v8/test/cctest/test-heap.cc

3456 lines
116 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "v8.h"
#include "compilation-cache.h"
#include "execution.h"
#include "factory.h"
#include "macro-assembler.h"
#include "global-handles.h"
#include "stub-cache.h"
#include "cctest.h"
using namespace v8::internal;
// Go through all incremental marking steps in one swoop.
static void SimulateIncrementalMarking() {
MarkCompactCollector* collector = HEAP->mark_compact_collector();
IncrementalMarking* marking = HEAP->incremental_marking();
if (collector->IsConcurrentSweepingInProgress()) {
collector->WaitUntilSweepingCompleted();
}
CHECK(marking->IsMarking() || marking->IsStopped());
if (marking->IsStopped()) {
marking->Start();
}
CHECK(marking->IsMarking());
while (!marking->IsComplete()) {
marking->Step(MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD);
}
CHECK(marking->IsComplete());
}
static void CheckMap(Map* map, int type, int instance_size) {
CHECK(map->IsHeapObject());
#ifdef DEBUG
CHECK(HEAP->Contains(map));
#endif
CHECK_EQ(HEAP->meta_map(), map->map());
CHECK_EQ(type, map->instance_type());
CHECK_EQ(instance_size, map->instance_size());
}
TEST(HeapMaps) {
CcTest::InitializeVM();
CheckMap(HEAP->meta_map(), MAP_TYPE, Map::kSize);
CheckMap(HEAP->heap_number_map(), HEAP_NUMBER_TYPE, HeapNumber::kSize);
CheckMap(HEAP->fixed_array_map(), FIXED_ARRAY_TYPE, kVariableSizeSentinel);
CheckMap(HEAP->string_map(), STRING_TYPE, kVariableSizeSentinel);
}
static void CheckOddball(Isolate* isolate, Object* obj, const char* string) {
CHECK(obj->IsOddball());
bool exc;
Object* print_string =
*Execution::ToString(Handle<Object>(obj, isolate), &exc);
CHECK(String::cast(print_string)->IsUtf8EqualTo(CStrVector(string)));
}
static void CheckSmi(Isolate* isolate, int value, const char* string) {
bool exc;
Object* print_string =
*Execution::ToString(Handle<Object>(Smi::FromInt(value), isolate), &exc);
CHECK(String::cast(print_string)->IsUtf8EqualTo(CStrVector(string)));
}
static void CheckNumber(Isolate* isolate, double value, const char* string) {
Object* obj = HEAP->NumberFromDouble(value)->ToObjectChecked();
CHECK(obj->IsNumber());
bool exc;
Object* print_string =
*Execution::ToString(Handle<Object>(obj, isolate), &exc);
CHECK(String::cast(print_string)->IsUtf8EqualTo(CStrVector(string)));
}
static void CheckFindCodeObject(Isolate* isolate) {
// Test FindCodeObject
#define __ assm.
Assembler assm(isolate, NULL, 0);
__ nop(); // supported on all architectures
CodeDesc desc;
assm.GetCode(&desc);
Heap* heap = isolate->heap();
Object* code = heap->CreateCode(
desc,
Code::ComputeFlags(Code::STUB),
Handle<Code>())->ToObjectChecked();
CHECK(code->IsCode());
HeapObject* obj = HeapObject::cast(code);
Address obj_addr = obj->address();
for (int i = 0; i < obj->Size(); i += kPointerSize) {
Object* found = isolate->FindCodeObject(obj_addr + i);
CHECK_EQ(code, found);
}
Object* copy = heap->CreateCode(
desc,
Code::ComputeFlags(Code::STUB),
Handle<Code>())->ToObjectChecked();
CHECK(copy->IsCode());
HeapObject* obj_copy = HeapObject::cast(copy);
Object* not_right = isolate->FindCodeObject(obj_copy->address() +
obj_copy->Size() / 2);
CHECK(not_right != code);
}
TEST(HeapObjects) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
Heap* heap = isolate->heap();
HandleScope sc(isolate);
Object* value = heap->NumberFromDouble(1.000123)->ToObjectChecked();
CHECK(value->IsHeapNumber());
CHECK(value->IsNumber());
CHECK_EQ(1.000123, value->Number());
value = heap->NumberFromDouble(1.0)->ToObjectChecked();
CHECK(value->IsSmi());
CHECK(value->IsNumber());
CHECK_EQ(1.0, value->Number());
value = heap->NumberFromInt32(1024)->ToObjectChecked();
CHECK(value->IsSmi());
CHECK(value->IsNumber());
CHECK_EQ(1024.0, value->Number());
value = heap->NumberFromInt32(Smi::kMinValue)->ToObjectChecked();
CHECK(value->IsSmi());
CHECK(value->IsNumber());
CHECK_EQ(Smi::kMinValue, Smi::cast(value)->value());
value = heap->NumberFromInt32(Smi::kMaxValue)->ToObjectChecked();
CHECK(value->IsSmi());
CHECK(value->IsNumber());
CHECK_EQ(Smi::kMaxValue, Smi::cast(value)->value());
#ifndef V8_TARGET_ARCH_X64
// TODO(lrn): We need a NumberFromIntptr function in order to test this.
value = heap->NumberFromInt32(Smi::kMinValue - 1)->ToObjectChecked();
CHECK(value->IsHeapNumber());
CHECK(value->IsNumber());
CHECK_EQ(static_cast<double>(Smi::kMinValue - 1), value->Number());
#endif
MaybeObject* maybe_value =
heap->NumberFromUint32(static_cast<uint32_t>(Smi::kMaxValue) + 1);
value = maybe_value->ToObjectChecked();
CHECK(value->IsHeapNumber());
CHECK(value->IsNumber());
CHECK_EQ(static_cast<double>(static_cast<uint32_t>(Smi::kMaxValue) + 1),
value->Number());
maybe_value = heap->NumberFromUint32(static_cast<uint32_t>(1) << 31);
value = maybe_value->ToObjectChecked();
CHECK(value->IsHeapNumber());
CHECK(value->IsNumber());
CHECK_EQ(static_cast<double>(static_cast<uint32_t>(1) << 31),
value->Number());
// nan oddball checks
CHECK(heap->nan_value()->IsNumber());
CHECK(std::isnan(heap->nan_value()->Number()));
Handle<String> s = factory->NewStringFromAscii(CStrVector("fisk hest "));
CHECK(s->IsString());
CHECK_EQ(10, s->length());
String* object_string = String::cast(heap->Object_string());
CHECK(
Isolate::Current()->context()->global_object()->HasLocalProperty(
object_string));
// Check ToString for oddballs
CheckOddball(isolate, heap->true_value(), "true");
CheckOddball(isolate, heap->false_value(), "false");
CheckOddball(isolate, heap->null_value(), "null");
CheckOddball(isolate, heap->undefined_value(), "undefined");
// Check ToString for Smis
CheckSmi(isolate, 0, "0");
CheckSmi(isolate, 42, "42");
CheckSmi(isolate, -42, "-42");
// Check ToString for Numbers
CheckNumber(isolate, 1.1, "1.1");
CheckFindCodeObject(isolate);
}
TEST(Tagging) {
CcTest::InitializeVM();
int request = 24;
CHECK_EQ(request, static_cast<int>(OBJECT_POINTER_ALIGN(request)));
CHECK(Smi::FromInt(42)->IsSmi());
CHECK(Failure::RetryAfterGC(NEW_SPACE)->IsFailure());
CHECK_EQ(NEW_SPACE,
Failure::RetryAfterGC(NEW_SPACE)->allocation_space());
CHECK_EQ(OLD_POINTER_SPACE,
Failure::RetryAfterGC(OLD_POINTER_SPACE)->allocation_space());
CHECK(Failure::Exception()->IsFailure());
CHECK(Smi::FromInt(Smi::kMinValue)->IsSmi());
CHECK(Smi::FromInt(Smi::kMaxValue)->IsSmi());
}
TEST(GarbageCollection) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Heap* heap = isolate->heap();
Factory* factory = isolate->factory();
HandleScope sc(isolate);
// Check GC.
heap->CollectGarbage(NEW_SPACE);
Handle<String> name = factory->InternalizeUtf8String("theFunction");
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
Handle<String> prop_namex = factory->InternalizeUtf8String("theSlotx");
Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
{
HandleScope inner_scope(isolate);
// Allocate a function and keep it in global object's property.
Handle<JSFunction> function =
factory->NewFunction(name, factory->undefined_value());
Handle<Map> initial_map =
factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
function->set_initial_map(*initial_map);
Isolate::Current()->context()->global_object()->SetProperty(
*name, *function, NONE, kNonStrictMode)->ToObjectChecked();
// Allocate an object. Unrooted after leaving the scope.
Handle<JSObject> obj = factory->NewJSObject(function);
obj->SetProperty(
*prop_name, Smi::FromInt(23), NONE, kNonStrictMode)->ToObjectChecked();
obj->SetProperty(
*prop_namex, Smi::FromInt(24), NONE, kNonStrictMode)->ToObjectChecked();
CHECK_EQ(Smi::FromInt(23), obj->GetProperty(*prop_name));
CHECK_EQ(Smi::FromInt(24), obj->GetProperty(*prop_namex));
}
heap->CollectGarbage(NEW_SPACE);
// Function should be alive.
CHECK(Isolate::Current()->context()->global_object()->
HasLocalProperty(*name));
// Check function is retained.
Object* func_value = Isolate::Current()->context()->global_object()->
GetProperty(*name)->ToObjectChecked();
CHECK(func_value->IsJSFunction());
Handle<JSFunction> function(JSFunction::cast(func_value));
{
HandleScope inner_scope(isolate);
// Allocate another object, make it reachable from global.
Handle<JSObject> obj = factory->NewJSObject(function);
Isolate::Current()->context()->global_object()->SetProperty(
*obj_name, *obj, NONE, kNonStrictMode)->ToObjectChecked();
obj->SetProperty(
*prop_name, Smi::FromInt(23), NONE, kNonStrictMode)->ToObjectChecked();
}
// After gc, it should survive.
heap->CollectGarbage(NEW_SPACE);
CHECK(Isolate::Current()->context()->global_object()->
HasLocalProperty(*obj_name));
CHECK(Isolate::Current()->context()->global_object()->
GetProperty(*obj_name)->ToObjectChecked()->IsJSObject());
Object* obj = Isolate::Current()->context()->global_object()->
GetProperty(*obj_name)->ToObjectChecked();
JSObject* js_obj = JSObject::cast(obj);
CHECK_EQ(Smi::FromInt(23), js_obj->GetProperty(*prop_name));
}
static void VerifyStringAllocation(Isolate* isolate, const char* string) {
HandleScope scope(isolate);
Handle<String> s = isolate->factory()->NewStringFromUtf8(CStrVector(string));
CHECK_EQ(StrLength(string), s->length());
for (int index = 0; index < s->length(); index++) {
CHECK_EQ(static_cast<uint16_t>(string[index]), s->Get(index));
}
}
TEST(String) {
CcTest::InitializeVM();
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
VerifyStringAllocation(isolate, "a");
VerifyStringAllocation(isolate, "ab");
VerifyStringAllocation(isolate, "abc");
VerifyStringAllocation(isolate, "abcd");
VerifyStringAllocation(isolate, "fiskerdrengen er paa havet");
}
TEST(LocalHandles) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
const char* name = "Kasper the spunky";
Handle<String> string = factory->NewStringFromAscii(CStrVector(name));
CHECK_EQ(StrLength(name), string->length());
}
TEST(GlobalHandles) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Heap* heap = isolate->heap();
Factory* factory = isolate->factory();
GlobalHandles* global_handles = isolate->global_handles();
Handle<Object> h1;
Handle<Object> h2;
Handle<Object> h3;
Handle<Object> h4;
{
HandleScope scope(isolate);
Handle<Object> i = factory->NewStringFromAscii(CStrVector("fisk"));
Handle<Object> u = factory->NewNumber(1.12344);
h1 = global_handles->Create(*i);
h2 = global_handles->Create(*u);
h3 = global_handles->Create(*i);
h4 = global_handles->Create(*u);
}
// after gc, it should survive
heap->CollectGarbage(NEW_SPACE);
CHECK((*h1)->IsString());
CHECK((*h2)->IsHeapNumber());
CHECK((*h3)->IsString());
CHECK((*h4)->IsHeapNumber());
CHECK_EQ(*h3, *h1);
global_handles->Destroy(h1.location());
global_handles->Destroy(h3.location());
CHECK_EQ(*h4, *h2);
global_handles->Destroy(h2.location());
global_handles->Destroy(h4.location());
}
static bool WeakPointerCleared = false;
static void TestWeakGlobalHandleCallback(v8::Isolate* isolate,
v8::Persistent<v8::Value>* handle,
void* id) {
if (1234 == reinterpret_cast<intptr_t>(id)) WeakPointerCleared = true;
handle->Dispose(isolate);
}
TEST(WeakGlobalHandlesScavenge) {
i::FLAG_stress_compaction = false;
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Heap* heap = isolate->heap();
Factory* factory = isolate->factory();
GlobalHandles* global_handles = isolate->global_handles();
WeakPointerCleared = false;
Handle<Object> h1;
Handle<Object> h2;
{
HandleScope scope(isolate);
Handle<Object> i = factory->NewStringFromAscii(CStrVector("fisk"));
Handle<Object> u = factory->NewNumber(1.12344);
h1 = global_handles->Create(*i);
h2 = global_handles->Create(*u);
}
global_handles->MakeWeak(h2.location(),
reinterpret_cast<void*>(1234),
&TestWeakGlobalHandleCallback);
// Scavenge treats weak pointers as normal roots.
heap->PerformScavenge();
CHECK((*h1)->IsString());
CHECK((*h2)->IsHeapNumber());
CHECK(!WeakPointerCleared);
CHECK(!global_handles->IsNearDeath(h2.location()));
CHECK(!global_handles->IsNearDeath(h1.location()));
global_handles->Destroy(h1.location());
global_handles->Destroy(h2.location());
}
TEST(WeakGlobalHandlesMark) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Heap* heap = isolate->heap();
Factory* factory = isolate->factory();
GlobalHandles* global_handles = isolate->global_handles();
WeakPointerCleared = false;
Handle<Object> h1;
Handle<Object> h2;
{
HandleScope scope(isolate);
Handle<Object> i = factory->NewStringFromAscii(CStrVector("fisk"));
Handle<Object> u = factory->NewNumber(1.12344);
h1 = global_handles->Create(*i);
h2 = global_handles->Create(*u);
}
// Make sure the objects are promoted.
heap->CollectGarbage(OLD_POINTER_SPACE);
heap->CollectGarbage(NEW_SPACE);
CHECK(!heap->InNewSpace(*h1) && !heap->InNewSpace(*h2));
global_handles->MakeWeak(h2.location(),
reinterpret_cast<void*>(1234),
&TestWeakGlobalHandleCallback);
CHECK(!GlobalHandles::IsNearDeath(h1.location()));
CHECK(!GlobalHandles::IsNearDeath(h2.location()));
// Incremental marking potentially marked handles before they turned weak.
heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
CHECK((*h1)->IsString());
CHECK(WeakPointerCleared);
CHECK(!GlobalHandles::IsNearDeath(h1.location()));
global_handles->Destroy(h1.location());
}
TEST(DeleteWeakGlobalHandle) {
i::FLAG_stress_compaction = false;
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Heap* heap = isolate->heap();
Factory* factory = isolate->factory();
GlobalHandles* global_handles = isolate->global_handles();
WeakPointerCleared = false;
Handle<Object> h;
{
HandleScope scope(isolate);
Handle<Object> i = factory->NewStringFromAscii(CStrVector("fisk"));
h = global_handles->Create(*i);
}
global_handles->MakeWeak(h.location(),
reinterpret_cast<void*>(1234),
&TestWeakGlobalHandleCallback);
// Scanvenge does not recognize weak reference.
heap->PerformScavenge();
CHECK(!WeakPointerCleared);
// Mark-compact treats weak reference properly.
heap->CollectGarbage(OLD_POINTER_SPACE);
CHECK(WeakPointerCleared);
}
static const char* not_so_random_string_table[] = {
"abstract",
"boolean",
"break",
"byte",
"case",
"catch",
"char",
"class",
"const",
"continue",
"debugger",
"default",
"delete",
"do",
"double",
"else",
"enum",
"export",
"extends",
"false",
"final",
"finally",
"float",
"for",
"function",
"goto",
"if",
"implements",
"import",
"in",
"instanceof",
"int",
"interface",
"long",
"native",
"new",
"null",
"package",
"private",
"protected",
"public",
"return",
"short",
"static",
"super",
"switch",
"synchronized",
"this",
"throw",
"throws",
"transient",
"true",
"try",
"typeof",
"var",
"void",
"volatile",
"while",
"with",
0
};
static void CheckInternalizedStrings(const char** strings) {
for (const char* string = *strings; *strings != 0; string = *strings++) {
Object* a;
MaybeObject* maybe_a = HEAP->InternalizeUtf8String(string);
// InternalizeUtf8String may return a failure if a GC is needed.
if (!maybe_a->ToObject(&a)) continue;
CHECK(a->IsInternalizedString());
Object* b;
MaybeObject* maybe_b = HEAP->InternalizeUtf8String(string);
if (!maybe_b->ToObject(&b)) continue;
CHECK_EQ(b, a);
CHECK(String::cast(b)->IsUtf8EqualTo(CStrVector(string)));
}
}
TEST(StringTable) {
CcTest::InitializeVM();
CheckInternalizedStrings(not_so_random_string_table);
CheckInternalizedStrings(not_so_random_string_table);
}
TEST(FunctionAllocation) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
v8::HandleScope sc(CcTest::isolate());
Handle<String> name = factory->InternalizeUtf8String("theFunction");
Handle<JSFunction> function =
factory->NewFunction(name, factory->undefined_value());
Handle<Map> initial_map =
factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
function->set_initial_map(*initial_map);
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
Handle<JSObject> obj = factory->NewJSObject(function);
obj->SetProperty(
*prop_name, Smi::FromInt(23), NONE, kNonStrictMode)->ToObjectChecked();
CHECK_EQ(Smi::FromInt(23), obj->GetProperty(*prop_name));
// Check that we can add properties to function objects.
function->SetProperty(
*prop_name, Smi::FromInt(24), NONE, kNonStrictMode)->ToObjectChecked();
CHECK_EQ(Smi::FromInt(24), function->GetProperty(*prop_name));
}
TEST(ObjectProperties) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
v8::HandleScope sc(CcTest::isolate());
String* object_string = String::cast(HEAP->Object_string());
Object* raw_object = Isolate::Current()->context()->global_object()->
GetProperty(object_string)->ToObjectChecked();
JSFunction* object_function = JSFunction::cast(raw_object);
Handle<JSFunction> constructor(object_function);
Handle<JSObject> obj = factory->NewJSObject(constructor);
Handle<String> first = factory->InternalizeUtf8String("first");
Handle<String> second = factory->InternalizeUtf8String("second");
// check for empty
CHECK(!obj->HasLocalProperty(*first));
// add first
obj->SetProperty(
*first, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked();
CHECK(obj->HasLocalProperty(*first));
// delete first
JSReceiver::DeleteProperty(obj, first, JSReceiver::NORMAL_DELETION);
CHECK(!obj->HasLocalProperty(*first));
// add first and then second
obj->SetProperty(
*first, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked();
obj->SetProperty(
*second, Smi::FromInt(2), NONE, kNonStrictMode)->ToObjectChecked();
CHECK(obj->HasLocalProperty(*first));
CHECK(obj->HasLocalProperty(*second));
// delete first and then second
JSReceiver::DeleteProperty(obj, first, JSReceiver::NORMAL_DELETION);
CHECK(obj->HasLocalProperty(*second));
JSReceiver::DeleteProperty(obj, second, JSReceiver::NORMAL_DELETION);
CHECK(!obj->HasLocalProperty(*first));
CHECK(!obj->HasLocalProperty(*second));
// add first and then second
obj->SetProperty(
*first, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked();
obj->SetProperty(
*second, Smi::FromInt(2), NONE, kNonStrictMode)->ToObjectChecked();
CHECK(obj->HasLocalProperty(*first));
CHECK(obj->HasLocalProperty(*second));
// delete second and then first
JSReceiver::DeleteProperty(obj, second, JSReceiver::NORMAL_DELETION);
CHECK(obj->HasLocalProperty(*first));
JSReceiver::DeleteProperty(obj, first, JSReceiver::NORMAL_DELETION);
CHECK(!obj->HasLocalProperty(*first));
CHECK(!obj->HasLocalProperty(*second));
// check string and internalized string match
const char* string1 = "fisk";
Handle<String> s1 = factory->NewStringFromAscii(CStrVector(string1));
obj->SetProperty(
*s1, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked();
Handle<String> s1_string = factory->InternalizeUtf8String(string1);
CHECK(obj->HasLocalProperty(*s1_string));
// check internalized string and string match
const char* string2 = "fugl";
Handle<String> s2_string = factory->InternalizeUtf8String(string2);
obj->SetProperty(
*s2_string, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked();
Handle<String> s2 = factory->NewStringFromAscii(CStrVector(string2));
CHECK(obj->HasLocalProperty(*s2));
}
TEST(JSObjectMaps) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
v8::HandleScope sc(CcTest::isolate());
Handle<String> name = factory->InternalizeUtf8String("theFunction");
Handle<JSFunction> function =
factory->NewFunction(name, factory->undefined_value());
Handle<Map> initial_map =
factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
function->set_initial_map(*initial_map);
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
Handle<JSObject> obj = factory->NewJSObject(function);
// Set a propery
obj->SetProperty(
*prop_name, Smi::FromInt(23), NONE, kNonStrictMode)->ToObjectChecked();
CHECK_EQ(Smi::FromInt(23), obj->GetProperty(*prop_name));
// Check the map has changed
CHECK(*initial_map != obj->map());
}
TEST(JSArray) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
v8::HandleScope sc(CcTest::isolate());
Handle<String> name = factory->InternalizeUtf8String("Array");
Object* raw_object = Isolate::Current()->context()->global_object()->
GetProperty(*name)->ToObjectChecked();
Handle<JSFunction> function = Handle<JSFunction>(
JSFunction::cast(raw_object));
// Allocate the object.
Handle<JSObject> object = factory->NewJSObject(function);
Handle<JSArray> array = Handle<JSArray>::cast(object);
// We just initialized the VM, no heap allocation failure yet.
array->Initialize(0)->ToObjectChecked();
// Set array length to 0.
array->SetElementsLength(Smi::FromInt(0))->ToObjectChecked();
CHECK_EQ(Smi::FromInt(0), array->length());
// Must be in fast mode.
CHECK(array->HasFastSmiOrObjectElements());
// array[length] = name.
array->SetElement(0, *name, NONE, kNonStrictMode)->ToObjectChecked();
CHECK_EQ(Smi::FromInt(1), array->length());
CHECK_EQ(array->GetElement(0), *name);
// Set array length with larger than smi value.
Handle<Object> length =
factory->NewNumberFromUint(static_cast<uint32_t>(Smi::kMaxValue) + 1);
array->SetElementsLength(*length)->ToObjectChecked();
uint32_t int_length = 0;
CHECK(length->ToArrayIndex(&int_length));
CHECK_EQ(*length, array->length());
CHECK(array->HasDictionaryElements()); // Must be in slow mode.
// array[length] = name.
array->SetElement(int_length, *name, NONE, kNonStrictMode)->ToObjectChecked();
uint32_t new_int_length = 0;
CHECK(array->length()->ToArrayIndex(&new_int_length));
CHECK_EQ(static_cast<double>(int_length), new_int_length - 1);
CHECK_EQ(array->GetElement(int_length), *name);
CHECK_EQ(array->GetElement(0), *name);
}
TEST(JSObjectCopy) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
v8::HandleScope sc(CcTest::isolate());
String* object_string = String::cast(HEAP->Object_string());
Object* raw_object = Isolate::Current()->context()->global_object()->
GetProperty(object_string)->ToObjectChecked();
JSFunction* object_function = JSFunction::cast(raw_object);
Handle<JSFunction> constructor(object_function);
Handle<JSObject> obj = factory->NewJSObject(constructor);
Handle<String> first = factory->InternalizeUtf8String("first");
Handle<String> second = factory->InternalizeUtf8String("second");
obj->SetProperty(
*first, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked();
obj->SetProperty(
*second, Smi::FromInt(2), NONE, kNonStrictMode)->ToObjectChecked();
obj->SetElement(0, *first, NONE, kNonStrictMode)->ToObjectChecked();
obj->SetElement(1, *second, NONE, kNonStrictMode)->ToObjectChecked();
// Make the clone.
Handle<JSObject> clone = Copy(obj);
CHECK(!clone.is_identical_to(obj));
CHECK_EQ(obj->GetElement(0), clone->GetElement(0));
CHECK_EQ(obj->GetElement(1), clone->GetElement(1));
CHECK_EQ(obj->GetProperty(*first), clone->GetProperty(*first));
CHECK_EQ(obj->GetProperty(*second), clone->GetProperty(*second));
// Flip the values.
clone->SetProperty(
*first, Smi::FromInt(2), NONE, kNonStrictMode)->ToObjectChecked();
clone->SetProperty(
*second, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked();
clone->SetElement(0, *second, NONE, kNonStrictMode)->ToObjectChecked();
clone->SetElement(1, *first, NONE, kNonStrictMode)->ToObjectChecked();
CHECK_EQ(obj->GetElement(1), clone->GetElement(0));
CHECK_EQ(obj->GetElement(0), clone->GetElement(1));
CHECK_EQ(obj->GetProperty(*second), clone->GetProperty(*first));
CHECK_EQ(obj->GetProperty(*first), clone->GetProperty(*second));
}
TEST(StringAllocation) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
const unsigned char chars[] = { 0xe5, 0xa4, 0xa7 };
for (int length = 0; length < 100; length++) {
v8::HandleScope scope(CcTest::isolate());
char* non_ascii = NewArray<char>(3 * length + 1);
char* ascii = NewArray<char>(length + 1);
non_ascii[3 * length] = 0;
ascii[length] = 0;
for (int i = 0; i < length; i++) {
ascii[i] = 'a';
non_ascii[3 * i] = chars[0];
non_ascii[3 * i + 1] = chars[1];
non_ascii[3 * i + 2] = chars[2];
}
Handle<String> non_ascii_sym =
factory->InternalizeUtf8String(
Vector<const char>(non_ascii, 3 * length));
CHECK_EQ(length, non_ascii_sym->length());
Handle<String> ascii_sym =
factory->InternalizeOneByteString(OneByteVector(ascii, length));
CHECK_EQ(length, ascii_sym->length());
Handle<String> non_ascii_str =
factory->NewStringFromUtf8(Vector<const char>(non_ascii, 3 * length));
non_ascii_str->Hash();
CHECK_EQ(length, non_ascii_str->length());
Handle<String> ascii_str =
factory->NewStringFromUtf8(Vector<const char>(ascii, length));
ascii_str->Hash();
CHECK_EQ(length, ascii_str->length());
DeleteArray(non_ascii);
DeleteArray(ascii);
}
}
static int ObjectsFoundInHeap(Heap* heap, Handle<Object> objs[], int size) {
// Count the number of objects found in the heap.
int found_count = 0;
heap->EnsureHeapIsIterable();
HeapIterator iterator(heap);
for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) {
for (int i = 0; i < size; i++) {
if (*objs[i] == obj) {
found_count++;
}
}
}
return found_count;
}
TEST(Iteration) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
// Array of objects to scan haep for.
const int objs_count = 6;
Handle<Object> objs[objs_count];
int next_objs_index = 0;
// Allocate a JS array to OLD_POINTER_SPACE and NEW_SPACE
objs[next_objs_index++] = factory->NewJSArray(10);
objs[next_objs_index++] = factory->NewJSArray(10,
FAST_HOLEY_ELEMENTS,
TENURED);
// Allocate a small string to OLD_DATA_SPACE and NEW_SPACE
objs[next_objs_index++] =
factory->NewStringFromAscii(CStrVector("abcdefghij"));
objs[next_objs_index++] =
factory->NewStringFromAscii(CStrVector("abcdefghij"), TENURED);
// Allocate a large string (for large object space).
int large_size = Page::kMaxNonCodeHeapObjectSize + 1;
char* str = new char[large_size];
for (int i = 0; i < large_size - 1; ++i) str[i] = 'a';
str[large_size - 1] = '\0';
objs[next_objs_index++] =
factory->NewStringFromAscii(CStrVector(str), TENURED);
delete[] str;
// Add a Map object to look for.
objs[next_objs_index++] = Handle<Map>(HeapObject::cast(*objs[0])->map());
CHECK_EQ(objs_count, next_objs_index);
CHECK_EQ(objs_count, ObjectsFoundInHeap(HEAP, objs, objs_count));
}
TEST(EmptyHandleEscapeFrom) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Handle<JSObject> runaway;
{
v8::HandleScope nested(CcTest::isolate());
Handle<JSObject> empty;
runaway = empty.EscapeFrom(&nested);
}
CHECK(runaway.is_null());
}
static int LenFromSize(int size) {
return (size - FixedArray::kHeaderSize) / kPointerSize;
}
TEST(Regression39128) {
// Test case for crbug.com/39128.
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
// Increase the chance of 'bump-the-pointer' allocation in old space.
HEAP->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
v8::HandleScope scope(CcTest::isolate());
// The plan: create JSObject which references objects in new space.
// Then clone this object (forcing it to go into old space) and check
// that region dirty marks are updated correctly.
// Step 1: prepare a map for the object. We add 1 inobject property to it.
Handle<JSFunction> object_ctor(
Isolate::Current()->native_context()->object_function());
CHECK(object_ctor->has_initial_map());
Handle<Map> object_map(object_ctor->initial_map());
// Create a map with single inobject property.
Handle<Map> my_map = factory->CopyMap(object_map, 1);
int n_properties = my_map->inobject_properties();
CHECK_GT(n_properties, 0);
int object_size = my_map->instance_size();
// Step 2: allocate a lot of objects so to almost fill new space: we need
// just enough room to allocate JSObject and thus fill the newspace.
int allocation_amount = Min(FixedArray::kMaxSize,
Page::kMaxNonCodeHeapObjectSize + kPointerSize);
int allocation_len = LenFromSize(allocation_amount);
NewSpace* new_space = HEAP->new_space();
Address* top_addr = new_space->allocation_top_address();
Address* limit_addr = new_space->allocation_limit_address();
while ((*limit_addr - *top_addr) > allocation_amount) {
CHECK(!HEAP->always_allocate());
Object* array = HEAP->AllocateFixedArray(allocation_len)->ToObjectChecked();
CHECK(!array->IsFailure());
CHECK(new_space->Contains(array));
}
// Step 3: now allocate fixed array and JSObject to fill the whole new space.
int to_fill = static_cast<int>(*limit_addr - *top_addr - object_size);
int fixed_array_len = LenFromSize(to_fill);
CHECK(fixed_array_len < FixedArray::kMaxLength);
CHECK(!HEAP->always_allocate());
Object* array = HEAP->AllocateFixedArray(fixed_array_len)->ToObjectChecked();
CHECK(!array->IsFailure());
CHECK(new_space->Contains(array));
Object* object = HEAP->AllocateJSObjectFromMap(*my_map)->ToObjectChecked();
CHECK(new_space->Contains(object));
JSObject* jsobject = JSObject::cast(object);
CHECK_EQ(0, FixedArray::cast(jsobject->elements())->length());
CHECK_EQ(0, jsobject->properties()->length());
// Create a reference to object in new space in jsobject.
jsobject->FastPropertyAtPut(-1, array);
CHECK_EQ(0, static_cast<int>(*limit_addr - *top_addr));
// Step 4: clone jsobject, but force always allocate first to create a clone
// in old pointer space.
Address old_pointer_space_top = HEAP->old_pointer_space()->top();
AlwaysAllocateScope aa_scope;
Object* clone_obj = HEAP->CopyJSObject(jsobject)->ToObjectChecked();
JSObject* clone = JSObject::cast(clone_obj);
if (clone->address() != old_pointer_space_top) {
// Alas, got allocated from free list, we cannot do checks.
return;
}
CHECK(HEAP->old_pointer_space()->Contains(clone->address()));
}
TEST(TestCodeFlushing) {
// If we do not flush code this test is invalid.
if (!FLAG_flush_code) return;
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
const char* source = "function foo() {"
" var x = 42;"
" var y = 42;"
" var z = x + y;"
"};"
"foo()";
Handle<String> foo_name = factory->InternalizeUtf8String("foo");
// This compile will add the code to the compilation cache.
{ v8::HandleScope scope(CcTest::isolate());
CompileRun(source);
}
// Check function is compiled.
Object* func_value = Isolate::Current()->context()->global_object()->
GetProperty(*foo_name)->ToObjectChecked();
CHECK(func_value->IsJSFunction());
Handle<JSFunction> function(JSFunction::cast(func_value));
CHECK(function->shared()->is_compiled());
// The code will survive at least two GCs.
HEAP->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
HEAP->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
CHECK(function->shared()->is_compiled());
// Simulate several GCs that use full marking.
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
HEAP->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
}
// foo should no longer be in the compilation cache
CHECK(!function->shared()->is_compiled() || function->IsOptimized());
CHECK(!function->is_compiled() || function->IsOptimized());
// Call foo to get it recompiled.
CompileRun("foo()");
CHECK(function->shared()->is_compiled());
CHECK(function->is_compiled());
}
TEST(TestCodeFlushingIncremental) {
// If we do not flush code this test is invalid.
if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return;
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
const char* source = "function foo() {"
" var x = 42;"
" var y = 42;"
" var z = x + y;"
"};"
"foo()";
Handle<String> foo_name = factory->InternalizeUtf8String("foo");
// This compile will add the code to the compilation cache.
{ v8::HandleScope scope(CcTest::isolate());
CompileRun(source);
}
// Check function is compiled.
Object* func_value = Isolate::Current()->context()->global_object()->
GetProperty(*foo_name)->ToObjectChecked();
CHECK(func_value->IsJSFunction());
Handle<JSFunction> function(JSFunction::cast(func_value));
CHECK(function->shared()->is_compiled());
// The code will survive at least two GCs.
HEAP->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
HEAP->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
CHECK(function->shared()->is_compiled());
// Simulate several GCs that use incremental marking.
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
SimulateIncrementalMarking();
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
}
CHECK(!function->shared()->is_compiled() || function->IsOptimized());
CHECK(!function->is_compiled() || function->IsOptimized());
// This compile will compile the function again.
{ v8::HandleScope scope(CcTest::isolate());
CompileRun("foo();");
}
// Simulate several GCs that use incremental marking but make sure
// the loop breaks once the function is enqueued as a candidate.
for (int i = 0; i < kAgingThreshold; i++) {
SimulateIncrementalMarking();
if (!function->next_function_link()->IsUndefined()) break;
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
}
// Force optimization while incremental marking is active and while
// the function is enqueued as a candidate.
{ v8::HandleScope scope(CcTest::isolate());
CompileRun("%OptimizeFunctionOnNextCall(foo); foo();");
}
// Simulate one final GC to make sure the candidate queue is sane.
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
CHECK(function->shared()->is_compiled() || !function->IsOptimized());
CHECK(function->is_compiled() || !function->IsOptimized());
}
TEST(TestCodeFlushingIncrementalScavenge) {
// If we do not flush code this test is invalid.
if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return;
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
const char* source = "var foo = function() {"
" var x = 42;"
" var y = 42;"
" var z = x + y;"
"};"
"foo();"
"var bar = function() {"
" var x = 23;"
"};"
"bar();";
Handle<String> foo_name = factory->InternalizeUtf8String("foo");
Handle<String> bar_name = factory->InternalizeUtf8String("bar");
// Perfrom one initial GC to enable code flushing.
HEAP->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
// This compile will add the code to the compilation cache.
{ v8::HandleScope scope(CcTest::isolate());
CompileRun(source);
}
// Check functions are compiled.
Object* func_value = Isolate::Current()->context()->global_object()->
GetProperty(*foo_name)->ToObjectChecked();
CHECK(func_value->IsJSFunction());
Handle<JSFunction> function(JSFunction::cast(func_value));
CHECK(function->shared()->is_compiled());
Object* func_value2 = Isolate::Current()->context()->global_object()->
GetProperty(*bar_name)->ToObjectChecked();
CHECK(func_value2->IsJSFunction());
Handle<JSFunction> function2(JSFunction::cast(func_value2));
CHECK(function2->shared()->is_compiled());
// Clear references to functions so that one of them can die.
{ v8::HandleScope scope(CcTest::isolate());
CompileRun("foo = 0; bar = 0;");
}
// Bump the code age so that flushing is triggered while the function
// object is still located in new-space.
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
function->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
function2->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
}
// Simulate incremental marking so that the functions are enqueued as
// code flushing candidates. Then kill one of the functions. Finally
// perform a scavenge while incremental marking is still running.
SimulateIncrementalMarking();
*function2.location() = NULL;
HEAP->CollectGarbage(NEW_SPACE, "test scavenge while marking");
// Simulate one final GC to make sure the candidate queue is sane.
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
CHECK(!function->shared()->is_compiled() || function->IsOptimized());
CHECK(!function->is_compiled() || function->IsOptimized());
}
TEST(TestCodeFlushingIncrementalAbort) {
// If we do not flush code this test is invalid.
if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return;
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
Heap* heap = isolate->heap();
v8::HandleScope scope(CcTest::isolate());
const char* source = "function foo() {"
" var x = 42;"
" var y = 42;"
" var z = x + y;"
"};"
"foo()";
Handle<String> foo_name = factory->InternalizeUtf8String("foo");
// This compile will add the code to the compilation cache.
{ v8::HandleScope scope(CcTest::isolate());
CompileRun(source);
}
// Check function is compiled.
Object* func_value = Isolate::Current()->context()->global_object()->
GetProperty(*foo_name)->ToObjectChecked();
CHECK(func_value->IsJSFunction());
Handle<JSFunction> function(JSFunction::cast(func_value));
CHECK(function->shared()->is_compiled());
// The code will survive at least two GCs.
heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
CHECK(function->shared()->is_compiled());
// Bump the code age so that flushing is triggered.
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
function->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
}
// Simulate incremental marking so that the function is enqueued as
// code flushing candidate.
SimulateIncrementalMarking();
#ifdef ENABLE_DEBUGGER_SUPPORT
// Enable the debugger and add a breakpoint while incremental marking
// is running so that incremental marking aborts and code flushing is
// disabled.
int position = 0;
Handle<Object> breakpoint_object(Smi::FromInt(0), isolate);
isolate->debug()->SetBreakPoint(function, breakpoint_object, &position);
isolate->debug()->ClearAllBreakPoints();
#endif // ENABLE_DEBUGGER_SUPPORT
// Force optimization now that code flushing is disabled.
{ v8::HandleScope scope(CcTest::isolate());
CompileRun("%OptimizeFunctionOnNextCall(foo); foo();");
}
// Simulate one final GC to make sure the candidate queue is sane.
heap->CollectAllGarbage(Heap::kNoGCFlags);
CHECK(function->shared()->is_compiled() || !function->IsOptimized());
CHECK(function->is_compiled() || !function->IsOptimized());
}
// Count the number of native contexts in the weak list of native contexts.
int CountNativeContexts() {
int count = 0;
Object* object = HEAP->native_contexts_list();
while (!object->IsUndefined()) {
count++;
object = Context::cast(object)->get(Context::NEXT_CONTEXT_LINK);
}
return count;
}
// Count the number of user functions in the weak list of optimized
// functions attached to a native context.
static int CountOptimizedUserFunctions(v8::Handle<v8::Context> context) {
int count = 0;
Handle<Context> icontext = v8::Utils::OpenHandle(*context);
Object* object = icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST);
while (object->IsJSFunction() && !JSFunction::cast(object)->IsBuiltin()) {
count++;
object = JSFunction::cast(object)->next_function_link();
}
return count;
}
TEST(TestInternalWeakLists) {
v8::V8::Initialize();
// Some flags turn Scavenge collections into Mark-sweep collections
// and hence are incompatible with this test case.
if (FLAG_gc_global || FLAG_stress_compaction) return;
static const int kNumTestContexts = 10;
Isolate* isolate = Isolate::Current();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
v8::Handle<v8::Context> ctx[kNumTestContexts];
CHECK_EQ(0, CountNativeContexts());
// Create a number of global contests which gets linked together.
for (int i = 0; i < kNumTestContexts; i++) {
ctx[i] = v8::Context::New(v8::Isolate::GetCurrent());
// Collect garbage that might have been created by one of the
// installed extensions.
isolate->compilation_cache()->Clear();
heap->CollectAllGarbage(Heap::kNoGCFlags);
bool opt = (FLAG_always_opt && i::V8::UseCrankshaft());
CHECK_EQ(i + 1, CountNativeContexts());
ctx[i]->Enter();
// Create a handle scope so no function objects get stuch in the outer
// handle scope
HandleScope scope(isolate);
const char* source = "function f1() { };"
"function f2() { };"
"function f3() { };"
"function f4() { };"
"function f5() { };";
CompileRun(source);
CHECK_EQ(0, CountOptimizedUserFunctions(ctx[i]));
CompileRun("f1()");
CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctions(ctx[i]));
CompileRun("f2()");
CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[i]));
CompileRun("f3()");
CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i]));
CompileRun("f4()");
CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i]));
CompileRun("f5()");
CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[i]));
// Remove function f1, and
CompileRun("f1=null");
// Scavenge treats these references as strong.
for (int j = 0; j < 10; j++) {
HEAP->PerformScavenge();
CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[i]));
}
// Mark compact handles the weak references.
isolate->compilation_cache()->Clear();
heap->CollectAllGarbage(Heap::kNoGCFlags);
CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i]));
// Get rid of f3 and f5 in the same way.
CompileRun("f3=null");
for (int j = 0; j < 10; j++) {
HEAP->PerformScavenge();
CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i]));
}
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i]));
CompileRun("f5=null");
for (int j = 0; j < 10; j++) {
HEAP->PerformScavenge();
CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i]));
}
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[i]));
ctx[i]->Exit();
}
// Force compilation cache cleanup.
HEAP->NotifyContextDisposed();
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
// Dispose the native contexts one by one.
for (int i = 0; i < kNumTestContexts; i++) {
// TODO(dcarney): is there a better way to do this?
i::Object** unsafe = reinterpret_cast<i::Object**>(*ctx[i]);
*unsafe = HEAP->undefined_value();
ctx[i].Clear();
// Scavenge treats these references as strong.
for (int j = 0; j < 10; j++) {
HEAP->PerformScavenge();
CHECK_EQ(kNumTestContexts - i, CountNativeContexts());
}
// Mark compact handles the weak references.
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
CHECK_EQ(kNumTestContexts - i - 1, CountNativeContexts());
}
CHECK_EQ(0, CountNativeContexts());
}
// Count the number of native contexts in the weak list of native contexts
// causing a GC after the specified number of elements.
static int CountNativeContextsWithGC(Isolate* isolate, int n) {
Heap* heap = isolate->heap();
int count = 0;
Handle<Object> object(heap->native_contexts_list(), isolate);
while (!object->IsUndefined()) {
count++;
if (count == n) heap->CollectAllGarbage(Heap::kNoGCFlags);
object =
Handle<Object>(Context::cast(*object)->get(Context::NEXT_CONTEXT_LINK),
isolate);
}
return count;
}
// Count the number of user functions in the weak list of optimized
// functions attached to a native context causing a GC after the
// specified number of elements.
static int CountOptimizedUserFunctionsWithGC(v8::Handle<v8::Context> context,
int n) {
int count = 0;
Handle<Context> icontext = v8::Utils::OpenHandle(*context);
Isolate* isolate = icontext->GetIsolate();
Handle<Object> object(icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST),
isolate);
while (object->IsJSFunction() &&
!Handle<JSFunction>::cast(object)->IsBuiltin()) {
count++;
if (count == n) isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags);
object = Handle<Object>(
Object::cast(JSFunction::cast(*object)->next_function_link()),
isolate);
}
return count;
}
TEST(TestInternalWeakListsTraverseWithGC) {
v8::V8::Initialize();
Isolate* isolate = Isolate::Current();
static const int kNumTestContexts = 10;
HandleScope scope(isolate);
v8::Handle<v8::Context> ctx[kNumTestContexts];
CHECK_EQ(0, CountNativeContexts());
// Create an number of contexts and check the length of the weak list both
// with and without GCs while iterating the list.
for (int i = 0; i < kNumTestContexts; i++) {
ctx[i] = v8::Context::New(v8::Isolate::GetCurrent());
CHECK_EQ(i + 1, CountNativeContexts());
CHECK_EQ(i + 1, CountNativeContextsWithGC(isolate, i / 2 + 1));
}
bool opt = (FLAG_always_opt && i::V8::UseCrankshaft());
// Compile a number of functions the length of the weak list of optimized
// functions both with and without GCs while iterating the list.
ctx[0]->Enter();
const char* source = "function f1() { };"
"function f2() { };"
"function f3() { };"
"function f4() { };"
"function f5() { };";
CompileRun(source);
CHECK_EQ(0, CountOptimizedUserFunctions(ctx[0]));
CompileRun("f1()");
CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctions(ctx[0]));
CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1));
CompileRun("f2()");
CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[0]));
CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1));
CompileRun("f3()");
CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[0]));
CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1));
CompileRun("f4()");
CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[0]));
CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 2));
CompileRun("f5()");
CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[0]));
CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 4));
ctx[0]->Exit();
}
TEST(TestSizeOfObjects) {
v8::V8::Initialize();
// Get initial heap size after several full GCs, which will stabilize
// the heap size and return with sweeping finished completely.
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
CHECK(HEAP->old_pointer_space()->IsLazySweepingComplete());
int initial_size = static_cast<int>(HEAP->SizeOfObjects());
{
// Allocate objects on several different old-space pages so that
// lazy sweeping kicks in for subsequent GC runs.
AlwaysAllocateScope always_allocate;
int filler_size = static_cast<int>(FixedArray::SizeFor(8192));
for (int i = 1; i <= 100; i++) {
HEAP->AllocateFixedArray(8192, TENURED)->ToObjectChecked();
CHECK_EQ(initial_size + i * filler_size,
static_cast<int>(HEAP->SizeOfObjects()));
}
}
// The heap size should go back to initial size after a full GC, even
// though sweeping didn't finish yet.
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
// Normally sweeping would not be complete here, but no guarantees.
CHECK_EQ(initial_size, static_cast<int>(HEAP->SizeOfObjects()));
// Advancing the sweeper step-wise should not change the heap size.
while (!HEAP->old_pointer_space()->IsLazySweepingComplete()) {
HEAP->old_pointer_space()->AdvanceSweeper(KB);
CHECK_EQ(initial_size, static_cast<int>(HEAP->SizeOfObjects()));
}
}
TEST(TestSizeOfObjectsVsHeapIteratorPrecision) {
CcTest::InitializeVM();
HEAP->EnsureHeapIsIterable();
intptr_t size_of_objects_1 = HEAP->SizeOfObjects();
HeapIterator iterator(HEAP);
intptr_t size_of_objects_2 = 0;
for (HeapObject* obj = iterator.next();
obj != NULL;
obj = iterator.next()) {
if (!obj->IsFreeSpace()) {
size_of_objects_2 += obj->Size();
}
}
// Delta must be within 5% of the larger result.
// TODO(gc): Tighten this up by distinguishing between byte
// arrays that are real and those that merely mark free space
// on the heap.
if (size_of_objects_1 > size_of_objects_2) {
intptr_t delta = size_of_objects_1 - size_of_objects_2;
PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, "
"Iterator: %" V8_PTR_PREFIX "d, "
"delta: %" V8_PTR_PREFIX "d\n",
size_of_objects_1, size_of_objects_2, delta);
CHECK_GT(size_of_objects_1 / 20, delta);
} else {
intptr_t delta = size_of_objects_2 - size_of_objects_1;
PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, "
"Iterator: %" V8_PTR_PREFIX "d, "
"delta: %" V8_PTR_PREFIX "d\n",
size_of_objects_1, size_of_objects_2, delta);
CHECK_GT(size_of_objects_2 / 20, delta);
}
}
static void FillUpNewSpace(NewSpace* new_space) {
// Fill up new space to the point that it is completely full. Make sure
// that the scavenger does not undo the filling.
Heap* heap = new_space->heap();
Isolate* isolate = heap->isolate();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
AlwaysAllocateScope always_allocate;
intptr_t available = new_space->EffectiveCapacity() - new_space->Size();
intptr_t number_of_fillers = (available / FixedArray::SizeFor(32)) - 1;
for (intptr_t i = 0; i < number_of_fillers; i++) {
CHECK(heap->InNewSpace(*factory->NewFixedArray(32, NOT_TENURED)));
}
}
TEST(GrowAndShrinkNewSpace) {
CcTest::InitializeVM();
NewSpace* new_space = HEAP->new_space();
if (HEAP->ReservedSemiSpaceSize() == HEAP->InitialSemiSpaceSize() ||
HEAP->MaxSemiSpaceSize() == HEAP->InitialSemiSpaceSize()) {
// The max size cannot exceed the reserved size, since semispaces must be
// always within the reserved space. We can't test new space growing and
// shrinking if the reserved size is the same as the minimum (initial) size.
return;
}
// Explicitly growing should double the space capacity.
intptr_t old_capacity, new_capacity;
old_capacity = new_space->Capacity();
new_space->Grow();
new_capacity = new_space->Capacity();
CHECK(2 * old_capacity == new_capacity);
old_capacity = new_space->Capacity();
FillUpNewSpace(new_space);
new_capacity = new_space->Capacity();
CHECK(old_capacity == new_capacity);
// Explicitly shrinking should not affect space capacity.
old_capacity = new_space->Capacity();
new_space->Shrink();
new_capacity = new_space->Capacity();
CHECK(old_capacity == new_capacity);
// Let the scavenger empty the new space.
HEAP->CollectGarbage(NEW_SPACE);
CHECK_LE(new_space->Size(), old_capacity);
// Explicitly shrinking should halve the space capacity.
old_capacity = new_space->Capacity();
new_space->Shrink();
new_capacity = new_space->Capacity();
CHECK(old_capacity == 2 * new_capacity);
// Consecutive shrinking should not affect space capacity.
old_capacity = new_space->Capacity();
new_space->Shrink();
new_space->Shrink();
new_space->Shrink();
new_capacity = new_space->Capacity();
CHECK(old_capacity == new_capacity);
}
TEST(CollectingAllAvailableGarbageShrinksNewSpace) {
CcTest::InitializeVM();
if (HEAP->ReservedSemiSpaceSize() == HEAP->InitialSemiSpaceSize() ||
HEAP->MaxSemiSpaceSize() == HEAP->InitialSemiSpaceSize()) {
// The max size cannot exceed the reserved size, since semispaces must be
// always within the reserved space. We can't test new space growing and
// shrinking if the reserved size is the same as the minimum (initial) size.
return;
}
v8::HandleScope scope(CcTest::isolate());
NewSpace* new_space = HEAP->new_space();
intptr_t old_capacity, new_capacity;
old_capacity = new_space->Capacity();
new_space->Grow();
new_capacity = new_space->Capacity();
CHECK(2 * old_capacity == new_capacity);
FillUpNewSpace(new_space);
HEAP->CollectAllAvailableGarbage();
new_capacity = new_space->Capacity();
CHECK(old_capacity == new_capacity);
}
static int NumberOfGlobalObjects() {
int count = 0;
HeapIterator iterator(HEAP);
for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) {
if (obj->IsGlobalObject()) count++;
}
return count;
}
// Test that we don't embed maps from foreign contexts into
// optimized code.
TEST(LeakNativeContextViaMap) {
i::FLAG_allow_natives_syntax = true;
v8::Isolate* isolate = v8::Isolate::GetCurrent();
v8::HandleScope outer_scope(isolate);
v8::Persistent<v8::Context> ctx1p;
v8::Persistent<v8::Context> ctx2p;
{
v8::HandleScope scope(isolate);
ctx1p.Reset(isolate, v8::Context::New(isolate));
ctx2p.Reset(isolate, v8::Context::New(isolate));
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
}
HEAP->CollectAllAvailableGarbage();
CHECK_EQ(4, NumberOfGlobalObjects());
{
v8::HandleScope inner_scope(isolate);
CompileRun("var v = {x: 42}");
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
v8::Local<v8::Value> v = ctx1->Global()->Get(v8_str("v"));
ctx2->Enter();
ctx2->Global()->Set(v8_str("o"), v);
v8::Local<v8::Value> res = CompileRun(
"function f() { return o.x; }"
"for (var i = 0; i < 10; ++i) f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
CHECK_EQ(42, res->Int32Value());
ctx2->Global()->Set(v8_str("o"), v8::Int32::New(0));
ctx2->Exit();
v8::Local<v8::Context>::New(isolate, ctx1)->Exit();
ctx1p.Dispose(isolate);
v8::V8::ContextDisposedNotification();
}
HEAP->CollectAllAvailableGarbage();
CHECK_EQ(2, NumberOfGlobalObjects());
ctx2p.Dispose(isolate);
HEAP->CollectAllAvailableGarbage();
CHECK_EQ(0, NumberOfGlobalObjects());
}
// Test that we don't embed functions from foreign contexts into
// optimized code.
TEST(LeakNativeContextViaFunction) {
i::FLAG_allow_natives_syntax = true;
v8::Isolate* isolate = v8::Isolate::GetCurrent();
v8::HandleScope outer_scope(isolate);
v8::Persistent<v8::Context> ctx1p;
v8::Persistent<v8::Context> ctx2p;
{
v8::HandleScope scope(isolate);
ctx1p.Reset(isolate, v8::Context::New(isolate));
ctx2p.Reset(isolate, v8::Context::New(isolate));
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
}
HEAP->CollectAllAvailableGarbage();
CHECK_EQ(4, NumberOfGlobalObjects());
{
v8::HandleScope inner_scope(isolate);
CompileRun("var v = function() { return 42; }");
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
v8::Local<v8::Value> v = ctx1->Global()->Get(v8_str("v"));
ctx2->Enter();
ctx2->Global()->Set(v8_str("o"), v);
v8::Local<v8::Value> res = CompileRun(
"function f(x) { return x(); }"
"for (var i = 0; i < 10; ++i) f(o);"
"%OptimizeFunctionOnNextCall(f);"
"f(o);");
CHECK_EQ(42, res->Int32Value());
ctx2->Global()->Set(v8_str("o"), v8::Int32::New(0));
ctx2->Exit();
ctx1->Exit();
ctx1p.Dispose(ctx1->GetIsolate());
v8::V8::ContextDisposedNotification();
}
HEAP->CollectAllAvailableGarbage();
CHECK_EQ(2, NumberOfGlobalObjects());
ctx2p.Dispose(isolate);
HEAP->CollectAllAvailableGarbage();
CHECK_EQ(0, NumberOfGlobalObjects());
}
TEST(LeakNativeContextViaMapKeyed) {
i::FLAG_allow_natives_syntax = true;
v8::Isolate* isolate = v8::Isolate::GetCurrent();
v8::HandleScope outer_scope(isolate);
v8::Persistent<v8::Context> ctx1p;
v8::Persistent<v8::Context> ctx2p;
{
v8::HandleScope scope(isolate);
ctx1p.Reset(isolate, v8::Context::New(isolate));
ctx2p.Reset(isolate, v8::Context::New(isolate));
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
}
HEAP->CollectAllAvailableGarbage();
CHECK_EQ(4, NumberOfGlobalObjects());
{
v8::HandleScope inner_scope(isolate);
CompileRun("var v = [42, 43]");
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
v8::Local<v8::Value> v = ctx1->Global()->Get(v8_str("v"));
ctx2->Enter();
ctx2->Global()->Set(v8_str("o"), v);
v8::Local<v8::Value> res = CompileRun(
"function f() { return o[0]; }"
"for (var i = 0; i < 10; ++i) f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
CHECK_EQ(42, res->Int32Value());
ctx2->Global()->Set(v8_str("o"), v8::Int32::New(0));
ctx2->Exit();
ctx1->Exit();
ctx1p.Dispose(ctx1->GetIsolate());
v8::V8::ContextDisposedNotification();
}
HEAP->CollectAllAvailableGarbage();
CHECK_EQ(2, NumberOfGlobalObjects());
ctx2p.Dispose(isolate);
HEAP->CollectAllAvailableGarbage();
CHECK_EQ(0, NumberOfGlobalObjects());
}
TEST(LeakNativeContextViaMapProto) {
i::FLAG_allow_natives_syntax = true;
v8::Isolate* isolate = v8::Isolate::GetCurrent();
v8::HandleScope outer_scope(isolate);
v8::Persistent<v8::Context> ctx1p;
v8::Persistent<v8::Context> ctx2p;
{
v8::HandleScope scope(isolate);
ctx1p.Reset(isolate, v8::Context::New(isolate));
ctx2p.Reset(isolate, v8::Context::New(isolate));
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
}
HEAP->CollectAllAvailableGarbage();
CHECK_EQ(4, NumberOfGlobalObjects());
{
v8::HandleScope inner_scope(isolate);
CompileRun("var v = { y: 42}");
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
v8::Local<v8::Value> v = ctx1->Global()->Get(v8_str("v"));
ctx2->Enter();
ctx2->Global()->Set(v8_str("o"), v);
v8::Local<v8::Value> res = CompileRun(
"function f() {"
" var p = {x: 42};"
" p.__proto__ = o;"
" return p.x;"
"}"
"for (var i = 0; i < 10; ++i) f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
CHECK_EQ(42, res->Int32Value());
ctx2->Global()->Set(v8_str("o"), v8::Int32::New(0));
ctx2->Exit();
ctx1->Exit();
ctx1p.Dispose(isolate);
v8::V8::ContextDisposedNotification();
}
HEAP->CollectAllAvailableGarbage();
CHECK_EQ(2, NumberOfGlobalObjects());
ctx2p.Dispose(isolate);
HEAP->CollectAllAvailableGarbage();
CHECK_EQ(0, NumberOfGlobalObjects());
}
TEST(InstanceOfStubWriteBarrier) {
i::FLAG_allow_natives_syntax = true;
#ifdef VERIFY_HEAP
i::FLAG_verify_heap = true;
#endif
CcTest::InitializeVM();
if (!i::V8::UseCrankshaft()) return;
if (i::FLAG_force_marking_deque_overflows) return;
v8::HandleScope outer_scope(v8::Isolate::GetCurrent());
{
v8::HandleScope scope(v8::Isolate::GetCurrent());
CompileRun(
"function foo () { }"
"function mkbar () { return new (new Function(\"\")) (); }"
"function f (x) { return (x instanceof foo); }"
"function g () { f(mkbar()); }"
"f(new foo()); f(new foo());"
"%OptimizeFunctionOnNextCall(f);"
"f(new foo()); g();");
}
IncrementalMarking* marking = HEAP->incremental_marking();
marking->Abort();
marking->Start();
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
v8::Context::GetCurrent()->Global()->Get(v8_str("f"))));
CHECK(f->IsOptimized());
while (!Marking::IsBlack(Marking::MarkBitFrom(f->code())) &&
!marking->IsStopped()) {
// Discard any pending GC requests otherwise we will get GC when we enter
// code below.
marking->Step(MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD);
}
CHECK(marking->IsMarking());
{
v8::HandleScope scope(v8::Isolate::GetCurrent());
v8::Handle<v8::Object> global = v8::Context::GetCurrent()->Global();
v8::Handle<v8::Function> g =
v8::Handle<v8::Function>::Cast(global->Get(v8_str("g")));
g->Call(global, 0, NULL);
}
HEAP->incremental_marking()->set_should_hurry(true);
HEAP->CollectGarbage(OLD_POINTER_SPACE);
}
TEST(PrototypeTransitionClearing) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
CompileRun(
"var base = {};"
"var live = [];"
"for (var i = 0; i < 10; i++) {"
" var object = {};"
" var prototype = {};"
" object.__proto__ = prototype;"
" if (i >= 3) live.push(object, prototype);"
"}");
Handle<JSObject> baseObject =
v8::Utils::OpenHandle(
*v8::Handle<v8::Object>::Cast(
v8::Context::GetCurrent()->Global()->Get(v8_str("base"))));
// Verify that only dead prototype transitions are cleared.
CHECK_EQ(10, baseObject->map()->NumberOfProtoTransitions());
HEAP->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
const int transitions = 10 - 3;
CHECK_EQ(transitions, baseObject->map()->NumberOfProtoTransitions());
// Verify that prototype transitions array was compacted.
FixedArray* trans = baseObject->map()->GetPrototypeTransitions();
for (int i = 0; i < transitions; i++) {
int j = Map::kProtoTransitionHeaderSize +
i * Map::kProtoTransitionElementsPerEntry;
CHECK(trans->get(j + Map::kProtoTransitionMapOffset)->IsMap());
Object* proto = trans->get(j + Map::kProtoTransitionPrototypeOffset);
CHECK(proto->IsTheHole() || proto->IsJSObject());
}
// Make sure next prototype is placed on an old-space evacuation candidate.
Handle<JSObject> prototype;
PagedSpace* space = HEAP->old_pointer_space();
{
AlwaysAllocateScope always_allocate;
SimulateFullSpace(space);
prototype = factory->NewJSArray(32 * KB, FAST_HOLEY_ELEMENTS, TENURED);
}
// Add a prototype on an evacuation candidate and verify that transition
// clearing correctly records slots in prototype transition array.
i::FLAG_always_compact = true;
Handle<Map> map(baseObject->map());
CHECK(!space->LastPage()->Contains(
map->GetPrototypeTransitions()->address()));
CHECK(space->LastPage()->Contains(prototype->address()));
JSObject::SetPrototype(baseObject, prototype, false);
CHECK(Map::GetPrototypeTransition(map, prototype)->IsMap());
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
CHECK(Map::GetPrototypeTransition(map, prototype)->IsMap());
}
TEST(ResetSharedFunctionInfoCountersDuringIncrementalMarking) {
i::FLAG_stress_compaction = false;
i::FLAG_allow_natives_syntax = true;
#ifdef VERIFY_HEAP
i::FLAG_verify_heap = true;
#endif
CcTest::InitializeVM();
if (!i::V8::UseCrankshaft()) return;
v8::HandleScope outer_scope(v8::Isolate::GetCurrent());
{
v8::HandleScope scope(v8::Isolate::GetCurrent());
CompileRun(
"function f () {"
" var s = 0;"
" for (var i = 0; i < 100; i++) s += i;"
" return s;"
"}"
"f(); f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
}
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
v8::Context::GetCurrent()->Global()->Get(v8_str("f"))));
CHECK(f->IsOptimized());
IncrementalMarking* marking = HEAP->incremental_marking();
marking->Abort();
marking->Start();
// The following two calls will increment HEAP->global_ic_age().
const int kLongIdlePauseInMs = 1000;
v8::V8::ContextDisposedNotification();
v8::V8::IdleNotification(kLongIdlePauseInMs);
while (!marking->IsStopped() && !marking->IsComplete()) {
marking->Step(1 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD);
}
if (!marking->IsStopped() || marking->should_hurry()) {
// We don't normally finish a GC via Step(), we normally finish by
// setting the stack guard and then do the final steps in the stack
// guard interrupt. But here we didn't ask for that, and there is no
// JS code running to trigger the interrupt, so we explicitly finalize
// here.
HEAP->CollectAllGarbage(Heap::kNoGCFlags,
"Test finalizing incremental mark-sweep");
}
CHECK_EQ(HEAP->global_ic_age(), f->shared()->ic_age());
CHECK_EQ(0, f->shared()->opt_count());
CHECK_EQ(0, f->shared()->code()->profiler_ticks());
}
TEST(ResetSharedFunctionInfoCountersDuringMarkSweep) {
i::FLAG_stress_compaction = false;
i::FLAG_allow_natives_syntax = true;
#ifdef VERIFY_HEAP
i::FLAG_verify_heap = true;
#endif
CcTest::InitializeVM();
if (!i::V8::UseCrankshaft()) return;
v8::HandleScope outer_scope(CcTest::isolate());
{
v8::HandleScope scope(CcTest::isolate());
CompileRun(
"function f () {"
" var s = 0;"
" for (var i = 0; i < 100; i++) s += i;"
" return s;"
"}"
"f(); f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
}
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
v8::Context::GetCurrent()->Global()->Get(v8_str("f"))));
CHECK(f->IsOptimized());
HEAP->incremental_marking()->Abort();
// The following two calls will increment HEAP->global_ic_age().
// Since incremental marking is off, IdleNotification will do full GC.
const int kLongIdlePauseInMs = 1000;
v8::V8::ContextDisposedNotification();
v8::V8::IdleNotification(kLongIdlePauseInMs);
CHECK_EQ(HEAP->global_ic_age(), f->shared()->ic_age());
CHECK_EQ(0, f->shared()->opt_count());
CHECK_EQ(0, f->shared()->code()->profiler_ticks());
}
// Test that HAllocateObject will always return an object in new-space.
TEST(OptimizedAllocationAlwaysInNewSpace) {
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
if (!i::V8::UseCrankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
SimulateFullSpace(HEAP->new_space());
AlwaysAllocateScope always_allocate;
v8::Local<v8::Value> res = CompileRun(
"function c(x) {"
" this.x = x;"
" for (var i = 0; i < 32; i++) {"
" this['x' + i] = x;"
" }"
"}"
"function f(x) { return new c(x); };"
"f(1); f(2); f(3);"
"%OptimizeFunctionOnNextCall(f);"
"f(4);");
CHECK_EQ(4, res->ToObject()->GetRealNamedProperty(v8_str("x"))->Int32Value());
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(HEAP->InNewSpace(*o));
}
TEST(OptimizedPretenuringAllocationFolding) {
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
if (!i::V8::UseCrankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
HEAP->SetNewSpaceHighPromotionModeActive(true);
v8::Local<v8::Value> res = CompileRun(
"function DataObject() {"
" this.a = 1.1;"
" this.b = [{}];"
" this.c = 1.2;"
" this.d = [{}];"
" this.e = 1.3;"
" this.f = [{}];"
"}"
"function f() {"
" return new DataObject();"
"};"
"f(); f(); f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(HEAP->InOldDataSpace(o->RawFastPropertyAt(0)));
CHECK(HEAP->InOldPointerSpace(o->RawFastPropertyAt(1)));
CHECK(HEAP->InOldDataSpace(o->RawFastPropertyAt(2)));
CHECK(HEAP->InOldPointerSpace(o->RawFastPropertyAt(3)));
CHECK(HEAP->InOldDataSpace(o->RawFastPropertyAt(4)));
CHECK(HEAP->InOldPointerSpace(o->RawFastPropertyAt(5)));
}
TEST(OptimizedPretenuringAllocationFoldingBlocks) {
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
if (!i::V8::UseCrankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
HEAP->SetNewSpaceHighPromotionModeActive(true);
v8::Local<v8::Value> res = CompileRun(
"function DataObject() {"
" this.a = [{}];"
" this.b = [{}];"
" this.c = 1.1;"
" this.d = 1.2;"
" this.e = [{}];"
" this.f = 1.3;"
"}"
"function f() {"
" return new DataObject();"
"};"
"f(); f(); f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(HEAP->InOldPointerSpace(o->RawFastPropertyAt(0)));
CHECK(HEAP->InOldPointerSpace(o->RawFastPropertyAt(1)));
CHECK(HEAP->InOldDataSpace(o->RawFastPropertyAt(2)));
CHECK(HEAP->InOldDataSpace(o->RawFastPropertyAt(3)));
CHECK(HEAP->InOldPointerSpace(o->RawFastPropertyAt(4)));
CHECK(HEAP->InOldDataSpace(o->RawFastPropertyAt(5)));
}
TEST(OptimizedPretenuringObjectArrayLiterals) {
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
if (!i::V8::UseCrankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
HEAP->SetNewSpaceHighPromotionModeActive(true);
v8::Local<v8::Value> res = CompileRun(
"function f() {"
" var numbers = [{}, {}, {}];"
" return numbers;"
"};"
"f(); f(); f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(HEAP->InOldPointerSpace(o->elements()));
CHECK(HEAP->InOldPointerSpace(*o));
}
TEST(OptimizedPretenuringMixedInObjectProperties) {
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
if (!i::V8::UseCrankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
HEAP->SetNewSpaceHighPromotionModeActive(true);
v8::Local<v8::Value> res = CompileRun(
"function f() {"
" var numbers = {a: {c: 2.2, d: {}}, b: 1.1};"
" return numbers;"
"};"
"f(); f(); f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(HEAP->InOldPointerSpace(*o));
CHECK(HEAP->InOldPointerSpace(o->RawFastPropertyAt(0)));
CHECK(HEAP->InOldDataSpace(o->RawFastPropertyAt(1)));
JSObject* inner_object = reinterpret_cast<JSObject*>(o->RawFastPropertyAt(0));
CHECK(HEAP->InOldPointerSpace(inner_object));
CHECK(HEAP->InOldDataSpace(inner_object->RawFastPropertyAt(0)));
CHECK(HEAP->InOldPointerSpace(inner_object->RawFastPropertyAt(1)));
}
TEST(OptimizedPretenuringDoubleArrayProperties) {
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
if (!i::V8::UseCrankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
HEAP->SetNewSpaceHighPromotionModeActive(true);
v8::Local<v8::Value> res = CompileRun(
"function f() {"
" var numbers = {a: 1.1, b: 2.2};"
" return numbers;"
"};"
"f(); f(); f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(HEAP->InOldPointerSpace(*o));
CHECK(HEAP->InOldDataSpace(o->properties()));
}
TEST(OptimizedPretenuringdoubleArrayLiterals) {
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
if (!i::V8::UseCrankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
HEAP->SetNewSpaceHighPromotionModeActive(true);
v8::Local<v8::Value> res = CompileRun(
"function f() {"
" var numbers = [1.1, 2.2, 3.3];"
" return numbers;"
"};"
"f(); f(); f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(HEAP->InOldDataSpace(o->elements()));
CHECK(HEAP->InOldPointerSpace(*o));
}
TEST(OptimizedPretenuringNestedMixedArrayLiterals) {
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
if (!i::V8::UseCrankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
HEAP->SetNewSpaceHighPromotionModeActive(true);
v8::Local<v8::Value> res = CompileRun(
"function f() {"
" var numbers = [[{}, {}, {}],[1.1, 2.2, 3.3]];"
" return numbers;"
"};"
"f(); f(); f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
v8::Local<v8::Value> int_array = v8::Object::Cast(*res)->Get(v8_str("0"));
Handle<JSObject> int_array_handle =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(int_array));
v8::Local<v8::Value> double_array = v8::Object::Cast(*res)->Get(v8_str("1"));
Handle<JSObject> double_array_handle =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(double_array));
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(HEAP->InOldPointerSpace(*o));
CHECK(HEAP->InOldPointerSpace(*int_array_handle));
CHECK(HEAP->InOldPointerSpace(int_array_handle->elements()));
CHECK(HEAP->InOldPointerSpace(*double_array_handle));
CHECK(HEAP->InOldDataSpace(double_array_handle->elements()));
}
TEST(OptimizedPretenuringNestedObjectLiterals) {
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
if (!i::V8::UseCrankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
HEAP->SetNewSpaceHighPromotionModeActive(true);
v8::Local<v8::Value> res = CompileRun(
"function f() {"
" var numbers = [[{}, {}, {}],[{}, {}, {}]];"
" return numbers;"
"};"
"f(); f(); f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
v8::Local<v8::Value> int_array_1 = v8::Object::Cast(*res)->Get(v8_str("0"));
Handle<JSObject> int_array_handle_1 =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(int_array_1));
v8::Local<v8::Value> int_array_2 = v8::Object::Cast(*res)->Get(v8_str("1"));
Handle<JSObject> int_array_handle_2 =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(int_array_2));
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(HEAP->InOldPointerSpace(*o));
CHECK(HEAP->InOldPointerSpace(*int_array_handle_1));
CHECK(HEAP->InOldPointerSpace(int_array_handle_1->elements()));
CHECK(HEAP->InOldPointerSpace(*int_array_handle_2));
CHECK(HEAP->InOldPointerSpace(int_array_handle_2->elements()));
}
TEST(OptimizedPretenuringNestedDoubleLiterals) {
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
if (!i::V8::UseCrankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
HEAP->SetNewSpaceHighPromotionModeActive(true);
v8::Local<v8::Value> res = CompileRun(
"function f() {"
" var numbers = [[1.1, 1.2, 1.3],[2.1, 2.2, 2.3]];"
" return numbers;"
"};"
"f(); f(); f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
v8::Local<v8::Value> double_array_1 =
v8::Object::Cast(*res)->Get(v8_str("0"));
Handle<JSObject> double_array_handle_1 =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(double_array_1));
v8::Local<v8::Value> double_array_2 =
v8::Object::Cast(*res)->Get(v8_str("1"));
Handle<JSObject> double_array_handle_2 =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(double_array_2));
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(HEAP->InOldPointerSpace(*o));
CHECK(HEAP->InOldPointerSpace(*double_array_handle_1));
CHECK(HEAP->InOldDataSpace(double_array_handle_1->elements()));
CHECK(HEAP->InOldPointerSpace(*double_array_handle_2));
CHECK(HEAP->InOldDataSpace(double_array_handle_2->elements()));
}
// Test regular array literals allocation.
TEST(OptimizedAllocationArrayLiterals) {
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
if (!i::V8::UseCrankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Value> res = CompileRun(
"function f() {"
" var numbers = new Array(1, 2, 3);"
" numbers[0] = 3.14;"
" return numbers;"
"};"
"f(); f(); f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
CHECK_EQ(static_cast<int>(3.14),
v8::Object::Cast(*res)->Get(v8_str("0"))->Int32Value());
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(HEAP->InNewSpace(o->elements()));
}
TEST(OptimizedPretenuringCallNew) {
i::FLAG_allow_natives_syntax = true;
i::FLAG_pretenuring_call_new = true;
CcTest::InitializeVM();
if (!i::V8::UseCrankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
HEAP->SetNewSpaceHighPromotionModeActive(true);
AlwaysAllocateScope always_allocate;
v8::Local<v8::Value> res = CompileRun(
"function g() { this.a = 0; }"
"function f() {"
" return new g();"
"};"
"f(); f(); f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(HEAP->InOldPointerSpace(*o));
}
static int CountMapTransitions(Map* map) {
return map->transitions()->number_of_transitions();
}
// Test that map transitions are cleared and maps are collected with
// incremental marking as well.
TEST(Regress1465) {
i::FLAG_stress_compaction = false;
i::FLAG_allow_natives_syntax = true;
i::FLAG_trace_incremental_marking = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
static const int transitions_count = 256;
{
AlwaysAllocateScope always_allocate;
for (int i = 0; i < transitions_count; i++) {
EmbeddedVector<char, 64> buffer;
OS::SNPrintF(buffer, "var o = new Object; o.prop%d = %d;", i, i);
CompileRun(buffer.start());
}
CompileRun("var root = new Object;");
}
Handle<JSObject> root =
v8::Utils::OpenHandle(
*v8::Handle<v8::Object>::Cast(
v8::Context::GetCurrent()->Global()->Get(v8_str("root"))));
// Count number of live transitions before marking.
int transitions_before = CountMapTransitions(root->map());
CompileRun("%DebugPrint(root);");
CHECK_EQ(transitions_count, transitions_before);
SimulateIncrementalMarking();
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
// Count number of live transitions after marking. Note that one transition
// is left, because 'o' still holds an instance of one transition target.
int transitions_after = CountMapTransitions(root->map());
CompileRun("%DebugPrint(root);");
CHECK_EQ(1, transitions_after);
}
TEST(Regress2143a) {
i::FLAG_collect_maps = true;
i::FLAG_incremental_marking = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
// Prepare a map transition from the root object together with a yet
// untransitioned root object.
CompileRun("var root = new Object;"
"root.foo = 0;"
"root = new Object;");
SimulateIncrementalMarking();
// Compile a StoreIC that performs the prepared map transition. This
// will restart incremental marking and should make sure the root is
// marked grey again.
CompileRun("function f(o) {"
" o.foo = 0;"
"}"
"f(new Object);"
"f(root);");
// This bug only triggers with aggressive IC clearing.
HEAP->AgeInlineCaches();
// Explicitly request GC to perform final marking step and sweeping.
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
Handle<JSObject> root =
v8::Utils::OpenHandle(
*v8::Handle<v8::Object>::Cast(
v8::Context::GetCurrent()->Global()->Get(v8_str("root"))));
// The root object should be in a sane state.
CHECK(root->IsJSObject());
CHECK(root->map()->IsMap());
}
TEST(Regress2143b) {
i::FLAG_collect_maps = true;
i::FLAG_incremental_marking = true;
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
// Prepare a map transition from the root object together with a yet
// untransitioned root object.
CompileRun("var root = new Object;"
"root.foo = 0;"
"root = new Object;");
SimulateIncrementalMarking();
// Compile an optimized LStoreNamedField that performs the prepared
// map transition. This will restart incremental marking and should
// make sure the root is marked grey again.
CompileRun("function f(o) {"
" o.foo = 0;"
"}"
"f(new Object);"
"f(new Object);"
"%OptimizeFunctionOnNextCall(f);"
"f(root);"
"%DeoptimizeFunction(f);");
// This bug only triggers with aggressive IC clearing.
HEAP->AgeInlineCaches();
// Explicitly request GC to perform final marking step and sweeping.
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
Handle<JSObject> root =
v8::Utils::OpenHandle(
*v8::Handle<v8::Object>::Cast(
v8::Context::GetCurrent()->Global()->Get(v8_str("root"))));
// The root object should be in a sane state.
CHECK(root->IsJSObject());
CHECK(root->map()->IsMap());
}
TEST(ReleaseOverReservedPages) {
i::FLAG_trace_gc = true;
// The optimizer can allocate stuff, messing up the test.
i::FLAG_crankshaft = false;
i::FLAG_always_opt = false;
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
static const int number_of_test_pages = 20;
// Prepare many pages with low live-bytes count.
PagedSpace* old_pointer_space = HEAP->old_pointer_space();
CHECK_EQ(1, old_pointer_space->CountTotalPages());
for (int i = 0; i < number_of_test_pages; i++) {
AlwaysAllocateScope always_allocate;
SimulateFullSpace(old_pointer_space);
factory->NewFixedArray(1, TENURED);
}
CHECK_EQ(number_of_test_pages + 1, old_pointer_space->CountTotalPages());
// Triggering one GC will cause a lot of garbage to be discovered but
// even spread across all allocated pages.
HEAP->CollectAllGarbage(Heap::kNoGCFlags, "triggered for preparation");
CHECK_GE(number_of_test_pages + 1, old_pointer_space->CountTotalPages());
// Triggering subsequent GCs should cause at least half of the pages
// to be released to the OS after at most two cycles.
HEAP->CollectAllGarbage(Heap::kNoGCFlags, "triggered by test 1");
CHECK_GE(number_of_test_pages + 1, old_pointer_space->CountTotalPages());
HEAP->CollectAllGarbage(Heap::kNoGCFlags, "triggered by test 2");
CHECK_GE(number_of_test_pages + 1, old_pointer_space->CountTotalPages() * 2);
// Triggering a last-resort GC should cause all pages to be released to the
// OS so that other processes can seize the memory. If we get a failure here
// where there are 2 pages left instead of 1, then we should increase the
// size of the first page a little in SizeOfFirstPage in spaces.cc. The
// first page should be small in order to reduce memory used when the VM
// boots, but if the 20 small arrays don't fit on the first page then that's
// an indication that it is too small.
HEAP->CollectAllAvailableGarbage("triggered really hard");
CHECK_EQ(1, old_pointer_space->CountTotalPages());
}
TEST(Regress2237) {
i::FLAG_stress_compaction = false;
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
Handle<String> slice(HEAP->empty_string());
{
// Generate a parent that lives in new-space.
v8::HandleScope inner_scope(CcTest::isolate());
const char* c = "This text is long enough to trigger sliced strings.";
Handle<String> s = factory->NewStringFromAscii(CStrVector(c));
CHECK(s->IsSeqOneByteString());
CHECK(HEAP->InNewSpace(*s));
// Generate a sliced string that is based on the above parent and
// lives in old-space.
SimulateFullSpace(HEAP->new_space());
AlwaysAllocateScope always_allocate;
Handle<String> t = factory->NewProperSubString(s, 5, 35);
CHECK(t->IsSlicedString());
CHECK(!HEAP->InNewSpace(*t));
*slice.location() = *t.location();
}
CHECK(SlicedString::cast(*slice)->parent()->IsSeqOneByteString());
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
CHECK(SlicedString::cast(*slice)->parent()->IsSeqOneByteString());
}
#ifdef OBJECT_PRINT
TEST(PrintSharedFunctionInfo) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
const char* source = "f = function() { return 987654321; }\n"
"g = function() { return 123456789; }\n";
CompileRun(source);
Handle<JSFunction> g =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
v8::Context::GetCurrent()->Global()->Get(v8_str("g"))));
DisallowHeapAllocation no_allocation;
g->shared()->PrintLn();
}
#endif // OBJECT_PRINT
TEST(Regress2211) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::Handle<v8::String> value = v8_str("val string");
Smi* hash = Smi::FromInt(321);
Heap* heap = Isolate::Current()->heap();
for (int i = 0; i < 2; i++) {
// Store identity hash first and common hidden property second.
v8::Handle<v8::Object> obj = v8::Object::New();
Handle<JSObject> internal_obj = v8::Utils::OpenHandle(*obj);
CHECK(internal_obj->HasFastProperties());
// In the first iteration, set hidden value first and identity hash second.
// In the second iteration, reverse the order.
if (i == 0) obj->SetHiddenValue(v8_str("key string"), value);
MaybeObject* maybe_obj = internal_obj->SetIdentityHash(hash,
ALLOW_CREATION);
CHECK(!maybe_obj->IsFailure());
if (i == 1) obj->SetHiddenValue(v8_str("key string"), value);
// Check values.
CHECK_EQ(hash,
internal_obj->GetHiddenProperty(heap->identity_hash_string()));
CHECK(value->Equals(obj->GetHiddenValue(v8_str("key string"))));
// Check size.
DescriptorArray* descriptors = internal_obj->map()->instance_descriptors();
ObjectHashTable* hashtable = ObjectHashTable::cast(
internal_obj->RawFastPropertyAt(descriptors->GetFieldIndex(0)));
// HashTable header (5) and 4 initial entries (8).
CHECK_LE(hashtable->SizeFor(hashtable->length()), 13 * kPointerSize);
}
}
TEST(IncrementalMarkingClearsTypeFeedbackCells) {
if (i::FLAG_always_opt) return;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Value> fun1, fun2;
{
LocalContext env;
CompileRun("function fun() {};");
fun1 = env->Global()->Get(v8_str("fun"));
}
{
LocalContext env;
CompileRun("function fun() {};");
fun2 = env->Global()->Get(v8_str("fun"));
}
// Prepare function f that contains type feedback for closures
// originating from two different native contexts.
v8::Context::GetCurrent()->Global()->Set(v8_str("fun1"), fun1);
v8::Context::GetCurrent()->Global()->Set(v8_str("fun2"), fun2);
CompileRun("function f(a, b) { a(); b(); } f(fun1, fun2);");
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
v8::Context::GetCurrent()->Global()->Get(v8_str("f"))));
Handle<TypeFeedbackCells> cells(TypeFeedbackInfo::cast(
f->shared()->code()->type_feedback_info())->type_feedback_cells());
CHECK_EQ(2, cells->CellCount());
CHECK(cells->GetCell(0)->value()->IsJSFunction());
CHECK(cells->GetCell(1)->value()->IsJSFunction());
SimulateIncrementalMarking();
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
CHECK_EQ(2, cells->CellCount());
CHECK(cells->GetCell(0)->value()->IsTheHole());
CHECK(cells->GetCell(1)->value()->IsTheHole());
}
static Code* FindFirstIC(Code* code, Code::Kind kind) {
int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
RelocInfo::ModeMask(RelocInfo::CONSTRUCT_CALL) |
RelocInfo::ModeMask(RelocInfo::CODE_TARGET_WITH_ID) |
RelocInfo::ModeMask(RelocInfo::CODE_TARGET_CONTEXT);
for (RelocIterator it(code, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
Code* target = Code::GetCodeFromTargetAddress(info->target_address());
if (target->is_inline_cache_stub() && target->kind() == kind) {
return target;
}
}
return NULL;
}
TEST(IncrementalMarkingPreservesMonomorhpicIC) {
if (i::FLAG_always_opt) return;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
// Prepare function f that contains a monomorphic IC for object
// originating from the same native context.
CompileRun("function fun() { this.x = 1; }; var obj = new fun();"
"function f(o) { return o.x; } f(obj); f(obj);");
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
v8::Context::GetCurrent()->Global()->Get(v8_str("f"))));
Code* ic_before = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
CHECK(ic_before->ic_state() == MONOMORPHIC);
SimulateIncrementalMarking();
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
Code* ic_after = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
CHECK(ic_after->ic_state() == MONOMORPHIC);
}
TEST(IncrementalMarkingClearsMonomorhpicIC) {
if (i::FLAG_always_opt) return;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Value> obj1;
{
LocalContext env;
CompileRun("function fun() { this.x = 1; }; var obj = new fun();");
obj1 = env->Global()->Get(v8_str("obj"));
}
// Prepare function f that contains a monomorphic IC for object
// originating from a different native context.
v8::Context::GetCurrent()->Global()->Set(v8_str("obj1"), obj1);
CompileRun("function f(o) { return o.x; } f(obj1); f(obj1);");
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
v8::Context::GetCurrent()->Global()->Get(v8_str("f"))));
Code* ic_before = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
CHECK(ic_before->ic_state() == MONOMORPHIC);
// Fire context dispose notification.
v8::V8::ContextDisposedNotification();
SimulateIncrementalMarking();
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
Code* ic_after = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
CHECK(ic_after->ic_state() == UNINITIALIZED);
}
TEST(IncrementalMarkingClearsPolymorhpicIC) {
if (i::FLAG_always_opt) return;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Value> obj1, obj2;
{
LocalContext env;
CompileRun("function fun() { this.x = 1; }; var obj = new fun();");
obj1 = env->Global()->Get(v8_str("obj"));
}
{
LocalContext env;
CompileRun("function fun() { this.x = 2; }; var obj = new fun();");
obj2 = env->Global()->Get(v8_str("obj"));
}
// Prepare function f that contains a polymorphic IC for objects
// originating from two different native contexts.
v8::Context::GetCurrent()->Global()->Set(v8_str("obj1"), obj1);
v8::Context::GetCurrent()->Global()->Set(v8_str("obj2"), obj2);
CompileRun("function f(o) { return o.x; } f(obj1); f(obj1); f(obj2);");
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
v8::Context::GetCurrent()->Global()->Get(v8_str("f"))));
Code* ic_before = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
CHECK(ic_before->ic_state() == POLYMORPHIC);
// Fire context dispose notification.
v8::V8::ContextDisposedNotification();
SimulateIncrementalMarking();
HEAP->CollectAllGarbage(Heap::kNoGCFlags);
Code* ic_after = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
CHECK(ic_after->ic_state() == UNINITIALIZED);
}
class SourceResource: public v8::String::ExternalAsciiStringResource {
public:
explicit SourceResource(const char* data)
: data_(data), length_(strlen(data)) { }
virtual void Dispose() {
i::DeleteArray(data_);
data_ = NULL;
}
const char* data() const { return data_; }
size_t length() const { return length_; }
bool IsDisposed() { return data_ == NULL; }
private:
const char* data_;
size_t length_;
};
void ReleaseStackTraceDataTest(const char* source, const char* accessor) {
// Test that the data retained by the Error.stack accessor is released
// after the first time the accessor is fired. We use external string
// to check whether the data is being released since the external string
// resource's callback is fired when the external string is GC'ed.
FLAG_use_ic = false; // ICs retain objects.
FLAG_concurrent_recompilation = false;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
SourceResource* resource = new SourceResource(i::StrDup(source));
{
v8::HandleScope scope(CcTest::isolate());
v8::Handle<v8::String> source_string = v8::String::NewExternal(resource);
HEAP->CollectAllAvailableGarbage();
v8::Script::Compile(source_string)->Run();
CHECK(!resource->IsDisposed());
}
// HEAP->CollectAllAvailableGarbage();
CHECK(!resource->IsDisposed());
CompileRun(accessor);
HEAP->CollectAllAvailableGarbage();
// External source has been released.
CHECK(resource->IsDisposed());
delete resource;
}
TEST(ReleaseStackTraceData) {
static const char* source1 = "var error = null; "
/* Normal Error */ "try { "
" throw new Error(); "
"} catch (e) { "
" error = e; "
"} ";
static const char* source2 = "var error = null; "
/* Stack overflow */ "try { "
" (function f() { f(); })(); "
"} catch (e) { "
" error = e; "
"} ";
static const char* source3 = "var error = null; "
/* Normal Error */ "try { "
/* as prototype */ " throw new Error(); "
"} catch (e) { "
" error = {}; "
" error.__proto__ = e; "
"} ";
static const char* source4 = "var error = null; "
/* Stack overflow */ "try { "
/* as prototype */ " (function f() { f(); })(); "
"} catch (e) { "
" error = {}; "
" error.__proto__ = e; "
"} ";
static const char* getter = "error.stack";
static const char* setter = "error.stack = 0";
ReleaseStackTraceDataTest(source1, setter);
ReleaseStackTraceDataTest(source2, setter);
// We do not test source3 and source4 with setter, since the setter is
// supposed to (untypically) write to the receiver, not the holder. This is
// to emulate the behavior of a data property.
ReleaseStackTraceDataTest(source1, getter);
ReleaseStackTraceDataTest(source2, getter);
ReleaseStackTraceDataTest(source3, getter);
ReleaseStackTraceDataTest(source4, getter);
}
TEST(Regression144230) {
i::FLAG_stress_compaction = false;
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
// First make sure that the uninitialized CallIC stub is on a single page
// that will later be selected as an evacuation candidate.
{
HandleScope inner_scope(isolate);
AlwaysAllocateScope always_allocate;
SimulateFullSpace(heap->code_space());
isolate->stub_cache()->ComputeCallInitialize(9, RelocInfo::CODE_TARGET);
}
// Second compile a CallIC and execute it once so that it gets patched to
// the pre-monomorphic stub. These code objects are on yet another page.
{
HandleScope inner_scope(isolate);
AlwaysAllocateScope always_allocate;
SimulateFullSpace(heap->code_space());
CompileRun("var o = { f:function(a,b,c,d,e,f,g,h,i) {}};"
"function call() { o.f(1,2,3,4,5,6,7,8,9); };"
"call();");
}
// Third we fill up the last page of the code space so that it does not get
// chosen as an evacuation candidate.
{
HandleScope inner_scope(isolate);
AlwaysAllocateScope always_allocate;
CompileRun("for (var i = 0; i < 2000; i++) {"
" eval('function f' + i + '() { return ' + i +'; };' +"
" 'f' + i + '();');"
"}");
}
heap->CollectAllGarbage(Heap::kNoGCFlags);
// Fourth is the tricky part. Make sure the code containing the CallIC is
// visited first without clearing the IC. The shared function info is then
// visited later, causing the CallIC to be cleared.
Handle<String> name = isolate->factory()->InternalizeUtf8String("call");
Handle<GlobalObject> global(isolate->context()->global_object());
MaybeObject* maybe_call = global->GetProperty(*name);
JSFunction* call = JSFunction::cast(maybe_call->ToObjectChecked());
USE(global->SetProperty(*name, Smi::FromInt(0), NONE, kNonStrictMode));
isolate->compilation_cache()->Clear();
call->shared()->set_ic_age(heap->global_ic_age() + 1);
Handle<Object> call_code(call->code(), isolate);
Handle<Object> call_function(call, isolate);
// Now we are ready to mess up the heap.
heap->CollectAllGarbage(Heap::kReduceMemoryFootprintMask);
// Either heap verification caught the problem already or we go kaboom once
// the CallIC is executed the next time.
USE(global->SetProperty(*name, *call_function, NONE, kNonStrictMode));
CompileRun("call();");
}
TEST(Regress159140) {
i::FLAG_allow_natives_syntax = true;
i::FLAG_flush_code_incrementally = true;
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
// Perform one initial GC to enable code flushing.
heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
// Prepare several closures that are all eligible for code flushing
// because all reachable ones are not optimized. Make sure that the
// optimized code object is directly reachable through a handle so
// that it is marked black during incremental marking.
Handle<Code> code;
{
HandleScope inner_scope(isolate);
CompileRun("function h(x) {}"
"function mkClosure() {"
" return function(x) { return x + 1; };"
"}"
"var f = mkClosure();"
"var g = mkClosure();"
"f(1); f(2);"
"g(1); g(2);"
"h(1); h(2);"
"%OptimizeFunctionOnNextCall(f); f(3);"
"%OptimizeFunctionOnNextCall(h); h(3);");
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
v8::Context::GetCurrent()->Global()->Get(v8_str("f"))));
CHECK(f->is_compiled());
CompileRun("f = null;");
Handle<JSFunction> g =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
v8::Context::GetCurrent()->Global()->Get(v8_str("g"))));
CHECK(g->is_compiled());
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
g->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
}
code = inner_scope.CloseAndEscape(Handle<Code>(f->code()));
}
// Simulate incremental marking so that the functions are enqueued as
// code flushing candidates. Then optimize one function. Finally
// finish the GC to complete code flushing.
SimulateIncrementalMarking();
CompileRun("%OptimizeFunctionOnNextCall(g); g(3);");
heap->CollectAllGarbage(Heap::kNoGCFlags);
// Unoptimized code is missing and the deoptimizer will go ballistic.
CompileRun("g('bozo');");
}
TEST(Regress165495) {
i::FLAG_allow_natives_syntax = true;
i::FLAG_flush_code_incrementally = true;
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
// Perform one initial GC to enable code flushing.
heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
// Prepare an optimized closure that the optimized code map will get
// populated. Then age the unoptimized code to trigger code flushing
// but make sure the optimized code is unreachable.
{
HandleScope inner_scope(isolate);
CompileRun("function mkClosure() {"
" return function(x) { return x + 1; };"
"}"
"var f = mkClosure();"
"f(1); f(2);"
"%OptimizeFunctionOnNextCall(f); f(3);");
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
v8::Context::GetCurrent()->Global()->Get(v8_str("f"))));
CHECK(f->is_compiled());
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
f->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
}
CompileRun("f = null;");
}
// Simulate incremental marking so that unoptimized code is flushed
// even though it still is cached in the optimized code map.
SimulateIncrementalMarking();
heap->CollectAllGarbage(Heap::kNoGCFlags);
// Make a new closure that will get code installed from the code map.
// Unoptimized code is missing and the deoptimizer will go ballistic.
CompileRun("var g = mkClosure(); g('bozo');");
}
TEST(Regress169209) {
i::FLAG_stress_compaction = false;
i::FLAG_allow_natives_syntax = true;
i::FLAG_flush_code_incrementally = true;
// Disable loading the i18n extension which breaks the assumptions of this
// test about the heap layout.
i::FLAG_enable_i18n = false;
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
// Perform one initial GC to enable code flushing.
heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
// Prepare a shared function info eligible for code flushing for which
// the unoptimized code will be replaced during optimization.
Handle<SharedFunctionInfo> shared1;
{
HandleScope inner_scope(isolate);
CompileRun("function f() { return 'foobar'; }"
"function g(x) { if (x) f(); }"
"f();"
"g(false);"
"g(false);");
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
v8::Context::GetCurrent()->Global()->Get(v8_str("f"))));
CHECK(f->is_compiled());
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
f->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
}
shared1 = inner_scope.CloseAndEscape(handle(f->shared(), isolate));
}
// Prepare a shared function info eligible for code flushing that will
// represent the dangling tail of the candidate list.
Handle<SharedFunctionInfo> shared2;
{
HandleScope inner_scope(isolate);
CompileRun("function flushMe() { return 0; }"
"flushMe(1);");
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
v8::Context::GetCurrent()->Global()->Get(v8_str("flushMe"))));
CHECK(f->is_compiled());
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
f->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
}
shared2 = inner_scope.CloseAndEscape(handle(f->shared(), isolate));
}
// Simulate incremental marking and collect code flushing candidates.
SimulateIncrementalMarking();
CHECK(shared1->code()->gc_metadata() != NULL);
// Optimize function and make sure the unoptimized code is replaced.
#ifdef DEBUG
FLAG_stop_at = "f";
#endif
CompileRun("%OptimizeFunctionOnNextCall(g);"
"g(false);");
// Finish garbage collection cycle.
heap->CollectAllGarbage(Heap::kNoGCFlags);
CHECK(shared1->code()->gc_metadata() == NULL);
}
// Helper function that simulates a fill new-space in the heap.
static inline void AllocateAllButNBytes(v8::internal::NewSpace* space,
int extra_bytes) {
int space_remaining = static_cast<int>(
*space->allocation_limit_address() - *space->allocation_top_address());
CHECK(space_remaining >= extra_bytes);
int new_linear_size = space_remaining - extra_bytes;
v8::internal::MaybeObject* maybe = space->AllocateRaw(new_linear_size);
v8::internal::FreeListNode* node = v8::internal::FreeListNode::cast(maybe);
node->set_size(space->heap(), new_linear_size);
}
TEST(Regress169928) {
i::FLAG_allow_natives_syntax = true;
i::FLAG_crankshaft = false;
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
// Some flags turn Scavenge collections into Mark-sweep collections
// and hence are incompatible with this test case.
if (FLAG_gc_global || FLAG_stress_compaction) return;
// Prepare the environment
CompileRun("function fastliteralcase(literal, value) {"
" literal[0] = value;"
" return literal;"
"}"
"function get_standard_literal() {"
" var literal = [1, 2, 3];"
" return literal;"
"}"
"obj = fastliteralcase(get_standard_literal(), 1);"
"obj = fastliteralcase(get_standard_literal(), 1.5);"
"obj = fastliteralcase(get_standard_literal(), 2);");
// prepare the heap
v8::Local<v8::String> mote_code_string =
v8_str("fastliteralcase(mote, 2.5);");
v8::Local<v8::String> array_name = v8_str("mote");
v8::Context::GetCurrent()->Global()->Set(array_name, v8::Int32::New(0));
// First make sure we flip spaces
HEAP->CollectGarbage(NEW_SPACE);
// Allocate the object.
Handle<FixedArray> array_data = factory->NewFixedArray(2, NOT_TENURED);
array_data->set(0, Smi::FromInt(1));
array_data->set(1, Smi::FromInt(2));
AllocateAllButNBytes(HEAP->new_space(),
JSArray::kSize + AllocationMemento::kSize +
kPointerSize);
Handle<JSArray> array = factory->NewJSArrayWithElements(array_data,
FAST_SMI_ELEMENTS,
NOT_TENURED);
CHECK_EQ(Smi::FromInt(2), array->length());
CHECK(array->HasFastSmiOrObjectElements());
// We need filler the size of AllocationMemento object, plus an extra
// fill pointer value.
MaybeObject* maybe_object = HEAP->AllocateRaw(
AllocationMemento::kSize + kPointerSize, NEW_SPACE, OLD_POINTER_SPACE);
Object* obj = NULL;
CHECK(maybe_object->ToObject(&obj));
Address addr_obj = reinterpret_cast<Address>(
reinterpret_cast<byte*>(obj - kHeapObjectTag));
HEAP->CreateFillerObjectAt(addr_obj,
AllocationMemento::kSize + kPointerSize);
// Give the array a name, making sure not to allocate strings.
v8::Handle<v8::Object> array_obj = v8::Utils::ToLocal(array);
v8::Context::GetCurrent()->Global()->Set(array_name, array_obj);
// This should crash with a protection violation if we are running a build
// with the bug.
AlwaysAllocateScope aa_scope;
v8::Script::Compile(mote_code_string)->Run();
}
TEST(Regress168801) {
i::FLAG_always_compact = true;
i::FLAG_cache_optimized_code = false;
i::FLAG_allow_natives_syntax = true;
i::FLAG_flush_code_incrementally = true;
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
// Perform one initial GC to enable code flushing.
heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
// Ensure the code ends up on an evacuation candidate.
SimulateFullSpace(heap->code_space());
// Prepare an unoptimized function that is eligible for code flushing.
Handle<JSFunction> function;
{
HandleScope inner_scope(isolate);
CompileRun("function mkClosure() {"
" return function(x) { return x + 1; };"
"}"
"var f = mkClosure();"
"f(1); f(2);");
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
v8::Context::GetCurrent()->Global()->Get(v8_str("f"))));
CHECK(f->is_compiled());
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
f->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
}
function = inner_scope.CloseAndEscape(handle(*f, isolate));
}
// Simulate incremental marking so that unoptimized function is enqueued as a
// candidate for code flushing. The shared function info however will not be
// explicitly enqueued.
SimulateIncrementalMarking();
// Now optimize the function so that it is taken off the candidate list.
{
HandleScope inner_scope(isolate);
CompileRun("%OptimizeFunctionOnNextCall(f); f(3);");
}
// This cycle will bust the heap and subsequent cycles will go ballistic.
heap->CollectAllGarbage(Heap::kNoGCFlags);
heap->CollectAllGarbage(Heap::kNoGCFlags);
}
TEST(Regress173458) {
i::FLAG_always_compact = true;
i::FLAG_cache_optimized_code = false;
i::FLAG_allow_natives_syntax = true;
i::FLAG_flush_code_incrementally = true;
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
// Perform one initial GC to enable code flushing.
heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
// Ensure the code ends up on an evacuation candidate.
SimulateFullSpace(heap->code_space());
// Prepare an unoptimized function that is eligible for code flushing.
Handle<JSFunction> function;
{
HandleScope inner_scope(isolate);
CompileRun("function mkClosure() {"
" return function(x) { return x + 1; };"
"}"
"var f = mkClosure();"
"f(1); f(2);");
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
v8::Context::GetCurrent()->Global()->Get(v8_str("f"))));
CHECK(f->is_compiled());
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
f->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
}
function = inner_scope.CloseAndEscape(handle(*f, isolate));
}
// Simulate incremental marking so that unoptimized function is enqueued as a
// candidate for code flushing. The shared function info however will not be
// explicitly enqueued.
SimulateIncrementalMarking();
#ifdef ENABLE_DEBUGGER_SUPPORT
// Now enable the debugger which in turn will disable code flushing.
CHECK(isolate->debug()->Load());
#endif // ENABLE_DEBUGGER_SUPPORT
// This cycle will bust the heap and subsequent cycles will go ballistic.
heap->CollectAllGarbage(Heap::kNoGCFlags);
heap->CollectAllGarbage(Heap::kNoGCFlags);
}
class DummyVisitor : public ObjectVisitor {
public:
void VisitPointers(Object** start, Object** end) { }
};
TEST(DeferredHandles) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
Heap* heap = isolate->heap();
v8::HandleScope scope;
v8::ImplementationUtilities::HandleScopeData* data =
isolate->handle_scope_data();
Handle<Object> init(heap->empty_string(), isolate);
while (data->next < data->limit) {
Handle<Object> obj(heap->empty_string(), isolate);
}
// An entire block of handles has been filled.
// Next handle would require a new block.
ASSERT(data->next == data->limit);
DeferredHandleScope deferred(isolate);
DummyVisitor visitor;
isolate->handle_scope_implementer()->Iterate(&visitor);
deferred.Detach();
}
TEST(IncrementalMarkingStepMakesBigProgressWithLargeObjects) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
CompileRun("function f(n) {"
" var a = new Array(n);"
" for (var i = 0; i < n; i += 100) a[i] = i;"
"};"
"f(10 * 1024 * 1024);");
IncrementalMarking* marking = HEAP->incremental_marking();
if (marking->IsStopped()) marking->Start();
// This big step should be sufficient to mark the whole array.
marking->Step(100 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD);
ASSERT(marking->IsComplete());
}