dd28969c1c
Attempting to re-use the type feedback vector stored in the SharedFunctionInfo turns out to be difficult among the various cases. It will be much easier to do this when deferred type feedback processing is removed, as is in the works. Created bug v8:3212 to track re-introducing the optimization of reusing the type vector on recompile before optimization. The CL also brings back the type vector on the SharedFunctionInfo. BUG=351257 LOG=Y R=bmeurer@chromium.org, bmeuer@chromium.org Review URL: https://codereview.chromium.org/199973004 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@19919 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
10791 lines
406 KiB
C++
10791 lines
406 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_OBJECTS_H_
|
|
#define V8_OBJECTS_H_
|
|
|
|
#include "allocation.h"
|
|
#include "assert-scope.h"
|
|
#include "builtins.h"
|
|
#include "elements-kind.h"
|
|
#include "flags.h"
|
|
#include "list.h"
|
|
#include "property-details.h"
|
|
#include "smart-pointers.h"
|
|
#include "unicode-inl.h"
|
|
#if V8_TARGET_ARCH_A64
|
|
#include "a64/constants-a64.h"
|
|
#elif V8_TARGET_ARCH_ARM
|
|
#include "arm/constants-arm.h"
|
|
#elif V8_TARGET_ARCH_MIPS
|
|
#include "mips/constants-mips.h"
|
|
#endif
|
|
#include "v8checks.h"
|
|
#include "zone.h"
|
|
|
|
|
|
//
|
|
// Most object types in the V8 JavaScript are described in this file.
|
|
//
|
|
// Inheritance hierarchy:
|
|
// - MaybeObject (an object or a failure)
|
|
// - Failure (immediate for marking failed operation)
|
|
// - Object
|
|
// - Smi (immediate small integer)
|
|
// - HeapObject (superclass for everything allocated in the heap)
|
|
// - JSReceiver (suitable for property access)
|
|
// - JSObject
|
|
// - JSArray
|
|
// - JSArrayBuffer
|
|
// - JSArrayBufferView
|
|
// - JSTypedArray
|
|
// - JSDataView
|
|
// - JSSet
|
|
// - JSMap
|
|
// - JSWeakCollection
|
|
// - JSWeakMap
|
|
// - JSWeakSet
|
|
// - JSRegExp
|
|
// - JSFunction
|
|
// - JSGeneratorObject
|
|
// - JSModule
|
|
// - GlobalObject
|
|
// - JSGlobalObject
|
|
// - JSBuiltinsObject
|
|
// - JSGlobalProxy
|
|
// - JSValue
|
|
// - JSDate
|
|
// - JSMessageObject
|
|
// - JSProxy
|
|
// - JSFunctionProxy
|
|
// - FixedArrayBase
|
|
// - ByteArray
|
|
// - FixedArray
|
|
// - DescriptorArray
|
|
// - HashTable
|
|
// - Dictionary
|
|
// - StringTable
|
|
// - CompilationCacheTable
|
|
// - CodeCacheHashTable
|
|
// - MapCache
|
|
// - Context
|
|
// - JSFunctionResultCache
|
|
// - ScopeInfo
|
|
// - TransitionArray
|
|
// - FixedDoubleArray
|
|
// - ExternalArray
|
|
// - ExternalUint8ClampedArray
|
|
// - ExternalInt8Array
|
|
// - ExternalUint8Array
|
|
// - ExternalInt16Array
|
|
// - ExternalUint16Array
|
|
// - ExternalInt32Array
|
|
// - ExternalUint32Array
|
|
// - ExternalFloat32Array
|
|
// - Name
|
|
// - String
|
|
// - SeqString
|
|
// - SeqOneByteString
|
|
// - SeqTwoByteString
|
|
// - SlicedString
|
|
// - ConsString
|
|
// - ExternalString
|
|
// - ExternalAsciiString
|
|
// - ExternalTwoByteString
|
|
// - InternalizedString
|
|
// - SeqInternalizedString
|
|
// - SeqOneByteInternalizedString
|
|
// - SeqTwoByteInternalizedString
|
|
// - ConsInternalizedString
|
|
// - ExternalInternalizedString
|
|
// - ExternalAsciiInternalizedString
|
|
// - ExternalTwoByteInternalizedString
|
|
// - Symbol
|
|
// - HeapNumber
|
|
// - Cell
|
|
// - PropertyCell
|
|
// - Code
|
|
// - Map
|
|
// - Oddball
|
|
// - Foreign
|
|
// - SharedFunctionInfo
|
|
// - Struct
|
|
// - Box
|
|
// - DeclaredAccessorDescriptor
|
|
// - AccessorInfo
|
|
// - DeclaredAccessorInfo
|
|
// - ExecutableAccessorInfo
|
|
// - AccessorPair
|
|
// - AccessCheckInfo
|
|
// - InterceptorInfo
|
|
// - CallHandlerInfo
|
|
// - TemplateInfo
|
|
// - FunctionTemplateInfo
|
|
// - ObjectTemplateInfo
|
|
// - Script
|
|
// - SignatureInfo
|
|
// - TypeSwitchInfo
|
|
// - DebugInfo
|
|
// - BreakPointInfo
|
|
// - CodeCache
|
|
//
|
|
// Formats of Object*:
|
|
// Smi: [31 bit signed int] 0
|
|
// HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
|
|
// Failure: [30 bit signed int] 11
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
enum KeyedAccessStoreMode {
|
|
STANDARD_STORE,
|
|
STORE_TRANSITION_SMI_TO_OBJECT,
|
|
STORE_TRANSITION_SMI_TO_DOUBLE,
|
|
STORE_TRANSITION_DOUBLE_TO_OBJECT,
|
|
STORE_TRANSITION_HOLEY_SMI_TO_OBJECT,
|
|
STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE,
|
|
STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT,
|
|
STORE_AND_GROW_NO_TRANSITION,
|
|
STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT,
|
|
STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE,
|
|
STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT,
|
|
STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT,
|
|
STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE,
|
|
STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT,
|
|
STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS,
|
|
STORE_NO_TRANSITION_HANDLE_COW
|
|
};
|
|
|
|
|
|
enum ContextualMode {
|
|
NOT_CONTEXTUAL,
|
|
CONTEXTUAL
|
|
};
|
|
|
|
|
|
static const int kGrowICDelta = STORE_AND_GROW_NO_TRANSITION -
|
|
STANDARD_STORE;
|
|
STATIC_ASSERT(STANDARD_STORE == 0);
|
|
STATIC_ASSERT(kGrowICDelta ==
|
|
STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT -
|
|
STORE_TRANSITION_SMI_TO_OBJECT);
|
|
STATIC_ASSERT(kGrowICDelta ==
|
|
STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE -
|
|
STORE_TRANSITION_SMI_TO_DOUBLE);
|
|
STATIC_ASSERT(kGrowICDelta ==
|
|
STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT -
|
|
STORE_TRANSITION_DOUBLE_TO_OBJECT);
|
|
|
|
|
|
static inline KeyedAccessStoreMode GetGrowStoreMode(
|
|
KeyedAccessStoreMode store_mode) {
|
|
if (store_mode < STORE_AND_GROW_NO_TRANSITION) {
|
|
store_mode = static_cast<KeyedAccessStoreMode>(
|
|
static_cast<int>(store_mode) + kGrowICDelta);
|
|
}
|
|
return store_mode;
|
|
}
|
|
|
|
|
|
static inline bool IsTransitionStoreMode(KeyedAccessStoreMode store_mode) {
|
|
return store_mode > STANDARD_STORE &&
|
|
store_mode <= STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT &&
|
|
store_mode != STORE_AND_GROW_NO_TRANSITION;
|
|
}
|
|
|
|
|
|
static inline KeyedAccessStoreMode GetNonTransitioningStoreMode(
|
|
KeyedAccessStoreMode store_mode) {
|
|
if (store_mode >= STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
|
|
return store_mode;
|
|
}
|
|
if (store_mode >= STORE_AND_GROW_NO_TRANSITION) {
|
|
return STORE_AND_GROW_NO_TRANSITION;
|
|
}
|
|
return STANDARD_STORE;
|
|
}
|
|
|
|
|
|
static inline bool IsGrowStoreMode(KeyedAccessStoreMode store_mode) {
|
|
return store_mode >= STORE_AND_GROW_NO_TRANSITION &&
|
|
store_mode <= STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
|
|
}
|
|
|
|
|
|
// Setter that skips the write barrier if mode is SKIP_WRITE_BARRIER.
|
|
enum WriteBarrierMode { SKIP_WRITE_BARRIER, UPDATE_WRITE_BARRIER };
|
|
|
|
|
|
// Indicates whether a value can be loaded as a constant.
|
|
enum StoreMode {
|
|
ALLOW_AS_CONSTANT,
|
|
FORCE_FIELD
|
|
};
|
|
|
|
|
|
// PropertyNormalizationMode is used to specify whether to keep
|
|
// inobject properties when normalizing properties of a JSObject.
|
|
enum PropertyNormalizationMode {
|
|
CLEAR_INOBJECT_PROPERTIES,
|
|
KEEP_INOBJECT_PROPERTIES
|
|
};
|
|
|
|
|
|
// NormalizedMapSharingMode is used to specify whether a map may be shared
|
|
// by different objects with normalized properties.
|
|
enum NormalizedMapSharingMode {
|
|
UNIQUE_NORMALIZED_MAP,
|
|
SHARED_NORMALIZED_MAP
|
|
};
|
|
|
|
|
|
// Indicates whether transitions can be added to a source map or not.
|
|
enum TransitionFlag {
|
|
INSERT_TRANSITION,
|
|
OMIT_TRANSITION
|
|
};
|
|
|
|
|
|
enum DebugExtraICState {
|
|
DEBUG_BREAK,
|
|
DEBUG_PREPARE_STEP_IN
|
|
};
|
|
|
|
|
|
// Indicates whether the transition is simple: the target map of the transition
|
|
// either extends the current map with a new property, or it modifies the
|
|
// property that was added last to the current map.
|
|
enum SimpleTransitionFlag {
|
|
SIMPLE_TRANSITION,
|
|
FULL_TRANSITION
|
|
};
|
|
|
|
|
|
// Indicates whether we are only interested in the descriptors of a particular
|
|
// map, or in all descriptors in the descriptor array.
|
|
enum DescriptorFlag {
|
|
ALL_DESCRIPTORS,
|
|
OWN_DESCRIPTORS
|
|
};
|
|
|
|
// The GC maintains a bit of information, the MarkingParity, which toggles
|
|
// from odd to even and back every time marking is completed. Incremental
|
|
// marking can visit an object twice during a marking phase, so algorithms that
|
|
// that piggy-back on marking can use the parity to ensure that they only
|
|
// perform an operation on an object once per marking phase: they record the
|
|
// MarkingParity when they visit an object, and only re-visit the object when it
|
|
// is marked again and the MarkingParity changes.
|
|
enum MarkingParity {
|
|
NO_MARKING_PARITY,
|
|
ODD_MARKING_PARITY,
|
|
EVEN_MARKING_PARITY
|
|
};
|
|
|
|
// ICs store extra state in a Code object. The default extra state is
|
|
// kNoExtraICState.
|
|
typedef int ExtraICState;
|
|
static const ExtraICState kNoExtraICState = 0;
|
|
|
|
// Instance size sentinel for objects of variable size.
|
|
const int kVariableSizeSentinel = 0;
|
|
|
|
const int kStubMajorKeyBits = 7;
|
|
const int kStubMinorKeyBits = kBitsPerInt - kSmiTagSize - kStubMajorKeyBits;
|
|
|
|
// All Maps have a field instance_type containing a InstanceType.
|
|
// It describes the type of the instances.
|
|
//
|
|
// As an example, a JavaScript object is a heap object and its map
|
|
// instance_type is JS_OBJECT_TYPE.
|
|
//
|
|
// The names of the string instance types are intended to systematically
|
|
// mirror their encoding in the instance_type field of the map. The default
|
|
// encoding is considered TWO_BYTE. It is not mentioned in the name. ASCII
|
|
// encoding is mentioned explicitly in the name. Likewise, the default
|
|
// representation is considered sequential. It is not mentioned in the
|
|
// name. The other representations (e.g. CONS, EXTERNAL) are explicitly
|
|
// mentioned. Finally, the string is either a STRING_TYPE (if it is a normal
|
|
// string) or a INTERNALIZED_STRING_TYPE (if it is a internalized string).
|
|
//
|
|
// NOTE: The following things are some that depend on the string types having
|
|
// instance_types that are less than those of all other types:
|
|
// HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
|
|
// Object::IsString.
|
|
//
|
|
// NOTE: Everything following JS_VALUE_TYPE is considered a
|
|
// JSObject for GC purposes. The first four entries here have typeof
|
|
// 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
|
|
#define INSTANCE_TYPE_LIST(V) \
|
|
V(STRING_TYPE) \
|
|
V(ASCII_STRING_TYPE) \
|
|
V(CONS_STRING_TYPE) \
|
|
V(CONS_ASCII_STRING_TYPE) \
|
|
V(SLICED_STRING_TYPE) \
|
|
V(SLICED_ASCII_STRING_TYPE) \
|
|
V(EXTERNAL_STRING_TYPE) \
|
|
V(EXTERNAL_ASCII_STRING_TYPE) \
|
|
V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \
|
|
V(SHORT_EXTERNAL_STRING_TYPE) \
|
|
V(SHORT_EXTERNAL_ASCII_STRING_TYPE) \
|
|
V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \
|
|
\
|
|
V(INTERNALIZED_STRING_TYPE) \
|
|
V(ASCII_INTERNALIZED_STRING_TYPE) \
|
|
V(CONS_INTERNALIZED_STRING_TYPE) \
|
|
V(CONS_ASCII_INTERNALIZED_STRING_TYPE) \
|
|
V(EXTERNAL_INTERNALIZED_STRING_TYPE) \
|
|
V(EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE) \
|
|
V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \
|
|
V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE) \
|
|
V(SHORT_EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE) \
|
|
V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \
|
|
\
|
|
V(SYMBOL_TYPE) \
|
|
\
|
|
V(MAP_TYPE) \
|
|
V(CODE_TYPE) \
|
|
V(ODDBALL_TYPE) \
|
|
V(CELL_TYPE) \
|
|
V(PROPERTY_CELL_TYPE) \
|
|
\
|
|
V(HEAP_NUMBER_TYPE) \
|
|
V(FOREIGN_TYPE) \
|
|
V(BYTE_ARRAY_TYPE) \
|
|
V(FREE_SPACE_TYPE) \
|
|
/* Note: the order of these external array */ \
|
|
/* types is relied upon in */ \
|
|
/* Object::IsExternalArray(). */ \
|
|
V(EXTERNAL_INT8_ARRAY_TYPE) \
|
|
V(EXTERNAL_UINT8_ARRAY_TYPE) \
|
|
V(EXTERNAL_INT16_ARRAY_TYPE) \
|
|
V(EXTERNAL_UINT16_ARRAY_TYPE) \
|
|
V(EXTERNAL_INT32_ARRAY_TYPE) \
|
|
V(EXTERNAL_UINT32_ARRAY_TYPE) \
|
|
V(EXTERNAL_FLOAT32_ARRAY_TYPE) \
|
|
V(EXTERNAL_FLOAT64_ARRAY_TYPE) \
|
|
V(EXTERNAL_UINT8_CLAMPED_ARRAY_TYPE) \
|
|
\
|
|
V(FIXED_INT8_ARRAY_TYPE) \
|
|
V(FIXED_UINT8_ARRAY_TYPE) \
|
|
V(FIXED_INT16_ARRAY_TYPE) \
|
|
V(FIXED_UINT16_ARRAY_TYPE) \
|
|
V(FIXED_INT32_ARRAY_TYPE) \
|
|
V(FIXED_UINT32_ARRAY_TYPE) \
|
|
V(FIXED_FLOAT32_ARRAY_TYPE) \
|
|
V(FIXED_FLOAT64_ARRAY_TYPE) \
|
|
V(FIXED_UINT8_CLAMPED_ARRAY_TYPE) \
|
|
\
|
|
V(FILLER_TYPE) \
|
|
\
|
|
V(DECLARED_ACCESSOR_DESCRIPTOR_TYPE) \
|
|
V(DECLARED_ACCESSOR_INFO_TYPE) \
|
|
V(EXECUTABLE_ACCESSOR_INFO_TYPE) \
|
|
V(ACCESSOR_PAIR_TYPE) \
|
|
V(ACCESS_CHECK_INFO_TYPE) \
|
|
V(INTERCEPTOR_INFO_TYPE) \
|
|
V(CALL_HANDLER_INFO_TYPE) \
|
|
V(FUNCTION_TEMPLATE_INFO_TYPE) \
|
|
V(OBJECT_TEMPLATE_INFO_TYPE) \
|
|
V(SIGNATURE_INFO_TYPE) \
|
|
V(TYPE_SWITCH_INFO_TYPE) \
|
|
V(ALLOCATION_MEMENTO_TYPE) \
|
|
V(ALLOCATION_SITE_TYPE) \
|
|
V(SCRIPT_TYPE) \
|
|
V(CODE_CACHE_TYPE) \
|
|
V(POLYMORPHIC_CODE_CACHE_TYPE) \
|
|
V(TYPE_FEEDBACK_INFO_TYPE) \
|
|
V(ALIASED_ARGUMENTS_ENTRY_TYPE) \
|
|
V(BOX_TYPE) \
|
|
\
|
|
V(FIXED_ARRAY_TYPE) \
|
|
V(FIXED_DOUBLE_ARRAY_TYPE) \
|
|
V(CONSTANT_POOL_ARRAY_TYPE) \
|
|
V(SHARED_FUNCTION_INFO_TYPE) \
|
|
\
|
|
V(JS_MESSAGE_OBJECT_TYPE) \
|
|
\
|
|
V(JS_VALUE_TYPE) \
|
|
V(JS_DATE_TYPE) \
|
|
V(JS_OBJECT_TYPE) \
|
|
V(JS_CONTEXT_EXTENSION_OBJECT_TYPE) \
|
|
V(JS_GENERATOR_OBJECT_TYPE) \
|
|
V(JS_MODULE_TYPE) \
|
|
V(JS_GLOBAL_OBJECT_TYPE) \
|
|
V(JS_BUILTINS_OBJECT_TYPE) \
|
|
V(JS_GLOBAL_PROXY_TYPE) \
|
|
V(JS_ARRAY_TYPE) \
|
|
V(JS_ARRAY_BUFFER_TYPE) \
|
|
V(JS_TYPED_ARRAY_TYPE) \
|
|
V(JS_DATA_VIEW_TYPE) \
|
|
V(JS_PROXY_TYPE) \
|
|
V(JS_SET_TYPE) \
|
|
V(JS_MAP_TYPE) \
|
|
V(JS_WEAK_MAP_TYPE) \
|
|
V(JS_WEAK_SET_TYPE) \
|
|
V(JS_REGEXP_TYPE) \
|
|
\
|
|
V(JS_FUNCTION_TYPE) \
|
|
V(JS_FUNCTION_PROXY_TYPE) \
|
|
V(DEBUG_INFO_TYPE) \
|
|
V(BREAK_POINT_INFO_TYPE)
|
|
|
|
|
|
// Since string types are not consecutive, this macro is used to
|
|
// iterate over them.
|
|
#define STRING_TYPE_LIST(V) \
|
|
V(STRING_TYPE, \
|
|
kVariableSizeSentinel, \
|
|
string, \
|
|
String) \
|
|
V(ASCII_STRING_TYPE, \
|
|
kVariableSizeSentinel, \
|
|
ascii_string, \
|
|
AsciiString) \
|
|
V(CONS_STRING_TYPE, \
|
|
ConsString::kSize, \
|
|
cons_string, \
|
|
ConsString) \
|
|
V(CONS_ASCII_STRING_TYPE, \
|
|
ConsString::kSize, \
|
|
cons_ascii_string, \
|
|
ConsAsciiString) \
|
|
V(SLICED_STRING_TYPE, \
|
|
SlicedString::kSize, \
|
|
sliced_string, \
|
|
SlicedString) \
|
|
V(SLICED_ASCII_STRING_TYPE, \
|
|
SlicedString::kSize, \
|
|
sliced_ascii_string, \
|
|
SlicedAsciiString) \
|
|
V(EXTERNAL_STRING_TYPE, \
|
|
ExternalTwoByteString::kSize, \
|
|
external_string, \
|
|
ExternalString) \
|
|
V(EXTERNAL_ASCII_STRING_TYPE, \
|
|
ExternalAsciiString::kSize, \
|
|
external_ascii_string, \
|
|
ExternalAsciiString) \
|
|
V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, \
|
|
ExternalTwoByteString::kSize, \
|
|
external_string_with_one_byte_data, \
|
|
ExternalStringWithOneByteData) \
|
|
V(SHORT_EXTERNAL_STRING_TYPE, \
|
|
ExternalTwoByteString::kShortSize, \
|
|
short_external_string, \
|
|
ShortExternalString) \
|
|
V(SHORT_EXTERNAL_ASCII_STRING_TYPE, \
|
|
ExternalAsciiString::kShortSize, \
|
|
short_external_ascii_string, \
|
|
ShortExternalAsciiString) \
|
|
V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, \
|
|
ExternalTwoByteString::kShortSize, \
|
|
short_external_string_with_one_byte_data, \
|
|
ShortExternalStringWithOneByteData) \
|
|
\
|
|
V(INTERNALIZED_STRING_TYPE, \
|
|
kVariableSizeSentinel, \
|
|
internalized_string, \
|
|
InternalizedString) \
|
|
V(ASCII_INTERNALIZED_STRING_TYPE, \
|
|
kVariableSizeSentinel, \
|
|
ascii_internalized_string, \
|
|
AsciiInternalizedString) \
|
|
V(CONS_INTERNALIZED_STRING_TYPE, \
|
|
ConsString::kSize, \
|
|
cons_internalized_string, \
|
|
ConsInternalizedString) \
|
|
V(CONS_ASCII_INTERNALIZED_STRING_TYPE, \
|
|
ConsString::kSize, \
|
|
cons_ascii_internalized_string, \
|
|
ConsAsciiInternalizedString) \
|
|
V(EXTERNAL_INTERNALIZED_STRING_TYPE, \
|
|
ExternalTwoByteString::kSize, \
|
|
external_internalized_string, \
|
|
ExternalInternalizedString) \
|
|
V(EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE, \
|
|
ExternalAsciiString::kSize, \
|
|
external_ascii_internalized_string, \
|
|
ExternalAsciiInternalizedString) \
|
|
V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \
|
|
ExternalTwoByteString::kSize, \
|
|
external_internalized_string_with_one_byte_data, \
|
|
ExternalInternalizedStringWithOneByteData) \
|
|
V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE, \
|
|
ExternalTwoByteString::kShortSize, \
|
|
short_external_internalized_string, \
|
|
ShortExternalInternalizedString) \
|
|
V(SHORT_EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE, \
|
|
ExternalAsciiString::kShortSize, \
|
|
short_external_ascii_internalized_string, \
|
|
ShortExternalAsciiInternalizedString) \
|
|
V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \
|
|
ExternalTwoByteString::kShortSize, \
|
|
short_external_internalized_string_with_one_byte_data, \
|
|
ShortExternalInternalizedStringWithOneByteData) \
|
|
|
|
// A struct is a simple object a set of object-valued fields. Including an
|
|
// object type in this causes the compiler to generate most of the boilerplate
|
|
// code for the class including allocation and garbage collection routines,
|
|
// casts and predicates. All you need to define is the class, methods and
|
|
// object verification routines. Easy, no?
|
|
//
|
|
// Note that for subtle reasons related to the ordering or numerical values of
|
|
// type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
|
|
// manually.
|
|
#define STRUCT_LIST_ALL(V) \
|
|
V(BOX, Box, box) \
|
|
V(DECLARED_ACCESSOR_DESCRIPTOR, \
|
|
DeclaredAccessorDescriptor, \
|
|
declared_accessor_descriptor) \
|
|
V(DECLARED_ACCESSOR_INFO, DeclaredAccessorInfo, declared_accessor_info) \
|
|
V(EXECUTABLE_ACCESSOR_INFO, ExecutableAccessorInfo, executable_accessor_info)\
|
|
V(ACCESSOR_PAIR, AccessorPair, accessor_pair) \
|
|
V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info) \
|
|
V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info) \
|
|
V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info) \
|
|
V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info) \
|
|
V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info) \
|
|
V(SIGNATURE_INFO, SignatureInfo, signature_info) \
|
|
V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info) \
|
|
V(SCRIPT, Script, script) \
|
|
V(ALLOCATION_SITE, AllocationSite, allocation_site) \
|
|
V(ALLOCATION_MEMENTO, AllocationMemento, allocation_memento) \
|
|
V(CODE_CACHE, CodeCache, code_cache) \
|
|
V(POLYMORPHIC_CODE_CACHE, PolymorphicCodeCache, polymorphic_code_cache) \
|
|
V(TYPE_FEEDBACK_INFO, TypeFeedbackInfo, type_feedback_info) \
|
|
V(ALIASED_ARGUMENTS_ENTRY, AliasedArgumentsEntry, aliased_arguments_entry)
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
#define STRUCT_LIST_DEBUGGER(V) \
|
|
V(DEBUG_INFO, DebugInfo, debug_info) \
|
|
V(BREAK_POINT_INFO, BreakPointInfo, break_point_info)
|
|
#else
|
|
#define STRUCT_LIST_DEBUGGER(V)
|
|
#endif
|
|
|
|
#define STRUCT_LIST(V) \
|
|
STRUCT_LIST_ALL(V) \
|
|
STRUCT_LIST_DEBUGGER(V)
|
|
|
|
// We use the full 8 bits of the instance_type field to encode heap object
|
|
// instance types. The high-order bit (bit 7) is set if the object is not a
|
|
// string, and cleared if it is a string.
|
|
const uint32_t kIsNotStringMask = 0x80;
|
|
const uint32_t kStringTag = 0x0;
|
|
const uint32_t kNotStringTag = 0x80;
|
|
|
|
// Bit 6 indicates that the object is an internalized string (if set) or not.
|
|
// Bit 7 has to be clear as well.
|
|
const uint32_t kIsNotInternalizedMask = 0x40;
|
|
const uint32_t kNotInternalizedTag = 0x40;
|
|
const uint32_t kInternalizedTag = 0x0;
|
|
|
|
// If bit 7 is clear then bit 2 indicates whether the string consists of
|
|
// two-byte characters or one-byte characters.
|
|
const uint32_t kStringEncodingMask = 0x4;
|
|
const uint32_t kTwoByteStringTag = 0x0;
|
|
const uint32_t kOneByteStringTag = 0x4;
|
|
|
|
// If bit 7 is clear, the low-order 2 bits indicate the representation
|
|
// of the string.
|
|
const uint32_t kStringRepresentationMask = 0x03;
|
|
enum StringRepresentationTag {
|
|
kSeqStringTag = 0x0,
|
|
kConsStringTag = 0x1,
|
|
kExternalStringTag = 0x2,
|
|
kSlicedStringTag = 0x3
|
|
};
|
|
const uint32_t kIsIndirectStringMask = 0x1;
|
|
const uint32_t kIsIndirectStringTag = 0x1;
|
|
STATIC_ASSERT((kSeqStringTag & kIsIndirectStringMask) == 0);
|
|
STATIC_ASSERT((kExternalStringTag & kIsIndirectStringMask) == 0);
|
|
STATIC_ASSERT(
|
|
(kConsStringTag & kIsIndirectStringMask) == kIsIndirectStringTag);
|
|
STATIC_ASSERT(
|
|
(kSlicedStringTag & kIsIndirectStringMask) == kIsIndirectStringTag);
|
|
|
|
// Use this mask to distinguish between cons and slice only after making
|
|
// sure that the string is one of the two (an indirect string).
|
|
const uint32_t kSlicedNotConsMask = kSlicedStringTag & ~kConsStringTag;
|
|
STATIC_ASSERT(IS_POWER_OF_TWO(kSlicedNotConsMask) && kSlicedNotConsMask != 0);
|
|
|
|
// If bit 7 is clear, then bit 3 indicates whether this two-byte
|
|
// string actually contains one byte data.
|
|
const uint32_t kOneByteDataHintMask = 0x08;
|
|
const uint32_t kOneByteDataHintTag = 0x08;
|
|
|
|
// If bit 7 is clear and string representation indicates an external string,
|
|
// then bit 4 indicates whether the data pointer is cached.
|
|
const uint32_t kShortExternalStringMask = 0x10;
|
|
const uint32_t kShortExternalStringTag = 0x10;
|
|
|
|
|
|
// A ConsString with an empty string as the right side is a candidate
|
|
// for being shortcut by the garbage collector unless it is internalized.
|
|
// It's not common to have non-flat internalized strings, so we do not
|
|
// shortcut them thereby avoiding turning internalized strings into strings.
|
|
// See heap.cc and mark-compact.cc.
|
|
const uint32_t kShortcutTypeMask =
|
|
kIsNotStringMask |
|
|
kIsNotInternalizedMask |
|
|
kStringRepresentationMask;
|
|
const uint32_t kShortcutTypeTag = kConsStringTag | kNotInternalizedTag;
|
|
|
|
|
|
enum InstanceType {
|
|
// String types.
|
|
INTERNALIZED_STRING_TYPE = kTwoByteStringTag | kSeqStringTag
|
|
| kInternalizedTag,
|
|
ASCII_INTERNALIZED_STRING_TYPE = kOneByteStringTag | kSeqStringTag
|
|
| kInternalizedTag,
|
|
CONS_INTERNALIZED_STRING_TYPE = kTwoByteStringTag | kConsStringTag
|
|
| kInternalizedTag,
|
|
CONS_ASCII_INTERNALIZED_STRING_TYPE = kOneByteStringTag | kConsStringTag
|
|
| kInternalizedTag,
|
|
EXTERNAL_INTERNALIZED_STRING_TYPE = kTwoByteStringTag | kExternalStringTag
|
|
| kInternalizedTag,
|
|
EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE = kOneByteStringTag
|
|
| kExternalStringTag | kInternalizedTag,
|
|
EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
|
|
EXTERNAL_INTERNALIZED_STRING_TYPE | kOneByteDataHintTag
|
|
| kInternalizedTag,
|
|
SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE =
|
|
EXTERNAL_INTERNALIZED_STRING_TYPE | kShortExternalStringTag
|
|
| kInternalizedTag,
|
|
SHORT_EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE =
|
|
EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE | kShortExternalStringTag
|
|
| kInternalizedTag,
|
|
SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
|
|
EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE
|
|
| kShortExternalStringTag | kInternalizedTag,
|
|
|
|
STRING_TYPE = INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
ASCII_STRING_TYPE = ASCII_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
CONS_STRING_TYPE = CONS_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
CONS_ASCII_STRING_TYPE =
|
|
CONS_ASCII_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
|
|
SLICED_STRING_TYPE =
|
|
kTwoByteStringTag | kSlicedStringTag | kNotInternalizedTag,
|
|
SLICED_ASCII_STRING_TYPE =
|
|
kOneByteStringTag | kSlicedStringTag | kNotInternalizedTag,
|
|
EXTERNAL_STRING_TYPE =
|
|
EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
EXTERNAL_ASCII_STRING_TYPE =
|
|
EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
|
|
EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE
|
|
| kNotInternalizedTag,
|
|
SHORT_EXTERNAL_STRING_TYPE =
|
|
SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
SHORT_EXTERNAL_ASCII_STRING_TYPE =
|
|
SHORT_EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
|
|
SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE
|
|
| kNotInternalizedTag,
|
|
|
|
// Non-string names
|
|
SYMBOL_TYPE = kNotStringTag, // FIRST_NONSTRING_TYPE, LAST_NAME_TYPE
|
|
|
|
// Objects allocated in their own spaces (never in new space).
|
|
MAP_TYPE,
|
|
CODE_TYPE,
|
|
ODDBALL_TYPE,
|
|
CELL_TYPE,
|
|
PROPERTY_CELL_TYPE,
|
|
|
|
// "Data", objects that cannot contain non-map-word pointers to heap
|
|
// objects.
|
|
HEAP_NUMBER_TYPE,
|
|
FOREIGN_TYPE,
|
|
BYTE_ARRAY_TYPE,
|
|
FREE_SPACE_TYPE,
|
|
|
|
EXTERNAL_INT8_ARRAY_TYPE, // FIRST_EXTERNAL_ARRAY_TYPE
|
|
EXTERNAL_UINT8_ARRAY_TYPE,
|
|
EXTERNAL_INT16_ARRAY_TYPE,
|
|
EXTERNAL_UINT16_ARRAY_TYPE,
|
|
EXTERNAL_INT32_ARRAY_TYPE,
|
|
EXTERNAL_UINT32_ARRAY_TYPE,
|
|
EXTERNAL_FLOAT32_ARRAY_TYPE,
|
|
EXTERNAL_FLOAT64_ARRAY_TYPE,
|
|
EXTERNAL_UINT8_CLAMPED_ARRAY_TYPE, // LAST_EXTERNAL_ARRAY_TYPE
|
|
|
|
FIXED_INT8_ARRAY_TYPE, // FIRST_FIXED_TYPED_ARRAY_TYPE
|
|
FIXED_UINT8_ARRAY_TYPE,
|
|
FIXED_INT16_ARRAY_TYPE,
|
|
FIXED_UINT16_ARRAY_TYPE,
|
|
FIXED_INT32_ARRAY_TYPE,
|
|
FIXED_UINT32_ARRAY_TYPE,
|
|
FIXED_FLOAT32_ARRAY_TYPE,
|
|
FIXED_FLOAT64_ARRAY_TYPE,
|
|
FIXED_UINT8_CLAMPED_ARRAY_TYPE, // LAST_FIXED_TYPED_ARRAY_TYPE
|
|
|
|
FIXED_DOUBLE_ARRAY_TYPE,
|
|
FILLER_TYPE, // LAST_DATA_TYPE
|
|
|
|
// Structs.
|
|
DECLARED_ACCESSOR_DESCRIPTOR_TYPE,
|
|
DECLARED_ACCESSOR_INFO_TYPE,
|
|
EXECUTABLE_ACCESSOR_INFO_TYPE,
|
|
ACCESSOR_PAIR_TYPE,
|
|
ACCESS_CHECK_INFO_TYPE,
|
|
INTERCEPTOR_INFO_TYPE,
|
|
CALL_HANDLER_INFO_TYPE,
|
|
FUNCTION_TEMPLATE_INFO_TYPE,
|
|
OBJECT_TEMPLATE_INFO_TYPE,
|
|
SIGNATURE_INFO_TYPE,
|
|
TYPE_SWITCH_INFO_TYPE,
|
|
ALLOCATION_SITE_TYPE,
|
|
ALLOCATION_MEMENTO_TYPE,
|
|
SCRIPT_TYPE,
|
|
CODE_CACHE_TYPE,
|
|
POLYMORPHIC_CODE_CACHE_TYPE,
|
|
TYPE_FEEDBACK_INFO_TYPE,
|
|
ALIASED_ARGUMENTS_ENTRY_TYPE,
|
|
BOX_TYPE,
|
|
// The following two instance types are only used when ENABLE_DEBUGGER_SUPPORT
|
|
// is defined. However as include/v8.h contain some of the instance type
|
|
// constants always having them avoids them getting different numbers
|
|
// depending on whether ENABLE_DEBUGGER_SUPPORT is defined or not.
|
|
DEBUG_INFO_TYPE,
|
|
BREAK_POINT_INFO_TYPE,
|
|
|
|
FIXED_ARRAY_TYPE,
|
|
CONSTANT_POOL_ARRAY_TYPE,
|
|
SHARED_FUNCTION_INFO_TYPE,
|
|
|
|
JS_MESSAGE_OBJECT_TYPE,
|
|
|
|
// All the following types are subtypes of JSReceiver, which corresponds to
|
|
// objects in the JS sense. The first and the last type in this range are
|
|
// the two forms of function. This organization enables using the same
|
|
// compares for checking the JS_RECEIVER/SPEC_OBJECT range and the
|
|
// NONCALLABLE_JS_OBJECT range.
|
|
JS_FUNCTION_PROXY_TYPE, // FIRST_JS_RECEIVER_TYPE, FIRST_JS_PROXY_TYPE
|
|
JS_PROXY_TYPE, // LAST_JS_PROXY_TYPE
|
|
|
|
JS_VALUE_TYPE, // FIRST_JS_OBJECT_TYPE
|
|
JS_DATE_TYPE,
|
|
JS_OBJECT_TYPE,
|
|
JS_CONTEXT_EXTENSION_OBJECT_TYPE,
|
|
JS_GENERATOR_OBJECT_TYPE,
|
|
JS_MODULE_TYPE,
|
|
JS_GLOBAL_OBJECT_TYPE,
|
|
JS_BUILTINS_OBJECT_TYPE,
|
|
JS_GLOBAL_PROXY_TYPE,
|
|
JS_ARRAY_TYPE,
|
|
JS_ARRAY_BUFFER_TYPE,
|
|
JS_TYPED_ARRAY_TYPE,
|
|
JS_DATA_VIEW_TYPE,
|
|
JS_SET_TYPE,
|
|
JS_MAP_TYPE,
|
|
JS_WEAK_MAP_TYPE,
|
|
JS_WEAK_SET_TYPE,
|
|
|
|
JS_REGEXP_TYPE,
|
|
|
|
JS_FUNCTION_TYPE, // LAST_JS_OBJECT_TYPE, LAST_JS_RECEIVER_TYPE
|
|
|
|
// Pseudo-types
|
|
FIRST_TYPE = 0x0,
|
|
LAST_TYPE = JS_FUNCTION_TYPE,
|
|
FIRST_NAME_TYPE = FIRST_TYPE,
|
|
LAST_NAME_TYPE = SYMBOL_TYPE,
|
|
FIRST_UNIQUE_NAME_TYPE = INTERNALIZED_STRING_TYPE,
|
|
LAST_UNIQUE_NAME_TYPE = SYMBOL_TYPE,
|
|
FIRST_NONSTRING_TYPE = SYMBOL_TYPE,
|
|
// Boundaries for testing for an external array.
|
|
FIRST_EXTERNAL_ARRAY_TYPE = EXTERNAL_INT8_ARRAY_TYPE,
|
|
LAST_EXTERNAL_ARRAY_TYPE = EXTERNAL_UINT8_CLAMPED_ARRAY_TYPE,
|
|
// Boundaries for testing for a fixed typed array.
|
|
FIRST_FIXED_TYPED_ARRAY_TYPE = FIXED_INT8_ARRAY_TYPE,
|
|
LAST_FIXED_TYPED_ARRAY_TYPE = FIXED_UINT8_CLAMPED_ARRAY_TYPE,
|
|
// Boundary for promotion to old data space/old pointer space.
|
|
LAST_DATA_TYPE = FILLER_TYPE,
|
|
// Boundary for objects represented as JSReceiver (i.e. JSObject or JSProxy).
|
|
// Note that there is no range for JSObject or JSProxy, since their subtypes
|
|
// are not continuous in this enum! The enum ranges instead reflect the
|
|
// external class names, where proxies are treated as either ordinary objects,
|
|
// or functions.
|
|
FIRST_JS_RECEIVER_TYPE = JS_FUNCTION_PROXY_TYPE,
|
|
LAST_JS_RECEIVER_TYPE = LAST_TYPE,
|
|
// Boundaries for testing the types represented as JSObject
|
|
FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
|
|
LAST_JS_OBJECT_TYPE = LAST_TYPE,
|
|
// Boundaries for testing the types represented as JSProxy
|
|
FIRST_JS_PROXY_TYPE = JS_FUNCTION_PROXY_TYPE,
|
|
LAST_JS_PROXY_TYPE = JS_PROXY_TYPE,
|
|
// Boundaries for testing whether the type is a JavaScript object.
|
|
FIRST_SPEC_OBJECT_TYPE = FIRST_JS_RECEIVER_TYPE,
|
|
LAST_SPEC_OBJECT_TYPE = LAST_JS_RECEIVER_TYPE,
|
|
// Boundaries for testing the types for which typeof is "object".
|
|
FIRST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_PROXY_TYPE,
|
|
LAST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_REGEXP_TYPE,
|
|
// Note that the types for which typeof is "function" are not continuous.
|
|
// Define this so that we can put assertions on discrete checks.
|
|
NUM_OF_CALLABLE_SPEC_OBJECT_TYPES = 2
|
|
};
|
|
|
|
const int kExternalArrayTypeCount =
|
|
LAST_EXTERNAL_ARRAY_TYPE - FIRST_EXTERNAL_ARRAY_TYPE + 1;
|
|
|
|
STATIC_CHECK(JS_OBJECT_TYPE == Internals::kJSObjectType);
|
|
STATIC_CHECK(FIRST_NONSTRING_TYPE == Internals::kFirstNonstringType);
|
|
STATIC_CHECK(ODDBALL_TYPE == Internals::kOddballType);
|
|
STATIC_CHECK(FOREIGN_TYPE == Internals::kForeignType);
|
|
|
|
|
|
#define FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(V) \
|
|
V(FAST_ELEMENTS_SUB_TYPE) \
|
|
V(DICTIONARY_ELEMENTS_SUB_TYPE) \
|
|
V(FAST_PROPERTIES_SUB_TYPE) \
|
|
V(DICTIONARY_PROPERTIES_SUB_TYPE) \
|
|
V(MAP_CODE_CACHE_SUB_TYPE) \
|
|
V(SCOPE_INFO_SUB_TYPE) \
|
|
V(STRING_TABLE_SUB_TYPE) \
|
|
V(DESCRIPTOR_ARRAY_SUB_TYPE) \
|
|
V(TRANSITION_ARRAY_SUB_TYPE)
|
|
|
|
enum FixedArraySubInstanceType {
|
|
#define DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE(name) name,
|
|
FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE)
|
|
#undef DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE
|
|
LAST_FIXED_ARRAY_SUB_TYPE = TRANSITION_ARRAY_SUB_TYPE
|
|
};
|
|
|
|
|
|
enum CompareResult {
|
|
LESS = -1,
|
|
EQUAL = 0,
|
|
GREATER = 1,
|
|
|
|
NOT_EQUAL = GREATER
|
|
};
|
|
|
|
|
|
#define DECL_BOOLEAN_ACCESSORS(name) \
|
|
inline bool name(); \
|
|
inline void set_##name(bool value); \
|
|
|
|
|
|
#define DECL_ACCESSORS(name, type) \
|
|
inline type* name(); \
|
|
inline void set_##name(type* value, \
|
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \
|
|
|
|
class AccessorPair;
|
|
class AllocationSite;
|
|
class AllocationSiteCreationContext;
|
|
class AllocationSiteUsageContext;
|
|
class DictionaryElementsAccessor;
|
|
class ElementsAccessor;
|
|
class Failure;
|
|
class FixedArrayBase;
|
|
class GlobalObject;
|
|
class ObjectVisitor;
|
|
class StringStream;
|
|
// We cannot just say "class HeapType;" if it is created from a template... =8-?
|
|
template<class> class TypeImpl;
|
|
struct HeapTypeConfig;
|
|
typedef TypeImpl<HeapTypeConfig> HeapType;
|
|
|
|
|
|
// A template-ized version of the IsXXX functions.
|
|
template <class C> inline bool Is(Object* obj);
|
|
|
|
#ifdef VERIFY_HEAP
|
|
#define DECLARE_VERIFIER(Name) void Name##Verify();
|
|
#else
|
|
#define DECLARE_VERIFIER(Name)
|
|
#endif
|
|
|
|
#ifdef OBJECT_PRINT
|
|
#define DECLARE_PRINTER(Name) void Name##Print(FILE* out = stdout);
|
|
#else
|
|
#define DECLARE_PRINTER(Name)
|
|
#endif
|
|
|
|
class MaybeObject BASE_EMBEDDED {
|
|
public:
|
|
inline bool IsFailure();
|
|
inline bool IsRetryAfterGC();
|
|
inline bool IsOutOfMemory();
|
|
inline bool IsException();
|
|
INLINE(bool IsTheHole());
|
|
INLINE(bool IsUninitialized());
|
|
inline bool ToObject(Object** obj) {
|
|
if (IsFailure()) return false;
|
|
*obj = reinterpret_cast<Object*>(this);
|
|
return true;
|
|
}
|
|
inline Failure* ToFailureUnchecked() {
|
|
ASSERT(IsFailure());
|
|
return reinterpret_cast<Failure*>(this);
|
|
}
|
|
inline Object* ToObjectUnchecked() {
|
|
// TODO(jkummerow): Turn this back into an ASSERT when we can be certain
|
|
// that it never fires in Release mode in the wild.
|
|
CHECK(!IsFailure());
|
|
return reinterpret_cast<Object*>(this);
|
|
}
|
|
inline Object* ToObjectChecked() {
|
|
CHECK(!IsFailure());
|
|
return reinterpret_cast<Object*>(this);
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool To(T** obj) {
|
|
if (IsFailure()) return false;
|
|
*obj = T::cast(reinterpret_cast<Object*>(this));
|
|
return true;
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool ToHandle(Handle<T>* obj, Isolate* isolate) {
|
|
if (IsFailure()) return false;
|
|
*obj = handle(T::cast(reinterpret_cast<Object*>(this)), isolate);
|
|
return true;
|
|
}
|
|
|
|
#ifdef OBJECT_PRINT
|
|
// Prints this object with details.
|
|
void Print();
|
|
void Print(FILE* out);
|
|
void PrintLn();
|
|
void PrintLn(FILE* out);
|
|
#endif
|
|
#ifdef VERIFY_HEAP
|
|
// Verifies the object.
|
|
void Verify();
|
|
#endif
|
|
};
|
|
|
|
|
|
#define OBJECT_TYPE_LIST(V) \
|
|
V(Smi) \
|
|
V(HeapObject) \
|
|
V(Number) \
|
|
|
|
#define HEAP_OBJECT_TYPE_LIST(V) \
|
|
V(HeapNumber) \
|
|
V(Name) \
|
|
V(UniqueName) \
|
|
V(String) \
|
|
V(SeqString) \
|
|
V(ExternalString) \
|
|
V(ConsString) \
|
|
V(SlicedString) \
|
|
V(ExternalTwoByteString) \
|
|
V(ExternalAsciiString) \
|
|
V(SeqTwoByteString) \
|
|
V(SeqOneByteString) \
|
|
V(InternalizedString) \
|
|
V(Symbol) \
|
|
\
|
|
V(ExternalArray) \
|
|
V(ExternalInt8Array) \
|
|
V(ExternalUint8Array) \
|
|
V(ExternalInt16Array) \
|
|
V(ExternalUint16Array) \
|
|
V(ExternalInt32Array) \
|
|
V(ExternalUint32Array) \
|
|
V(ExternalFloat32Array) \
|
|
V(ExternalFloat64Array) \
|
|
V(ExternalUint8ClampedArray) \
|
|
V(FixedTypedArrayBase) \
|
|
V(FixedUint8Array) \
|
|
V(FixedInt8Array) \
|
|
V(FixedUint16Array) \
|
|
V(FixedInt16Array) \
|
|
V(FixedUint32Array) \
|
|
V(FixedInt32Array) \
|
|
V(FixedFloat32Array) \
|
|
V(FixedFloat64Array) \
|
|
V(FixedUint8ClampedArray) \
|
|
V(ByteArray) \
|
|
V(FreeSpace) \
|
|
V(JSReceiver) \
|
|
V(JSObject) \
|
|
V(JSContextExtensionObject) \
|
|
V(JSGeneratorObject) \
|
|
V(JSModule) \
|
|
V(Map) \
|
|
V(DescriptorArray) \
|
|
V(TransitionArray) \
|
|
V(DeoptimizationInputData) \
|
|
V(DeoptimizationOutputData) \
|
|
V(DependentCode) \
|
|
V(FixedArray) \
|
|
V(FixedDoubleArray) \
|
|
V(ConstantPoolArray) \
|
|
V(Context) \
|
|
V(NativeContext) \
|
|
V(ScopeInfo) \
|
|
V(JSFunction) \
|
|
V(Code) \
|
|
V(Oddball) \
|
|
V(SharedFunctionInfo) \
|
|
V(JSValue) \
|
|
V(JSDate) \
|
|
V(JSMessageObject) \
|
|
V(StringWrapper) \
|
|
V(Foreign) \
|
|
V(Boolean) \
|
|
V(JSArray) \
|
|
V(JSArrayBuffer) \
|
|
V(JSArrayBufferView) \
|
|
V(JSTypedArray) \
|
|
V(JSDataView) \
|
|
V(JSProxy) \
|
|
V(JSFunctionProxy) \
|
|
V(JSSet) \
|
|
V(JSMap) \
|
|
V(JSWeakCollection) \
|
|
V(JSWeakMap) \
|
|
V(JSWeakSet) \
|
|
V(JSRegExp) \
|
|
V(HashTable) \
|
|
V(Dictionary) \
|
|
V(StringTable) \
|
|
V(JSFunctionResultCache) \
|
|
V(NormalizedMapCache) \
|
|
V(CompilationCacheTable) \
|
|
V(CodeCacheHashTable) \
|
|
V(PolymorphicCodeCacheHashTable) \
|
|
V(MapCache) \
|
|
V(Primitive) \
|
|
V(GlobalObject) \
|
|
V(JSGlobalObject) \
|
|
V(JSBuiltinsObject) \
|
|
V(JSGlobalProxy) \
|
|
V(UndetectableObject) \
|
|
V(AccessCheckNeeded) \
|
|
V(Cell) \
|
|
V(PropertyCell) \
|
|
V(ObjectHashTable) \
|
|
V(WeakHashTable)
|
|
|
|
|
|
#define ERROR_MESSAGES_LIST(V) \
|
|
V(kNoReason, "no reason") \
|
|
\
|
|
V(k32BitValueInRegisterIsNotZeroExtended, \
|
|
"32 bit value in register is not zero-extended") \
|
|
V(kAlignmentMarkerExpected, "Alignment marker expected") \
|
|
V(kAllocationIsNotDoubleAligned, "Allocation is not double aligned") \
|
|
V(kAPICallReturnedInvalidObject, "API call returned invalid object") \
|
|
V(kArgumentsObjectValueInATestContext, \
|
|
"Arguments object value in a test context") \
|
|
V(kArrayBoilerplateCreationFailed, "Array boilerplate creation failed") \
|
|
V(kArrayIndexConstantValueTooBig, "Array index constant value too big") \
|
|
V(kAssignmentToArguments, "Assignment to arguments") \
|
|
V(kAssignmentToLetVariableBeforeInitialization, \
|
|
"Assignment to let variable before initialization") \
|
|
V(kAssignmentToLOOKUPVariable, "Assignment to LOOKUP variable") \
|
|
V(kAssignmentToParameterFunctionUsesArgumentsObject, \
|
|
"Assignment to parameter, function uses arguments object") \
|
|
V(kAssignmentToParameterInArgumentsObject, \
|
|
"Assignment to parameter in arguments object") \
|
|
V(kAttemptToUseUndefinedCache, "Attempt to use undefined cache") \
|
|
V(kBadValueContextForArgumentsObjectValue, \
|
|
"Bad value context for arguments object value") \
|
|
V(kBadValueContextForArgumentsValue, \
|
|
"Bad value context for arguments value") \
|
|
V(kBailedOutDueToDependencyChange, "Bailed out due to dependency change") \
|
|
V(kBailoutWasNotPrepared, "Bailout was not prepared") \
|
|
V(kBinaryStubGenerateFloatingPointCode, \
|
|
"BinaryStub_GenerateFloatingPointCode") \
|
|
V(kBothRegistersWereSmisInSelectNonSmi, \
|
|
"Both registers were smis in SelectNonSmi") \
|
|
V(kCallToAJavaScriptRuntimeFunction, \
|
|
"Call to a JavaScript runtime function") \
|
|
V(kCannotTranslatePositionInChangedArea, \
|
|
"Cannot translate position in changed area") \
|
|
V(kCodeGenerationFailed, "Code generation failed") \
|
|
V(kCodeObjectNotProperlyPatched, "Code object not properly patched") \
|
|
V(kCompoundAssignmentToLookupSlot, "Compound assignment to lookup slot") \
|
|
V(kContextAllocatedArguments, "Context-allocated arguments") \
|
|
V(kCopyBuffersOverlap, "Copy buffers overlap") \
|
|
V(kCouldNotGenerateZero, "Could not generate +0.0") \
|
|
V(kCouldNotGenerateNegativeZero, "Could not generate -0.0") \
|
|
V(kDebuggerIsActive, "Debugger is active") \
|
|
V(kDebuggerStatement, "DebuggerStatement") \
|
|
V(kDeclarationInCatchContext, "Declaration in catch context") \
|
|
V(kDeclarationInWithContext, "Declaration in with context") \
|
|
V(kDefaultNaNModeNotSet, "Default NaN mode not set") \
|
|
V(kDeleteWithGlobalVariable, "Delete with global variable") \
|
|
V(kDeleteWithNonGlobalVariable, "Delete with non-global variable") \
|
|
V(kDestinationOfCopyNotAligned, "Destination of copy not aligned") \
|
|
V(kDontDeleteCellsCannotContainTheHole, \
|
|
"DontDelete cells can't contain the hole") \
|
|
V(kDoPushArgumentNotImplementedForDoubleType, \
|
|
"DoPushArgument not implemented for double type") \
|
|
V(kEliminatedBoundsCheckFailed, "Eliminated bounds check failed") \
|
|
V(kEmitLoadRegisterUnsupportedDoubleImmediate, \
|
|
"EmitLoadRegister: Unsupported double immediate") \
|
|
V(kEval, "eval") \
|
|
V(kExpected0AsASmiSentinel, "Expected 0 as a Smi sentinel") \
|
|
V(kExpectedAlignmentMarker, "Expected alignment marker") \
|
|
V(kExpectedAllocationSite, "Expected allocation site") \
|
|
V(kExpectedFunctionObject, "Expected function object in register") \
|
|
V(kExpectedHeapNumber, "Expected HeapNumber") \
|
|
V(kExpectedNativeContext, "Expected native context") \
|
|
V(kExpectedNonIdenticalObjects, "Expected non-identical objects") \
|
|
V(kExpectedNonNullContext, "Expected non-null context") \
|
|
V(kExpectedPositiveZero, "Expected +0.0") \
|
|
V(kExpectedAllocationSiteInCell, \
|
|
"Expected AllocationSite in property cell") \
|
|
V(kExpectedFixedArrayInFeedbackVector, \
|
|
"Expected fixed array in feedback vector") \
|
|
V(kExpectedFixedArrayInRegisterA2, \
|
|
"Expected fixed array in register a2") \
|
|
V(kExpectedFixedArrayInRegisterEbx, \
|
|
"Expected fixed array in register ebx") \
|
|
V(kExpectedFixedArrayInRegisterR2, \
|
|
"Expected fixed array in register r2") \
|
|
V(kExpectedFixedArrayInRegisterRbx, \
|
|
"Expected fixed array in register rbx") \
|
|
V(kExpectedSmiOrHeapNumber, "Expected smi or HeapNumber") \
|
|
V(kExpectingAlignmentForCopyBytes, \
|
|
"Expecting alignment for CopyBytes") \
|
|
V(kExportDeclaration, "Export declaration") \
|
|
V(kExternalStringExpectedButNotFound, \
|
|
"External string expected, but not found") \
|
|
V(kFailedBailedOutLastTime, "Failed/bailed out last time") \
|
|
V(kForInStatementIsNotFastCase, "ForInStatement is not fast case") \
|
|
V(kForInStatementOptimizationIsDisabled, \
|
|
"ForInStatement optimization is disabled") \
|
|
V(kForInStatementWithNonLocalEachVariable, \
|
|
"ForInStatement with non-local each variable") \
|
|
V(kForOfStatement, "ForOfStatement") \
|
|
V(kFrameIsExpectedToBeAligned, "Frame is expected to be aligned") \
|
|
V(kFunctionCallsEval, "Function calls eval") \
|
|
V(kFunctionIsAGenerator, "Function is a generator") \
|
|
V(kFunctionWithIllegalRedeclaration, "Function with illegal redeclaration") \
|
|
V(kGeneratedCodeIsTooLarge, "Generated code is too large") \
|
|
V(kGeneratorFailedToResume, "Generator failed to resume") \
|
|
V(kGenerator, "Generator") \
|
|
V(kGlobalFunctionsMustHaveInitialMap, \
|
|
"Global functions must have initial map") \
|
|
V(kHeapNumberMapRegisterClobbered, "HeapNumberMap register clobbered") \
|
|
V(kHydrogenFilter, "Optimization disabled by filter") \
|
|
V(kImportDeclaration, "Import declaration") \
|
|
V(kImproperObjectOnPrototypeChainForStore, \
|
|
"Improper object on prototype chain for store") \
|
|
V(kIndexIsNegative, "Index is negative") \
|
|
V(kIndexIsTooLarge, "Index is too large") \
|
|
V(kInlinedRuntimeFunctionClassOf, "Inlined runtime function: ClassOf") \
|
|
V(kInlinedRuntimeFunctionFastAsciiArrayJoin, \
|
|
"Inlined runtime function: FastAsciiArrayJoin") \
|
|
V(kInlinedRuntimeFunctionGeneratorNext, \
|
|
"Inlined runtime function: GeneratorNext") \
|
|
V(kInlinedRuntimeFunctionGeneratorThrow, \
|
|
"Inlined runtime function: GeneratorThrow") \
|
|
V(kInlinedRuntimeFunctionGetFromCache, \
|
|
"Inlined runtime function: GetFromCache") \
|
|
V(kInlinedRuntimeFunctionIsNonNegativeSmi, \
|
|
"Inlined runtime function: IsNonNegativeSmi") \
|
|
V(kInlinedRuntimeFunctionIsStringWrapperSafeForDefaultValueOf, \
|
|
"Inlined runtime function: IsStringWrapperSafeForDefaultValueOf") \
|
|
V(kInliningBailedOut, "Inlining bailed out") \
|
|
V(kInputGPRIsExpectedToHaveUpper32Cleared, \
|
|
"Input GPR is expected to have upper32 cleared") \
|
|
V(kInputStringTooLong, "Input string too long") \
|
|
V(kInstanceofStubUnexpectedCallSiteCacheCheck, \
|
|
"InstanceofStub unexpected call site cache (check)") \
|
|
V(kInstanceofStubUnexpectedCallSiteCacheCmp1, \
|
|
"InstanceofStub unexpected call site cache (cmp 1)") \
|
|
V(kInstanceofStubUnexpectedCallSiteCacheCmp2, \
|
|
"InstanceofStub unexpected call site cache (cmp 2)") \
|
|
V(kInstanceofStubUnexpectedCallSiteCacheMov, \
|
|
"InstanceofStub unexpected call site cache (mov)") \
|
|
V(kInteger32ToSmiFieldWritingToNonSmiLocation, \
|
|
"Integer32ToSmiField writing to non-smi location") \
|
|
V(kInvalidCaptureReferenced, "Invalid capture referenced") \
|
|
V(kInvalidElementsKindForInternalArrayOrInternalPackedArray, \
|
|
"Invalid ElementsKind for InternalArray or InternalPackedArray") \
|
|
V(kInvalidFullCodegenState, "invalid full-codegen state") \
|
|
V(kInvalidHandleScopeLevel, "Invalid HandleScope level") \
|
|
V(kInvalidLeftHandSideInAssignment, "Invalid left-hand side in assignment") \
|
|
V(kInvalidLhsInCompoundAssignment, "Invalid lhs in compound assignment") \
|
|
V(kInvalidLhsInCountOperation, "Invalid lhs in count operation") \
|
|
V(kInvalidMinLength, "Invalid min_length") \
|
|
V(kJSGlobalObjectNativeContextShouldBeANativeContext, \
|
|
"JSGlobalObject::native_context should be a native context") \
|
|
V(kJSGlobalProxyContextShouldNotBeNull, \
|
|
"JSGlobalProxy::context() should not be null") \
|
|
V(kJSObjectWithFastElementsMapHasSlowElements, \
|
|
"JSObject with fast elements map has slow elements") \
|
|
V(kLetBindingReInitialization, "Let binding re-initialization") \
|
|
V(kLhsHasBeenClobbered, "lhs has been clobbered") \
|
|
V(kLiveBytesCountOverflowChunkSize, "Live Bytes Count overflow chunk size") \
|
|
V(kLiveEditFrameDroppingIsNotSupportedOnA64, \
|
|
"LiveEdit frame dropping is not supported on a64") \
|
|
V(kLiveEditFrameDroppingIsNotSupportedOnArm, \
|
|
"LiveEdit frame dropping is not supported on arm") \
|
|
V(kLiveEditFrameDroppingIsNotSupportedOnMips, \
|
|
"LiveEdit frame dropping is not supported on mips") \
|
|
V(kLiveEdit, "LiveEdit") \
|
|
V(kLookupVariableInCountOperation, \
|
|
"Lookup variable in count operation") \
|
|
V(kMapIsNoLongerInEax, "Map is no longer in eax") \
|
|
V(kModuleDeclaration, "Module declaration") \
|
|
V(kModuleLiteral, "Module literal") \
|
|
V(kModulePath, "Module path") \
|
|
V(kModuleStatement, "Module statement") \
|
|
V(kModuleVariable, "Module variable") \
|
|
V(kModuleUrl, "Module url") \
|
|
V(kNativeFunctionLiteral, "Native function literal") \
|
|
V(kNoCasesLeft, "No cases left") \
|
|
V(kNoEmptyArraysHereInEmitFastAsciiArrayJoin, \
|
|
"No empty arrays here in EmitFastAsciiArrayJoin") \
|
|
V(kNonInitializerAssignmentToConst, \
|
|
"Non-initializer assignment to const") \
|
|
V(kNonSmiIndex, "Non-smi index") \
|
|
V(kNonSmiKeyInArrayLiteral, "Non-smi key in array literal") \
|
|
V(kNonSmiValue, "Non-smi value") \
|
|
V(kNonObject, "Non-object value") \
|
|
V(kNotEnoughVirtualRegistersForValues, \
|
|
"Not enough virtual registers for values") \
|
|
V(kNotEnoughSpillSlotsForOsr, \
|
|
"Not enough spill slots for OSR") \
|
|
V(kNotEnoughVirtualRegistersRegalloc, \
|
|
"Not enough virtual registers (regalloc)") \
|
|
V(kObjectFoundInSmiOnlyArray, "Object found in smi-only array") \
|
|
V(kObjectLiteralWithComplexProperty, \
|
|
"Object literal with complex property") \
|
|
V(kOddballInStringTableIsNotUndefinedOrTheHole, \
|
|
"Oddball in string table is not undefined or the hole") \
|
|
V(kOffsetOutOfRange, "Offset out of range") \
|
|
V(kOperandIsASmiAndNotAName, "Operand is a smi and not a name") \
|
|
V(kOperandIsASmiAndNotAString, "Operand is a smi and not a string") \
|
|
V(kOperandIsASmi, "Operand is a smi") \
|
|
V(kOperandIsNotAName, "Operand is not a name") \
|
|
V(kOperandIsNotANumber, "Operand is not a number") \
|
|
V(kOperandIsNotASmi, "Operand is not a smi") \
|
|
V(kOperandIsNotAString, "Operand is not a string") \
|
|
V(kOperandIsNotSmi, "Operand is not smi") \
|
|
V(kOperandNotANumber, "Operand not a number") \
|
|
V(kOptimizationDisabled, "Optimization is disabled") \
|
|
V(kOptimizedTooManyTimes, "Optimized too many times") \
|
|
V(kOutOfVirtualRegistersWhileTryingToAllocateTempRegister, \
|
|
"Out of virtual registers while trying to allocate temp register") \
|
|
V(kParseScopeError, "Parse/scope error") \
|
|
V(kPossibleDirectCallToEval, "Possible direct call to eval") \
|
|
V(kPreconditionsWereNotMet, "Preconditions were not met") \
|
|
V(kPropertyAllocationCountFailed, "Property allocation count failed") \
|
|
V(kReceivedInvalidReturnAddress, "Received invalid return address") \
|
|
V(kReferenceToAVariableWhichRequiresDynamicLookup, \
|
|
"Reference to a variable which requires dynamic lookup") \
|
|
V(kReferenceToGlobalLexicalVariable, \
|
|
"Reference to global lexical variable") \
|
|
V(kReferenceToUninitializedVariable, "Reference to uninitialized variable") \
|
|
V(kRegisterDidNotMatchExpectedRoot, "Register did not match expected root") \
|
|
V(kRegisterWasClobbered, "Register was clobbered") \
|
|
V(kRememberedSetPointerInNewSpace, "Remembered set pointer is in new space") \
|
|
V(kReturnAddressNotFoundInFrame, "Return address not found in frame") \
|
|
V(kRhsHasBeenClobbered, "Rhs has been clobbered") \
|
|
V(kScopedBlock, "ScopedBlock") \
|
|
V(kSmiAdditionOverflow, "Smi addition overflow") \
|
|
V(kSmiSubtractionOverflow, "Smi subtraction overflow") \
|
|
V(kStackAccessBelowStackPointer, "Stack access below stack pointer") \
|
|
V(kStackFrameTypesMustMatch, "Stack frame types must match") \
|
|
V(kSwitchStatementMixedOrNonLiteralSwitchLabels, \
|
|
"SwitchStatement: mixed or non-literal switch labels") \
|
|
V(kSwitchStatementTooManyClauses, "SwitchStatement: too many clauses") \
|
|
V(kTheCurrentStackPointerIsBelowCsp, \
|
|
"The current stack pointer is below csp") \
|
|
V(kTheInstructionShouldBeALui, "The instruction should be a lui") \
|
|
V(kTheInstructionShouldBeAnOri, "The instruction should be an ori") \
|
|
V(kTheInstructionToPatchShouldBeALoadFromPc, \
|
|
"The instruction to patch should be a load from pc") \
|
|
V(kTheInstructionToPatchShouldBeAnLdrLiteral, \
|
|
"The instruction to patch should be a ldr literal") \
|
|
V(kTheInstructionToPatchShouldBeALui, \
|
|
"The instruction to patch should be a lui") \
|
|
V(kTheInstructionToPatchShouldBeAnOri, \
|
|
"The instruction to patch should be an ori") \
|
|
V(kTheSourceAndDestinationAreTheSame, \
|
|
"The source and destination are the same") \
|
|
V(kTheStackPointerIsNotAligned, "The stack pointer is not aligned.") \
|
|
V(kTheStackWasCorruptedByMacroAssemblerCall, \
|
|
"The stack was corrupted by MacroAssembler::Call()") \
|
|
V(kTooManyParametersLocals, "Too many parameters/locals") \
|
|
V(kTooManyParameters, "Too many parameters") \
|
|
V(kTooManySpillSlotsNeededForOSR, "Too many spill slots needed for OSR") \
|
|
V(kToOperand32UnsupportedImmediate, "ToOperand32 unsupported immediate.") \
|
|
V(kToOperandIsDoubleRegisterUnimplemented, \
|
|
"ToOperand IsDoubleRegister unimplemented") \
|
|
V(kToOperandUnsupportedDoubleImmediate, \
|
|
"ToOperand Unsupported double immediate") \
|
|
V(kTryCatchStatement, "TryCatchStatement") \
|
|
V(kTryFinallyStatement, "TryFinallyStatement") \
|
|
V(kUnableToEncodeValueAsSmi, "Unable to encode value as smi") \
|
|
V(kUnalignedAllocationInNewSpace, "Unaligned allocation in new space") \
|
|
V(kUnalignedCellInWriteBarrier, "Unaligned cell in write barrier") \
|
|
V(kUndefinedValueNotLoaded, "Undefined value not loaded") \
|
|
V(kUndoAllocationOfNonAllocatedMemory, \
|
|
"Undo allocation of non allocated memory") \
|
|
V(kUnexpectedAllocationTop, "Unexpected allocation top") \
|
|
V(kUnexpectedColorFound, "Unexpected color bit pattern found") \
|
|
V(kUnexpectedElementsKindInArrayConstructor, \
|
|
"Unexpected ElementsKind in array constructor") \
|
|
V(kUnexpectedFallthroughFromCharCodeAtSlowCase, \
|
|
"Unexpected fallthrough from CharCodeAt slow case") \
|
|
V(kUnexpectedFallthroughFromCharFromCodeSlowCase, \
|
|
"Unexpected fallthrough from CharFromCode slow case") \
|
|
V(kUnexpectedFallThroughFromStringComparison, \
|
|
"Unexpected fall-through from string comparison") \
|
|
V(kUnexpectedFallThroughInBinaryStubGenerateFloatingPointCode, \
|
|
"Unexpected fall-through in BinaryStub_GenerateFloatingPointCode") \
|
|
V(kUnexpectedFallthroughToCharCodeAtSlowCase, \
|
|
"Unexpected fallthrough to CharCodeAt slow case") \
|
|
V(kUnexpectedFallthroughToCharFromCodeSlowCase, \
|
|
"Unexpected fallthrough to CharFromCode slow case") \
|
|
V(kUnexpectedFPUStackDepthAfterInstruction, \
|
|
"Unexpected FPU stack depth after instruction") \
|
|
V(kUnexpectedInitialMapForArrayFunction1, \
|
|
"Unexpected initial map for Array function (1)") \
|
|
V(kUnexpectedInitialMapForArrayFunction2, \
|
|
"Unexpected initial map for Array function (2)") \
|
|
V(kUnexpectedInitialMapForArrayFunction, \
|
|
"Unexpected initial map for Array function") \
|
|
V(kUnexpectedInitialMapForInternalArrayFunction, \
|
|
"Unexpected initial map for InternalArray function") \
|
|
V(kUnexpectedLevelAfterReturnFromApiCall, \
|
|
"Unexpected level after return from api call") \
|
|
V(kUnexpectedNegativeValue, "Unexpected negative value") \
|
|
V(kUnexpectedNumberOfPreAllocatedPropertyFields, \
|
|
"Unexpected number of pre-allocated property fields") \
|
|
V(kUnexpectedSmi, "Unexpected smi value") \
|
|
V(kUnexpectedStringFunction, "Unexpected String function") \
|
|
V(kUnexpectedStringType, "Unexpected string type") \
|
|
V(kUnexpectedStringWrapperInstanceSize, \
|
|
"Unexpected string wrapper instance size") \
|
|
V(kUnexpectedTypeForRegExpDataFixedArrayExpected, \
|
|
"Unexpected type for RegExp data, FixedArray expected") \
|
|
V(kUnexpectedValue, "Unexpected value") \
|
|
V(kUnexpectedUnusedPropertiesOfStringWrapper, \
|
|
"Unexpected unused properties of string wrapper") \
|
|
V(kUnimplemented, "unimplemented") \
|
|
V(kUninitializedKSmiConstantRegister, "Uninitialized kSmiConstantRegister") \
|
|
V(kUnknown, "Unknown") \
|
|
V(kUnsupportedConstCompoundAssignment, \
|
|
"Unsupported const compound assignment") \
|
|
V(kUnsupportedCountOperationWithConst, \
|
|
"Unsupported count operation with const") \
|
|
V(kUnsupportedDoubleImmediate, "Unsupported double immediate") \
|
|
V(kUnsupportedLetCompoundAssignment, "Unsupported let compound assignment") \
|
|
V(kUnsupportedLookupSlotInDeclaration, \
|
|
"Unsupported lookup slot in declaration") \
|
|
V(kUnsupportedNonPrimitiveCompare, "Unsupported non-primitive compare") \
|
|
V(kUnsupportedPhiUseOfArguments, "Unsupported phi use of arguments") \
|
|
V(kUnsupportedPhiUseOfConstVariable, \
|
|
"Unsupported phi use of const variable") \
|
|
V(kUnsupportedTaggedImmediate, "Unsupported tagged immediate") \
|
|
V(kVariableResolvedToWithContext, "Variable resolved to with context") \
|
|
V(kWeShouldNotHaveAnEmptyLexicalContext, \
|
|
"We should not have an empty lexical context") \
|
|
V(kWithStatement, "WithStatement") \
|
|
V(kWrongAddressOrValuePassedToRecordWrite, \
|
|
"Wrong address or value passed to RecordWrite") \
|
|
V(kYield, "Yield")
|
|
|
|
|
|
#define ERROR_MESSAGES_CONSTANTS(C, T) C,
|
|
enum BailoutReason {
|
|
ERROR_MESSAGES_LIST(ERROR_MESSAGES_CONSTANTS)
|
|
kLastErrorMessage
|
|
};
|
|
#undef ERROR_MESSAGES_CONSTANTS
|
|
|
|
|
|
const char* GetBailoutReason(BailoutReason reason);
|
|
|
|
|
|
// Object is the abstract superclass for all classes in the
|
|
// object hierarchy.
|
|
// Object does not use any virtual functions to avoid the
|
|
// allocation of the C++ vtable.
|
|
// Since Smi and Failure are subclasses of Object no
|
|
// data members can be present in Object.
|
|
class Object : public MaybeObject {
|
|
public:
|
|
// Type testing.
|
|
bool IsObject() { return true; }
|
|
|
|
#define IS_TYPE_FUNCTION_DECL(type_) inline bool Is##type_();
|
|
OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
|
|
HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
|
|
#undef IS_TYPE_FUNCTION_DECL
|
|
|
|
inline bool IsFixedArrayBase();
|
|
inline bool IsExternal();
|
|
inline bool IsAccessorInfo();
|
|
|
|
inline bool IsStruct();
|
|
#define DECLARE_STRUCT_PREDICATE(NAME, Name, name) inline bool Is##Name();
|
|
STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
|
|
#undef DECLARE_STRUCT_PREDICATE
|
|
|
|
INLINE(bool IsSpecObject());
|
|
INLINE(bool IsSpecFunction());
|
|
bool IsCallable();
|
|
|
|
// Oddball testing.
|
|
INLINE(bool IsUndefined());
|
|
INLINE(bool IsNull());
|
|
INLINE(bool IsTheHole()); // Shadows MaybeObject's implementation.
|
|
INLINE(bool IsUninitialized());
|
|
INLINE(bool IsTrue());
|
|
INLINE(bool IsFalse());
|
|
inline bool IsArgumentsMarker();
|
|
inline bool NonFailureIsHeapObject();
|
|
|
|
// Filler objects (fillers and free space objects).
|
|
inline bool IsFiller();
|
|
|
|
// Extract the number.
|
|
inline double Number();
|
|
inline bool IsNaN();
|
|
bool ToInt32(int32_t* value);
|
|
bool ToUint32(uint32_t* value);
|
|
|
|
// Indicates whether OptimalRepresentation can do its work, or whether it
|
|
// always has to return Representation::Tagged().
|
|
enum ValueType {
|
|
OPTIMAL_REPRESENTATION,
|
|
FORCE_TAGGED
|
|
};
|
|
|
|
inline Representation OptimalRepresentation(
|
|
ValueType type = OPTIMAL_REPRESENTATION) {
|
|
if (!FLAG_track_fields) return Representation::Tagged();
|
|
if (type == FORCE_TAGGED) return Representation::Tagged();
|
|
if (IsSmi()) {
|
|
return Representation::Smi();
|
|
} else if (FLAG_track_double_fields && IsHeapNumber()) {
|
|
return Representation::Double();
|
|
} else if (FLAG_track_computed_fields && IsUninitialized()) {
|
|
return Representation::None();
|
|
} else if (FLAG_track_heap_object_fields) {
|
|
ASSERT(IsHeapObject());
|
|
return Representation::HeapObject();
|
|
} else {
|
|
return Representation::Tagged();
|
|
}
|
|
}
|
|
|
|
inline bool FitsRepresentation(Representation representation) {
|
|
if (FLAG_track_fields && representation.IsNone()) {
|
|
return false;
|
|
} else if (FLAG_track_fields && representation.IsSmi()) {
|
|
return IsSmi();
|
|
} else if (FLAG_track_double_fields && representation.IsDouble()) {
|
|
return IsNumber();
|
|
} else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) {
|
|
return IsHeapObject();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
inline MaybeObject* AllocateNewStorageFor(Heap* heap,
|
|
Representation representation);
|
|
|
|
// Returns true if the object is of the correct type to be used as a
|
|
// implementation of a JSObject's elements.
|
|
inline bool HasValidElements();
|
|
|
|
inline bool HasSpecificClassOf(String* name);
|
|
|
|
MUST_USE_RESULT MaybeObject* ToObject(Isolate* isolate); // ECMA-262 9.9.
|
|
bool BooleanValue(); // ECMA-262 9.2.
|
|
|
|
// Convert to a JSObject if needed.
|
|
// native_context is used when creating wrapper object.
|
|
MUST_USE_RESULT MaybeObject* ToObject(Context* native_context);
|
|
|
|
// Converts this to a Smi if possible.
|
|
// Failure is returned otherwise.
|
|
MUST_USE_RESULT inline MaybeObject* ToSmi();
|
|
|
|
void Lookup(Name* name, LookupResult* result);
|
|
|
|
// Property access.
|
|
MUST_USE_RESULT inline MaybeObject* GetProperty(Name* key);
|
|
MUST_USE_RESULT inline MaybeObject* GetProperty(
|
|
Name* key,
|
|
PropertyAttributes* attributes);
|
|
|
|
// TODO(yangguo): this should eventually replace the non-handlified version.
|
|
static Handle<Object> GetPropertyWithReceiver(Handle<Object> object,
|
|
Handle<Object> receiver,
|
|
Handle<Name> name,
|
|
PropertyAttributes* attributes);
|
|
MUST_USE_RESULT MaybeObject* GetPropertyWithReceiver(
|
|
Object* receiver,
|
|
Name* key,
|
|
PropertyAttributes* attributes);
|
|
|
|
static Handle<Object> GetProperty(Handle<Object> object,
|
|
Handle<Name> key);
|
|
static Handle<Object> GetProperty(Handle<Object> object,
|
|
Handle<Object> receiver,
|
|
LookupResult* result,
|
|
Handle<Name> key,
|
|
PropertyAttributes* attributes);
|
|
|
|
MUST_USE_RESULT static MaybeObject* GetPropertyOrFail(
|
|
Handle<Object> object,
|
|
Handle<Object> receiver,
|
|
LookupResult* result,
|
|
Handle<Name> key,
|
|
PropertyAttributes* attributes);
|
|
|
|
MUST_USE_RESULT MaybeObject* GetProperty(Object* receiver,
|
|
LookupResult* result,
|
|
Name* key,
|
|
PropertyAttributes* attributes);
|
|
|
|
MUST_USE_RESULT MaybeObject* GetPropertyWithDefinedGetter(Object* receiver,
|
|
JSReceiver* getter);
|
|
|
|
static Handle<Object> GetElement(Isolate* isolate,
|
|
Handle<Object> object,
|
|
uint32_t index);
|
|
MUST_USE_RESULT inline MaybeObject* GetElement(Isolate* isolate,
|
|
uint32_t index);
|
|
// For use when we know that no exception can be thrown.
|
|
inline Object* GetElementNoExceptionThrown(Isolate* isolate, uint32_t index);
|
|
MUST_USE_RESULT MaybeObject* GetElementWithReceiver(Isolate* isolate,
|
|
Object* receiver,
|
|
uint32_t index);
|
|
|
|
// Return the object's prototype (might be Heap::null_value()).
|
|
Object* GetPrototype(Isolate* isolate);
|
|
Map* GetMarkerMap(Isolate* isolate);
|
|
|
|
// Returns the permanent hash code associated with this object. May return
|
|
// undefined if not yet created.
|
|
Object* GetHash();
|
|
|
|
// Returns the permanent hash code associated with this object depending on
|
|
// the actual object type. May create and store a hash code if needed and none
|
|
// exists.
|
|
// TODO(rafaelw): Remove isolate parameter when objects.cc is fully
|
|
// handlified.
|
|
static Handle<Object> GetOrCreateHash(Handle<Object> object,
|
|
Isolate* isolate);
|
|
|
|
// Checks whether this object has the same value as the given one. This
|
|
// function is implemented according to ES5, section 9.12 and can be used
|
|
// to implement the Harmony "egal" function.
|
|
bool SameValue(Object* other);
|
|
|
|
// Tries to convert an object to an array index. Returns true and sets
|
|
// the output parameter if it succeeds.
|
|
inline bool ToArrayIndex(uint32_t* index);
|
|
|
|
// Returns true if this is a JSValue containing a string and the index is
|
|
// < the length of the string. Used to implement [] on strings.
|
|
inline bool IsStringObjectWithCharacterAt(uint32_t index);
|
|
|
|
#ifdef VERIFY_HEAP
|
|
// Verify a pointer is a valid object pointer.
|
|
static void VerifyPointer(Object* p);
|
|
#endif
|
|
|
|
inline void VerifyApiCallResultType();
|
|
|
|
// Prints this object without details.
|
|
void ShortPrint(FILE* out = stdout);
|
|
|
|
// Prints this object without details to a message accumulator.
|
|
void ShortPrint(StringStream* accumulator);
|
|
|
|
// Casting: This cast is only needed to satisfy macros in objects-inl.h.
|
|
static Object* cast(Object* value) { return value; }
|
|
|
|
// Layout description.
|
|
static const int kHeaderSize = 0; // Object does not take up any space.
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
|
|
};
|
|
|
|
|
|
// Smi represents integer Numbers that can be stored in 31 bits.
|
|
// Smis are immediate which means they are NOT allocated in the heap.
|
|
// The this pointer has the following format: [31 bit signed int] 0
|
|
// For long smis it has the following format:
|
|
// [32 bit signed int] [31 bits zero padding] 0
|
|
// Smi stands for small integer.
|
|
class Smi: public Object {
|
|
public:
|
|
// Returns the integer value.
|
|
inline int value();
|
|
|
|
// Convert a value to a Smi object.
|
|
static inline Smi* FromInt(int value);
|
|
|
|
static inline Smi* FromIntptr(intptr_t value);
|
|
|
|
// Returns whether value can be represented in a Smi.
|
|
static inline bool IsValid(intptr_t value);
|
|
|
|
// Casting.
|
|
static inline Smi* cast(Object* object);
|
|
|
|
// Dispatched behavior.
|
|
void SmiPrint(FILE* out = stdout);
|
|
void SmiPrint(StringStream* accumulator);
|
|
|
|
DECLARE_VERIFIER(Smi)
|
|
|
|
static const int kMinValue =
|
|
(static_cast<unsigned int>(-1)) << (kSmiValueSize - 1);
|
|
static const int kMaxValue = -(kMinValue + 1);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
|
|
};
|
|
|
|
|
|
// Failure is used for reporting out of memory situations and
|
|
// propagating exceptions through the runtime system. Failure objects
|
|
// are transient and cannot occur as part of the object graph.
|
|
//
|
|
// Failures are a single word, encoded as follows:
|
|
// +-------------------------+---+--+--+
|
|
// |.........unused..........|sss|tt|11|
|
|
// +-------------------------+---+--+--+
|
|
// 7 6 4 32 10
|
|
//
|
|
//
|
|
// The low two bits, 0-1, are the failure tag, 11. The next two bits,
|
|
// 2-3, are a failure type tag 'tt' with possible values:
|
|
// 00 RETRY_AFTER_GC
|
|
// 01 EXCEPTION
|
|
// 10 INTERNAL_ERROR
|
|
// 11 OUT_OF_MEMORY_EXCEPTION
|
|
//
|
|
// The next three bits, 4-6, are an allocation space tag 'sss'. The
|
|
// allocation space tag is 000 for all failure types except
|
|
// RETRY_AFTER_GC. For RETRY_AFTER_GC, the possible values are the
|
|
// allocation spaces (the encoding is found in globals.h).
|
|
|
|
// Failure type tag info.
|
|
const int kFailureTypeTagSize = 2;
|
|
const int kFailureTypeTagMask = (1 << kFailureTypeTagSize) - 1;
|
|
|
|
class Failure: public MaybeObject {
|
|
public:
|
|
// RuntimeStubs assumes EXCEPTION = 1 in the compiler-generated code.
|
|
enum Type {
|
|
RETRY_AFTER_GC = 0,
|
|
EXCEPTION = 1, // Returning this marker tells the real exception
|
|
// is in Isolate::pending_exception.
|
|
INTERNAL_ERROR = 2,
|
|
OUT_OF_MEMORY_EXCEPTION = 3
|
|
};
|
|
|
|
inline Type type() const;
|
|
|
|
// Returns the space that needs to be collected for RetryAfterGC failures.
|
|
inline AllocationSpace allocation_space() const;
|
|
|
|
inline bool IsInternalError() const;
|
|
inline bool IsOutOfMemoryException() const;
|
|
|
|
static inline Failure* RetryAfterGC(AllocationSpace space);
|
|
static inline Failure* RetryAfterGC(); // NEW_SPACE
|
|
static inline Failure* Exception();
|
|
static inline Failure* InternalError();
|
|
// TODO(jkummerow): The value is temporary instrumentation. Remove it
|
|
// when it has served its purpose.
|
|
static inline Failure* OutOfMemoryException(intptr_t value);
|
|
// Casting.
|
|
static inline Failure* cast(MaybeObject* object);
|
|
|
|
// Dispatched behavior.
|
|
void FailurePrint(FILE* out = stdout);
|
|
void FailurePrint(StringStream* accumulator);
|
|
|
|
DECLARE_VERIFIER(Failure)
|
|
|
|
private:
|
|
inline intptr_t value() const;
|
|
static inline Failure* Construct(Type type, intptr_t value = 0);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Failure);
|
|
};
|
|
|
|
|
|
// Heap objects typically have a map pointer in their first word. However,
|
|
// during GC other data (e.g. mark bits, forwarding addresses) is sometimes
|
|
// encoded in the first word. The class MapWord is an abstraction of the
|
|
// value in a heap object's first word.
|
|
class MapWord BASE_EMBEDDED {
|
|
public:
|
|
// Normal state: the map word contains a map pointer.
|
|
|
|
// Create a map word from a map pointer.
|
|
static inline MapWord FromMap(Map* map);
|
|
|
|
// View this map word as a map pointer.
|
|
inline Map* ToMap();
|
|
|
|
|
|
// Scavenge collection: the map word of live objects in the from space
|
|
// contains a forwarding address (a heap object pointer in the to space).
|
|
|
|
// True if this map word is a forwarding address for a scavenge
|
|
// collection. Only valid during a scavenge collection (specifically,
|
|
// when all map words are heap object pointers, i.e. not during a full GC).
|
|
inline bool IsForwardingAddress();
|
|
|
|
// Create a map word from a forwarding address.
|
|
static inline MapWord FromForwardingAddress(HeapObject* object);
|
|
|
|
// View this map word as a forwarding address.
|
|
inline HeapObject* ToForwardingAddress();
|
|
|
|
static inline MapWord FromRawValue(uintptr_t value) {
|
|
return MapWord(value);
|
|
}
|
|
|
|
inline uintptr_t ToRawValue() {
|
|
return value_;
|
|
}
|
|
|
|
private:
|
|
// HeapObject calls the private constructor and directly reads the value.
|
|
friend class HeapObject;
|
|
|
|
explicit MapWord(uintptr_t value) : value_(value) {}
|
|
|
|
uintptr_t value_;
|
|
};
|
|
|
|
|
|
// HeapObject is the superclass for all classes describing heap allocated
|
|
// objects.
|
|
class HeapObject: public Object {
|
|
public:
|
|
// [map]: Contains a map which contains the object's reflective
|
|
// information.
|
|
inline Map* map();
|
|
inline void set_map(Map* value);
|
|
// The no-write-barrier version. This is OK if the object is white and in
|
|
// new space, or if the value is an immortal immutable object, like the maps
|
|
// of primitive (non-JS) objects like strings, heap numbers etc.
|
|
inline void set_map_no_write_barrier(Map* value);
|
|
|
|
// During garbage collection, the map word of a heap object does not
|
|
// necessarily contain a map pointer.
|
|
inline MapWord map_word();
|
|
inline void set_map_word(MapWord map_word);
|
|
|
|
// The Heap the object was allocated in. Used also to access Isolate.
|
|
inline Heap* GetHeap();
|
|
|
|
// Convenience method to get current isolate.
|
|
inline Isolate* GetIsolate();
|
|
|
|
// Converts an address to a HeapObject pointer.
|
|
static inline HeapObject* FromAddress(Address address);
|
|
|
|
// Returns the address of this HeapObject.
|
|
inline Address address();
|
|
|
|
// Iterates over pointers contained in the object (including the Map)
|
|
void Iterate(ObjectVisitor* v);
|
|
|
|
// Iterates over all pointers contained in the object except the
|
|
// first map pointer. The object type is given in the first
|
|
// parameter. This function does not access the map pointer in the
|
|
// object, and so is safe to call while the map pointer is modified.
|
|
void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
|
|
|
|
// Returns the heap object's size in bytes
|
|
inline int Size();
|
|
|
|
// Given a heap object's map pointer, returns the heap size in bytes
|
|
// Useful when the map pointer field is used for other purposes.
|
|
// GC internal.
|
|
inline int SizeFromMap(Map* map);
|
|
|
|
// Returns the field at offset in obj, as a read/write Object* reference.
|
|
// Does no checking, and is safe to use during GC, while maps are invalid.
|
|
// Does not invoke write barrier, so should only be assigned to
|
|
// during marking GC.
|
|
static inline Object** RawField(HeapObject* obj, int offset);
|
|
|
|
// Adds the |code| object related to |name| to the code cache of this map. If
|
|
// this map is a dictionary map that is shared, the map copied and installed
|
|
// onto the object.
|
|
static void UpdateMapCodeCache(Handle<HeapObject> object,
|
|
Handle<Name> name,
|
|
Handle<Code> code);
|
|
|
|
// Casting.
|
|
static inline HeapObject* cast(Object* obj);
|
|
|
|
// Return the write barrier mode for this. Callers of this function
|
|
// must be able to present a reference to an DisallowHeapAllocation
|
|
// object as a sign that they are not going to use this function
|
|
// from code that allocates and thus invalidates the returned write
|
|
// barrier mode.
|
|
inline WriteBarrierMode GetWriteBarrierMode(
|
|
const DisallowHeapAllocation& promise);
|
|
|
|
// Dispatched behavior.
|
|
void HeapObjectShortPrint(StringStream* accumulator);
|
|
#ifdef OBJECT_PRINT
|
|
void PrintHeader(FILE* out, const char* id);
|
|
#endif
|
|
DECLARE_PRINTER(HeapObject)
|
|
DECLARE_VERIFIER(HeapObject)
|
|
#ifdef VERIFY_HEAP
|
|
inline void VerifyObjectField(int offset);
|
|
inline void VerifySmiField(int offset);
|
|
|
|
// Verify a pointer is a valid HeapObject pointer that points to object
|
|
// areas in the heap.
|
|
static void VerifyHeapPointer(Object* p);
|
|
#endif
|
|
|
|
// Layout description.
|
|
// First field in a heap object is map.
|
|
static const int kMapOffset = Object::kHeaderSize;
|
|
static const int kHeaderSize = kMapOffset + kPointerSize;
|
|
|
|
STATIC_CHECK(kMapOffset == Internals::kHeapObjectMapOffset);
|
|
|
|
protected:
|
|
// helpers for calling an ObjectVisitor to iterate over pointers in the
|
|
// half-open range [start, end) specified as integer offsets
|
|
inline void IteratePointers(ObjectVisitor* v, int start, int end);
|
|
// as above, for the single element at "offset"
|
|
inline void IteratePointer(ObjectVisitor* v, int offset);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
|
|
};
|
|
|
|
|
|
// This class describes a body of an object of a fixed size
|
|
// in which all pointer fields are located in the [start_offset, end_offset)
|
|
// interval.
|
|
template<int start_offset, int end_offset, int size>
|
|
class FixedBodyDescriptor {
|
|
public:
|
|
static const int kStartOffset = start_offset;
|
|
static const int kEndOffset = end_offset;
|
|
static const int kSize = size;
|
|
|
|
static inline void IterateBody(HeapObject* obj, ObjectVisitor* v);
|
|
|
|
template<typename StaticVisitor>
|
|
static inline void IterateBody(HeapObject* obj) {
|
|
StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset),
|
|
HeapObject::RawField(obj, end_offset));
|
|
}
|
|
};
|
|
|
|
|
|
// This class describes a body of an object of a variable size
|
|
// in which all pointer fields are located in the [start_offset, object_size)
|
|
// interval.
|
|
template<int start_offset>
|
|
class FlexibleBodyDescriptor {
|
|
public:
|
|
static const int kStartOffset = start_offset;
|
|
|
|
static inline void IterateBody(HeapObject* obj,
|
|
int object_size,
|
|
ObjectVisitor* v);
|
|
|
|
template<typename StaticVisitor>
|
|
static inline void IterateBody(HeapObject* obj, int object_size) {
|
|
StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset),
|
|
HeapObject::RawField(obj, object_size));
|
|
}
|
|
};
|
|
|
|
|
|
// The HeapNumber class describes heap allocated numbers that cannot be
|
|
// represented in a Smi (small integer)
|
|
class HeapNumber: public HeapObject {
|
|
public:
|
|
// [value]: number value.
|
|
inline double value();
|
|
inline void set_value(double value);
|
|
|
|
// Casting.
|
|
static inline HeapNumber* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
bool HeapNumberBooleanValue();
|
|
|
|
void HeapNumberPrint(FILE* out = stdout);
|
|
void HeapNumberPrint(StringStream* accumulator);
|
|
DECLARE_VERIFIER(HeapNumber)
|
|
|
|
inline int get_exponent();
|
|
inline int get_sign();
|
|
|
|
// Layout description.
|
|
static const int kValueOffset = HeapObject::kHeaderSize;
|
|
// IEEE doubles are two 32 bit words. The first is just mantissa, the second
|
|
// is a mixture of sign, exponent and mantissa. Our current platforms are all
|
|
// little endian apart from non-EABI arm which is little endian with big
|
|
// endian floating point word ordering!
|
|
static const int kMantissaOffset = kValueOffset;
|
|
static const int kExponentOffset = kValueOffset + 4;
|
|
|
|
static const int kSize = kValueOffset + kDoubleSize;
|
|
static const uint32_t kSignMask = 0x80000000u;
|
|
static const uint32_t kExponentMask = 0x7ff00000u;
|
|
static const uint32_t kMantissaMask = 0xfffffu;
|
|
static const int kMantissaBits = 52;
|
|
static const int kExponentBits = 11;
|
|
static const int kExponentBias = 1023;
|
|
static const int kExponentShift = 20;
|
|
static const int kInfinityOrNanExponent =
|
|
(kExponentMask >> kExponentShift) - kExponentBias;
|
|
static const int kMantissaBitsInTopWord = 20;
|
|
static const int kNonMantissaBitsInTopWord = 12;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
|
|
};
|
|
|
|
|
|
enum EnsureElementsMode {
|
|
DONT_ALLOW_DOUBLE_ELEMENTS,
|
|
ALLOW_COPIED_DOUBLE_ELEMENTS,
|
|
ALLOW_CONVERTED_DOUBLE_ELEMENTS
|
|
};
|
|
|
|
|
|
// Indicates whether a property should be set or (re)defined. Setting of a
|
|
// property causes attributes to remain unchanged, writability to be checked
|
|
// and callbacks to be called. Defining of a property causes attributes to
|
|
// be updated and callbacks to be overridden.
|
|
enum SetPropertyMode {
|
|
SET_PROPERTY,
|
|
DEFINE_PROPERTY
|
|
};
|
|
|
|
|
|
// Indicator for one component of an AccessorPair.
|
|
enum AccessorComponent {
|
|
ACCESSOR_GETTER,
|
|
ACCESSOR_SETTER
|
|
};
|
|
|
|
|
|
// JSReceiver includes types on which properties can be defined, i.e.,
|
|
// JSObject and JSProxy.
|
|
class JSReceiver: public HeapObject {
|
|
public:
|
|
enum DeleteMode {
|
|
NORMAL_DELETION,
|
|
STRICT_DELETION,
|
|
FORCE_DELETION
|
|
};
|
|
|
|
// A non-keyed store is of the form a.x = foo or a["x"] = foo whereas
|
|
// a keyed store is of the form a[expression] = foo.
|
|
enum StoreFromKeyed {
|
|
MAY_BE_STORE_FROM_KEYED,
|
|
CERTAINLY_NOT_STORE_FROM_KEYED
|
|
};
|
|
|
|
// Internal properties (e.g. the hidden properties dictionary) might
|
|
// be added even though the receiver is non-extensible.
|
|
enum ExtensibilityCheck {
|
|
PERFORM_EXTENSIBILITY_CHECK,
|
|
OMIT_EXTENSIBILITY_CHECK
|
|
};
|
|
|
|
// Casting.
|
|
static inline JSReceiver* cast(Object* obj);
|
|
|
|
// Implementation of [[Put]], ECMA-262 5th edition, section 8.12.5.
|
|
static Handle<Object> SetProperty(Handle<JSReceiver> object,
|
|
Handle<Name> key,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictMode strict_mode,
|
|
StoreFromKeyed store_mode =
|
|
MAY_BE_STORE_FROM_KEYED);
|
|
static Handle<Object> SetElement(Handle<JSReceiver> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictMode strict_mode);
|
|
|
|
// Implementation of [[HasProperty]], ECMA-262 5th edition, section 8.12.6.
|
|
static inline bool HasProperty(Handle<JSReceiver> object, Handle<Name> name);
|
|
static inline bool HasLocalProperty(Handle<JSReceiver>, Handle<Name> name);
|
|
static inline bool HasElement(Handle<JSReceiver> object, uint32_t index);
|
|
static inline bool HasLocalElement(Handle<JSReceiver> object, uint32_t index);
|
|
|
|
// Implementation of [[Delete]], ECMA-262 5th edition, section 8.12.7.
|
|
static Handle<Object> DeleteProperty(Handle<JSReceiver> object,
|
|
Handle<Name> name,
|
|
DeleteMode mode = NORMAL_DELETION);
|
|
static Handle<Object> DeleteElement(Handle<JSReceiver> object,
|
|
uint32_t index,
|
|
DeleteMode mode = NORMAL_DELETION);
|
|
|
|
// Tests for the fast common case for property enumeration.
|
|
bool IsSimpleEnum();
|
|
|
|
// Returns the class name ([[Class]] property in the specification).
|
|
String* class_name();
|
|
|
|
// Returns the constructor name (the name (possibly, inferred name) of the
|
|
// function that was used to instantiate the object).
|
|
String* constructor_name();
|
|
|
|
static inline PropertyAttributes GetPropertyAttribute(
|
|
Handle<JSReceiver> object,
|
|
Handle<Name> name);
|
|
static PropertyAttributes GetPropertyAttributeWithReceiver(
|
|
Handle<JSReceiver> object,
|
|
Handle<JSReceiver> receiver,
|
|
Handle<Name> name);
|
|
static PropertyAttributes GetLocalPropertyAttribute(
|
|
Handle<JSReceiver> object,
|
|
Handle<Name> name);
|
|
|
|
static inline PropertyAttributes GetElementAttribute(
|
|
Handle<JSReceiver> object,
|
|
uint32_t index);
|
|
static inline PropertyAttributes GetLocalElementAttribute(
|
|
Handle<JSReceiver> object,
|
|
uint32_t index);
|
|
|
|
// Return the object's prototype (might be Heap::null_value()).
|
|
inline Object* GetPrototype();
|
|
|
|
// Return the constructor function (may be Heap::null_value()).
|
|
inline Object* GetConstructor();
|
|
|
|
// Retrieves a permanent object identity hash code. The undefined value might
|
|
// be returned in case no hash was created yet.
|
|
inline Object* GetIdentityHash();
|
|
|
|
// Retrieves a permanent object identity hash code. May create and store a
|
|
// hash code if needed and none exists.
|
|
inline static Handle<Object> GetOrCreateIdentityHash(
|
|
Handle<JSReceiver> object);
|
|
|
|
// Lookup a property. If found, the result is valid and has
|
|
// detailed information.
|
|
void LocalLookup(Name* name, LookupResult* result,
|
|
bool search_hidden_prototypes = false);
|
|
void Lookup(Name* name, LookupResult* result);
|
|
|
|
protected:
|
|
Smi* GenerateIdentityHash();
|
|
|
|
static Handle<Object> SetPropertyWithDefinedSetter(Handle<JSReceiver> object,
|
|
Handle<JSReceiver> setter,
|
|
Handle<Object> value);
|
|
|
|
private:
|
|
static PropertyAttributes GetPropertyAttributeForResult(
|
|
Handle<JSReceiver> object,
|
|
Handle<JSReceiver> receiver,
|
|
LookupResult* result,
|
|
Handle<Name> name,
|
|
bool continue_search);
|
|
|
|
static Handle<Object> SetProperty(Handle<JSReceiver> receiver,
|
|
LookupResult* result,
|
|
Handle<Name> key,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictMode strict_mode,
|
|
StoreFromKeyed store_from_keyed);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSReceiver);
|
|
};
|
|
|
|
// Forward declaration for JSObject::GetOrCreateHiddenPropertiesHashTable.
|
|
class ObjectHashTable;
|
|
|
|
// The JSObject describes real heap allocated JavaScript objects with
|
|
// properties.
|
|
// Note that the map of JSObject changes during execution to enable inline
|
|
// caching.
|
|
class JSObject: public JSReceiver {
|
|
public:
|
|
// [properties]: Backing storage for properties.
|
|
// properties is a FixedArray in the fast case and a Dictionary in the
|
|
// slow case.
|
|
DECL_ACCESSORS(properties, FixedArray) // Get and set fast properties.
|
|
inline void initialize_properties();
|
|
inline bool HasFastProperties();
|
|
inline NameDictionary* property_dictionary(); // Gets slow properties.
|
|
|
|
// [elements]: The elements (properties with names that are integers).
|
|
//
|
|
// Elements can be in two general modes: fast and slow. Each mode
|
|
// corrensponds to a set of object representations of elements that
|
|
// have something in common.
|
|
//
|
|
// In the fast mode elements is a FixedArray and so each element can
|
|
// be quickly accessed. This fact is used in the generated code. The
|
|
// elements array can have one of three maps in this mode:
|
|
// fixed_array_map, sloppy_arguments_elements_map or
|
|
// fixed_cow_array_map (for copy-on-write arrays). In the latter case
|
|
// the elements array may be shared by a few objects and so before
|
|
// writing to any element the array must be copied. Use
|
|
// EnsureWritableFastElements in this case.
|
|
//
|
|
// In the slow mode the elements is either a NumberDictionary, an
|
|
// ExternalArray, or a FixedArray parameter map for a (sloppy)
|
|
// arguments object.
|
|
DECL_ACCESSORS(elements, FixedArrayBase)
|
|
inline void initialize_elements();
|
|
MUST_USE_RESULT inline MaybeObject* ResetElements();
|
|
inline ElementsKind GetElementsKind();
|
|
inline ElementsAccessor* GetElementsAccessor();
|
|
// Returns true if an object has elements of FAST_SMI_ELEMENTS ElementsKind.
|
|
inline bool HasFastSmiElements();
|
|
// Returns true if an object has elements of FAST_ELEMENTS ElementsKind.
|
|
inline bool HasFastObjectElements();
|
|
// Returns true if an object has elements of FAST_ELEMENTS or
|
|
// FAST_SMI_ONLY_ELEMENTS.
|
|
inline bool HasFastSmiOrObjectElements();
|
|
// Returns true if an object has any of the fast elements kinds.
|
|
inline bool HasFastElements();
|
|
// Returns true if an object has elements of FAST_DOUBLE_ELEMENTS
|
|
// ElementsKind.
|
|
inline bool HasFastDoubleElements();
|
|
// Returns true if an object has elements of FAST_HOLEY_*_ELEMENTS
|
|
// ElementsKind.
|
|
inline bool HasFastHoleyElements();
|
|
inline bool HasSloppyArgumentsElements();
|
|
inline bool HasDictionaryElements();
|
|
|
|
inline bool HasExternalUint8ClampedElements();
|
|
inline bool HasExternalArrayElements();
|
|
inline bool HasExternalInt8Elements();
|
|
inline bool HasExternalUint8Elements();
|
|
inline bool HasExternalInt16Elements();
|
|
inline bool HasExternalUint16Elements();
|
|
inline bool HasExternalInt32Elements();
|
|
inline bool HasExternalUint32Elements();
|
|
inline bool HasExternalFloat32Elements();
|
|
inline bool HasExternalFloat64Elements();
|
|
|
|
inline bool HasFixedTypedArrayElements();
|
|
|
|
bool HasFastArgumentsElements();
|
|
bool HasDictionaryArgumentsElements();
|
|
inline SeededNumberDictionary* element_dictionary(); // Gets slow elements.
|
|
|
|
inline void set_map_and_elements(
|
|
Map* map,
|
|
FixedArrayBase* value,
|
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
|
|
// Requires: HasFastElements().
|
|
static Handle<FixedArray> EnsureWritableFastElements(
|
|
Handle<JSObject> object);
|
|
MUST_USE_RESULT inline MaybeObject* EnsureWritableFastElements();
|
|
|
|
// Collects elements starting at index 0.
|
|
// Undefined values are placed after non-undefined values.
|
|
// Returns the number of non-undefined values.
|
|
static Handle<Object> PrepareElementsForSort(Handle<JSObject> object,
|
|
uint32_t limit);
|
|
// As PrepareElementsForSort, but only on objects where elements is
|
|
// a dictionary, and it will stay a dictionary.
|
|
static Handle<Object> PrepareSlowElementsForSort(Handle<JSObject> object,
|
|
uint32_t limit);
|
|
MUST_USE_RESULT MaybeObject* PrepareSlowElementsForSort(uint32_t limit);
|
|
|
|
static Handle<Object> GetPropertyWithCallback(Handle<JSObject> object,
|
|
Handle<Object> receiver,
|
|
Handle<Object> structure,
|
|
Handle<Name> name);
|
|
|
|
static Handle<Object> SetPropertyWithCallback(
|
|
Handle<JSObject> object,
|
|
Handle<Object> structure,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
Handle<JSObject> holder,
|
|
StrictMode strict_mode);
|
|
|
|
static Handle<Object> SetPropertyWithInterceptor(
|
|
Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictMode strict_mode);
|
|
|
|
static Handle<Object> SetPropertyForResult(
|
|
Handle<JSObject> object,
|
|
LookupResult* result,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictMode strict_mode,
|
|
StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED);
|
|
|
|
static Handle<Object> SetLocalPropertyIgnoreAttributes(
|
|
Handle<JSObject> object,
|
|
Handle<Name> key,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
ValueType value_type = OPTIMAL_REPRESENTATION,
|
|
StoreMode mode = ALLOW_AS_CONSTANT,
|
|
ExtensibilityCheck extensibility_check = PERFORM_EXTENSIBILITY_CHECK);
|
|
|
|
static inline Handle<String> ExpectedTransitionKey(Handle<Map> map);
|
|
static inline Handle<Map> ExpectedTransitionTarget(Handle<Map> map);
|
|
|
|
// Try to follow an existing transition to a field with attributes NONE. The
|
|
// return value indicates whether the transition was successful.
|
|
static inline Handle<Map> FindTransitionToField(Handle<Map> map,
|
|
Handle<Name> key);
|
|
|
|
// Extend the receiver with a single fast property appeared first in the
|
|
// passed map. This also extends the property backing store if necessary.
|
|
static void AllocateStorageForMap(Handle<JSObject> object, Handle<Map> map);
|
|
|
|
// Migrates the given object to a map whose field representations are the
|
|
// lowest upper bound of all known representations for that field.
|
|
static void MigrateInstance(Handle<JSObject> instance);
|
|
|
|
// Migrates the given object only if the target map is already available,
|
|
// or returns an empty handle if such a map is not yet available.
|
|
static Handle<Object> TryMigrateInstance(Handle<JSObject> instance);
|
|
|
|
// Retrieve a value in a normalized object given a lookup result.
|
|
// Handles the special representation of JS global objects.
|
|
Object* GetNormalizedProperty(const LookupResult* result);
|
|
|
|
// Sets the property value in a normalized object given a lookup result.
|
|
// Handles the special representation of JS global objects.
|
|
static void SetNormalizedProperty(Handle<JSObject> object,
|
|
const LookupResult* result,
|
|
Handle<Object> value);
|
|
|
|
// Sets the property value in a normalized object given (key, value, details).
|
|
// Handles the special representation of JS global objects.
|
|
static void SetNormalizedProperty(Handle<JSObject> object,
|
|
Handle<Name> key,
|
|
Handle<Object> value,
|
|
PropertyDetails details);
|
|
|
|
static void OptimizeAsPrototype(Handle<JSObject> object);
|
|
|
|
// Retrieve interceptors.
|
|
InterceptorInfo* GetNamedInterceptor();
|
|
InterceptorInfo* GetIndexedInterceptor();
|
|
|
|
// Used from JSReceiver.
|
|
static PropertyAttributes GetPropertyAttributePostInterceptor(
|
|
Handle<JSObject> object,
|
|
Handle<JSObject> receiver,
|
|
Handle<Name> name,
|
|
bool continue_search);
|
|
static PropertyAttributes GetPropertyAttributeWithInterceptor(
|
|
Handle<JSObject> object,
|
|
Handle<JSObject> receiver,
|
|
Handle<Name> name,
|
|
bool continue_search);
|
|
static PropertyAttributes GetPropertyAttributeWithFailedAccessCheck(
|
|
Handle<JSObject> object,
|
|
LookupResult* result,
|
|
Handle<Name> name,
|
|
bool continue_search);
|
|
static PropertyAttributes GetElementAttributeWithReceiver(
|
|
Handle<JSObject> object,
|
|
Handle<JSReceiver> receiver,
|
|
uint32_t index,
|
|
bool continue_search);
|
|
|
|
// Retrieves an AccessorPair property from the given object. Might return
|
|
// undefined if the property doesn't exist or is of a different kind.
|
|
static Handle<Object> GetAccessor(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
AccessorComponent component);
|
|
|
|
// Defines an AccessorPair property on the given object.
|
|
// TODO(mstarzinger): Rename to SetAccessor() and return empty handle on
|
|
// exception instead of letting callers check for scheduled exception.
|
|
static void DefineAccessor(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> getter,
|
|
Handle<Object> setter,
|
|
PropertyAttributes attributes,
|
|
v8::AccessControl access_control = v8::DEFAULT);
|
|
|
|
// Defines an AccessorInfo property on the given object.
|
|
static Handle<Object> SetAccessor(Handle<JSObject> object,
|
|
Handle<AccessorInfo> info);
|
|
|
|
static Handle<Object> GetPropertyWithInterceptor(
|
|
Handle<JSObject> object,
|
|
Handle<Object> receiver,
|
|
Handle<Name> name,
|
|
PropertyAttributes* attributes);
|
|
static Handle<Object> GetPropertyPostInterceptor(
|
|
Handle<JSObject> object,
|
|
Handle<Object> receiver,
|
|
Handle<Name> name,
|
|
PropertyAttributes* attributes);
|
|
MUST_USE_RESULT MaybeObject* GetLocalPropertyPostInterceptor(
|
|
Object* receiver,
|
|
Name* name,
|
|
PropertyAttributes* attributes);
|
|
|
|
// Returns true if this is an instance of an api function and has
|
|
// been modified since it was created. May give false positives.
|
|
bool IsDirty();
|
|
|
|
// Accessors for hidden properties object.
|
|
//
|
|
// Hidden properties are not local properties of the object itself.
|
|
// Instead they are stored in an auxiliary structure kept as a local
|
|
// property with a special name Heap::hidden_string(). But if the
|
|
// receiver is a JSGlobalProxy then the auxiliary object is a property
|
|
// of its prototype, and if it's a detached proxy, then you can't have
|
|
// hidden properties.
|
|
|
|
// Sets a hidden property on this object. Returns this object if successful,
|
|
// undefined if called on a detached proxy.
|
|
static Handle<Object> SetHiddenProperty(Handle<JSObject> object,
|
|
Handle<Name> key,
|
|
Handle<Object> value);
|
|
// Gets the value of a hidden property with the given key. Returns the hole
|
|
// if the property doesn't exist (or if called on a detached proxy),
|
|
// otherwise returns the value set for the key.
|
|
Object* GetHiddenProperty(Name* key);
|
|
// Deletes a hidden property. Deleting a non-existing property is
|
|
// considered successful.
|
|
static void DeleteHiddenProperty(Handle<JSObject> object,
|
|
Handle<Name> key);
|
|
// Returns true if the object has a property with the hidden string as name.
|
|
static bool HasHiddenProperties(Handle<JSObject> object);
|
|
|
|
static void SetIdentityHash(Handle<JSObject> object, Handle<Smi> hash);
|
|
|
|
inline void ValidateElements();
|
|
|
|
// Makes sure that this object can contain HeapObject as elements.
|
|
static inline void EnsureCanContainHeapObjectElements(Handle<JSObject> obj);
|
|
|
|
// Makes sure that this object can contain the specified elements.
|
|
MUST_USE_RESULT inline MaybeObject* EnsureCanContainElements(
|
|
Object** elements,
|
|
uint32_t count,
|
|
EnsureElementsMode mode);
|
|
MUST_USE_RESULT inline MaybeObject* EnsureCanContainElements(
|
|
FixedArrayBase* elements,
|
|
uint32_t length,
|
|
EnsureElementsMode mode);
|
|
MUST_USE_RESULT MaybeObject* EnsureCanContainElements(
|
|
Arguments* arguments,
|
|
uint32_t first_arg,
|
|
uint32_t arg_count,
|
|
EnsureElementsMode mode);
|
|
|
|
// Would we convert a fast elements array to dictionary mode given
|
|
// an access at key?
|
|
bool WouldConvertToSlowElements(Handle<Object> key);
|
|
// Do we want to keep the elements in fast case when increasing the
|
|
// capacity?
|
|
bool ShouldConvertToSlowElements(int new_capacity);
|
|
// Returns true if the backing storage for the slow-case elements of
|
|
// this object takes up nearly as much space as a fast-case backing
|
|
// storage would. In that case the JSObject should have fast
|
|
// elements.
|
|
bool ShouldConvertToFastElements();
|
|
// Returns true if the elements of JSObject contains only values that can be
|
|
// represented in a FixedDoubleArray and has at least one value that can only
|
|
// be represented as a double and not a Smi.
|
|
bool ShouldConvertToFastDoubleElements(bool* has_smi_only_elements);
|
|
|
|
// Computes the new capacity when expanding the elements of a JSObject.
|
|
static int NewElementsCapacity(int old_capacity) {
|
|
// (old_capacity + 50%) + 16
|
|
return old_capacity + (old_capacity >> 1) + 16;
|
|
}
|
|
|
|
// These methods do not perform access checks!
|
|
AccessorPair* GetLocalPropertyAccessorPair(Name* name);
|
|
AccessorPair* GetLocalElementAccessorPair(uint32_t index);
|
|
|
|
static Handle<Object> SetFastElement(Handle<JSObject> object, uint32_t index,
|
|
Handle<Object> value,
|
|
StrictMode strict_mode,
|
|
bool check_prototype);
|
|
|
|
static Handle<Object> SetOwnElement(Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
StrictMode strict_mode);
|
|
|
|
// Empty handle is returned if the element cannot be set to the given value.
|
|
static Handle<Object> SetElement(
|
|
Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictMode strict_mode,
|
|
bool check_prototype = true,
|
|
SetPropertyMode set_mode = SET_PROPERTY);
|
|
|
|
// Returns the index'th element.
|
|
// The undefined object if index is out of bounds.
|
|
MUST_USE_RESULT MaybeObject* GetElementWithInterceptor(Object* receiver,
|
|
uint32_t index);
|
|
|
|
enum SetFastElementsCapacitySmiMode {
|
|
kAllowSmiElements,
|
|
kForceSmiElements,
|
|
kDontAllowSmiElements
|
|
};
|
|
|
|
static Handle<FixedArray> SetFastElementsCapacityAndLength(
|
|
Handle<JSObject> object,
|
|
int capacity,
|
|
int length,
|
|
SetFastElementsCapacitySmiMode smi_mode);
|
|
// Replace the elements' backing store with fast elements of the given
|
|
// capacity. Update the length for JSArrays. Returns the new backing
|
|
// store.
|
|
MUST_USE_RESULT MaybeObject* SetFastElementsCapacityAndLength(
|
|
int capacity,
|
|
int length,
|
|
SetFastElementsCapacitySmiMode smi_mode);
|
|
static void SetFastDoubleElementsCapacityAndLength(
|
|
Handle<JSObject> object,
|
|
int capacity,
|
|
int length);
|
|
MUST_USE_RESULT MaybeObject* SetFastDoubleElementsCapacityAndLength(
|
|
int capacity,
|
|
int length);
|
|
|
|
// Lookup interceptors are used for handling properties controlled by host
|
|
// objects.
|
|
inline bool HasNamedInterceptor();
|
|
inline bool HasIndexedInterceptor();
|
|
|
|
// Support functions for v8 api (needed for correct interceptor behavior).
|
|
static bool HasRealNamedProperty(Handle<JSObject> object,
|
|
Handle<Name> key);
|
|
static bool HasRealElementProperty(Handle<JSObject> object, uint32_t index);
|
|
static bool HasRealNamedCallbackProperty(Handle<JSObject> object,
|
|
Handle<Name> key);
|
|
|
|
// Get the header size for a JSObject. Used to compute the index of
|
|
// internal fields as well as the number of internal fields.
|
|
inline int GetHeaderSize();
|
|
|
|
inline int GetInternalFieldCount();
|
|
inline int GetInternalFieldOffset(int index);
|
|
inline Object* GetInternalField(int index);
|
|
inline void SetInternalField(int index, Object* value);
|
|
inline void SetInternalField(int index, Smi* value);
|
|
|
|
// The following lookup functions skip interceptors.
|
|
void LocalLookupRealNamedProperty(Name* name, LookupResult* result);
|
|
void LookupRealNamedProperty(Name* name, LookupResult* result);
|
|
void LookupRealNamedPropertyInPrototypes(Name* name, LookupResult* result);
|
|
void LookupCallbackProperty(Name* name, LookupResult* result);
|
|
|
|
// Returns the number of properties on this object filtering out properties
|
|
// with the specified attributes (ignoring interceptors).
|
|
int NumberOfLocalProperties(PropertyAttributes filter = NONE);
|
|
// Fill in details for properties into storage starting at the specified
|
|
// index.
|
|
void GetLocalPropertyNames(
|
|
FixedArray* storage, int index, PropertyAttributes filter = NONE);
|
|
|
|
// Returns the number of properties on this object filtering out properties
|
|
// with the specified attributes (ignoring interceptors).
|
|
int NumberOfLocalElements(PropertyAttributes filter);
|
|
// Returns the number of enumerable elements (ignoring interceptors).
|
|
int NumberOfEnumElements();
|
|
// Returns the number of elements on this object filtering out elements
|
|
// with the specified attributes (ignoring interceptors).
|
|
int GetLocalElementKeys(FixedArray* storage, PropertyAttributes filter);
|
|
// Count and fill in the enumerable elements into storage.
|
|
// (storage->length() == NumberOfEnumElements()).
|
|
// If storage is NULL, will count the elements without adding
|
|
// them to any storage.
|
|
// Returns the number of enumerable elements.
|
|
int GetEnumElementKeys(FixedArray* storage);
|
|
|
|
// Returns a new map with all transitions dropped from the object's current
|
|
// map and the ElementsKind set.
|
|
static Handle<Map> GetElementsTransitionMap(Handle<JSObject> object,
|
|
ElementsKind to_kind);
|
|
inline MUST_USE_RESULT MaybeObject* GetElementsTransitionMap(
|
|
Isolate* isolate,
|
|
ElementsKind elements_kind);
|
|
MUST_USE_RESULT MaybeObject* GetElementsTransitionMapSlow(
|
|
ElementsKind elements_kind);
|
|
|
|
static void TransitionElementsKind(Handle<JSObject> object,
|
|
ElementsKind to_kind);
|
|
|
|
MUST_USE_RESULT MaybeObject* TransitionElementsKind(ElementsKind to_kind);
|
|
|
|
// TODO(mstarzinger): Both public because of ConvertAnsSetLocalProperty().
|
|
static void MigrateToMap(Handle<JSObject> object, Handle<Map> new_map);
|
|
static void GeneralizeFieldRepresentation(Handle<JSObject> object,
|
|
int modify_index,
|
|
Representation new_representation,
|
|
StoreMode store_mode);
|
|
|
|
// Convert the object to use the canonical dictionary
|
|
// representation. If the object is expected to have additional properties
|
|
// added this number can be indicated to have the backing store allocated to
|
|
// an initial capacity for holding these properties.
|
|
static void NormalizeProperties(Handle<JSObject> object,
|
|
PropertyNormalizationMode mode,
|
|
int expected_additional_properties);
|
|
|
|
// Convert and update the elements backing store to be a
|
|
// SeededNumberDictionary dictionary. Returns the backing after conversion.
|
|
static Handle<SeededNumberDictionary> NormalizeElements(
|
|
Handle<JSObject> object);
|
|
|
|
MUST_USE_RESULT MaybeObject* NormalizeElements();
|
|
|
|
// Transform slow named properties to fast variants.
|
|
static void TransformToFastProperties(Handle<JSObject> object,
|
|
int unused_property_fields);
|
|
|
|
// Access fast-case object properties at index.
|
|
MUST_USE_RESULT inline MaybeObject* FastPropertyAt(
|
|
Representation representation,
|
|
int index);
|
|
inline Object* RawFastPropertyAt(int index);
|
|
inline void FastPropertyAtPut(int index, Object* value);
|
|
|
|
// Access to in object properties.
|
|
inline int GetInObjectPropertyOffset(int index);
|
|
inline Object* InObjectPropertyAt(int index);
|
|
inline Object* InObjectPropertyAtPut(int index,
|
|
Object* value,
|
|
WriteBarrierMode mode
|
|
= UPDATE_WRITE_BARRIER);
|
|
|
|
// Set the object's prototype (only JSReceiver and null are allowed values).
|
|
static Handle<Object> SetPrototype(Handle<JSObject> object,
|
|
Handle<Object> value,
|
|
bool skip_hidden_prototypes = false);
|
|
|
|
// Initializes the body after properties slot, properties slot is
|
|
// initialized by set_properties. Fill the pre-allocated fields with
|
|
// pre_allocated_value and the rest with filler_value.
|
|
// Note: this call does not update write barrier, the caller is responsible
|
|
// to ensure that |filler_value| can be collected without WB here.
|
|
inline void InitializeBody(Map* map,
|
|
Object* pre_allocated_value,
|
|
Object* filler_value);
|
|
|
|
// Check whether this object references another object
|
|
bool ReferencesObject(Object* obj);
|
|
|
|
// Disalow further properties to be added to the object.
|
|
static Handle<Object> PreventExtensions(Handle<JSObject> object);
|
|
|
|
// ES5 Object.freeze
|
|
static Handle<Object> Freeze(Handle<JSObject> object);
|
|
|
|
// Called the first time an object is observed with ES7 Object.observe.
|
|
static void SetObserved(Handle<JSObject> object);
|
|
|
|
// Copy object.
|
|
enum DeepCopyHints {
|
|
kNoHints = 0,
|
|
kObjectIsShallowArray = 1
|
|
};
|
|
|
|
static Handle<JSObject> Copy(Handle<JSObject> object);
|
|
static Handle<JSObject> DeepCopy(Handle<JSObject> object,
|
|
AllocationSiteUsageContext* site_context,
|
|
DeepCopyHints hints = kNoHints);
|
|
static Handle<JSObject> DeepWalk(Handle<JSObject> object,
|
|
AllocationSiteCreationContext* site_context);
|
|
|
|
// Casting.
|
|
static inline JSObject* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
void JSObjectShortPrint(StringStream* accumulator);
|
|
DECLARE_PRINTER(JSObject)
|
|
DECLARE_VERIFIER(JSObject)
|
|
#ifdef OBJECT_PRINT
|
|
void PrintProperties(FILE* out = stdout);
|
|
void PrintElements(FILE* out = stdout);
|
|
void PrintTransitions(FILE* out = stdout);
|
|
#endif
|
|
|
|
void PrintElementsTransition(
|
|
FILE* file, ElementsKind from_kind, FixedArrayBase* from_elements,
|
|
ElementsKind to_kind, FixedArrayBase* to_elements);
|
|
|
|
void PrintInstanceMigration(FILE* file, Map* original_map, Map* new_map);
|
|
|
|
#ifdef DEBUG
|
|
// Structure for collecting spill information about JSObjects.
|
|
class SpillInformation {
|
|
public:
|
|
void Clear();
|
|
void Print();
|
|
int number_of_objects_;
|
|
int number_of_objects_with_fast_properties_;
|
|
int number_of_objects_with_fast_elements_;
|
|
int number_of_fast_used_fields_;
|
|
int number_of_fast_unused_fields_;
|
|
int number_of_slow_used_properties_;
|
|
int number_of_slow_unused_properties_;
|
|
int number_of_fast_used_elements_;
|
|
int number_of_fast_unused_elements_;
|
|
int number_of_slow_used_elements_;
|
|
int number_of_slow_unused_elements_;
|
|
};
|
|
|
|
void IncrementSpillStatistics(SpillInformation* info);
|
|
#endif
|
|
|
|
#ifdef VERIFY_HEAP
|
|
// If a GC was caused while constructing this object, the elements pointer
|
|
// may point to a one pointer filler map. The object won't be rooted, but
|
|
// our heap verification code could stumble across it.
|
|
bool ElementsAreSafeToExamine();
|
|
#endif
|
|
|
|
Object* SlowReverseLookup(Object* value);
|
|
|
|
// Maximal number of fast properties for the JSObject. Used to
|
|
// restrict the number of map transitions to avoid an explosion in
|
|
// the number of maps for objects used as dictionaries.
|
|
inline bool TooManyFastProperties(
|
|
StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED);
|
|
|
|
// Maximal number of elements (numbered 0 .. kMaxElementCount - 1).
|
|
// Also maximal value of JSArray's length property.
|
|
static const uint32_t kMaxElementCount = 0xffffffffu;
|
|
|
|
// Constants for heuristics controlling conversion of fast elements
|
|
// to slow elements.
|
|
|
|
// Maximal gap that can be introduced by adding an element beyond
|
|
// the current elements length.
|
|
static const uint32_t kMaxGap = 1024;
|
|
|
|
// Maximal length of fast elements array that won't be checked for
|
|
// being dense enough on expansion.
|
|
static const int kMaxUncheckedFastElementsLength = 5000;
|
|
|
|
// Same as above but for old arrays. This limit is more strict. We
|
|
// don't want to be wasteful with long lived objects.
|
|
static const int kMaxUncheckedOldFastElementsLength = 500;
|
|
|
|
// Note that Page::kMaxRegularHeapObjectSize puts a limit on
|
|
// permissible values (see the ASSERT in heap.cc).
|
|
static const int kInitialMaxFastElementArray = 100000;
|
|
|
|
static const int kFastPropertiesSoftLimit = 12;
|
|
static const int kMaxFastProperties = 64;
|
|
static const int kMaxInstanceSize = 255 * kPointerSize;
|
|
// When extending the backing storage for property values, we increase
|
|
// its size by more than the 1 entry necessary, so sequentially adding fields
|
|
// to the same object requires fewer allocations and copies.
|
|
static const int kFieldsAdded = 3;
|
|
|
|
// Layout description.
|
|
static const int kPropertiesOffset = HeapObject::kHeaderSize;
|
|
static const int kElementsOffset = kPropertiesOffset + kPointerSize;
|
|
static const int kHeaderSize = kElementsOffset + kPointerSize;
|
|
|
|
STATIC_CHECK(kHeaderSize == Internals::kJSObjectHeaderSize);
|
|
|
|
class BodyDescriptor : public FlexibleBodyDescriptor<kPropertiesOffset> {
|
|
public:
|
|
static inline int SizeOf(Map* map, HeapObject* object);
|
|
};
|
|
|
|
// Enqueue change record for Object.observe. May cause GC.
|
|
static void EnqueueChangeRecord(Handle<JSObject> object,
|
|
const char* type,
|
|
Handle<Name> name,
|
|
Handle<Object> old_value);
|
|
|
|
private:
|
|
friend class DictionaryElementsAccessor;
|
|
friend class JSReceiver;
|
|
friend class Object;
|
|
|
|
static void UpdateAllocationSite(Handle<JSObject> object,
|
|
ElementsKind to_kind);
|
|
MUST_USE_RESULT MaybeObject* UpdateAllocationSite(ElementsKind to_kind);
|
|
|
|
// Used from Object::GetProperty().
|
|
static Handle<Object> GetPropertyWithFailedAccessCheck(
|
|
Handle<JSObject> object,
|
|
Handle<Object> receiver,
|
|
LookupResult* result,
|
|
Handle<Name> name,
|
|
PropertyAttributes* attributes);
|
|
|
|
MUST_USE_RESULT MaybeObject* GetElementWithCallback(Object* receiver,
|
|
Object* structure,
|
|
uint32_t index,
|
|
Object* holder);
|
|
static PropertyAttributes GetElementAttributeWithInterceptor(
|
|
Handle<JSObject> object,
|
|
Handle<JSReceiver> receiver,
|
|
uint32_t index,
|
|
bool continue_search);
|
|
static PropertyAttributes GetElementAttributeWithoutInterceptor(
|
|
Handle<JSObject> object,
|
|
Handle<JSReceiver> receiver,
|
|
uint32_t index,
|
|
bool continue_search);
|
|
static Handle<Object> SetElementWithCallback(
|
|
Handle<JSObject> object,
|
|
Handle<Object> structure,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
Handle<JSObject> holder,
|
|
StrictMode strict_mode);
|
|
static Handle<Object> SetElementWithInterceptor(
|
|
Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictMode strict_mode,
|
|
bool check_prototype,
|
|
SetPropertyMode set_mode);
|
|
static Handle<Object> SetElementWithoutInterceptor(
|
|
Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictMode strict_mode,
|
|
bool check_prototype,
|
|
SetPropertyMode set_mode);
|
|
static Handle<Object> SetElementWithCallbackSetterInPrototypes(
|
|
Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
bool* found,
|
|
StrictMode strict_mode);
|
|
static Handle<Object> SetDictionaryElement(
|
|
Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictMode strict_mode,
|
|
bool check_prototype,
|
|
SetPropertyMode set_mode = SET_PROPERTY);
|
|
static Handle<Object> SetFastDoubleElement(
|
|
Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
StrictMode strict_mode,
|
|
bool check_prototype = true);
|
|
|
|
// Searches the prototype chain for property 'name'. If it is found and
|
|
// has a setter, invoke it and set '*done' to true. If it is found and is
|
|
// read-only, reject and set '*done' to true. Otherwise, set '*done' to
|
|
// false. Can throw and return an empty handle with '*done==true'.
|
|
static Handle<Object> SetPropertyViaPrototypes(
|
|
Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictMode strict_mode,
|
|
bool* done);
|
|
static Handle<Object> SetPropertyPostInterceptor(
|
|
Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictMode strict_mode);
|
|
static Handle<Object> SetPropertyUsingTransition(
|
|
Handle<JSObject> object,
|
|
LookupResult* lookup,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes);
|
|
static Handle<Object> SetPropertyWithFailedAccessCheck(
|
|
Handle<JSObject> object,
|
|
LookupResult* result,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
bool check_prototype,
|
|
StrictMode strict_mode);
|
|
|
|
// Add a property to an object.
|
|
static Handle<Object> AddProperty(
|
|
Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictMode strict_mode,
|
|
StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED,
|
|
ExtensibilityCheck extensibility_check = PERFORM_EXTENSIBILITY_CHECK,
|
|
ValueType value_type = OPTIMAL_REPRESENTATION,
|
|
StoreMode mode = ALLOW_AS_CONSTANT,
|
|
TransitionFlag flag = INSERT_TRANSITION);
|
|
|
|
// Add a constant function property to a fast-case object.
|
|
// This leaves a CONSTANT_TRANSITION in the old map, and
|
|
// if it is called on a second object with this map, a
|
|
// normal property is added instead, with a map transition.
|
|
// This avoids the creation of many maps with the same constant
|
|
// function, all orphaned.
|
|
static void AddConstantProperty(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> constant,
|
|
PropertyAttributes attributes,
|
|
TransitionFlag flag);
|
|
|
|
// Add a property to a fast-case object.
|
|
static void AddFastProperty(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StoreFromKeyed store_mode,
|
|
ValueType value_type,
|
|
TransitionFlag flag);
|
|
|
|
// Add a property to a slow-case object.
|
|
static void AddSlowProperty(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes);
|
|
|
|
static Handle<Object> DeleteProperty(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
DeleteMode mode);
|
|
static Handle<Object> DeletePropertyPostInterceptor(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
DeleteMode mode);
|
|
static Handle<Object> DeletePropertyWithInterceptor(Handle<JSObject> object,
|
|
Handle<Name> name);
|
|
|
|
// Deletes the named property in a normalized object.
|
|
static Handle<Object> DeleteNormalizedProperty(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
DeleteMode mode);
|
|
|
|
static Handle<Object> DeleteElement(Handle<JSObject> object,
|
|
uint32_t index,
|
|
DeleteMode mode);
|
|
static Handle<Object> DeleteElementWithInterceptor(Handle<JSObject> object,
|
|
uint32_t index);
|
|
|
|
bool ReferencesObjectFromElements(FixedArray* elements,
|
|
ElementsKind kind,
|
|
Object* object);
|
|
|
|
// Returns true if most of the elements backing storage is used.
|
|
bool HasDenseElements();
|
|
|
|
// Gets the current elements capacity and the number of used elements.
|
|
void GetElementsCapacityAndUsage(int* capacity, int* used);
|
|
|
|
static bool CanSetCallback(Handle<JSObject> object, Handle<Name> name);
|
|
static void SetElementCallback(Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> structure,
|
|
PropertyAttributes attributes);
|
|
static void SetPropertyCallback(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> structure,
|
|
PropertyAttributes attributes);
|
|
static void DefineElementAccessor(Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> getter,
|
|
Handle<Object> setter,
|
|
PropertyAttributes attributes,
|
|
v8::AccessControl access_control);
|
|
static Handle<AccessorPair> CreateAccessorPairFor(Handle<JSObject> object,
|
|
Handle<Name> name);
|
|
static void DefinePropertyAccessor(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> getter,
|
|
Handle<Object> setter,
|
|
PropertyAttributes attributes,
|
|
v8::AccessControl access_control);
|
|
|
|
// Try to define a single accessor paying attention to map transitions.
|
|
// Returns false if this was not possible and we have to use the slow case.
|
|
static bool DefineFastAccessor(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
AccessorComponent component,
|
|
Handle<Object> accessor,
|
|
PropertyAttributes attributes);
|
|
|
|
|
|
// Return the hash table backing store or the inline stored identity hash,
|
|
// whatever is found.
|
|
MUST_USE_RESULT Object* GetHiddenPropertiesHashTable();
|
|
|
|
// Return the hash table backing store for hidden properties. If there is no
|
|
// backing store, allocate one.
|
|
static Handle<ObjectHashTable> GetOrCreateHiddenPropertiesHashtable(
|
|
Handle<JSObject> object);
|
|
|
|
// Set the hidden property backing store to either a hash table or
|
|
// the inline-stored identity hash.
|
|
static Handle<Object> SetHiddenPropertiesHashTable(
|
|
Handle<JSObject> object,
|
|
Handle<Object> value);
|
|
|
|
MUST_USE_RESULT Object* GetIdentityHash();
|
|
|
|
static Handle<Object> GetOrCreateIdentityHash(Handle<JSObject> object);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
|
|
};
|
|
|
|
|
|
// Common superclass for FixedArrays that allow implementations to share
|
|
// common accessors and some code paths.
|
|
class FixedArrayBase: public HeapObject {
|
|
public:
|
|
// [length]: length of the array.
|
|
inline int length();
|
|
inline void set_length(int value);
|
|
|
|
inline static FixedArrayBase* cast(Object* object);
|
|
|
|
// Layout description.
|
|
// Length is smi tagged when it is stored.
|
|
static const int kLengthOffset = HeapObject::kHeaderSize;
|
|
static const int kHeaderSize = kLengthOffset + kPointerSize;
|
|
};
|
|
|
|
|
|
class FixedDoubleArray;
|
|
class IncrementalMarking;
|
|
|
|
|
|
// FixedArray describes fixed-sized arrays with element type Object*.
|
|
class FixedArray: public FixedArrayBase {
|
|
public:
|
|
// Setter and getter for elements.
|
|
inline Object* get(int index);
|
|
// Setter that uses write barrier.
|
|
inline void set(int index, Object* value);
|
|
inline bool is_the_hole(int index);
|
|
|
|
// Setter that doesn't need write barrier.
|
|
inline void set(int index, Smi* value);
|
|
// Setter with explicit barrier mode.
|
|
inline void set(int index, Object* value, WriteBarrierMode mode);
|
|
|
|
// Setters for frequently used oddballs located in old space.
|
|
inline void set_undefined(int index);
|
|
inline void set_null(int index);
|
|
inline void set_the_hole(int index);
|
|
|
|
inline Object** GetFirstElementAddress();
|
|
inline bool ContainsOnlySmisOrHoles();
|
|
|
|
// Gives access to raw memory which stores the array's data.
|
|
inline Object** data_start();
|
|
|
|
// Shrink length and insert filler objects.
|
|
void Shrink(int length);
|
|
|
|
// Copy operations.
|
|
MUST_USE_RESULT inline MaybeObject* Copy();
|
|
MUST_USE_RESULT MaybeObject* CopySize(int new_length,
|
|
PretenureFlag pretenure = NOT_TENURED);
|
|
|
|
// Add the elements of a JSArray to this FixedArray.
|
|
MUST_USE_RESULT MaybeObject* AddKeysFromJSArray(JSArray* array);
|
|
|
|
// Compute the union of this and other.
|
|
MUST_USE_RESULT MaybeObject* UnionOfKeys(FixedArray* other);
|
|
|
|
// Copy a sub array from the receiver to dest.
|
|
void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
|
|
|
|
// Garbage collection support.
|
|
static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
|
|
|
|
// Code Generation support.
|
|
static int OffsetOfElementAt(int index) { return SizeFor(index); }
|
|
|
|
// Garbage collection support.
|
|
Object** RawFieldOfElementAt(int index) {
|
|
return HeapObject::RawField(this, OffsetOfElementAt(index));
|
|
}
|
|
|
|
// Casting.
|
|
static inline FixedArray* cast(Object* obj);
|
|
|
|
// Maximal allowed size, in bytes, of a single FixedArray.
|
|
// Prevents overflowing size computations, as well as extreme memory
|
|
// consumption.
|
|
static const int kMaxSize = 128 * MB * kPointerSize;
|
|
// Maximally allowed length of a FixedArray.
|
|
static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize;
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(FixedArray)
|
|
DECLARE_VERIFIER(FixedArray)
|
|
#ifdef DEBUG
|
|
// Checks if two FixedArrays have identical contents.
|
|
bool IsEqualTo(FixedArray* other);
|
|
#endif
|
|
|
|
// Swap two elements in a pair of arrays. If this array and the
|
|
// numbers array are the same object, the elements are only swapped
|
|
// once.
|
|
void SwapPairs(FixedArray* numbers, int i, int j);
|
|
|
|
// Sort prefix of this array and the numbers array as pairs wrt. the
|
|
// numbers. If the numbers array and the this array are the same
|
|
// object, the prefix of this array is sorted.
|
|
void SortPairs(FixedArray* numbers, uint32_t len);
|
|
|
|
class BodyDescriptor : public FlexibleBodyDescriptor<kHeaderSize> {
|
|
public:
|
|
static inline int SizeOf(Map* map, HeapObject* object) {
|
|
return SizeFor(reinterpret_cast<FixedArray*>(object)->length());
|
|
}
|
|
};
|
|
|
|
protected:
|
|
// Set operation on FixedArray without using write barriers. Can
|
|
// only be used for storing old space objects or smis.
|
|
static inline void NoWriteBarrierSet(FixedArray* array,
|
|
int index,
|
|
Object* value);
|
|
|
|
// Set operation on FixedArray without incremental write barrier. Can
|
|
// only be used if the object is guaranteed to be white (whiteness witness
|
|
// is present).
|
|
static inline void NoIncrementalWriteBarrierSet(FixedArray* array,
|
|
int index,
|
|
Object* value);
|
|
|
|
private:
|
|
STATIC_CHECK(kHeaderSize == Internals::kFixedArrayHeaderSize);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
|
|
};
|
|
|
|
|
|
// FixedDoubleArray describes fixed-sized arrays with element type double.
|
|
class FixedDoubleArray: public FixedArrayBase {
|
|
public:
|
|
// Setter and getter for elements.
|
|
inline double get_scalar(int index);
|
|
inline int64_t get_representation(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, double value);
|
|
inline void set_the_hole(int index);
|
|
|
|
// Checking for the hole.
|
|
inline bool is_the_hole(int index);
|
|
|
|
// Copy operations
|
|
MUST_USE_RESULT inline MaybeObject* Copy();
|
|
|
|
// Garbage collection support.
|
|
inline static int SizeFor(int length) {
|
|
return kHeaderSize + length * kDoubleSize;
|
|
}
|
|
|
|
// Gives access to raw memory which stores the array's data.
|
|
inline double* data_start();
|
|
|
|
// Code Generation support.
|
|
static int OffsetOfElementAt(int index) { return SizeFor(index); }
|
|
|
|
inline static bool is_the_hole_nan(double value);
|
|
inline static double hole_nan_as_double();
|
|
inline static double canonical_not_the_hole_nan_as_double();
|
|
|
|
// Casting.
|
|
static inline FixedDoubleArray* cast(Object* obj);
|
|
|
|
// Maximal allowed size, in bytes, of a single FixedDoubleArray.
|
|
// Prevents overflowing size computations, as well as extreme memory
|
|
// consumption.
|
|
static const int kMaxSize = 512 * MB;
|
|
// Maximally allowed length of a FixedArray.
|
|
static const int kMaxLength = (kMaxSize - kHeaderSize) / kDoubleSize;
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(FixedDoubleArray)
|
|
DECLARE_VERIFIER(FixedDoubleArray)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(FixedDoubleArray);
|
|
};
|
|
|
|
|
|
// ConstantPoolArray describes a fixed-sized array containing constant pool
|
|
// entires.
|
|
// The format of the pool is:
|
|
// [0]: Field holding the first index which is a raw code target pointer entry
|
|
// [1]: Field holding the first index which is a heap pointer entry
|
|
// [2]: Field holding the first index which is a int32 entry
|
|
// [3] ... [first_code_ptr_index() - 1] : 64 bit entries
|
|
// [first_code_ptr_index()] ... [first_heap_ptr_index() - 1] : code pointers
|
|
// [first_heap_ptr_index()] ... [first_int32_index() - 1] : heap pointers
|
|
// [first_int32_index()] ... [length - 1] : 32 bit entries
|
|
class ConstantPoolArray: public FixedArrayBase {
|
|
public:
|
|
// Getters for the field storing the first index for different type entries.
|
|
inline int first_code_ptr_index();
|
|
inline int first_heap_ptr_index();
|
|
inline int first_int64_index();
|
|
inline int first_int32_index();
|
|
|
|
// Getters for counts of different type entries.
|
|
inline int count_of_code_ptr_entries();
|
|
inline int count_of_heap_ptr_entries();
|
|
inline int count_of_int64_entries();
|
|
inline int count_of_int32_entries();
|
|
|
|
// Setter and getter for pool elements.
|
|
inline Address get_code_ptr_entry(int index);
|
|
inline Object* get_heap_ptr_entry(int index);
|
|
inline int64_t get_int64_entry(int index);
|
|
inline int32_t get_int32_entry(int index);
|
|
inline double get_int64_entry_as_double(int index);
|
|
|
|
inline void set(int index, Address value);
|
|
inline void set(int index, Object* value);
|
|
inline void set(int index, int64_t value);
|
|
inline void set(int index, double value);
|
|
inline void set(int index, int32_t value);
|
|
|
|
// Set up initial state.
|
|
inline void SetEntryCounts(int number_of_int64_entries,
|
|
int number_of_code_ptr_entries,
|
|
int number_of_heap_ptr_entries,
|
|
int number_of_int32_entries);
|
|
|
|
// Copy operations
|
|
MUST_USE_RESULT inline MaybeObject* Copy();
|
|
|
|
// Garbage collection support.
|
|
inline static int SizeFor(int number_of_int64_entries,
|
|
int number_of_code_ptr_entries,
|
|
int number_of_heap_ptr_entries,
|
|
int number_of_int32_entries) {
|
|
return RoundUp(OffsetAt(number_of_int64_entries,
|
|
number_of_code_ptr_entries,
|
|
number_of_heap_ptr_entries,
|
|
number_of_int32_entries),
|
|
kPointerSize);
|
|
}
|
|
|
|
// Code Generation support.
|
|
inline int OffsetOfElementAt(int index) {
|
|
ASSERT(index < length());
|
|
if (index >= first_int32_index()) {
|
|
return OffsetAt(count_of_int64_entries(), count_of_code_ptr_entries(),
|
|
count_of_heap_ptr_entries(), index - first_int32_index());
|
|
} else if (index >= first_heap_ptr_index()) {
|
|
return OffsetAt(count_of_int64_entries(), count_of_code_ptr_entries(),
|
|
index - first_heap_ptr_index(), 0);
|
|
} else if (index >= first_code_ptr_index()) {
|
|
return OffsetAt(count_of_int64_entries(), index - first_code_ptr_index(),
|
|
0, 0);
|
|
} else {
|
|
return OffsetAt(index, 0, 0, 0);
|
|
}
|
|
}
|
|
|
|
// Casting.
|
|
static inline ConstantPoolArray* cast(Object* obj);
|
|
|
|
// Garbage collection support.
|
|
Object** RawFieldOfElementAt(int index) {
|
|
return HeapObject::RawField(this, OffsetOfElementAt(index));
|
|
}
|
|
|
|
// Layout description.
|
|
static const int kFirstCodePointerIndexOffset = FixedArray::kHeaderSize;
|
|
static const int kFirstHeapPointerIndexOffset =
|
|
kFirstCodePointerIndexOffset + kPointerSize;
|
|
static const int kFirstInt32IndexOffset =
|
|
kFirstHeapPointerIndexOffset + kPointerSize;
|
|
static const int kFirstOffset = kFirstInt32IndexOffset + kPointerSize;
|
|
|
|
// Dispatched behavior.
|
|
void ConstantPoolIterateBody(ObjectVisitor* v);
|
|
|
|
DECLARE_PRINTER(ConstantPoolArray)
|
|
DECLARE_VERIFIER(ConstantPoolArray)
|
|
|
|
private:
|
|
inline void set_first_code_ptr_index(int value);
|
|
inline void set_first_heap_ptr_index(int value);
|
|
inline void set_first_int32_index(int value);
|
|
|
|
inline static int OffsetAt(int number_of_int64_entries,
|
|
int number_of_code_ptr_entries,
|
|
int number_of_heap_ptr_entries,
|
|
int number_of_int32_entries) {
|
|
return kFirstOffset
|
|
+ (number_of_int64_entries * kInt64Size)
|
|
+ (number_of_code_ptr_entries * kPointerSize)
|
|
+ (number_of_heap_ptr_entries * kPointerSize)
|
|
+ (number_of_int32_entries * kInt32Size);
|
|
}
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ConstantPoolArray);
|
|
};
|
|
|
|
|
|
// DescriptorArrays are fixed arrays used to hold instance descriptors.
|
|
// The format of the these objects is:
|
|
// [0]: Number of descriptors
|
|
// [1]: Either Smi(0) if uninitialized, or a pointer to small fixed array:
|
|
// [0]: pointer to fixed array with enum cache
|
|
// [1]: either Smi(0) or pointer to fixed array with indices
|
|
// [2]: first key
|
|
// [2 + number of descriptors * kDescriptorSize]: start of slack
|
|
class DescriptorArray: public FixedArray {
|
|
public:
|
|
// WhitenessWitness is used to prove that a descriptor array is white
|
|
// (unmarked), so incremental write barriers can be skipped because the
|
|
// marking invariant cannot be broken and slots pointing into evacuation
|
|
// candidates will be discovered when the object is scanned. A witness is
|
|
// always stack-allocated right after creating an array. By allocating a
|
|
// witness, incremental marking is globally disabled. The witness is then
|
|
// passed along wherever needed to statically prove that the array is known to
|
|
// be white.
|
|
class WhitenessWitness {
|
|
public:
|
|
inline explicit WhitenessWitness(FixedArray* array);
|
|
inline ~WhitenessWitness();
|
|
|
|
private:
|
|
IncrementalMarking* marking_;
|
|
};
|
|
|
|
// Returns true for both shared empty_descriptor_array and for smis, which the
|
|
// map uses to encode additional bit fields when the descriptor array is not
|
|
// yet used.
|
|
inline bool IsEmpty();
|
|
|
|
// Returns the number of descriptors in the array.
|
|
int number_of_descriptors() {
|
|
ASSERT(length() >= kFirstIndex || IsEmpty());
|
|
int len = length();
|
|
return len == 0 ? 0 : Smi::cast(get(kDescriptorLengthIndex))->value();
|
|
}
|
|
|
|
int number_of_descriptors_storage() {
|
|
int len = length();
|
|
return len == 0 ? 0 : (len - kFirstIndex) / kDescriptorSize;
|
|
}
|
|
|
|
int NumberOfSlackDescriptors() {
|
|
return number_of_descriptors_storage() - number_of_descriptors();
|
|
}
|
|
|
|
inline void SetNumberOfDescriptors(int number_of_descriptors);
|
|
inline int number_of_entries() { return number_of_descriptors(); }
|
|
|
|
bool HasEnumCache() {
|
|
return !IsEmpty() && !get(kEnumCacheIndex)->IsSmi();
|
|
}
|
|
|
|
void CopyEnumCacheFrom(DescriptorArray* array) {
|
|
set(kEnumCacheIndex, array->get(kEnumCacheIndex));
|
|
}
|
|
|
|
FixedArray* GetEnumCache() {
|
|
ASSERT(HasEnumCache());
|
|
FixedArray* bridge = FixedArray::cast(get(kEnumCacheIndex));
|
|
return FixedArray::cast(bridge->get(kEnumCacheBridgeCacheIndex));
|
|
}
|
|
|
|
bool HasEnumIndicesCache() {
|
|
if (IsEmpty()) return false;
|
|
Object* object = get(kEnumCacheIndex);
|
|
if (object->IsSmi()) return false;
|
|
FixedArray* bridge = FixedArray::cast(object);
|
|
return !bridge->get(kEnumCacheBridgeIndicesCacheIndex)->IsSmi();
|
|
}
|
|
|
|
FixedArray* GetEnumIndicesCache() {
|
|
ASSERT(HasEnumIndicesCache());
|
|
FixedArray* bridge = FixedArray::cast(get(kEnumCacheIndex));
|
|
return FixedArray::cast(bridge->get(kEnumCacheBridgeIndicesCacheIndex));
|
|
}
|
|
|
|
Object** GetEnumCacheSlot() {
|
|
ASSERT(HasEnumCache());
|
|
return HeapObject::RawField(reinterpret_cast<HeapObject*>(this),
|
|
kEnumCacheOffset);
|
|
}
|
|
|
|
void ClearEnumCache();
|
|
|
|
// Initialize or change the enum cache,
|
|
// using the supplied storage for the small "bridge".
|
|
void SetEnumCache(FixedArray* bridge_storage,
|
|
FixedArray* new_cache,
|
|
Object* new_index_cache);
|
|
|
|
// Accessors for fetching instance descriptor at descriptor number.
|
|
inline Name* GetKey(int descriptor_number);
|
|
inline Object** GetKeySlot(int descriptor_number);
|
|
inline Object* GetValue(int descriptor_number);
|
|
inline Object** GetValueSlot(int descriptor_number);
|
|
inline Object** GetDescriptorStartSlot(int descriptor_number);
|
|
inline Object** GetDescriptorEndSlot(int descriptor_number);
|
|
inline PropertyDetails GetDetails(int descriptor_number);
|
|
inline PropertyType GetType(int descriptor_number);
|
|
inline int GetFieldIndex(int descriptor_number);
|
|
inline Object* GetConstant(int descriptor_number);
|
|
inline Object* GetCallbacksObject(int descriptor_number);
|
|
inline AccessorDescriptor* GetCallbacks(int descriptor_number);
|
|
|
|
inline Name* GetSortedKey(int descriptor_number);
|
|
inline int GetSortedKeyIndex(int descriptor_number);
|
|
inline void SetSortedKey(int pointer, int descriptor_number);
|
|
inline void InitializeRepresentations(Representation representation);
|
|
inline void SetRepresentation(int descriptor_number,
|
|
Representation representation);
|
|
|
|
// Accessor for complete descriptor.
|
|
inline void Get(int descriptor_number, Descriptor* desc);
|
|
inline void Set(int descriptor_number,
|
|
Descriptor* desc,
|
|
const WhitenessWitness&);
|
|
inline void Set(int descriptor_number, Descriptor* desc);
|
|
|
|
// Append automatically sets the enumeration index. This should only be used
|
|
// to add descriptors in bulk at the end, followed by sorting the descriptor
|
|
// array.
|
|
inline void Append(Descriptor* desc, const WhitenessWitness&);
|
|
inline void Append(Descriptor* desc);
|
|
|
|
// Transfer a complete descriptor from the src descriptor array to this
|
|
// descriptor array.
|
|
void CopyFrom(int dst_index,
|
|
DescriptorArray* src,
|
|
int src_index,
|
|
const WhitenessWitness&);
|
|
static Handle<DescriptorArray> Merge(Handle<DescriptorArray> desc,
|
|
int verbatim,
|
|
int valid,
|
|
int new_size,
|
|
int modify_index,
|
|
StoreMode store_mode,
|
|
Handle<DescriptorArray> other);
|
|
MUST_USE_RESULT MaybeObject* Merge(int verbatim,
|
|
int valid,
|
|
int new_size,
|
|
int modify_index,
|
|
StoreMode store_mode,
|
|
DescriptorArray* other);
|
|
|
|
bool IsMoreGeneralThan(int verbatim,
|
|
int valid,
|
|
int new_size,
|
|
DescriptorArray* other);
|
|
|
|
MUST_USE_RESULT MaybeObject* CopyUpTo(int enumeration_index) {
|
|
return CopyUpToAddAttributes(enumeration_index, NONE);
|
|
}
|
|
|
|
static Handle<DescriptorArray> CopyUpToAddAttributes(
|
|
Handle<DescriptorArray> desc,
|
|
int enumeration_index,
|
|
PropertyAttributes attributes);
|
|
MUST_USE_RESULT MaybeObject* CopyUpToAddAttributes(
|
|
int enumeration_index,
|
|
PropertyAttributes attributes);
|
|
|
|
// Sort the instance descriptors by the hash codes of their keys.
|
|
void Sort();
|
|
|
|
// Search the instance descriptors for given name.
|
|
INLINE(int Search(Name* name, int number_of_own_descriptors));
|
|
|
|
// As the above, but uses DescriptorLookupCache and updates it when
|
|
// necessary.
|
|
INLINE(int SearchWithCache(Name* name, Map* map));
|
|
|
|
// Allocates a DescriptorArray, but returns the singleton
|
|
// empty descriptor array object if number_of_descriptors is 0.
|
|
MUST_USE_RESULT static MaybeObject* Allocate(Isolate* isolate,
|
|
int number_of_descriptors,
|
|
int slack = 0);
|
|
|
|
// Casting.
|
|
static inline DescriptorArray* cast(Object* obj);
|
|
|
|
// Constant for denoting key was not found.
|
|
static const int kNotFound = -1;
|
|
|
|
static const int kDescriptorLengthIndex = 0;
|
|
static const int kEnumCacheIndex = 1;
|
|
static const int kFirstIndex = 2;
|
|
|
|
// The length of the "bridge" to the enum cache.
|
|
static const int kEnumCacheBridgeLength = 2;
|
|
static const int kEnumCacheBridgeCacheIndex = 0;
|
|
static const int kEnumCacheBridgeIndicesCacheIndex = 1;
|
|
|
|
// Layout description.
|
|
static const int kDescriptorLengthOffset = FixedArray::kHeaderSize;
|
|
static const int kEnumCacheOffset = kDescriptorLengthOffset + kPointerSize;
|
|
static const int kFirstOffset = kEnumCacheOffset + kPointerSize;
|
|
|
|
// Layout description for the bridge array.
|
|
static const int kEnumCacheBridgeCacheOffset = FixedArray::kHeaderSize;
|
|
|
|
// Layout of descriptor.
|
|
static const int kDescriptorKey = 0;
|
|
static const int kDescriptorDetails = 1;
|
|
static const int kDescriptorValue = 2;
|
|
static const int kDescriptorSize = 3;
|
|
|
|
#ifdef OBJECT_PRINT
|
|
// Print all the descriptors.
|
|
void PrintDescriptors(FILE* out = stdout);
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
// Is the descriptor array sorted and without duplicates?
|
|
bool IsSortedNoDuplicates(int valid_descriptors = -1);
|
|
|
|
// Is the descriptor array consistent with the back pointers in targets?
|
|
bool IsConsistentWithBackPointers(Map* current_map);
|
|
|
|
// Are two DescriptorArrays equal?
|
|
bool IsEqualTo(DescriptorArray* other);
|
|
#endif
|
|
|
|
// Returns the fixed array length required to hold number_of_descriptors
|
|
// descriptors.
|
|
static int LengthFor(int number_of_descriptors) {
|
|
return ToKeyIndex(number_of_descriptors);
|
|
}
|
|
|
|
private:
|
|
// An entry in a DescriptorArray, represented as an (array, index) pair.
|
|
class Entry {
|
|
public:
|
|
inline explicit Entry(DescriptorArray* descs, int index) :
|
|
descs_(descs), index_(index) { }
|
|
|
|
inline PropertyType type() { return descs_->GetType(index_); }
|
|
inline Object* GetCallbackObject() { return descs_->GetValue(index_); }
|
|
|
|
private:
|
|
DescriptorArray* descs_;
|
|
int index_;
|
|
};
|
|
|
|
// Conversion from descriptor number to array indices.
|
|
static int ToKeyIndex(int descriptor_number) {
|
|
return kFirstIndex +
|
|
(descriptor_number * kDescriptorSize) +
|
|
kDescriptorKey;
|
|
}
|
|
|
|
static int ToDetailsIndex(int descriptor_number) {
|
|
return kFirstIndex +
|
|
(descriptor_number * kDescriptorSize) +
|
|
kDescriptorDetails;
|
|
}
|
|
|
|
static int ToValueIndex(int descriptor_number) {
|
|
return kFirstIndex +
|
|
(descriptor_number * kDescriptorSize) +
|
|
kDescriptorValue;
|
|
}
|
|
|
|
// Swap first and second descriptor.
|
|
inline void SwapSortedKeys(int first, int second);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
|
|
};
|
|
|
|
|
|
enum SearchMode { ALL_ENTRIES, VALID_ENTRIES };
|
|
|
|
template<SearchMode search_mode, typename T>
|
|
inline int LinearSearch(T* array, Name* name, int len, int valid_entries);
|
|
|
|
|
|
template<SearchMode search_mode, typename T>
|
|
inline int Search(T* array, Name* name, int valid_entries = 0);
|
|
|
|
|
|
// HashTable is a subclass of FixedArray that implements a hash table
|
|
// that uses open addressing and quadratic probing.
|
|
//
|
|
// In order for the quadratic probing to work, elements that have not
|
|
// yet been used and elements that have been deleted are
|
|
// distinguished. Probing continues when deleted elements are
|
|
// encountered and stops when unused elements are encountered.
|
|
//
|
|
// - Elements with key == undefined have not been used yet.
|
|
// - Elements with key == the_hole have been deleted.
|
|
//
|
|
// The hash table class is parameterized with a Shape and a Key.
|
|
// Shape must be a class with the following interface:
|
|
// class ExampleShape {
|
|
// public:
|
|
// // Tells whether key matches other.
|
|
// static bool IsMatch(Key key, Object* other);
|
|
// // Returns the hash value for key.
|
|
// static uint32_t Hash(Key key);
|
|
// // Returns the hash value for object.
|
|
// static uint32_t HashForObject(Key key, Object* object);
|
|
// // Convert key to an object.
|
|
// static inline Object* AsObject(Heap* heap, Key key);
|
|
// // The prefix size indicates number of elements in the beginning
|
|
// // of the backing storage.
|
|
// static const int kPrefixSize = ..;
|
|
// // The Element size indicates number of elements per entry.
|
|
// static const int kEntrySize = ..;
|
|
// };
|
|
// The prefix size indicates an amount of memory in the
|
|
// beginning of the backing storage that can be used for non-element
|
|
// information by subclasses.
|
|
|
|
template<typename Key>
|
|
class BaseShape {
|
|
public:
|
|
static const bool UsesSeed = false;
|
|
static uint32_t Hash(Key key) { return 0; }
|
|
static uint32_t SeededHash(Key key, uint32_t seed) {
|
|
ASSERT(UsesSeed);
|
|
return Hash(key);
|
|
}
|
|
static uint32_t HashForObject(Key key, Object* object) { return 0; }
|
|
static uint32_t SeededHashForObject(Key key, uint32_t seed, Object* object) {
|
|
ASSERT(UsesSeed);
|
|
return HashForObject(key, object);
|
|
}
|
|
};
|
|
|
|
template<typename Shape, typename Key>
|
|
class HashTable: public FixedArray {
|
|
public:
|
|
// Wrapper methods
|
|
inline uint32_t Hash(Key key) {
|
|
if (Shape::UsesSeed) {
|
|
return Shape::SeededHash(key,
|
|
GetHeap()->HashSeed());
|
|
} else {
|
|
return Shape::Hash(key);
|
|
}
|
|
}
|
|
|
|
inline uint32_t HashForObject(Key key, Object* object) {
|
|
if (Shape::UsesSeed) {
|
|
return Shape::SeededHashForObject(key,
|
|
GetHeap()->HashSeed(), object);
|
|
} else {
|
|
return Shape::HashForObject(key, object);
|
|
}
|
|
}
|
|
|
|
// Returns the number of elements in the hash table.
|
|
int NumberOfElements() {
|
|
return Smi::cast(get(kNumberOfElementsIndex))->value();
|
|
}
|
|
|
|
// Returns the number of deleted elements in the hash table.
|
|
int NumberOfDeletedElements() {
|
|
return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
|
|
}
|
|
|
|
// Returns the capacity of the hash table.
|
|
int Capacity() {
|
|
return Smi::cast(get(kCapacityIndex))->value();
|
|
}
|
|
|
|
// ElementAdded should be called whenever an element is added to a
|
|
// hash table.
|
|
void ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); }
|
|
|
|
// ElementRemoved should be called whenever an element is removed from
|
|
// a hash table.
|
|
void ElementRemoved() {
|
|
SetNumberOfElements(NumberOfElements() - 1);
|
|
SetNumberOfDeletedElements(NumberOfDeletedElements() + 1);
|
|
}
|
|
void ElementsRemoved(int n) {
|
|
SetNumberOfElements(NumberOfElements() - n);
|
|
SetNumberOfDeletedElements(NumberOfDeletedElements() + n);
|
|
}
|
|
|
|
// Returns a new HashTable object. Might return Failure.
|
|
MUST_USE_RESULT static MaybeObject* Allocate(
|
|
Heap* heap,
|
|
int at_least_space_for,
|
|
MinimumCapacity capacity_option = USE_DEFAULT_MINIMUM_CAPACITY,
|
|
PretenureFlag pretenure = NOT_TENURED);
|
|
|
|
// Computes the required capacity for a table holding the given
|
|
// number of elements. May be more than HashTable::kMaxCapacity.
|
|
static int ComputeCapacity(int at_least_space_for);
|
|
|
|
// Returns the key at entry.
|
|
Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
|
|
|
|
// Tells whether k is a real key. The hole and undefined are not allowed
|
|
// as keys and can be used to indicate missing or deleted elements.
|
|
bool IsKey(Object* k) {
|
|
return !k->IsTheHole() && !k->IsUndefined();
|
|
}
|
|
|
|
// Garbage collection support.
|
|
void IteratePrefix(ObjectVisitor* visitor);
|
|
void IterateElements(ObjectVisitor* visitor);
|
|
|
|
// Casting.
|
|
static inline HashTable* cast(Object* obj);
|
|
|
|
// Compute the probe offset (quadratic probing).
|
|
INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
|
|
return (n + n * n) >> 1;
|
|
}
|
|
|
|
static const int kNumberOfElementsIndex = 0;
|
|
static const int kNumberOfDeletedElementsIndex = 1;
|
|
static const int kCapacityIndex = 2;
|
|
static const int kPrefixStartIndex = 3;
|
|
static const int kElementsStartIndex =
|
|
kPrefixStartIndex + Shape::kPrefixSize;
|
|
static const int kEntrySize = Shape::kEntrySize;
|
|
static const int kElementsStartOffset =
|
|
kHeaderSize + kElementsStartIndex * kPointerSize;
|
|
static const int kCapacityOffset =
|
|
kHeaderSize + kCapacityIndex * kPointerSize;
|
|
|
|
// Constant used for denoting a absent entry.
|
|
static const int kNotFound = -1;
|
|
|
|
// Maximal capacity of HashTable. Based on maximal length of underlying
|
|
// FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex
|
|
// cannot overflow.
|
|
static const int kMaxCapacity =
|
|
(FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize;
|
|
|
|
// Find entry for key otherwise return kNotFound.
|
|
inline int FindEntry(Key key);
|
|
int FindEntry(Isolate* isolate, Key key);
|
|
|
|
// Rehashes the table in-place.
|
|
void Rehash(Key key);
|
|
|
|
protected:
|
|
friend class ObjectHashSet;
|
|
friend class ObjectHashTable;
|
|
|
|
// Find the entry at which to insert element with the given key that
|
|
// has the given hash value.
|
|
uint32_t FindInsertionEntry(uint32_t hash);
|
|
|
|
// Returns the index for an entry (of the key)
|
|
static inline int EntryToIndex(int entry) {
|
|
return (entry * kEntrySize) + kElementsStartIndex;
|
|
}
|
|
|
|
// Update the number of elements in the hash table.
|
|
void SetNumberOfElements(int nof) {
|
|
set(kNumberOfElementsIndex, Smi::FromInt(nof));
|
|
}
|
|
|
|
// Update the number of deleted elements in the hash table.
|
|
void SetNumberOfDeletedElements(int nod) {
|
|
set(kNumberOfDeletedElementsIndex, Smi::FromInt(nod));
|
|
}
|
|
|
|
// Sets the capacity of the hash table.
|
|
void SetCapacity(int capacity) {
|
|
// To scale a computed hash code to fit within the hash table, we
|
|
// use bit-wise AND with a mask, so the capacity must be positive
|
|
// and non-zero.
|
|
ASSERT(capacity > 0);
|
|
ASSERT(capacity <= kMaxCapacity);
|
|
set(kCapacityIndex, Smi::FromInt(capacity));
|
|
}
|
|
|
|
|
|
// Returns probe entry.
|
|
static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
|
|
ASSERT(IsPowerOf2(size));
|
|
return (hash + GetProbeOffset(number)) & (size - 1);
|
|
}
|
|
|
|
inline static uint32_t FirstProbe(uint32_t hash, uint32_t size) {
|
|
return hash & (size - 1);
|
|
}
|
|
|
|
inline static uint32_t NextProbe(
|
|
uint32_t last, uint32_t number, uint32_t size) {
|
|
return (last + number) & (size - 1);
|
|
}
|
|
|
|
// Returns _expected_ if one of entries given by the first _probe_ probes is
|
|
// equal to _expected_. Otherwise, returns the entry given by the probe
|
|
// number _probe_.
|
|
uint32_t EntryForProbe(Key key, Object* k, int probe, uint32_t expected);
|
|
|
|
void Swap(uint32_t entry1, uint32_t entry2, WriteBarrierMode mode);
|
|
|
|
// Rehashes this hash-table into the new table.
|
|
MUST_USE_RESULT MaybeObject* Rehash(HashTable* new_table, Key key);
|
|
|
|
// Attempt to shrink hash table after removal of key.
|
|
MUST_USE_RESULT MaybeObject* Shrink(Key key);
|
|
|
|
// Ensure enough space for n additional elements.
|
|
MUST_USE_RESULT MaybeObject* EnsureCapacity(
|
|
int n,
|
|
Key key,
|
|
PretenureFlag pretenure = NOT_TENURED);
|
|
};
|
|
|
|
|
|
// HashTableKey is an abstract superclass for virtual key behavior.
|
|
class HashTableKey {
|
|
public:
|
|
// Returns whether the other object matches this key.
|
|
virtual bool IsMatch(Object* other) = 0;
|
|
// Returns the hash value for this key.
|
|
virtual uint32_t Hash() = 0;
|
|
// Returns the hash value for object.
|
|
virtual uint32_t HashForObject(Object* key) = 0;
|
|
// Returns the key object for storing into the hash table.
|
|
// If allocations fails a failure object is returned.
|
|
MUST_USE_RESULT virtual MaybeObject* AsObject(Heap* heap) = 0;
|
|
// Required.
|
|
virtual ~HashTableKey() {}
|
|
};
|
|
|
|
|
|
class StringTableShape : public BaseShape<HashTableKey*> {
|
|
public:
|
|
static inline bool IsMatch(HashTableKey* key, Object* value) {
|
|
return key->IsMatch(value);
|
|
}
|
|
static inline uint32_t Hash(HashTableKey* key) {
|
|
return key->Hash();
|
|
}
|
|
static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
|
|
return key->HashForObject(object);
|
|
}
|
|
MUST_USE_RESULT static inline MaybeObject* AsObject(Heap* heap,
|
|
HashTableKey* key) {
|
|
return key->AsObject(heap);
|
|
}
|
|
|
|
static const int kPrefixSize = 0;
|
|
static const int kEntrySize = 1;
|
|
};
|
|
|
|
class SeqOneByteString;
|
|
|
|
// StringTable.
|
|
//
|
|
// No special elements in the prefix and the element size is 1
|
|
// because only the string itself (the key) needs to be stored.
|
|
class StringTable: public HashTable<StringTableShape, HashTableKey*> {
|
|
public:
|
|
// Find string in the string table. If it is not there yet, it is
|
|
// added. The return value is the string table which might have
|
|
// been enlarged. If the return value is not a failure, the string
|
|
// pointer *s is set to the string found.
|
|
MUST_USE_RESULT MaybeObject* LookupString(String* key, Object** s);
|
|
MUST_USE_RESULT MaybeObject* LookupKey(HashTableKey* key, Object** s);
|
|
|
|
// Looks up a string that is equal to the given string and returns
|
|
// true if it is found, assigning the string to the given output
|
|
// parameter.
|
|
bool LookupStringIfExists(String* str, String** result);
|
|
bool LookupTwoCharsStringIfExists(uint16_t c1, uint16_t c2, String** result);
|
|
|
|
// Casting.
|
|
static inline StringTable* cast(Object* obj);
|
|
|
|
private:
|
|
template <bool seq_ascii> friend class JsonParser;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(StringTable);
|
|
};
|
|
|
|
|
|
class MapCacheShape : public BaseShape<HashTableKey*> {
|
|
public:
|
|
static inline bool IsMatch(HashTableKey* key, Object* value) {
|
|
return key->IsMatch(value);
|
|
}
|
|
static inline uint32_t Hash(HashTableKey* key) {
|
|
return key->Hash();
|
|
}
|
|
|
|
static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
|
|
return key->HashForObject(object);
|
|
}
|
|
|
|
MUST_USE_RESULT static inline MaybeObject* AsObject(Heap* heap,
|
|
HashTableKey* key) {
|
|
return key->AsObject(heap);
|
|
}
|
|
|
|
static const int kPrefixSize = 0;
|
|
static const int kEntrySize = 2;
|
|
};
|
|
|
|
|
|
// MapCache.
|
|
//
|
|
// Maps keys that are a fixed array of unique names to a map.
|
|
// Used for canonicalize maps for object literals.
|
|
class MapCache: public HashTable<MapCacheShape, HashTableKey*> {
|
|
public:
|
|
// Find cached value for a name key, otherwise return null.
|
|
Object* Lookup(FixedArray* key);
|
|
MUST_USE_RESULT MaybeObject* Put(FixedArray* key, Map* value);
|
|
static inline MapCache* cast(Object* obj);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(MapCache);
|
|
};
|
|
|
|
|
|
template <typename Shape, typename Key>
|
|
class Dictionary: public HashTable<Shape, Key> {
|
|
public:
|
|
static inline Dictionary<Shape, Key>* cast(Object* obj) {
|
|
return reinterpret_cast<Dictionary<Shape, Key>*>(obj);
|
|
}
|
|
|
|
// Returns the value at entry.
|
|
Object* ValueAt(int entry) {
|
|
return this->get(HashTable<Shape, Key>::EntryToIndex(entry) + 1);
|
|
}
|
|
|
|
// Set the value for entry.
|
|
void ValueAtPut(int entry, Object* value) {
|
|
this->set(HashTable<Shape, Key>::EntryToIndex(entry) + 1, value);
|
|
}
|
|
|
|
// Returns the property details for the property at entry.
|
|
PropertyDetails DetailsAt(int entry) {
|
|
ASSERT(entry >= 0); // Not found is -1, which is not caught by get().
|
|
return PropertyDetails(
|
|
Smi::cast(this->get(HashTable<Shape, Key>::EntryToIndex(entry) + 2)));
|
|
}
|
|
|
|
// Set the details for entry.
|
|
void DetailsAtPut(int entry, PropertyDetails value) {
|
|
this->set(HashTable<Shape, Key>::EntryToIndex(entry) + 2, value.AsSmi());
|
|
}
|
|
|
|
// Sorting support
|
|
void CopyValuesTo(FixedArray* elements);
|
|
|
|
// Delete a property from the dictionary.
|
|
Object* DeleteProperty(int entry, JSObject::DeleteMode mode);
|
|
|
|
// Attempt to shrink the dictionary after deletion of key.
|
|
MUST_USE_RESULT MaybeObject* Shrink(Key key);
|
|
|
|
// Returns the number of elements in the dictionary filtering out properties
|
|
// with the specified attributes.
|
|
int NumberOfElementsFilterAttributes(PropertyAttributes filter);
|
|
|
|
// Returns the number of enumerable elements in the dictionary.
|
|
int NumberOfEnumElements();
|
|
|
|
enum SortMode { UNSORTED, SORTED };
|
|
// Copies keys to preallocated fixed array.
|
|
void CopyKeysTo(FixedArray* storage,
|
|
PropertyAttributes filter,
|
|
SortMode sort_mode);
|
|
// Fill in details for properties into storage.
|
|
void CopyKeysTo(FixedArray* storage,
|
|
int index,
|
|
PropertyAttributes filter,
|
|
SortMode sort_mode);
|
|
|
|
// Accessors for next enumeration index.
|
|
void SetNextEnumerationIndex(int index) {
|
|
ASSERT(index != 0);
|
|
this->set(kNextEnumerationIndexIndex, Smi::FromInt(index));
|
|
}
|
|
|
|
int NextEnumerationIndex() {
|
|
return Smi::cast(FixedArray::get(kNextEnumerationIndexIndex))->value();
|
|
}
|
|
|
|
// Returns a new array for dictionary usage. Might return Failure.
|
|
MUST_USE_RESULT static MaybeObject* Allocate(
|
|
Heap* heap,
|
|
int at_least_space_for,
|
|
PretenureFlag pretenure = NOT_TENURED);
|
|
|
|
// Ensure enough space for n additional elements.
|
|
MUST_USE_RESULT MaybeObject* EnsureCapacity(int n, Key key);
|
|
|
|
#ifdef OBJECT_PRINT
|
|
void Print(FILE* out = stdout);
|
|
#endif
|
|
// Returns the key (slow).
|
|
Object* SlowReverseLookup(Object* value);
|
|
|
|
// Sets the entry to (key, value) pair.
|
|
inline void SetEntry(int entry,
|
|
Object* key,
|
|
Object* value);
|
|
inline void SetEntry(int entry,
|
|
Object* key,
|
|
Object* value,
|
|
PropertyDetails details);
|
|
|
|
MUST_USE_RESULT MaybeObject* Add(Key key,
|
|
Object* value,
|
|
PropertyDetails details);
|
|
|
|
protected:
|
|
// Generic at put operation.
|
|
MUST_USE_RESULT MaybeObject* AtPut(Key key, Object* value);
|
|
|
|
// Add entry to dictionary.
|
|
MUST_USE_RESULT MaybeObject* AddEntry(Key key,
|
|
Object* value,
|
|
PropertyDetails details,
|
|
uint32_t hash);
|
|
|
|
// Generate new enumeration indices to avoid enumeration index overflow.
|
|
MUST_USE_RESULT MaybeObject* GenerateNewEnumerationIndices();
|
|
static const int kMaxNumberKeyIndex =
|
|
HashTable<Shape, Key>::kPrefixStartIndex;
|
|
static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
|
|
};
|
|
|
|
|
|
class NameDictionaryShape : public BaseShape<Name*> {
|
|
public:
|
|
static inline bool IsMatch(Name* key, Object* other);
|
|
static inline uint32_t Hash(Name* key);
|
|
static inline uint32_t HashForObject(Name* key, Object* object);
|
|
MUST_USE_RESULT static inline MaybeObject* AsObject(Heap* heap,
|
|
Name* key);
|
|
static const int kPrefixSize = 2;
|
|
static const int kEntrySize = 3;
|
|
static const bool kIsEnumerable = true;
|
|
};
|
|
|
|
|
|
class NameDictionary: public Dictionary<NameDictionaryShape, Name*> {
|
|
public:
|
|
static inline NameDictionary* cast(Object* obj) {
|
|
ASSERT(obj->IsDictionary());
|
|
return reinterpret_cast<NameDictionary*>(obj);
|
|
}
|
|
|
|
// Copies enumerable keys to preallocated fixed array.
|
|
void CopyEnumKeysTo(FixedArray* storage);
|
|
static void DoGenerateNewEnumerationIndices(
|
|
Handle<NameDictionary> dictionary);
|
|
|
|
// For transforming properties of a JSObject.
|
|
MUST_USE_RESULT MaybeObject* TransformPropertiesToFastFor(
|
|
JSObject* obj,
|
|
int unused_property_fields);
|
|
|
|
// Find entry for key, otherwise return kNotFound. Optimized version of
|
|
// HashTable::FindEntry.
|
|
int FindEntry(Name* key);
|
|
};
|
|
|
|
|
|
class NumberDictionaryShape : public BaseShape<uint32_t> {
|
|
public:
|
|
static inline bool IsMatch(uint32_t key, Object* other);
|
|
MUST_USE_RESULT static inline MaybeObject* AsObject(Heap* heap,
|
|
uint32_t key);
|
|
static const int kEntrySize = 3;
|
|
static const bool kIsEnumerable = false;
|
|
};
|
|
|
|
|
|
class SeededNumberDictionaryShape : public NumberDictionaryShape {
|
|
public:
|
|
static const bool UsesSeed = true;
|
|
static const int kPrefixSize = 2;
|
|
|
|
static inline uint32_t SeededHash(uint32_t key, uint32_t seed);
|
|
static inline uint32_t SeededHashForObject(uint32_t key,
|
|
uint32_t seed,
|
|
Object* object);
|
|
};
|
|
|
|
|
|
class UnseededNumberDictionaryShape : public NumberDictionaryShape {
|
|
public:
|
|
static const int kPrefixSize = 0;
|
|
|
|
static inline uint32_t Hash(uint32_t key);
|
|
static inline uint32_t HashForObject(uint32_t key, Object* object);
|
|
};
|
|
|
|
|
|
class SeededNumberDictionary
|
|
: public Dictionary<SeededNumberDictionaryShape, uint32_t> {
|
|
public:
|
|
static SeededNumberDictionary* cast(Object* obj) {
|
|
ASSERT(obj->IsDictionary());
|
|
return reinterpret_cast<SeededNumberDictionary*>(obj);
|
|
}
|
|
|
|
// Type specific at put (default NONE attributes is used when adding).
|
|
MUST_USE_RESULT MaybeObject* AtNumberPut(uint32_t key, Object* value);
|
|
MUST_USE_RESULT static Handle<SeededNumberDictionary> AddNumberEntry(
|
|
Handle<SeededNumberDictionary> dictionary,
|
|
uint32_t key,
|
|
Handle<Object> value,
|
|
PropertyDetails details);
|
|
MUST_USE_RESULT MaybeObject* AddNumberEntry(uint32_t key,
|
|
Object* value,
|
|
PropertyDetails details);
|
|
|
|
// Set an existing entry or add a new one if needed.
|
|
// Return the updated dictionary.
|
|
MUST_USE_RESULT static Handle<SeededNumberDictionary> Set(
|
|
Handle<SeededNumberDictionary> dictionary,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
PropertyDetails details);
|
|
|
|
MUST_USE_RESULT MaybeObject* Set(uint32_t key,
|
|
Object* value,
|
|
PropertyDetails details);
|
|
|
|
void UpdateMaxNumberKey(uint32_t key);
|
|
|
|
// If slow elements are required we will never go back to fast-case
|
|
// for the elements kept in this dictionary. We require slow
|
|
// elements if an element has been added at an index larger than
|
|
// kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
|
|
// when defining a getter or setter with a number key.
|
|
inline bool requires_slow_elements();
|
|
inline void set_requires_slow_elements();
|
|
|
|
// Get the value of the max number key that has been added to this
|
|
// dictionary. max_number_key can only be called if
|
|
// requires_slow_elements returns false.
|
|
inline uint32_t max_number_key();
|
|
|
|
// Bit masks.
|
|
static const int kRequiresSlowElementsMask = 1;
|
|
static const int kRequiresSlowElementsTagSize = 1;
|
|
static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
|
|
};
|
|
|
|
|
|
class UnseededNumberDictionary
|
|
: public Dictionary<UnseededNumberDictionaryShape, uint32_t> {
|
|
public:
|
|
static UnseededNumberDictionary* cast(Object* obj) {
|
|
ASSERT(obj->IsDictionary());
|
|
return reinterpret_cast<UnseededNumberDictionary*>(obj);
|
|
}
|
|
|
|
// Type specific at put (default NONE attributes is used when adding).
|
|
MUST_USE_RESULT MaybeObject* AtNumberPut(uint32_t key, Object* value);
|
|
MUST_USE_RESULT MaybeObject* AddNumberEntry(uint32_t key, Object* value);
|
|
|
|
// Set an existing entry or add a new one if needed.
|
|
// Return the updated dictionary.
|
|
MUST_USE_RESULT static Handle<UnseededNumberDictionary> Set(
|
|
Handle<UnseededNumberDictionary> dictionary,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
MUST_USE_RESULT MaybeObject* Set(uint32_t key, Object* value);
|
|
};
|
|
|
|
|
|
template <int entrysize>
|
|
class ObjectHashTableShape : public BaseShape<Object*> {
|
|
public:
|
|
static inline bool IsMatch(Object* key, Object* other);
|
|
static inline uint32_t Hash(Object* key);
|
|
static inline uint32_t HashForObject(Object* key, Object* object);
|
|
MUST_USE_RESULT static inline MaybeObject* AsObject(Heap* heap,
|
|
Object* key);
|
|
static const int kPrefixSize = 0;
|
|
static const int kEntrySize = entrysize;
|
|
};
|
|
|
|
|
|
// ObjectHashSet holds keys that are arbitrary objects by using the identity
|
|
// hash of the key for hashing purposes.
|
|
class ObjectHashSet: public HashTable<ObjectHashTableShape<1>, Object*> {
|
|
public:
|
|
static inline ObjectHashSet* cast(Object* obj) {
|
|
ASSERT(obj->IsHashTable());
|
|
return reinterpret_cast<ObjectHashSet*>(obj);
|
|
}
|
|
|
|
// Looks up whether the given key is part of this hash set.
|
|
bool Contains(Object* key);
|
|
|
|
static Handle<ObjectHashSet> EnsureCapacity(
|
|
Handle<ObjectHashSet> table,
|
|
int n,
|
|
Handle<Object> key,
|
|
PretenureFlag pretenure = NOT_TENURED);
|
|
|
|
// Attempt to shrink hash table after removal of key.
|
|
static Handle<ObjectHashSet> Shrink(Handle<ObjectHashSet> table,
|
|
Handle<Object> key);
|
|
|
|
// Adds the given key to this hash set.
|
|
static Handle<ObjectHashSet> Add(Handle<ObjectHashSet> table,
|
|
Handle<Object> key);
|
|
|
|
// Removes the given key from this hash set.
|
|
static Handle<ObjectHashSet> Remove(Handle<ObjectHashSet> table,
|
|
Handle<Object> key);
|
|
};
|
|
|
|
|
|
// ObjectHashTable maps keys that are arbitrary objects to object values by
|
|
// using the identity hash of the key for hashing purposes.
|
|
class ObjectHashTable: public HashTable<ObjectHashTableShape<2>, Object*> {
|
|
public:
|
|
static inline ObjectHashTable* cast(Object* obj) {
|
|
ASSERT(obj->IsHashTable());
|
|
return reinterpret_cast<ObjectHashTable*>(obj);
|
|
}
|
|
|
|
static Handle<ObjectHashTable> EnsureCapacity(
|
|
Handle<ObjectHashTable> table,
|
|
int n,
|
|
Handle<Object> key,
|
|
PretenureFlag pretenure = NOT_TENURED);
|
|
|
|
// Attempt to shrink hash table after removal of key.
|
|
static Handle<ObjectHashTable> Shrink(Handle<ObjectHashTable> table,
|
|
Handle<Object> key);
|
|
|
|
// Looks up the value associated with the given key. The hole value is
|
|
// returned in case the key is not present.
|
|
Object* Lookup(Object* key);
|
|
|
|
// Adds (or overwrites) the value associated with the given key. Mapping a
|
|
// key to the hole value causes removal of the whole entry.
|
|
static Handle<ObjectHashTable> Put(Handle<ObjectHashTable> table,
|
|
Handle<Object> key,
|
|
Handle<Object> value);
|
|
|
|
private:
|
|
friend class MarkCompactCollector;
|
|
|
|
void AddEntry(int entry, Object* key, Object* value);
|
|
void RemoveEntry(int entry);
|
|
|
|
// Returns the index to the value of an entry.
|
|
static inline int EntryToValueIndex(int entry) {
|
|
return EntryToIndex(entry) + 1;
|
|
}
|
|
};
|
|
|
|
|
|
template <int entrysize>
|
|
class WeakHashTableShape : public BaseShape<Object*> {
|
|
public:
|
|
static inline bool IsMatch(Object* key, Object* other);
|
|
static inline uint32_t Hash(Object* key);
|
|
static inline uint32_t HashForObject(Object* key, Object* object);
|
|
MUST_USE_RESULT static inline MaybeObject* AsObject(Heap* heap,
|
|
Object* key);
|
|
static const int kPrefixSize = 0;
|
|
static const int kEntrySize = entrysize;
|
|
};
|
|
|
|
|
|
// WeakHashTable maps keys that are arbitrary objects to object values.
|
|
// It is used for the global weak hash table that maps objects
|
|
// embedded in optimized code to dependent code lists.
|
|
class WeakHashTable: public HashTable<WeakHashTableShape<2>, Object*> {
|
|
public:
|
|
static inline WeakHashTable* cast(Object* obj) {
|
|
ASSERT(obj->IsHashTable());
|
|
return reinterpret_cast<WeakHashTable*>(obj);
|
|
}
|
|
|
|
// Looks up the value associated with the given key. The hole value is
|
|
// returned in case the key is not present.
|
|
Object* Lookup(Object* key);
|
|
|
|
// Adds (or overwrites) the value associated with the given key. Mapping a
|
|
// key to the hole value causes removal of the whole entry.
|
|
MUST_USE_RESULT MaybeObject* Put(Object* key, Object* value);
|
|
|
|
// This function is called when heap verification is turned on.
|
|
void Zap(Object* value) {
|
|
int capacity = Capacity();
|
|
for (int i = 0; i < capacity; i++) {
|
|
set(EntryToIndex(i), value);
|
|
set(EntryToValueIndex(i), value);
|
|
}
|
|
}
|
|
|
|
private:
|
|
friend class MarkCompactCollector;
|
|
|
|
void AddEntry(int entry, Object* key, Object* value);
|
|
|
|
// Returns the index to the value of an entry.
|
|
static inline int EntryToValueIndex(int entry) {
|
|
return EntryToIndex(entry) + 1;
|
|
}
|
|
};
|
|
|
|
|
|
// JSFunctionResultCache caches results of some JSFunction invocation.
|
|
// It is a fixed array with fixed structure:
|
|
// [0]: factory function
|
|
// [1]: finger index
|
|
// [2]: current cache size
|
|
// [3]: dummy field.
|
|
// The rest of array are key/value pairs.
|
|
class JSFunctionResultCache: public FixedArray {
|
|
public:
|
|
static const int kFactoryIndex = 0;
|
|
static const int kFingerIndex = kFactoryIndex + 1;
|
|
static const int kCacheSizeIndex = kFingerIndex + 1;
|
|
static const int kDummyIndex = kCacheSizeIndex + 1;
|
|
static const int kEntriesIndex = kDummyIndex + 1;
|
|
|
|
static const int kEntrySize = 2; // key + value
|
|
|
|
static const int kFactoryOffset = kHeaderSize;
|
|
static const int kFingerOffset = kFactoryOffset + kPointerSize;
|
|
static const int kCacheSizeOffset = kFingerOffset + kPointerSize;
|
|
|
|
inline void MakeZeroSize();
|
|
inline void Clear();
|
|
|
|
inline int size();
|
|
inline void set_size(int size);
|
|
inline int finger_index();
|
|
inline void set_finger_index(int finger_index);
|
|
|
|
// Casting
|
|
static inline JSFunctionResultCache* cast(Object* obj);
|
|
|
|
DECLARE_VERIFIER(JSFunctionResultCache)
|
|
};
|
|
|
|
|
|
// ScopeInfo represents information about different scopes of a source
|
|
// program and the allocation of the scope's variables. Scope information
|
|
// is stored in a compressed form in ScopeInfo objects and is used
|
|
// at runtime (stack dumps, deoptimization, etc.).
|
|
|
|
// This object provides quick access to scope info details for runtime
|
|
// routines.
|
|
class ScopeInfo : public FixedArray {
|
|
public:
|
|
static inline ScopeInfo* cast(Object* object);
|
|
|
|
// Return the type of this scope.
|
|
ScopeType scope_type();
|
|
|
|
// Does this scope call eval?
|
|
bool CallsEval();
|
|
|
|
// Return the strict mode of this scope.
|
|
StrictMode strict_mode();
|
|
|
|
// Does this scope make a sloppy eval call?
|
|
bool CallsSloppyEval() { return CallsEval() && strict_mode() == SLOPPY; }
|
|
|
|
// Return the total number of locals allocated on the stack and in the
|
|
// context. This includes the parameters that are allocated in the context.
|
|
int LocalCount();
|
|
|
|
// Return the number of stack slots for code. This number consists of two
|
|
// parts:
|
|
// 1. One stack slot per stack allocated local.
|
|
// 2. One stack slot for the function name if it is stack allocated.
|
|
int StackSlotCount();
|
|
|
|
// Return the number of context slots for code if a context is allocated. This
|
|
// number consists of three parts:
|
|
// 1. Size of fixed header for every context: Context::MIN_CONTEXT_SLOTS
|
|
// 2. One context slot per context allocated local.
|
|
// 3. One context slot for the function name if it is context allocated.
|
|
// Parameters allocated in the context count as context allocated locals. If
|
|
// no contexts are allocated for this scope ContextLength returns 0.
|
|
int ContextLength();
|
|
|
|
// Is this scope the scope of a named function expression?
|
|
bool HasFunctionName();
|
|
|
|
// Return if this has context allocated locals.
|
|
bool HasHeapAllocatedLocals();
|
|
|
|
// Return if contexts are allocated for this scope.
|
|
bool HasContext();
|
|
|
|
// Return the function_name if present.
|
|
String* FunctionName();
|
|
|
|
// Return the name of the given parameter.
|
|
String* ParameterName(int var);
|
|
|
|
// Return the name of the given local.
|
|
String* LocalName(int var);
|
|
|
|
// Return the name of the given stack local.
|
|
String* StackLocalName(int var);
|
|
|
|
// Return the name of the given context local.
|
|
String* ContextLocalName(int var);
|
|
|
|
// Return the mode of the given context local.
|
|
VariableMode ContextLocalMode(int var);
|
|
|
|
// Return the initialization flag of the given context local.
|
|
InitializationFlag ContextLocalInitFlag(int var);
|
|
|
|
// Lookup support for serialized scope info. Returns the
|
|
// the stack slot index for a given slot name if the slot is
|
|
// present; otherwise returns a value < 0. The name must be an internalized
|
|
// string.
|
|
int StackSlotIndex(String* name);
|
|
|
|
// Lookup support for serialized scope info. Returns the
|
|
// context slot index for a given slot name if the slot is present; otherwise
|
|
// returns a value < 0. The name must be an internalized string.
|
|
// If the slot is present and mode != NULL, sets *mode to the corresponding
|
|
// mode for that variable.
|
|
int ContextSlotIndex(String* name,
|
|
VariableMode* mode,
|
|
InitializationFlag* init_flag);
|
|
|
|
// Lookup support for serialized scope info. Returns the
|
|
// parameter index for a given parameter name if the parameter is present;
|
|
// otherwise returns a value < 0. The name must be an internalized string.
|
|
int ParameterIndex(String* name);
|
|
|
|
// Lookup support for serialized scope info. Returns the function context
|
|
// slot index if the function name is present and context-allocated (named
|
|
// function expressions, only), otherwise returns a value < 0. The name
|
|
// must be an internalized string.
|
|
int FunctionContextSlotIndex(String* name, VariableMode* mode);
|
|
|
|
|
|
// Copies all the context locals into an object used to materialize a scope.
|
|
static bool CopyContextLocalsToScopeObject(Handle<ScopeInfo> scope_info,
|
|
Handle<Context> context,
|
|
Handle<JSObject> scope_object);
|
|
|
|
|
|
static Handle<ScopeInfo> Create(Scope* scope, Zone* zone);
|
|
|
|
// Serializes empty scope info.
|
|
static ScopeInfo* Empty(Isolate* isolate);
|
|
|
|
#ifdef DEBUG
|
|
void Print();
|
|
#endif
|
|
|
|
// The layout of the static part of a ScopeInfo is as follows. Each entry is
|
|
// numeric and occupies one array slot.
|
|
// 1. A set of properties of the scope
|
|
// 2. The number of parameters. This only applies to function scopes. For
|
|
// non-function scopes this is 0.
|
|
// 3. The number of non-parameter variables allocated on the stack.
|
|
// 4. The number of non-parameter and parameter variables allocated in the
|
|
// context.
|
|
#define FOR_EACH_NUMERIC_FIELD(V) \
|
|
V(Flags) \
|
|
V(ParameterCount) \
|
|
V(StackLocalCount) \
|
|
V(ContextLocalCount)
|
|
|
|
#define FIELD_ACCESSORS(name) \
|
|
void Set##name(int value) { \
|
|
set(k##name, Smi::FromInt(value)); \
|
|
} \
|
|
int name() { \
|
|
if (length() > 0) { \
|
|
return Smi::cast(get(k##name))->value(); \
|
|
} else { \
|
|
return 0; \
|
|
} \
|
|
}
|
|
FOR_EACH_NUMERIC_FIELD(FIELD_ACCESSORS)
|
|
#undef FIELD_ACCESSORS
|
|
|
|
private:
|
|
enum {
|
|
#define DECL_INDEX(name) k##name,
|
|
FOR_EACH_NUMERIC_FIELD(DECL_INDEX)
|
|
#undef DECL_INDEX
|
|
#undef FOR_EACH_NUMERIC_FIELD
|
|
kVariablePartIndex
|
|
};
|
|
|
|
// The layout of the variable part of a ScopeInfo is as follows:
|
|
// 1. ParameterEntries:
|
|
// This part stores the names of the parameters for function scopes. One
|
|
// slot is used per parameter, so in total this part occupies
|
|
// ParameterCount() slots in the array. For other scopes than function
|
|
// scopes ParameterCount() is 0.
|
|
// 2. StackLocalEntries:
|
|
// Contains the names of local variables that are allocated on the stack,
|
|
// in increasing order of the stack slot index. One slot is used per stack
|
|
// local, so in total this part occupies StackLocalCount() slots in the
|
|
// array.
|
|
// 3. ContextLocalNameEntries:
|
|
// Contains the names of local variables and parameters that are allocated
|
|
// in the context. They are stored in increasing order of the context slot
|
|
// index starting with Context::MIN_CONTEXT_SLOTS. One slot is used per
|
|
// context local, so in total this part occupies ContextLocalCount() slots
|
|
// in the array.
|
|
// 4. ContextLocalInfoEntries:
|
|
// Contains the variable modes and initialization flags corresponding to
|
|
// the context locals in ContextLocalNameEntries. One slot is used per
|
|
// context local, so in total this part occupies ContextLocalCount()
|
|
// slots in the array.
|
|
// 5. FunctionNameEntryIndex:
|
|
// If the scope belongs to a named function expression this part contains
|
|
// information about the function variable. It always occupies two array
|
|
// slots: a. The name of the function variable.
|
|
// b. The context or stack slot index for the variable.
|
|
int ParameterEntriesIndex();
|
|
int StackLocalEntriesIndex();
|
|
int ContextLocalNameEntriesIndex();
|
|
int ContextLocalInfoEntriesIndex();
|
|
int FunctionNameEntryIndex();
|
|
|
|
// Location of the function variable for named function expressions.
|
|
enum FunctionVariableInfo {
|
|
NONE, // No function name present.
|
|
STACK, // Function
|
|
CONTEXT,
|
|
UNUSED
|
|
};
|
|
|
|
// Properties of scopes.
|
|
class ScopeTypeField: public BitField<ScopeType, 0, 3> {};
|
|
class CallsEvalField: public BitField<bool, 3, 1> {};
|
|
class StrictModeField: public BitField<StrictMode, 4, 1> {};
|
|
class FunctionVariableField: public BitField<FunctionVariableInfo, 5, 2> {};
|
|
class FunctionVariableMode: public BitField<VariableMode, 7, 3> {};
|
|
|
|
// BitFields representing the encoded information for context locals in the
|
|
// ContextLocalInfoEntries part.
|
|
class ContextLocalMode: public BitField<VariableMode, 0, 3> {};
|
|
class ContextLocalInitFlag: public BitField<InitializationFlag, 3, 1> {};
|
|
};
|
|
|
|
|
|
// The cache for maps used by normalized (dictionary mode) objects.
|
|
// Such maps do not have property descriptors, so a typical program
|
|
// needs very limited number of distinct normalized maps.
|
|
class NormalizedMapCache: public FixedArray {
|
|
public:
|
|
static const int kEntries = 64;
|
|
|
|
static Handle<Map> Get(Handle<NormalizedMapCache> cache,
|
|
Handle<JSObject> object,
|
|
PropertyNormalizationMode mode);
|
|
|
|
void Clear();
|
|
|
|
// Casting
|
|
static inline NormalizedMapCache* cast(Object* obj);
|
|
|
|
DECLARE_VERIFIER(NormalizedMapCache)
|
|
};
|
|
|
|
|
|
// ByteArray represents fixed sized byte arrays. Used for the relocation info
|
|
// that is attached to code objects.
|
|
class ByteArray: public FixedArrayBase {
|
|
public:
|
|
inline int Size() { return RoundUp(length() + kHeaderSize, kPointerSize); }
|
|
|
|
// Setter and getter.
|
|
inline byte get(int index);
|
|
inline void set(int index, byte value);
|
|
|
|
// Treat contents as an int array.
|
|
inline int get_int(int index);
|
|
|
|
static int SizeFor(int length) {
|
|
return OBJECT_POINTER_ALIGN(kHeaderSize + length);
|
|
}
|
|
// We use byte arrays for free blocks in the heap. Given a desired size in
|
|
// bytes that is a multiple of the word size and big enough to hold a byte
|
|
// array, this function returns the number of elements a byte array should
|
|
// have.
|
|
static int LengthFor(int size_in_bytes) {
|
|
ASSERT(IsAligned(size_in_bytes, kPointerSize));
|
|
ASSERT(size_in_bytes >= kHeaderSize);
|
|
return size_in_bytes - kHeaderSize;
|
|
}
|
|
|
|
// Returns data start address.
|
|
inline Address GetDataStartAddress();
|
|
|
|
// Returns a pointer to the ByteArray object for a given data start address.
|
|
static inline ByteArray* FromDataStartAddress(Address address);
|
|
|
|
// Casting.
|
|
static inline ByteArray* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
inline int ByteArraySize() {
|
|
return SizeFor(this->length());
|
|
}
|
|
DECLARE_PRINTER(ByteArray)
|
|
DECLARE_VERIFIER(ByteArray)
|
|
|
|
// Layout description.
|
|
static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
|
|
|
|
// Maximal memory consumption for a single ByteArray.
|
|
static const int kMaxSize = 512 * MB;
|
|
// Maximal length of a single ByteArray.
|
|
static const int kMaxLength = kMaxSize - kHeaderSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
|
|
};
|
|
|
|
|
|
// FreeSpace represents fixed sized areas of the heap that are not currently in
|
|
// use. Used by the heap and GC.
|
|
class FreeSpace: public HeapObject {
|
|
public:
|
|
// [size]: size of the free space including the header.
|
|
inline int size();
|
|
inline void set_size(int value);
|
|
|
|
inline int Size() { return size(); }
|
|
|
|
// Casting.
|
|
static inline FreeSpace* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(FreeSpace)
|
|
DECLARE_VERIFIER(FreeSpace)
|
|
|
|
// Layout description.
|
|
// Size is smi tagged when it is stored.
|
|
static const int kSizeOffset = HeapObject::kHeaderSize;
|
|
static const int kHeaderSize = kSizeOffset + kPointerSize;
|
|
|
|
static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(FreeSpace);
|
|
};
|
|
|
|
|
|
// V has parameters (Type, type, TYPE, C type, element_size)
|
|
#define TYPED_ARRAYS(V) \
|
|
V(Uint8, uint8, UINT8, uint8_t, 1) \
|
|
V(Int8, int8, INT8, int8_t, 1) \
|
|
V(Uint16, uint16, UINT16, uint16_t, 2) \
|
|
V(Int16, int16, INT16, int16_t, 2) \
|
|
V(Uint32, uint32, UINT32, uint32_t, 4) \
|
|
V(Int32, int32, INT32, int32_t, 4) \
|
|
V(Float32, float32, FLOAT32, float, 4) \
|
|
V(Float64, float64, FLOAT64, double, 8) \
|
|
V(Uint8Clamped, uint8_clamped, UINT8_CLAMPED, uint8_t, 1)
|
|
|
|
|
|
|
|
// An ExternalArray represents a fixed-size array of primitive values
|
|
// which live outside the JavaScript heap. Its subclasses are used to
|
|
// implement the CanvasArray types being defined in the WebGL
|
|
// specification. As of this writing the first public draft is not yet
|
|
// available, but Khronos members can access the draft at:
|
|
// https://cvs.khronos.org/svn/repos/3dweb/trunk/doc/spec/WebGL-spec.html
|
|
//
|
|
// The semantics of these arrays differ from CanvasPixelArray.
|
|
// Out-of-range values passed to the setter are converted via a C
|
|
// cast, not clamping. Out-of-range indices cause exceptions to be
|
|
// raised rather than being silently ignored.
|
|
class ExternalArray: public FixedArrayBase {
|
|
public:
|
|
inline bool is_the_hole(int index) { return false; }
|
|
|
|
// [external_pointer]: The pointer to the external memory area backing this
|
|
// external array.
|
|
DECL_ACCESSORS(external_pointer, void) // Pointer to the data store.
|
|
|
|
// Casting.
|
|
static inline ExternalArray* cast(Object* obj);
|
|
|
|
// Maximal acceptable length for an external array.
|
|
static const int kMaxLength = 0x3fffffff;
|
|
|
|
// ExternalArray headers are not quadword aligned.
|
|
static const int kExternalPointerOffset =
|
|
POINTER_SIZE_ALIGN(FixedArrayBase::kLengthOffset + kPointerSize);
|
|
static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
|
|
static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalArray);
|
|
};
|
|
|
|
|
|
// A ExternalUint8ClampedArray represents a fixed-size byte array with special
|
|
// semantics used for implementing the CanvasPixelArray object. Please see the
|
|
// specification at:
|
|
|
|
// http://www.whatwg.org/specs/web-apps/current-work/
|
|
// multipage/the-canvas-element.html#canvaspixelarray
|
|
// In particular, write access clamps the value written to 0 or 255 if the
|
|
// value written is outside this range.
|
|
class ExternalUint8ClampedArray: public ExternalArray {
|
|
public:
|
|
inline uint8_t* external_uint8_clamped_pointer();
|
|
|
|
// Setter and getter.
|
|
inline uint8_t get_scalar(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, uint8_t value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber and
|
|
// undefined and clamps the converted value between 0 and 255.
|
|
Object* SetValue(uint32_t index, Object* value);
|
|
|
|
static Handle<Object> SetValue(Handle<ExternalUint8ClampedArray> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
// Casting.
|
|
static inline ExternalUint8ClampedArray* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalUint8ClampedArray)
|
|
DECLARE_VERIFIER(ExternalUint8ClampedArray)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUint8ClampedArray);
|
|
};
|
|
|
|
|
|
class ExternalInt8Array: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline int8_t get_scalar(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, int8_t value);
|
|
|
|
static Handle<Object> SetValue(Handle<ExternalInt8Array> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
|
|
|
|
// Casting.
|
|
static inline ExternalInt8Array* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalInt8Array)
|
|
DECLARE_VERIFIER(ExternalInt8Array)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalInt8Array);
|
|
};
|
|
|
|
|
|
class ExternalUint8Array: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline uint8_t get_scalar(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, uint8_t value);
|
|
|
|
static Handle<Object> SetValue(Handle<ExternalUint8Array> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
|
|
|
|
// Casting.
|
|
static inline ExternalUint8Array* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalUint8Array)
|
|
DECLARE_VERIFIER(ExternalUint8Array)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUint8Array);
|
|
};
|
|
|
|
|
|
class ExternalInt16Array: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline int16_t get_scalar(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, int16_t value);
|
|
|
|
static Handle<Object> SetValue(Handle<ExternalInt16Array> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
|
|
|
|
// Casting.
|
|
static inline ExternalInt16Array* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalInt16Array)
|
|
DECLARE_VERIFIER(ExternalInt16Array)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalInt16Array);
|
|
};
|
|
|
|
|
|
class ExternalUint16Array: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline uint16_t get_scalar(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, uint16_t value);
|
|
|
|
static Handle<Object> SetValue(Handle<ExternalUint16Array> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
|
|
|
|
// Casting.
|
|
static inline ExternalUint16Array* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalUint16Array)
|
|
DECLARE_VERIFIER(ExternalUint16Array)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUint16Array);
|
|
};
|
|
|
|
|
|
class ExternalInt32Array: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline int32_t get_scalar(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, int32_t value);
|
|
|
|
static Handle<Object> SetValue(Handle<ExternalInt32Array> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
|
|
|
|
// Casting.
|
|
static inline ExternalInt32Array* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalInt32Array)
|
|
DECLARE_VERIFIER(ExternalInt32Array)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalInt32Array);
|
|
};
|
|
|
|
|
|
class ExternalUint32Array: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline uint32_t get_scalar(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, uint32_t value);
|
|
|
|
static Handle<Object> SetValue(Handle<ExternalUint32Array> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
|
|
|
|
// Casting.
|
|
static inline ExternalUint32Array* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalUint32Array)
|
|
DECLARE_VERIFIER(ExternalUint32Array)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUint32Array);
|
|
};
|
|
|
|
|
|
class ExternalFloat32Array: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline float get_scalar(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, float value);
|
|
|
|
static Handle<Object> SetValue(Handle<ExternalFloat32Array> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
|
|
|
|
// Casting.
|
|
static inline ExternalFloat32Array* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalFloat32Array)
|
|
DECLARE_VERIFIER(ExternalFloat32Array)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloat32Array);
|
|
};
|
|
|
|
|
|
class ExternalFloat64Array: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline double get_scalar(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, double value);
|
|
|
|
static Handle<Object> SetValue(Handle<ExternalFloat64Array> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
|
|
|
|
// Casting.
|
|
static inline ExternalFloat64Array* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalFloat64Array)
|
|
DECLARE_VERIFIER(ExternalFloat64Array)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloat64Array);
|
|
};
|
|
|
|
|
|
class FixedTypedArrayBase: public FixedArrayBase {
|
|
public:
|
|
// Casting:
|
|
static inline FixedTypedArrayBase* cast(Object* obj);
|
|
|
|
static const int kDataOffset = kHeaderSize;
|
|
|
|
inline int size();
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArrayBase);
|
|
};
|
|
|
|
|
|
template <class Traits>
|
|
class FixedTypedArray: public FixedTypedArrayBase {
|
|
public:
|
|
typedef typename Traits::ElementType ElementType;
|
|
static const InstanceType kInstanceType = Traits::kInstanceType;
|
|
|
|
// Casting:
|
|
static inline FixedTypedArray<Traits>* cast(Object* obj);
|
|
|
|
static inline int ElementOffset(int index) {
|
|
return kDataOffset + index * sizeof(ElementType);
|
|
}
|
|
|
|
static inline int SizeFor(int length) {
|
|
return ElementOffset(length);
|
|
}
|
|
|
|
inline ElementType get_scalar(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, ElementType value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
|
|
|
|
static Handle<Object> SetValue(Handle<FixedTypedArray<Traits> > array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
DECLARE_PRINTER(FixedTypedArray)
|
|
DECLARE_VERIFIER(FixedTypedArray)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArray);
|
|
};
|
|
|
|
#define FIXED_TYPED_ARRAY_TRAITS(Type, type, TYPE, elementType, size) \
|
|
class Type##ArrayTraits { \
|
|
public: \
|
|
typedef elementType ElementType; \
|
|
static const InstanceType kInstanceType = FIXED_##TYPE##_ARRAY_TYPE; \
|
|
static const char* Designator() { return #type " array"; } \
|
|
static inline MaybeObject* ToObject(Heap* heap, elementType scalar); \
|
|
static elementType defaultValue() { return 0; } \
|
|
}; \
|
|
\
|
|
typedef FixedTypedArray<Type##ArrayTraits> Fixed##Type##Array;
|
|
|
|
TYPED_ARRAYS(FIXED_TYPED_ARRAY_TRAITS)
|
|
|
|
#undef FIXED_TYPED_ARRAY_TRAITS
|
|
|
|
// DeoptimizationInputData is a fixed array used to hold the deoptimization
|
|
// data for code generated by the Hydrogen/Lithium compiler. It also
|
|
// contains information about functions that were inlined. If N different
|
|
// functions were inlined then first N elements of the literal array will
|
|
// contain these functions.
|
|
//
|
|
// It can be empty.
|
|
class DeoptimizationInputData: public FixedArray {
|
|
public:
|
|
// Layout description. Indices in the array.
|
|
static const int kTranslationByteArrayIndex = 0;
|
|
static const int kInlinedFunctionCountIndex = 1;
|
|
static const int kLiteralArrayIndex = 2;
|
|
static const int kOsrAstIdIndex = 3;
|
|
static const int kOsrPcOffsetIndex = 4;
|
|
static const int kOptimizationIdIndex = 5;
|
|
static const int kSharedFunctionInfoIndex = 6;
|
|
static const int kFirstDeoptEntryIndex = 7;
|
|
|
|
// Offsets of deopt entry elements relative to the start of the entry.
|
|
static const int kAstIdRawOffset = 0;
|
|
static const int kTranslationIndexOffset = 1;
|
|
static const int kArgumentsStackHeightOffset = 2;
|
|
static const int kPcOffset = 3;
|
|
static const int kDeoptEntrySize = 4;
|
|
|
|
// Simple element accessors.
|
|
#define DEFINE_ELEMENT_ACCESSORS(name, type) \
|
|
type* name() { \
|
|
return type::cast(get(k##name##Index)); \
|
|
} \
|
|
void Set##name(type* value) { \
|
|
set(k##name##Index, value); \
|
|
}
|
|
|
|
DEFINE_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray)
|
|
DEFINE_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi)
|
|
DEFINE_ELEMENT_ACCESSORS(LiteralArray, FixedArray)
|
|
DEFINE_ELEMENT_ACCESSORS(OsrAstId, Smi)
|
|
DEFINE_ELEMENT_ACCESSORS(OsrPcOffset, Smi)
|
|
DEFINE_ELEMENT_ACCESSORS(OptimizationId, Smi)
|
|
DEFINE_ELEMENT_ACCESSORS(SharedFunctionInfo, Object)
|
|
|
|
#undef DEFINE_ELEMENT_ACCESSORS
|
|
|
|
// Accessors for elements of the ith deoptimization entry.
|
|
#define DEFINE_ENTRY_ACCESSORS(name, type) \
|
|
type* name(int i) { \
|
|
return type::cast(get(IndexForEntry(i) + k##name##Offset)); \
|
|
} \
|
|
void Set##name(int i, type* value) { \
|
|
set(IndexForEntry(i) + k##name##Offset, value); \
|
|
}
|
|
|
|
DEFINE_ENTRY_ACCESSORS(AstIdRaw, Smi)
|
|
DEFINE_ENTRY_ACCESSORS(TranslationIndex, Smi)
|
|
DEFINE_ENTRY_ACCESSORS(ArgumentsStackHeight, Smi)
|
|
DEFINE_ENTRY_ACCESSORS(Pc, Smi)
|
|
|
|
#undef DEFINE_ENTRY_ACCESSORS
|
|
|
|
BailoutId AstId(int i) {
|
|
return BailoutId(AstIdRaw(i)->value());
|
|
}
|
|
|
|
void SetAstId(int i, BailoutId value) {
|
|
SetAstIdRaw(i, Smi::FromInt(value.ToInt()));
|
|
}
|
|
|
|
int DeoptCount() {
|
|
return (length() - kFirstDeoptEntryIndex) / kDeoptEntrySize;
|
|
}
|
|
|
|
// Allocates a DeoptimizationInputData.
|
|
MUST_USE_RESULT static MaybeObject* Allocate(Isolate* isolate,
|
|
int deopt_entry_count,
|
|
PretenureFlag pretenure);
|
|
|
|
// Casting.
|
|
static inline DeoptimizationInputData* cast(Object* obj);
|
|
|
|
#ifdef ENABLE_DISASSEMBLER
|
|
void DeoptimizationInputDataPrint(FILE* out);
|
|
#endif
|
|
|
|
private:
|
|
static int IndexForEntry(int i) {
|
|
return kFirstDeoptEntryIndex + (i * kDeoptEntrySize);
|
|
}
|
|
|
|
static int LengthFor(int entry_count) {
|
|
return IndexForEntry(entry_count);
|
|
}
|
|
};
|
|
|
|
|
|
// DeoptimizationOutputData is a fixed array used to hold the deoptimization
|
|
// data for code generated by the full compiler.
|
|
// The format of the these objects is
|
|
// [i * 2]: Ast ID for ith deoptimization.
|
|
// [i * 2 + 1]: PC and state of ith deoptimization
|
|
class DeoptimizationOutputData: public FixedArray {
|
|
public:
|
|
int DeoptPoints() { return length() / 2; }
|
|
|
|
BailoutId AstId(int index) {
|
|
return BailoutId(Smi::cast(get(index * 2))->value());
|
|
}
|
|
|
|
void SetAstId(int index, BailoutId id) {
|
|
set(index * 2, Smi::FromInt(id.ToInt()));
|
|
}
|
|
|
|
Smi* PcAndState(int index) { return Smi::cast(get(1 + index * 2)); }
|
|
void SetPcAndState(int index, Smi* offset) { set(1 + index * 2, offset); }
|
|
|
|
static int LengthOfFixedArray(int deopt_points) {
|
|
return deopt_points * 2;
|
|
}
|
|
|
|
// Allocates a DeoptimizationOutputData.
|
|
MUST_USE_RESULT static MaybeObject* Allocate(Isolate* isolate,
|
|
int number_of_deopt_points,
|
|
PretenureFlag pretenure);
|
|
|
|
// Casting.
|
|
static inline DeoptimizationOutputData* cast(Object* obj);
|
|
|
|
#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
|
|
void DeoptimizationOutputDataPrint(FILE* out);
|
|
#endif
|
|
};
|
|
|
|
|
|
// Forward declaration.
|
|
class Cell;
|
|
class PropertyCell;
|
|
class SafepointEntry;
|
|
class TypeFeedbackInfo;
|
|
|
|
// Code describes objects with on-the-fly generated machine code.
|
|
class Code: public HeapObject {
|
|
public:
|
|
// Opaque data type for encapsulating code flags like kind, inline
|
|
// cache state, and arguments count.
|
|
typedef uint32_t Flags;
|
|
|
|
#define NON_IC_KIND_LIST(V) \
|
|
V(FUNCTION) \
|
|
V(OPTIMIZED_FUNCTION) \
|
|
V(STUB) \
|
|
V(HANDLER) \
|
|
V(BUILTIN) \
|
|
V(REGEXP)
|
|
|
|
#define IC_KIND_LIST(V) \
|
|
V(LOAD_IC) \
|
|
V(KEYED_LOAD_IC) \
|
|
V(STORE_IC) \
|
|
V(KEYED_STORE_IC) \
|
|
V(BINARY_OP_IC) \
|
|
V(COMPARE_IC) \
|
|
V(COMPARE_NIL_IC) \
|
|
V(TO_BOOLEAN_IC)
|
|
|
|
#define CODE_KIND_LIST(V) \
|
|
NON_IC_KIND_LIST(V) \
|
|
IC_KIND_LIST(V)
|
|
|
|
enum Kind {
|
|
#define DEFINE_CODE_KIND_ENUM(name) name,
|
|
CODE_KIND_LIST(DEFINE_CODE_KIND_ENUM)
|
|
#undef DEFINE_CODE_KIND_ENUM
|
|
NUMBER_OF_KINDS
|
|
};
|
|
|
|
// No more than 16 kinds. The value is currently encoded in four bits in
|
|
// Flags.
|
|
STATIC_ASSERT(NUMBER_OF_KINDS <= 16);
|
|
|
|
static const char* Kind2String(Kind kind);
|
|
|
|
// Types of stubs.
|
|
enum StubType {
|
|
NORMAL,
|
|
FAST
|
|
};
|
|
|
|
static const int kPrologueOffsetNotSet = -1;
|
|
|
|
#ifdef ENABLE_DISASSEMBLER
|
|
// Printing
|
|
static const char* ICState2String(InlineCacheState state);
|
|
static const char* StubType2String(StubType type);
|
|
static void PrintExtraICState(FILE* out, Kind kind, ExtraICState extra);
|
|
void Disassemble(const char* name, FILE* out = stdout);
|
|
#endif // ENABLE_DISASSEMBLER
|
|
|
|
// [instruction_size]: Size of the native instructions
|
|
inline int instruction_size();
|
|
inline void set_instruction_size(int value);
|
|
|
|
// [relocation_info]: Code relocation information
|
|
DECL_ACCESSORS(relocation_info, ByteArray)
|
|
void InvalidateRelocation();
|
|
void InvalidateEmbeddedObjects();
|
|
|
|
// [handler_table]: Fixed array containing offsets of exception handlers.
|
|
DECL_ACCESSORS(handler_table, FixedArray)
|
|
|
|
// [deoptimization_data]: Array containing data for deopt.
|
|
DECL_ACCESSORS(deoptimization_data, FixedArray)
|
|
|
|
// [raw_type_feedback_info]: This field stores various things, depending on
|
|
// the kind of the code object.
|
|
// FUNCTION => type feedback information.
|
|
// STUB => various things, e.g. a SMI
|
|
// OPTIMIZED_FUNCTION => the next_code_link for optimized code list.
|
|
DECL_ACCESSORS(raw_type_feedback_info, Object)
|
|
inline Object* type_feedback_info();
|
|
inline void set_type_feedback_info(
|
|
Object* value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
inline int stub_info();
|
|
inline void set_stub_info(int info);
|
|
|
|
// [next_code_link]: Link for lists of optimized or deoptimized code.
|
|
// Note that storage for this field is overlapped with typefeedback_info.
|
|
DECL_ACCESSORS(next_code_link, Object)
|
|
|
|
// [gc_metadata]: Field used to hold GC related metadata. The contents of this
|
|
// field does not have to be traced during garbage collection since
|
|
// it is only used by the garbage collector itself.
|
|
DECL_ACCESSORS(gc_metadata, Object)
|
|
|
|
// [ic_age]: Inline caching age: the value of the Heap::global_ic_age
|
|
// at the moment when this object was created.
|
|
inline void set_ic_age(int count);
|
|
inline int ic_age();
|
|
|
|
// [prologue_offset]: Offset of the function prologue, used for aging
|
|
// FUNCTIONs and OPTIMIZED_FUNCTIONs.
|
|
inline int prologue_offset();
|
|
inline void set_prologue_offset(int offset);
|
|
|
|
// Unchecked accessors to be used during GC.
|
|
inline ByteArray* unchecked_relocation_info();
|
|
|
|
inline int relocation_size();
|
|
|
|
// [flags]: Various code flags.
|
|
inline Flags flags();
|
|
inline void set_flags(Flags flags);
|
|
|
|
// [flags]: Access to specific code flags.
|
|
inline Kind kind();
|
|
inline InlineCacheState ic_state(); // Only valid for IC stubs.
|
|
inline ExtraICState extra_ic_state(); // Only valid for IC stubs.
|
|
|
|
inline StubType type(); // Only valid for monomorphic IC stubs.
|
|
|
|
// Testers for IC stub kinds.
|
|
inline bool is_inline_cache_stub();
|
|
inline bool is_debug_stub();
|
|
inline bool is_handler() { return kind() == HANDLER; }
|
|
inline bool is_load_stub() { return kind() == LOAD_IC; }
|
|
inline bool is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; }
|
|
inline bool is_store_stub() { return kind() == STORE_IC; }
|
|
inline bool is_keyed_store_stub() { return kind() == KEYED_STORE_IC; }
|
|
inline bool is_binary_op_stub() { return kind() == BINARY_OP_IC; }
|
|
inline bool is_compare_ic_stub() { return kind() == COMPARE_IC; }
|
|
inline bool is_compare_nil_ic_stub() { return kind() == COMPARE_NIL_IC; }
|
|
inline bool is_to_boolean_ic_stub() { return kind() == TO_BOOLEAN_IC; }
|
|
inline bool is_keyed_stub();
|
|
inline bool is_optimized_code() { return kind() == OPTIMIZED_FUNCTION; }
|
|
|
|
inline void set_raw_kind_specific_flags1(int value);
|
|
inline void set_raw_kind_specific_flags2(int value);
|
|
|
|
// [major_key]: For kind STUB or BINARY_OP_IC, the major key.
|
|
inline int major_key();
|
|
inline void set_major_key(int value);
|
|
inline bool has_major_key();
|
|
|
|
// For kind STUB or ICs, tells whether or not a code object was generated by
|
|
// the optimizing compiler (but it may not be an optimized function).
|
|
bool is_crankshafted();
|
|
inline void set_is_crankshafted(bool value);
|
|
|
|
// [optimizable]: For FUNCTION kind, tells if it is optimizable.
|
|
inline bool optimizable();
|
|
inline void set_optimizable(bool value);
|
|
|
|
// [has_deoptimization_support]: For FUNCTION kind, tells if it has
|
|
// deoptimization support.
|
|
inline bool has_deoptimization_support();
|
|
inline void set_has_deoptimization_support(bool value);
|
|
|
|
// [has_debug_break_slots]: For FUNCTION kind, tells if it has
|
|
// been compiled with debug break slots.
|
|
inline bool has_debug_break_slots();
|
|
inline void set_has_debug_break_slots(bool value);
|
|
|
|
// [compiled_with_optimizing]: For FUNCTION kind, tells if it has
|
|
// been compiled with IsOptimizing set to true.
|
|
inline bool is_compiled_optimizable();
|
|
inline void set_compiled_optimizable(bool value);
|
|
|
|
// [allow_osr_at_loop_nesting_level]: For FUNCTION kind, tells for
|
|
// how long the function has been marked for OSR and therefore which
|
|
// level of loop nesting we are willing to do on-stack replacement
|
|
// for.
|
|
inline void set_allow_osr_at_loop_nesting_level(int level);
|
|
inline int allow_osr_at_loop_nesting_level();
|
|
|
|
// [profiler_ticks]: For FUNCTION kind, tells for how many profiler ticks
|
|
// the code object was seen on the stack with no IC patching going on.
|
|
inline int profiler_ticks();
|
|
inline void set_profiler_ticks(int ticks);
|
|
|
|
// [stack_slots]: For kind OPTIMIZED_FUNCTION, the number of stack slots
|
|
// reserved in the code prologue.
|
|
inline unsigned stack_slots();
|
|
inline void set_stack_slots(unsigned slots);
|
|
|
|
// [safepoint_table_start]: For kind OPTIMIZED_CODE, the offset in
|
|
// the instruction stream where the safepoint table starts.
|
|
inline unsigned safepoint_table_offset();
|
|
inline void set_safepoint_table_offset(unsigned offset);
|
|
|
|
// [back_edge_table_start]: For kind FUNCTION, the offset in the
|
|
// instruction stream where the back edge table starts.
|
|
inline unsigned back_edge_table_offset();
|
|
inline void set_back_edge_table_offset(unsigned offset);
|
|
|
|
inline bool back_edges_patched_for_osr();
|
|
inline void set_back_edges_patched_for_osr(bool value);
|
|
|
|
// [to_boolean_foo]: For kind TO_BOOLEAN_IC tells what state the stub is in.
|
|
inline byte to_boolean_state();
|
|
|
|
// [has_function_cache]: For kind STUB tells whether there is a function
|
|
// cache is passed to the stub.
|
|
inline bool has_function_cache();
|
|
inline void set_has_function_cache(bool flag);
|
|
|
|
|
|
// [marked_for_deoptimization]: For kind OPTIMIZED_FUNCTION tells whether
|
|
// the code is going to be deoptimized because of dead embedded maps.
|
|
inline bool marked_for_deoptimization();
|
|
inline void set_marked_for_deoptimization(bool flag);
|
|
|
|
// [constant_pool]: The constant pool for this function.
|
|
inline ConstantPoolArray* constant_pool();
|
|
inline void set_constant_pool(Object* constant_pool);
|
|
|
|
// Get the safepoint entry for the given pc.
|
|
SafepointEntry GetSafepointEntry(Address pc);
|
|
|
|
// Find an object in a stub with a specified map
|
|
Object* FindNthObject(int n, Map* match_map);
|
|
void ReplaceNthObject(int n, Map* match_map, Object* replace_with);
|
|
|
|
// Find the first allocation site in an IC stub.
|
|
AllocationSite* FindFirstAllocationSite();
|
|
|
|
// Find the first map in an IC stub.
|
|
Map* FindFirstMap();
|
|
void FindAllMaps(MapHandleList* maps);
|
|
void FindAllTypes(TypeHandleList* types);
|
|
void ReplaceFirstMap(Map* replace);
|
|
|
|
// Find the first handler in an IC stub.
|
|
Code* FindFirstHandler();
|
|
|
|
// Find |length| handlers and put them into |code_list|. Returns false if not
|
|
// enough handlers can be found.
|
|
bool FindHandlers(CodeHandleList* code_list, int length = -1);
|
|
|
|
// Find the first name in an IC stub.
|
|
Name* FindFirstName();
|
|
|
|
void ReplaceNthCell(int n, Cell* replace_with);
|
|
|
|
// The entire code object including its header is copied verbatim to the
|
|
// snapshot so that it can be written in one, fast, memcpy during
|
|
// deserialization. The deserializer will overwrite some pointers, rather
|
|
// like a runtime linker, but the random allocation addresses used in the
|
|
// mksnapshot process would still be present in the unlinked snapshot data,
|
|
// which would make snapshot production non-reproducible. This method wipes
|
|
// out the to-be-overwritten header data for reproducible snapshots.
|
|
inline void WipeOutHeader();
|
|
|
|
// Flags operations.
|
|
static inline Flags ComputeFlags(
|
|
Kind kind,
|
|
InlineCacheState ic_state = UNINITIALIZED,
|
|
ExtraICState extra_ic_state = kNoExtraICState,
|
|
StubType type = NORMAL,
|
|
InlineCacheHolderFlag holder = OWN_MAP);
|
|
|
|
static inline Flags ComputeMonomorphicFlags(
|
|
Kind kind,
|
|
ExtraICState extra_ic_state = kNoExtraICState,
|
|
InlineCacheHolderFlag holder = OWN_MAP,
|
|
StubType type = NORMAL);
|
|
|
|
static inline Flags ComputeHandlerFlags(
|
|
Kind handler_kind,
|
|
StubType type = NORMAL,
|
|
InlineCacheHolderFlag holder = OWN_MAP);
|
|
|
|
static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
|
|
static inline StubType ExtractTypeFromFlags(Flags flags);
|
|
static inline Kind ExtractKindFromFlags(Flags flags);
|
|
static inline InlineCacheHolderFlag ExtractCacheHolderFromFlags(Flags flags);
|
|
static inline ExtraICState ExtractExtraICStateFromFlags(Flags flags);
|
|
|
|
static inline Flags RemoveTypeFromFlags(Flags flags);
|
|
|
|
// Convert a target address into a code object.
|
|
static inline Code* GetCodeFromTargetAddress(Address address);
|
|
|
|
// Convert an entry address into an object.
|
|
static inline Object* GetObjectFromEntryAddress(Address location_of_address);
|
|
|
|
// Returns the address of the first instruction.
|
|
inline byte* instruction_start();
|
|
|
|
// Returns the address right after the last instruction.
|
|
inline byte* instruction_end();
|
|
|
|
// Returns the size of the instructions, padding, and relocation information.
|
|
inline int body_size();
|
|
|
|
// Returns the address of the first relocation info (read backwards!).
|
|
inline byte* relocation_start();
|
|
|
|
// Code entry point.
|
|
inline byte* entry();
|
|
|
|
// Returns true if pc is inside this object's instructions.
|
|
inline bool contains(byte* pc);
|
|
|
|
// Relocate the code by delta bytes. Called to signal that this code
|
|
// object has been moved by delta bytes.
|
|
void Relocate(intptr_t delta);
|
|
|
|
// Migrate code described by desc.
|
|
void CopyFrom(const CodeDesc& desc);
|
|
|
|
// Returns the object size for a given body (used for allocation).
|
|
static int SizeFor(int body_size) {
|
|
ASSERT_SIZE_TAG_ALIGNED(body_size);
|
|
return RoundUp(kHeaderSize + body_size, kCodeAlignment);
|
|
}
|
|
|
|
// Calculate the size of the code object to report for log events. This takes
|
|
// the layout of the code object into account.
|
|
int ExecutableSize() {
|
|
// Check that the assumptions about the layout of the code object holds.
|
|
ASSERT_EQ(static_cast<int>(instruction_start() - address()),
|
|
Code::kHeaderSize);
|
|
return instruction_size() + Code::kHeaderSize;
|
|
}
|
|
|
|
// Locating source position.
|
|
int SourcePosition(Address pc);
|
|
int SourceStatementPosition(Address pc);
|
|
|
|
// Casting.
|
|
static inline Code* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
int CodeSize() { return SizeFor(body_size()); }
|
|
inline void CodeIterateBody(ObjectVisitor* v);
|
|
|
|
template<typename StaticVisitor>
|
|
inline void CodeIterateBody(Heap* heap);
|
|
|
|
DECLARE_PRINTER(Code)
|
|
DECLARE_VERIFIER(Code)
|
|
|
|
void ClearInlineCaches();
|
|
void ClearInlineCaches(Kind kind);
|
|
|
|
BailoutId TranslatePcOffsetToAstId(uint32_t pc_offset);
|
|
uint32_t TranslateAstIdToPcOffset(BailoutId ast_id);
|
|
|
|
#define DECLARE_CODE_AGE_ENUM(X) k##X##CodeAge,
|
|
enum Age {
|
|
kNotExecutedCodeAge = -2,
|
|
kExecutedOnceCodeAge = -1,
|
|
kNoAgeCodeAge = 0,
|
|
CODE_AGE_LIST(DECLARE_CODE_AGE_ENUM)
|
|
kAfterLastCodeAge,
|
|
kFirstCodeAge = kNotExecutedCodeAge,
|
|
kLastCodeAge = kAfterLastCodeAge - 1,
|
|
kCodeAgeCount = kAfterLastCodeAge - kNotExecutedCodeAge - 1,
|
|
kIsOldCodeAge = kSexagenarianCodeAge,
|
|
kPreAgedCodeAge = kIsOldCodeAge - 1
|
|
};
|
|
#undef DECLARE_CODE_AGE_ENUM
|
|
|
|
// Code aging. Indicates how many full GCs this code has survived without
|
|
// being entered through the prologue. Used to determine when it is
|
|
// relatively safe to flush this code object and replace it with the lazy
|
|
// compilation stub.
|
|
static void MakeCodeAgeSequenceYoung(byte* sequence, Isolate* isolate);
|
|
static void MarkCodeAsExecuted(byte* sequence, Isolate* isolate);
|
|
void MakeOlder(MarkingParity);
|
|
static bool IsYoungSequence(byte* sequence);
|
|
bool IsOld();
|
|
Age GetAge();
|
|
// Gets the raw code age, including psuedo code-age values such as
|
|
// kNotExecutedCodeAge and kExecutedOnceCodeAge.
|
|
Age GetRawAge();
|
|
static inline Code* GetPreAgedCodeAgeStub(Isolate* isolate) {
|
|
return GetCodeAgeStub(isolate, kNotExecutedCodeAge, NO_MARKING_PARITY);
|
|
}
|
|
|
|
void PrintDeoptLocation(FILE* out, int bailout_id);
|
|
bool CanDeoptAt(Address pc);
|
|
|
|
#ifdef VERIFY_HEAP
|
|
void VerifyEmbeddedObjectsDependency();
|
|
#endif
|
|
|
|
inline bool IsWeakObject(Object* object) {
|
|
return is_optimized_code() && IsWeakObjectInOptimizedCode(object);
|
|
}
|
|
|
|
inline bool IsWeakObjectInOptimizedCode(Object* object);
|
|
|
|
// Max loop nesting marker used to postpose OSR. We don't take loop
|
|
// nesting that is deeper than 5 levels into account.
|
|
static const int kMaxLoopNestingMarker = 6;
|
|
|
|
// Layout description.
|
|
static const int kInstructionSizeOffset = HeapObject::kHeaderSize;
|
|
static const int kRelocationInfoOffset = kInstructionSizeOffset + kIntSize;
|
|
static const int kHandlerTableOffset = kRelocationInfoOffset + kPointerSize;
|
|
static const int kDeoptimizationDataOffset =
|
|
kHandlerTableOffset + kPointerSize;
|
|
static const int kTypeFeedbackInfoOffset =
|
|
kDeoptimizationDataOffset + kPointerSize;
|
|
static const int kNextCodeLinkOffset = kTypeFeedbackInfoOffset; // Shared.
|
|
static const int kGCMetadataOffset = kTypeFeedbackInfoOffset + kPointerSize;
|
|
static const int kICAgeOffset =
|
|
kGCMetadataOffset + kPointerSize;
|
|
static const int kFlagsOffset = kICAgeOffset + kIntSize;
|
|
static const int kKindSpecificFlags1Offset = kFlagsOffset + kIntSize;
|
|
static const int kKindSpecificFlags2Offset =
|
|
kKindSpecificFlags1Offset + kIntSize;
|
|
// Note: We might be able to squeeze this into the flags above.
|
|
static const int kPrologueOffset = kKindSpecificFlags2Offset + kIntSize;
|
|
static const int kConstantPoolOffset = kPrologueOffset + kPointerSize;
|
|
|
|
static const int kHeaderPaddingStart = kConstantPoolOffset + kIntSize;
|
|
|
|
// Add padding to align the instruction start following right after
|
|
// the Code object header.
|
|
static const int kHeaderSize =
|
|
(kHeaderPaddingStart + kCodeAlignmentMask) & ~kCodeAlignmentMask;
|
|
|
|
// Byte offsets within kKindSpecificFlags1Offset.
|
|
static const int kOptimizableOffset = kKindSpecificFlags1Offset;
|
|
|
|
static const int kFullCodeFlags = kOptimizableOffset + 1;
|
|
class FullCodeFlagsHasDeoptimizationSupportField:
|
|
public BitField<bool, 0, 1> {}; // NOLINT
|
|
class FullCodeFlagsHasDebugBreakSlotsField: public BitField<bool, 1, 1> {};
|
|
class FullCodeFlagsIsCompiledOptimizable: public BitField<bool, 2, 1> {};
|
|
|
|
static const int kAllowOSRAtLoopNestingLevelOffset = kFullCodeFlags + 1;
|
|
static const int kProfilerTicksOffset = kAllowOSRAtLoopNestingLevelOffset + 1;
|
|
|
|
// Flags layout. BitField<type, shift, size>.
|
|
class ICStateField: public BitField<InlineCacheState, 0, 3> {};
|
|
class TypeField: public BitField<StubType, 3, 1> {};
|
|
class CacheHolderField: public BitField<InlineCacheHolderFlag, 5, 1> {};
|
|
class KindField: public BitField<Kind, 6, 4> {};
|
|
// TODO(bmeurer): Bit 10 is available for free use. :-)
|
|
class ExtraICStateField: public BitField<ExtraICState, 11,
|
|
PlatformSmiTagging::kSmiValueSize - 11 + 1> {}; // NOLINT
|
|
|
|
// KindSpecificFlags1 layout (STUB and OPTIMIZED_FUNCTION)
|
|
static const int kStackSlotsFirstBit = 0;
|
|
static const int kStackSlotsBitCount = 24;
|
|
static const int kHasFunctionCacheFirstBit =
|
|
kStackSlotsFirstBit + kStackSlotsBitCount;
|
|
static const int kHasFunctionCacheBitCount = 1;
|
|
static const int kMarkedForDeoptimizationFirstBit =
|
|
kStackSlotsFirstBit + kStackSlotsBitCount + 1;
|
|
static const int kMarkedForDeoptimizationBitCount = 1;
|
|
|
|
STATIC_ASSERT(kStackSlotsFirstBit + kStackSlotsBitCount <= 32);
|
|
STATIC_ASSERT(kHasFunctionCacheFirstBit + kHasFunctionCacheBitCount <= 32);
|
|
STATIC_ASSERT(kMarkedForDeoptimizationFirstBit +
|
|
kMarkedForDeoptimizationBitCount <= 32);
|
|
|
|
class StackSlotsField: public BitField<int,
|
|
kStackSlotsFirstBit, kStackSlotsBitCount> {}; // NOLINT
|
|
class HasFunctionCacheField: public BitField<bool,
|
|
kHasFunctionCacheFirstBit, kHasFunctionCacheBitCount> {}; // NOLINT
|
|
class MarkedForDeoptimizationField: public BitField<bool,
|
|
kMarkedForDeoptimizationFirstBit,
|
|
kMarkedForDeoptimizationBitCount> {}; // NOLINT
|
|
|
|
// KindSpecificFlags2 layout (ALL)
|
|
static const int kIsCrankshaftedBit = 0;
|
|
class IsCrankshaftedField: public BitField<bool,
|
|
kIsCrankshaftedBit, 1> {}; // NOLINT
|
|
|
|
// KindSpecificFlags2 layout (STUB and OPTIMIZED_FUNCTION)
|
|
static const int kStubMajorKeyFirstBit = kIsCrankshaftedBit + 1;
|
|
static const int kSafepointTableOffsetFirstBit =
|
|
kStubMajorKeyFirstBit + kStubMajorKeyBits;
|
|
static const int kSafepointTableOffsetBitCount = 24;
|
|
|
|
STATIC_ASSERT(kStubMajorKeyFirstBit + kStubMajorKeyBits <= 32);
|
|
STATIC_ASSERT(kSafepointTableOffsetFirstBit +
|
|
kSafepointTableOffsetBitCount <= 32);
|
|
STATIC_ASSERT(1 + kStubMajorKeyBits +
|
|
kSafepointTableOffsetBitCount <= 32);
|
|
|
|
class SafepointTableOffsetField: public BitField<int,
|
|
kSafepointTableOffsetFirstBit,
|
|
kSafepointTableOffsetBitCount> {}; // NOLINT
|
|
class StubMajorKeyField: public BitField<int,
|
|
kStubMajorKeyFirstBit, kStubMajorKeyBits> {}; // NOLINT
|
|
|
|
// KindSpecificFlags2 layout (FUNCTION)
|
|
class BackEdgeTableOffsetField: public BitField<int,
|
|
kIsCrankshaftedBit + 1, 29> {}; // NOLINT
|
|
class BackEdgesPatchedForOSRField: public BitField<bool,
|
|
kIsCrankshaftedBit + 1 + 29, 1> {}; // NOLINT
|
|
|
|
static const int kArgumentsBits = 16;
|
|
static const int kMaxArguments = (1 << kArgumentsBits) - 1;
|
|
|
|
// This constant should be encodable in an ARM instruction.
|
|
static const int kFlagsNotUsedInLookup =
|
|
TypeField::kMask | CacheHolderField::kMask;
|
|
|
|
private:
|
|
friend class RelocIterator;
|
|
friend class Deoptimizer; // For FindCodeAgeSequence.
|
|
|
|
void ClearInlineCaches(Kind* kind);
|
|
|
|
// Code aging
|
|
byte* FindCodeAgeSequence();
|
|
static void GetCodeAgeAndParity(Code* code, Age* age,
|
|
MarkingParity* parity);
|
|
static void GetCodeAgeAndParity(byte* sequence, Age* age,
|
|
MarkingParity* parity);
|
|
static Code* GetCodeAgeStub(Isolate* isolate, Age age, MarkingParity parity);
|
|
|
|
// Code aging -- platform-specific
|
|
static void PatchPlatformCodeAge(Isolate* isolate,
|
|
byte* sequence, Age age,
|
|
MarkingParity parity);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
|
|
};
|
|
|
|
|
|
class CompilationInfo;
|
|
|
|
// This class describes the layout of dependent codes array of a map. The
|
|
// array is partitioned into several groups of dependent codes. Each group
|
|
// contains codes with the same dependency on the map. The array has the
|
|
// following layout for n dependency groups:
|
|
//
|
|
// +----+----+-----+----+---------+----------+-----+---------+-----------+
|
|
// | C1 | C2 | ... | Cn | group 1 | group 2 | ... | group n | undefined |
|
|
// +----+----+-----+----+---------+----------+-----+---------+-----------+
|
|
//
|
|
// The first n elements are Smis, each of them specifies the number of codes
|
|
// in the corresponding group. The subsequent elements contain grouped code
|
|
// objects. The suffix of the array can be filled with the undefined value if
|
|
// the number of codes is less than the length of the array. The order of the
|
|
// code objects within a group is not preserved.
|
|
//
|
|
// All code indexes used in the class are counted starting from the first
|
|
// code object of the first group. In other words, code index 0 corresponds
|
|
// to array index n = kCodesStartIndex.
|
|
|
|
class DependentCode: public FixedArray {
|
|
public:
|
|
enum DependencyGroup {
|
|
// Group of code that weakly embed this map and depend on being
|
|
// deoptimized when the map is garbage collected.
|
|
kWeaklyEmbeddedGroup,
|
|
// Group of code that embed a transition to this map, and depend on being
|
|
// deoptimized when the transition is replaced by a new version.
|
|
kTransitionGroup,
|
|
// Group of code that omit run-time prototype checks for prototypes
|
|
// described by this map. The group is deoptimized whenever an object
|
|
// described by this map changes shape (and transitions to a new map),
|
|
// possibly invalidating the assumptions embedded in the code.
|
|
kPrototypeCheckGroup,
|
|
// Group of code that depends on elements not being added to objects with
|
|
// this map.
|
|
kElementsCantBeAddedGroup,
|
|
// Group of code that depends on global property values in property cells
|
|
// not being changed.
|
|
kPropertyCellChangedGroup,
|
|
// Group of code that depends on tenuring information in AllocationSites
|
|
// not being changed.
|
|
kAllocationSiteTenuringChangedGroup,
|
|
// Group of code that depends on element transition information in
|
|
// AllocationSites not being changed.
|
|
kAllocationSiteTransitionChangedGroup,
|
|
kGroupCount = kAllocationSiteTransitionChangedGroup + 1
|
|
};
|
|
|
|
// Array for holding the index of the first code object of each group.
|
|
// The last element stores the total number of code objects.
|
|
class GroupStartIndexes {
|
|
public:
|
|
explicit GroupStartIndexes(DependentCode* entries);
|
|
void Recompute(DependentCode* entries);
|
|
int at(int i) { return start_indexes_[i]; }
|
|
int number_of_entries() { return start_indexes_[kGroupCount]; }
|
|
private:
|
|
int start_indexes_[kGroupCount + 1];
|
|
};
|
|
|
|
bool Contains(DependencyGroup group, Code* code);
|
|
static Handle<DependentCode> Insert(Handle<DependentCode> entries,
|
|
DependencyGroup group,
|
|
Handle<Object> object);
|
|
void UpdateToFinishedCode(DependencyGroup group,
|
|
CompilationInfo* info,
|
|
Code* code);
|
|
void RemoveCompilationInfo(DependentCode::DependencyGroup group,
|
|
CompilationInfo* info);
|
|
|
|
void DeoptimizeDependentCodeGroup(Isolate* isolate,
|
|
DependentCode::DependencyGroup group);
|
|
|
|
bool MarkCodeForDeoptimization(Isolate* isolate,
|
|
DependentCode::DependencyGroup group);
|
|
|
|
// The following low-level accessors should only be used by this class
|
|
// and the mark compact collector.
|
|
inline int number_of_entries(DependencyGroup group);
|
|
inline void set_number_of_entries(DependencyGroup group, int value);
|
|
inline bool is_code_at(int i);
|
|
inline Code* code_at(int i);
|
|
inline CompilationInfo* compilation_info_at(int i);
|
|
inline void set_object_at(int i, Object* object);
|
|
inline Object** slot_at(int i);
|
|
inline Object* object_at(int i);
|
|
inline void clear_at(int i);
|
|
inline void copy(int from, int to);
|
|
static inline DependentCode* cast(Object* object);
|
|
|
|
static DependentCode* ForObject(Handle<HeapObject> object,
|
|
DependencyGroup group);
|
|
|
|
private:
|
|
// Make a room at the end of the given group by moving out the first
|
|
// code objects of the subsequent groups.
|
|
inline void ExtendGroup(DependencyGroup group);
|
|
static const int kCodesStartIndex = kGroupCount;
|
|
};
|
|
|
|
|
|
// All heap objects have a Map that describes their structure.
|
|
// A Map contains information about:
|
|
// - Size information about the object
|
|
// - How to iterate over an object (for garbage collection)
|
|
class Map: public HeapObject {
|
|
public:
|
|
// Instance size.
|
|
// Size in bytes or kVariableSizeSentinel if instances do not have
|
|
// a fixed size.
|
|
inline int instance_size();
|
|
inline void set_instance_size(int value);
|
|
|
|
// Count of properties allocated in the object.
|
|
inline int inobject_properties();
|
|
inline void set_inobject_properties(int value);
|
|
|
|
// Count of property fields pre-allocated in the object when first allocated.
|
|
inline int pre_allocated_property_fields();
|
|
inline void set_pre_allocated_property_fields(int value);
|
|
|
|
// Instance type.
|
|
inline InstanceType instance_type();
|
|
inline void set_instance_type(InstanceType value);
|
|
|
|
// Tells how many unused property fields are available in the
|
|
// instance (only used for JSObject in fast mode).
|
|
inline int unused_property_fields();
|
|
inline void set_unused_property_fields(int value);
|
|
|
|
// Bit field.
|
|
inline byte bit_field();
|
|
inline void set_bit_field(byte value);
|
|
|
|
// Bit field 2.
|
|
inline byte bit_field2();
|
|
inline void set_bit_field2(byte value);
|
|
|
|
// Bit field 3.
|
|
inline uint32_t bit_field3();
|
|
inline void set_bit_field3(uint32_t bits);
|
|
|
|
class EnumLengthBits: public BitField<int,
|
|
0, kDescriptorIndexBitCount> {}; // NOLINT
|
|
class NumberOfOwnDescriptorsBits: public BitField<int,
|
|
kDescriptorIndexBitCount, kDescriptorIndexBitCount> {}; // NOLINT
|
|
STATIC_ASSERT(kDescriptorIndexBitCount + kDescriptorIndexBitCount == 20);
|
|
class IsShared: public BitField<bool, 20, 1> {};
|
|
class FunctionWithPrototype: public BitField<bool, 21, 1> {};
|
|
class DictionaryMap: public BitField<bool, 22, 1> {};
|
|
class OwnsDescriptors: public BitField<bool, 23, 1> {};
|
|
class HasInstanceCallHandler: public BitField<bool, 24, 1> {};
|
|
class Deprecated: public BitField<bool, 25, 1> {};
|
|
class IsFrozen: public BitField<bool, 26, 1> {};
|
|
class IsUnstable: public BitField<bool, 27, 1> {};
|
|
class IsMigrationTarget: public BitField<bool, 28, 1> {};
|
|
|
|
// Tells whether the object in the prototype property will be used
|
|
// for instances created from this function. If the prototype
|
|
// property is set to a value that is not a JSObject, the prototype
|
|
// property will not be used to create instances of the function.
|
|
// See ECMA-262, 13.2.2.
|
|
inline void set_non_instance_prototype(bool value);
|
|
inline bool has_non_instance_prototype();
|
|
|
|
// Tells whether function has special prototype property. If not, prototype
|
|
// property will not be created when accessed (will return undefined),
|
|
// and construction from this function will not be allowed.
|
|
inline void set_function_with_prototype(bool value);
|
|
inline bool function_with_prototype();
|
|
|
|
// Tells whether the instance with this map should be ignored by the
|
|
// Object.getPrototypeOf() function and the __proto__ accessor.
|
|
inline void set_is_hidden_prototype() {
|
|
set_bit_field(bit_field() | (1 << kIsHiddenPrototype));
|
|
}
|
|
|
|
inline bool is_hidden_prototype() {
|
|
return ((1 << kIsHiddenPrototype) & bit_field()) != 0;
|
|
}
|
|
|
|
// Records and queries whether the instance has a named interceptor.
|
|
inline void set_has_named_interceptor() {
|
|
set_bit_field(bit_field() | (1 << kHasNamedInterceptor));
|
|
}
|
|
|
|
inline bool has_named_interceptor() {
|
|
return ((1 << kHasNamedInterceptor) & bit_field()) != 0;
|
|
}
|
|
|
|
// Records and queries whether the instance has an indexed interceptor.
|
|
inline void set_has_indexed_interceptor() {
|
|
set_bit_field(bit_field() | (1 << kHasIndexedInterceptor));
|
|
}
|
|
|
|
inline bool has_indexed_interceptor() {
|
|
return ((1 << kHasIndexedInterceptor) & bit_field()) != 0;
|
|
}
|
|
|
|
// Tells whether the instance is undetectable.
|
|
// An undetectable object is a special class of JSObject: 'typeof' operator
|
|
// returns undefined, ToBoolean returns false. Otherwise it behaves like
|
|
// a normal JS object. It is useful for implementing undetectable
|
|
// document.all in Firefox & Safari.
|
|
// See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
|
|
inline void set_is_undetectable() {
|
|
set_bit_field(bit_field() | (1 << kIsUndetectable));
|
|
}
|
|
|
|
inline bool is_undetectable() {
|
|
return ((1 << kIsUndetectable) & bit_field()) != 0;
|
|
}
|
|
|
|
// Tells whether the instance has a call-as-function handler.
|
|
inline void set_is_observed() {
|
|
set_bit_field(bit_field() | (1 << kIsObserved));
|
|
}
|
|
|
|
inline bool is_observed() {
|
|
return ((1 << kIsObserved) & bit_field()) != 0;
|
|
}
|
|
|
|
inline void set_is_extensible(bool value);
|
|
inline bool is_extensible();
|
|
|
|
inline void set_elements_kind(ElementsKind elements_kind) {
|
|
ASSERT(elements_kind < kElementsKindCount);
|
|
ASSERT(kElementsKindCount <= (1 << kElementsKindBitCount));
|
|
set_bit_field2((bit_field2() & ~kElementsKindMask) |
|
|
(elements_kind << kElementsKindShift));
|
|
ASSERT(this->elements_kind() == elements_kind);
|
|
}
|
|
|
|
inline ElementsKind elements_kind() {
|
|
return static_cast<ElementsKind>(
|
|
(bit_field2() & kElementsKindMask) >> kElementsKindShift);
|
|
}
|
|
|
|
// Tells whether the instance has fast elements that are only Smis.
|
|
inline bool has_fast_smi_elements() {
|
|
return IsFastSmiElementsKind(elements_kind());
|
|
}
|
|
|
|
// Tells whether the instance has fast elements.
|
|
inline bool has_fast_object_elements() {
|
|
return IsFastObjectElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_fast_smi_or_object_elements() {
|
|
return IsFastSmiOrObjectElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_fast_double_elements() {
|
|
return IsFastDoubleElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_fast_elements() {
|
|
return IsFastElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_sloppy_arguments_elements() {
|
|
return elements_kind() == SLOPPY_ARGUMENTS_ELEMENTS;
|
|
}
|
|
|
|
inline bool has_external_array_elements() {
|
|
return IsExternalArrayElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_fixed_typed_array_elements() {
|
|
return IsFixedTypedArrayElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_dictionary_elements() {
|
|
return IsDictionaryElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_slow_elements_kind() {
|
|
return elements_kind() == DICTIONARY_ELEMENTS
|
|
|| elements_kind() == SLOPPY_ARGUMENTS_ELEMENTS;
|
|
}
|
|
|
|
static bool IsValidElementsTransition(ElementsKind from_kind,
|
|
ElementsKind to_kind);
|
|
|
|
// Returns true if the current map doesn't have DICTIONARY_ELEMENTS but if a
|
|
// map with DICTIONARY_ELEMENTS was found in the prototype chain.
|
|
bool DictionaryElementsInPrototypeChainOnly();
|
|
|
|
inline bool HasTransitionArray();
|
|
inline bool HasElementsTransition();
|
|
inline Map* elements_transition_map();
|
|
MUST_USE_RESULT inline MaybeObject* set_elements_transition_map(
|
|
Map* transitioned_map);
|
|
inline void SetTransition(int transition_index, Map* target);
|
|
inline Map* GetTransition(int transition_index);
|
|
|
|
static Handle<TransitionArray> AddTransition(Handle<Map> map,
|
|
Handle<Name> key,
|
|
Handle<Map> target,
|
|
SimpleTransitionFlag flag);
|
|
|
|
MUST_USE_RESULT inline MaybeObject* AddTransition(Name* key,
|
|
Map* target,
|
|
SimpleTransitionFlag flag);
|
|
DECL_ACCESSORS(transitions, TransitionArray)
|
|
inline void ClearTransitions(Heap* heap,
|
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
|
|
void DeprecateTransitionTree();
|
|
void DeprecateTarget(Name* key, DescriptorArray* new_descriptors);
|
|
|
|
Map* FindRootMap();
|
|
Map* FindUpdatedMap(int verbatim, int length, DescriptorArray* descriptors);
|
|
Map* FindLastMatchMap(int verbatim, int length, DescriptorArray* descriptors);
|
|
|
|
inline int GetInObjectPropertyOffset(int index);
|
|
|
|
int NumberOfFields();
|
|
|
|
bool InstancesNeedRewriting(Map* target,
|
|
int target_number_of_fields,
|
|
int target_inobject,
|
|
int target_unused);
|
|
static Handle<Map> GeneralizeAllFieldRepresentations(
|
|
Handle<Map> map,
|
|
Representation new_representation);
|
|
static Handle<Map> GeneralizeRepresentation(
|
|
Handle<Map> map,
|
|
int modify_index,
|
|
Representation new_representation,
|
|
StoreMode store_mode);
|
|
static Handle<Map> CopyGeneralizeAllRepresentations(
|
|
Handle<Map> map,
|
|
int modify_index,
|
|
StoreMode store_mode,
|
|
PropertyAttributes attributes,
|
|
const char* reason);
|
|
|
|
void PrintGeneralization(FILE* file,
|
|
const char* reason,
|
|
int modify_index,
|
|
int split,
|
|
int descriptors,
|
|
bool constant_to_field,
|
|
Representation old_representation,
|
|
Representation new_representation);
|
|
|
|
// Returns the constructor name (the name (possibly, inferred name) of the
|
|
// function that was used to instantiate the object).
|
|
String* constructor_name();
|
|
|
|
// Tells whether the map is attached to SharedFunctionInfo
|
|
// (for inobject slack tracking).
|
|
inline void set_attached_to_shared_function_info(bool value);
|
|
|
|
inline bool attached_to_shared_function_info();
|
|
|
|
// Tells whether the map is shared between objects that may have different
|
|
// behavior. If true, the map should never be modified, instead a clone
|
|
// should be created and modified.
|
|
inline void set_is_shared(bool value);
|
|
inline bool is_shared();
|
|
|
|
// Tells whether the map is used for JSObjects in dictionary mode (ie
|
|
// normalized objects, ie objects for which HasFastProperties returns false).
|
|
// A map can never be used for both dictionary mode and fast mode JSObjects.
|
|
// False by default and for HeapObjects that are not JSObjects.
|
|
inline void set_dictionary_map(bool value);
|
|
inline bool is_dictionary_map();
|
|
|
|
// Tells whether the instance needs security checks when accessing its
|
|
// properties.
|
|
inline void set_is_access_check_needed(bool access_check_needed);
|
|
inline bool is_access_check_needed();
|
|
|
|
// Returns true if map has a non-empty stub code cache.
|
|
inline bool has_code_cache();
|
|
|
|
// [prototype]: implicit prototype object.
|
|
DECL_ACCESSORS(prototype, Object)
|
|
|
|
// [constructor]: points back to the function responsible for this map.
|
|
DECL_ACCESSORS(constructor, Object)
|
|
|
|
// [instance descriptors]: describes the object.
|
|
DECL_ACCESSORS(instance_descriptors, DescriptorArray)
|
|
inline void InitializeDescriptors(DescriptorArray* descriptors);
|
|
|
|
// [stub cache]: contains stubs compiled for this map.
|
|
DECL_ACCESSORS(code_cache, Object)
|
|
|
|
// [dependent code]: list of optimized codes that have this map embedded.
|
|
DECL_ACCESSORS(dependent_code, DependentCode)
|
|
|
|
// [back pointer]: points back to the parent map from which a transition
|
|
// leads to this map. The field overlaps with prototype transitions and the
|
|
// back pointer will be moved into the prototype transitions array if
|
|
// required.
|
|
inline Object* GetBackPointer();
|
|
inline void SetBackPointer(Object* value,
|
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
inline void init_back_pointer(Object* undefined);
|
|
|
|
// [prototype transitions]: cache of prototype transitions.
|
|
// Prototype transition is a transition that happens
|
|
// when we change object's prototype to a new one.
|
|
// Cache format:
|
|
// 0: finger - index of the first free cell in the cache
|
|
// 1: back pointer that overlaps with prototype transitions field.
|
|
// 2 + 2 * i: prototype
|
|
// 3 + 2 * i: target map
|
|
inline FixedArray* GetPrototypeTransitions();
|
|
MUST_USE_RESULT inline MaybeObject* SetPrototypeTransitions(
|
|
FixedArray* prototype_transitions);
|
|
inline bool HasPrototypeTransitions();
|
|
|
|
inline HeapObject* UncheckedPrototypeTransitions();
|
|
inline TransitionArray* unchecked_transition_array();
|
|
|
|
static const int kProtoTransitionHeaderSize = 1;
|
|
static const int kProtoTransitionNumberOfEntriesOffset = 0;
|
|
static const int kProtoTransitionElementsPerEntry = 2;
|
|
static const int kProtoTransitionPrototypeOffset = 0;
|
|
static const int kProtoTransitionMapOffset = 1;
|
|
|
|
inline int NumberOfProtoTransitions() {
|
|
FixedArray* cache = GetPrototypeTransitions();
|
|
if (cache->length() == 0) return 0;
|
|
return
|
|
Smi::cast(cache->get(kProtoTransitionNumberOfEntriesOffset))->value();
|
|
}
|
|
|
|
inline void SetNumberOfProtoTransitions(int value) {
|
|
FixedArray* cache = GetPrototypeTransitions();
|
|
ASSERT(cache->length() != 0);
|
|
cache->set(kProtoTransitionNumberOfEntriesOffset, Smi::FromInt(value));
|
|
}
|
|
|
|
// Lookup in the map's instance descriptors and fill out the result
|
|
// with the given holder if the name is found. The holder may be
|
|
// NULL when this function is used from the compiler.
|
|
inline void LookupDescriptor(JSObject* holder,
|
|
Name* name,
|
|
LookupResult* result);
|
|
|
|
inline void LookupTransition(JSObject* holder,
|
|
Name* name,
|
|
LookupResult* result);
|
|
|
|
inline PropertyDetails GetLastDescriptorDetails();
|
|
|
|
// The size of transition arrays are limited so they do not end up in large
|
|
// object space. Otherwise ClearNonLiveTransitions would leak memory while
|
|
// applying in-place right trimming.
|
|
inline bool CanHaveMoreTransitions();
|
|
|
|
int LastAdded() {
|
|
int number_of_own_descriptors = NumberOfOwnDescriptors();
|
|
ASSERT(number_of_own_descriptors > 0);
|
|
return number_of_own_descriptors - 1;
|
|
}
|
|
|
|
int NumberOfOwnDescriptors() {
|
|
return NumberOfOwnDescriptorsBits::decode(bit_field3());
|
|
}
|
|
|
|
void SetNumberOfOwnDescriptors(int number) {
|
|
ASSERT(number <= instance_descriptors()->number_of_descriptors());
|
|
set_bit_field3(NumberOfOwnDescriptorsBits::update(bit_field3(), number));
|
|
}
|
|
|
|
inline Cell* RetrieveDescriptorsPointer();
|
|
|
|
int EnumLength() {
|
|
return EnumLengthBits::decode(bit_field3());
|
|
}
|
|
|
|
void SetEnumLength(int length) {
|
|
if (length != kInvalidEnumCacheSentinel) {
|
|
ASSERT(length >= 0);
|
|
ASSERT(length == 0 || instance_descriptors()->HasEnumCache());
|
|
ASSERT(length <= NumberOfOwnDescriptors());
|
|
}
|
|
set_bit_field3(EnumLengthBits::update(bit_field3(), length));
|
|
}
|
|
|
|
inline bool owns_descriptors();
|
|
inline void set_owns_descriptors(bool is_shared);
|
|
inline bool has_instance_call_handler();
|
|
inline void set_has_instance_call_handler();
|
|
inline void freeze();
|
|
inline bool is_frozen();
|
|
inline void mark_unstable();
|
|
inline bool is_stable();
|
|
inline void set_migration_target(bool value);
|
|
inline bool is_migration_target();
|
|
inline void deprecate();
|
|
inline bool is_deprecated();
|
|
inline bool CanBeDeprecated();
|
|
// Returns a non-deprecated version of the input. If the input was not
|
|
// deprecated, it is directly returned. Otherwise, the non-deprecated version
|
|
// is found by re-transitioning from the root of the transition tree using the
|
|
// descriptor array of the map. Returns NULL if no updated map is found.
|
|
// This method also applies any pending migrations along the prototype chain.
|
|
static Handle<Map> CurrentMapForDeprecated(Handle<Map> map);
|
|
// Same as above, but does not touch the prototype chain.
|
|
static Handle<Map> CurrentMapForDeprecatedInternal(Handle<Map> map);
|
|
|
|
static Handle<Map> RawCopy(Handle<Map> map, int instance_size);
|
|
MUST_USE_RESULT MaybeObject* RawCopy(int instance_size);
|
|
MUST_USE_RESULT MaybeObject* CopyWithPreallocatedFieldDescriptors();
|
|
static Handle<Map> CopyDropDescriptors(Handle<Map> map);
|
|
MUST_USE_RESULT MaybeObject* CopyDropDescriptors();
|
|
static Handle<Map> CopyReplaceDescriptors(Handle<Map> map,
|
|
Handle<DescriptorArray> descriptors,
|
|
TransitionFlag flag,
|
|
Handle<Name> name);
|
|
MUST_USE_RESULT MaybeObject* CopyReplaceDescriptors(
|
|
DescriptorArray* descriptors,
|
|
TransitionFlag flag,
|
|
Name* name = NULL,
|
|
SimpleTransitionFlag simple_flag = FULL_TRANSITION);
|
|
static Handle<Map> CopyInstallDescriptors(
|
|
Handle<Map> map,
|
|
int new_descriptor,
|
|
Handle<DescriptorArray> descriptors);
|
|
MUST_USE_RESULT MaybeObject* ShareDescriptor(DescriptorArray* descriptors,
|
|
Descriptor* descriptor);
|
|
MUST_USE_RESULT MaybeObject* CopyAddDescriptor(Descriptor* descriptor,
|
|
TransitionFlag flag);
|
|
MUST_USE_RESULT MaybeObject* CopyInsertDescriptor(Descriptor* descriptor,
|
|
TransitionFlag flag);
|
|
MUST_USE_RESULT MaybeObject* CopyReplaceDescriptor(
|
|
DescriptorArray* descriptors,
|
|
Descriptor* descriptor,
|
|
int index,
|
|
TransitionFlag flag);
|
|
MUST_USE_RESULT MaybeObject* AsElementsKind(ElementsKind kind);
|
|
|
|
MUST_USE_RESULT MaybeObject* CopyAsElementsKind(ElementsKind kind,
|
|
TransitionFlag flag);
|
|
|
|
static Handle<Map> CopyForObserved(Handle<Map> map);
|
|
|
|
static Handle<Map> CopyNormalized(Handle<Map> map,
|
|
PropertyNormalizationMode mode,
|
|
NormalizedMapSharingMode sharing);
|
|
|
|
inline void AppendDescriptor(Descriptor* desc,
|
|
const DescriptorArray::WhitenessWitness&);
|
|
|
|
// Returns a copy of the map, with all transitions dropped from the
|
|
// instance descriptors.
|
|
static Handle<Map> Copy(Handle<Map> map);
|
|
MUST_USE_RESULT MaybeObject* Copy();
|
|
|
|
// Returns the next free property index (only valid for FAST MODE).
|
|
int NextFreePropertyIndex();
|
|
|
|
// Returns the number of properties described in instance_descriptors
|
|
// filtering out properties with the specified attributes.
|
|
int NumberOfDescribedProperties(DescriptorFlag which = OWN_DESCRIPTORS,
|
|
PropertyAttributes filter = NONE);
|
|
|
|
// Returns the number of slots allocated for the initial properties
|
|
// backing storage for instances of this map.
|
|
int InitialPropertiesLength() {
|
|
return pre_allocated_property_fields() + unused_property_fields() -
|
|
inobject_properties();
|
|
}
|
|
|
|
// Casting.
|
|
static inline Map* cast(Object* obj);
|
|
|
|
// Locate an accessor in the instance descriptor.
|
|
AccessorDescriptor* FindAccessor(Name* name);
|
|
|
|
// Code cache operations.
|
|
|
|
// Clears the code cache.
|
|
inline void ClearCodeCache(Heap* heap);
|
|
|
|
// Update code cache.
|
|
static void UpdateCodeCache(Handle<Map> map,
|
|
Handle<Name> name,
|
|
Handle<Code> code);
|
|
MUST_USE_RESULT MaybeObject* UpdateCodeCache(Name* name, Code* code);
|
|
|
|
// Extend the descriptor array of the map with the list of descriptors.
|
|
// In case of duplicates, the latest descriptor is used.
|
|
static void AppendCallbackDescriptors(Handle<Map> map,
|
|
Handle<Object> descriptors);
|
|
|
|
static void EnsureDescriptorSlack(Handle<Map> map, int slack);
|
|
|
|
// Returns the found code or undefined if absent.
|
|
Object* FindInCodeCache(Name* name, Code::Flags flags);
|
|
|
|
// Returns the non-negative index of the code object if it is in the
|
|
// cache and -1 otherwise.
|
|
int IndexInCodeCache(Object* name, Code* code);
|
|
|
|
// Removes a code object from the code cache at the given index.
|
|
void RemoveFromCodeCache(Name* name, Code* code, int index);
|
|
|
|
// Set all map transitions from this map to dead maps to null. Also clear
|
|
// back pointers in transition targets so that we do not process this map
|
|
// again while following back pointers.
|
|
void ClearNonLiveTransitions(Heap* heap);
|
|
|
|
// Computes a hash value for this map, to be used in HashTables and such.
|
|
int Hash();
|
|
|
|
bool EquivalentToForTransition(Map* other);
|
|
|
|
// Compares this map to another to see if they describe equivalent objects.
|
|
// If |mode| is set to CLEAR_INOBJECT_PROPERTIES, |other| is treated as if
|
|
// it had exactly zero inobject properties.
|
|
// The "shared" flags of both this map and |other| are ignored.
|
|
bool EquivalentToForNormalization(Map* other, PropertyNormalizationMode mode);
|
|
|
|
// Returns the map that this map transitions to if its elements_kind
|
|
// is changed to |elements_kind|, or NULL if no such map is cached yet.
|
|
// |safe_to_add_transitions| is set to false if adding transitions is not
|
|
// allowed.
|
|
Map* LookupElementsTransitionMap(ElementsKind elements_kind);
|
|
|
|
// Returns the transitioned map for this map with the most generic
|
|
// elements_kind that's found in |candidates|, or null handle if no match is
|
|
// found at all.
|
|
Handle<Map> FindTransitionedMap(MapHandleList* candidates);
|
|
Map* FindTransitionedMap(MapList* candidates);
|
|
|
|
// Zaps the contents of backing data structures. Note that the
|
|
// heap verifier (i.e. VerifyMarkingVisitor) relies on zapping of objects
|
|
// holding weak references when incremental marking is used, because it also
|
|
// iterates over objects that are otherwise unreachable.
|
|
// In general we only want to call these functions in release mode when
|
|
// heap verification is turned on.
|
|
void ZapPrototypeTransitions();
|
|
void ZapTransitions();
|
|
|
|
bool CanTransition() {
|
|
// Only JSObject and subtypes have map transitions and back pointers.
|
|
STATIC_ASSERT(LAST_TYPE == LAST_JS_OBJECT_TYPE);
|
|
return instance_type() >= FIRST_JS_OBJECT_TYPE;
|
|
}
|
|
|
|
bool IsJSObjectMap() {
|
|
return instance_type() >= FIRST_JS_OBJECT_TYPE;
|
|
}
|
|
bool IsJSGlobalProxyMap() {
|
|
return instance_type() == JS_GLOBAL_PROXY_TYPE;
|
|
}
|
|
bool IsJSGlobalObjectMap() {
|
|
return instance_type() == JS_GLOBAL_OBJECT_TYPE;
|
|
}
|
|
bool IsGlobalObjectMap() {
|
|
const InstanceType type = instance_type();
|
|
return type == JS_GLOBAL_OBJECT_TYPE || type == JS_BUILTINS_OBJECT_TYPE;
|
|
}
|
|
|
|
// Fires when the layout of an object with a leaf map changes.
|
|
// This includes adding transitions to the leaf map or changing
|
|
// the descriptor array.
|
|
inline void NotifyLeafMapLayoutChange();
|
|
|
|
inline bool CanOmitMapChecks();
|
|
|
|
void AddDependentCompilationInfo(DependentCode::DependencyGroup group,
|
|
CompilationInfo* info);
|
|
|
|
void AddDependentCode(DependentCode::DependencyGroup group,
|
|
Handle<Code> code);
|
|
|
|
bool IsMapInArrayPrototypeChain();
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(Map)
|
|
DECLARE_VERIFIER(Map)
|
|
|
|
#ifdef VERIFY_HEAP
|
|
void SharedMapVerify();
|
|
void VerifyOmittedMapChecks();
|
|
#endif
|
|
|
|
inline int visitor_id();
|
|
inline void set_visitor_id(int visitor_id);
|
|
|
|
typedef void (*TraverseCallback)(Map* map, void* data);
|
|
|
|
void TraverseTransitionTree(TraverseCallback callback, void* data);
|
|
|
|
// When you set the prototype of an object using the __proto__ accessor you
|
|
// need a new map for the object (the prototype is stored in the map). In
|
|
// order not to multiply maps unnecessarily we store these as transitions in
|
|
// the original map. That way we can transition to the same map if the same
|
|
// prototype is set, rather than creating a new map every time. The
|
|
// transitions are in the form of a map where the keys are prototype objects
|
|
// and the values are the maps the are transitioned to.
|
|
static const int kMaxCachedPrototypeTransitions = 256;
|
|
static Handle<Map> GetPrototypeTransition(Handle<Map> map,
|
|
Handle<Object> prototype);
|
|
static Handle<Map> PutPrototypeTransition(Handle<Map> map,
|
|
Handle<Object> prototype,
|
|
Handle<Map> target_map);
|
|
|
|
static const int kMaxPreAllocatedPropertyFields = 255;
|
|
|
|
// Layout description.
|
|
static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
|
|
static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
|
|
static const int kPrototypeOffset = kInstanceAttributesOffset + kIntSize;
|
|
static const int kConstructorOffset = kPrototypeOffset + kPointerSize;
|
|
// Storage for the transition array is overloaded to directly contain a back
|
|
// pointer if unused. When the map has transitions, the back pointer is
|
|
// transferred to the transition array and accessed through an extra
|
|
// indirection.
|
|
static const int kTransitionsOrBackPointerOffset =
|
|
kConstructorOffset + kPointerSize;
|
|
static const int kDescriptorsOffset =
|
|
kTransitionsOrBackPointerOffset + kPointerSize;
|
|
static const int kCodeCacheOffset = kDescriptorsOffset + kPointerSize;
|
|
static const int kDependentCodeOffset = kCodeCacheOffset + kPointerSize;
|
|
static const int kBitField3Offset = kDependentCodeOffset + kPointerSize;
|
|
static const int kSize = kBitField3Offset + kPointerSize;
|
|
|
|
// Layout of pointer fields. Heap iteration code relies on them
|
|
// being continuously allocated.
|
|
static const int kPointerFieldsBeginOffset = Map::kPrototypeOffset;
|
|
static const int kPointerFieldsEndOffset = kBitField3Offset + kPointerSize;
|
|
|
|
// Byte offsets within kInstanceSizesOffset.
|
|
static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
|
|
static const int kInObjectPropertiesByte = 1;
|
|
static const int kInObjectPropertiesOffset =
|
|
kInstanceSizesOffset + kInObjectPropertiesByte;
|
|
static const int kPreAllocatedPropertyFieldsByte = 2;
|
|
static const int kPreAllocatedPropertyFieldsOffset =
|
|
kInstanceSizesOffset + kPreAllocatedPropertyFieldsByte;
|
|
static const int kVisitorIdByte = 3;
|
|
static const int kVisitorIdOffset = kInstanceSizesOffset + kVisitorIdByte;
|
|
|
|
// Byte offsets within kInstanceAttributesOffset attributes.
|
|
static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
|
|
static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 1;
|
|
static const int kBitFieldOffset = kInstanceAttributesOffset + 2;
|
|
static const int kBitField2Offset = kInstanceAttributesOffset + 3;
|
|
|
|
STATIC_CHECK(kInstanceTypeOffset == Internals::kMapInstanceTypeOffset);
|
|
|
|
// Bit positions for bit field.
|
|
static const int kUnused = 0; // To be used for marking recently used maps.
|
|
static const int kHasNonInstancePrototype = 1;
|
|
static const int kIsHiddenPrototype = 2;
|
|
static const int kHasNamedInterceptor = 3;
|
|
static const int kHasIndexedInterceptor = 4;
|
|
static const int kIsUndetectable = 5;
|
|
static const int kIsObserved = 6;
|
|
static const int kIsAccessCheckNeeded = 7;
|
|
|
|
// Bit positions for bit field 2
|
|
static const int kIsExtensible = 0;
|
|
static const int kStringWrapperSafeForDefaultValueOf = 1;
|
|
static const int kAttachedToSharedFunctionInfo = 2;
|
|
// No bits can be used after kElementsKindFirstBit, they are all reserved for
|
|
// storing ElementKind.
|
|
static const int kElementsKindShift = 3;
|
|
static const int kElementsKindBitCount = 5;
|
|
|
|
// Derived values from bit field 2
|
|
static const int kElementsKindMask = (-1 << kElementsKindShift) &
|
|
((1 << (kElementsKindShift + kElementsKindBitCount)) - 1);
|
|
static const int8_t kMaximumBitField2FastElementValue = static_cast<int8_t>(
|
|
(FAST_ELEMENTS + 1) << Map::kElementsKindShift) - 1;
|
|
static const int8_t kMaximumBitField2FastSmiElementValue =
|
|
static_cast<int8_t>((FAST_SMI_ELEMENTS + 1) <<
|
|
Map::kElementsKindShift) - 1;
|
|
static const int8_t kMaximumBitField2FastHoleyElementValue =
|
|
static_cast<int8_t>((FAST_HOLEY_ELEMENTS + 1) <<
|
|
Map::kElementsKindShift) - 1;
|
|
static const int8_t kMaximumBitField2FastHoleySmiElementValue =
|
|
static_cast<int8_t>((FAST_HOLEY_SMI_ELEMENTS + 1) <<
|
|
Map::kElementsKindShift) - 1;
|
|
|
|
typedef FixedBodyDescriptor<kPointerFieldsBeginOffset,
|
|
kPointerFieldsEndOffset,
|
|
kSize> BodyDescriptor;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
|
|
};
|
|
|
|
|
|
// An abstract superclass, a marker class really, for simple structure classes.
|
|
// It doesn't carry much functionality but allows struct classes to be
|
|
// identified in the type system.
|
|
class Struct: public HeapObject {
|
|
public:
|
|
inline void InitializeBody(int object_size);
|
|
static inline Struct* cast(Object* that);
|
|
};
|
|
|
|
|
|
// A simple one-element struct, useful where smis need to be boxed.
|
|
class Box : public Struct {
|
|
public:
|
|
// [value]: the boxed contents.
|
|
DECL_ACCESSORS(value, Object)
|
|
|
|
static inline Box* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(Box)
|
|
DECLARE_VERIFIER(Box)
|
|
|
|
static const int kValueOffset = HeapObject::kHeaderSize;
|
|
static const int kSize = kValueOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Box);
|
|
};
|
|
|
|
|
|
// Script describes a script which has been added to the VM.
|
|
class Script: public Struct {
|
|
public:
|
|
// Script types.
|
|
enum Type {
|
|
TYPE_NATIVE = 0,
|
|
TYPE_EXTENSION = 1,
|
|
TYPE_NORMAL = 2
|
|
};
|
|
|
|
// Script compilation types.
|
|
enum CompilationType {
|
|
COMPILATION_TYPE_HOST = 0,
|
|
COMPILATION_TYPE_EVAL = 1
|
|
};
|
|
|
|
// Script compilation state.
|
|
enum CompilationState {
|
|
COMPILATION_STATE_INITIAL = 0,
|
|
COMPILATION_STATE_COMPILED = 1
|
|
};
|
|
|
|
// [source]: the script source.
|
|
DECL_ACCESSORS(source, Object)
|
|
|
|
// [name]: the script name.
|
|
DECL_ACCESSORS(name, Object)
|
|
|
|
// [id]: the script id.
|
|
DECL_ACCESSORS(id, Smi)
|
|
|
|
// [line_offset]: script line offset in resource from where it was extracted.
|
|
DECL_ACCESSORS(line_offset, Smi)
|
|
|
|
// [column_offset]: script column offset in resource from where it was
|
|
// extracted.
|
|
DECL_ACCESSORS(column_offset, Smi)
|
|
|
|
// [context_data]: context data for the context this script was compiled in.
|
|
DECL_ACCESSORS(context_data, Object)
|
|
|
|
// [wrapper]: the wrapper cache.
|
|
DECL_ACCESSORS(wrapper, Foreign)
|
|
|
|
// [type]: the script type.
|
|
DECL_ACCESSORS(type, Smi)
|
|
|
|
// [line_ends]: FixedArray of line ends positions.
|
|
DECL_ACCESSORS(line_ends, Object)
|
|
|
|
// [eval_from_shared]: for eval scripts the shared funcion info for the
|
|
// function from which eval was called.
|
|
DECL_ACCESSORS(eval_from_shared, Object)
|
|
|
|
// [eval_from_instructions_offset]: the instruction offset in the code for the
|
|
// function from which eval was called where eval was called.
|
|
DECL_ACCESSORS(eval_from_instructions_offset, Smi)
|
|
|
|
// [flags]: Holds an exciting bitfield.
|
|
DECL_ACCESSORS(flags, Smi)
|
|
|
|
// [compilation_type]: how the the script was compiled. Encoded in the
|
|
// 'flags' field.
|
|
inline CompilationType compilation_type();
|
|
inline void set_compilation_type(CompilationType type);
|
|
|
|
// [compilation_state]: determines whether the script has already been
|
|
// compiled. Encoded in the 'flags' field.
|
|
inline CompilationState compilation_state();
|
|
inline void set_compilation_state(CompilationState state);
|
|
|
|
// [is_shared_cross_origin]: An opaque boolean set by the embedder via
|
|
// ScriptOrigin, and used by the embedder to make decisions about the
|
|
// script's level of privilege. V8 just passes this through. Encoded in
|
|
// the 'flags' field.
|
|
DECL_BOOLEAN_ACCESSORS(is_shared_cross_origin)
|
|
|
|
static inline Script* cast(Object* obj);
|
|
|
|
// If script source is an external string, check that the underlying
|
|
// resource is accessible. Otherwise, always return true.
|
|
inline bool HasValidSource();
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(Script)
|
|
DECLARE_VERIFIER(Script)
|
|
|
|
static const int kSourceOffset = HeapObject::kHeaderSize;
|
|
static const int kNameOffset = kSourceOffset + kPointerSize;
|
|
static const int kLineOffsetOffset = kNameOffset + kPointerSize;
|
|
static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
|
|
static const int kContextOffset = kColumnOffsetOffset + kPointerSize;
|
|
static const int kWrapperOffset = kContextOffset + kPointerSize;
|
|
static const int kTypeOffset = kWrapperOffset + kPointerSize;
|
|
static const int kLineEndsOffset = kTypeOffset + kPointerSize;
|
|
static const int kIdOffset = kLineEndsOffset + kPointerSize;
|
|
static const int kEvalFromSharedOffset = kIdOffset + kPointerSize;
|
|
static const int kEvalFrominstructionsOffsetOffset =
|
|
kEvalFromSharedOffset + kPointerSize;
|
|
static const int kFlagsOffset =
|
|
kEvalFrominstructionsOffsetOffset + kPointerSize;
|
|
static const int kSize = kFlagsOffset + kPointerSize;
|
|
|
|
private:
|
|
// Bit positions in the flags field.
|
|
static const int kCompilationTypeBit = 0;
|
|
static const int kCompilationStateBit = 1;
|
|
static const int kIsSharedCrossOriginBit = 2;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
|
|
};
|
|
|
|
|
|
// List of builtin functions we want to identify to improve code
|
|
// generation.
|
|
//
|
|
// Each entry has a name of a global object property holding an object
|
|
// optionally followed by ".prototype", a name of a builtin function
|
|
// on the object (the one the id is set for), and a label.
|
|
//
|
|
// Installation of ids for the selected builtin functions is handled
|
|
// by the bootstrapper.
|
|
#define FUNCTIONS_WITH_ID_LIST(V) \
|
|
V(Array.prototype, push, ArrayPush) \
|
|
V(Array.prototype, pop, ArrayPop) \
|
|
V(Function.prototype, apply, FunctionApply) \
|
|
V(String.prototype, charCodeAt, StringCharCodeAt) \
|
|
V(String.prototype, charAt, StringCharAt) \
|
|
V(String, fromCharCode, StringFromCharCode) \
|
|
V(Math, floor, MathFloor) \
|
|
V(Math, round, MathRound) \
|
|
V(Math, ceil, MathCeil) \
|
|
V(Math, abs, MathAbs) \
|
|
V(Math, log, MathLog) \
|
|
V(Math, exp, MathExp) \
|
|
V(Math, sqrt, MathSqrt) \
|
|
V(Math, pow, MathPow) \
|
|
V(Math, max, MathMax) \
|
|
V(Math, min, MathMin) \
|
|
V(Math, imul, MathImul)
|
|
|
|
enum BuiltinFunctionId {
|
|
kArrayCode,
|
|
#define DECLARE_FUNCTION_ID(ignored1, ignore2, name) \
|
|
k##name,
|
|
FUNCTIONS_WITH_ID_LIST(DECLARE_FUNCTION_ID)
|
|
#undef DECLARE_FUNCTION_ID
|
|
// Fake id for a special case of Math.pow. Note, it continues the
|
|
// list of math functions.
|
|
kMathPowHalf,
|
|
// Installed only on --harmony-maths.
|
|
kMathClz32
|
|
};
|
|
|
|
|
|
// SharedFunctionInfo describes the JSFunction information that can be
|
|
// shared by multiple instances of the function.
|
|
class SharedFunctionInfo: public HeapObject {
|
|
public:
|
|
// [name]: Function name.
|
|
DECL_ACCESSORS(name, Object)
|
|
|
|
// [code]: Function code.
|
|
DECL_ACCESSORS(code, Code)
|
|
inline void ReplaceCode(Code* code);
|
|
|
|
// [optimized_code_map]: Map from native context to optimized code
|
|
// and a shared literals array or Smi(0) if none.
|
|
DECL_ACCESSORS(optimized_code_map, Object)
|
|
|
|
// Returns index i of the entry with the specified context and OSR entry.
|
|
// At position i - 1 is the context, position i the code, and i + 1 the
|
|
// literals array. Returns -1 when no matching entry is found.
|
|
int SearchOptimizedCodeMap(Context* native_context, BailoutId osr_ast_id);
|
|
|
|
// Installs optimized code from the code map on the given closure. The
|
|
// index has to be consistent with a search result as defined above.
|
|
FixedArray* GetLiteralsFromOptimizedCodeMap(int index);
|
|
|
|
Code* GetCodeFromOptimizedCodeMap(int index);
|
|
|
|
// Clear optimized code map.
|
|
void ClearOptimizedCodeMap();
|
|
|
|
// Removed a specific optimized code object from the optimized code map.
|
|
void EvictFromOptimizedCodeMap(Code* optimized_code, const char* reason);
|
|
|
|
void ClearTypeFeedbackInfo(Heap* heap);
|
|
|
|
// Trims the optimized code map after entries have been removed.
|
|
void TrimOptimizedCodeMap(int shrink_by);
|
|
|
|
// Add a new entry to the optimized code map.
|
|
MUST_USE_RESULT MaybeObject* AddToOptimizedCodeMap(Context* native_context,
|
|
Code* code,
|
|
FixedArray* literals,
|
|
BailoutId osr_ast_id);
|
|
static void AddToOptimizedCodeMap(Handle<SharedFunctionInfo> shared,
|
|
Handle<Context> native_context,
|
|
Handle<Code> code,
|
|
Handle<FixedArray> literals,
|
|
BailoutId osr_ast_id);
|
|
|
|
// Layout description of the optimized code map.
|
|
static const int kNextMapIndex = 0;
|
|
static const int kEntriesStart = 1;
|
|
static const int kContextOffset = 0;
|
|
static const int kCachedCodeOffset = 1;
|
|
static const int kLiteralsOffset = 2;
|
|
static const int kOsrAstIdOffset = 3;
|
|
static const int kEntryLength = 4;
|
|
static const int kInitialLength = kEntriesStart + kEntryLength;
|
|
|
|
// [scope_info]: Scope info.
|
|
DECL_ACCESSORS(scope_info, ScopeInfo)
|
|
|
|
// [construct stub]: Code stub for constructing instances of this function.
|
|
DECL_ACCESSORS(construct_stub, Code)
|
|
|
|
// Returns if this function has been compiled to native code yet.
|
|
inline bool is_compiled();
|
|
|
|
// [length]: The function length - usually the number of declared parameters.
|
|
// Use up to 2^30 parameters.
|
|
inline int length();
|
|
inline void set_length(int value);
|
|
|
|
// [formal parameter count]: The declared number of parameters.
|
|
inline int formal_parameter_count();
|
|
inline void set_formal_parameter_count(int value);
|
|
|
|
// Set the formal parameter count so the function code will be
|
|
// called without using argument adaptor frames.
|
|
inline void DontAdaptArguments();
|
|
|
|
// [expected_nof_properties]: Expected number of properties for the function.
|
|
inline int expected_nof_properties();
|
|
inline void set_expected_nof_properties(int value);
|
|
|
|
// Inobject slack tracking is the way to reclaim unused inobject space.
|
|
//
|
|
// The instance size is initially determined by adding some slack to
|
|
// expected_nof_properties (to allow for a few extra properties added
|
|
// after the constructor). There is no guarantee that the extra space
|
|
// will not be wasted.
|
|
//
|
|
// Here is the algorithm to reclaim the unused inobject space:
|
|
// - Detect the first constructor call for this SharedFunctionInfo.
|
|
// When it happens enter the "in progress" state: remember the
|
|
// constructor's initial_map and install a special construct stub that
|
|
// counts constructor calls.
|
|
// - While the tracking is in progress create objects filled with
|
|
// one_pointer_filler_map instead of undefined_value. This way they can be
|
|
// resized quickly and safely.
|
|
// - Once enough (kGenerousAllocationCount) objects have been created
|
|
// compute the 'slack' (traverse the map transition tree starting from the
|
|
// initial_map and find the lowest value of unused_property_fields).
|
|
// - Traverse the transition tree again and decrease the instance size
|
|
// of every map. Existing objects will resize automatically (they are
|
|
// filled with one_pointer_filler_map). All further allocations will
|
|
// use the adjusted instance size.
|
|
// - Decrease expected_nof_properties so that an allocations made from
|
|
// another context will use the adjusted instance size too.
|
|
// - Exit "in progress" state by clearing the reference to the initial_map
|
|
// and setting the regular construct stub (generic or inline).
|
|
//
|
|
// The above is the main event sequence. Some special cases are possible
|
|
// while the tracking is in progress:
|
|
//
|
|
// - GC occurs.
|
|
// Check if the initial_map is referenced by any live objects (except this
|
|
// SharedFunctionInfo). If it is, continue tracking as usual.
|
|
// If it is not, clear the reference and reset the tracking state. The
|
|
// tracking will be initiated again on the next constructor call.
|
|
//
|
|
// - The constructor is called from another context.
|
|
// Immediately complete the tracking, perform all the necessary changes
|
|
// to maps. This is necessary because there is no efficient way to track
|
|
// multiple initial_maps.
|
|
// Proceed to create an object in the current context (with the adjusted
|
|
// size).
|
|
//
|
|
// - A different constructor function sharing the same SharedFunctionInfo is
|
|
// called in the same context. This could be another closure in the same
|
|
// context, or the first function could have been disposed.
|
|
// This is handled the same way as the previous case.
|
|
//
|
|
// Important: inobject slack tracking is not attempted during the snapshot
|
|
// creation.
|
|
|
|
static const int kGenerousAllocationCount = 8;
|
|
|
|
// [construction_count]: Counter for constructor calls made during
|
|
// the tracking phase.
|
|
inline int construction_count();
|
|
inline void set_construction_count(int value);
|
|
|
|
// [feedback_vector] - accumulates ast node feedback from full-codegen and
|
|
// (increasingly) from crankshafted code where sufficient feedback isn't
|
|
// available. Currently the field is duplicated in
|
|
// TypeFeedbackInfo::feedback_vector, but the allocation is done here.
|
|
DECL_ACCESSORS(feedback_vector, FixedArray)
|
|
|
|
// [initial_map]: initial map of the first function called as a constructor.
|
|
// Saved for the duration of the tracking phase.
|
|
// This is a weak link (GC resets it to undefined_value if no other live
|
|
// object reference this map).
|
|
DECL_ACCESSORS(initial_map, Object)
|
|
|
|
// True if the initial_map is not undefined and the countdown stub is
|
|
// installed.
|
|
inline bool IsInobjectSlackTrackingInProgress();
|
|
|
|
// Starts the tracking.
|
|
// Stores the initial map and installs the countdown stub.
|
|
// IsInobjectSlackTrackingInProgress is normally true after this call,
|
|
// except when tracking have not been started (e.g. the map has no unused
|
|
// properties or the snapshot is being built).
|
|
void StartInobjectSlackTracking(Map* map);
|
|
|
|
// Completes the tracking.
|
|
// IsInobjectSlackTrackingInProgress is false after this call.
|
|
void CompleteInobjectSlackTracking();
|
|
|
|
// Invoked before pointers in SharedFunctionInfo are being marked.
|
|
// Also clears the optimized code map.
|
|
inline void BeforeVisitingPointers();
|
|
|
|
// Clears the initial_map before the GC marking phase to ensure the reference
|
|
// is weak. IsInobjectSlackTrackingInProgress is false after this call.
|
|
void DetachInitialMap();
|
|
|
|
// Restores the link to the initial map after the GC marking phase.
|
|
// IsInobjectSlackTrackingInProgress is true after this call.
|
|
void AttachInitialMap(Map* map);
|
|
|
|
// False if there are definitely no live objects created from this function.
|
|
// True if live objects _may_ exist (existence not guaranteed).
|
|
// May go back from true to false after GC.
|
|
DECL_BOOLEAN_ACCESSORS(live_objects_may_exist)
|
|
|
|
// [instance class name]: class name for instances.
|
|
DECL_ACCESSORS(instance_class_name, Object)
|
|
|
|
// [function data]: This field holds some additional data for function.
|
|
// Currently it either has FunctionTemplateInfo to make benefit the API
|
|
// or Smi identifying a builtin function.
|
|
// In the long run we don't want all functions to have this field but
|
|
// we can fix that when we have a better model for storing hidden data
|
|
// on objects.
|
|
DECL_ACCESSORS(function_data, Object)
|
|
|
|
inline bool IsApiFunction();
|
|
inline FunctionTemplateInfo* get_api_func_data();
|
|
inline bool HasBuiltinFunctionId();
|
|
inline BuiltinFunctionId builtin_function_id();
|
|
|
|
// [script info]: Script from which the function originates.
|
|
DECL_ACCESSORS(script, Object)
|
|
|
|
// [num_literals]: Number of literals used by this function.
|
|
inline int num_literals();
|
|
inline void set_num_literals(int value);
|
|
|
|
// [start_position_and_type]: Field used to store both the source code
|
|
// position, whether or not the function is a function expression,
|
|
// and whether or not the function is a toplevel function. The two
|
|
// least significants bit indicates whether the function is an
|
|
// expression and the rest contains the source code position.
|
|
inline int start_position_and_type();
|
|
inline void set_start_position_and_type(int value);
|
|
|
|
// [debug info]: Debug information.
|
|
DECL_ACCESSORS(debug_info, Object)
|
|
|
|
// [inferred name]: Name inferred from variable or property
|
|
// assignment of this function. Used to facilitate debugging and
|
|
// profiling of JavaScript code written in OO style, where almost
|
|
// all functions are anonymous but are assigned to object
|
|
// properties.
|
|
DECL_ACCESSORS(inferred_name, String)
|
|
|
|
// The function's name if it is non-empty, otherwise the inferred name.
|
|
String* DebugName();
|
|
|
|
// Position of the 'function' token in the script source.
|
|
inline int function_token_position();
|
|
inline void set_function_token_position(int function_token_position);
|
|
|
|
// Position of this function in the script source.
|
|
inline int start_position();
|
|
inline void set_start_position(int start_position);
|
|
|
|
// End position of this function in the script source.
|
|
inline int end_position();
|
|
inline void set_end_position(int end_position);
|
|
|
|
// Is this function a function expression in the source code.
|
|
DECL_BOOLEAN_ACCESSORS(is_expression)
|
|
|
|
// Is this function a top-level function (scripts, evals).
|
|
DECL_BOOLEAN_ACCESSORS(is_toplevel)
|
|
|
|
// Bit field containing various information collected by the compiler to
|
|
// drive optimization.
|
|
inline int compiler_hints();
|
|
inline void set_compiler_hints(int value);
|
|
|
|
inline int ast_node_count();
|
|
inline void set_ast_node_count(int count);
|
|
|
|
inline int profiler_ticks();
|
|
|
|
// Inline cache age is used to infer whether the function survived a context
|
|
// disposal or not. In the former case we reset the opt_count.
|
|
inline int ic_age();
|
|
inline void set_ic_age(int age);
|
|
|
|
// Indicates if this function can be lazy compiled.
|
|
// This is used to determine if we can safely flush code from a function
|
|
// when doing GC if we expect that the function will no longer be used.
|
|
DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation)
|
|
|
|
// Indicates if this function can be lazy compiled without a context.
|
|
// This is used to determine if we can force compilation without reaching
|
|
// the function through program execution but through other means (e.g. heap
|
|
// iteration by the debugger).
|
|
DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation_without_context)
|
|
|
|
// Indicates whether optimizations have been disabled for this
|
|
// shared function info. If a function is repeatedly optimized or if
|
|
// we cannot optimize the function we disable optimization to avoid
|
|
// spending time attempting to optimize it again.
|
|
DECL_BOOLEAN_ACCESSORS(optimization_disabled)
|
|
|
|
// Indicates the language mode.
|
|
inline StrictMode strict_mode();
|
|
inline void set_strict_mode(StrictMode strict_mode);
|
|
|
|
// False if the function definitely does not allocate an arguments object.
|
|
DECL_BOOLEAN_ACCESSORS(uses_arguments)
|
|
|
|
// True if the function has any duplicated parameter names.
|
|
DECL_BOOLEAN_ACCESSORS(has_duplicate_parameters)
|
|
|
|
// Indicates whether the function is a native function.
|
|
// These needs special treatment in .call and .apply since
|
|
// null passed as the receiver should not be translated to the
|
|
// global object.
|
|
DECL_BOOLEAN_ACCESSORS(native)
|
|
|
|
// Indicate that this builtin needs to be inlined in crankshaft.
|
|
DECL_BOOLEAN_ACCESSORS(inline_builtin)
|
|
|
|
// Indicates that the function was created by the Function function.
|
|
// Though it's anonymous, toString should treat it as if it had the name
|
|
// "anonymous". We don't set the name itself so that the system does not
|
|
// see a binding for it.
|
|
DECL_BOOLEAN_ACCESSORS(name_should_print_as_anonymous)
|
|
|
|
// Indicates whether the function is a bound function created using
|
|
// the bind function.
|
|
DECL_BOOLEAN_ACCESSORS(bound)
|
|
|
|
// Indicates that the function is anonymous (the name field can be set
|
|
// through the API, which does not change this flag).
|
|
DECL_BOOLEAN_ACCESSORS(is_anonymous)
|
|
|
|
// Is this a function or top-level/eval code.
|
|
DECL_BOOLEAN_ACCESSORS(is_function)
|
|
|
|
// Indicates that the function cannot be optimized.
|
|
DECL_BOOLEAN_ACCESSORS(dont_optimize)
|
|
|
|
// Indicates that the function cannot be inlined.
|
|
DECL_BOOLEAN_ACCESSORS(dont_inline)
|
|
|
|
// Indicates that code for this function cannot be cached.
|
|
DECL_BOOLEAN_ACCESSORS(dont_cache)
|
|
|
|
// Indicates that code for this function cannot be flushed.
|
|
DECL_BOOLEAN_ACCESSORS(dont_flush)
|
|
|
|
// Indicates that this function is a generator.
|
|
DECL_BOOLEAN_ACCESSORS(is_generator)
|
|
|
|
// Indicates whether or not the code in the shared function support
|
|
// deoptimization.
|
|
inline bool has_deoptimization_support();
|
|
|
|
// Enable deoptimization support through recompiled code.
|
|
void EnableDeoptimizationSupport(Code* recompiled);
|
|
|
|
// Disable (further) attempted optimization of all functions sharing this
|
|
// shared function info.
|
|
void DisableOptimization(BailoutReason reason);
|
|
|
|
inline BailoutReason DisableOptimizationReason();
|
|
|
|
// Lookup the bailout ID and ASSERT that it exists in the non-optimized
|
|
// code, returns whether it asserted (i.e., always true if assertions are
|
|
// disabled).
|
|
bool VerifyBailoutId(BailoutId id);
|
|
|
|
// [source code]: Source code for the function.
|
|
bool HasSourceCode();
|
|
Handle<Object> GetSourceCode();
|
|
|
|
// Number of times the function was optimized.
|
|
inline int opt_count();
|
|
inline void set_opt_count(int opt_count);
|
|
|
|
// Number of times the function was deoptimized.
|
|
inline void set_deopt_count(int value);
|
|
inline int deopt_count();
|
|
inline void increment_deopt_count();
|
|
|
|
// Number of time we tried to re-enable optimization after it
|
|
// was disabled due to high number of deoptimizations.
|
|
inline void set_opt_reenable_tries(int value);
|
|
inline int opt_reenable_tries();
|
|
|
|
inline void TryReenableOptimization();
|
|
|
|
// Stores deopt_count, opt_reenable_tries and ic_age as bit-fields.
|
|
inline void set_counters(int value);
|
|
inline int counters();
|
|
|
|
// Stores opt_count and bailout_reason as bit-fields.
|
|
inline void set_opt_count_and_bailout_reason(int value);
|
|
inline int opt_count_and_bailout_reason();
|
|
|
|
void set_bailout_reason(BailoutReason reason) {
|
|
set_opt_count_and_bailout_reason(
|
|
DisabledOptimizationReasonBits::update(opt_count_and_bailout_reason(),
|
|
reason));
|
|
}
|
|
|
|
void set_dont_optimize_reason(BailoutReason reason) {
|
|
set_bailout_reason(reason);
|
|
set_dont_optimize(reason != kNoReason);
|
|
}
|
|
|
|
// Check whether or not this function is inlineable.
|
|
bool IsInlineable();
|
|
|
|
// Source size of this function.
|
|
int SourceSize();
|
|
|
|
// Calculate the instance size.
|
|
int CalculateInstanceSize();
|
|
|
|
// Calculate the number of in-object properties.
|
|
int CalculateInObjectProperties();
|
|
|
|
// Dispatched behavior.
|
|
// Set max_length to -1 for unlimited length.
|
|
void SourceCodePrint(StringStream* accumulator, int max_length);
|
|
DECLARE_PRINTER(SharedFunctionInfo)
|
|
DECLARE_VERIFIER(SharedFunctionInfo)
|
|
|
|
void ResetForNewContext(int new_ic_age);
|
|
|
|
// Casting.
|
|
static inline SharedFunctionInfo* cast(Object* obj);
|
|
|
|
// Constants.
|
|
static const int kDontAdaptArgumentsSentinel = -1;
|
|
|
|
// Layout description.
|
|
// Pointer fields.
|
|
static const int kNameOffset = HeapObject::kHeaderSize;
|
|
static const int kCodeOffset = kNameOffset + kPointerSize;
|
|
static const int kOptimizedCodeMapOffset = kCodeOffset + kPointerSize;
|
|
static const int kScopeInfoOffset = kOptimizedCodeMapOffset + kPointerSize;
|
|
static const int kConstructStubOffset = kScopeInfoOffset + kPointerSize;
|
|
static const int kInstanceClassNameOffset =
|
|
kConstructStubOffset + kPointerSize;
|
|
static const int kFunctionDataOffset =
|
|
kInstanceClassNameOffset + kPointerSize;
|
|
static const int kScriptOffset = kFunctionDataOffset + kPointerSize;
|
|
static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
|
|
static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
|
|
static const int kFeedbackVectorOffset =
|
|
kInferredNameOffset + kPointerSize;
|
|
static const int kInitialMapOffset =
|
|
kFeedbackVectorOffset + kPointerSize;
|
|
// ast_node_count is a Smi field. It could be grouped with another Smi field
|
|
// into a PSEUDO_SMI_ACCESSORS pair (on x64), if one becomes available.
|
|
static const int kAstNodeCountOffset =
|
|
kInitialMapOffset + kPointerSize;
|
|
#if V8_HOST_ARCH_32_BIT
|
|
// Smi fields.
|
|
static const int kLengthOffset =
|
|
kAstNodeCountOffset + kPointerSize;
|
|
static const int kFormalParameterCountOffset = kLengthOffset + kPointerSize;
|
|
static const int kExpectedNofPropertiesOffset =
|
|
kFormalParameterCountOffset + kPointerSize;
|
|
static const int kNumLiteralsOffset =
|
|
kExpectedNofPropertiesOffset + kPointerSize;
|
|
static const int kStartPositionAndTypeOffset =
|
|
kNumLiteralsOffset + kPointerSize;
|
|
static const int kEndPositionOffset =
|
|
kStartPositionAndTypeOffset + kPointerSize;
|
|
static const int kFunctionTokenPositionOffset =
|
|
kEndPositionOffset + kPointerSize;
|
|
static const int kCompilerHintsOffset =
|
|
kFunctionTokenPositionOffset + kPointerSize;
|
|
static const int kOptCountAndBailoutReasonOffset =
|
|
kCompilerHintsOffset + kPointerSize;
|
|
static const int kCountersOffset =
|
|
kOptCountAndBailoutReasonOffset + kPointerSize;
|
|
|
|
// Total size.
|
|
static const int kSize = kCountersOffset + kPointerSize;
|
|
#else
|
|
// The only reason to use smi fields instead of int fields
|
|
// is to allow iteration without maps decoding during
|
|
// garbage collections.
|
|
// To avoid wasting space on 64-bit architectures we use
|
|
// the following trick: we group integer fields into pairs
|
|
// First integer in each pair is shifted left by 1.
|
|
// By doing this we guarantee that LSB of each kPointerSize aligned
|
|
// word is not set and thus this word cannot be treated as pointer
|
|
// to HeapObject during old space traversal.
|
|
static const int kLengthOffset =
|
|
kAstNodeCountOffset + kPointerSize;
|
|
static const int kFormalParameterCountOffset =
|
|
kLengthOffset + kIntSize;
|
|
|
|
static const int kExpectedNofPropertiesOffset =
|
|
kFormalParameterCountOffset + kIntSize;
|
|
static const int kNumLiteralsOffset =
|
|
kExpectedNofPropertiesOffset + kIntSize;
|
|
|
|
static const int kEndPositionOffset =
|
|
kNumLiteralsOffset + kIntSize;
|
|
static const int kStartPositionAndTypeOffset =
|
|
kEndPositionOffset + kIntSize;
|
|
|
|
static const int kFunctionTokenPositionOffset =
|
|
kStartPositionAndTypeOffset + kIntSize;
|
|
static const int kCompilerHintsOffset =
|
|
kFunctionTokenPositionOffset + kIntSize;
|
|
|
|
static const int kOptCountAndBailoutReasonOffset =
|
|
kCompilerHintsOffset + kIntSize;
|
|
|
|
static const int kCountersOffset =
|
|
kOptCountAndBailoutReasonOffset + kIntSize;
|
|
|
|
// Total size.
|
|
static const int kSize = kCountersOffset + kIntSize;
|
|
|
|
#endif
|
|
|
|
// The construction counter for inobject slack tracking is stored in the
|
|
// most significant byte of compiler_hints which is otherwise unused.
|
|
// Its offset depends on the endian-ness of the architecture.
|
|
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
static const int kConstructionCountOffset = kCompilerHintsOffset + 3;
|
|
#elif __BYTE_ORDER == __BIG_ENDIAN
|
|
static const int kConstructionCountOffset = kCompilerHintsOffset + 0;
|
|
#else
|
|
#error Unknown byte ordering
|
|
#endif
|
|
|
|
static const int kAlignedSize = POINTER_SIZE_ALIGN(kSize);
|
|
|
|
typedef FixedBodyDescriptor<kNameOffset,
|
|
kInitialMapOffset + kPointerSize,
|
|
kSize> BodyDescriptor;
|
|
|
|
// Bit positions in start_position_and_type.
|
|
// The source code start position is in the 30 most significant bits of
|
|
// the start_position_and_type field.
|
|
static const int kIsExpressionBit = 0;
|
|
static const int kIsTopLevelBit = 1;
|
|
static const int kStartPositionShift = 2;
|
|
static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
|
|
|
|
// Bit positions in compiler_hints.
|
|
enum CompilerHints {
|
|
kAllowLazyCompilation,
|
|
kAllowLazyCompilationWithoutContext,
|
|
kLiveObjectsMayExist,
|
|
kOptimizationDisabled,
|
|
kStrictModeFunction,
|
|
kUsesArguments,
|
|
kHasDuplicateParameters,
|
|
kNative,
|
|
kInlineBuiltin,
|
|
kBoundFunction,
|
|
kIsAnonymous,
|
|
kNameShouldPrintAsAnonymous,
|
|
kIsFunction,
|
|
kDontOptimize,
|
|
kDontInline,
|
|
kDontCache,
|
|
kDontFlush,
|
|
kIsGenerator,
|
|
kCompilerHintsCount // Pseudo entry
|
|
};
|
|
|
|
class DeoptCountBits: public BitField<int, 0, 4> {};
|
|
class OptReenableTriesBits: public BitField<int, 4, 18> {};
|
|
class ICAgeBits: public BitField<int, 22, 8> {};
|
|
|
|
class OptCountBits: public BitField<int, 0, 22> {};
|
|
class DisabledOptimizationReasonBits: public BitField<int, 22, 8> {};
|
|
|
|
private:
|
|
#if V8_HOST_ARCH_32_BIT
|
|
// On 32 bit platforms, compiler hints is a smi.
|
|
static const int kCompilerHintsSmiTagSize = kSmiTagSize;
|
|
static const int kCompilerHintsSize = kPointerSize;
|
|
#else
|
|
// On 64 bit platforms, compiler hints is not a smi, see comment above.
|
|
static const int kCompilerHintsSmiTagSize = 0;
|
|
static const int kCompilerHintsSize = kIntSize;
|
|
#endif
|
|
|
|
STATIC_ASSERT(SharedFunctionInfo::kCompilerHintsCount <=
|
|
SharedFunctionInfo::kCompilerHintsSize * kBitsPerByte);
|
|
|
|
public:
|
|
// Constants for optimizing codegen for strict mode function and
|
|
// native tests.
|
|
// Allows to use byte-width instructions.
|
|
static const int kStrictModeBitWithinByte =
|
|
(kStrictModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
|
|
|
|
static const int kNativeBitWithinByte =
|
|
(kNative + kCompilerHintsSmiTagSize) % kBitsPerByte;
|
|
|
|
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
static const int kStrictModeByteOffset = kCompilerHintsOffset +
|
|
(kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
|
|
static const int kNativeByteOffset = kCompilerHintsOffset +
|
|
(kNative + kCompilerHintsSmiTagSize) / kBitsPerByte;
|
|
#elif __BYTE_ORDER == __BIG_ENDIAN
|
|
static const int kStrictModeByteOffset = kCompilerHintsOffset +
|
|
(kCompilerHintsSize - 1) -
|
|
((kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
|
|
static const int kNativeByteOffset = kCompilerHintsOffset +
|
|
(kCompilerHintsSize - 1) -
|
|
((kNative + kCompilerHintsSmiTagSize) / kBitsPerByte);
|
|
#else
|
|
#error Unknown byte ordering
|
|
#endif
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
|
|
};
|
|
|
|
|
|
class JSGeneratorObject: public JSObject {
|
|
public:
|
|
// [function]: The function corresponding to this generator object.
|
|
DECL_ACCESSORS(function, JSFunction)
|
|
|
|
// [context]: The context of the suspended computation.
|
|
DECL_ACCESSORS(context, Context)
|
|
|
|
// [receiver]: The receiver of the suspended computation.
|
|
DECL_ACCESSORS(receiver, Object)
|
|
|
|
// [continuation]: Offset into code of continuation.
|
|
//
|
|
// A positive offset indicates a suspended generator. The special
|
|
// kGeneratorExecuting and kGeneratorClosed values indicate that a generator
|
|
// cannot be resumed.
|
|
inline int continuation();
|
|
inline void set_continuation(int continuation);
|
|
|
|
// [operand_stack]: Saved operand stack.
|
|
DECL_ACCESSORS(operand_stack, FixedArray)
|
|
|
|
// [stack_handler_index]: Index of first stack handler in operand_stack, or -1
|
|
// if the captured activation had no stack handler.
|
|
inline int stack_handler_index();
|
|
inline void set_stack_handler_index(int stack_handler_index);
|
|
|
|
// Casting.
|
|
static inline JSGeneratorObject* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSGeneratorObject)
|
|
DECLARE_VERIFIER(JSGeneratorObject)
|
|
|
|
// Magic sentinel values for the continuation.
|
|
static const int kGeneratorExecuting = -1;
|
|
static const int kGeneratorClosed = 0;
|
|
|
|
// Layout description.
|
|
static const int kFunctionOffset = JSObject::kHeaderSize;
|
|
static const int kContextOffset = kFunctionOffset + kPointerSize;
|
|
static const int kReceiverOffset = kContextOffset + kPointerSize;
|
|
static const int kContinuationOffset = kReceiverOffset + kPointerSize;
|
|
static const int kOperandStackOffset = kContinuationOffset + kPointerSize;
|
|
static const int kStackHandlerIndexOffset =
|
|
kOperandStackOffset + kPointerSize;
|
|
static const int kSize = kStackHandlerIndexOffset + kPointerSize;
|
|
|
|
// Resume mode, for use by runtime functions.
|
|
enum ResumeMode { NEXT, THROW };
|
|
|
|
// Yielding from a generator returns an object with the following inobject
|
|
// properties. See Context::generator_result_map() for the map.
|
|
static const int kResultValuePropertyIndex = 0;
|
|
static const int kResultDonePropertyIndex = 1;
|
|
static const int kResultPropertyCount = 2;
|
|
|
|
static const int kResultValuePropertyOffset = JSObject::kHeaderSize;
|
|
static const int kResultDonePropertyOffset =
|
|
kResultValuePropertyOffset + kPointerSize;
|
|
static const int kResultSize = kResultDonePropertyOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSGeneratorObject);
|
|
};
|
|
|
|
|
|
// Representation for module instance objects.
|
|
class JSModule: public JSObject {
|
|
public:
|
|
// [context]: the context holding the module's locals, or undefined if none.
|
|
DECL_ACCESSORS(context, Object)
|
|
|
|
// [scope_info]: Scope info.
|
|
DECL_ACCESSORS(scope_info, ScopeInfo)
|
|
|
|
// Casting.
|
|
static inline JSModule* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSModule)
|
|
DECLARE_VERIFIER(JSModule)
|
|
|
|
// Layout description.
|
|
static const int kContextOffset = JSObject::kHeaderSize;
|
|
static const int kScopeInfoOffset = kContextOffset + kPointerSize;
|
|
static const int kSize = kScopeInfoOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSModule);
|
|
};
|
|
|
|
|
|
// JSFunction describes JavaScript functions.
|
|
class JSFunction: public JSObject {
|
|
public:
|
|
// [prototype_or_initial_map]:
|
|
DECL_ACCESSORS(prototype_or_initial_map, Object)
|
|
|
|
// [shared]: The information about the function that
|
|
// can be shared by instances.
|
|
DECL_ACCESSORS(shared, SharedFunctionInfo)
|
|
|
|
// [context]: The context for this function.
|
|
inline Context* context();
|
|
inline void set_context(Object* context);
|
|
|
|
// [code]: The generated code object for this function. Executed
|
|
// when the function is invoked, e.g. foo() or new foo(). See
|
|
// [[Call]] and [[Construct]] description in ECMA-262, section
|
|
// 8.6.2, page 27.
|
|
inline Code* code();
|
|
inline void set_code(Code* code);
|
|
inline void set_code_no_write_barrier(Code* code);
|
|
inline void ReplaceCode(Code* code);
|
|
|
|
// Tells whether this function is builtin.
|
|
inline bool IsBuiltin();
|
|
|
|
// Tells whether or not the function needs arguments adaption.
|
|
inline bool NeedsArgumentsAdaption();
|
|
|
|
// Tells whether or not this function has been optimized.
|
|
inline bool IsOptimized();
|
|
|
|
// Tells whether or not this function can be optimized.
|
|
inline bool IsOptimizable();
|
|
|
|
// Mark this function for lazy recompilation. The function will be
|
|
// recompiled the next time it is executed.
|
|
void MarkForOptimization();
|
|
void MarkForConcurrentOptimization();
|
|
void MarkInOptimizationQueue();
|
|
|
|
// Tells whether or not the function is already marked for lazy
|
|
// recompilation.
|
|
inline bool IsMarkedForOptimization();
|
|
inline bool IsMarkedForConcurrentOptimization();
|
|
|
|
// Tells whether or not the function is on the concurrent recompilation queue.
|
|
inline bool IsInOptimizationQueue();
|
|
|
|
// [literals_or_bindings]: Fixed array holding either
|
|
// the materialized literals or the bindings of a bound function.
|
|
//
|
|
// If the function contains object, regexp or array literals, the
|
|
// literals array prefix contains the object, regexp, and array
|
|
// function to be used when creating these literals. This is
|
|
// necessary so that we do not dynamically lookup the object, regexp
|
|
// or array functions. Performing a dynamic lookup, we might end up
|
|
// using the functions from a new context that we should not have
|
|
// access to.
|
|
//
|
|
// On bound functions, the array is a (copy-on-write) fixed-array containing
|
|
// the function that was bound, bound this-value and any bound
|
|
// arguments. Bound functions never contain literals.
|
|
DECL_ACCESSORS(literals_or_bindings, FixedArray)
|
|
|
|
inline FixedArray* literals();
|
|
inline void set_literals(FixedArray* literals);
|
|
|
|
inline FixedArray* function_bindings();
|
|
inline void set_function_bindings(FixedArray* bindings);
|
|
|
|
// The initial map for an object created by this constructor.
|
|
inline Map* initial_map();
|
|
inline void set_initial_map(Map* value);
|
|
inline bool has_initial_map();
|
|
static void EnsureHasInitialMap(Handle<JSFunction> function);
|
|
|
|
// Get and set the prototype property on a JSFunction. If the
|
|
// function has an initial map the prototype is set on the initial
|
|
// map. Otherwise, the prototype is put in the initial map field
|
|
// until an initial map is needed.
|
|
inline bool has_prototype();
|
|
inline bool has_instance_prototype();
|
|
inline Object* prototype();
|
|
inline Object* instance_prototype();
|
|
static void SetPrototype(Handle<JSFunction> function,
|
|
Handle<Object> value);
|
|
static void SetInstancePrototype(Handle<JSFunction> function,
|
|
Handle<Object> value);
|
|
|
|
// After prototype is removed, it will not be created when accessed, and
|
|
// [[Construct]] from this function will not be allowed.
|
|
void RemovePrototype();
|
|
inline bool should_have_prototype();
|
|
|
|
// Accessor for this function's initial map's [[class]]
|
|
// property. This is primarily used by ECMA native functions. This
|
|
// method sets the class_name field of this function's initial map
|
|
// to a given value. It creates an initial map if this function does
|
|
// not have one. Note that this method does not copy the initial map
|
|
// if it has one already, but simply replaces it with the new value.
|
|
// Instances created afterwards will have a map whose [[class]] is
|
|
// set to 'value', but there is no guarantees on instances created
|
|
// before.
|
|
void SetInstanceClassName(String* name);
|
|
|
|
// Returns if this function has been compiled to native code yet.
|
|
inline bool is_compiled();
|
|
|
|
// [next_function_link]: Links functions into various lists, e.g. the list
|
|
// of optimized functions hanging off the native_context. The CodeFlusher
|
|
// uses this link to chain together flushing candidates. Treated weakly
|
|
// by the garbage collector.
|
|
DECL_ACCESSORS(next_function_link, Object)
|
|
|
|
// Prints the name of the function using PrintF.
|
|
void PrintName(FILE* out = stdout);
|
|
|
|
// Casting.
|
|
static inline JSFunction* cast(Object* obj);
|
|
|
|
// Iterates the objects, including code objects indirectly referenced
|
|
// through pointers to the first instruction in the code object.
|
|
void JSFunctionIterateBody(int object_size, ObjectVisitor* v);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSFunction)
|
|
DECLARE_VERIFIER(JSFunction)
|
|
|
|
// Returns the number of allocated literals.
|
|
inline int NumberOfLiterals();
|
|
|
|
// Retrieve the native context from a function's literal array.
|
|
static Context* NativeContextFromLiterals(FixedArray* literals);
|
|
|
|
// Used for flags such as --hydrogen-filter.
|
|
bool PassesFilter(const char* raw_filter);
|
|
|
|
// Layout descriptors. The last property (from kNonWeakFieldsEndOffset to
|
|
// kSize) is weak and has special handling during garbage collection.
|
|
static const int kCodeEntryOffset = JSObject::kHeaderSize;
|
|
static const int kPrototypeOrInitialMapOffset =
|
|
kCodeEntryOffset + kPointerSize;
|
|
static const int kSharedFunctionInfoOffset =
|
|
kPrototypeOrInitialMapOffset + kPointerSize;
|
|
static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
|
|
static const int kLiteralsOffset = kContextOffset + kPointerSize;
|
|
static const int kNonWeakFieldsEndOffset = kLiteralsOffset + kPointerSize;
|
|
static const int kNextFunctionLinkOffset = kNonWeakFieldsEndOffset;
|
|
static const int kSize = kNextFunctionLinkOffset + kPointerSize;
|
|
|
|
// Layout of the literals array.
|
|
static const int kLiteralsPrefixSize = 1;
|
|
static const int kLiteralNativeContextIndex = 0;
|
|
|
|
// Layout of the bound-function binding array.
|
|
static const int kBoundFunctionIndex = 0;
|
|
static const int kBoundThisIndex = 1;
|
|
static const int kBoundArgumentsStartIndex = 2;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
|
|
};
|
|
|
|
|
|
// JSGlobalProxy's prototype must be a JSGlobalObject or null,
|
|
// and the prototype is hidden. JSGlobalProxy always delegates
|
|
// property accesses to its prototype if the prototype is not null.
|
|
//
|
|
// A JSGlobalProxy can be reinitialized which will preserve its identity.
|
|
//
|
|
// Accessing a JSGlobalProxy requires security check.
|
|
|
|
class JSGlobalProxy : public JSObject {
|
|
public:
|
|
// [native_context]: the owner native context of this global proxy object.
|
|
// It is null value if this object is not used by any context.
|
|
DECL_ACCESSORS(native_context, Object)
|
|
|
|
// Casting.
|
|
static inline JSGlobalProxy* cast(Object* obj);
|
|
|
|
inline bool IsDetachedFrom(GlobalObject* global);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSGlobalProxy)
|
|
DECLARE_VERIFIER(JSGlobalProxy)
|
|
|
|
// Layout description.
|
|
static const int kNativeContextOffset = JSObject::kHeaderSize;
|
|
static const int kSize = kNativeContextOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
|
|
};
|
|
|
|
|
|
// Forward declaration.
|
|
class JSBuiltinsObject;
|
|
|
|
// Common super class for JavaScript global objects and the special
|
|
// builtins global objects.
|
|
class GlobalObject: public JSObject {
|
|
public:
|
|
// [builtins]: the object holding the runtime routines written in JS.
|
|
DECL_ACCESSORS(builtins, JSBuiltinsObject)
|
|
|
|
// [native context]: the natives corresponding to this global object.
|
|
DECL_ACCESSORS(native_context, Context)
|
|
|
|
// [global context]: the most recent (i.e. innermost) global context.
|
|
DECL_ACCESSORS(global_context, Context)
|
|
|
|
// [global receiver]: the global receiver object of the context
|
|
DECL_ACCESSORS(global_receiver, JSObject)
|
|
|
|
// Retrieve the property cell used to store a property.
|
|
PropertyCell* GetPropertyCell(LookupResult* result);
|
|
|
|
// This is like GetProperty, but is used when you know the lookup won't fail
|
|
// by throwing an exception. This is for the debug and builtins global
|
|
// objects, where it is known which properties can be expected to be present
|
|
// on the object.
|
|
Object* GetPropertyNoExceptionThrown(Name* key) {
|
|
Object* answer = GetProperty(key)->ToObjectUnchecked();
|
|
return answer;
|
|
}
|
|
|
|
// Casting.
|
|
static inline GlobalObject* cast(Object* obj);
|
|
|
|
// Layout description.
|
|
static const int kBuiltinsOffset = JSObject::kHeaderSize;
|
|
static const int kNativeContextOffset = kBuiltinsOffset + kPointerSize;
|
|
static const int kGlobalContextOffset = kNativeContextOffset + kPointerSize;
|
|
static const int kGlobalReceiverOffset = kGlobalContextOffset + kPointerSize;
|
|
static const int kHeaderSize = kGlobalReceiverOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
|
|
};
|
|
|
|
|
|
// JavaScript global object.
|
|
class JSGlobalObject: public GlobalObject {
|
|
public:
|
|
// Casting.
|
|
static inline JSGlobalObject* cast(Object* obj);
|
|
|
|
// Ensure that the global object has a cell for the given property name.
|
|
static Handle<PropertyCell> EnsurePropertyCell(Handle<JSGlobalObject> global,
|
|
Handle<Name> name);
|
|
|
|
inline bool IsDetached();
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSGlobalObject)
|
|
DECLARE_VERIFIER(JSGlobalObject)
|
|
|
|
// Layout description.
|
|
static const int kSize = GlobalObject::kHeaderSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
|
|
};
|
|
|
|
|
|
// Builtins global object which holds the runtime routines written in
|
|
// JavaScript.
|
|
class JSBuiltinsObject: public GlobalObject {
|
|
public:
|
|
// Accessors for the runtime routines written in JavaScript.
|
|
inline Object* javascript_builtin(Builtins::JavaScript id);
|
|
inline void set_javascript_builtin(Builtins::JavaScript id, Object* value);
|
|
|
|
// Accessors for code of the runtime routines written in JavaScript.
|
|
inline Code* javascript_builtin_code(Builtins::JavaScript id);
|
|
inline void set_javascript_builtin_code(Builtins::JavaScript id, Code* value);
|
|
|
|
// Casting.
|
|
static inline JSBuiltinsObject* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSBuiltinsObject)
|
|
DECLARE_VERIFIER(JSBuiltinsObject)
|
|
|
|
// Layout description. The size of the builtins object includes
|
|
// room for two pointers per runtime routine written in javascript
|
|
// (function and code object).
|
|
static const int kJSBuiltinsCount = Builtins::id_count;
|
|
static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize;
|
|
static const int kJSBuiltinsCodeOffset =
|
|
GlobalObject::kHeaderSize + (kJSBuiltinsCount * kPointerSize);
|
|
static const int kSize =
|
|
kJSBuiltinsCodeOffset + (kJSBuiltinsCount * kPointerSize);
|
|
|
|
static int OffsetOfFunctionWithId(Builtins::JavaScript id) {
|
|
return kJSBuiltinsOffset + id * kPointerSize;
|
|
}
|
|
|
|
static int OffsetOfCodeWithId(Builtins::JavaScript id) {
|
|
return kJSBuiltinsCodeOffset + id * kPointerSize;
|
|
}
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
|
|
};
|
|
|
|
|
|
// Representation for JS Wrapper objects, String, Number, Boolean, etc.
|
|
class JSValue: public JSObject {
|
|
public:
|
|
// [value]: the object being wrapped.
|
|
DECL_ACCESSORS(value, Object)
|
|
|
|
// Casting.
|
|
static inline JSValue* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSValue)
|
|
DECLARE_VERIFIER(JSValue)
|
|
|
|
// Layout description.
|
|
static const int kValueOffset = JSObject::kHeaderSize;
|
|
static const int kSize = kValueOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
|
|
};
|
|
|
|
|
|
class DateCache;
|
|
|
|
// Representation for JS date objects.
|
|
class JSDate: public JSObject {
|
|
public:
|
|
// If one component is NaN, all of them are, indicating a NaN time value.
|
|
// [value]: the time value.
|
|
DECL_ACCESSORS(value, Object)
|
|
// [year]: caches year. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(year, Object)
|
|
// [month]: caches month. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(month, Object)
|
|
// [day]: caches day. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(day, Object)
|
|
// [weekday]: caches day of week. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(weekday, Object)
|
|
// [hour]: caches hours. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(hour, Object)
|
|
// [min]: caches minutes. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(min, Object)
|
|
// [sec]: caches seconds. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(sec, Object)
|
|
// [cache stamp]: sample of the date cache stamp at the
|
|
// moment when local fields were cached.
|
|
DECL_ACCESSORS(cache_stamp, Object)
|
|
|
|
// Casting.
|
|
static inline JSDate* cast(Object* obj);
|
|
|
|
// Returns the date field with the specified index.
|
|
// See FieldIndex for the list of date fields.
|
|
static Object* GetField(Object* date, Smi* index);
|
|
|
|
void SetValue(Object* value, bool is_value_nan);
|
|
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSDate)
|
|
DECLARE_VERIFIER(JSDate)
|
|
|
|
// The order is important. It must be kept in sync with date macros
|
|
// in macros.py.
|
|
enum FieldIndex {
|
|
kDateValue,
|
|
kYear,
|
|
kMonth,
|
|
kDay,
|
|
kWeekday,
|
|
kHour,
|
|
kMinute,
|
|
kSecond,
|
|
kFirstUncachedField,
|
|
kMillisecond = kFirstUncachedField,
|
|
kDays,
|
|
kTimeInDay,
|
|
kFirstUTCField,
|
|
kYearUTC = kFirstUTCField,
|
|
kMonthUTC,
|
|
kDayUTC,
|
|
kWeekdayUTC,
|
|
kHourUTC,
|
|
kMinuteUTC,
|
|
kSecondUTC,
|
|
kMillisecondUTC,
|
|
kDaysUTC,
|
|
kTimeInDayUTC,
|
|
kTimezoneOffset
|
|
};
|
|
|
|
// Layout description.
|
|
static const int kValueOffset = JSObject::kHeaderSize;
|
|
static const int kYearOffset = kValueOffset + kPointerSize;
|
|
static const int kMonthOffset = kYearOffset + kPointerSize;
|
|
static const int kDayOffset = kMonthOffset + kPointerSize;
|
|
static const int kWeekdayOffset = kDayOffset + kPointerSize;
|
|
static const int kHourOffset = kWeekdayOffset + kPointerSize;
|
|
static const int kMinOffset = kHourOffset + kPointerSize;
|
|
static const int kSecOffset = kMinOffset + kPointerSize;
|
|
static const int kCacheStampOffset = kSecOffset + kPointerSize;
|
|
static const int kSize = kCacheStampOffset + kPointerSize;
|
|
|
|
private:
|
|
inline Object* DoGetField(FieldIndex index);
|
|
|
|
Object* GetUTCField(FieldIndex index, double value, DateCache* date_cache);
|
|
|
|
// Computes and caches the cacheable fields of the date.
|
|
inline void SetLocalFields(int64_t local_time_ms, DateCache* date_cache);
|
|
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSDate);
|
|
};
|
|
|
|
|
|
// Representation of message objects used for error reporting through
|
|
// the API. The messages are formatted in JavaScript so this object is
|
|
// a real JavaScript object. The information used for formatting the
|
|
// error messages are not directly accessible from JavaScript to
|
|
// prevent leaking information to user code called during error
|
|
// formatting.
|
|
class JSMessageObject: public JSObject {
|
|
public:
|
|
// [type]: the type of error message.
|
|
DECL_ACCESSORS(type, String)
|
|
|
|
// [arguments]: the arguments for formatting the error message.
|
|
DECL_ACCESSORS(arguments, JSArray)
|
|
|
|
// [script]: the script from which the error message originated.
|
|
DECL_ACCESSORS(script, Object)
|
|
|
|
// [stack_frames]: an array of stack frames for this error object.
|
|
DECL_ACCESSORS(stack_frames, Object)
|
|
|
|
// [start_position]: the start position in the script for the error message.
|
|
inline int start_position();
|
|
inline void set_start_position(int value);
|
|
|
|
// [end_position]: the end position in the script for the error message.
|
|
inline int end_position();
|
|
inline void set_end_position(int value);
|
|
|
|
// Casting.
|
|
static inline JSMessageObject* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSMessageObject)
|
|
DECLARE_VERIFIER(JSMessageObject)
|
|
|
|
// Layout description.
|
|
static const int kTypeOffset = JSObject::kHeaderSize;
|
|
static const int kArgumentsOffset = kTypeOffset + kPointerSize;
|
|
static const int kScriptOffset = kArgumentsOffset + kPointerSize;
|
|
static const int kStackFramesOffset = kScriptOffset + kPointerSize;
|
|
static const int kStartPositionOffset = kStackFramesOffset + kPointerSize;
|
|
static const int kEndPositionOffset = kStartPositionOffset + kPointerSize;
|
|
static const int kSize = kEndPositionOffset + kPointerSize;
|
|
|
|
typedef FixedBodyDescriptor<HeapObject::kMapOffset,
|
|
kStackFramesOffset + kPointerSize,
|
|
kSize> BodyDescriptor;
|
|
};
|
|
|
|
|
|
// Regular expressions
|
|
// The regular expression holds a single reference to a FixedArray in
|
|
// the kDataOffset field.
|
|
// The FixedArray contains the following data:
|
|
// - tag : type of regexp implementation (not compiled yet, atom or irregexp)
|
|
// - reference to the original source string
|
|
// - reference to the original flag string
|
|
// If it is an atom regexp
|
|
// - a reference to a literal string to search for
|
|
// If it is an irregexp regexp:
|
|
// - a reference to code for ASCII inputs (bytecode or compiled), or a smi
|
|
// used for tracking the last usage (used for code flushing).
|
|
// - a reference to code for UC16 inputs (bytecode or compiled), or a smi
|
|
// used for tracking the last usage (used for code flushing)..
|
|
// - max number of registers used by irregexp implementations.
|
|
// - number of capture registers (output values) of the regexp.
|
|
class JSRegExp: public JSObject {
|
|
public:
|
|
// Meaning of Type:
|
|
// NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
|
|
// ATOM: A simple string to match against using an indexOf operation.
|
|
// IRREGEXP: Compiled with Irregexp.
|
|
// IRREGEXP_NATIVE: Compiled to native code with Irregexp.
|
|
enum Type { NOT_COMPILED, ATOM, IRREGEXP };
|
|
enum Flag { NONE = 0, GLOBAL = 1, IGNORE_CASE = 2, MULTILINE = 4 };
|
|
|
|
class Flags {
|
|
public:
|
|
explicit Flags(uint32_t value) : value_(value) { }
|
|
bool is_global() { return (value_ & GLOBAL) != 0; }
|
|
bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
|
|
bool is_multiline() { return (value_ & MULTILINE) != 0; }
|
|
uint32_t value() { return value_; }
|
|
private:
|
|
uint32_t value_;
|
|
};
|
|
|
|
DECL_ACCESSORS(data, Object)
|
|
|
|
inline Type TypeTag();
|
|
inline int CaptureCount();
|
|
inline Flags GetFlags();
|
|
inline String* Pattern();
|
|
inline Object* DataAt(int index);
|
|
// Set implementation data after the object has been prepared.
|
|
inline void SetDataAt(int index, Object* value);
|
|
|
|
static int code_index(bool is_ascii) {
|
|
if (is_ascii) {
|
|
return kIrregexpASCIICodeIndex;
|
|
} else {
|
|
return kIrregexpUC16CodeIndex;
|
|
}
|
|
}
|
|
|
|
static int saved_code_index(bool is_ascii) {
|
|
if (is_ascii) {
|
|
return kIrregexpASCIICodeSavedIndex;
|
|
} else {
|
|
return kIrregexpUC16CodeSavedIndex;
|
|
}
|
|
}
|
|
|
|
static inline JSRegExp* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_VERIFIER(JSRegExp)
|
|
|
|
static const int kDataOffset = JSObject::kHeaderSize;
|
|
static const int kSize = kDataOffset + kPointerSize;
|
|
|
|
// Indices in the data array.
|
|
static const int kTagIndex = 0;
|
|
static const int kSourceIndex = kTagIndex + 1;
|
|
static const int kFlagsIndex = kSourceIndex + 1;
|
|
static const int kDataIndex = kFlagsIndex + 1;
|
|
// The data fields are used in different ways depending on the
|
|
// value of the tag.
|
|
// Atom regexps (literal strings).
|
|
static const int kAtomPatternIndex = kDataIndex;
|
|
|
|
static const int kAtomDataSize = kAtomPatternIndex + 1;
|
|
|
|
// Irregexp compiled code or bytecode for ASCII. If compilation
|
|
// fails, this fields hold an exception object that should be
|
|
// thrown if the regexp is used again.
|
|
static const int kIrregexpASCIICodeIndex = kDataIndex;
|
|
// Irregexp compiled code or bytecode for UC16. If compilation
|
|
// fails, this fields hold an exception object that should be
|
|
// thrown if the regexp is used again.
|
|
static const int kIrregexpUC16CodeIndex = kDataIndex + 1;
|
|
|
|
// Saved instance of Irregexp compiled code or bytecode for ASCII that
|
|
// is a potential candidate for flushing.
|
|
static const int kIrregexpASCIICodeSavedIndex = kDataIndex + 2;
|
|
// Saved instance of Irregexp compiled code or bytecode for UC16 that is
|
|
// a potential candidate for flushing.
|
|
static const int kIrregexpUC16CodeSavedIndex = kDataIndex + 3;
|
|
|
|
// Maximal number of registers used by either ASCII or UC16.
|
|
// Only used to check that there is enough stack space
|
|
static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 4;
|
|
// Number of captures in the compiled regexp.
|
|
static const int kIrregexpCaptureCountIndex = kDataIndex + 5;
|
|
|
|
static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;
|
|
|
|
// Offsets directly into the data fixed array.
|
|
static const int kDataTagOffset =
|
|
FixedArray::kHeaderSize + kTagIndex * kPointerSize;
|
|
static const int kDataAsciiCodeOffset =
|
|
FixedArray::kHeaderSize + kIrregexpASCIICodeIndex * kPointerSize;
|
|
static const int kDataUC16CodeOffset =
|
|
FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize;
|
|
static const int kIrregexpCaptureCountOffset =
|
|
FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize;
|
|
|
|
// In-object fields.
|
|
static const int kSourceFieldIndex = 0;
|
|
static const int kGlobalFieldIndex = 1;
|
|
static const int kIgnoreCaseFieldIndex = 2;
|
|
static const int kMultilineFieldIndex = 3;
|
|
static const int kLastIndexFieldIndex = 4;
|
|
static const int kInObjectFieldCount = 5;
|
|
|
|
// The uninitialized value for a regexp code object.
|
|
static const int kUninitializedValue = -1;
|
|
|
|
// The compilation error value for the regexp code object. The real error
|
|
// object is in the saved code field.
|
|
static const int kCompilationErrorValue = -2;
|
|
|
|
// When we store the sweep generation at which we moved the code from the
|
|
// code index to the saved code index we mask it of to be in the [0:255]
|
|
// range.
|
|
static const int kCodeAgeMask = 0xff;
|
|
};
|
|
|
|
|
|
class CompilationCacheShape : public BaseShape<HashTableKey*> {
|
|
public:
|
|
static inline bool IsMatch(HashTableKey* key, Object* value) {
|
|
return key->IsMatch(value);
|
|
}
|
|
|
|
static inline uint32_t Hash(HashTableKey* key) {
|
|
return key->Hash();
|
|
}
|
|
|
|
static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
|
|
return key->HashForObject(object);
|
|
}
|
|
|
|
MUST_USE_RESULT static MaybeObject* AsObject(Heap* heap,
|
|
HashTableKey* key) {
|
|
return key->AsObject(heap);
|
|
}
|
|
|
|
static const int kPrefixSize = 0;
|
|
static const int kEntrySize = 2;
|
|
};
|
|
|
|
|
|
class CompilationCacheTable: public HashTable<CompilationCacheShape,
|
|
HashTableKey*> {
|
|
public:
|
|
// Find cached value for a string key, otherwise return null.
|
|
Object* Lookup(String* src, Context* context);
|
|
Object* LookupEval(String* src,
|
|
Context* context,
|
|
StrictMode strict_mode,
|
|
int scope_position);
|
|
Object* LookupRegExp(String* source, JSRegExp::Flags flags);
|
|
MUST_USE_RESULT MaybeObject* Put(String* src,
|
|
Context* context,
|
|
Object* value);
|
|
MUST_USE_RESULT MaybeObject* PutEval(String* src,
|
|
Context* context,
|
|
SharedFunctionInfo* value,
|
|
int scope_position);
|
|
MUST_USE_RESULT MaybeObject* PutRegExp(String* src,
|
|
JSRegExp::Flags flags,
|
|
FixedArray* value);
|
|
|
|
// Remove given value from cache.
|
|
void Remove(Object* value);
|
|
|
|
static inline CompilationCacheTable* cast(Object* obj);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
|
|
};
|
|
|
|
|
|
class CodeCache: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(default_cache, FixedArray)
|
|
DECL_ACCESSORS(normal_type_cache, Object)
|
|
|
|
// Add the code object to the cache.
|
|
MUST_USE_RESULT MaybeObject* Update(Name* name, Code* code);
|
|
|
|
// Lookup code object in the cache. Returns code object if found and undefined
|
|
// if not.
|
|
Object* Lookup(Name* name, Code::Flags flags);
|
|
|
|
// Get the internal index of a code object in the cache. Returns -1 if the
|
|
// code object is not in that cache. This index can be used to later call
|
|
// RemoveByIndex. The cache cannot be modified between a call to GetIndex and
|
|
// RemoveByIndex.
|
|
int GetIndex(Object* name, Code* code);
|
|
|
|
// Remove an object from the cache with the provided internal index.
|
|
void RemoveByIndex(Object* name, Code* code, int index);
|
|
|
|
static inline CodeCache* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(CodeCache)
|
|
DECLARE_VERIFIER(CodeCache)
|
|
|
|
static const int kDefaultCacheOffset = HeapObject::kHeaderSize;
|
|
static const int kNormalTypeCacheOffset =
|
|
kDefaultCacheOffset + kPointerSize;
|
|
static const int kSize = kNormalTypeCacheOffset + kPointerSize;
|
|
|
|
private:
|
|
MUST_USE_RESULT MaybeObject* UpdateDefaultCache(Name* name, Code* code);
|
|
MUST_USE_RESULT MaybeObject* UpdateNormalTypeCache(Name* name, Code* code);
|
|
Object* LookupDefaultCache(Name* name, Code::Flags flags);
|
|
Object* LookupNormalTypeCache(Name* name, Code::Flags flags);
|
|
|
|
// Code cache layout of the default cache. Elements are alternating name and
|
|
// code objects for non normal load/store/call IC's.
|
|
static const int kCodeCacheEntrySize = 2;
|
|
static const int kCodeCacheEntryNameOffset = 0;
|
|
static const int kCodeCacheEntryCodeOffset = 1;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCache);
|
|
};
|
|
|
|
|
|
class CodeCacheHashTableShape : public BaseShape<HashTableKey*> {
|
|
public:
|
|
static inline bool IsMatch(HashTableKey* key, Object* value) {
|
|
return key->IsMatch(value);
|
|
}
|
|
|
|
static inline uint32_t Hash(HashTableKey* key) {
|
|
return key->Hash();
|
|
}
|
|
|
|
static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
|
|
return key->HashForObject(object);
|
|
}
|
|
|
|
MUST_USE_RESULT static MaybeObject* AsObject(Heap* heap,
|
|
HashTableKey* key) {
|
|
return key->AsObject(heap);
|
|
}
|
|
|
|
static const int kPrefixSize = 0;
|
|
static const int kEntrySize = 2;
|
|
};
|
|
|
|
|
|
class CodeCacheHashTable: public HashTable<CodeCacheHashTableShape,
|
|
HashTableKey*> {
|
|
public:
|
|
Object* Lookup(Name* name, Code::Flags flags);
|
|
MUST_USE_RESULT MaybeObject* Put(Name* name, Code* code);
|
|
|
|
int GetIndex(Name* name, Code::Flags flags);
|
|
void RemoveByIndex(int index);
|
|
|
|
static inline CodeCacheHashTable* cast(Object* obj);
|
|
|
|
// Initial size of the fixed array backing the hash table.
|
|
static const int kInitialSize = 64;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCacheHashTable);
|
|
};
|
|
|
|
|
|
class PolymorphicCodeCache: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(cache, Object)
|
|
|
|
static void Update(Handle<PolymorphicCodeCache> cache,
|
|
MapHandleList* maps,
|
|
Code::Flags flags,
|
|
Handle<Code> code);
|
|
|
|
MUST_USE_RESULT MaybeObject* Update(MapHandleList* maps,
|
|
Code::Flags flags,
|
|
Code* code);
|
|
|
|
// Returns an undefined value if the entry is not found.
|
|
Handle<Object> Lookup(MapHandleList* maps, Code::Flags flags);
|
|
|
|
static inline PolymorphicCodeCache* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(PolymorphicCodeCache)
|
|
DECLARE_VERIFIER(PolymorphicCodeCache)
|
|
|
|
static const int kCacheOffset = HeapObject::kHeaderSize;
|
|
static const int kSize = kCacheOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCache);
|
|
};
|
|
|
|
|
|
class PolymorphicCodeCacheHashTable
|
|
: public HashTable<CodeCacheHashTableShape, HashTableKey*> {
|
|
public:
|
|
Object* Lookup(MapHandleList* maps, int code_kind);
|
|
|
|
MUST_USE_RESULT MaybeObject* Put(MapHandleList* maps,
|
|
int code_kind,
|
|
Code* code);
|
|
|
|
static inline PolymorphicCodeCacheHashTable* cast(Object* obj);
|
|
|
|
static const int kInitialSize = 64;
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCacheHashTable);
|
|
};
|
|
|
|
|
|
class TypeFeedbackInfo: public Struct {
|
|
public:
|
|
inline int ic_total_count();
|
|
inline void set_ic_total_count(int count);
|
|
|
|
inline int ic_with_type_info_count();
|
|
inline void change_ic_with_type_info_count(int count);
|
|
|
|
inline void initialize_storage();
|
|
|
|
inline void change_own_type_change_checksum();
|
|
inline int own_type_change_checksum();
|
|
|
|
inline void set_inlined_type_change_checksum(int checksum);
|
|
inline bool matches_inlined_type_change_checksum(int checksum);
|
|
|
|
static inline TypeFeedbackInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(TypeFeedbackInfo)
|
|
DECLARE_VERIFIER(TypeFeedbackInfo)
|
|
|
|
static const int kStorage1Offset = HeapObject::kHeaderSize;
|
|
static const int kStorage2Offset = kStorage1Offset + kPointerSize;
|
|
static const int kSize = kStorage2Offset + kPointerSize;
|
|
|
|
// TODO(mvstanton): move these sentinel declarations to shared function info.
|
|
// The object that indicates an uninitialized cache.
|
|
static inline Handle<Object> UninitializedSentinel(Isolate* isolate);
|
|
|
|
// The object that indicates a megamorphic state.
|
|
static inline Handle<Object> MegamorphicSentinel(Isolate* isolate);
|
|
|
|
// The object that indicates a monomorphic state of Array with
|
|
// ElementsKind
|
|
static inline Handle<Object> MonomorphicArraySentinel(Isolate* isolate,
|
|
ElementsKind elements_kind);
|
|
|
|
// A raw version of the uninitialized sentinel that's safe to read during
|
|
// garbage collection (e.g., for patching the cache).
|
|
static inline Object* RawUninitializedSentinel(Heap* heap);
|
|
|
|
private:
|
|
static const int kTypeChangeChecksumBits = 7;
|
|
|
|
class ICTotalCountField: public BitField<int, 0,
|
|
kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT
|
|
class OwnTypeChangeChecksum: public BitField<int,
|
|
kSmiValueSize - kTypeChangeChecksumBits,
|
|
kTypeChangeChecksumBits> {}; // NOLINT
|
|
class ICsWithTypeInfoCountField: public BitField<int, 0,
|
|
kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT
|
|
class InlinedTypeChangeChecksum: public BitField<int,
|
|
kSmiValueSize - kTypeChangeChecksumBits,
|
|
kTypeChangeChecksumBits> {}; // NOLINT
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(TypeFeedbackInfo);
|
|
};
|
|
|
|
|
|
enum AllocationSiteMode {
|
|
DONT_TRACK_ALLOCATION_SITE,
|
|
TRACK_ALLOCATION_SITE,
|
|
LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE
|
|
};
|
|
|
|
|
|
class AllocationSite: public Struct {
|
|
public:
|
|
static const uint32_t kMaximumArrayBytesToPretransition = 8 * 1024;
|
|
static const double kPretenureRatio;
|
|
static const int kPretenureMinimumCreated = 100;
|
|
|
|
// Values for pretenure decision field.
|
|
enum PretenureDecision {
|
|
kUndecided = 0,
|
|
kDontTenure = 1,
|
|
kTenure = 2,
|
|
kZombie = 3,
|
|
kLastPretenureDecisionValue = kZombie
|
|
};
|
|
|
|
DECL_ACCESSORS(transition_info, Object)
|
|
// nested_site threads a list of sites that represent nested literals
|
|
// walked in a particular order. So [[1, 2], 1, 2] will have one
|
|
// nested_site, but [[1, 2], 3, [4]] will have a list of two.
|
|
DECL_ACCESSORS(nested_site, Object)
|
|
DECL_ACCESSORS(pretenure_data, Smi)
|
|
DECL_ACCESSORS(pretenure_create_count, Smi)
|
|
DECL_ACCESSORS(dependent_code, DependentCode)
|
|
DECL_ACCESSORS(weak_next, Object)
|
|
|
|
inline void Initialize();
|
|
|
|
// This method is expensive, it should only be called for reporting.
|
|
bool IsNestedSite();
|
|
|
|
// transition_info bitfields, for constructed array transition info.
|
|
class ElementsKindBits: public BitField<ElementsKind, 0, 15> {};
|
|
class UnusedBits: public BitField<int, 15, 14> {};
|
|
class DoNotInlineBit: public BitField<bool, 29, 1> {};
|
|
|
|
// Bitfields for pretenure_data
|
|
class MementoFoundCountBits: public BitField<int, 0, 27> {};
|
|
class PretenureDecisionBits: public BitField<PretenureDecision, 27, 2> {};
|
|
class DeoptDependentCodeBit: public BitField<bool, 29, 1> {};
|
|
STATIC_ASSERT(PretenureDecisionBits::kMax >= kLastPretenureDecisionValue);
|
|
|
|
// Increments the mementos found counter and returns true when the first
|
|
// memento was found for a given allocation site.
|
|
inline bool IncrementMementoFoundCount();
|
|
|
|
inline void IncrementMementoCreateCount();
|
|
|
|
PretenureFlag GetPretenureMode();
|
|
|
|
void ResetPretenureDecision();
|
|
|
|
PretenureDecision pretenure_decision() {
|
|
int value = pretenure_data()->value();
|
|
return PretenureDecisionBits::decode(value);
|
|
}
|
|
|
|
void set_pretenure_decision(PretenureDecision decision) {
|
|
int value = pretenure_data()->value();
|
|
set_pretenure_data(
|
|
Smi::FromInt(PretenureDecisionBits::update(value, decision)),
|
|
SKIP_WRITE_BARRIER);
|
|
}
|
|
|
|
bool deopt_dependent_code() {
|
|
int value = pretenure_data()->value();
|
|
return DeoptDependentCodeBit::decode(value);
|
|
}
|
|
|
|
void set_deopt_dependent_code(bool deopt) {
|
|
int value = pretenure_data()->value();
|
|
set_pretenure_data(
|
|
Smi::FromInt(DeoptDependentCodeBit::update(value, deopt)),
|
|
SKIP_WRITE_BARRIER);
|
|
}
|
|
|
|
int memento_found_count() {
|
|
int value = pretenure_data()->value();
|
|
return MementoFoundCountBits::decode(value);
|
|
}
|
|
|
|
inline void set_memento_found_count(int count);
|
|
|
|
int memento_create_count() {
|
|
return pretenure_create_count()->value();
|
|
}
|
|
|
|
void set_memento_create_count(int count) {
|
|
set_pretenure_create_count(Smi::FromInt(count), SKIP_WRITE_BARRIER);
|
|
}
|
|
|
|
// The pretenuring decision is made during gc, and the zombie state allows
|
|
// us to recognize when an allocation site is just being kept alive because
|
|
// a later traversal of new space may discover AllocationMementos that point
|
|
// to this AllocationSite.
|
|
bool IsZombie() {
|
|
return pretenure_decision() == kZombie;
|
|
}
|
|
|
|
inline void MarkZombie();
|
|
|
|
inline bool DigestPretenuringFeedback();
|
|
|
|
ElementsKind GetElementsKind() {
|
|
ASSERT(!SitePointsToLiteral());
|
|
int value = Smi::cast(transition_info())->value();
|
|
return ElementsKindBits::decode(value);
|
|
}
|
|
|
|
void SetElementsKind(ElementsKind kind) {
|
|
int value = Smi::cast(transition_info())->value();
|
|
set_transition_info(Smi::FromInt(ElementsKindBits::update(value, kind)),
|
|
SKIP_WRITE_BARRIER);
|
|
}
|
|
|
|
bool CanInlineCall() {
|
|
int value = Smi::cast(transition_info())->value();
|
|
return DoNotInlineBit::decode(value) == 0;
|
|
}
|
|
|
|
void SetDoNotInlineCall() {
|
|
int value = Smi::cast(transition_info())->value();
|
|
set_transition_info(Smi::FromInt(DoNotInlineBit::update(value, true)),
|
|
SKIP_WRITE_BARRIER);
|
|
}
|
|
|
|
bool SitePointsToLiteral() {
|
|
// If transition_info is a smi, then it represents an ElementsKind
|
|
// for a constructed array. Otherwise, it must be a boilerplate
|
|
// for an object or array literal.
|
|
return transition_info()->IsJSArray() || transition_info()->IsJSObject();
|
|
}
|
|
|
|
MaybeObject* DigestTransitionFeedback(ElementsKind to_kind);
|
|
|
|
enum Reason {
|
|
TENURING,
|
|
TRANSITIONS
|
|
};
|
|
|
|
static void AddDependentCompilationInfo(Handle<AllocationSite> site,
|
|
Reason reason,
|
|
CompilationInfo* info);
|
|
|
|
DECLARE_PRINTER(AllocationSite)
|
|
DECLARE_VERIFIER(AllocationSite)
|
|
|
|
static inline AllocationSite* cast(Object* obj);
|
|
static inline AllocationSiteMode GetMode(
|
|
ElementsKind boilerplate_elements_kind);
|
|
static inline AllocationSiteMode GetMode(ElementsKind from, ElementsKind to);
|
|
static inline bool CanTrack(InstanceType type);
|
|
|
|
static const int kTransitionInfoOffset = HeapObject::kHeaderSize;
|
|
static const int kNestedSiteOffset = kTransitionInfoOffset + kPointerSize;
|
|
static const int kPretenureDataOffset = kNestedSiteOffset + kPointerSize;
|
|
static const int kPretenureCreateCountOffset =
|
|
kPretenureDataOffset + kPointerSize;
|
|
static const int kDependentCodeOffset =
|
|
kPretenureCreateCountOffset + kPointerSize;
|
|
static const int kWeakNextOffset = kDependentCodeOffset + kPointerSize;
|
|
static const int kSize = kWeakNextOffset + kPointerSize;
|
|
|
|
// During mark compact we need to take special care for the dependent code
|
|
// field.
|
|
static const int kPointerFieldsBeginOffset = kTransitionInfoOffset;
|
|
static const int kPointerFieldsEndOffset = kDependentCodeOffset;
|
|
|
|
// For other visitors, use the fixed body descriptor below.
|
|
typedef FixedBodyDescriptor<HeapObject::kHeaderSize,
|
|
kDependentCodeOffset + kPointerSize,
|
|
kSize> BodyDescriptor;
|
|
|
|
private:
|
|
inline DependentCode::DependencyGroup ToDependencyGroup(Reason reason);
|
|
bool PretenuringDecisionMade() {
|
|
return pretenure_decision() != kUndecided;
|
|
}
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationSite);
|
|
};
|
|
|
|
|
|
class AllocationMemento: public Struct {
|
|
public:
|
|
static const int kAllocationSiteOffset = HeapObject::kHeaderSize;
|
|
static const int kSize = kAllocationSiteOffset + kPointerSize;
|
|
|
|
DECL_ACCESSORS(allocation_site, Object)
|
|
|
|
bool IsValid() {
|
|
return allocation_site()->IsAllocationSite() &&
|
|
!AllocationSite::cast(allocation_site())->IsZombie();
|
|
}
|
|
AllocationSite* GetAllocationSite() {
|
|
ASSERT(IsValid());
|
|
return AllocationSite::cast(allocation_site());
|
|
}
|
|
|
|
DECLARE_PRINTER(AllocationMemento)
|
|
DECLARE_VERIFIER(AllocationMemento)
|
|
|
|
static inline AllocationMemento* cast(Object* obj);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationMemento);
|
|
};
|
|
|
|
|
|
// Representation of a slow alias as part of a sloppy arguments objects.
|
|
// For fast aliases (if HasSloppyArgumentsElements()):
|
|
// - the parameter map contains an index into the context
|
|
// - all attributes of the element have default values
|
|
// For slow aliases (if HasDictionaryArgumentsElements()):
|
|
// - the parameter map contains no fast alias mapping (i.e. the hole)
|
|
// - this struct (in the slow backing store) contains an index into the context
|
|
// - all attributes are available as part if the property details
|
|
class AliasedArgumentsEntry: public Struct {
|
|
public:
|
|
inline int aliased_context_slot();
|
|
inline void set_aliased_context_slot(int count);
|
|
|
|
static inline AliasedArgumentsEntry* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(AliasedArgumentsEntry)
|
|
DECLARE_VERIFIER(AliasedArgumentsEntry)
|
|
|
|
static const int kAliasedContextSlot = HeapObject::kHeaderSize;
|
|
static const int kSize = kAliasedContextSlot + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(AliasedArgumentsEntry);
|
|
};
|
|
|
|
|
|
enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
|
|
enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
|
|
|
|
|
|
class StringHasher {
|
|
public:
|
|
explicit inline StringHasher(int length, uint32_t seed);
|
|
|
|
template <typename schar>
|
|
static inline uint32_t HashSequentialString(const schar* chars,
|
|
int length,
|
|
uint32_t seed);
|
|
|
|
// Reads all the data, even for long strings and computes the utf16 length.
|
|
static uint32_t ComputeUtf8Hash(Vector<const char> chars,
|
|
uint32_t seed,
|
|
int* utf16_length_out);
|
|
|
|
// Calculated hash value for a string consisting of 1 to
|
|
// String::kMaxArrayIndexSize digits with no leading zeros (except "0").
|
|
// value is represented decimal value.
|
|
static uint32_t MakeArrayIndexHash(uint32_t value, int length);
|
|
|
|
// No string is allowed to have a hash of zero. That value is reserved
|
|
// for internal properties. If the hash calculation yields zero then we
|
|
// use 27 instead.
|
|
static const int kZeroHash = 27;
|
|
|
|
// Reusable parts of the hashing algorithm.
|
|
INLINE(static uint32_t AddCharacterCore(uint32_t running_hash, uint16_t c));
|
|
INLINE(static uint32_t GetHashCore(uint32_t running_hash));
|
|
|
|
protected:
|
|
// Returns the value to store in the hash field of a string with
|
|
// the given length and contents.
|
|
uint32_t GetHashField();
|
|
// Returns true if the hash of this string can be computed without
|
|
// looking at the contents.
|
|
inline bool has_trivial_hash();
|
|
// Adds a block of characters to the hash.
|
|
template<typename Char>
|
|
inline void AddCharacters(const Char* chars, int len);
|
|
|
|
private:
|
|
// Add a character to the hash.
|
|
inline void AddCharacter(uint16_t c);
|
|
// Update index. Returns true if string is still an index.
|
|
inline bool UpdateIndex(uint16_t c);
|
|
|
|
int length_;
|
|
uint32_t raw_running_hash_;
|
|
uint32_t array_index_;
|
|
bool is_array_index_;
|
|
bool is_first_char_;
|
|
DISALLOW_COPY_AND_ASSIGN(StringHasher);
|
|
};
|
|
|
|
|
|
// The characteristics of a string are stored in its map. Retrieving these
|
|
// few bits of information is moderately expensive, involving two memory
|
|
// loads where the second is dependent on the first. To improve efficiency
|
|
// the shape of the string is given its own class so that it can be retrieved
|
|
// once and used for several string operations. A StringShape is small enough
|
|
// to be passed by value and is immutable, but be aware that flattening a
|
|
// string can potentially alter its shape. Also be aware that a GC caused by
|
|
// something else can alter the shape of a string due to ConsString
|
|
// shortcutting. Keeping these restrictions in mind has proven to be error-
|
|
// prone and so we no longer put StringShapes in variables unless there is a
|
|
// concrete performance benefit at that particular point in the code.
|
|
class StringShape BASE_EMBEDDED {
|
|
public:
|
|
inline explicit StringShape(String* s);
|
|
inline explicit StringShape(Map* s);
|
|
inline explicit StringShape(InstanceType t);
|
|
inline bool IsSequential();
|
|
inline bool IsExternal();
|
|
inline bool IsCons();
|
|
inline bool IsSliced();
|
|
inline bool IsIndirect();
|
|
inline bool IsExternalAscii();
|
|
inline bool IsExternalTwoByte();
|
|
inline bool IsSequentialAscii();
|
|
inline bool IsSequentialTwoByte();
|
|
inline bool IsInternalized();
|
|
inline StringRepresentationTag representation_tag();
|
|
inline uint32_t encoding_tag();
|
|
inline uint32_t full_representation_tag();
|
|
inline uint32_t size_tag();
|
|
#ifdef DEBUG
|
|
inline uint32_t type() { return type_; }
|
|
inline void invalidate() { valid_ = false; }
|
|
inline bool valid() { return valid_; }
|
|
#else
|
|
inline void invalidate() { }
|
|
#endif
|
|
|
|
private:
|
|
uint32_t type_;
|
|
#ifdef DEBUG
|
|
inline void set_valid() { valid_ = true; }
|
|
bool valid_;
|
|
#else
|
|
inline void set_valid() { }
|
|
#endif
|
|
};
|
|
|
|
|
|
// The Name abstract class captures anything that can be used as a property
|
|
// name, i.e., strings and symbols. All names store a hash value.
|
|
class Name: public HeapObject {
|
|
public:
|
|
// Get and set the hash field of the name.
|
|
inline uint32_t hash_field();
|
|
inline void set_hash_field(uint32_t value);
|
|
|
|
// Tells whether the hash code has been computed.
|
|
inline bool HasHashCode();
|
|
|
|
// Returns a hash value used for the property table
|
|
inline uint32_t Hash();
|
|
|
|
// Equality operations.
|
|
inline bool Equals(Name* other);
|
|
|
|
// Conversion.
|
|
inline bool AsArrayIndex(uint32_t* index);
|
|
|
|
// Casting.
|
|
static inline Name* cast(Object* obj);
|
|
|
|
bool IsCacheable(Isolate* isolate);
|
|
|
|
DECLARE_PRINTER(Name)
|
|
|
|
// Layout description.
|
|
static const int kHashFieldOffset = HeapObject::kHeaderSize;
|
|
static const int kSize = kHashFieldOffset + kPointerSize;
|
|
|
|
// Mask constant for checking if a name has a computed hash code
|
|
// and if it is a string that is an array index. The least significant bit
|
|
// indicates whether a hash code has been computed. If the hash code has
|
|
// been computed the 2nd bit tells whether the string can be used as an
|
|
// array index.
|
|
static const int kHashNotComputedMask = 1;
|
|
static const int kIsNotArrayIndexMask = 1 << 1;
|
|
static const int kNofHashBitFields = 2;
|
|
|
|
// Shift constant retrieving hash code from hash field.
|
|
static const int kHashShift = kNofHashBitFields;
|
|
|
|
// Only these bits are relevant in the hash, since the top two are shifted
|
|
// out.
|
|
static const uint32_t kHashBitMask = 0xffffffffu >> kHashShift;
|
|
|
|
// Array index strings this short can keep their index in the hash field.
|
|
static const int kMaxCachedArrayIndexLength = 7;
|
|
|
|
// For strings which are array indexes the hash value has the string length
|
|
// mixed into the hash, mainly to avoid a hash value of zero which would be
|
|
// the case for the string '0'. 24 bits are used for the array index value.
|
|
static const int kArrayIndexValueBits = 24;
|
|
static const int kArrayIndexLengthBits =
|
|
kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;
|
|
|
|
STATIC_CHECK((kArrayIndexLengthBits > 0));
|
|
|
|
static const int kArrayIndexHashLengthShift =
|
|
kArrayIndexValueBits + kNofHashBitFields;
|
|
|
|
static const int kArrayIndexHashMask = (1 << kArrayIndexHashLengthShift) - 1;
|
|
|
|
static const int kArrayIndexValueMask =
|
|
((1 << kArrayIndexValueBits) - 1) << kHashShift;
|
|
|
|
// Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
|
|
// could use a mask to test if the length of string is less than or equal to
|
|
// kMaxCachedArrayIndexLength.
|
|
STATIC_CHECK(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));
|
|
|
|
static const unsigned int kContainsCachedArrayIndexMask =
|
|
(~kMaxCachedArrayIndexLength << kArrayIndexHashLengthShift) |
|
|
kIsNotArrayIndexMask;
|
|
|
|
// Value of empty hash field indicating that the hash is not computed.
|
|
static const int kEmptyHashField =
|
|
kIsNotArrayIndexMask | kHashNotComputedMask;
|
|
|
|
protected:
|
|
static inline bool IsHashFieldComputed(uint32_t field);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Name);
|
|
};
|
|
|
|
|
|
// ES6 symbols.
|
|
class Symbol: public Name {
|
|
public:
|
|
// [name]: the print name of a symbol, or undefined if none.
|
|
DECL_ACCESSORS(name, Object)
|
|
|
|
DECL_ACCESSORS(flags, Smi)
|
|
|
|
// [is_private]: whether this is a private symbol.
|
|
DECL_BOOLEAN_ACCESSORS(is_private)
|
|
|
|
// Casting.
|
|
static inline Symbol* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(Symbol)
|
|
DECLARE_VERIFIER(Symbol)
|
|
|
|
// Layout description.
|
|
static const int kNameOffset = Name::kSize;
|
|
static const int kFlagsOffset = kNameOffset + kPointerSize;
|
|
static const int kSize = kFlagsOffset + kPointerSize;
|
|
|
|
typedef FixedBodyDescriptor<kNameOffset, kFlagsOffset, kSize> BodyDescriptor;
|
|
|
|
private:
|
|
static const int kPrivateBit = 0;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Symbol);
|
|
};
|
|
|
|
|
|
class ConsString;
|
|
|
|
// The String abstract class captures JavaScript string values:
|
|
//
|
|
// Ecma-262:
|
|
// 4.3.16 String Value
|
|
// A string value is a member of the type String and is a finite
|
|
// ordered sequence of zero or more 16-bit unsigned integer values.
|
|
//
|
|
// All string values have a length field.
|
|
class String: public Name {
|
|
public:
|
|
enum Encoding { ONE_BYTE_ENCODING, TWO_BYTE_ENCODING };
|
|
|
|
// Representation of the flat content of a String.
|
|
// A non-flat string doesn't have flat content.
|
|
// A flat string has content that's encoded as a sequence of either
|
|
// ASCII chars or two-byte UC16.
|
|
// Returned by String::GetFlatContent().
|
|
class FlatContent {
|
|
public:
|
|
// Returns true if the string is flat and this structure contains content.
|
|
bool IsFlat() { return state_ != NON_FLAT; }
|
|
// Returns true if the structure contains ASCII content.
|
|
bool IsAscii() { return state_ == ASCII; }
|
|
// Returns true if the structure contains two-byte content.
|
|
bool IsTwoByte() { return state_ == TWO_BYTE; }
|
|
|
|
// Return the one byte content of the string. Only use if IsAscii() returns
|
|
// true.
|
|
Vector<const uint8_t> ToOneByteVector() {
|
|
ASSERT_EQ(ASCII, state_);
|
|
return buffer_;
|
|
}
|
|
// Return the two-byte content of the string. Only use if IsTwoByte()
|
|
// returns true.
|
|
Vector<const uc16> ToUC16Vector() {
|
|
ASSERT_EQ(TWO_BYTE, state_);
|
|
return Vector<const uc16>::cast(buffer_);
|
|
}
|
|
|
|
private:
|
|
enum State { NON_FLAT, ASCII, TWO_BYTE };
|
|
|
|
// Constructors only used by String::GetFlatContent().
|
|
explicit FlatContent(Vector<const uint8_t> chars)
|
|
: buffer_(chars),
|
|
state_(ASCII) { }
|
|
explicit FlatContent(Vector<const uc16> chars)
|
|
: buffer_(Vector<const byte>::cast(chars)),
|
|
state_(TWO_BYTE) { }
|
|
FlatContent() : buffer_(), state_(NON_FLAT) { }
|
|
|
|
Vector<const uint8_t> buffer_;
|
|
State state_;
|
|
|
|
friend class String;
|
|
};
|
|
|
|
// Get and set the length of the string.
|
|
inline int length();
|
|
inline void set_length(int value);
|
|
|
|
// Returns whether this string has only ASCII chars, i.e. all of them can
|
|
// be ASCII encoded. This might be the case even if the string is
|
|
// two-byte. Such strings may appear when the embedder prefers
|
|
// two-byte external representations even for ASCII data.
|
|
inline bool IsOneByteRepresentation();
|
|
inline bool IsTwoByteRepresentation();
|
|
|
|
// Cons and slices have an encoding flag that may not represent the actual
|
|
// encoding of the underlying string. This is taken into account here.
|
|
// Requires: this->IsFlat()
|
|
inline bool IsOneByteRepresentationUnderneath();
|
|
inline bool IsTwoByteRepresentationUnderneath();
|
|
|
|
// NOTE: this should be considered only a hint. False negatives are
|
|
// possible.
|
|
inline bool HasOnlyOneByteChars();
|
|
|
|
// Get and set individual two byte chars in the string.
|
|
inline void Set(int index, uint16_t value);
|
|
// Get individual two byte char in the string. Repeated calls
|
|
// to this method are not efficient unless the string is flat.
|
|
INLINE(uint16_t Get(int index));
|
|
|
|
// Try to flatten the string. Checks first inline to see if it is
|
|
// necessary. Does nothing if the string is not a cons string.
|
|
// Flattening allocates a sequential string with the same data as
|
|
// the given string and mutates the cons string to a degenerate
|
|
// form, where the first component is the new sequential string and
|
|
// the second component is the empty string. If allocation fails,
|
|
// this function returns a failure. If flattening succeeds, this
|
|
// function returns the sequential string that is now the first
|
|
// component of the cons string.
|
|
//
|
|
// Degenerate cons strings are handled specially by the garbage
|
|
// collector (see IsShortcutCandidate).
|
|
//
|
|
// Use FlattenString from Handles.cc to flatten even in case an
|
|
// allocation failure happens.
|
|
inline MaybeObject* TryFlatten(PretenureFlag pretenure = NOT_TENURED);
|
|
|
|
// Convenience function. Has exactly the same behavior as
|
|
// TryFlatten(), except in the case of failure returns the original
|
|
// string.
|
|
inline String* TryFlattenGetString(PretenureFlag pretenure = NOT_TENURED);
|
|
|
|
// Tries to return the content of a flat string as a structure holding either
|
|
// a flat vector of char or of uc16.
|
|
// If the string isn't flat, and therefore doesn't have flat content, the
|
|
// returned structure will report so, and can't provide a vector of either
|
|
// kind.
|
|
FlatContent GetFlatContent();
|
|
|
|
// Returns the parent of a sliced string or first part of a flat cons string.
|
|
// Requires: StringShape(this).IsIndirect() && this->IsFlat()
|
|
inline String* GetUnderlying();
|
|
|
|
// Mark the string as an undetectable object. It only applies to
|
|
// ASCII and two byte string types.
|
|
bool MarkAsUndetectable();
|
|
|
|
// String equality operations.
|
|
inline bool Equals(String* other);
|
|
bool IsUtf8EqualTo(Vector<const char> str, bool allow_prefix_match = false);
|
|
bool IsOneByteEqualTo(Vector<const uint8_t> str);
|
|
bool IsTwoByteEqualTo(Vector<const uc16> str);
|
|
|
|
// Return a UTF8 representation of the string. The string is null
|
|
// terminated but may optionally contain nulls. Length is returned
|
|
// in length_output if length_output is not a null pointer The string
|
|
// should be nearly flat, otherwise the performance of this method may
|
|
// be very slow (quadratic in the length). Setting robustness_flag to
|
|
// ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
|
|
// handles unexpected data without causing assert failures and it does not
|
|
// do any heap allocations. This is useful when printing stack traces.
|
|
SmartArrayPointer<char> ToCString(AllowNullsFlag allow_nulls,
|
|
RobustnessFlag robustness_flag,
|
|
int offset,
|
|
int length,
|
|
int* length_output = 0);
|
|
SmartArrayPointer<char> ToCString(
|
|
AllowNullsFlag allow_nulls = DISALLOW_NULLS,
|
|
RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
|
|
int* length_output = 0);
|
|
|
|
// Return a 16 bit Unicode representation of the string.
|
|
// The string should be nearly flat, otherwise the performance of
|
|
// of this method may be very bad. Setting robustness_flag to
|
|
// ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
|
|
// handles unexpected data without causing assert failures and it does not
|
|
// do any heap allocations. This is useful when printing stack traces.
|
|
SmartArrayPointer<uc16> ToWideCString(
|
|
RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
|
|
|
|
bool ComputeArrayIndex(uint32_t* index);
|
|
|
|
// Externalization.
|
|
bool MakeExternal(v8::String::ExternalStringResource* resource);
|
|
bool MakeExternal(v8::String::ExternalAsciiStringResource* resource);
|
|
|
|
// Conversion.
|
|
inline bool AsArrayIndex(uint32_t* index);
|
|
|
|
// Casting.
|
|
static inline String* cast(Object* obj);
|
|
|
|
void PrintOn(FILE* out);
|
|
|
|
// For use during stack traces. Performs rudimentary sanity check.
|
|
bool LooksValid();
|
|
|
|
// Dispatched behavior.
|
|
void StringShortPrint(StringStream* accumulator);
|
|
#ifdef OBJECT_PRINT
|
|
char* ToAsciiArray();
|
|
#endif
|
|
DECLARE_PRINTER(String)
|
|
DECLARE_VERIFIER(String)
|
|
|
|
inline bool IsFlat();
|
|
|
|
// Layout description.
|
|
static const int kLengthOffset = Name::kSize;
|
|
static const int kSize = kLengthOffset + kPointerSize;
|
|
|
|
// Maximum number of characters to consider when trying to convert a string
|
|
// value into an array index.
|
|
static const int kMaxArrayIndexSize = 10;
|
|
STATIC_CHECK(kMaxArrayIndexSize < (1 << kArrayIndexLengthBits));
|
|
|
|
// Max char codes.
|
|
static const int32_t kMaxOneByteCharCode = unibrow::Latin1::kMaxChar;
|
|
static const uint32_t kMaxOneByteCharCodeU = unibrow::Latin1::kMaxChar;
|
|
static const int kMaxUtf16CodeUnit = 0xffff;
|
|
|
|
// Value of hash field containing computed hash equal to zero.
|
|
static const int kEmptyStringHash = kIsNotArrayIndexMask;
|
|
|
|
// Maximal string length.
|
|
static const int kMaxLength = (1 << (32 - 2)) - 1;
|
|
|
|
// Max length for computing hash. For strings longer than this limit the
|
|
// string length is used as the hash value.
|
|
static const int kMaxHashCalcLength = 16383;
|
|
|
|
// Limit for truncation in short printing.
|
|
static const int kMaxShortPrintLength = 1024;
|
|
|
|
// Support for regular expressions.
|
|
const uc16* GetTwoByteData(unsigned start);
|
|
|
|
// Helper function for flattening strings.
|
|
template <typename sinkchar>
|
|
static void WriteToFlat(String* source,
|
|
sinkchar* sink,
|
|
int from,
|
|
int to);
|
|
|
|
// The return value may point to the first aligned word containing the
|
|
// first non-ascii character, rather than directly to the non-ascii character.
|
|
// If the return value is >= the passed length, the entire string was ASCII.
|
|
static inline int NonAsciiStart(const char* chars, int length) {
|
|
const char* start = chars;
|
|
const char* limit = chars + length;
|
|
#ifdef V8_HOST_CAN_READ_UNALIGNED
|
|
ASSERT(unibrow::Utf8::kMaxOneByteChar == 0x7F);
|
|
const uintptr_t non_ascii_mask = kUintptrAllBitsSet / 0xFF * 0x80;
|
|
while (chars + sizeof(uintptr_t) <= limit) {
|
|
if (*reinterpret_cast<const uintptr_t*>(chars) & non_ascii_mask) {
|
|
return static_cast<int>(chars - start);
|
|
}
|
|
chars += sizeof(uintptr_t);
|
|
}
|
|
#endif
|
|
while (chars < limit) {
|
|
if (static_cast<uint8_t>(*chars) > unibrow::Utf8::kMaxOneByteChar) {
|
|
return static_cast<int>(chars - start);
|
|
}
|
|
++chars;
|
|
}
|
|
return static_cast<int>(chars - start);
|
|
}
|
|
|
|
static inline bool IsAscii(const char* chars, int length) {
|
|
return NonAsciiStart(chars, length) >= length;
|
|
}
|
|
|
|
static inline bool IsAscii(const uint8_t* chars, int length) {
|
|
return
|
|
NonAsciiStart(reinterpret_cast<const char*>(chars), length) >= length;
|
|
}
|
|
|
|
static inline int NonOneByteStart(const uc16* chars, int length) {
|
|
const uc16* limit = chars + length;
|
|
const uc16* start = chars;
|
|
while (chars < limit) {
|
|
if (*chars > kMaxOneByteCharCodeU) return static_cast<int>(chars - start);
|
|
++chars;
|
|
}
|
|
return static_cast<int>(chars - start);
|
|
}
|
|
|
|
static inline bool IsOneByte(const uc16* chars, int length) {
|
|
return NonOneByteStart(chars, length) >= length;
|
|
}
|
|
|
|
// TODO(dcarney): Replace all instances of this with VisitFlat.
|
|
template<class Visitor, class ConsOp>
|
|
static inline void Visit(String* string,
|
|
unsigned offset,
|
|
Visitor& visitor,
|
|
ConsOp& cons_op,
|
|
int32_t type,
|
|
unsigned length);
|
|
|
|
template<class Visitor>
|
|
static inline ConsString* VisitFlat(Visitor* visitor,
|
|
String* string,
|
|
int offset,
|
|
int length,
|
|
int32_t type);
|
|
|
|
template<class Visitor>
|
|
static inline ConsString* VisitFlat(Visitor* visitor,
|
|
String* string,
|
|
int offset = 0) {
|
|
int32_t type = string->map()->instance_type();
|
|
return VisitFlat(visitor, string, offset, string->length(), type);
|
|
}
|
|
|
|
private:
|
|
friend class Name;
|
|
|
|
// Try to flatten the top level ConsString that is hiding behind this
|
|
// string. This is a no-op unless the string is a ConsString. Flatten
|
|
// mutates the ConsString and might return a failure.
|
|
MUST_USE_RESULT MaybeObject* SlowTryFlatten(PretenureFlag pretenure);
|
|
|
|
// Slow case of String::Equals. This implementation works on any strings
|
|
// but it is most efficient on strings that are almost flat.
|
|
bool SlowEquals(String* other);
|
|
|
|
// Slow case of AsArrayIndex.
|
|
bool SlowAsArrayIndex(uint32_t* index);
|
|
|
|
// Compute and set the hash code.
|
|
uint32_t ComputeAndSetHash();
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(String);
|
|
};
|
|
|
|
|
|
// The SeqString abstract class captures sequential string values.
|
|
class SeqString: public String {
|
|
public:
|
|
// Casting.
|
|
static inline SeqString* cast(Object* obj);
|
|
|
|
// Layout description.
|
|
static const int kHeaderSize = String::kSize;
|
|
|
|
// Truncate the string in-place if possible and return the result.
|
|
// In case of new_length == 0, the empty string is returned without
|
|
// truncating the original string.
|
|
MUST_USE_RESULT static Handle<String> Truncate(Handle<SeqString> string,
|
|
int new_length);
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
|
|
};
|
|
|
|
|
|
// The AsciiString class captures sequential ASCII string objects.
|
|
// Each character in the AsciiString is an ASCII character.
|
|
class SeqOneByteString: public SeqString {
|
|
public:
|
|
static const bool kHasAsciiEncoding = true;
|
|
|
|
// Dispatched behavior.
|
|
inline uint16_t SeqOneByteStringGet(int index);
|
|
inline void SeqOneByteStringSet(int index, uint16_t value);
|
|
|
|
// Get the address of the characters in this string.
|
|
inline Address GetCharsAddress();
|
|
|
|
inline uint8_t* GetChars();
|
|
|
|
// Casting
|
|
static inline SeqOneByteString* cast(Object* obj);
|
|
|
|
// Garbage collection support. This method is called by the
|
|
// garbage collector to compute the actual size of an AsciiString
|
|
// instance.
|
|
inline int SeqOneByteStringSize(InstanceType instance_type);
|
|
|
|
// Computes the size for an AsciiString instance of a given length.
|
|
static int SizeFor(int length) {
|
|
return OBJECT_POINTER_ALIGN(kHeaderSize + length * kCharSize);
|
|
}
|
|
|
|
// Maximal memory usage for a single sequential ASCII string.
|
|
static const int kMaxSize = 512 * MB - 1;
|
|
// Maximal length of a single sequential ASCII string.
|
|
// Q.v. String::kMaxLength which is the maximal size of concatenated strings.
|
|
static const int kMaxLength = (kMaxSize - kHeaderSize);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SeqOneByteString);
|
|
};
|
|
|
|
|
|
// The TwoByteString class captures sequential unicode string objects.
|
|
// Each character in the TwoByteString is a two-byte uint16_t.
|
|
class SeqTwoByteString: public SeqString {
|
|
public:
|
|
static const bool kHasAsciiEncoding = false;
|
|
|
|
// Dispatched behavior.
|
|
inline uint16_t SeqTwoByteStringGet(int index);
|
|
inline void SeqTwoByteStringSet(int index, uint16_t value);
|
|
|
|
// Get the address of the characters in this string.
|
|
inline Address GetCharsAddress();
|
|
|
|
inline uc16* GetChars();
|
|
|
|
// For regexp code.
|
|
const uint16_t* SeqTwoByteStringGetData(unsigned start);
|
|
|
|
// Casting
|
|
static inline SeqTwoByteString* cast(Object* obj);
|
|
|
|
// Garbage collection support. This method is called by the
|
|
// garbage collector to compute the actual size of a TwoByteString
|
|
// instance.
|
|
inline int SeqTwoByteStringSize(InstanceType instance_type);
|
|
|
|
// Computes the size for a TwoByteString instance of a given length.
|
|
static int SizeFor(int length) {
|
|
return OBJECT_POINTER_ALIGN(kHeaderSize + length * kShortSize);
|
|
}
|
|
|
|
// Maximal memory usage for a single sequential two-byte string.
|
|
static const int kMaxSize = 512 * MB - 1;
|
|
// Maximal length of a single sequential two-byte string.
|
|
// Q.v. String::kMaxLength which is the maximal size of concatenated strings.
|
|
static const int kMaxLength = (kMaxSize - kHeaderSize) / sizeof(uint16_t);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
|
|
};
|
|
|
|
|
|
// The ConsString class describes string values built by using the
|
|
// addition operator on strings. A ConsString is a pair where the
|
|
// first and second components are pointers to other string values.
|
|
// One or both components of a ConsString can be pointers to other
|
|
// ConsStrings, creating a binary tree of ConsStrings where the leaves
|
|
// are non-ConsString string values. The string value represented by
|
|
// a ConsString can be obtained by concatenating the leaf string
|
|
// values in a left-to-right depth-first traversal of the tree.
|
|
class ConsString: public String {
|
|
public:
|
|
// First string of the cons cell.
|
|
inline String* first();
|
|
// Doesn't check that the result is a string, even in debug mode. This is
|
|
// useful during GC where the mark bits confuse the checks.
|
|
inline Object* unchecked_first();
|
|
inline void set_first(String* first,
|
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
|
|
// Second string of the cons cell.
|
|
inline String* second();
|
|
// Doesn't check that the result is a string, even in debug mode. This is
|
|
// useful during GC where the mark bits confuse the checks.
|
|
inline Object* unchecked_second();
|
|
inline void set_second(String* second,
|
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
|
|
// Dispatched behavior.
|
|
uint16_t ConsStringGet(int index);
|
|
|
|
// Casting.
|
|
static inline ConsString* cast(Object* obj);
|
|
|
|
// Layout description.
|
|
static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
|
|
static const int kSecondOffset = kFirstOffset + kPointerSize;
|
|
static const int kSize = kSecondOffset + kPointerSize;
|
|
|
|
// Minimum length for a cons string.
|
|
static const int kMinLength = 13;
|
|
|
|
typedef FixedBodyDescriptor<kFirstOffset, kSecondOffset + kPointerSize, kSize>
|
|
BodyDescriptor;
|
|
|
|
DECLARE_VERIFIER(ConsString)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
|
|
};
|
|
|
|
|
|
// The Sliced String class describes strings that are substrings of another
|
|
// sequential string. The motivation is to save time and memory when creating
|
|
// a substring. A Sliced String is described as a pointer to the parent,
|
|
// the offset from the start of the parent string and the length. Using
|
|
// a Sliced String therefore requires unpacking of the parent string and
|
|
// adding the offset to the start address. A substring of a Sliced String
|
|
// are not nested since the double indirection is simplified when creating
|
|
// such a substring.
|
|
// Currently missing features are:
|
|
// - handling externalized parent strings
|
|
// - external strings as parent
|
|
// - truncating sliced string to enable otherwise unneeded parent to be GC'ed.
|
|
class SlicedString: public String {
|
|
public:
|
|
inline String* parent();
|
|
inline void set_parent(String* parent,
|
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
inline int offset();
|
|
inline void set_offset(int offset);
|
|
|
|
// Dispatched behavior.
|
|
uint16_t SlicedStringGet(int index);
|
|
|
|
// Casting.
|
|
static inline SlicedString* cast(Object* obj);
|
|
|
|
// Layout description.
|
|
static const int kParentOffset = POINTER_SIZE_ALIGN(String::kSize);
|
|
static const int kOffsetOffset = kParentOffset + kPointerSize;
|
|
static const int kSize = kOffsetOffset + kPointerSize;
|
|
|
|
// Minimum length for a sliced string.
|
|
static const int kMinLength = 13;
|
|
|
|
typedef FixedBodyDescriptor<kParentOffset,
|
|
kOffsetOffset + kPointerSize, kSize>
|
|
BodyDescriptor;
|
|
|
|
DECLARE_VERIFIER(SlicedString)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SlicedString);
|
|
};
|
|
|
|
|
|
// The ExternalString class describes string values that are backed by
|
|
// a string resource that lies outside the V8 heap. ExternalStrings
|
|
// consist of the length field common to all strings, a pointer to the
|
|
// external resource. It is important to ensure (externally) that the
|
|
// resource is not deallocated while the ExternalString is live in the
|
|
// V8 heap.
|
|
//
|
|
// The API expects that all ExternalStrings are created through the
|
|
// API. Therefore, ExternalStrings should not be used internally.
|
|
class ExternalString: public String {
|
|
public:
|
|
// Casting
|
|
static inline ExternalString* cast(Object* obj);
|
|
|
|
// Layout description.
|
|
static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
|
|
static const int kShortSize = kResourceOffset + kPointerSize;
|
|
static const int kResourceDataOffset = kResourceOffset + kPointerSize;
|
|
static const int kSize = kResourceDataOffset + kPointerSize;
|
|
|
|
static const int kMaxShortLength =
|
|
(kShortSize - SeqString::kHeaderSize) / kCharSize;
|
|
|
|
// Return whether external string is short (data pointer is not cached).
|
|
inline bool is_short();
|
|
|
|
STATIC_CHECK(kResourceOffset == Internals::kStringResourceOffset);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
|
|
};
|
|
|
|
|
|
// The ExternalAsciiString class is an external string backed by an
|
|
// ASCII string.
|
|
class ExternalAsciiString: public ExternalString {
|
|
public:
|
|
static const bool kHasAsciiEncoding = true;
|
|
|
|
typedef v8::String::ExternalAsciiStringResource Resource;
|
|
|
|
// The underlying resource.
|
|
inline const Resource* resource();
|
|
inline void set_resource(const Resource* buffer);
|
|
|
|
// Update the pointer cache to the external character array.
|
|
// The cached pointer is always valid, as the external character array does =
|
|
// not move during lifetime. Deserialization is the only exception, after
|
|
// which the pointer cache has to be refreshed.
|
|
inline void update_data_cache();
|
|
|
|
inline const uint8_t* GetChars();
|
|
|
|
// Dispatched behavior.
|
|
inline uint16_t ExternalAsciiStringGet(int index);
|
|
|
|
// Casting.
|
|
static inline ExternalAsciiString* cast(Object* obj);
|
|
|
|
// Garbage collection support.
|
|
inline void ExternalAsciiStringIterateBody(ObjectVisitor* v);
|
|
|
|
template<typename StaticVisitor>
|
|
inline void ExternalAsciiStringIterateBody();
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalAsciiString);
|
|
};
|
|
|
|
|
|
// The ExternalTwoByteString class is an external string backed by a UTF-16
|
|
// encoded string.
|
|
class ExternalTwoByteString: public ExternalString {
|
|
public:
|
|
static const bool kHasAsciiEncoding = false;
|
|
|
|
typedef v8::String::ExternalStringResource Resource;
|
|
|
|
// The underlying string resource.
|
|
inline const Resource* resource();
|
|
inline void set_resource(const Resource* buffer);
|
|
|
|
// Update the pointer cache to the external character array.
|
|
// The cached pointer is always valid, as the external character array does =
|
|
// not move during lifetime. Deserialization is the only exception, after
|
|
// which the pointer cache has to be refreshed.
|
|
inline void update_data_cache();
|
|
|
|
inline const uint16_t* GetChars();
|
|
|
|
// Dispatched behavior.
|
|
inline uint16_t ExternalTwoByteStringGet(int index);
|
|
|
|
// For regexp code.
|
|
inline const uint16_t* ExternalTwoByteStringGetData(unsigned start);
|
|
|
|
// Casting.
|
|
static inline ExternalTwoByteString* cast(Object* obj);
|
|
|
|
// Garbage collection support.
|
|
inline void ExternalTwoByteStringIterateBody(ObjectVisitor* v);
|
|
|
|
template<typename StaticVisitor>
|
|
inline void ExternalTwoByteStringIterateBody();
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
|
|
};
|
|
|
|
|
|
// Utility superclass for stack-allocated objects that must be updated
|
|
// on gc. It provides two ways for the gc to update instances, either
|
|
// iterating or updating after gc.
|
|
class Relocatable BASE_EMBEDDED {
|
|
public:
|
|
explicit inline Relocatable(Isolate* isolate);
|
|
inline virtual ~Relocatable();
|
|
virtual void IterateInstance(ObjectVisitor* v) { }
|
|
virtual void PostGarbageCollection() { }
|
|
|
|
static void PostGarbageCollectionProcessing(Isolate* isolate);
|
|
static int ArchiveSpacePerThread();
|
|
static char* ArchiveState(Isolate* isolate, char* to);
|
|
static char* RestoreState(Isolate* isolate, char* from);
|
|
static void Iterate(Isolate* isolate, ObjectVisitor* v);
|
|
static void Iterate(ObjectVisitor* v, Relocatable* top);
|
|
static char* Iterate(ObjectVisitor* v, char* t);
|
|
|
|
private:
|
|
Isolate* isolate_;
|
|
Relocatable* prev_;
|
|
};
|
|
|
|
|
|
// A flat string reader provides random access to the contents of a
|
|
// string independent of the character width of the string. The handle
|
|
// must be valid as long as the reader is being used.
|
|
class FlatStringReader : public Relocatable {
|
|
public:
|
|
FlatStringReader(Isolate* isolate, Handle<String> str);
|
|
FlatStringReader(Isolate* isolate, Vector<const char> input);
|
|
void PostGarbageCollection();
|
|
inline uc32 Get(int index);
|
|
int length() { return length_; }
|
|
private:
|
|
String** str_;
|
|
bool is_ascii_;
|
|
int length_;
|
|
const void* start_;
|
|
};
|
|
|
|
|
|
// A ConsStringOp that returns null.
|
|
// Useful when the operation to apply on a ConsString
|
|
// requires an expensive data structure.
|
|
class ConsStringNullOp {
|
|
public:
|
|
inline ConsStringNullOp() {}
|
|
static inline String* Operate(String*, unsigned*, int32_t*, unsigned*);
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(ConsStringNullOp);
|
|
};
|
|
|
|
|
|
// This maintains an off-stack representation of the stack frames required
|
|
// to traverse a ConsString, allowing an entirely iterative and restartable
|
|
// traversal of the entire string
|
|
// Note: this class is not GC-safe.
|
|
class ConsStringIteratorOp {
|
|
public:
|
|
inline ConsStringIteratorOp() {}
|
|
String* Operate(String* string,
|
|
unsigned* offset_out,
|
|
int32_t* type_out,
|
|
unsigned* length_out);
|
|
inline String* ContinueOperation(int32_t* type_out, unsigned* length_out);
|
|
inline void Reset();
|
|
inline bool HasMore();
|
|
|
|
private:
|
|
// TODO(dcarney): Templatize this out for different stack sizes.
|
|
static const unsigned kStackSize = 32;
|
|
// Use a mask instead of doing modulo operations for stack wrapping.
|
|
static const unsigned kDepthMask = kStackSize-1;
|
|
STATIC_ASSERT(IS_POWER_OF_TWO(kStackSize));
|
|
static inline unsigned OffsetForDepth(unsigned depth);
|
|
|
|
inline void PushLeft(ConsString* string);
|
|
inline void PushRight(ConsString* string);
|
|
inline void AdjustMaximumDepth();
|
|
inline void Pop();
|
|
String* NextLeaf(bool* blew_stack, int32_t* type_out, unsigned* length_out);
|
|
String* Search(unsigned* offset_out,
|
|
int32_t* type_out,
|
|
unsigned* length_out);
|
|
|
|
unsigned depth_;
|
|
unsigned maximum_depth_;
|
|
// Stack must always contain only frames for which right traversal
|
|
// has not yet been performed.
|
|
ConsString* frames_[kStackSize];
|
|
unsigned consumed_;
|
|
ConsString* root_;
|
|
DISALLOW_COPY_AND_ASSIGN(ConsStringIteratorOp);
|
|
};
|
|
|
|
|
|
// Note: this class is not GC-safe.
|
|
class StringCharacterStream {
|
|
public:
|
|
inline StringCharacterStream(String* string,
|
|
ConsStringIteratorOp* op,
|
|
unsigned offset = 0);
|
|
inline uint16_t GetNext();
|
|
inline bool HasMore();
|
|
inline void Reset(String* string, unsigned offset = 0);
|
|
inline void VisitOneByteString(const uint8_t* chars, unsigned length);
|
|
inline void VisitTwoByteString(const uint16_t* chars, unsigned length);
|
|
|
|
private:
|
|
bool is_one_byte_;
|
|
union {
|
|
const uint8_t* buffer8_;
|
|
const uint16_t* buffer16_;
|
|
};
|
|
const uint8_t* end_;
|
|
ConsStringIteratorOp* op_;
|
|
DISALLOW_COPY_AND_ASSIGN(StringCharacterStream);
|
|
};
|
|
|
|
|
|
template <typename T>
|
|
class VectorIterator {
|
|
public:
|
|
VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
|
|
explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
|
|
T GetNext() { return data_[index_++]; }
|
|
bool has_more() { return index_ < data_.length(); }
|
|
private:
|
|
Vector<const T> data_;
|
|
int index_;
|
|
};
|
|
|
|
|
|
// The Oddball describes objects null, undefined, true, and false.
|
|
class Oddball: public HeapObject {
|
|
public:
|
|
// [to_string]: Cached to_string computed at startup.
|
|
DECL_ACCESSORS(to_string, String)
|
|
|
|
// [to_number]: Cached to_number computed at startup.
|
|
DECL_ACCESSORS(to_number, Object)
|
|
|
|
inline byte kind();
|
|
inline void set_kind(byte kind);
|
|
|
|
// Casting.
|
|
static inline Oddball* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_VERIFIER(Oddball)
|
|
|
|
// Initialize the fields.
|
|
MUST_USE_RESULT MaybeObject* Initialize(Heap* heap,
|
|
const char* to_string,
|
|
Object* to_number,
|
|
byte kind);
|
|
|
|
// Layout description.
|
|
static const int kToStringOffset = HeapObject::kHeaderSize;
|
|
static const int kToNumberOffset = kToStringOffset + kPointerSize;
|
|
static const int kKindOffset = kToNumberOffset + kPointerSize;
|
|
static const int kSize = kKindOffset + kPointerSize;
|
|
|
|
static const byte kFalse = 0;
|
|
static const byte kTrue = 1;
|
|
static const byte kNotBooleanMask = ~1;
|
|
static const byte kTheHole = 2;
|
|
static const byte kNull = 3;
|
|
static const byte kArgumentMarker = 4;
|
|
static const byte kUndefined = 5;
|
|
static const byte kUninitialized = 6;
|
|
static const byte kOther = 7;
|
|
|
|
typedef FixedBodyDescriptor<kToStringOffset,
|
|
kToNumberOffset + kPointerSize,
|
|
kSize> BodyDescriptor;
|
|
|
|
STATIC_CHECK(kKindOffset == Internals::kOddballKindOffset);
|
|
STATIC_CHECK(kNull == Internals::kNullOddballKind);
|
|
STATIC_CHECK(kUndefined == Internals::kUndefinedOddballKind);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
|
|
};
|
|
|
|
|
|
class Cell: public HeapObject {
|
|
public:
|
|
// [value]: value of the global property.
|
|
DECL_ACCESSORS(value, Object)
|
|
|
|
// Casting.
|
|
static inline Cell* cast(Object* obj);
|
|
|
|
static inline Cell* FromValueAddress(Address value) {
|
|
Object* result = FromAddress(value - kValueOffset);
|
|
ASSERT(result->IsCell() || result->IsPropertyCell());
|
|
return static_cast<Cell*>(result);
|
|
}
|
|
|
|
inline Address ValueAddress() {
|
|
return address() + kValueOffset;
|
|
}
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(Cell)
|
|
DECLARE_VERIFIER(Cell)
|
|
|
|
// Layout description.
|
|
static const int kValueOffset = HeapObject::kHeaderSize;
|
|
static const int kSize = kValueOffset + kPointerSize;
|
|
|
|
typedef FixedBodyDescriptor<kValueOffset,
|
|
kValueOffset + kPointerSize,
|
|
kSize> BodyDescriptor;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Cell);
|
|
};
|
|
|
|
|
|
class PropertyCell: public Cell {
|
|
public:
|
|
// [type]: type of the global property.
|
|
HeapType* type();
|
|
void set_type(HeapType* value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
|
|
// [dependent_code]: dependent code that depends on the type of the global
|
|
// property.
|
|
DECL_ACCESSORS(dependent_code, DependentCode)
|
|
|
|
// Sets the value of the cell and updates the type field to be the union
|
|
// of the cell's current type and the value's type. If the change causes
|
|
// a change of the type of the cell's contents, code dependent on the cell
|
|
// will be deoptimized.
|
|
static void SetValueInferType(Handle<PropertyCell> cell,
|
|
Handle<Object> value);
|
|
|
|
// Computes the new type of the cell's contents for the given value, but
|
|
// without actually modifying the 'type' field.
|
|
static Handle<HeapType> UpdatedType(Handle<PropertyCell> cell,
|
|
Handle<Object> value);
|
|
|
|
void AddDependentCompilationInfo(CompilationInfo* info);
|
|
|
|
void AddDependentCode(Handle<Code> code);
|
|
|
|
// Casting.
|
|
static inline PropertyCell* cast(Object* obj);
|
|
|
|
inline Address TypeAddress() {
|
|
return address() + kTypeOffset;
|
|
}
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(PropertyCell)
|
|
DECLARE_VERIFIER(PropertyCell)
|
|
|
|
// Layout description.
|
|
static const int kTypeOffset = kValueOffset + kPointerSize;
|
|
static const int kDependentCodeOffset = kTypeOffset + kPointerSize;
|
|
static const int kSize = kDependentCodeOffset + kPointerSize;
|
|
|
|
static const int kPointerFieldsBeginOffset = kValueOffset;
|
|
static const int kPointerFieldsEndOffset = kDependentCodeOffset;
|
|
|
|
typedef FixedBodyDescriptor<kValueOffset,
|
|
kSize,
|
|
kSize> BodyDescriptor;
|
|
|
|
private:
|
|
DECL_ACCESSORS(type_raw, Object)
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(PropertyCell);
|
|
};
|
|
|
|
|
|
// The JSProxy describes EcmaScript Harmony proxies
|
|
class JSProxy: public JSReceiver {
|
|
public:
|
|
// [handler]: The handler property.
|
|
DECL_ACCESSORS(handler, Object)
|
|
|
|
// [hash]: The hash code property (undefined if not initialized yet).
|
|
DECL_ACCESSORS(hash, Object)
|
|
|
|
// Casting.
|
|
static inline JSProxy* cast(Object* obj);
|
|
|
|
MUST_USE_RESULT MaybeObject* GetPropertyWithHandler(
|
|
Object* receiver,
|
|
Name* name);
|
|
MUST_USE_RESULT MaybeObject* GetElementWithHandler(
|
|
Object* receiver,
|
|
uint32_t index);
|
|
|
|
// If the handler defines an accessor property with a setter, invoke it.
|
|
// If it defines an accessor property without a setter, or a data property
|
|
// that is read-only, throw. In all these cases set '*done' to true,
|
|
// otherwise set it to false.
|
|
static Handle<Object> SetPropertyViaPrototypesWithHandler(
|
|
Handle<JSProxy> proxy,
|
|
Handle<JSReceiver> receiver,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictMode strict_mode,
|
|
bool* done);
|
|
|
|
static PropertyAttributes GetPropertyAttributeWithHandler(
|
|
Handle<JSProxy> proxy,
|
|
Handle<JSReceiver> receiver,
|
|
Handle<Name> name);
|
|
static PropertyAttributes GetElementAttributeWithHandler(
|
|
Handle<JSProxy> proxy,
|
|
Handle<JSReceiver> receiver,
|
|
uint32_t index);
|
|
|
|
// Turn the proxy into an (empty) JSObject.
|
|
static void Fix(Handle<JSProxy> proxy);
|
|
|
|
// Initializes the body after the handler slot.
|
|
inline void InitializeBody(int object_size, Object* value);
|
|
|
|
// Invoke a trap by name. If the trap does not exist on this's handler,
|
|
// but derived_trap is non-NULL, invoke that instead. May cause GC.
|
|
Handle<Object> CallTrap(const char* name,
|
|
Handle<Object> derived_trap,
|
|
int argc,
|
|
Handle<Object> args[]);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSProxy)
|
|
DECLARE_VERIFIER(JSProxy)
|
|
|
|
// Layout description. We add padding so that a proxy has the same
|
|
// size as a virgin JSObject. This is essential for becoming a JSObject
|
|
// upon freeze.
|
|
static const int kHandlerOffset = HeapObject::kHeaderSize;
|
|
static const int kHashOffset = kHandlerOffset + kPointerSize;
|
|
static const int kPaddingOffset = kHashOffset + kPointerSize;
|
|
static const int kSize = JSObject::kHeaderSize;
|
|
static const int kHeaderSize = kPaddingOffset;
|
|
static const int kPaddingSize = kSize - kPaddingOffset;
|
|
|
|
STATIC_CHECK(kPaddingSize >= 0);
|
|
|
|
typedef FixedBodyDescriptor<kHandlerOffset,
|
|
kPaddingOffset,
|
|
kSize> BodyDescriptor;
|
|
|
|
private:
|
|
friend class JSReceiver;
|
|
|
|
static Handle<Object> SetPropertyWithHandler(Handle<JSProxy> proxy,
|
|
Handle<JSReceiver> receiver,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictMode strict_mode);
|
|
static Handle<Object> SetElementWithHandler(Handle<JSProxy> proxy,
|
|
Handle<JSReceiver> receiver,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
StrictMode strict_mode);
|
|
|
|
static bool HasPropertyWithHandler(Handle<JSProxy> proxy, Handle<Name> name);
|
|
static bool HasElementWithHandler(Handle<JSProxy> proxy, uint32_t index);
|
|
|
|
static Handle<Object> DeletePropertyWithHandler(Handle<JSProxy> proxy,
|
|
Handle<Name> name,
|
|
DeleteMode mode);
|
|
static Handle<Object> DeleteElementWithHandler(Handle<JSProxy> proxy,
|
|
uint32_t index,
|
|
DeleteMode mode);
|
|
|
|
MUST_USE_RESULT Object* GetIdentityHash();
|
|
|
|
static Handle<Object> GetOrCreateIdentityHash(Handle<JSProxy> proxy);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSProxy);
|
|
};
|
|
|
|
|
|
class JSFunctionProxy: public JSProxy {
|
|
public:
|
|
// [call_trap]: The call trap.
|
|
DECL_ACCESSORS(call_trap, Object)
|
|
|
|
// [construct_trap]: The construct trap.
|
|
DECL_ACCESSORS(construct_trap, Object)
|
|
|
|
// Casting.
|
|
static inline JSFunctionProxy* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSFunctionProxy)
|
|
DECLARE_VERIFIER(JSFunctionProxy)
|
|
|
|
// Layout description.
|
|
static const int kCallTrapOffset = JSProxy::kPaddingOffset;
|
|
static const int kConstructTrapOffset = kCallTrapOffset + kPointerSize;
|
|
static const int kPaddingOffset = kConstructTrapOffset + kPointerSize;
|
|
static const int kSize = JSFunction::kSize;
|
|
static const int kPaddingSize = kSize - kPaddingOffset;
|
|
|
|
STATIC_CHECK(kPaddingSize >= 0);
|
|
|
|
typedef FixedBodyDescriptor<kHandlerOffset,
|
|
kConstructTrapOffset + kPointerSize,
|
|
kSize> BodyDescriptor;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunctionProxy);
|
|
};
|
|
|
|
|
|
// The JSSet describes EcmaScript Harmony sets
|
|
class JSSet: public JSObject {
|
|
public:
|
|
// [set]: the backing hash set containing keys.
|
|
DECL_ACCESSORS(table, Object)
|
|
|
|
// Casting.
|
|
static inline JSSet* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSSet)
|
|
DECLARE_VERIFIER(JSSet)
|
|
|
|
static const int kTableOffset = JSObject::kHeaderSize;
|
|
static const int kSize = kTableOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSSet);
|
|
};
|
|
|
|
|
|
// The JSMap describes EcmaScript Harmony maps
|
|
class JSMap: public JSObject {
|
|
public:
|
|
// [table]: the backing hash table mapping keys to values.
|
|
DECL_ACCESSORS(table, Object)
|
|
|
|
// Casting.
|
|
static inline JSMap* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSMap)
|
|
DECLARE_VERIFIER(JSMap)
|
|
|
|
static const int kTableOffset = JSObject::kHeaderSize;
|
|
static const int kSize = kTableOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSMap);
|
|
};
|
|
|
|
|
|
// Base class for both JSWeakMap and JSWeakSet
|
|
class JSWeakCollection: public JSObject {
|
|
public:
|
|
// [table]: the backing hash table mapping keys to values.
|
|
DECL_ACCESSORS(table, Object)
|
|
|
|
// [next]: linked list of encountered weak maps during GC.
|
|
DECL_ACCESSORS(next, Object)
|
|
|
|
static const int kTableOffset = JSObject::kHeaderSize;
|
|
static const int kNextOffset = kTableOffset + kPointerSize;
|
|
static const int kSize = kNextOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakCollection);
|
|
};
|
|
|
|
|
|
// The JSWeakMap describes EcmaScript Harmony weak maps
|
|
class JSWeakMap: public JSWeakCollection {
|
|
public:
|
|
// Casting.
|
|
static inline JSWeakMap* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSWeakMap)
|
|
DECLARE_VERIFIER(JSWeakMap)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakMap);
|
|
};
|
|
|
|
|
|
// The JSWeakSet describes EcmaScript Harmony weak sets
|
|
class JSWeakSet: public JSWeakCollection {
|
|
public:
|
|
// Casting.
|
|
static inline JSWeakSet* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSWeakSet)
|
|
DECLARE_VERIFIER(JSWeakSet)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakSet);
|
|
};
|
|
|
|
|
|
class JSArrayBuffer: public JSObject {
|
|
public:
|
|
// [backing_store]: backing memory for this array
|
|
DECL_ACCESSORS(backing_store, void)
|
|
|
|
// [byte_length]: length in bytes
|
|
DECL_ACCESSORS(byte_length, Object)
|
|
|
|
// [flags]
|
|
DECL_ACCESSORS(flag, Smi)
|
|
|
|
inline bool is_external();
|
|
inline void set_is_external(bool value);
|
|
|
|
inline bool should_be_freed();
|
|
inline void set_should_be_freed(bool value);
|
|
|
|
// [weak_next]: linked list of array buffers.
|
|
DECL_ACCESSORS(weak_next, Object)
|
|
|
|
// [weak_first_array]: weak linked list of views.
|
|
DECL_ACCESSORS(weak_first_view, Object)
|
|
|
|
// Casting.
|
|
static inline JSArrayBuffer* cast(Object* obj);
|
|
|
|
// Neutering. Only neuters the buffer, not associated typed arrays.
|
|
void Neuter();
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSArrayBuffer)
|
|
DECLARE_VERIFIER(JSArrayBuffer)
|
|
|
|
static const int kBackingStoreOffset = JSObject::kHeaderSize;
|
|
static const int kByteLengthOffset = kBackingStoreOffset + kPointerSize;
|
|
static const int kFlagOffset = kByteLengthOffset + kPointerSize;
|
|
static const int kWeakNextOffset = kFlagOffset + kPointerSize;
|
|
static const int kWeakFirstViewOffset = kWeakNextOffset + kPointerSize;
|
|
static const int kSize = kWeakFirstViewOffset + kPointerSize;
|
|
|
|
static const int kSizeWithInternalFields =
|
|
kSize + v8::ArrayBuffer::kInternalFieldCount * kPointerSize;
|
|
|
|
private:
|
|
// Bit position in a flag
|
|
static const int kIsExternalBit = 0;
|
|
static const int kShouldBeFreed = 1;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBuffer);
|
|
};
|
|
|
|
|
|
class JSArrayBufferView: public JSObject {
|
|
public:
|
|
// [buffer]: ArrayBuffer that this typed array views.
|
|
DECL_ACCESSORS(buffer, Object)
|
|
|
|
// [byte_length]: offset of typed array in bytes.
|
|
DECL_ACCESSORS(byte_offset, Object)
|
|
|
|
// [byte_length]: length of typed array in bytes.
|
|
DECL_ACCESSORS(byte_length, Object)
|
|
|
|
// [weak_next]: linked list of typed arrays over the same array buffer.
|
|
DECL_ACCESSORS(weak_next, Object)
|
|
|
|
// Casting.
|
|
static inline JSArrayBufferView* cast(Object* obj);
|
|
|
|
DECLARE_VERIFIER(JSArrayBufferView)
|
|
|
|
static const int kBufferOffset = JSObject::kHeaderSize;
|
|
static const int kByteOffsetOffset = kBufferOffset + kPointerSize;
|
|
static const int kByteLengthOffset = kByteOffsetOffset + kPointerSize;
|
|
static const int kWeakNextOffset = kByteLengthOffset + kPointerSize;
|
|
static const int kViewSize = kWeakNextOffset + kPointerSize;
|
|
|
|
protected:
|
|
void NeuterView();
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBufferView);
|
|
};
|
|
|
|
|
|
class JSTypedArray: public JSArrayBufferView {
|
|
public:
|
|
// [length]: length of typed array in elements.
|
|
DECL_ACCESSORS(length, Object)
|
|
|
|
// Neutering. Only neuters this typed array.
|
|
void Neuter();
|
|
|
|
// Casting.
|
|
static inline JSTypedArray* cast(Object* obj);
|
|
|
|
ExternalArrayType type();
|
|
size_t element_size();
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSTypedArray)
|
|
DECLARE_VERIFIER(JSTypedArray)
|
|
|
|
static const int kLengthOffset = kViewSize + kPointerSize;
|
|
static const int kSize = kLengthOffset + kPointerSize;
|
|
|
|
static const int kSizeWithInternalFields =
|
|
kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSTypedArray);
|
|
};
|
|
|
|
|
|
class JSDataView: public JSArrayBufferView {
|
|
public:
|
|
// Only neuters this DataView
|
|
void Neuter();
|
|
|
|
// Casting.
|
|
static inline JSDataView* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSDataView)
|
|
DECLARE_VERIFIER(JSDataView)
|
|
|
|
static const int kSize = kViewSize;
|
|
|
|
static const int kSizeWithInternalFields =
|
|
kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSDataView);
|
|
};
|
|
|
|
|
|
// Foreign describes objects pointing from JavaScript to C structures.
|
|
// Since they cannot contain references to JS HeapObjects they can be
|
|
// placed in old_data_space.
|
|
class Foreign: public HeapObject {
|
|
public:
|
|
// [address]: field containing the address.
|
|
inline Address foreign_address();
|
|
inline void set_foreign_address(Address value);
|
|
|
|
// Casting.
|
|
static inline Foreign* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
inline void ForeignIterateBody(ObjectVisitor* v);
|
|
|
|
template<typename StaticVisitor>
|
|
inline void ForeignIterateBody();
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(Foreign)
|
|
DECLARE_VERIFIER(Foreign)
|
|
|
|
// Layout description.
|
|
|
|
static const int kForeignAddressOffset = HeapObject::kHeaderSize;
|
|
static const int kSize = kForeignAddressOffset + kPointerSize;
|
|
|
|
STATIC_CHECK(kForeignAddressOffset == Internals::kForeignAddressOffset);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Foreign);
|
|
};
|
|
|
|
|
|
// The JSArray describes JavaScript Arrays
|
|
// Such an array can be in one of two modes:
|
|
// - fast, backing storage is a FixedArray and length <= elements.length();
|
|
// Please note: push and pop can be used to grow and shrink the array.
|
|
// - slow, backing storage is a HashTable with numbers as keys.
|
|
class JSArray: public JSObject {
|
|
public:
|
|
// [length]: The length property.
|
|
DECL_ACCESSORS(length, Object)
|
|
|
|
// Overload the length setter to skip write barrier when the length
|
|
// is set to a smi. This matches the set function on FixedArray.
|
|
inline void set_length(Smi* length);
|
|
|
|
static void JSArrayUpdateLengthFromIndex(Handle<JSArray> array,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
MUST_USE_RESULT MaybeObject* JSArrayUpdateLengthFromIndex(uint32_t index,
|
|
Object* value);
|
|
|
|
// Initialize the array with the given capacity. The function may
|
|
// fail due to out-of-memory situations, but only if the requested
|
|
// capacity is non-zero.
|
|
MUST_USE_RESULT MaybeObject* Initialize(int capacity, int length = 0);
|
|
|
|
// Initializes the array to a certain length.
|
|
inline bool AllowsSetElementsLength();
|
|
// Can cause GC.
|
|
MUST_USE_RESULT MaybeObject* SetElementsLength(Object* length);
|
|
|
|
// Set the content of the array to the content of storage.
|
|
MUST_USE_RESULT inline MaybeObject* SetContent(FixedArrayBase* storage);
|
|
|
|
// Casting.
|
|
static inline JSArray* cast(Object* obj);
|
|
|
|
// Uses handles. Ensures that the fixed array backing the JSArray has at
|
|
// least the stated size.
|
|
inline void EnsureSize(int minimum_size_of_backing_fixed_array);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSArray)
|
|
DECLARE_VERIFIER(JSArray)
|
|
|
|
// Number of element slots to pre-allocate for an empty array.
|
|
static const int kPreallocatedArrayElements = 4;
|
|
|
|
// Layout description.
|
|
static const int kLengthOffset = JSObject::kHeaderSize;
|
|
static const int kSize = kLengthOffset + kPointerSize;
|
|
|
|
private:
|
|
// Expand the fixed array backing of a fast-case JSArray to at least
|
|
// the requested size.
|
|
void Expand(int minimum_size_of_backing_fixed_array);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
|
|
};
|
|
|
|
|
|
Handle<Object> CacheInitialJSArrayMaps(Handle<Context> native_context,
|
|
Handle<Map> initial_map);
|
|
|
|
|
|
// JSRegExpResult is just a JSArray with a specific initial map.
|
|
// This initial map adds in-object properties for "index" and "input"
|
|
// properties, as assigned by RegExp.prototype.exec, which allows
|
|
// faster creation of RegExp exec results.
|
|
// This class just holds constants used when creating the result.
|
|
// After creation the result must be treated as a JSArray in all regards.
|
|
class JSRegExpResult: public JSArray {
|
|
public:
|
|
// Offsets of object fields.
|
|
static const int kIndexOffset = JSArray::kSize;
|
|
static const int kInputOffset = kIndexOffset + kPointerSize;
|
|
static const int kSize = kInputOffset + kPointerSize;
|
|
// Indices of in-object properties.
|
|
static const int kIndexIndex = 0;
|
|
static const int kInputIndex = 1;
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSRegExpResult);
|
|
};
|
|
|
|
|
|
class AccessorInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(name, Object)
|
|
DECL_ACCESSORS(flag, Smi)
|
|
DECL_ACCESSORS(expected_receiver_type, Object)
|
|
|
|
inline bool all_can_read();
|
|
inline void set_all_can_read(bool value);
|
|
|
|
inline bool all_can_write();
|
|
inline void set_all_can_write(bool value);
|
|
|
|
inline bool prohibits_overwriting();
|
|
inline void set_prohibits_overwriting(bool value);
|
|
|
|
inline PropertyAttributes property_attributes();
|
|
inline void set_property_attributes(PropertyAttributes attributes);
|
|
|
|
// Checks whether the given receiver is compatible with this accessor.
|
|
inline bool IsCompatibleReceiver(Object* receiver);
|
|
|
|
static inline AccessorInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_VERIFIER(AccessorInfo)
|
|
|
|
// Append all descriptors to the array that are not already there.
|
|
// Return number added.
|
|
static int AppendUnique(Handle<Object> descriptors,
|
|
Handle<FixedArray> array,
|
|
int valid_descriptors);
|
|
|
|
static const int kNameOffset = HeapObject::kHeaderSize;
|
|
static const int kFlagOffset = kNameOffset + kPointerSize;
|
|
static const int kExpectedReceiverTypeOffset = kFlagOffset + kPointerSize;
|
|
static const int kSize = kExpectedReceiverTypeOffset + kPointerSize;
|
|
|
|
private:
|
|
// Bit positions in flag.
|
|
static const int kAllCanReadBit = 0;
|
|
static const int kAllCanWriteBit = 1;
|
|
static const int kProhibitsOverwritingBit = 2;
|
|
class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
|
|
};
|
|
|
|
|
|
enum AccessorDescriptorType {
|
|
kDescriptorBitmaskCompare,
|
|
kDescriptorPointerCompare,
|
|
kDescriptorPrimitiveValue,
|
|
kDescriptorObjectDereference,
|
|
kDescriptorPointerDereference,
|
|
kDescriptorPointerShift,
|
|
kDescriptorReturnObject
|
|
};
|
|
|
|
|
|
struct BitmaskCompareDescriptor {
|
|
uint32_t bitmask;
|
|
uint32_t compare_value;
|
|
uint8_t size; // Must be in {1,2,4}.
|
|
};
|
|
|
|
|
|
struct PointerCompareDescriptor {
|
|
void* compare_value;
|
|
};
|
|
|
|
|
|
struct PrimitiveValueDescriptor {
|
|
v8::DeclaredAccessorDescriptorDataType data_type;
|
|
uint8_t bool_offset; // Must be in [0,7], used for kDescriptorBoolType.
|
|
};
|
|
|
|
|
|
struct ObjectDerefenceDescriptor {
|
|
uint8_t internal_field;
|
|
};
|
|
|
|
|
|
struct PointerShiftDescriptor {
|
|
int16_t byte_offset;
|
|
};
|
|
|
|
|
|
struct DeclaredAccessorDescriptorData {
|
|
AccessorDescriptorType type;
|
|
union {
|
|
struct BitmaskCompareDescriptor bitmask_compare_descriptor;
|
|
struct PointerCompareDescriptor pointer_compare_descriptor;
|
|
struct PrimitiveValueDescriptor primitive_value_descriptor;
|
|
struct ObjectDerefenceDescriptor object_dereference_descriptor;
|
|
struct PointerShiftDescriptor pointer_shift_descriptor;
|
|
};
|
|
};
|
|
|
|
|
|
class DeclaredAccessorDescriptor;
|
|
|
|
|
|
class DeclaredAccessorDescriptorIterator {
|
|
public:
|
|
explicit DeclaredAccessorDescriptorIterator(
|
|
DeclaredAccessorDescriptor* descriptor);
|
|
const DeclaredAccessorDescriptorData* Next();
|
|
bool Complete() const { return length_ == offset_; }
|
|
private:
|
|
uint8_t* array_;
|
|
const int length_;
|
|
int offset_;
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(DeclaredAccessorDescriptorIterator);
|
|
};
|
|
|
|
|
|
class DeclaredAccessorDescriptor: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(serialized_data, ByteArray)
|
|
|
|
static inline DeclaredAccessorDescriptor* cast(Object* obj);
|
|
|
|
static Handle<DeclaredAccessorDescriptor> Create(
|
|
Isolate* isolate,
|
|
const DeclaredAccessorDescriptorData& data,
|
|
Handle<DeclaredAccessorDescriptor> previous);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(DeclaredAccessorDescriptor)
|
|
DECLARE_VERIFIER(DeclaredAccessorDescriptor)
|
|
|
|
static const int kSerializedDataOffset = HeapObject::kHeaderSize;
|
|
static const int kSize = kSerializedDataOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(DeclaredAccessorDescriptor);
|
|
};
|
|
|
|
|
|
class DeclaredAccessorInfo: public AccessorInfo {
|
|
public:
|
|
DECL_ACCESSORS(descriptor, DeclaredAccessorDescriptor)
|
|
|
|
static inline DeclaredAccessorInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(DeclaredAccessorInfo)
|
|
DECLARE_VERIFIER(DeclaredAccessorInfo)
|
|
|
|
static const int kDescriptorOffset = AccessorInfo::kSize;
|
|
static const int kSize = kDescriptorOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(DeclaredAccessorInfo);
|
|
};
|
|
|
|
|
|
// An accessor must have a getter, but can have no setter.
|
|
//
|
|
// When setting a property, V8 searches accessors in prototypes.
|
|
// If an accessor was found and it does not have a setter,
|
|
// the request is ignored.
|
|
//
|
|
// If the accessor in the prototype has the READ_ONLY property attribute, then
|
|
// a new value is added to the local object when the property is set.
|
|
// This shadows the accessor in the prototype.
|
|
class ExecutableAccessorInfo: public AccessorInfo {
|
|
public:
|
|
DECL_ACCESSORS(getter, Object)
|
|
DECL_ACCESSORS(setter, Object)
|
|
DECL_ACCESSORS(data, Object)
|
|
|
|
static inline ExecutableAccessorInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExecutableAccessorInfo)
|
|
DECLARE_VERIFIER(ExecutableAccessorInfo)
|
|
|
|
static const int kGetterOffset = AccessorInfo::kSize;
|
|
static const int kSetterOffset = kGetterOffset + kPointerSize;
|
|
static const int kDataOffset = kSetterOffset + kPointerSize;
|
|
static const int kSize = kDataOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExecutableAccessorInfo);
|
|
};
|
|
|
|
|
|
// Support for JavaScript accessors: A pair of a getter and a setter. Each
|
|
// accessor can either be
|
|
// * a pointer to a JavaScript function or proxy: a real accessor
|
|
// * undefined: considered an accessor by the spec, too, strangely enough
|
|
// * the hole: an accessor which has not been set
|
|
// * a pointer to a map: a transition used to ensure map sharing
|
|
// access_flags provides the ability to override access checks on access check
|
|
// failure.
|
|
class AccessorPair: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(getter, Object)
|
|
DECL_ACCESSORS(setter, Object)
|
|
DECL_ACCESSORS(access_flags, Smi)
|
|
|
|
inline void set_access_flags(v8::AccessControl access_control);
|
|
inline bool all_can_read();
|
|
inline bool all_can_write();
|
|
inline bool prohibits_overwriting();
|
|
|
|
static inline AccessorPair* cast(Object* obj);
|
|
|
|
static Handle<AccessorPair> Copy(Handle<AccessorPair> pair);
|
|
|
|
Object* get(AccessorComponent component) {
|
|
return component == ACCESSOR_GETTER ? getter() : setter();
|
|
}
|
|
|
|
void set(AccessorComponent component, Object* value) {
|
|
if (component == ACCESSOR_GETTER) {
|
|
set_getter(value);
|
|
} else {
|
|
set_setter(value);
|
|
}
|
|
}
|
|
|
|
// Note: Returns undefined instead in case of a hole.
|
|
Object* GetComponent(AccessorComponent component);
|
|
|
|
// Set both components, skipping arguments which are a JavaScript null.
|
|
void SetComponents(Object* getter, Object* setter) {
|
|
if (!getter->IsNull()) set_getter(getter);
|
|
if (!setter->IsNull()) set_setter(setter);
|
|
}
|
|
|
|
bool ContainsAccessor() {
|
|
return IsJSAccessor(getter()) || IsJSAccessor(setter());
|
|
}
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(AccessorPair)
|
|
DECLARE_VERIFIER(AccessorPair)
|
|
|
|
static const int kGetterOffset = HeapObject::kHeaderSize;
|
|
static const int kSetterOffset = kGetterOffset + kPointerSize;
|
|
static const int kAccessFlagsOffset = kSetterOffset + kPointerSize;
|
|
static const int kSize = kAccessFlagsOffset + kPointerSize;
|
|
|
|
private:
|
|
static const int kAllCanReadBit = 0;
|
|
static const int kAllCanWriteBit = 1;
|
|
static const int kProhibitsOverwritingBit = 2;
|
|
|
|
// Strangely enough, in addition to functions and harmony proxies, the spec
|
|
// requires us to consider undefined as a kind of accessor, too:
|
|
// var obj = {};
|
|
// Object.defineProperty(obj, "foo", {get: undefined});
|
|
// assertTrue("foo" in obj);
|
|
bool IsJSAccessor(Object* obj) {
|
|
return obj->IsSpecFunction() || obj->IsUndefined();
|
|
}
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorPair);
|
|
};
|
|
|
|
|
|
class AccessCheckInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(named_callback, Object)
|
|
DECL_ACCESSORS(indexed_callback, Object)
|
|
DECL_ACCESSORS(data, Object)
|
|
|
|
static inline AccessCheckInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(AccessCheckInfo)
|
|
DECLARE_VERIFIER(AccessCheckInfo)
|
|
|
|
static const int kNamedCallbackOffset = HeapObject::kHeaderSize;
|
|
static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
|
|
static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
|
|
static const int kSize = kDataOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
|
|
};
|
|
|
|
|
|
class InterceptorInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(getter, Object)
|
|
DECL_ACCESSORS(setter, Object)
|
|
DECL_ACCESSORS(query, Object)
|
|
DECL_ACCESSORS(deleter, Object)
|
|
DECL_ACCESSORS(enumerator, Object)
|
|
DECL_ACCESSORS(data, Object)
|
|
|
|
static inline InterceptorInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(InterceptorInfo)
|
|
DECLARE_VERIFIER(InterceptorInfo)
|
|
|
|
static const int kGetterOffset = HeapObject::kHeaderSize;
|
|
static const int kSetterOffset = kGetterOffset + kPointerSize;
|
|
static const int kQueryOffset = kSetterOffset + kPointerSize;
|
|
static const int kDeleterOffset = kQueryOffset + kPointerSize;
|
|
static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
|
|
static const int kDataOffset = kEnumeratorOffset + kPointerSize;
|
|
static const int kSize = kDataOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
|
|
};
|
|
|
|
|
|
class CallHandlerInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(callback, Object)
|
|
DECL_ACCESSORS(data, Object)
|
|
|
|
static inline CallHandlerInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(CallHandlerInfo)
|
|
DECLARE_VERIFIER(CallHandlerInfo)
|
|
|
|
static const int kCallbackOffset = HeapObject::kHeaderSize;
|
|
static const int kDataOffset = kCallbackOffset + kPointerSize;
|
|
static const int kSize = kDataOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
|
|
};
|
|
|
|
|
|
class TemplateInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(tag, Object)
|
|
DECL_ACCESSORS(property_list, Object)
|
|
DECL_ACCESSORS(property_accessors, Object)
|
|
|
|
DECLARE_VERIFIER(TemplateInfo)
|
|
|
|
static const int kTagOffset = HeapObject::kHeaderSize;
|
|
static const int kPropertyListOffset = kTagOffset + kPointerSize;
|
|
static const int kPropertyAccessorsOffset =
|
|
kPropertyListOffset + kPointerSize;
|
|
static const int kHeaderSize = kPropertyAccessorsOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
|
|
};
|
|
|
|
|
|
class FunctionTemplateInfo: public TemplateInfo {
|
|
public:
|
|
DECL_ACCESSORS(serial_number, Object)
|
|
DECL_ACCESSORS(call_code, Object)
|
|
DECL_ACCESSORS(prototype_template, Object)
|
|
DECL_ACCESSORS(parent_template, Object)
|
|
DECL_ACCESSORS(named_property_handler, Object)
|
|
DECL_ACCESSORS(indexed_property_handler, Object)
|
|
DECL_ACCESSORS(instance_template, Object)
|
|
DECL_ACCESSORS(class_name, Object)
|
|
DECL_ACCESSORS(signature, Object)
|
|
DECL_ACCESSORS(instance_call_handler, Object)
|
|
DECL_ACCESSORS(access_check_info, Object)
|
|
DECL_ACCESSORS(flag, Smi)
|
|
|
|
inline int length();
|
|
inline void set_length(int value);
|
|
|
|
// Following properties use flag bits.
|
|
DECL_BOOLEAN_ACCESSORS(hidden_prototype)
|
|
DECL_BOOLEAN_ACCESSORS(undetectable)
|
|
// If the bit is set, object instances created by this function
|
|
// requires access check.
|
|
DECL_BOOLEAN_ACCESSORS(needs_access_check)
|
|
DECL_BOOLEAN_ACCESSORS(read_only_prototype)
|
|
DECL_BOOLEAN_ACCESSORS(remove_prototype)
|
|
DECL_BOOLEAN_ACCESSORS(do_not_cache)
|
|
|
|
static inline FunctionTemplateInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(FunctionTemplateInfo)
|
|
DECLARE_VERIFIER(FunctionTemplateInfo)
|
|
|
|
static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
|
|
static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
|
|
static const int kPrototypeTemplateOffset =
|
|
kCallCodeOffset + kPointerSize;
|
|
static const int kParentTemplateOffset =
|
|
kPrototypeTemplateOffset + kPointerSize;
|
|
static const int kNamedPropertyHandlerOffset =
|
|
kParentTemplateOffset + kPointerSize;
|
|
static const int kIndexedPropertyHandlerOffset =
|
|
kNamedPropertyHandlerOffset + kPointerSize;
|
|
static const int kInstanceTemplateOffset =
|
|
kIndexedPropertyHandlerOffset + kPointerSize;
|
|
static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
|
|
static const int kSignatureOffset = kClassNameOffset + kPointerSize;
|
|
static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
|
|
static const int kAccessCheckInfoOffset =
|
|
kInstanceCallHandlerOffset + kPointerSize;
|
|
static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
|
|
static const int kLengthOffset = kFlagOffset + kPointerSize;
|
|
static const int kSize = kLengthOffset + kPointerSize;
|
|
|
|
// Returns true if |object| is an instance of this function template.
|
|
bool IsTemplateFor(Object* object);
|
|
bool IsTemplateFor(Map* map);
|
|
|
|
private:
|
|
// Bit position in the flag, from least significant bit position.
|
|
static const int kHiddenPrototypeBit = 0;
|
|
static const int kUndetectableBit = 1;
|
|
static const int kNeedsAccessCheckBit = 2;
|
|
static const int kReadOnlyPrototypeBit = 3;
|
|
static const int kRemovePrototypeBit = 4;
|
|
static const int kDoNotCacheBit = 5;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
|
|
};
|
|
|
|
|
|
class ObjectTemplateInfo: public TemplateInfo {
|
|
public:
|
|
DECL_ACCESSORS(constructor, Object)
|
|
DECL_ACCESSORS(internal_field_count, Object)
|
|
|
|
static inline ObjectTemplateInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ObjectTemplateInfo)
|
|
DECLARE_VERIFIER(ObjectTemplateInfo)
|
|
|
|
static const int kConstructorOffset = TemplateInfo::kHeaderSize;
|
|
static const int kInternalFieldCountOffset =
|
|
kConstructorOffset + kPointerSize;
|
|
static const int kSize = kInternalFieldCountOffset + kPointerSize;
|
|
};
|
|
|
|
|
|
class SignatureInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(receiver, Object)
|
|
DECL_ACCESSORS(args, Object)
|
|
|
|
static inline SignatureInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(SignatureInfo)
|
|
DECLARE_VERIFIER(SignatureInfo)
|
|
|
|
static const int kReceiverOffset = Struct::kHeaderSize;
|
|
static const int kArgsOffset = kReceiverOffset + kPointerSize;
|
|
static const int kSize = kArgsOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SignatureInfo);
|
|
};
|
|
|
|
|
|
class TypeSwitchInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(types, Object)
|
|
|
|
static inline TypeSwitchInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(TypeSwitchInfo)
|
|
DECLARE_VERIFIER(TypeSwitchInfo)
|
|
|
|
static const int kTypesOffset = Struct::kHeaderSize;
|
|
static const int kSize = kTypesOffset + kPointerSize;
|
|
};
|
|
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
// The DebugInfo class holds additional information for a function being
|
|
// debugged.
|
|
class DebugInfo: public Struct {
|
|
public:
|
|
// The shared function info for the source being debugged.
|
|
DECL_ACCESSORS(shared, SharedFunctionInfo)
|
|
// Code object for the original code.
|
|
DECL_ACCESSORS(original_code, Code)
|
|
// Code object for the patched code. This code object is the code object
|
|
// currently active for the function.
|
|
DECL_ACCESSORS(code, Code)
|
|
// Fixed array holding status information for each active break point.
|
|
DECL_ACCESSORS(break_points, FixedArray)
|
|
|
|
// Check if there is a break point at a code position.
|
|
bool HasBreakPoint(int code_position);
|
|
// Get the break point info object for a code position.
|
|
Object* GetBreakPointInfo(int code_position);
|
|
// Clear a break point.
|
|
static void ClearBreakPoint(Handle<DebugInfo> debug_info,
|
|
int code_position,
|
|
Handle<Object> break_point_object);
|
|
// Set a break point.
|
|
static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
|
|
int source_position, int statement_position,
|
|
Handle<Object> break_point_object);
|
|
// Get the break point objects for a code position.
|
|
Object* GetBreakPointObjects(int code_position);
|
|
// Find the break point info holding this break point object.
|
|
static Object* FindBreakPointInfo(Handle<DebugInfo> debug_info,
|
|
Handle<Object> break_point_object);
|
|
// Get the number of break points for this function.
|
|
int GetBreakPointCount();
|
|
|
|
static inline DebugInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(DebugInfo)
|
|
DECLARE_VERIFIER(DebugInfo)
|
|
|
|
static const int kSharedFunctionInfoIndex = Struct::kHeaderSize;
|
|
static const int kOriginalCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
|
|
static const int kPatchedCodeIndex = kOriginalCodeIndex + kPointerSize;
|
|
static const int kActiveBreakPointsCountIndex =
|
|
kPatchedCodeIndex + kPointerSize;
|
|
static const int kBreakPointsStateIndex =
|
|
kActiveBreakPointsCountIndex + kPointerSize;
|
|
static const int kSize = kBreakPointsStateIndex + kPointerSize;
|
|
|
|
private:
|
|
static const int kNoBreakPointInfo = -1;
|
|
|
|
// Lookup the index in the break_points array for a code position.
|
|
int GetBreakPointInfoIndex(int code_position);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
|
|
};
|
|
|
|
|
|
// The BreakPointInfo class holds information for break points set in a
|
|
// function. The DebugInfo object holds a BreakPointInfo object for each code
|
|
// position with one or more break points.
|
|
class BreakPointInfo: public Struct {
|
|
public:
|
|
// The position in the code for the break point.
|
|
DECL_ACCESSORS(code_position, Smi)
|
|
// The position in the source for the break position.
|
|
DECL_ACCESSORS(source_position, Smi)
|
|
// The position in the source for the last statement before this break
|
|
// position.
|
|
DECL_ACCESSORS(statement_position, Smi)
|
|
// List of related JavaScript break points.
|
|
DECL_ACCESSORS(break_point_objects, Object)
|
|
|
|
// Removes a break point.
|
|
static void ClearBreakPoint(Handle<BreakPointInfo> info,
|
|
Handle<Object> break_point_object);
|
|
// Set a break point.
|
|
static void SetBreakPoint(Handle<BreakPointInfo> info,
|
|
Handle<Object> break_point_object);
|
|
// Check if break point info has this break point object.
|
|
static bool HasBreakPointObject(Handle<BreakPointInfo> info,
|
|
Handle<Object> break_point_object);
|
|
// Get the number of break points for this code position.
|
|
int GetBreakPointCount();
|
|
|
|
static inline BreakPointInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(BreakPointInfo)
|
|
DECLARE_VERIFIER(BreakPointInfo)
|
|
|
|
static const int kCodePositionIndex = Struct::kHeaderSize;
|
|
static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
|
|
static const int kStatementPositionIndex =
|
|
kSourcePositionIndex + kPointerSize;
|
|
static const int kBreakPointObjectsIndex =
|
|
kStatementPositionIndex + kPointerSize;
|
|
static const int kSize = kBreakPointObjectsIndex + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
|
|
};
|
|
#endif // ENABLE_DEBUGGER_SUPPORT
|
|
|
|
|
|
#undef DECL_BOOLEAN_ACCESSORS
|
|
#undef DECL_ACCESSORS
|
|
#undef DECLARE_VERIFIER
|
|
|
|
#define VISITOR_SYNCHRONIZATION_TAGS_LIST(V) \
|
|
V(kStringTable, "string_table", "(Internalized strings)") \
|
|
V(kExternalStringsTable, "external_strings_table", "(External strings)") \
|
|
V(kStrongRootList, "strong_root_list", "(Strong roots)") \
|
|
V(kSmiRootList, "smi_root_list", "(Smi roots)") \
|
|
V(kInternalizedString, "internalized_string", "(Internal string)") \
|
|
V(kBootstrapper, "bootstrapper", "(Bootstrapper)") \
|
|
V(kTop, "top", "(Isolate)") \
|
|
V(kRelocatable, "relocatable", "(Relocatable)") \
|
|
V(kDebug, "debug", "(Debugger)") \
|
|
V(kCompilationCache, "compilationcache", "(Compilation cache)") \
|
|
V(kHandleScope, "handlescope", "(Handle scope)") \
|
|
V(kBuiltins, "builtins", "(Builtins)") \
|
|
V(kGlobalHandles, "globalhandles", "(Global handles)") \
|
|
V(kEternalHandles, "eternalhandles", "(Eternal handles)") \
|
|
V(kThreadManager, "threadmanager", "(Thread manager)") \
|
|
V(kExtensions, "Extensions", "(Extensions)")
|
|
|
|
class VisitorSynchronization : public AllStatic {
|
|
public:
|
|
#define DECLARE_ENUM(enum_item, ignore1, ignore2) enum_item,
|
|
enum SyncTag {
|
|
VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_ENUM)
|
|
kNumberOfSyncTags
|
|
};
|
|
#undef DECLARE_ENUM
|
|
|
|
static const char* const kTags[kNumberOfSyncTags];
|
|
static const char* const kTagNames[kNumberOfSyncTags];
|
|
};
|
|
|
|
// Abstract base class for visiting, and optionally modifying, the
|
|
// pointers contained in Objects. Used in GC and serialization/deserialization.
|
|
class ObjectVisitor BASE_EMBEDDED {
|
|
public:
|
|
virtual ~ObjectVisitor() {}
|
|
|
|
// Visits a contiguous arrays of pointers in the half-open range
|
|
// [start, end). Any or all of the values may be modified on return.
|
|
virtual void VisitPointers(Object** start, Object** end) = 0;
|
|
|
|
// Handy shorthand for visiting a single pointer.
|
|
virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }
|
|
|
|
// To allow lazy clearing of inline caches the visitor has
|
|
// a rich interface for iterating over Code objects..
|
|
|
|
// Visits a code target in the instruction stream.
|
|
virtual void VisitCodeTarget(RelocInfo* rinfo);
|
|
|
|
// Visits a code entry in a JS function.
|
|
virtual void VisitCodeEntry(Address entry_address);
|
|
|
|
// Visits a global property cell reference in the instruction stream.
|
|
virtual void VisitCell(RelocInfo* rinfo);
|
|
|
|
// Visits a runtime entry in the instruction stream.
|
|
virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}
|
|
|
|
// Visits the resource of an ASCII or two-byte string.
|
|
virtual void VisitExternalAsciiString(
|
|
v8::String::ExternalAsciiStringResource** resource) {}
|
|
virtual void VisitExternalTwoByteString(
|
|
v8::String::ExternalStringResource** resource) {}
|
|
|
|
// Visits a debug call target in the instruction stream.
|
|
virtual void VisitDebugTarget(RelocInfo* rinfo);
|
|
|
|
// Visits the byte sequence in a function's prologue that contains information
|
|
// about the code's age.
|
|
virtual void VisitCodeAgeSequence(RelocInfo* rinfo);
|
|
|
|
// Visit pointer embedded into a code object.
|
|
virtual void VisitEmbeddedPointer(RelocInfo* rinfo);
|
|
|
|
// Visits an external reference embedded into a code object.
|
|
virtual void VisitExternalReference(RelocInfo* rinfo);
|
|
|
|
// Visits an external reference. The value may be modified on return.
|
|
virtual void VisitExternalReference(Address* p) {}
|
|
|
|
// Visits a handle that has an embedder-assigned class ID.
|
|
virtual void VisitEmbedderReference(Object** p, uint16_t class_id) {}
|
|
|
|
// Intended for serialization/deserialization checking: insert, or
|
|
// check for the presence of, a tag at this position in the stream.
|
|
// Also used for marking up GC roots in heap snapshots.
|
|
virtual void Synchronize(VisitorSynchronization::SyncTag tag) {}
|
|
};
|
|
|
|
|
|
class StructBodyDescriptor : public
|
|
FlexibleBodyDescriptor<HeapObject::kHeaderSize> {
|
|
public:
|
|
static inline int SizeOf(Map* map, HeapObject* object) {
|
|
return map->instance_size();
|
|
}
|
|
};
|
|
|
|
|
|
// BooleanBit is a helper class for setting and getting a bit in an
|
|
// integer or Smi.
|
|
class BooleanBit : public AllStatic {
|
|
public:
|
|
static inline bool get(Smi* smi, int bit_position) {
|
|
return get(smi->value(), bit_position);
|
|
}
|
|
|
|
static inline bool get(int value, int bit_position) {
|
|
return (value & (1 << bit_position)) != 0;
|
|
}
|
|
|
|
static inline Smi* set(Smi* smi, int bit_position, bool v) {
|
|
return Smi::FromInt(set(smi->value(), bit_position, v));
|
|
}
|
|
|
|
static inline int set(int value, int bit_position, bool v) {
|
|
if (v) {
|
|
value |= (1 << bit_position);
|
|
} else {
|
|
value &= ~(1 << bit_position);
|
|
}
|
|
return value;
|
|
}
|
|
};
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_OBJECTS_H_
|