v8/test/unittests/wasm/module-decoder-unittest.cc
titzer ce291bedd0 [wasm] Dont compute global offsets if the module had errors (e.g. invalid memory type for global).
R=ahaas@chromium.org,bradnelson@chromium.org
BUG=chromium:617884

Review-Url: https://codereview.chromium.org/2044833002
Cr-Commit-Position: refs/heads/master@{#36779}
2016-06-07 09:38:48 +00:00

1210 lines
37 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/test-utils.h"
#include "src/wasm/module-decoder.h"
#include "src/wasm/wasm-macro-gen.h"
#include "src/wasm/wasm-opcodes.h"
namespace v8 {
namespace internal {
namespace wasm {
#define EMPTY_FUNCTION(sig_index) 0, SIG_INDEX(sig_index), U16_LE(0)
#define SIZEOF_EMPTY_FUNCTION ((size_t)5)
#define EMPTY_BODY 0
#define SIZEOF_EMPTY_BODY ((size_t)1)
#define NOP_BODY 2, 0, kExprNop
#define SIZEOF_NOP_BODY ((size_t)3)
#define SIG_ENTRY_i_i SIG_ENTRY_x_x(kLocalI32, kLocalI32)
#define UNKNOWN_EMPTY_SECTION_NAME 1, '\0'
#define UNKNOWN_SECTION_NAME 4, 'l', 'u', 'l', 'z'
#define SECTION(NAME, EXTRA_SIZE) WASM_SECTION_##NAME, U32V_1(EXTRA_SIZE)
#define SIGNATURES_SECTION(count, ...) \
SECTION(SIGNATURES, 1 + 3 * (count)), U32V_1(count), __VA_ARGS__
#define FUNCTION_SIGNATURES_SECTION(count, ...) \
SECTION(FUNCTION_SIGNATURES, 1 + (count)), U32V_1(count), __VA_ARGS__
#define FOO_STRING 3, 'f', 'o', 'o'
#define NO_LOCAL_NAMES 0
#define EMPTY_SIGNATURES_SECTION SECTION(SIGNATURES, 1), 0
#define EMPTY_FUNCTION_SIGNATURES_SECTION SECTION(FUNCTION_SIGNATURES, 1), 0
#define EMPTY_FUNCTION_BODIES_SECTION SECTION(FUNCTION_BODIES, 1), 0
#define EMPTY_NAMES_SECTION SECTION(NAMES, 1), 0
#define X1(...) __VA_ARGS__
#define X2(...) __VA_ARGS__, __VA_ARGS__
#define X3(...) __VA_ARGS__, __VA_ARGS__, __VA_ARGS__
#define X4(...) __VA_ARGS__, __VA_ARGS__, __VA_ARGS__, __VA_ARGS__
#define ONE_EMPTY_FUNCTION WASM_SECTION_FUNCTION_SIGNATURES, 1 + 1 * 1, 1, X1(0)
#define TWO_EMPTY_FUNCTIONS \
WASM_SECTION_FUNCTION_SIGNATURES, 1 + 2 * 1, 2, X2(0)
#define THREE_EMPTY_FUNCTIONS \
WASM_SECTION_FUNCTION_SIGNATURES, 1 + 3 * 1, 3, X3(0)
#define FOUR_EMPTY_FUNCTIONS \
WASM_SECTION_FUNCTION_SIGNATURES, 1 + 4 * 1, 4, X4(0)
#define ONE_EMPTY_BODY \
WASM_SECTION_FUNCTION_BODIES, 1 + 1 * (1 + SIZEOF_EMPTY_BODY), 1, \
X1(SIZEOF_EMPTY_BODY, EMPTY_BODY)
#define TWO_EMPTY_BODIES \
WASM_SECTION_FUNCTION_BODIES, 1 + 2 * (1 + SIZEOF_EMPTY_BODY), 2, \
X2(SIZEOF_EMPTY_BODY, EMPTY_BODY)
#define THREE_EMPTY_BODIES \
WASM_SECTION_FUNCTION_BODIES, 1 + 3 * (1 + SIZEOF_EMPTY_BODY), 3, \
X3(SIZEOF_EMPTY_BODY, EMPTY_BODY)
#define FOUR_EMPTY_BODIES \
WASM_SECTION_FUNCTION_BODIES, 1 + 4 * (1 + SIZEOF_EMPTY_BODY), 4, \
X4(SIZEOF_EMPTY_BODY, EMPTY_BODY)
#define SIGNATURES_SECTION_VOID_VOID \
SECTION(SIGNATURES, 1 + SIZEOF_SIG_ENTRY_v_v), 1, SIG_ENTRY_v_v
#define EXPECT_VERIFIES(data) \
do { \
ModuleResult result = DecodeModule(data, data + arraysize(data)); \
EXPECT_TRUE(result.ok()); \
if (result.val) delete result.val; \
} while (false)
#define EXPECT_FAILURE_LEN(data, length) \
do { \
ModuleResult result = DecodeModule(data, data + length); \
EXPECT_FALSE(result.ok()); \
if (result.val) delete result.val; \
} while (false)
#define EXPECT_FAILURE(data) EXPECT_FAILURE_LEN(data, sizeof(data))
#define EXPECT_OFF_END_FAILURE(data, min, max) \
do { \
for (size_t length = min; length < max; length++) { \
EXPECT_FAILURE_LEN(data, length); \
} \
} while (false)
#define EXPECT_OK(result) \
do { \
EXPECT_TRUE(result.ok()); \
if (!result.ok()) { \
if (result.val) delete result.val; \
return; \
} \
} while (false)
static size_t SizeOfVarInt(size_t value) {
size_t size = 0;
do {
size++;
value = value >> 7;
} while (value > 0);
return size;
}
struct LocalTypePair {
uint8_t code;
LocalType type;
} kLocalTypes[] = {{kLocalI32, kAstI32},
{kLocalI64, kAstI64},
{kLocalF32, kAstF32},
{kLocalF64, kAstF64}};
class WasmModuleVerifyTest : public TestWithIsolateAndZone {
public:
ModuleResult DecodeModule(const byte* module_start, const byte* module_end) {
// Add the WASM magic and version number automatically.
size_t size = static_cast<size_t>(module_end - module_start);
byte header[] = {WASM_MODULE_HEADER};
size_t total = sizeof(header) + size;
auto temp = new byte[total];
memcpy(temp, header, sizeof(header));
memcpy(temp + sizeof(header), module_start, size);
ModuleResult result = DecodeWasmModule(isolate(), zone(), temp,
temp + total, false, kWasmOrigin);
delete[] temp;
return result;
}
ModuleResult DecodeModuleNoHeader(const byte* module_start,
const byte* module_end) {
return DecodeWasmModule(isolate(), zone(), module_start, module_end, false,
kWasmOrigin);
}
};
TEST_F(WasmModuleVerifyTest, WrongMagic) {
for (uint32_t x = 1; x; x <<= 1) {
const byte data[] = {U32_LE(kWasmMagic ^ x), U32_LE(kWasmVersion),
SECTION(END, 0)};
ModuleResult result = DecodeModuleNoHeader(data, data + sizeof(data));
EXPECT_FALSE(result.ok());
if (result.val) delete result.val;
}
}
TEST_F(WasmModuleVerifyTest, WrongVersion) {
for (uint32_t x = 1; x; x <<= 1) {
const byte data[] = {U32_LE(kWasmMagic), U32_LE(kWasmVersion ^ x),
SECTION(END, 0)};
ModuleResult result = DecodeModuleNoHeader(data, data + sizeof(data));
EXPECT_FALSE(result.ok());
if (result.val) delete result.val;
}
}
TEST_F(WasmModuleVerifyTest, DecodeEmpty) {
static const byte data[] = {SECTION(END, 0)};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, OneGlobal) {
static const byte data[] = {
SECTION(GLOBALS, 5), // --
1,
NAME_LENGTH(1),
'g', // name
kMemI32, // memory type
0, // exported
};
{
// Should decode to exactly one global.
ModuleResult result = DecodeModule(data, data + arraysize(data));
EXPECT_OK(result);
EXPECT_EQ(1, result.val->globals.size());
EXPECT_EQ(0, result.val->functions.size());
EXPECT_EQ(0, result.val->data_segments.size());
const WasmGlobal* global = &result.val->globals.back();
EXPECT_EQ(1, global->name_length);
EXPECT_EQ(MachineType::Int32(), global->type);
EXPECT_EQ(0, global->offset);
EXPECT_FALSE(global->exported);
if (result.val) delete result.val;
}
EXPECT_OFF_END_FAILURE(data, 1, sizeof(data));
}
TEST_F(WasmModuleVerifyTest, Global_invalid_type) {
static const byte data[] = {
SECTION(GLOBALS, 5), // --
1,
NAME_LENGTH(1),
'g', // name
64, // invalid memory type
0, // exported
};
ModuleResult result = DecodeModuleNoHeader(data, data + sizeof(data));
EXPECT_FALSE(result.ok());
if (result.val) delete result.val;
}
TEST_F(WasmModuleVerifyTest, ZeroGlobals) {
static const byte data[] = {
SECTION(GLOBALS, 1), // --
0, // declare 0 globals
};
ModuleResult result = DecodeModule(data, data + arraysize(data));
EXPECT_OK(result);
if (result.val) delete result.val;
}
static void AppendUint32v(std::vector<byte>& buffer, uint32_t val) {
while (true) {
uint32_t next = val >> 7;
uint32_t out = val & 0x7f;
if (next) {
buffer.push_back(static_cast<byte>(0x80 | out));
val = next;
} else {
buffer.push_back(static_cast<byte>(out));
break;
}
}
}
TEST_F(WasmModuleVerifyTest, NGlobals) {
static const byte data[] = {
NO_NAME, // name length
kMemI32, // memory type
0, // exported
};
for (uint32_t i = 0; i < 1000000; i = i * 13 + 1) {
std::vector<byte> buffer;
size_t size = SizeOfVarInt(i) + i * sizeof(data);
const byte globals[] = {WASM_SECTION_GLOBALS, U32V_5(size)};
for (size_t g = 0; g != sizeof(globals); ++g) {
buffer.push_back(globals[g]);
}
AppendUint32v(buffer, i); // Number of globals.
for (uint32_t j = 0; j < i; j++) {
buffer.insert(buffer.end(), data, data + sizeof(data));
}
ModuleResult result = DecodeModule(&buffer[0], &buffer[0] + buffer.size());
EXPECT_OK(result);
if (result.val) delete result.val;
}
}
TEST_F(WasmModuleVerifyTest, GlobalWithInvalidNameOffset) {
static const byte data[] = {
SECTION(GLOBALS, 7),
1, // declare one global
NO_NAME, // name offset
33, // memory type
0, // exported
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, GlobalWithInvalidMemoryType) {
static const byte data[] = {
SECTION(GLOBALS, 7),
1, // declare one global
NO_NAME, // name offset
33, // memory type
0, // exported
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, TwoGlobals) {
static const byte data[] = {
SECTION(GLOBALS, 7),
2,
NO_NAME, // #0: name length
kMemF32, // memory type
0, // exported
NO_NAME, // #1: name length
kMemF64, // memory type
1, // exported
};
{
// Should decode to exactly two globals.
ModuleResult result = DecodeModule(data, data + arraysize(data));
EXPECT_OK(result);
EXPECT_EQ(2, result.val->globals.size());
EXPECT_EQ(0, result.val->functions.size());
EXPECT_EQ(0, result.val->data_segments.size());
const WasmGlobal* g0 = &result.val->globals[0];
const WasmGlobal* g1 = &result.val->globals[1];
EXPECT_EQ(0, g0->name_length);
EXPECT_EQ(MachineType::Float32(), g0->type);
EXPECT_EQ(0, g0->offset);
EXPECT_FALSE(g0->exported);
EXPECT_EQ(0, g1->name_length);
EXPECT_EQ(MachineType::Float64(), g1->type);
EXPECT_EQ(8, g1->offset);
EXPECT_TRUE(g1->exported);
if (result.val) delete result.val;
}
EXPECT_OFF_END_FAILURE(data, 1, sizeof(data));
}
TEST_F(WasmModuleVerifyTest, OneSignature) {
{
static const byte data[] = {SIGNATURES_SECTION_VOID_VOID};
EXPECT_VERIFIES(data);
}
{
static const byte data[] = {SECTION(SIGNATURES, 1 + SIZEOF_SIG_ENTRY_x_x),
1, SIG_ENTRY_i_i};
EXPECT_VERIFIES(data);
}
}
TEST_F(WasmModuleVerifyTest, MultipleSignatures) {
static const byte data[] = {
SECTION(SIGNATURES, 1 + SIZEOF_SIG_ENTRY_v_v + SIZEOF_SIG_ENTRY_x_x +
SIZEOF_SIG_ENTRY_x_xx), // --
3, // --
SIG_ENTRY_v_v, // void -> void
SIG_ENTRY_x_x(kLocalI32, kLocalF32), // f32 -> i32
SIG_ENTRY_x_xx(kLocalI32, kLocalF64, kLocalF64), // f64,f64 -> i32
};
ModuleResult result = DecodeModule(data, data + arraysize(data));
EXPECT_OK(result);
EXPECT_EQ(3, result.val->signatures.size());
if (result.val->signatures.size() == 3) {
EXPECT_EQ(0, result.val->signatures[0]->return_count());
EXPECT_EQ(1, result.val->signatures[1]->return_count());
EXPECT_EQ(1, result.val->signatures[2]->return_count());
EXPECT_EQ(0, result.val->signatures[0]->parameter_count());
EXPECT_EQ(1, result.val->signatures[1]->parameter_count());
EXPECT_EQ(2, result.val->signatures[2]->parameter_count());
}
if (result.val) delete result.val;
EXPECT_OFF_END_FAILURE(data, 1, sizeof(data));
}
TEST_F(WasmModuleVerifyTest, OneDataSegment) {
const byte kDataSegmentSourceOffset = 30;
const byte data[] = {
SECTION(MEMORY, 3),
28,
28,
1,
SECTION(DATA_SEGMENTS, 8),
1,
U32V_3(0x9bbaa), // dest addr
U32V_1(3), // source size
'a',
'b',
'c' // data bytes
};
{
EXPECT_VERIFIES(data);
ModuleResult result = DecodeModule(data, data + arraysize(data));
EXPECT_OK(result);
EXPECT_EQ(0, result.val->globals.size());
EXPECT_EQ(0, result.val->functions.size());
EXPECT_EQ(1, result.val->data_segments.size());
const WasmDataSegment* segment = &result.val->data_segments.back();
EXPECT_EQ(0x9bbaa, segment->dest_addr);
EXPECT_EQ(kDataSegmentSourceOffset, segment->source_offset);
EXPECT_EQ(3, segment->source_size);
EXPECT_TRUE(segment->init);
if (result.val) delete result.val;
}
EXPECT_OFF_END_FAILURE(data, 13, sizeof(data));
}
TEST_F(WasmModuleVerifyTest, TwoDataSegments) {
const byte kDataSegment0SourceOffset = 30;
const byte kDataSegment1SourceOffset = 30 + 8;
const byte data[] = {
SECTION(MEMORY, 3),
28,
28,
1,
SECTION(DATA_SEGMENTS, 23),
2, // segment count
U32V_3(0x7ffee), // #0: dest addr
U32V_1(4), // source size
1,
2,
3,
4, // data bytes
U32V_3(0x6ddcc), // #1: dest addr
U32V_1(10), // source size
1,
2,
3,
4,
5,
6,
7,
8,
9,
10 // data bytes
};
{
ModuleResult result = DecodeModule(data, data + arraysize(data));
EXPECT_OK(result);
EXPECT_EQ(0, result.val->globals.size());
EXPECT_EQ(0, result.val->functions.size());
EXPECT_EQ(2, result.val->data_segments.size());
const WasmDataSegment* s0 = &result.val->data_segments[0];
const WasmDataSegment* s1 = &result.val->data_segments[1];
EXPECT_EQ(0x7ffee, s0->dest_addr);
EXPECT_EQ(kDataSegment0SourceOffset, s0->source_offset);
EXPECT_EQ(4, s0->source_size);
EXPECT_TRUE(s0->init);
EXPECT_EQ(0x6ddcc, s1->dest_addr);
EXPECT_EQ(kDataSegment1SourceOffset, s1->source_offset);
EXPECT_EQ(10, s1->source_size);
EXPECT_TRUE(s1->init);
if (result.val) delete result.val;
}
EXPECT_OFF_END_FAILURE(data, 13, sizeof(data));
}
TEST_F(WasmModuleVerifyTest, DataSegmentWithInvalidDest) {
const int source_size = 3;
for (byte mem_pages = 1; mem_pages < 16; mem_pages++) {
int mem_size = mem_pages * 0x10000; // 64k pages.
for (int dest_addr = mem_size - source_size;
dest_addr < mem_size + source_size; dest_addr++) {
byte data[] = {SECTION(MEMORY, 3),
mem_pages,
mem_pages,
1,
SECTION(DATA_SEGMENTS, 8),
1,
U32V_3(dest_addr),
U32V_1(source_size),
'a',
'b',
'c'};
if (dest_addr <= (mem_size - source_size)) {
EXPECT_VERIFIES(data);
} else {
EXPECT_FAILURE(data);
}
}
}
}
TEST_F(WasmModuleVerifyTest, OneIndirectFunction) {
static const byte data[] = {
// sig#0 -------------------------------------------------------
SIGNATURES_SECTION_VOID_VOID,
// funcs ------------------------------------------------------
ONE_EMPTY_FUNCTION,
// indirect table ----------------------------------------------
SECTION(FUNCTION_TABLE, 2), 1, U32V_1(0)};
ModuleResult result = DecodeModule(data, data + arraysize(data));
EXPECT_OK(result);
if (result.ok()) {
EXPECT_EQ(1, result.val->signatures.size());
EXPECT_EQ(1, result.val->functions.size());
EXPECT_EQ(1, result.val->function_table.size());
EXPECT_EQ(0, result.val->function_table[0]);
}
if (result.val) delete result.val;
}
TEST_F(WasmModuleVerifyTest, MultipleIndirectFunctions) {
static const byte data[] = {
// sig#0 -------------------------------------------------------
SECTION(SIGNATURES, 1 + SIZEOF_SIG_ENTRY_v_v + SIZEOF_SIG_ENTRY_v_x),
2, // --
SIG_ENTRY_v_v, // void -> void
SIG_ENTRY_v_x(kLocalI32), // void -> i32
// funcs ------------------------------------------------------
FOUR_EMPTY_FUNCTIONS,
// indirect table ----------------------------------------------
SECTION(FUNCTION_TABLE, 9), 8,
U32V_1(0), // --
U32V_1(1), // --
U32V_1(2), // --
U32V_1(3), // --
U32V_1(0), // --
U32V_1(1), // --
U32V_1(2), // --
U32V_1(3), // --
FOUR_EMPTY_BODIES};
ModuleResult result = DecodeModule(data, data + arraysize(data));
EXPECT_OK(result);
if (result.ok()) {
EXPECT_EQ(2, result.val->signatures.size());
EXPECT_EQ(4, result.val->functions.size());
EXPECT_EQ(8, result.val->function_table.size());
for (int i = 0; i < 8; i++) {
EXPECT_EQ(i & 3, result.val->function_table[i]);
}
}
if (result.val) delete result.val;
}
TEST_F(WasmModuleVerifyTest, IndirectFunctionNoFunctions) {
static const byte data[] = {
// sig#0 -------------------------------------------------------
SIGNATURES_SECTION_VOID_VOID,
// indirect table ----------------------------------------------
SECTION(FUNCTION_TABLE, 3), 1, 0, 0,
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, IndirectFunctionInvalidIndex) {
static const byte data[] = {
// sig#0 -------------------------------------------------------
SIGNATURES_SECTION_VOID_VOID,
// functions ---------------------------------------------------
ONE_EMPTY_FUNCTION,
// indirect table ----------------------------------------------
SECTION(FUNCTION_TABLE, 3), 1, 1, 0,
};
EXPECT_FAILURE(data);
}
class WasmSignatureDecodeTest : public TestWithZone {};
TEST_F(WasmSignatureDecodeTest, Ok_v_v) {
static const byte data[] = {SIG_ENTRY_v_v};
base::AccountingAllocator allocator;
Zone zone(&allocator);
FunctionSig* sig =
DecodeWasmSignatureForTesting(&zone, data, data + arraysize(data));
EXPECT_TRUE(sig != nullptr);
EXPECT_EQ(0, sig->parameter_count());
EXPECT_EQ(0, sig->return_count());
}
TEST_F(WasmSignatureDecodeTest, Ok_t_v) {
for (size_t i = 0; i < arraysize(kLocalTypes); i++) {
LocalTypePair ret_type = kLocalTypes[i];
const byte data[] = {SIG_ENTRY_x(ret_type.code)};
FunctionSig* sig =
DecodeWasmSignatureForTesting(zone(), data, data + arraysize(data));
EXPECT_TRUE(sig != nullptr);
EXPECT_EQ(0, sig->parameter_count());
EXPECT_EQ(1, sig->return_count());
EXPECT_EQ(ret_type.type, sig->GetReturn());
}
}
TEST_F(WasmSignatureDecodeTest, Ok_v_t) {
for (size_t i = 0; i < arraysize(kLocalTypes); i++) {
LocalTypePair param_type = kLocalTypes[i];
const byte data[] = {SIG_ENTRY_v_x(param_type.code)};
FunctionSig* sig =
DecodeWasmSignatureForTesting(zone(), data, data + arraysize(data));
EXPECT_TRUE(sig != nullptr);
EXPECT_EQ(1, sig->parameter_count());
EXPECT_EQ(0, sig->return_count());
EXPECT_EQ(param_type.type, sig->GetParam(0));
}
}
TEST_F(WasmSignatureDecodeTest, Ok_t_t) {
for (size_t i = 0; i < arraysize(kLocalTypes); i++) {
LocalTypePair ret_type = kLocalTypes[i];
for (size_t j = 0; j < arraysize(kLocalTypes); j++) {
LocalTypePair param_type = kLocalTypes[j];
const byte data[] = {SIG_ENTRY_x_x(ret_type.code, param_type.code)};
FunctionSig* sig =
DecodeWasmSignatureForTesting(zone(), data, data + arraysize(data));
EXPECT_TRUE(sig != nullptr);
EXPECT_EQ(1, sig->parameter_count());
EXPECT_EQ(1, sig->return_count());
EXPECT_EQ(param_type.type, sig->GetParam(0));
EXPECT_EQ(ret_type.type, sig->GetReturn());
}
}
}
TEST_F(WasmSignatureDecodeTest, Ok_i_tt) {
for (size_t i = 0; i < arraysize(kLocalTypes); i++) {
LocalTypePair p0_type = kLocalTypes[i];
for (size_t j = 0; j < arraysize(kLocalTypes); j++) {
LocalTypePair p1_type = kLocalTypes[j];
const byte data[] = {
SIG_ENTRY_x_xx(kLocalI32, p0_type.code, p1_type.code)};
FunctionSig* sig =
DecodeWasmSignatureForTesting(zone(), data, data + arraysize(data));
EXPECT_TRUE(sig != nullptr);
EXPECT_EQ(2, sig->parameter_count());
EXPECT_EQ(1, sig->return_count());
EXPECT_EQ(p0_type.type, sig->GetParam(0));
EXPECT_EQ(p1_type.type, sig->GetParam(1));
}
}
}
TEST_F(WasmSignatureDecodeTest, Fail_off_end) {
byte data[256];
for (int p = 0; p <= 255; p = p + 1 + p * 3) {
for (int i = 0; i <= p; i++) data[i] = kLocalI32;
data[0] = static_cast<byte>(p);
for (int i = 0; i < p + 1; i++) {
// Should fall off the end for all signatures.
FunctionSig* sig = DecodeWasmSignatureForTesting(zone(), data, data + i);
EXPECT_EQ(nullptr, sig);
}
}
}
TEST_F(WasmSignatureDecodeTest, Fail_invalid_type) {
byte kInvalidType = 76;
for (size_t i = 0; i < SIZEOF_SIG_ENTRY_x_xx; i++) {
byte data[] = {SIG_ENTRY_x_xx(kLocalI32, kLocalI32, kLocalI32)};
data[i] = kInvalidType;
FunctionSig* sig =
DecodeWasmSignatureForTesting(zone(), data, data + arraysize(data));
EXPECT_EQ(nullptr, sig);
}
}
TEST_F(WasmSignatureDecodeTest, Fail_invalid_ret_type1) {
static const byte data[] = {SIG_ENTRY_x_x(kLocalVoid, kLocalI32)};
FunctionSig* sig =
DecodeWasmSignatureForTesting(zone(), data, data + arraysize(data));
EXPECT_EQ(nullptr, sig);
}
TEST_F(WasmSignatureDecodeTest, Fail_invalid_param_type1) {
static const byte data[] = {SIG_ENTRY_x_x(kLocalI32, kLocalVoid)};
FunctionSig* sig =
DecodeWasmSignatureForTesting(zone(), data, data + arraysize(data));
EXPECT_EQ(nullptr, sig);
}
TEST_F(WasmSignatureDecodeTest, Fail_invalid_param_type2) {
static const byte data[] = {SIG_ENTRY_x_xx(kLocalI32, kLocalI32, kLocalVoid)};
FunctionSig* sig =
DecodeWasmSignatureForTesting(zone(), data, data + arraysize(data));
EXPECT_EQ(nullptr, sig);
}
class WasmFunctionVerifyTest : public TestWithIsolateAndZone {};
TEST_F(WasmFunctionVerifyTest, Ok_v_v_empty) {
static const byte data[] = {
SIG_ENTRY_v_v, // signature entry
4, // locals
3,
kLocalI32, // --
4,
kLocalI64, // --
5,
kLocalF32, // --
6,
kLocalF64, // --
kExprNop // body
};
FunctionResult result = DecodeWasmFunction(isolate(), zone(), nullptr, data,
data + arraysize(data));
EXPECT_OK(result);
if (result.val && result.ok()) {
WasmFunction* function = result.val;
EXPECT_EQ(0, function->sig->parameter_count());
EXPECT_EQ(0, function->sig->return_count());
EXPECT_EQ(0, function->name_offset);
EXPECT_EQ(SIZEOF_SIG_ENTRY_v_v, function->code_start_offset);
EXPECT_EQ(arraysize(data), function->code_end_offset);
// TODO(titzer): verify encoding of local declarations
}
if (result.val) delete result.val;
}
TEST_F(WasmModuleVerifyTest, SectionWithoutNameLength) {
const byte data[] = {1};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, TheLoneliestOfValidModulesTheTrulyEmptyOne) {
const byte data[] = {
0, // Empty section name.
// No section name, no content, nothing but sadness.
0, // No section content.
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, OnlyUnknownSectionEmpty) {
const byte data[] = {
UNKNOWN_SECTION_NAME, 0,
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, OnlyUnknownSectionNonEmpty) {
const byte data[] = {
UNKNOWN_SECTION_NAME,
5, // section size
0xff,
0xff,
0xff,
0xff,
0xff, // section data
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, SignatureFollowedByEmptyUnknownSection) {
const byte data[] = {
// signatures
SIGNATURES_SECTION_VOID_VOID,
// -----------------------------------------------------------
UNKNOWN_SECTION_NAME,
0 // empty section
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, SignatureFollowedByUnknownSection) {
const byte data[] = {
// signatures
SIGNATURES_SECTION_VOID_VOID,
// -----------------------------------------------------------
UNKNOWN_SECTION_NAME,
5, // section size
0xff, 0xff, 0xff, 0xff, 0xff,
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, SignatureFollowedByUnknownSectionWithLongLEB) {
const byte data[] = {
// signatures
SIGNATURES_SECTION_VOID_VOID,
// -----------------------------------------------------------
UNKNOWN_SECTION_NAME, 0x81, 0x80, 0x80, 0x80,
0x00, // section size: 1 but in a 5-byte LEB
0,
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, UnknownSectionOverflow) {
static const byte data[] = {
UNKNOWN_EMPTY_SECTION_NAME,
9, // section size
1,
2,
3,
4,
5,
6,
7,
8,
9,
10, // 10 byte section
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, UnknownSectionUnderflow) {
static const byte data[] = {
UNKNOWN_EMPTY_SECTION_NAME,
0xff,
0xff,
0xff,
0xff,
0x0f, // Section size LEB128 0xffffffff
1,
2,
3,
4, // 4 byte section
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, UnknownSectionLoop) {
// Would infinite loop decoding if wrapping and allowed.
static const byte data[] = {
UNKNOWN_EMPTY_SECTION_NAME,
1,
2,
3,
4, // 4 byte section
0xfa,
0xff,
0xff,
0xff,
0x0f, // Section size LEB128 0xfffffffa
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, UnknownSectionSkipped) {
static const byte data[] = {
UNKNOWN_EMPTY_SECTION_NAME,
1, // section size
0, // one byte section
SECTION(GLOBALS, 4),
1,
0, // name length
kMemI32, // memory type
0, // exported
};
ModuleResult result = DecodeModule(data, data + arraysize(data));
EXPECT_OK(result);
EXPECT_EQ(1, result.val->globals.size());
EXPECT_EQ(0, result.val->functions.size());
EXPECT_EQ(0, result.val->data_segments.size());
const WasmGlobal* global = &result.val->globals.back();
EXPECT_EQ(0, global->name_length);
EXPECT_EQ(MachineType::Int32(), global->type);
EXPECT_EQ(0, global->offset);
EXPECT_FALSE(global->exported);
if (result.val) delete result.val;
}
TEST_F(WasmModuleVerifyTest, ImportTable_empty) {
static const byte data[] = {SECTION(SIGNATURES, 1), 0,
SECTION(IMPORT_TABLE, 1), 0};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_nosigs1) {
static const byte data[] = {SECTION(IMPORT_TABLE, 1), 0};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_nosigs2) {
static const byte data[] = {
SECTION(IMPORT_TABLE, 6), 1, // sig table
IMPORT_SIG_INDEX(0), // sig index
NAME_LENGTH(1), 'm', // module name
NAME_LENGTH(1), 'f', // function name
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_invalid_sig) {
static const byte data[] = {
SECTION(SIGNATURES, 1), 0, // --
SECTION(IMPORT_TABLE, 6), 1, // --
IMPORT_SIG_INDEX(0), // sig index
NAME_LENGTH(1), 'm', // module name
NAME_LENGTH(1), 'f', // function name
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_one_sig) {
static const byte data[] = {
// signatures
SIGNATURES_SECTION_VOID_VOID,
SECTION(IMPORT_TABLE, 6),
1, // --
IMPORT_SIG_INDEX(0), // sig index
NAME_LENGTH(1),
'm', // module name
NAME_LENGTH(1),
'f', // function name
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_invalid_module) {
static const byte data[] = {
// signatures
SIGNATURES_SECTION_VOID_VOID,
SECTION(IMPORT_TABLE, 6),
1, // --
IMPORT_SIG_INDEX(0), // sig index
NO_NAME, // module name
NAME_LENGTH(1),
'f' // function name
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_off_end) {
static const byte data[] = {
// signatures
SIGNATURES_SECTION_VOID_VOID,
SECTION(IMPORT_TABLE, 6),
1,
IMPORT_SIG_INDEX(0), // sig index
NAME_LENGTH(1),
'm', // module name
NAME_LENGTH(1),
'f', // function name
};
EXPECT_OFF_END_FAILURE(data, 16, sizeof(data));
}
TEST_F(WasmModuleVerifyTest, ExportTable_empty1) {
static const byte data[] = {// signatures
SIGNATURES_SECTION_VOID_VOID, ONE_EMPTY_FUNCTION,
SECTION(EXPORT_TABLE, 1),
0, // --
ONE_EMPTY_BODY};
ModuleResult result = DecodeModule(data, data + arraysize(data));
EXPECT_OK(result);
EXPECT_EQ(1, result.val->functions.size());
EXPECT_EQ(0, result.val->export_table.size());
if (result.val) delete result.val;
}
TEST_F(WasmModuleVerifyTest, ExportTable_empty2) {
static const byte data[] = {
SECTION(SIGNATURES, 1), 0, SECTION(EXPORT_TABLE, 1), 0 // --
};
// TODO(titzer): current behavior treats empty functions section as missing.
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, ExportTable_NoFunctions1) {
static const byte data[] = {
SECTION(SIGNATURES, 1), 0, SECTION(EXPORT_TABLE, 1), 0 // --
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, ExportTable_NoFunctions2) {
static const byte data[] = {SECTION(EXPORT_TABLE, 1), 0};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, ExportTableOne) {
static const byte data[] = {// signatures
SIGNATURES_SECTION_VOID_VOID,
ONE_EMPTY_FUNCTION,
SECTION(EXPORT_TABLE, 3),
1, // exports
FUNC_INDEX(0), // --
NO_NAME, // --
ONE_EMPTY_BODY};
ModuleResult result = DecodeModule(data, data + arraysize(data));
EXPECT_OK(result);
EXPECT_EQ(1, result.val->functions.size());
EXPECT_EQ(1, result.val->export_table.size());
if (result.val) delete result.val;
}
TEST_F(WasmModuleVerifyTest, ExportTableTwo) {
static const byte data[] = {// signatures
SIGNATURES_SECTION_VOID_VOID,
ONE_EMPTY_FUNCTION,
SECTION(EXPORT_TABLE, 12),
2, // exports
FUNC_INDEX(0), // --
NAME_LENGTH(4),
'n',
'a',
'm',
'e', // --
FUNC_INDEX(0), // --
NAME_LENGTH(3),
'n',
'o',
'm', // --
ONE_EMPTY_BODY};
ModuleResult result = DecodeModule(data, data + arraysize(data));
EXPECT_OK(result);
EXPECT_EQ(1, result.val->functions.size());
EXPECT_EQ(2, result.val->export_table.size());
if (result.val) delete result.val;
}
TEST_F(WasmModuleVerifyTest, ExportTableThree) {
static const byte data[] = {// signatures
SIGNATURES_SECTION_VOID_VOID,
THREE_EMPTY_FUNCTIONS,
SECTION(EXPORT_TABLE, 10),
3, // exports
FUNC_INDEX(0), // --
NAME_LENGTH(1),
'a', // --
FUNC_INDEX(1), // --
NAME_LENGTH(1),
'b', // --
FUNC_INDEX(2), // --
NAME_LENGTH(1),
'c', // --
THREE_EMPTY_BODIES};
ModuleResult result = DecodeModule(data, data + arraysize(data));
EXPECT_OK(result);
EXPECT_EQ(3, result.val->functions.size());
EXPECT_EQ(3, result.val->export_table.size());
if (result.val) delete result.val;
}
TEST_F(WasmModuleVerifyTest, ExportTableThreeOne) {
for (int i = 0; i < 6; i++) {
const byte data[] = {// signatures
SIGNATURES_SECTION_VOID_VOID,
THREE_EMPTY_FUNCTIONS,
SECTION(EXPORT_TABLE, 5),
1, // exports
FUNC_INDEX(i), // --
NAME_LENGTH(2),
'e',
'x', // --
THREE_EMPTY_BODIES};
if (i < 3) {
EXPECT_VERIFIES(data);
} else {
EXPECT_FAILURE(data);
}
}
}
TEST_F(WasmModuleVerifyTest, ExportTableOne_off_end) {
static const byte data[] = {
// signatures
SIGNATURES_SECTION_VOID_VOID,
ONE_EMPTY_FUNCTION,
SECTION(EXPORT_TABLE, 1 + 6),
1, // exports
FUNC_INDEX(0), // --
NO_NAME // --
};
for (int length = 33; length < sizeof(data); length++) {
ModuleResult result = DecodeModule(data, data + length);
EXPECT_FALSE(result.ok());
if (result.val) delete result.val;
}
}
TEST_F(WasmModuleVerifyTest, FunctionSignatures_empty) {
static const byte data[] = {
SECTION(SIGNATURES, 1), 0, // --
SECTION(FUNCTION_SIGNATURES, 1), 0 // --
}; // --
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, FunctionSignatures_one) {
static const byte data[] = {
SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SIGNATURES_SECTION(1, 0) // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, FunctionBodies_empty) {
static const byte data[] = {
EMPTY_SIGNATURES_SECTION, // --
EMPTY_FUNCTION_SIGNATURES_SECTION, // --
EMPTY_FUNCTION_BODIES_SECTION // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, FunctionBodies_one_empty) {
static const byte data[] = {
SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SIGNATURES_SECTION(1, 0), // --
SECTION(FUNCTION_BODIES, 1 + SIZEOF_EMPTY_BODY), 1, EMPTY_BODY // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, FunctionBodies_one_nop) {
static const byte data[] = {
SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SIGNATURES_SECTION(1, 0), // --
SECTION(FUNCTION_BODIES, 1 + SIZEOF_NOP_BODY), 1, NOP_BODY // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, FunctionBodies_count_mismatch1) {
static const byte data[] = {
SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SIGNATURES_SECTION(2, 0, 0), // --
SECTION(FUNCTION_BODIES, 1 + SIZEOF_EMPTY_BODY), 1, // --
EMPTY_BODY // --
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, FunctionBodies_count_mismatch2) {
static const byte data[] = {
SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SIGNATURES_SECTION(1, 0), // --
SECTION(FUNCTION_BODIES, 1 + 2 * SIZEOF_NOP_BODY), // --
2, // --
NOP_BODY, // --
NOP_BODY // --
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, Names_empty) {
static const byte data[] = {
EMPTY_SIGNATURES_SECTION, EMPTY_FUNCTION_SIGNATURES_SECTION,
EMPTY_FUNCTION_BODIES_SECTION, EMPTY_NAMES_SECTION};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, Names_one_empty) {
static const byte data[] = {
SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SIGNATURES_SECTION(1, 0), // --
SECTION(FUNCTION_BODIES, 1 + SIZEOF_EMPTY_BODY),
1,
EMPTY_BODY, // --
SECTION(NAMES, 1 + 5),
1,
FOO_STRING,
NO_LOCAL_NAMES // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, Names_two_empty) {
static const byte data[] = {
SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SIGNATURES_SECTION(2, 0, 0), // --
SECTION(FUNCTION_BODIES, 1 + 2 * SIZEOF_EMPTY_BODY), // --
2,
EMPTY_BODY,
EMPTY_BODY, // --
SECTION(NAMES, 1 + 10),
2, // --
FOO_STRING,
NO_LOCAL_NAMES, // --
FOO_STRING,
NO_LOCAL_NAMES, // --
};
EXPECT_VERIFIES(data);
}
} // namespace wasm
} // namespace internal
} // namespace v8