v8/src/handles.h

383 lines
13 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_HANDLES_H_
#define V8_HANDLES_H_
#include "allocation.h"
#include "objects.h"
namespace v8 {
namespace internal {
// A Handle can be converted into a MaybeHandle. Converting a MaybeHandle
// into a Handle requires checking that it does not point to NULL. This
// ensures NULL checks before use.
// Do not use MaybeHandle as argument type.
template<typename T>
class MaybeHandle {
public:
INLINE(MaybeHandle()) : location_(NULL) { }
// Constructor for handling automatic up casting from Handle.
// Ex. Handle<JSArray> can be passed when MaybeHandle<Object> is expected.
template <class S> MaybeHandle(Handle<S> handle) {
#ifdef DEBUG
T* a = NULL;
S* b = NULL;
a = b; // Fake assignment to enforce type checks.
USE(a);
#endif
this->location_ = reinterpret_cast<T**>(handle.location());
}
// Constructor for handling automatic up casting.
// Ex. MaybeHandle<JSArray> can be passed when Handle<Object> is expected.
template <class S> MaybeHandle(MaybeHandle<S> maybe_handle) {
#ifdef DEBUG
T* a = NULL;
S* b = NULL;
a = b; // Fake assignment to enforce type checks.
USE(a);
#endif
location_ = reinterpret_cast<T**>(maybe_handle.location_);
}
INLINE(void Assert()) { ASSERT(location_ != NULL); }
INLINE(void Check()) { CHECK(location_ != NULL); }
INLINE(Handle<T> ToHandleChecked()) {
Check();
return Handle<T>(location_);
}
// Convert to a Handle with a type that can be upcasted to.
template <class S> INLINE(bool ToHandle(Handle<S>* out)) {
if (location_ == NULL) {
*out = Handle<T>::null();
return false;
} else {
*out = Handle<T>(location_);
return true;
}
}
bool is_null() const { return location_ == NULL; }
protected:
T** location_;
// MaybeHandles of different classes are allowed to access each
// other's location_.
template<class S> friend class MaybeHandle;
};
// ----------------------------------------------------------------------------
// A Handle provides a reference to an object that survives relocation by
// the garbage collector.
// Handles are only valid within a HandleScope.
// When a handle is created for an object a cell is allocated in the heap.
template<typename T>
class Handle {
public:
INLINE(explicit Handle(T** location)) { location_ = location; }
INLINE(explicit Handle(T* obj));
INLINE(Handle(T* obj, Isolate* isolate));
// TODO(yangguo): Values that contain empty handles should be declared as
// MaybeHandle to force validation before being used as handles.
INLINE(Handle()) : location_(NULL) { }
// Constructor for handling automatic up casting.
// Ex. Handle<JSFunction> can be passed when Handle<Object> is expected.
template <class S> Handle(Handle<S> handle) {
#ifdef DEBUG
T* a = NULL;
S* b = NULL;
a = b; // Fake assignment to enforce type checks.
USE(a);
#endif
location_ = reinterpret_cast<T**>(handle.location_);
}
INLINE(T* operator->() const) { return operator*(); }
// Check if this handle refers to the exact same object as the other handle.
INLINE(bool is_identical_to(const Handle<T> other) const);
// Provides the C++ dereference operator.
INLINE(T* operator*() const);
// Returns the address to where the raw pointer is stored.
INLINE(T** location() const);
template <class S> static Handle<T> cast(Handle<S> that) {
T::cast(*reinterpret_cast<T**>(that.location_));
return Handle<T>(reinterpret_cast<T**>(that.location_));
}
// TODO(yangguo): Values that contain empty handles should be declared as
// MaybeHandle to force validation before being used as handles.
static Handle<T> null() { return Handle<T>(); }
bool is_null() const { return location_ == NULL; }
// Closes the given scope, but lets this handle escape. See
// implementation in api.h.
inline Handle<T> EscapeFrom(v8::EscapableHandleScope* scope);
#ifdef DEBUG
enum DereferenceCheckMode { INCLUDE_DEFERRED_CHECK, NO_DEFERRED_CHECK };
bool IsDereferenceAllowed(DereferenceCheckMode mode) const;
#endif // DEBUG
private:
T** location_;
// Handles of different classes are allowed to access each other's location_.
template<class S> friend class Handle;
};
// Convenience wrapper.
template<class T>
inline Handle<T> handle(T* t, Isolate* isolate) {
return Handle<T>(t, isolate);
}
// Convenience wrapper.
template<class T>
inline Handle<T> handle(T* t) {
return Handle<T>(t, t->GetIsolate());
}
class DeferredHandles;
class HandleScopeImplementer;
// A stack-allocated class that governs a number of local handles.
// After a handle scope has been created, all local handles will be
// allocated within that handle scope until either the handle scope is
// deleted or another handle scope is created. If there is already a
// handle scope and a new one is created, all allocations will take
// place in the new handle scope until it is deleted. After that,
// new handles will again be allocated in the original handle scope.
//
// After the handle scope of a local handle has been deleted the
// garbage collector will no longer track the object stored in the
// handle and may deallocate it. The behavior of accessing a handle
// for which the handle scope has been deleted is undefined.
class HandleScope {
public:
explicit inline HandleScope(Isolate* isolate);
inline ~HandleScope();
// Counts the number of allocated handles.
static int NumberOfHandles(Isolate* isolate);
// Creates a new handle with the given value.
template <typename T>
static inline T** CreateHandle(Isolate* isolate, T* value);
// Deallocates any extensions used by the current scope.
static void DeleteExtensions(Isolate* isolate);
static Address current_next_address(Isolate* isolate);
static Address current_limit_address(Isolate* isolate);
static Address current_level_address(Isolate* isolate);
// Closes the HandleScope (invalidating all handles
// created in the scope of the HandleScope) and returns
// a Handle backed by the parent scope holding the
// value of the argument handle.
template <typename T>
Handle<T> CloseAndEscape(Handle<T> handle_value);
Isolate* isolate() { return isolate_; }
private:
// Prevent heap allocation or illegal handle scopes.
HandleScope(const HandleScope&);
void operator=(const HandleScope&);
void* operator new(size_t size);
void operator delete(void* size_t);
Isolate* isolate_;
Object** prev_next_;
Object** prev_limit_;
// Close the handle scope resetting limits to a previous state.
static inline void CloseScope(Isolate* isolate,
Object** prev_next,
Object** prev_limit);
// Extend the handle scope making room for more handles.
static internal::Object** Extend(Isolate* isolate);
#ifdef ENABLE_HANDLE_ZAPPING
// Zaps the handles in the half-open interval [start, end).
static void ZapRange(Object** start, Object** end);
#endif
friend class v8::HandleScope;
friend class v8::internal::DeferredHandles;
friend class v8::internal::HandleScopeImplementer;
friend class v8::internal::Isolate;
};
class DeferredHandles;
class DeferredHandleScope {
public:
explicit DeferredHandleScope(Isolate* isolate);
// The DeferredHandles object returned stores the Handles created
// since the creation of this DeferredHandleScope. The Handles are
// alive as long as the DeferredHandles object is alive.
DeferredHandles* Detach();
~DeferredHandleScope();
private:
Object** prev_limit_;
Object** prev_next_;
HandleScopeImplementer* impl_;
#ifdef DEBUG
bool handles_detached_;
int prev_level_;
#endif
friend class HandleScopeImplementer;
};
// ----------------------------------------------------------------------------
// Handle operations.
// They might invoke garbage collection. The result is an handle to
// an object of expected type, or the handle is an error if running out
// of space or encountering an internal error.
// Flattens a string.
void FlattenString(Handle<String> str);
// Flattens a string and returns the underlying external or sequential
// string.
Handle<String> FlattenGetString(Handle<String> str);
Handle<Object> DeleteProperty(Handle<JSObject> object, Handle<Object> key);
Handle<Object> ForceDeleteProperty(Handle<JSObject> object, Handle<Object> key);
Handle<Object> HasProperty(Handle<JSReceiver> obj, Handle<Object> key);
Handle<Object> GetProperty(Handle<JSReceiver> obj, const char* name);
Handle<String> LookupSingleCharacterStringFromCode(Isolate* isolate,
uint32_t index);
// Get the JS object corresponding to the given script; create it
// if none exists.
Handle<JSValue> GetScriptWrapper(Handle<Script> script);
// Script line number computations. Note that the line number is zero-based.
void InitScriptLineEnds(Handle<Script> script);
// For string calculates an array of line end positions. If the string
// does not end with a new line character, this character may optionally be
// imagined.
Handle<FixedArray> CalculateLineEnds(Handle<String> string,
bool with_imaginary_last_new_line);
int GetScriptLineNumber(Handle<Script> script, int code_position);
// The safe version does not make heap allocations but may work much slower.
int GetScriptLineNumberSafe(Handle<Script> script, int code_position);
int GetScriptColumnNumber(Handle<Script> script, int code_position);
Handle<Object> GetScriptNameOrSourceURL(Handle<Script> script);
// Computes the enumerable keys from interceptors. Used for debug mirrors and
// by GetKeysInFixedArrayFor below.
v8::Handle<v8::Array> GetKeysForNamedInterceptor(Handle<JSReceiver> receiver,
Handle<JSObject> object);
v8::Handle<v8::Array> GetKeysForIndexedInterceptor(Handle<JSReceiver> receiver,
Handle<JSObject> object);
enum KeyCollectionType { LOCAL_ONLY, INCLUDE_PROTOS };
// Computes the enumerable keys for a JSObject. Used for implementing
// "for (n in object) { }".
Handle<FixedArray> GetKeysInFixedArrayFor(Handle<JSReceiver> object,
KeyCollectionType type,
bool* threw);
Handle<JSArray> GetKeysFor(Handle<JSReceiver> object, bool* threw);
Handle<FixedArray> ReduceFixedArrayTo(Handle<FixedArray> array, int length);
Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object,
bool cache_result);
Handle<JSGlobalProxy> ReinitializeJSGlobalProxy(
Handle<JSFunction> constructor,
Handle<JSGlobalProxy> global);
void AddWeakObjectToCodeDependency(Heap* heap,
Handle<Object> object,
Handle<Code> code);
// Seal off the current HandleScope so that new handles can only be created
// if a new HandleScope is entered.
class SealHandleScope BASE_EMBEDDED {
public:
#ifndef DEBUG
explicit SealHandleScope(Isolate* isolate) {}
~SealHandleScope() {}
#else
explicit inline SealHandleScope(Isolate* isolate);
inline ~SealHandleScope();
private:
Isolate* isolate_;
Object** limit_;
int level_;
#endif
};
struct HandleScopeData {
internal::Object** next;
internal::Object** limit;
int level;
void Initialize() {
next = limit = NULL;
level = 0;
}
};
} } // namespace v8::internal
#endif // V8_HANDLES_H_