dc8c314084
To keep the structure of the serializer more or less untouched, we use some ingenious Corry-approved(TM) 3-step technology (a.k.a. "hack"): * Create copies of code objects. * Wipe out all absolute addresses in these copies. * Write out the cleaned copies instead of the originals. In conjunction with --random-seed, our snapshots are reproducible now. BUG=v8:2885 R=bmeurer@chromium.org, erik.corry@gmail.com Review URL: https://codereview.chromium.org/54823002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@17473 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
531 lines
16 KiB
C++
531 lines
16 KiB
C++
// Copyright (c) 1994-2006 Sun Microsystems Inc.
|
|
// All Rights Reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions
|
|
// are met:
|
|
//
|
|
// - Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// - Redistribution in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the
|
|
// distribution.
|
|
//
|
|
// - Neither the name of Sun Microsystems or the names of contributors may
|
|
// be used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
// OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// The original source code covered by the above license above has been modified
|
|
// significantly by Google Inc.
|
|
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
|
|
#ifndef V8_ARM_ASSEMBLER_ARM_INL_H_
|
|
#define V8_ARM_ASSEMBLER_ARM_INL_H_
|
|
|
|
#include "arm/assembler-arm.h"
|
|
|
|
#include "cpu.h"
|
|
#include "debug.h"
|
|
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
int Register::NumAllocatableRegisters() {
|
|
return kMaxNumAllocatableRegisters;
|
|
}
|
|
|
|
|
|
int DwVfpRegister::NumRegisters() {
|
|
return CpuFeatures::IsSupported(VFP32DREGS) ? 32 : 16;
|
|
}
|
|
|
|
|
|
int DwVfpRegister::NumAllocatableRegisters() {
|
|
return NumRegisters() - kNumReservedRegisters;
|
|
}
|
|
|
|
|
|
int DwVfpRegister::ToAllocationIndex(DwVfpRegister reg) {
|
|
ASSERT(!reg.is(kDoubleRegZero));
|
|
ASSERT(!reg.is(kScratchDoubleReg));
|
|
if (reg.code() > kDoubleRegZero.code()) {
|
|
return reg.code() - kNumReservedRegisters;
|
|
}
|
|
return reg.code();
|
|
}
|
|
|
|
|
|
DwVfpRegister DwVfpRegister::FromAllocationIndex(int index) {
|
|
ASSERT(index >= 0 && index < NumAllocatableRegisters());
|
|
ASSERT(kScratchDoubleReg.code() - kDoubleRegZero.code() ==
|
|
kNumReservedRegisters - 1);
|
|
if (index >= kDoubleRegZero.code()) {
|
|
return from_code(index + kNumReservedRegisters);
|
|
}
|
|
return from_code(index);
|
|
}
|
|
|
|
|
|
void RelocInfo::apply(intptr_t delta) {
|
|
if (RelocInfo::IsInternalReference(rmode_)) {
|
|
// absolute code pointer inside code object moves with the code object.
|
|
int32_t* p = reinterpret_cast<int32_t*>(pc_);
|
|
*p += delta; // relocate entry
|
|
}
|
|
// We do not use pc relative addressing on ARM, so there is
|
|
// nothing else to do.
|
|
}
|
|
|
|
|
|
Address RelocInfo::target_address() {
|
|
ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
|
|
return Assembler::target_address_at(pc_);
|
|
}
|
|
|
|
|
|
Address RelocInfo::target_address_address() {
|
|
ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
|
|
|| rmode_ == EMBEDDED_OBJECT
|
|
|| rmode_ == EXTERNAL_REFERENCE);
|
|
return reinterpret_cast<Address>(Assembler::target_pointer_address_at(pc_));
|
|
}
|
|
|
|
|
|
int RelocInfo::target_address_size() {
|
|
return kPointerSize;
|
|
}
|
|
|
|
|
|
void RelocInfo::set_target_address(Address target, WriteBarrierMode mode) {
|
|
ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
|
|
Assembler::set_target_address_at(pc_, target);
|
|
if (mode == UPDATE_WRITE_BARRIER && host() != NULL && IsCodeTarget(rmode_)) {
|
|
Object* target_code = Code::GetCodeFromTargetAddress(target);
|
|
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
|
|
host(), this, HeapObject::cast(target_code));
|
|
}
|
|
}
|
|
|
|
|
|
Object* RelocInfo::target_object() {
|
|
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
|
return reinterpret_cast<Object*>(Assembler::target_pointer_at(pc_));
|
|
}
|
|
|
|
|
|
Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
|
|
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
|
return Handle<Object>(reinterpret_cast<Object**>(
|
|
Assembler::target_pointer_at(pc_)));
|
|
}
|
|
|
|
|
|
void RelocInfo::set_target_object(Object* target, WriteBarrierMode mode) {
|
|
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
|
ASSERT(!target->IsConsString());
|
|
Assembler::set_target_pointer_at(pc_, reinterpret_cast<Address>(target));
|
|
if (mode == UPDATE_WRITE_BARRIER &&
|
|
host() != NULL &&
|
|
target->IsHeapObject()) {
|
|
host()->GetHeap()->incremental_marking()->RecordWrite(
|
|
host(), &Memory::Object_at(pc_), HeapObject::cast(target));
|
|
}
|
|
}
|
|
|
|
|
|
Address RelocInfo::target_reference() {
|
|
ASSERT(rmode_ == EXTERNAL_REFERENCE);
|
|
return Assembler::target_address_at(pc_);
|
|
}
|
|
|
|
|
|
Address RelocInfo::target_runtime_entry(Assembler* origin) {
|
|
ASSERT(IsRuntimeEntry(rmode_));
|
|
return target_address();
|
|
}
|
|
|
|
|
|
void RelocInfo::set_target_runtime_entry(Address target,
|
|
WriteBarrierMode mode) {
|
|
ASSERT(IsRuntimeEntry(rmode_));
|
|
if (target_address() != target) set_target_address(target, mode);
|
|
}
|
|
|
|
|
|
Handle<Cell> RelocInfo::target_cell_handle() {
|
|
ASSERT(rmode_ == RelocInfo::CELL);
|
|
Address address = Memory::Address_at(pc_);
|
|
return Handle<Cell>(reinterpret_cast<Cell**>(address));
|
|
}
|
|
|
|
|
|
Cell* RelocInfo::target_cell() {
|
|
ASSERT(rmode_ == RelocInfo::CELL);
|
|
return Cell::FromValueAddress(Memory::Address_at(pc_));
|
|
}
|
|
|
|
|
|
void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode mode) {
|
|
ASSERT(rmode_ == RelocInfo::CELL);
|
|
Address address = cell->address() + Cell::kValueOffset;
|
|
Memory::Address_at(pc_) = address;
|
|
if (mode == UPDATE_WRITE_BARRIER && host() != NULL) {
|
|
// TODO(1550) We are passing NULL as a slot because cell can never be on
|
|
// evacuation candidate.
|
|
host()->GetHeap()->incremental_marking()->RecordWrite(
|
|
host(), NULL, cell);
|
|
}
|
|
}
|
|
|
|
|
|
static const int kNoCodeAgeSequenceLength = 3;
|
|
|
|
|
|
Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
|
|
UNREACHABLE(); // This should never be reached on Arm.
|
|
return Handle<Object>();
|
|
}
|
|
|
|
|
|
Code* RelocInfo::code_age_stub() {
|
|
ASSERT(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
|
|
return Code::GetCodeFromTargetAddress(
|
|
Memory::Address_at(pc_ + Assembler::kInstrSize *
|
|
(kNoCodeAgeSequenceLength - 1)));
|
|
}
|
|
|
|
|
|
void RelocInfo::set_code_age_stub(Code* stub) {
|
|
ASSERT(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
|
|
Memory::Address_at(pc_ + Assembler::kInstrSize *
|
|
(kNoCodeAgeSequenceLength - 1)) =
|
|
stub->instruction_start();
|
|
}
|
|
|
|
|
|
Address RelocInfo::call_address() {
|
|
// The 2 instructions offset assumes patched debug break slot or return
|
|
// sequence.
|
|
ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
|
|
(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
|
|
return Memory::Address_at(pc_ + 2 * Assembler::kInstrSize);
|
|
}
|
|
|
|
|
|
void RelocInfo::set_call_address(Address target) {
|
|
ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
|
|
(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
|
|
Memory::Address_at(pc_ + 2 * Assembler::kInstrSize) = target;
|
|
if (host() != NULL) {
|
|
Object* target_code = Code::GetCodeFromTargetAddress(target);
|
|
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
|
|
host(), this, HeapObject::cast(target_code));
|
|
}
|
|
}
|
|
|
|
|
|
Object* RelocInfo::call_object() {
|
|
return *call_object_address();
|
|
}
|
|
|
|
|
|
void RelocInfo::set_call_object(Object* target) {
|
|
*call_object_address() = target;
|
|
}
|
|
|
|
|
|
Object** RelocInfo::call_object_address() {
|
|
ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
|
|
(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
|
|
return reinterpret_cast<Object**>(pc_ + 2 * Assembler::kInstrSize);
|
|
}
|
|
|
|
|
|
void RelocInfo::WipeOut() {
|
|
ASSERT(IsEmbeddedObject(rmode_) ||
|
|
IsCodeTarget(rmode_) ||
|
|
IsRuntimeEntry(rmode_) ||
|
|
IsExternalReference(rmode_));
|
|
Assembler::set_target_pointer_at(pc_, NULL);
|
|
}
|
|
|
|
|
|
bool RelocInfo::IsPatchedReturnSequence() {
|
|
Instr current_instr = Assembler::instr_at(pc_);
|
|
Instr next_instr = Assembler::instr_at(pc_ + Assembler::kInstrSize);
|
|
// A patched return sequence is:
|
|
// ldr ip, [pc, #0]
|
|
// blx ip
|
|
return ((current_instr & kLdrPCMask) == kLdrPCPattern)
|
|
&& ((next_instr & kBlxRegMask) == kBlxRegPattern);
|
|
}
|
|
|
|
|
|
bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
|
|
Instr current_instr = Assembler::instr_at(pc_);
|
|
return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP);
|
|
}
|
|
|
|
|
|
void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
|
|
RelocInfo::Mode mode = rmode();
|
|
if (mode == RelocInfo::EMBEDDED_OBJECT) {
|
|
visitor->VisitEmbeddedPointer(this);
|
|
} else if (RelocInfo::IsCodeTarget(mode)) {
|
|
visitor->VisitCodeTarget(this);
|
|
} else if (mode == RelocInfo::CELL) {
|
|
visitor->VisitCell(this);
|
|
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
|
|
visitor->VisitExternalReference(this);
|
|
} else if (RelocInfo::IsCodeAgeSequence(mode)) {
|
|
visitor->VisitCodeAgeSequence(this);
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
} else if (((RelocInfo::IsJSReturn(mode) &&
|
|
IsPatchedReturnSequence()) ||
|
|
(RelocInfo::IsDebugBreakSlot(mode) &&
|
|
IsPatchedDebugBreakSlotSequence())) &&
|
|
isolate->debug()->has_break_points()) {
|
|
visitor->VisitDebugTarget(this);
|
|
#endif
|
|
} else if (RelocInfo::IsRuntimeEntry(mode)) {
|
|
visitor->VisitRuntimeEntry(this);
|
|
}
|
|
}
|
|
|
|
|
|
template<typename StaticVisitor>
|
|
void RelocInfo::Visit(Heap* heap) {
|
|
RelocInfo::Mode mode = rmode();
|
|
if (mode == RelocInfo::EMBEDDED_OBJECT) {
|
|
StaticVisitor::VisitEmbeddedPointer(heap, this);
|
|
} else if (RelocInfo::IsCodeTarget(mode)) {
|
|
StaticVisitor::VisitCodeTarget(heap, this);
|
|
} else if (mode == RelocInfo::CELL) {
|
|
StaticVisitor::VisitCell(heap, this);
|
|
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
|
|
StaticVisitor::VisitExternalReference(this);
|
|
} else if (RelocInfo::IsCodeAgeSequence(mode)) {
|
|
StaticVisitor::VisitCodeAgeSequence(heap, this);
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
} else if (heap->isolate()->debug()->has_break_points() &&
|
|
((RelocInfo::IsJSReturn(mode) &&
|
|
IsPatchedReturnSequence()) ||
|
|
(RelocInfo::IsDebugBreakSlot(mode) &&
|
|
IsPatchedDebugBreakSlotSequence()))) {
|
|
StaticVisitor::VisitDebugTarget(heap, this);
|
|
#endif
|
|
} else if (RelocInfo::IsRuntimeEntry(mode)) {
|
|
StaticVisitor::VisitRuntimeEntry(this);
|
|
}
|
|
}
|
|
|
|
|
|
Operand::Operand(int32_t immediate, RelocInfo::Mode rmode) {
|
|
rm_ = no_reg;
|
|
imm32_ = immediate;
|
|
rmode_ = rmode;
|
|
}
|
|
|
|
|
|
Operand::Operand(const ExternalReference& f) {
|
|
rm_ = no_reg;
|
|
imm32_ = reinterpret_cast<int32_t>(f.address());
|
|
rmode_ = RelocInfo::EXTERNAL_REFERENCE;
|
|
}
|
|
|
|
|
|
Operand::Operand(Smi* value) {
|
|
rm_ = no_reg;
|
|
imm32_ = reinterpret_cast<intptr_t>(value);
|
|
rmode_ = RelocInfo::NONE32;
|
|
}
|
|
|
|
|
|
Operand::Operand(Register rm) {
|
|
rm_ = rm;
|
|
rs_ = no_reg;
|
|
shift_op_ = LSL;
|
|
shift_imm_ = 0;
|
|
}
|
|
|
|
|
|
bool Operand::is_reg() const {
|
|
return rm_.is_valid() &&
|
|
rs_.is(no_reg) &&
|
|
shift_op_ == LSL &&
|
|
shift_imm_ == 0;
|
|
}
|
|
|
|
|
|
void Assembler::CheckBuffer() {
|
|
if (buffer_space() <= kGap) {
|
|
GrowBuffer();
|
|
}
|
|
if (pc_offset() >= next_buffer_check_) {
|
|
CheckConstPool(false, true);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::emit(Instr x) {
|
|
CheckBuffer();
|
|
*reinterpret_cast<Instr*>(pc_) = x;
|
|
pc_ += kInstrSize;
|
|
}
|
|
|
|
|
|
Address Assembler::target_pointer_address_at(Address pc) {
|
|
Address target_pc = pc;
|
|
Instr instr = Memory::int32_at(target_pc);
|
|
// If we have a bx instruction, the instruction before the bx is
|
|
// what we need to patch.
|
|
static const int32_t kBxInstMask = 0x0ffffff0;
|
|
static const int32_t kBxInstPattern = 0x012fff10;
|
|
if ((instr & kBxInstMask) == kBxInstPattern) {
|
|
target_pc -= kInstrSize;
|
|
instr = Memory::int32_at(target_pc);
|
|
}
|
|
|
|
// With a blx instruction, the instruction before is what needs to be patched.
|
|
if ((instr & kBlxRegMask) == kBlxRegPattern) {
|
|
target_pc -= kInstrSize;
|
|
instr = Memory::int32_at(target_pc);
|
|
}
|
|
|
|
ASSERT(IsLdrPcImmediateOffset(instr));
|
|
int offset = instr & 0xfff; // offset_12 is unsigned
|
|
if ((instr & (1 << 23)) == 0) offset = -offset; // U bit defines offset sign
|
|
// Verify that the constant pool comes after the instruction referencing it.
|
|
ASSERT(offset >= -4);
|
|
return target_pc + offset + 8;
|
|
}
|
|
|
|
|
|
Address Assembler::target_pointer_at(Address pc) {
|
|
if (IsMovW(Memory::int32_at(pc))) {
|
|
ASSERT(IsMovT(Memory::int32_at(pc + kInstrSize)));
|
|
Instruction* instr = Instruction::At(pc);
|
|
Instruction* next_instr = Instruction::At(pc + kInstrSize);
|
|
return reinterpret_cast<Address>(
|
|
(next_instr->ImmedMovwMovtValue() << 16) |
|
|
instr->ImmedMovwMovtValue());
|
|
}
|
|
return Memory::Address_at(target_pointer_address_at(pc));
|
|
}
|
|
|
|
|
|
Address Assembler::target_address_from_return_address(Address pc) {
|
|
// Returns the address of the call target from the return address that will
|
|
// be returned to after a call.
|
|
// Call sequence on V7 or later is :
|
|
// movw ip, #... @ call address low 16
|
|
// movt ip, #... @ call address high 16
|
|
// blx ip
|
|
// @ return address
|
|
// Or pre-V7 or cases that need frequent patching:
|
|
// ldr ip, [pc, #...] @ call address
|
|
// blx ip
|
|
// @ return address
|
|
Address candidate = pc - 2 * Assembler::kInstrSize;
|
|
Instr candidate_instr(Memory::int32_at(candidate));
|
|
if (IsLdrPcImmediateOffset(candidate_instr)) {
|
|
return candidate;
|
|
}
|
|
candidate = pc - 3 * Assembler::kInstrSize;
|
|
ASSERT(IsMovW(Memory::int32_at(candidate)) &&
|
|
IsMovT(Memory::int32_at(candidate + kInstrSize)));
|
|
return candidate;
|
|
}
|
|
|
|
|
|
Address Assembler::return_address_from_call_start(Address pc) {
|
|
if (IsLdrPcImmediateOffset(Memory::int32_at(pc))) {
|
|
return pc + kInstrSize * 2;
|
|
} else {
|
|
ASSERT(IsMovW(Memory::int32_at(pc)));
|
|
ASSERT(IsMovT(Memory::int32_at(pc + kInstrSize)));
|
|
return pc + kInstrSize * 3;
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::deserialization_set_special_target_at(
|
|
Address constant_pool_entry, Address target) {
|
|
Memory::Address_at(constant_pool_entry) = target;
|
|
}
|
|
|
|
|
|
void Assembler::set_external_target_at(Address constant_pool_entry,
|
|
Address target) {
|
|
Memory::Address_at(constant_pool_entry) = target;
|
|
}
|
|
|
|
|
|
static Instr EncodeMovwImmediate(uint32_t immediate) {
|
|
ASSERT(immediate < 0x10000);
|
|
return ((immediate & 0xf000) << 4) | (immediate & 0xfff);
|
|
}
|
|
|
|
|
|
void Assembler::set_target_pointer_at(Address pc, Address target) {
|
|
if (IsMovW(Memory::int32_at(pc))) {
|
|
ASSERT(IsMovT(Memory::int32_at(pc + kInstrSize)));
|
|
uint32_t* instr_ptr = reinterpret_cast<uint32_t*>(pc);
|
|
uint32_t immediate = reinterpret_cast<uint32_t>(target);
|
|
uint32_t intermediate = instr_ptr[0];
|
|
intermediate &= ~EncodeMovwImmediate(0xFFFF);
|
|
intermediate |= EncodeMovwImmediate(immediate & 0xFFFF);
|
|
instr_ptr[0] = intermediate;
|
|
intermediate = instr_ptr[1];
|
|
intermediate &= ~EncodeMovwImmediate(0xFFFF);
|
|
intermediate |= EncodeMovwImmediate(immediate >> 16);
|
|
instr_ptr[1] = intermediate;
|
|
ASSERT(IsMovW(Memory::int32_at(pc)));
|
|
ASSERT(IsMovT(Memory::int32_at(pc + kInstrSize)));
|
|
CPU::FlushICache(pc, 2 * kInstrSize);
|
|
} else {
|
|
ASSERT(IsLdrPcImmediateOffset(Memory::int32_at(pc)));
|
|
Memory::Address_at(target_pointer_address_at(pc)) = target;
|
|
// Intuitively, we would think it is necessary to always flush the
|
|
// instruction cache after patching a target address in the code as follows:
|
|
// CPU::FlushICache(pc, sizeof(target));
|
|
// However, on ARM, no instruction is actually patched in the case
|
|
// of embedded constants of the form:
|
|
// ldr ip, [pc, #...]
|
|
// since the instruction accessing this address in the constant pool remains
|
|
// unchanged.
|
|
}
|
|
}
|
|
|
|
|
|
Address Assembler::target_address_at(Address pc) {
|
|
return target_pointer_at(pc);
|
|
}
|
|
|
|
|
|
void Assembler::set_target_address_at(Address pc, Address target) {
|
|
set_target_pointer_at(pc, target);
|
|
}
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_ARM_ASSEMBLER_ARM_INL_H_
|