAppendJSArrayFastElement) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 6, 6);
}
TEST(BuildAppendJSArrayFastElementGrow) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 2, 6);
}
TEST(BuildAppendJSArrayFastSmiElement) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 6, 6);
}
TEST(BuildAppendJSArrayFastSmiElementGrow) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 2, 6);
}
TEST(BuildAppendJSArrayFastSmiElementObject) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
ReadOnlyRoots(isolate).undefined_value(), Smi::FromInt(6), 6, 4);
}
TEST(BuildAppendJSArrayFastSmiElementObjectGrow) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
ReadOnlyRoots(isolate).undefined_value(), Smi::FromInt(6), 2, 4);
}
TEST(BuildAppendJSArrayFastDoubleElements) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_DOUBLE_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 6, 6);
}
TEST(BuildAppendJSArrayFastDoubleElementsGrow) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_DOUBLE_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 2, 6);
}
TEST(BuildAppendJSArrayFastDoubleElementsObject) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_DOUBLE_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
ReadOnlyRoots(isolate).undefined_value(), Smi::FromInt(6), 6, 4);
}
namespace {
template <typename Stub, typename... Args>
void Recompile(Args... args) {
Stub stub(args...);
stub.DeleteStubFromCacheForTesting();
stub.GetCode();
}
} // namespace
void CustomPromiseHook(v8::PromiseHookType type, v8::Local<v8::Promise> promise,
v8::Local<v8::Value> parentPromise) {}
TEST(IsPromiseHookEnabled) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
m.Return(
m.SelectBooleanConstant(m.IsPromiseHookEnabledOrHasAsyncEventDelegate()));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
isolate->SetPromiseHook(CustomPromiseHook);
result = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).true_value(), *result);
isolate->SetPromiseHook(nullptr);
result = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
}
TEST(NewJSPromise) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 2);
const TNode<JSPromise> promise = m.NewJSPromise(context);
m.Return(promise);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result->IsJSPromise());
}
TEST(NewJSPromise2) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 2);
const TNode<JSPromise> promise =
m.NewJSPromise(context, v8::Promise::kRejected, m.SmiConstant(1));
m.Return(promise);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result->IsJSPromise());
Handle<JSPromise> js_promise = Handle<JSPromise>::cast(result);
CHECK_EQ(v8::Promise::kRejected, js_promise->status());
CHECK_EQ(Smi::FromInt(1), js_promise->result());
CHECK(!js_promise->has_handler());
}
TEST(IsSymbol) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
auto symbol = m.Parameter<HeapObject>(1);
m.Return(m.SelectBooleanConstant(m.IsSymbol(symbol)));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->NewSymbol()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).true_value(), *result);
result = ft.Call(isolate->factory()->empty_string()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
}
TEST(IsPrivateSymbol) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
auto symbol = m.Parameter<HeapObject>(1);
m.Return(m.SelectBooleanConstant(m.IsPrivateSymbol(symbol)));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->NewSymbol()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
result = ft.Call(isolate->factory()->empty_string()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
result = ft.Call(isolate->factory()->NewPrivateSymbol()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).true_value(), *result);
}
TEST(PromiseHasHandler) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 2);
const TNode<JSPromise> promise =
m.NewJSPromise(context, m.UndefinedConstant());
m.Return(m.SelectBooleanConstant(m.PromiseHasHandler(promise)));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
}
TEST(CreatePromiseResolvingFunctionsContext) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
PromiseBuiltinsAssembler m(asm_tester.state());
const auto context = m.Parameter<Context>(kNumParams + 3);
const TNode<NativeContext> native_context = m.LoadNativeContext(context);
const TNode<JSPromise> promise =
m.NewJSPromise(context, m.UndefinedConstant());
const TNode<Context> promise_context =
m.CreatePromiseResolvingFunctionsContext(
context, promise, m.BooleanConstant(false), native_context);
m.Return(promise_context);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call().ToHandleChecked();
CHECK(result->IsContext());
Handle<Context> context_js = Handle<Context>::cast(result);
CHECK_EQ(isolate->root(RootIndex::kEmptyScopeInfo), context_js->scope_info());
CHECK_EQ(*isolate->native_context(), context_js->native_context());
CHECK(context_js->get(PromiseBuiltins::kPromiseSlot).IsJSPromise());
CHECK_EQ(ReadOnlyRoots(isolate).false_value(),
context_js->get(PromiseBuiltins::kDebugEventSlot));
}
TEST(CreatePromiseResolvingFunctions) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 2);
const TNode<NativeContext> native_context = m.LoadNativeContext(context);
const TNode<JSPromise> promise =
m.NewJSPromise(context, m.UndefinedConstant());
PromiseResolvingFunctions funcs = m.CreatePromiseResolvingFunctions(
context, promise, m.BooleanConstant(false), native_context);
TNode<JSFunction> resolve = funcs.resolve;
TNode<JSFunction> reject = funcs.reject;
TNode<IntPtrT> const kSize = m.IntPtrConstant(2);
TNode<FixedArray> const arr =
m.Cast(m.AllocateFixedArray(PACKED_ELEMENTS, kSize));
m.StoreFixedArrayElement(arr, 0, resolve);
m.StoreFixedArrayElement(arr, 1, reject);
m.Return(arr);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result_obj =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result_obj->IsFixedArray());
Handle<FixedArray> result_arr = Handle<FixedArray>::cast(result_obj);
CHECK(result_arr->get(0).IsJSFunction());
CHECK(result_arr->get(1).IsJSFunction());
}
TEST(NewElementsCapacity) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate, 2);
CodeStubAssembler m(asm_tester.state());
m.Return(m.SmiTag(
m.CalculateNewElementsCapacity(m.SmiUntag(m.Parameter<Smi>(1)))));
FunctionTester ft(asm_tester.GenerateCode(), 1);
Handle<Smi> test_value = Handle<Smi>(Smi::FromInt(1), isolate);
Handle<Smi> result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(1), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(2), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(1025), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
}
TEST(NewElementsCapacitySmi) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate, 2);
CodeStubAssembler m(asm_tester.state());
m.Return(m.CalculateNewElementsCapacity(m.UncheckedParameter<Smi>(1)));
FunctionTester ft(asm_tester.GenerateCode(), 1);
Handle<Smi> test_value = Handle<Smi>(Smi::FromInt(0), isolate);
Handle<Smi> result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(1), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(2), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(1025), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
}
TEST(AllocateFunctionWithMapAndContext) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
const auto context = m.Parameter<Context>(kNumParams + 2);
const TNode<NativeContext> native_context = m.LoadNativeContext(context);
const TNode<JSPromise> promise =
m.NewJSPromise(context, m.UndefinedConstant());
TNode<Context> promise_context = m.CreatePromiseResolvingFunctionsContext(
context, promise, m.BooleanConstant(false), native_context);
TNode<Object> resolve_info =
m.PromiseCapabilityDefaultResolveSharedFunConstant();
const TNode<Object> map = m.LoadContextElement(
native_context, Context::STRICT_FUNCTION_WITHOUT_PROTOTYPE_MAP_INDEX);
const TNode<JSFunction> resolve = m.AllocateFunctionWithMapAndContext(
m.CAST(map), m.CAST(resolve_info), promise_context);
m.Return(resolve);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result_obj =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result_obj->IsJSFunction());
Handle<JSFunction> fun = Handle<JSFunction>::cast(result_obj);
CHECK_EQ(ReadOnlyRoots(isolate).empty_property_array(),
fun->property_array());
CHECK_EQ(ReadOnlyRoots(isolate).empty_fixed_array(), fun->elements());
CHECK_EQ(isolate->heap()->many_closures_cell(), fun->raw_feedback_cell());
CHECK(!fun->has_prototype_slot());
CHECK_EQ(*isolate->factory()->promise_capability_default_resolve_shared_fun(),
fun->shared());
CHECK_EQ(isolate->factory()
->promise_capability_default_resolve_shared_fun()
->GetCode(),
fun->code());
}
TEST(CreatePromiseGetCapabilitiesExecutorContext) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 2);
TNode<NativeContext> native_context = m.LoadNativeContext(context);
TNode<PromiseCapability> capability = m.CreatePromiseCapability(
m.UndefinedConstant(), m.UndefinedConstant(), m.UndefinedConstant());
TNode<Context> executor_context =
m.CreatePromiseCapabilitiesExecutorContext(native_context, capability);
m.Return(executor_context);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result_obj =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result_obj->IsContext());
Handle<Context> context_js = Handle<Context>::cast(result_obj);
CHECK_EQ(PromiseBuiltins::kCapabilitiesContextLength, context_js->length());
CHECK_EQ(isolate->root(RootIndex::kEmptyScopeInfo), context_js->scope_info());
CHECK_EQ(*isolate->native_context(), context_js->native_context());
CHECK(
context_js->get(PromiseBuiltins::kCapabilitySlot).IsPromiseCapability());
}
TEST(NewPromiseCapability) {
Isolate* isolate(CcTest::InitIsolateOnce());
{ // Builtin Promise
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate,
kNumParams + 1); // Include receiver.
PromiseBuiltinsAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 3);
const TNode<NativeContext> native_context = m.LoadNativeContext(context);
const TNode<Object> promise_constructor =
m.LoadContextElement(native_context, Context::PROMISE_FUNCTION_INDEX);
const TNode<Oddball> debug_event = m.TrueConstant();
const TNode<Object> capability =
m.CallBuiltin(Builtins::kNewPromiseCapability, context,
promise_constructor, debug_event);
m.Return(capability);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result_obj = ft.Call().ToHandleChecked();
CHECK(result_obj->IsPromiseCapability());
Handle<PromiseCapability> result =
Handle<PromiseCapability>::cast(result_obj);
CHECK(result->promise().IsJSPromise());
CHECK(result->resolve().IsJSFunction());
CHECK(result->reject().IsJSFunction());
CHECK_EQ(
*isolate->factory()->promise_capability_default_reject_shared_fun(),
JSFunction::cast(result->reject()).shared());
CHECK_EQ(
*isolate->factory()->promise_capability_default_resolve_shared_fun(),
JSFunction::cast(result->resolve()).shared());
Handle<JSFunction> callbacks[] = {
handle(JSFunction::cast(result->resolve()), isolate),
handle(JSFunction::cast(result->reject()), isolate)};
for (auto&& callback : callbacks) {
Handle<Context> context(Context::cast(callback->context()), isolate);
CHECK_EQ(isolate->root(RootIndex::kEmptyScopeInfo),
context->scope_info());
CHECK_EQ(*isolate->native_context(), context->native_context());
CHECK_EQ(PromiseBuiltins::kPromiseContextLength, context->length());
CHECK_EQ(context->get(PromiseBuiltins::kPromiseSlot), result->promise());
}
}
{ // Custom Promise
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate,
kNumParams + 1); // Include receiver.
PromiseBuiltinsAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 3);
auto constructor = m.Parameter<Object>(1);
const TNode<Oddball> debug_event = m.TrueConstant();
const TNode<Object> capability = m.CallBuiltin(
Builtins::kNewPromiseCapability, context, constructor, debug_event);
m.Return(capability);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<JSFunction> constructor_fn =
Handle<JSFunction>::cast(v8::Utils::OpenHandle(*CompileRun(
"(function FakePromise(executor) {"
" var self = this;"
" function resolve(value) { self.resolvedValue = value; }"
" function reject(reason) { self.rejectedReason = reason; }"
" executor(resolve, reject);"
"})")));
Handle<Object> result_obj = ft.Call(constructor_fn).ToHandleChecked();
CHECK(result_obj->IsPromiseCapability());
Handle<PromiseCapability> result =
Handle<PromiseCapability>::cast(result_obj);
CHECK(result->promise().IsJSObject());
Handle<JSObject> promise(JSObject::cast(result->promise()), isolate);
CHECK_EQ(constructor_fn->prototype_or_initial_map(), promise->map());
CHECK(result->resolve().IsJSFunction());
CHECK(result->reject().IsJSFunction());
Handle<String> resolved_str =
isolate->factory()->NewStringFromAsciiChecked("resolvedStr");
Handle<String> rejected_str =
isolate->factory()->NewStringFromAsciiChecked("rejectedStr");
Handle<Object> argv1[] = {resolved_str};
Handle<Object> ret =
Execution::Call(isolate, handle(result->resolve(), isolate),
isolate->factory()->undefined_value(), 1, argv1)
.ToHandleChecked();
Handle<Object> prop1 =
JSReceiver::GetProperty(isolate, promise, "resolvedValue")
.ToHandleChecked();
CHECK_EQ(*resolved_str, *prop1);
Handle<Object> argv2[] = {rejected_str};
ret = Execution::Call(isolate, handle(result->reject(), isolate),
isolate->factory()->undefined_value(), 1, argv2)
.ToHandleChecked();
Handle<Object> prop2 =
JSReceiver::GetProperty(isolate, promise, "rejectedReason")
.ToHandleChecked();
CHECK_EQ(*rejected_str, *prop2);
}
}
TEST(DirectMemoryTest8BitWord32Immediate) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
int8_t buffer[] = {1, 2, 4, 8, 17, 33, 65, 127};
const int element_count = 8;
Label bad(&m);
TNode<RawPtrT> buffer_node = m.PointerConstant(buffer);
for (size_t i = 0; i < element_count; ++i) {
for (size_t j = 0; j < element_count; ++j) {
TNode<Uint8T> loaded =
m.LoadBufferData<Uint8T>(buffer_node, static_cast<int>(i));
TNode<Word32T> masked = m.Word32And(loaded, m.Int32Constant(buffer[j]));
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
}
}
m.Return(m.SmiConstant(1));
m.BIND(&bad);
m.Return(m.SmiConstant(0));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK_EQ(1, ft.CallChecked<Smi>()->value());
}
TEST(DirectMemoryTest16BitWord32Immediate) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
int16_t buffer[] = {156, 2234, 4544, 8444, 1723, 3888, 658, 1278};
const int element_count = 8;
Label bad(&m);
TNode<RawPtrT> buffer_node = m.PointerConstant(buffer);
for (size_t i = 0; i < element_count; ++i) {
for (size_t j = 0; j < element_count; ++j) {
TNode<Uint16T> loaded = m.LoadBufferData<Uint16T>(
buffer_node, static_cast<int>(i * sizeof(int16_t)));
TNode<Word32T> masked = m.Word32And(loaded, m.Int32Constant(buffer[j]));
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
}
}
m.Return(m.SmiConstant(1));
m.BIND(&bad);
m.Return(m.SmiConstant(0));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK_EQ(1, ft.CallChecked<Smi>()->value());
}
TEST(DirectMemoryTest8BitWord32) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
int8_t buffer[] = {1, 2, 4, 8, 17, 33, 65, 127, 67, 38};
const int element_count = 10;
Label bad(&m);
TNode<Uint32T> constants[element_count];
TNode<RawPtrT> buffer_node = m.PointerConstant(buffer);
for (size_t i = 0; i < element_count; ++i) {
constants[i] = m.LoadBufferData<Uint8T>(buffer_node, static_cast<int>(i));
}
for (size_t i = 0; i < element_count; ++i) {
for (size_t j = 0; j < element_count; ++j) {
TNode<Uint8T> loaded =
m.LoadBufferData<Uint8T>(buffer_node, static_cast<int>(i));
TNode<Word32T> masked = m.Word32And(loaded, constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
masked = m.Word32And(constants[i], constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
}
}
m.Return(m.SmiConstant(1));
m.BIND(&bad);
m.Return(m.SmiConstant(0));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK_EQ(1, ft.CallChecked<Smi>()->value());
}
TEST(DirectMemoryTest16BitWord32) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
int16_t buffer[] = {1, 2, 4, 8, 12345, 33, 65, 255, 67, 3823};
const int element_count = 10;
Label bad(&m);
TNode<Uint32T> constants[element_count];
TNode<RawPtrT> buffer_node1 = m.PointerConstant(buffer);
for (size_t i = 0; i < element_count; ++i) {
constants[i] = m.LoadBufferData<Uint16T>(
buffer_node1, static_cast<int>(i * sizeof(int16_t)));
}
TNode<RawPtrT> buffer_node2 = m.PointerConstant(buffer);
for (size_t i = 0; i < element_count; ++i) {
for (size_t j = 0; j < element_count; ++j) {
TNode<Uint16T> loaded = m.LoadBufferData<Uint16T>(
buffer_node1, static_cast<int>(i * sizeof(int16_t)));
TNode<Word32T> masked = m.Word32And(loaded, constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
// Force a memory access relative to a high-number register.
loaded = m.LoadBufferData<Uint16T>(buffer_node2,
static_cast<int>(i * sizeof(int16_t)));
masked = m.Word32And(loaded, constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
masked = m.Word32And(constants[i], constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
}
}
m.Return(m.SmiConstant(1));
m.BIND(&bad);
m.Return(m.SmiConstant(0));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK_EQ(1, ft.CallChecked<Smi>()->value());
}
TEST(LoadJSArrayElementsMap) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 3);
TNode<NativeContext> native_context = m.LoadNativeContext(context);
TNode<Int32T> kind = m.SmiToInt32(m.Parameter<Smi>(1));
m.Return(m.LoadJSArrayElementsMap(kind, native_context));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
for (int kind = 0; kind <= HOLEY_DOUBLE_ELEMENTS; kind++) {
Handle<Map> csa_result =
ft.CallChecked<Map>(handle(Smi::FromInt(kind), isolate));
ElementsKind elements_kind = static_cast<ElementsKind>(kind);
Handle<Map> result(
isolate->native_context()->GetInitialJSArrayMap(elements_kind),
isolate);
CHECK_EQ(*csa_result, *result);
}
}
TEST(IsWhiteSpaceOrLineTerminator) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{ // Returns true if whitespace, false otherwise.
CodeStubAssembler m(asm_tester.state());
Label if_true(&m), if_false(&m);
m.Branch(m.IsWhiteSpaceOrLineTerminator(
m.UncheckedCast<Uint16T>(m.SmiToInt32(m.Parameter<Smi>(1)))),
&if_true, &if_false);
m.BIND(&if_true);
m.Return(m.TrueConstant());
m.BIND(&if_false);
m.Return(m.FalseConstant());
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> true_value = ft.true_value();
Handle<Object> false_value = ft.false_value();
for (uc16 c = 0; c < 0xFFFF; c++) {
Handle<Object> expected_value =
IsWhiteSpaceOrLineTerminator(c) ? true_value : false_value;
ft.CheckCall(expected_value, handle(Smi::FromInt(c), isolate));
}
}
TEST(BranchIfNumberRelationalComparison) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* f = isolate->factory();
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
Label return_true(&m), return_false(&m);
m.BranchIfNumberRelationalComparison(
Operation::kGreaterThanOrEqual, m.Parameter<Number>(1),
m.Parameter<Number>(2), &return_true, &return_false);
m.BIND(&return_true);
m.Return(m.BooleanConstant(true));
m.BIND(&return_false);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.CheckTrue(f->NewNumber(0), f->NewNumber(0));
ft.CheckTrue(f->NewNumber(1), f->NewNumber(0));
ft.CheckTrue(f->NewNumber(1), f->NewNumber(1));
ft.CheckFalse(f->NewNumber(0), f->NewNumber(1));
ft.CheckFalse(f->NewNumber(-1), f->NewNumber(0));
ft.CheckTrue(f->NewNumber(-1), f->NewNumber(-1));
ft.CheckTrue(f->NewNumber(-1), f->NewNumber(-1.5));
ft.CheckFalse(f->NewNumber(-1.5), f->NewNumber(-1));
ft.CheckTrue(f->NewNumber(-1.5), f->NewNumber(-1.5));
}
TEST(IsNumberArrayIndex) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
auto number = m.Parameter<Number>(1);
m.Return(
m.SmiFromInt32(m.UncheckedCast<Int32T>(m.IsNumberArrayIndex(number))));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
double indices[] = {Smi::kMinValue,
-11,
-1,
0,
1,
2,
Smi::kMaxValue,
-11.0,
-11.1,
-2.0,
-1.0,
-0.0,
0.0,
0.00001,
0.1,
1,
2,
Smi::kMinValue - 1.0,
Smi::kMinValue + 1.0,
Smi::kMinValue + 1.2,
kMaxInt + 1.2,
kMaxInt - 10.0,
kMaxInt - 1.0,
kMaxInt,
kMaxInt + 1.0,
kMaxInt + 10.0};
for (size_t i = 0; i < arraysize(indices); i++) {
Handle<Object> index = isolate->factory()->NewNumber(indices[i]);
uint32_t array_index;
CHECK_EQ(index->ToArrayIndex(&array_index),
(ft.CallChecked<Smi>(index)->value() == 1));
}
}
TEST(NumberMinMax) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester_min(isolate,
kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester_min.state());
m.Return(m.NumberMin(m.Parameter<Number>(1), m.Parameter<Number>(2)));
}
FunctionTester ft_min(asm_tester_min.GenerateCode(), kNumParams);
CodeAssemblerTester asm_tester_max(isolate,
kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester_max.state());
m.Return(m.NumberMax(m.Parameter<Number>(1), m.Parameter<Number>(2)));
}
FunctionTester ft_max(asm_tester_max.GenerateCode(), kNumParams);
// Test smi values.
Handle<Smi> smi_1(Smi::FromInt(1), isolate);
Handle<Smi> smi_2(Smi::FromInt(2), isolate);
Handle<Smi> smi_5(Smi::FromInt(5), isolate);
CHECK_EQ(ft_min.CallChecked<Smi>(smi_1, smi_2)->value(), 1);
CHECK_EQ(ft_min.CallChecked<Smi>(smi_2, smi_1)->value(), 1);
CHECK_EQ(ft_max.CallChecked<Smi>(smi_1, smi_2)->value(), 2);
CHECK_EQ(ft_max.CallChecked<Smi>(smi_2, smi_1)->value(), 2);
// Test double values.
Handle<Object> double_a = isolate->factory()->NewNumber(2.5);
Handle<Object> double_b = isolate->factory()->NewNumber(3.5);
Handle<Object> nan =
isolate->factory()->NewNumber(std::numeric_limits<double>::quiet_NaN());
Handle<Object> infinity = isolate->factory()->NewNumber(V8_INFINITY);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(double_a, double_b)->value(), 2.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(double_b, double_a)->value(), 2.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(infinity, double_a)->value(), 2.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(double_a, infinity)->value(), 2.5);
CHECK(std::isnan(ft_min.CallChecked<HeapNumber>(nan, double_a)->value()));
CHECK(std::isnan(ft_min.CallChecked<HeapNumber>(double_a, nan)->value()));
CHECK_EQ(ft_max.CallChecked<HeapNumber>(double_a, double_b)->value(), 3.5);
CHECK_EQ(ft_max.CallChecked<HeapNumber>(double_b, double_a)->value(), 3.5);
CHECK_EQ(ft_max.CallChecked<HeapNumber>(infinity, double_a)->value(),
V8_INFINITY);
CHECK_EQ(ft_max.CallChecked<HeapNumber>(double_a, infinity)->value(),
V8_INFINITY);
CHECK(std::isnan(ft_max.CallChecked<HeapNumber>(nan, double_a)->value()));
CHECK(std::isnan(ft_max.CallChecked<HeapNumber>(double_a, nan)->value()));
// Mixed smi/double values.
CHECK_EQ(ft_max.CallChecked<HeapNumber>(smi_1, double_b)->value(), 3.5);
CHECK_EQ(ft_max.CallChecked<HeapNumber>(double_b, smi_1)->value(), 3.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(smi_5, double_b)->value(), 3.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(double_b, smi_5)->value(), 3.5);
}
TEST(NumberAddSub) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester_add(isolate,
kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester_add.state());
m.Return(m.NumberAdd(m.Parameter<Number>(1), m.Parameter<Number>(2)));
}
FunctionTester ft_add(asm_tester_add.GenerateCode(), kNumParams);
CodeAssemblerTester asm_tester_sub(isolate,
kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester_sub.state());
m.Return(m.NumberSub(m.Parameter<Number>(1), m.Parameter<Number>(2)));
}
FunctionTester ft_sub(asm_tester_sub.GenerateCode(), kNumParams);
// Test smi values.
Handle<Smi> smi_1(Smi::FromInt(1), isolate);
Handle<Smi> smi_2(Smi::FromInt(2), isolate);
CHECK_EQ(ft_add.CallChecked<Smi>(smi_1, smi_2)->value(), 3);
CHECK_EQ(ft_sub.CallChecked<Smi>(smi_2, smi_1)->value(), 1);
// Test double values.
Handle<Object> double_a = isolate->factory()->NewNumber(2.5);
Handle<Object> double_b = isolate->factory()->NewNumber(3.0);
CHECK_EQ(ft_add.CallChecked<HeapNumber>(double_a, double_b)->value(), 5.5);
CHECK_EQ(ft_sub.CallChecked<HeapNumber>(double_a, double_b)->value(), -.5);
// Test overflow.
Handle<Smi> smi_max(Smi::FromInt(Smi::kMaxValue), isolate);
Handle<Smi> smi_min(Smi::FromInt(Smi::kMinValue), isolate);
CHECK_EQ(ft_add.CallChecked<HeapNumber>(smi_max, smi_1)->value(),
static_cast<double>(Smi::kMaxValue) + 1);
CHECK_EQ(ft_sub.CallChecked<HeapNumber>(smi_min, smi_1)->value(),
static_cast<double>(Smi::kMinValue) - 1);
// Test mixed smi/double values.
CHECK_EQ(ft_add.CallChecked<HeapNumber>(smi_1, double_a)->value(), 3.5);
CHECK_EQ(ft_add.CallChecked<HeapNumber>(double_a, smi_1)->value(), 3.5);
CHECK_EQ(ft_sub.CallChecked<HeapNumber>(smi_1, double_a)->value(), -1.5);
CHECK_EQ(ft_sub.CallChecked<HeapNumber>(double_a, smi_1)->value(), 1.5);
}
TEST(CloneEmptyFixedArray) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
m.Return(m.CloneFixedArray(m.Parameter<FixedArrayBase>(1)));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->empty_fixed_array());
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(0, result.length());
CHECK_EQ(*(isolate->factory()->empty_fixed_array()), result);
}
TEST(CloneFixedArray) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
m.Return(m.CloneFixedArray(m.Parameter<FixedArrayBase>(1)));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(5, result.length());
CHECK(result.get(0).IsTheHole(isolate));
CHECK_EQ(Smi::cast(result.get(1)).value(), 1234);
CHECK(result.get(2).IsTheHole(isolate));
CHECK(result.get(3).IsTheHole(isolate));
CHECK(result.get(4).IsTheHole(isolate));
}
TEST(CloneFixedArrayCOW) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
m.Return(m.CloneFixedArray(m.Parameter<FixedArrayBase>(1)));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
source->set_map(ReadOnlyRoots(isolate).fixed_cow_array_map());
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(*source, result);
}
TEST(ExtractFixedArrayCOWForceCopy) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
CodeStubAssembler::ExtractFixedArrayFlags flags;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays;
base::Optional<TNode<Smi>> constant(m.SmiConstant(0));
m.Return(m.ExtractFixedArray(m.Parameter<FixedArrayBase>(1), constant,
base::Optional<TNode<Smi>>(base::nullopt),
base::Optional<TNode<Smi>>(base::nullopt),
flags));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
source->set_map(ReadOnlyRoots(isolate).fixed_cow_array_map());
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_NE(*source, result);
CHECK_EQ(5, result.length());
CHECK(result.get(0).IsTheHole(isolate));
CHECK_EQ(Smi::cast(result.get(1)).value(), 1234);
CHECK(result.get(2).IsTheHole(isolate));
CHECK(result.get(3).IsTheHole(isolate));
CHECK(result.get(4).IsTheHole(isolate));
}
TEST(ExtractFixedArraySimple) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
CodeStubAssembler::ExtractFixedArrayFlags flags;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kDontCopyCOW;
base::Optional<TNode<IntPtrT>> p1_untagged(m.SmiUntag(m.Parameter<Smi>(2)));
base::Optional<TNode<IntPtrT>> p2_untagged(m.SmiUntag(m.Parameter<Smi>(3)));
m.Return(m.ExtractFixedArray(
m.Parameter<FixedArrayBase>(1), p1_untagged, p2_untagged,
base::Optional<TNode<IntPtrT>>(base::nullopt), flags));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw =
ft.Call(source, Handle<Smi>(Smi::FromInt(1), isolate),
Handle<Smi>(Smi::FromInt(2), isolate))
.ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result.length());
CHECK_EQ(Smi::cast(result.get(0)).value(), 1234);
CHECK(result.get(1).IsTheHole(isolate));
}
TEST(ExtractFixedArraySimpleSmiConstant) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
CodeStubAssembler::ExtractFixedArrayFlags flags;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kDontCopyCOW;
base::Optional<TNode<Smi>> constant_1(m.SmiConstant(1));
base::Optional<TNode<Smi>> constant_2(m.SmiConstant(2));
m.Return(m.ExtractFixedArray(
m.Parameter<FixedArrayBase>(1), constant_1, constant_2,
base::Optional<TNode<Smi>>(base::nullopt), flags));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result.length());
CHECK_EQ(Smi::cast(result.get(0)).value(), 1234);
CHECK(result.get(1).IsTheHole(isolate));
}
TEST(ExtractFixedArraySimpleIntPtrConstant) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
CodeStubAssembler::ExtractFixedArrayFlags flags;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kDontCopyCOW;
base::Optional<TNode<IntPtrT>> constant_1(m.IntPtrConstant(1));
base::Optional<TNode<IntPtrT>> constant_2(m.IntPtrConstant(2));
m.Return(m.ExtractFixedArray(
m.Parameter<FixedArrayBase>(1), constant_1, constant_2,
base::Optional<TNode<IntPtrT>>(base::nullopt), flags));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result.length());
CHECK_EQ(Smi::cast(result.get(0)).value(), 1234);
CHECK(result.get(1).IsTheHole(isolate));
}
TEST(ExtractFixedArraySimpleIntPtrConstantNoDoubles) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
base::Optional<TNode<IntPtrT>> constant_1(m.IntPtrConstant(1));
base::Optional<TNode<IntPtrT>> constant_2(m.IntPtrConstant(2));
m.Return(m.ExtractFixedArray(
m.Parameter<FixedArrayBase>(1), constant_1, constant_2,
base::Optional<TNode<IntPtrT>>(base::nullopt),
CodeStubAssembler::ExtractFixedArrayFlag::kFixedArrays));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result.length());
CHECK_EQ(Smi::cast(result.get(0)).value(), 1234);
CHECK(result.get(1).IsTheHole(isolate));
}
TEST(ExtractFixedArraySimpleIntPtrParameters) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
base::Optional<TNode<IntPtrT>> p1_untagged(m.SmiUntag(m.Parameter<Smi>(2)));
base::Optional<TNode<IntPtrT>> p2_untagged(m.SmiUntag(m.Parameter<Smi>(3)));
m.Return(m.ExtractFixedArray(m.Parameter<FixedArrayBase>(1), p1_untagged,
p2_untagged));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw =
ft.Call(source, Handle<Smi>(Smi::FromInt(1), isolate),
Handle<Smi>(Smi::FromInt(2), isolate))
.ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result.length());
CHECK_EQ(Smi::cast(result.get(0)).value(), 1234);
CHECK(result.get(1).IsTheHole(isolate));
Handle<FixedDoubleArray> source_double = Handle<FixedDoubleArray>::cast(
isolate->factory()->NewFixedDoubleArray(5));
source_double->set(0, 10);
source_double->set(1, 11);
source_double->set(2, 12);
source_double->set(3, 13);
source_double->set(4, 14);
Handle<Object> double_result_raw =
ft.Call(source_double, Handle<Smi>(Smi::FromInt(1), isolate),
Handle<Smi>(Smi::FromInt(2), isolate))
.ToHandleChecked();
FixedDoubleArray double_result = FixedDoubleArray::cast(*double_result_raw);
CHECK_EQ(2, double_result.length());
CHECK_EQ(double_result.get_scalar(0), 11);
CHECK_EQ(double_result.get_scalar(1), 12);
}
TEST(SingleInputPhiElimination) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
TVariable<Smi> temp1(&m);
TVariable<Smi> temp2(&m);
Label temp_label(&m, {&temp1, &temp2});
Label end_label(&m, {&temp1, &temp2});
temp1 = m.Parameter<Smi>(1);
temp2 = m.Parameter<Smi>(1);
m.Branch(m.TaggedEqual(m.UncheckedParameter<Object>(0),
m.UncheckedParameter<Object>(1)),
&end_label, &temp_label);
m.BIND(&temp_label);
temp1 = m.Parameter<Smi>(2);
temp2 = m.Parameter<Smi>(2);
m.Goto(&end_label);
m.BIND(&end_label);
m.Return(m.UncheckedCast<Object>(temp1.value()));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
// Generating code without an assert is enough to make sure that the
// single-input phi is properly eliminated.
}
TEST(SmallOrderedHashMapAllocate) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
auto capacity = m.Parameter<Smi>(1);
m.Return(m.AllocateSmallOrderedHashMap(m.SmiToIntPtr(capacity)));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Factory* factory = isolate->factory();
int capacity = SmallOrderedHashMap::kMinCapacity;
while (capacity <= SmallOrderedHashMap::kMaxCapacity) {
Handle<SmallOrderedHashMap> expected =
factory->NewSmallOrderedHashMap(capacity);
Handle<Object> result_raw =
ft.Call(Handle<Smi>(Smi::FromInt(capacity), isolate)).ToHandleChecked();
Handle<SmallOrderedHashMap> actual = Handle<SmallOrderedHashMap>(
SmallOrderedHashMap::cast(*result_raw), isolate);
CHECK_EQ(capacity, actual->Capacity());
CHECK_EQ(0, actual->NumberOfElements());
CHECK_EQ(0, actual->NumberOfDeletedElements());
CHECK_EQ(capacity / SmallOrderedHashMap::kLoadFactor,
actual->NumberOfBuckets());
CHECK_EQ(0, memcmp(reinterpret_cast<void*>(expected->address()),
reinterpret_cast<void*>(actual->address()),
SmallOrderedHashMap::SizeFor(capacity)));
#ifdef VERIFY_HEAP
actual->SmallOrderedHashMapVerify(isolate);
#endif
capacity = capacity << 1;
}
#ifdef VERIFY_HEAP
isolate->heap()->Verify();
#endif
}
TEST(SmallOrderedHashSetAllocate) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
auto capacity = m.Parameter<Smi>(1);
m.Return(m.AllocateSmallOrderedHashSet(m.SmiToIntPtr(capacity)));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
int capacity = SmallOrderedHashSet::kMinCapacity;
Factory* factory = isolate->factory();
while (capacity <= SmallOrderedHashSet::kMaxCapacity) {
Handle<SmallOrderedHashSet> expected =
factory->NewSmallOrderedHashSet(capacity);
Handle<Object> result_raw =
ft.Call(Handle<Smi>(Smi::FromInt(capacity), isolate)).ToHandleChecked();
Handle<SmallOrderedHashSet> actual = Handle<SmallOrderedHashSet>(
SmallOrderedHashSet::cast(*result_raw), isolate);
CHECK_EQ(capacity, actual->Capacity());
CHECK_EQ(0, actual->NumberOfElements());
CHECK_EQ(0, actual->NumberOfDeletedElements());
CHECK_EQ(capacity / SmallOrderedHashSet::kLoadFactor,
actual->NumberOfBuckets());
CHECK_EQ(0, memcmp(reinterpret_cast<void*>(expected->address()),
reinterpret_cast<void*>(actual->address()),
SmallOrderedHashSet::SizeFor(capacity)));
#ifdef VERIFY_HEAP
actual->SmallOrderedHashSetVerify(isolate);
#endif
capacity = capacity << 1;
}
#ifdef VERIFY_HEAP
isolate->heap()->Verify();
#endif
}
TEST(IsDoubleElementsKind) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester ft_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(ft_tester.state());
m.Return(m.SmiFromInt32(m.UncheckedCast<Int32T>(
m.IsDoubleElementsKind(m.SmiToInt32(m.Parameter<Smi>(1))))));
}
FunctionTester ft(ft_tester.GenerateCode(), kNumParams);
CHECK_EQ(
(*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(PACKED_DOUBLE_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
1);
CHECK_EQ(
(*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(HOLEY_DOUBLE_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
1);
CHECK_EQ((*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(HOLEY_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
0);
CHECK_EQ((*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(PACKED_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
0);
CHECK_EQ((*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(PACKED_SMI_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
0);
CHECK_EQ((*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(HOLEY_SMI_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
0);
CHECK_EQ((*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(DICTIONARY_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
0);
}
TEST(TestCallBuiltinInlineTrampoline) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
const int kContextOffset = 3;
auto str = m.Parameter<String>(1);
auto context = m.Parameter<Context>(kNumParams + kContextOffset);
TNode<Smi> index = m.SmiConstant(2);
m.Return(m.CallStub(Builtins::CallableFor(isolate, Builtins::kStringRepeat),
context, str, index));
AssemblerOptions options = AssemblerOptions::Default(isolate);
options.inline_offheap_trampolines = true;
options.use_pc_relative_calls_and_jumps = false;
options.isolate_independent_code = false;
FunctionTester ft(asm_tester.GenerateCode(options), kNumParams);
MaybeHandle<Object> result = ft.Call(CcTest::MakeString("abcdef"));
CHECK(String::Equals(isolate, CcTest::MakeString("abcdefabcdef"),
Handle<String>::cast(result.ToHandleChecked())));
}
// TODO(v8:9821): Remove the option to disable inlining off-heap trampolines
// along with this test.
DISABLED_TEST(TestCallBuiltinIndirectLoad) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
const int kContextOffset = 2;
auto str = m.Parameter<String>(0);
auto context = m.Parameter<Context>(kNumParams + kContextOffset);
TNode<Smi> index = m.SmiConstant(2);
m.Return(m.CallStub(Builtins::CallableFor(isolate, Builtins::kStringRepeat),
context, str, index));
AssemblerOptions options = AssemblerOptions::Default(isolate);
options.inline_offheap_trampolines = false;
options.use_pc_relative_calls_and_jumps = false;
options.isolate_independent_code = true;
FunctionTester ft(asm_tester.GenerateCode(options), kNumParams);
MaybeHandle<Object> result = ft.Call(CcTest::MakeString("abcdef"));
CHECK(String::Equals(isolate, CcTest::MakeString("abcdefabcdef"),
Handle<String>::cast(result.ToHandleChecked())));
}
TEST(InstructionSchedulingCallerSavedRegisters) {
// This is a regression test for v8:9775, where TF's instruction scheduler
// incorrectly moved pure operations in between a ArchSaveCallerRegisters and
// a ArchRestoreCallerRegisters instruction.
bool old_turbo_instruction_scheduling = FLAG_turbo_instruction_scheduling;
FLAG_turbo_instruction_scheduling = true;
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
{
TNode<IntPtrT> x = m.SmiUntag(m.Parameter<Smi>(1));
TNode<WordT> y = m.WordOr(m.WordShr(x, 1), m.IntPtrConstant(1));
TNode<ExternalReference> isolate_ptr =
m.ExternalConstant(ExternalReference::isolate_address(isolate));
m.CallCFunctionWithCallerSavedRegisters(
m.ExternalConstant(
ExternalReference::smi_lexicographic_compare_function()),
MachineType::Int32(), kSaveFPRegs,
std::make_pair(MachineType::Pointer(), isolate_ptr),
std::make_pair(MachineType::TaggedSigned(), m.SmiConstant(0)),
std::make_pair(MachineType::TaggedSigned(), m.SmiConstant(0)));
m.Return(m.SmiTag(m.Signed(m.WordOr(x, y))));
}
AssemblerOptions options = AssemblerOptions::Default(isolate);
FunctionTester ft(asm_tester.GenerateCode(options), kNumParams);
Handle<Object> input = isolate->factory()->NewNumber(8);
MaybeHandle<Object> result = ft.Call(input);
CHECK(result.ToHandleChecked()->IsSmi());
CHECK_EQ(result.ToHandleChecked()->Number(), 13);
FLAG_turbo_instruction_scheduling = old_turbo_instruction_scheduling;
}
#if V8_ENABLE_WEBASSEMBLY
TEST(WasmInt32ToHeapNumber) {
Isolate* isolate(CcTest::InitIsolateOnce());
int32_t test_values[] = {
// Smi values.
1,
0,
-1,
kSmiMaxValue,
kSmiMinValue,
// Test integers that can't be Smis (only possible if Smis are 31 bits).
#if defined(V8_HOST_ARCH_32_BIT) || defined(V8_31BIT_SMIS_ON_64BIT_ARCH)
kSmiMaxValue + 1,
kSmiMinValue - 1,
#endif
};
// FunctionTester can't handle Wasm type arguments, so for each test value,
// build a function with the arguments baked in, then generate a no-argument
// function to call.
const int kNumParams = 1;
for (size_t i = 0; i < arraysize(test_values); ++i) {
int32_t test_value = test_values[i];
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
const TNode<Int32T> arg = m.Int32Constant(test_value);
const TNode<Object> call_result = m.CallBuiltin(
Builtins::kWasmInt32ToHeapNumber, m.NoContextConstant(), arg);
m.Return(call_result);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call().ToHandleChecked();
CHECK(result->IsNumber());
Handle<Object> expected(isolate->factory()->NewNumber(test_value));
CHECK(result->StrictEquals(*expected));
}
}
int32_t NumberToInt32(Handle<Object> number) {
if (number->IsSmi()) {
return Smi::ToInt(*number);
}
if (number->IsHeapNumber()) {
double num = HeapNumber::cast(*number).value();
return DoubleToInt32(num);
}
UNREACHABLE();
}
TEST(WasmTaggedNonSmiToInt32) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
HandleScope scope(isolate);
Handle<Object> test_values[] = {
// No Smis here; the builtin can't handle them correctly.
factory->NewNumber(-0.0),
factory->NewNumber(1.5),
factory->NewNumber(-1.5),
factory->NewNumber(2 * static_cast<double>(kSmiMaxValue)),
factory->NewNumber(2 * static_cast<double>(kSmiMinValue)),
factory->NewNumber(std::numeric_limits<double>::infinity()),
factory->NewNumber(-std::numeric_limits<double>::infinity()),
factory->NewNumber(-std::numeric_limits<double>::quiet_NaN()),
};
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 3);
const auto arg = m.Parameter<Object>(1);
int32_t result = 0;
Node* base = m.IntPtrConstant(reinterpret_cast<intptr_t>(&result));
Node* value = m.CallBuiltin(Builtins::kWasmTaggedNonSmiToInt32, context, arg);
m.StoreNoWriteBarrier(MachineRepresentation::kWord32, base, value);
m.Return(m.UndefinedConstant());
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
for (size_t i = 0; i < arraysize(test_values); ++i) {
Handle<Object> test_value = test_values[i];
ft.Call(test_value);
int32_t expected = NumberToInt32(test_value);
CHECK_EQ(result, expected);
}
}
TEST(WasmFloat32ToNumber) {
Isolate* isolate(CcTest::InitIsolateOnce());
float test_values[] = {
// Smi values.
1,
0,
-1,
// Max and min Smis can't be represented as floats.
// Non-Smi values.
-0.0,
1.5,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity(),
};
// FunctionTester can't handle Wasm type arguments, so for each test value,
// build a function with the arguments baked in, then generate a no-argument
// function to call.
const int kNumParams = 1;
for (size_t i = 0; i < arraysize(test_values); ++i) {
double test_value = test_values[i];
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
const TNode<Float32T> arg = m.Float32Constant(test_value);
const TNode<Object> call_result = m.CallBuiltin(
Builtins::kWasmFloat32ToNumber, m.NoContextConstant(), arg);
m.Return(call_result);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call().ToHandleChecked();
CHECK(result->IsNumber());
Handle<Object> expected(isolate->factory()->NewNumber(test_value));
CHECK(result->StrictEquals(*expected) ||
(std::isnan(test_value) && std::isnan(result->Number())));
CHECK_EQ(result->IsSmi(), expected->IsSmi());
}
}
TEST(WasmFloat64ToNumber) {
Isolate* isolate(CcTest::InitIsolateOnce());
double test_values[] = {
// Smi values.
1,
0,
-1,
kSmiMaxValue,
kSmiMinValue,
// Non-Smi values.
-0.0,
1.5,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity(),
};
// FunctionTester can't handle Wasm type arguments, so for each test value,
// build a function with the arguments baked in, then generate a no-argument
// function to call.
const int kNumParams = 1;
for (size_t i = 0; i < arraysize(test_values); ++i) {
double test_value = test_values[i];
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
const TNode<Float64T> arg = m.Float64Constant(test_value);
const TNode<Object> call_result = m.CallBuiltin(
Builtins::kWasmFloat64ToNumber, m.NoContextConstant(), arg);
m.Return(call_result);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call().ToHandleChecked();
CHECK(result->IsNumber());
Handle<Object> expected(isolate->factory()->NewNumber(test_value));
CHECK(result->StrictEquals(*expected) ||
(std::isnan(test_value) && std::isnan(result->Number())));
CHECK_EQ(result->IsSmi(), expected->IsSmi());
}
}
double NumberToFloat64(Handle<Object> number) {
if (number->IsSmi()) {
return Smi::ToInt(*number);
}
if (number->IsHeapNumber()) {
return HeapNumber::cast(*number).value();
}
UNREACHABLE();
}
TEST(WasmTaggedToFloat64) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
HandleScope scope(isolate);
Handle<Object> test_values[] = {
// Smi values.
handle(Smi::FromInt(1), isolate),
handle(Smi::FromInt(0), isolate),
handle(Smi::FromInt(-1), isolate),
handle(Smi::FromInt(kSmiMaxValue), isolate),
handle(Smi::FromInt(kSmiMinValue), isolate),
// Test some non-Smis.
factory->NewNumber(-0.0),
factory->NewNumber(1.5),
factory->NewNumber(-1.5),
// Integer Overflows on platforms with 32 bit Smis.
#if defined(V8_HOST_ARCH_32_BIT) || defined(V8_31BIT_SMIS_ON_64BIT_ARCH)
factory->NewNumber(2 * kSmiMaxValue),
factory->NewNumber(2 * kSmiMinValue),
#endif
factory->NewNumber(std::numeric_limits<double>::infinity()),
factory->NewNumber(-std::numeric_limits<double>::infinity()),
factory->NewNumber(-std::numeric_limits<double>::quiet_NaN()),
};
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 3);
const auto arg = m.Parameter<Object>(1);
double result = 0;
Node* base = m.IntPtrConstant(reinterpret_cast<intptr_t>(&result));
Node* value = m.CallBuiltin(Builtins::kWasmTaggedToFloat64, context, arg);
m.StoreNoWriteBarrier(MachineRepresentation::kFloat64, base, value);
m.Return(m.UndefinedConstant());
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
for (size_t i = 0; i < arraysize(test_values); ++i) {
Handle<Object> test_value = test_values[i];
ft.Call(test_value);
double expected = NumberToFloat64(test_value);
if (std::isnan(expected)) {
CHECK(std::isnan(result));
} else {
CHECK_EQ(result, expected);
}
}
}
#endif // V8_ENABLE_WEBASSEMBLY
TEST(SmiUntagLeftShiftOptimization) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
TNode<TaggedIndex> param = m.UncheckedParameter<TaggedIndex>(0);
TNode<WordT> unoptimized =
m.IntPtrMul(m.TaggedIndexToIntPtr(param), m.IntPtrConstant(8));
TNode<WordT> optimized = m.WordShl(
m.BitcastTaggedToWordForTagAndSmiBits(param), 3 - kSmiTagSize);
m.StaticAssert(m.WordEqual(unoptimized, optimized));
m.Return(m.UndefinedConstant());
}
AssemblerOptions options = AssemblerOptions::Default(isolate);
FunctionTester ft(asm_tester.GenerateCode(options), kNumParams);
}
TEST(SmiUntagComparisonOptimization) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
TNode<Smi> a = m.UncheckedParameter<Smi>(0);
TNode<Smi> b = m.UncheckedParameter<Smi>(1);
TNode<BoolT> unoptimized = m.UintPtrLessThan(m.SmiUntag(a), m.SmiUntag(b));
#ifdef V8_COMPRESS_POINTERS
TNode<BoolT> optimized = m.Uint32LessThan(
m.TruncateIntPtrToInt32(m.BitcastTaggedToWordForTagAndSmiBits(a)),
m.TruncateIntPtrToInt32(m.BitcastTaggedToWordForTagAndSmiBits(b)));
#else
TNode<BoolT> optimized =
m.UintPtrLessThan(m.BitcastTaggedToWordForTagAndSmiBits(a),
m.BitcastTaggedToWordForTagAndSmiBits(b));
#endif
m.StaticAssert(m.Word32Equal(unoptimized, optimized));
m.Return(m.UndefinedConstant());
}
AssemblerOptions options = AssemblerOptions::Default(isolate);
FunctionTester ft(asm_tester.GenerateCode(options), kNumParams);
}
TEST(PopCount) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
const std::vector<std::pair<uint32_t, int>> test_cases = {
{0, 0},
{1, 1},
{(1 << 31), 1},
{0b01010101010101010101010101010101, 16},
{0b10101010101010101010101010101010, 16},
{0b11100011100000011100011111000111, 17} // arbitrarily chosen
};
for (std::pair<uint32_t, int> test_case : test_cases) {
uint32_t value32 = test_case.first;
uint64_t value64 = (static_cast<uint64_t>(value32) << 32) | value32;
int expected_pop32 = test_case.second;
int expected_pop64 = 2 * expected_pop32;
TNode<Int32T> pop32 = m.PopulationCount32(m.Uint32Constant(value32));
CSA_CHECK(&m, m.Word32Equal(pop32, m.Int32Constant(expected_pop32)));
if (m.Is64()) {
// TODO(emrich): enable once 64-bit operations are supported on 32-bit
// architectures.
TNode<Int64T> pop64 = m.PopulationCount64(m.Uint64Constant(value64));
CSA_CHECK(&m, m.Word64Equal(pop64, m.Int64Constant(expected_pop64)));
}
}
m.Return(m.UndefinedConstant());
FunctionTester ft(asm_tester.GenerateCode());
ft.Call();
}
TEST(CountTrailingZeros) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
const std::vector<std::pair<uint32_t, int>> test_cases = {
{1, 0},
{2, 1},
{(0b0101010'0000'0000), 9},
{(1 << 31), 31},
{std::numeric_limits<uint32_t>::max(), 0},
};
for (std::pair<uint32_t, int> test_case : test_cases) {
uint32_t value32 = test_case.first;
uint64_t value64 = static_cast<uint64_t>(value32) << 32;
int expected_ctz32 = test_case.second;
int expected_ctz64 = expected_ctz32 + 32;
TNode<Int32T> pop32 = m.CountTrailingZeros32(m.Uint32Constant(value32));
CSA_CHECK(&m, m.Word32Equal(pop32, m.Int32Constant(expected_ctz32)));
if (m.Is64()) {
// TODO(emrich): enable once 64-bit operations are supported on 32-bit
// architectures.
TNode<Int64T> pop64_ext =
m.CountTrailingZeros64(m.Uint64Constant(value32));
TNode<Int64T> pop64 = m.CountTrailingZeros64(m.Uint64Constant(value64));
CSA_CHECK(&m, m.Word64Equal(pop64_ext, m.Int64Constant(expected_ctz32)));
CSA_CHECK(&m, m.Word64Equal(pop64, m.Int64Constant(expected_ctz64)));
}
}
m.Return(m.UndefinedConstant());
FunctionTester ft(asm_tester.GenerateCode());
ft.Call();
}
} // namespace compiler
} // namespace internal
} // namespace v8