v8/test/cctest/compiler/test-run-machops.cc
Enrico Bacis 6cd7a5a73a [wasm] Introduce the WasmContext
The WasmContext struct introduced in this CL is used to store the
mem_size and mem_start address of the wasm memory. These variables can
be accessed at C++ level at graph build time (e.g., initialized during
instance building). When the GrowMemory runtime is invoked, the context
variables can be changed in the WasmContext at C++ level so that the
generated code will load the correct values.

This requires to insert a relocatable pointer only in the
JSToWasmWrapper (and in the other wasm entry points), the value is then
passed from function to function as an automatically added additional
parameter. The WasmContext is then dropped when creating an Interpreter
Entry or when invoking a JavaScript function. This removes the need of
patching the generated code at runtime (i.e., when the memory grows)
with respect to WASM_MEMORY_REFERENCE and WASM_MEMORY_SIZE_REFERENCE.
However, we still need to patch the code at instance build time to patch
the JSToWasmWrappers; in fact the address of the WasmContext is not
known during compilation, but only when the instance is built.

The WasmContext address is passed as the first parameter. This has the
advantage of not having to move the WasmContext around if the function
does not use many registers. This CL also changes the wasm calling
convention so that the first parameter register is different from the
return value register. The WasmContext is attached to every
WasmMemoryObject, to share the same context with multiple instances
sharing the same memory. Moreover, the nodes representing the
WasmContext variables are cached in the SSA environment, similarly to
other local variables that might change during execution.  The nodes are
created when initializing the SSA environment and refreshed every time a
grow_memory or a function call happens, so that we are sure that they
always represent the correct mem_size and mem_start variables.

This CL also removes the WasmMemorySize runtime (since it's now possible
to directly retrieve mem_size from the context) and simplifies the
GrowMemory runtime (since every instance now has a memory_object).

R=ahaas@chromium.org,clemensh@chromium.org
CC=gdeepti@chromium.org

Change-Id: I3f058e641284f5a1bbbfc35a64c88da6ff08e240
Reviewed-on: https://chromium-review.googlesource.com/671008
Commit-Queue: Enrico Bacis <enricobacis@google.com>
Reviewed-by: Clemens Hammacher <clemensh@chromium.org>
Reviewed-by: Andreas Haas <ahaas@chromium.org>
Cr-Commit-Position: refs/heads/master@{#48209}
2017-09-28 16:14:03 +00:00

6924 lines
213 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved. Use of this
// source code is governed by a BSD-style license that can be found in the
// LICENSE file.
#include <cmath>
#include <functional>
#include <limits>
#include "src/base/bits.h"
#include "src/base/ieee754.h"
#include "src/base/utils/random-number-generator.h"
#include "src/codegen.h"
#include "src/objects-inl.h"
#include "src/utils.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/codegen-tester.h"
#include "test/cctest/compiler/graph-builder-tester.h"
#include "test/cctest/compiler/value-helper.h"
namespace v8 {
namespace internal {
namespace compiler {
TEST(RunInt32Add) {
RawMachineAssemblerTester<int32_t> m;
Node* add = m.Int32Add(m.Int32Constant(0), m.Int32Constant(1));
m.Return(add);
CHECK_EQ(1, m.Call());
}
static int RunInt32AddShift(bool is_left, int32_t add_left, int32_t add_right,
int32_t shift_left, int32_t shit_right) {
RawMachineAssemblerTester<int32_t> m;
Node* shift =
m.Word32Shl(m.Int32Constant(shift_left), m.Int32Constant(shit_right));
Node* add = m.Int32Add(m.Int32Constant(add_left), m.Int32Constant(add_right));
Node* lsa = is_left ? m.Int32Add(shift, add) : m.Int32Add(add, shift);
m.Return(lsa);
return m.Call();
}
TEST(RunInt32AddShift) {
struct Test_case {
int32_t add_left, add_right, shift_left, shit_right, expected;
};
Test_case tc[] = {
{20, 22, 4, 2, 58},
{20, 22, 4, 1, 50},
{20, 22, 1, 6, 106},
{INT_MAX - 2, 1, 1, 1, INT_MIN}, // INT_MAX - 2 + 1 + (1 << 1), overflow.
};
const size_t tc_size = sizeof(tc) / sizeof(Test_case);
for (size_t i = 0; i < tc_size; ++i) {
CHECK_EQ(tc[i].expected,
RunInt32AddShift(false, tc[i].add_left, tc[i].add_right,
tc[i].shift_left, tc[i].shit_right));
CHECK_EQ(tc[i].expected,
RunInt32AddShift(true, tc[i].add_left, tc[i].add_right,
tc[i].shift_left, tc[i].shit_right));
}
}
TEST(RunWord32ReverseBits) {
BufferedRawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
if (!m.machine()->Word32ReverseBits().IsSupported()) {
// We can only test the operator if it exists on the testing platform.
return;
}
m.Return(m.AddNode(m.machine()->Word32ReverseBits().op(), m.Parameter(0)));
CHECK_EQ(uint32_t(0x00000000), m.Call(uint32_t(0x00000000)));
CHECK_EQ(uint32_t(0x12345678), m.Call(uint32_t(0x1e6a2c48)));
CHECK_EQ(uint32_t(0xfedcba09), m.Call(uint32_t(0x905d3b7f)));
CHECK_EQ(uint32_t(0x01010101), m.Call(uint32_t(0x80808080)));
CHECK_EQ(uint32_t(0x01020408), m.Call(uint32_t(0x10204080)));
CHECK_EQ(uint32_t(0xf0703010), m.Call(uint32_t(0x080c0e0f)));
CHECK_EQ(uint32_t(0x1f8d0a3a), m.Call(uint32_t(0x5c50b1f8)));
CHECK_EQ(uint32_t(0xffffffff), m.Call(uint32_t(0xffffffff)));
}
TEST(RunWord32ReverseBytes) {
BufferedRawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
if (!m.machine()->Word32ReverseBytes().IsSupported()) {
// We can only test the operator if it exists on the testing platform.
return;
}
m.Return(m.AddNode(m.machine()->Word32ReverseBytes().op(), m.Parameter(0)));
CHECK_EQ(uint32_t(0x00000000), m.Call(uint32_t(0x00000000)));
CHECK_EQ(uint32_t(0x12345678), m.Call(uint32_t(0x78563412)));
CHECK_EQ(uint32_t(0xfedcba09), m.Call(uint32_t(0x09badcfe)));
CHECK_EQ(uint32_t(0x01010101), m.Call(uint32_t(0x01010101)));
CHECK_EQ(uint32_t(0x01020408), m.Call(uint32_t(0x08040201)));
CHECK_EQ(uint32_t(0xf0703010), m.Call(uint32_t(0x103070f0)));
CHECK_EQ(uint32_t(0x1f8d0a3a), m.Call(uint32_t(0x3a0a8d1f)));
CHECK_EQ(uint32_t(0xffffffff), m.Call(uint32_t(0xffffffff)));
}
TEST(RunWord32Ctz) {
BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Uint32());
if (!m.machine()->Word32Ctz().IsSupported()) {
// We can only test the operator if it exists on the testing platform.
return;
}
m.Return(m.AddNode(m.machine()->Word32Ctz().op(), m.Parameter(0)));
CHECK_EQ(32, m.Call(uint32_t(0x00000000)));
CHECK_EQ(31, m.Call(uint32_t(0x80000000)));
CHECK_EQ(30, m.Call(uint32_t(0x40000000)));
CHECK_EQ(29, m.Call(uint32_t(0x20000000)));
CHECK_EQ(28, m.Call(uint32_t(0x10000000)));
CHECK_EQ(27, m.Call(uint32_t(0xa8000000)));
CHECK_EQ(26, m.Call(uint32_t(0xf4000000)));
CHECK_EQ(25, m.Call(uint32_t(0x62000000)));
CHECK_EQ(24, m.Call(uint32_t(0x91000000)));
CHECK_EQ(23, m.Call(uint32_t(0xcd800000)));
CHECK_EQ(22, m.Call(uint32_t(0x09400000)));
CHECK_EQ(21, m.Call(uint32_t(0xaf200000)));
CHECK_EQ(20, m.Call(uint32_t(0xac100000)));
CHECK_EQ(19, m.Call(uint32_t(0xe0b80000)));
CHECK_EQ(18, m.Call(uint32_t(0x9ce40000)));
CHECK_EQ(17, m.Call(uint32_t(0xc7920000)));
CHECK_EQ(16, m.Call(uint32_t(0xb8f10000)));
CHECK_EQ(15, m.Call(uint32_t(0x3b9f8000)));
CHECK_EQ(14, m.Call(uint32_t(0xdb4c4000)));
CHECK_EQ(13, m.Call(uint32_t(0xe9a32000)));
CHECK_EQ(12, m.Call(uint32_t(0xfca61000)));
CHECK_EQ(11, m.Call(uint32_t(0x6c8a7800)));
CHECK_EQ(10, m.Call(uint32_t(0x8ce5a400)));
CHECK_EQ(9, m.Call(uint32_t(0xcb7d0200)));
CHECK_EQ(8, m.Call(uint32_t(0xcb4dc100)));
CHECK_EQ(7, m.Call(uint32_t(0xdfbec580)));
CHECK_EQ(6, m.Call(uint32_t(0x27a9db40)));
CHECK_EQ(5, m.Call(uint32_t(0xde3bcb20)));
CHECK_EQ(4, m.Call(uint32_t(0xd7e8a610)));
CHECK_EQ(3, m.Call(uint32_t(0x9afdbc88)));
CHECK_EQ(2, m.Call(uint32_t(0x9afdbc84)));
CHECK_EQ(1, m.Call(uint32_t(0x9afdbc82)));
CHECK_EQ(0, m.Call(uint32_t(0x9afdbc81)));
}
TEST(RunWord32Clz) {
BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Uint32());
m.Return(m.Word32Clz(m.Parameter(0)));
CHECK_EQ(0, m.Call(uint32_t(0x80001000)));
CHECK_EQ(1, m.Call(uint32_t(0x40000500)));
CHECK_EQ(2, m.Call(uint32_t(0x20000300)));
CHECK_EQ(3, m.Call(uint32_t(0x10000003)));
CHECK_EQ(4, m.Call(uint32_t(0x08050000)));
CHECK_EQ(5, m.Call(uint32_t(0x04006000)));
CHECK_EQ(6, m.Call(uint32_t(0x02000000)));
CHECK_EQ(7, m.Call(uint32_t(0x010000a0)));
CHECK_EQ(8, m.Call(uint32_t(0x00800c00)));
CHECK_EQ(9, m.Call(uint32_t(0x00400000)));
CHECK_EQ(10, m.Call(uint32_t(0x0020000d)));
CHECK_EQ(11, m.Call(uint32_t(0x00100f00)));
CHECK_EQ(12, m.Call(uint32_t(0x00080000)));
CHECK_EQ(13, m.Call(uint32_t(0x00041000)));
CHECK_EQ(14, m.Call(uint32_t(0x00020020)));
CHECK_EQ(15, m.Call(uint32_t(0x00010300)));
CHECK_EQ(16, m.Call(uint32_t(0x00008040)));
CHECK_EQ(17, m.Call(uint32_t(0x00004005)));
CHECK_EQ(18, m.Call(uint32_t(0x00002050)));
CHECK_EQ(19, m.Call(uint32_t(0x00001700)));
CHECK_EQ(20, m.Call(uint32_t(0x00000870)));
CHECK_EQ(21, m.Call(uint32_t(0x00000405)));
CHECK_EQ(22, m.Call(uint32_t(0x00000203)));
CHECK_EQ(23, m.Call(uint32_t(0x00000101)));
CHECK_EQ(24, m.Call(uint32_t(0x00000089)));
CHECK_EQ(25, m.Call(uint32_t(0x00000041)));
CHECK_EQ(26, m.Call(uint32_t(0x00000022)));
CHECK_EQ(27, m.Call(uint32_t(0x00000013)));
CHECK_EQ(28, m.Call(uint32_t(0x00000008)));
CHECK_EQ(29, m.Call(uint32_t(0x00000004)));
CHECK_EQ(30, m.Call(uint32_t(0x00000002)));
CHECK_EQ(31, m.Call(uint32_t(0x00000001)));
CHECK_EQ(32, m.Call(uint32_t(0x00000000)));
}
TEST(RunWord32Popcnt) {
BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Uint32());
if (!m.machine()->Word32Popcnt().IsSupported()) {
// We can only test the operator if it exists on the testing platform.
return;
}
m.Return(m.AddNode(m.machine()->Word32Popcnt().op(), m.Parameter(0)));
CHECK_EQ(0, m.Call(uint32_t(0x00000000)));
CHECK_EQ(1, m.Call(uint32_t(0x00000001)));
CHECK_EQ(1, m.Call(uint32_t(0x80000000)));
CHECK_EQ(32, m.Call(uint32_t(0xffffffff)));
CHECK_EQ(6, m.Call(uint32_t(0x000dc100)));
CHECK_EQ(9, m.Call(uint32_t(0xe00dc100)));
CHECK_EQ(11, m.Call(uint32_t(0xe00dc103)));
CHECK_EQ(9, m.Call(uint32_t(0x000dc107)));
}
#if V8_TARGET_ARCH_64_BIT
TEST(RunWord64ReverseBits) {
RawMachineAssemblerTester<uint64_t> m(MachineType::Uint64());
if (!m.machine()->Word64ReverseBits().IsSupported()) {
return;
}
m.Return(m.AddNode(m.machine()->Word64ReverseBits().op(), m.Parameter(0)));
CHECK_EQ(uint64_t(0x0000000000000000), m.Call(uint64_t(0x0000000000000000)));
CHECK_EQ(uint64_t(0x1234567890abcdef), m.Call(uint64_t(0xf7b3d5091e6a2c48)));
CHECK_EQ(uint64_t(0xfedcba0987654321), m.Call(uint64_t(0x84c2a6e1905d3b7f)));
CHECK_EQ(uint64_t(0x0101010101010101), m.Call(uint64_t(0x8080808080808080)));
CHECK_EQ(uint64_t(0x0102040803060c01), m.Call(uint64_t(0x803060c010204080)));
CHECK_EQ(uint64_t(0xf0703010e060200f), m.Call(uint64_t(0xf0040607080c0e0f)));
CHECK_EQ(uint64_t(0x2f8a6df01c21fa3b), m.Call(uint64_t(0xdc5f84380fb651f4)));
CHECK_EQ(uint64_t(0xffffffffffffffff), m.Call(uint64_t(0xffffffffffffffff)));
}
TEST(RunWord64ReverseBytes) {
BufferedRawMachineAssemblerTester<uint64_t> m(MachineType::Uint64());
if (!m.machine()->Word64ReverseBytes().IsSupported()) {
return;
}
m.Return(m.AddNode(m.machine()->Word64ReverseBytes().op(), m.Parameter(0)));
CHECK_EQ(uint64_t(0x0000000000000000), m.Call(uint64_t(0x0000000000000000)));
CHECK_EQ(uint64_t(0x1234567890abcdef), m.Call(uint64_t(0xefcdab9078563412)));
CHECK_EQ(uint64_t(0xfedcba0987654321), m.Call(uint64_t(0x2143658709badcfe)));
CHECK_EQ(uint64_t(0x0101010101010101), m.Call(uint64_t(0x0101010101010101)));
CHECK_EQ(uint64_t(0x0102040803060c01), m.Call(uint64_t(0x010c060308040201)));
CHECK_EQ(uint64_t(0xf0703010e060200f), m.Call(uint64_t(0x0f2060e0103070f0)));
CHECK_EQ(uint64_t(0x2f8a6df01c21fa3b), m.Call(uint64_t(0x3bfa211cf06d8a2f)));
CHECK_EQ(uint64_t(0xffffffffffffffff), m.Call(uint64_t(0xffffffffffffffff)));
}
TEST(RunWord64Clz) {
BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Uint64());
m.Return(m.Word64Clz(m.Parameter(0)));
CHECK_EQ(0, m.Call(uint64_t(0x8000100000000000)));
CHECK_EQ(1, m.Call(uint64_t(0x4000050000000000)));
CHECK_EQ(2, m.Call(uint64_t(0x2000030000000000)));
CHECK_EQ(3, m.Call(uint64_t(0x1000000300000000)));
CHECK_EQ(4, m.Call(uint64_t(0x0805000000000000)));
CHECK_EQ(5, m.Call(uint64_t(0x0400600000000000)));
CHECK_EQ(6, m.Call(uint64_t(0x0200000000000000)));
CHECK_EQ(7, m.Call(uint64_t(0x010000a000000000)));
CHECK_EQ(8, m.Call(uint64_t(0x00800c0000000000)));
CHECK_EQ(9, m.Call(uint64_t(0x0040000000000000)));
CHECK_EQ(10, m.Call(uint64_t(0x0020000d00000000)));
CHECK_EQ(11, m.Call(uint64_t(0x00100f0000000000)));
CHECK_EQ(12, m.Call(uint64_t(0x0008000000000000)));
CHECK_EQ(13, m.Call(uint64_t(0x0004100000000000)));
CHECK_EQ(14, m.Call(uint64_t(0x0002002000000000)));
CHECK_EQ(15, m.Call(uint64_t(0x0001030000000000)));
CHECK_EQ(16, m.Call(uint64_t(0x0000804000000000)));
CHECK_EQ(17, m.Call(uint64_t(0x0000400500000000)));
CHECK_EQ(18, m.Call(uint64_t(0x0000205000000000)));
CHECK_EQ(19, m.Call(uint64_t(0x0000170000000000)));
CHECK_EQ(20, m.Call(uint64_t(0x0000087000000000)));
CHECK_EQ(21, m.Call(uint64_t(0x0000040500000000)));
CHECK_EQ(22, m.Call(uint64_t(0x0000020300000000)));
CHECK_EQ(23, m.Call(uint64_t(0x0000010100000000)));
CHECK_EQ(24, m.Call(uint64_t(0x0000008900000000)));
CHECK_EQ(25, m.Call(uint64_t(0x0000004100000000)));
CHECK_EQ(26, m.Call(uint64_t(0x0000002200000000)));
CHECK_EQ(27, m.Call(uint64_t(0x0000001300000000)));
CHECK_EQ(28, m.Call(uint64_t(0x0000000800000000)));
CHECK_EQ(29, m.Call(uint64_t(0x0000000400000000)));
CHECK_EQ(30, m.Call(uint64_t(0x0000000200000000)));
CHECK_EQ(31, m.Call(uint64_t(0x0000000100000000)));
CHECK_EQ(32, m.Call(uint64_t(0x0000000080001000)));
CHECK_EQ(33, m.Call(uint64_t(0x0000000040000500)));
CHECK_EQ(34, m.Call(uint64_t(0x0000000020000300)));
CHECK_EQ(35, m.Call(uint64_t(0x0000000010000003)));
CHECK_EQ(36, m.Call(uint64_t(0x0000000008050000)));
CHECK_EQ(37, m.Call(uint64_t(0x0000000004006000)));
CHECK_EQ(38, m.Call(uint64_t(0x0000000002000000)));
CHECK_EQ(39, m.Call(uint64_t(0x00000000010000a0)));
CHECK_EQ(40, m.Call(uint64_t(0x0000000000800c00)));
CHECK_EQ(41, m.Call(uint64_t(0x0000000000400000)));
CHECK_EQ(42, m.Call(uint64_t(0x000000000020000d)));
CHECK_EQ(43, m.Call(uint64_t(0x0000000000100f00)));
CHECK_EQ(44, m.Call(uint64_t(0x0000000000080000)));
CHECK_EQ(45, m.Call(uint64_t(0x0000000000041000)));
CHECK_EQ(46, m.Call(uint64_t(0x0000000000020020)));
CHECK_EQ(47, m.Call(uint64_t(0x0000000000010300)));
CHECK_EQ(48, m.Call(uint64_t(0x0000000000008040)));
CHECK_EQ(49, m.Call(uint64_t(0x0000000000004005)));
CHECK_EQ(50, m.Call(uint64_t(0x0000000000002050)));
CHECK_EQ(51, m.Call(uint64_t(0x0000000000001700)));
CHECK_EQ(52, m.Call(uint64_t(0x0000000000000870)));
CHECK_EQ(53, m.Call(uint64_t(0x0000000000000405)));
CHECK_EQ(54, m.Call(uint64_t(0x0000000000000203)));
CHECK_EQ(55, m.Call(uint64_t(0x0000000000000101)));
CHECK_EQ(56, m.Call(uint64_t(0x0000000000000089)));
CHECK_EQ(57, m.Call(uint64_t(0x0000000000000041)));
CHECK_EQ(58, m.Call(uint64_t(0x0000000000000022)));
CHECK_EQ(59, m.Call(uint64_t(0x0000000000000013)));
CHECK_EQ(60, m.Call(uint64_t(0x0000000000000008)));
CHECK_EQ(61, m.Call(uint64_t(0x0000000000000004)));
CHECK_EQ(62, m.Call(uint64_t(0x0000000000000002)));
CHECK_EQ(63, m.Call(uint64_t(0x0000000000000001)));
CHECK_EQ(64, m.Call(uint64_t(0x0000000000000000)));
}
TEST(RunWord64Ctz) {
RawMachineAssemblerTester<int32_t> m(MachineType::Uint64());
if (!m.machine()->Word64Ctz().IsSupported()) {
return;
}
m.Return(m.AddNode(m.machine()->Word64Ctz().op(), m.Parameter(0)));
CHECK_EQ(64, m.Call(uint64_t(0x0000000000000000)));
CHECK_EQ(63, m.Call(uint64_t(0x8000000000000000)));
CHECK_EQ(62, m.Call(uint64_t(0x4000000000000000)));
CHECK_EQ(61, m.Call(uint64_t(0x2000000000000000)));
CHECK_EQ(60, m.Call(uint64_t(0x1000000000000000)));
CHECK_EQ(59, m.Call(uint64_t(0xa800000000000000)));
CHECK_EQ(58, m.Call(uint64_t(0xf400000000000000)));
CHECK_EQ(57, m.Call(uint64_t(0x6200000000000000)));
CHECK_EQ(56, m.Call(uint64_t(0x9100000000000000)));
CHECK_EQ(55, m.Call(uint64_t(0xcd80000000000000)));
CHECK_EQ(54, m.Call(uint64_t(0x0940000000000000)));
CHECK_EQ(53, m.Call(uint64_t(0xaf20000000000000)));
CHECK_EQ(52, m.Call(uint64_t(0xac10000000000000)));
CHECK_EQ(51, m.Call(uint64_t(0xe0b8000000000000)));
CHECK_EQ(50, m.Call(uint64_t(0x9ce4000000000000)));
CHECK_EQ(49, m.Call(uint64_t(0xc792000000000000)));
CHECK_EQ(48, m.Call(uint64_t(0xb8f1000000000000)));
CHECK_EQ(47, m.Call(uint64_t(0x3b9f800000000000)));
CHECK_EQ(46, m.Call(uint64_t(0xdb4c400000000000)));
CHECK_EQ(45, m.Call(uint64_t(0xe9a3200000000000)));
CHECK_EQ(44, m.Call(uint64_t(0xfca6100000000000)));
CHECK_EQ(43, m.Call(uint64_t(0x6c8a780000000000)));
CHECK_EQ(42, m.Call(uint64_t(0x8ce5a40000000000)));
CHECK_EQ(41, m.Call(uint64_t(0xcb7d020000000000)));
CHECK_EQ(40, m.Call(uint64_t(0xcb4dc10000000000)));
CHECK_EQ(39, m.Call(uint64_t(0xdfbec58000000000)));
CHECK_EQ(38, m.Call(uint64_t(0x27a9db4000000000)));
CHECK_EQ(37, m.Call(uint64_t(0xde3bcb2000000000)));
CHECK_EQ(36, m.Call(uint64_t(0xd7e8a61000000000)));
CHECK_EQ(35, m.Call(uint64_t(0x9afdbc8800000000)));
CHECK_EQ(34, m.Call(uint64_t(0x9afdbc8400000000)));
CHECK_EQ(33, m.Call(uint64_t(0x9afdbc8200000000)));
CHECK_EQ(32, m.Call(uint64_t(0x9afdbc8100000000)));
CHECK_EQ(31, m.Call(uint64_t(0x0000000080000000)));
CHECK_EQ(30, m.Call(uint64_t(0x0000000040000000)));
CHECK_EQ(29, m.Call(uint64_t(0x0000000020000000)));
CHECK_EQ(28, m.Call(uint64_t(0x0000000010000000)));
CHECK_EQ(27, m.Call(uint64_t(0x00000000a8000000)));
CHECK_EQ(26, m.Call(uint64_t(0x00000000f4000000)));
CHECK_EQ(25, m.Call(uint64_t(0x0000000062000000)));
CHECK_EQ(24, m.Call(uint64_t(0x0000000091000000)));
CHECK_EQ(23, m.Call(uint64_t(0x00000000cd800000)));
CHECK_EQ(22, m.Call(uint64_t(0x0000000009400000)));
CHECK_EQ(21, m.Call(uint64_t(0x00000000af200000)));
CHECK_EQ(20, m.Call(uint64_t(0x00000000ac100000)));
CHECK_EQ(19, m.Call(uint64_t(0x00000000e0b80000)));
CHECK_EQ(18, m.Call(uint64_t(0x000000009ce40000)));
CHECK_EQ(17, m.Call(uint64_t(0x00000000c7920000)));
CHECK_EQ(16, m.Call(uint64_t(0x00000000b8f10000)));
CHECK_EQ(15, m.Call(uint64_t(0x000000003b9f8000)));
CHECK_EQ(14, m.Call(uint64_t(0x00000000db4c4000)));
CHECK_EQ(13, m.Call(uint64_t(0x00000000e9a32000)));
CHECK_EQ(12, m.Call(uint64_t(0x00000000fca61000)));
CHECK_EQ(11, m.Call(uint64_t(0x000000006c8a7800)));
CHECK_EQ(10, m.Call(uint64_t(0x000000008ce5a400)));
CHECK_EQ(9, m.Call(uint64_t(0x00000000cb7d0200)));
CHECK_EQ(8, m.Call(uint64_t(0x00000000cb4dc100)));
CHECK_EQ(7, m.Call(uint64_t(0x00000000dfbec580)));
CHECK_EQ(6, m.Call(uint64_t(0x0000000027a9db40)));
CHECK_EQ(5, m.Call(uint64_t(0x00000000de3bcb20)));
CHECK_EQ(4, m.Call(uint64_t(0x00000000d7e8a610)));
CHECK_EQ(3, m.Call(uint64_t(0x000000009afdbc88)));
CHECK_EQ(2, m.Call(uint64_t(0x000000009afdbc84)));
CHECK_EQ(1, m.Call(uint64_t(0x000000009afdbc82)));
CHECK_EQ(0, m.Call(uint64_t(0x000000009afdbc81)));
}
TEST(RunWord64Popcnt) {
BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Uint64());
if (!m.machine()->Word64Popcnt().IsSupported()) {
return;
}
m.Return(m.AddNode(m.machine()->Word64Popcnt().op(), m.Parameter(0)));
CHECK_EQ(0, m.Call(uint64_t(0x0000000000000000)));
CHECK_EQ(1, m.Call(uint64_t(0x0000000000000001)));
CHECK_EQ(1, m.Call(uint64_t(0x8000000000000000)));
CHECK_EQ(64, m.Call(uint64_t(0xffffffffffffffff)));
CHECK_EQ(12, m.Call(uint64_t(0x000dc100000dc100)));
CHECK_EQ(18, m.Call(uint64_t(0xe00dc100e00dc100)));
CHECK_EQ(22, m.Call(uint64_t(0xe00dc103e00dc103)));
CHECK_EQ(18, m.Call(uint64_t(0x000dc107000dc107)));
}
#endif // V8_TARGET_ARCH_64_BIT
static Node* Int32Input(RawMachineAssemblerTester<int32_t>* m, int index) {
switch (index) {
case 0:
return m->Parameter(0);
case 1:
return m->Parameter(1);
case 2:
return m->Int32Constant(0);
case 3:
return m->Int32Constant(1);
case 4:
return m->Int32Constant(-1);
case 5:
return m->Int32Constant(0xff);
case 6:
return m->Int32Constant(0x01234567);
case 7:
return m->Load(MachineType::Int32(), m->PointerConstant(NULL));
default:
return NULL;
}
}
TEST(CodeGenInt32Binop) {
RawMachineAssemblerTester<void> m;
const Operator* kOps[] = {
m.machine()->Word32And(), m.machine()->Word32Or(),
m.machine()->Word32Xor(), m.machine()->Word32Shl(),
m.machine()->Word32Shr(), m.machine()->Word32Sar(),
m.machine()->Word32Equal(), m.machine()->Int32Add(),
m.machine()->Int32Sub(), m.machine()->Int32Mul(),
m.machine()->Int32MulHigh(), m.machine()->Int32Div(),
m.machine()->Uint32Div(), m.machine()->Int32Mod(),
m.machine()->Uint32Mod(), m.machine()->Uint32MulHigh(),
m.machine()->Int32LessThan(), m.machine()->Int32LessThanOrEqual(),
m.machine()->Uint32LessThan(), m.machine()->Uint32LessThanOrEqual()};
for (size_t i = 0; i < arraysize(kOps); ++i) {
for (int j = 0; j < 8; j++) {
for (int k = 0; k < 8; k++) {
RawMachineAssemblerTester<int32_t> m(MachineType::Int32(),
MachineType::Int32());
Node* a = Int32Input(&m, j);
Node* b = Int32Input(&m, k);
m.Return(m.AddNode(kOps[i], a, b));
m.GenerateCode();
}
}
}
}
TEST(CodeGenNop) {
RawMachineAssemblerTester<void> m;
m.Return(m.Int32Constant(0));
m.GenerateCode();
}
#if V8_TARGET_ARCH_64_BIT
static Node* Int64Input(RawMachineAssemblerTester<int64_t>* m, int index) {
switch (index) {
case 0:
return m->Parameter(0);
case 1:
return m->Parameter(1);
case 2:
return m->Int64Constant(0);
case 3:
return m->Int64Constant(1);
case 4:
return m->Int64Constant(-1);
case 5:
return m->Int64Constant(0xff);
case 6:
return m->Int64Constant(0x0123456789abcdefLL);
case 7:
return m->Load(MachineType::Int64(), m->PointerConstant(NULL));
default:
return NULL;
}
}
TEST(CodeGenInt64Binop) {
RawMachineAssemblerTester<void> m;
const Operator* kOps[] = {
m.machine()->Word64And(), m.machine()->Word64Or(),
m.machine()->Word64Xor(), m.machine()->Word64Shl(),
m.machine()->Word64Shr(), m.machine()->Word64Sar(),
m.machine()->Word64Equal(), m.machine()->Int64Add(),
m.machine()->Int64Sub(), m.machine()->Int64Mul(), m.machine()->Int64Div(),
m.machine()->Uint64Div(), m.machine()->Int64Mod(),
m.machine()->Uint64Mod(), m.machine()->Int64LessThan(),
m.machine()->Int64LessThanOrEqual(), m.machine()->Uint64LessThan(),
m.machine()->Uint64LessThanOrEqual()};
for (size_t i = 0; i < arraysize(kOps); ++i) {
for (int j = 0; j < 8; j++) {
for (int k = 0; k < 8; k++) {
RawMachineAssemblerTester<int64_t> m(MachineType::Int64(),
MachineType::Int64());
Node* a = Int64Input(&m, j);
Node* b = Int64Input(&m, k);
m.Return(m.AddNode(kOps[i], a, b));
m.GenerateCode();
}
}
}
}
TEST(RunInt64AddWithOverflowP) {
int64_t actual_val = -1;
RawMachineAssemblerTester<int32_t> m;
Int64BinopTester bt(&m);
Node* add = m.Int64AddWithOverflow(bt.param0, bt.param1);
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val);
bt.AddReturn(ovf);
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
int64_t expected_val;
int expected_ovf = base::bits::SignedAddOverflow64(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, bt.call(*i, *j));
CHECK_EQ(expected_val, actual_val);
}
}
}
TEST(RunInt64AddWithOverflowImm) {
int64_t actual_val = -1, expected_val = 0;
FOR_INT64_INPUTS(i) {
{
RawMachineAssemblerTester<int32_t> m(MachineType::Int64());
Node* add = m.Int64AddWithOverflow(m.Int64Constant(*i), m.Parameter(0));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val);
m.Return(ovf);
FOR_INT64_INPUTS(j) {
int expected_ovf =
base::bits::SignedAddOverflow64(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, m.Call(*j));
CHECK_EQ(expected_val, actual_val);
}
}
{
RawMachineAssemblerTester<int32_t> m(MachineType::Int64());
Node* add = m.Int64AddWithOverflow(m.Parameter(0), m.Int64Constant(*i));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val);
m.Return(ovf);
FOR_INT64_INPUTS(j) {
int expected_ovf =
base::bits::SignedAddOverflow64(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, m.Call(*j));
CHECK_EQ(expected_val, actual_val);
}
}
FOR_INT64_INPUTS(j) {
RawMachineAssemblerTester<int32_t> m;
Node* add =
m.Int64AddWithOverflow(m.Int64Constant(*i), m.Int64Constant(*j));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val);
m.Return(ovf);
int expected_ovf = base::bits::SignedAddOverflow64(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, m.Call());
CHECK_EQ(expected_val, actual_val);
}
}
}
TEST(RunInt64AddWithOverflowInBranchP) {
int constant = 911777;
RawMachineLabel blocka, blockb;
RawMachineAssemblerTester<int32_t> m;
Int64BinopTester bt(&m);
Node* add = m.Int64AddWithOverflow(bt.param0, bt.param1);
Node* ovf = m.Projection(1, add);
m.Branch(ovf, &blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int64Constant(constant));
m.Bind(&blockb);
Node* val = m.Projection(0, add);
Node* truncated = m.TruncateInt64ToInt32(val);
bt.AddReturn(truncated);
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
int32_t expected = constant;
int64_t result;
if (!base::bits::SignedAddOverflow64(*i, *j, &result)) {
expected = static_cast<int32_t>(result);
}
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
TEST(RunInt64SubWithOverflowP) {
int64_t actual_val = -1;
RawMachineAssemblerTester<int32_t> m;
Int64BinopTester bt(&m);
Node* add = m.Int64SubWithOverflow(bt.param0, bt.param1);
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val);
bt.AddReturn(ovf);
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
int64_t expected_val;
int expected_ovf = base::bits::SignedSubOverflow64(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, bt.call(*i, *j));
CHECK_EQ(expected_val, actual_val);
}
}
}
TEST(RunInt64SubWithOverflowImm) {
int64_t actual_val = -1, expected_val = 0;
FOR_INT64_INPUTS(i) {
{
RawMachineAssemblerTester<int32_t> m(MachineType::Int64());
Node* add = m.Int64SubWithOverflow(m.Int64Constant(*i), m.Parameter(0));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val);
m.Return(ovf);
FOR_INT64_INPUTS(j) {
int expected_ovf =
base::bits::SignedSubOverflow64(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, m.Call(*j));
CHECK_EQ(expected_val, actual_val);
}
}
{
RawMachineAssemblerTester<int32_t> m(MachineType::Int64());
Node* add = m.Int64SubWithOverflow(m.Parameter(0), m.Int64Constant(*i));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val);
m.Return(ovf);
FOR_INT64_INPUTS(j) {
int expected_ovf =
base::bits::SignedSubOverflow64(*j, *i, &expected_val);
CHECK_EQ(expected_ovf, m.Call(*j));
CHECK_EQ(expected_val, actual_val);
}
}
FOR_INT64_INPUTS(j) {
RawMachineAssemblerTester<int32_t> m;
Node* add =
m.Int64SubWithOverflow(m.Int64Constant(*i), m.Int64Constant(*j));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val);
m.Return(ovf);
int expected_ovf = base::bits::SignedSubOverflow64(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, m.Call());
CHECK_EQ(expected_val, actual_val);
}
}
}
TEST(RunInt64SubWithOverflowInBranchP) {
int constant = 911999;
RawMachineLabel blocka, blockb;
RawMachineAssemblerTester<int32_t> m;
Int64BinopTester bt(&m);
Node* sub = m.Int64SubWithOverflow(bt.param0, bt.param1);
Node* ovf = m.Projection(1, sub);
m.Branch(ovf, &blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int64Constant(constant));
m.Bind(&blockb);
Node* val = m.Projection(0, sub);
Node* truncated = m.TruncateInt64ToInt32(val);
bt.AddReturn(truncated);
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
int32_t expected = constant;
int64_t result;
if (!base::bits::SignedSubOverflow64(*i, *j, &result)) {
expected = static_cast<int32_t>(result);
}
CHECK_EQ(expected, static_cast<int32_t>(bt.call(*i, *j)));
}
}
}
static int64_t RunInt64AddShift(bool is_left, int64_t add_left,
int64_t add_right, int64_t shift_left,
int64_t shit_right) {
RawMachineAssemblerTester<int64_t> m;
Node* shift = m.Word64Shl(m.Int64Constant(4), m.Int64Constant(2));
Node* add = m.Int64Add(m.Int64Constant(20), m.Int64Constant(22));
Node* dlsa = is_left ? m.Int64Add(shift, add) : m.Int64Add(add, shift);
m.Return(dlsa);
return m.Call();
}
TEST(RunInt64AddShift) {
struct Test_case {
int64_t add_left, add_right, shift_left, shit_right, expected;
};
Test_case tc[] = {
{20, 22, 4, 2, 58},
{20, 22, 4, 1, 50},
{20, 22, 1, 6, 106},
{INT64_MAX - 2, 1, 1, 1,
INT64_MIN}, // INT64_MAX - 2 + 1 + (1 << 1), overflow.
};
const size_t tc_size = sizeof(tc) / sizeof(Test_case);
for (size_t i = 0; i < tc_size; ++i) {
CHECK_EQ(58, RunInt64AddShift(false, tc[i].add_left, tc[i].add_right,
tc[i].shift_left, tc[i].shit_right));
CHECK_EQ(58, RunInt64AddShift(true, tc[i].add_left, tc[i].add_right,
tc[i].shift_left, tc[i].shit_right));
}
}
// TODO(titzer): add tests that run 64-bit integer operations.
#endif // V8_TARGET_ARCH_64_BIT
TEST(RunGoto) {
RawMachineAssemblerTester<int32_t> m;
int constant = 99999;
RawMachineLabel next;
m.Goto(&next);
m.Bind(&next);
m.Return(m.Int32Constant(constant));
CHECK_EQ(constant, m.Call());
}
TEST(RunGotoMultiple) {
RawMachineAssemblerTester<int32_t> m;
int constant = 9999977;
RawMachineLabel labels[10];
for (size_t i = 0; i < arraysize(labels); i++) {
m.Goto(&labels[i]);
m.Bind(&labels[i]);
}
m.Return(m.Int32Constant(constant));
CHECK_EQ(constant, m.Call());
}
TEST(RunBranch) {
RawMachineAssemblerTester<int32_t> m;
int constant = 999777;
RawMachineLabel blocka, blockb;
m.Branch(m.Int32Constant(0), &blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(0 - constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(constant));
CHECK_EQ(constant, m.Call());
}
TEST(RunDiamond2) {
RawMachineAssemblerTester<int32_t> m;
int constant = 995666;
RawMachineLabel blocka, blockb, end;
m.Branch(m.Int32Constant(0), &blocka, &blockb);
m.Bind(&blocka);
m.Goto(&end);
m.Bind(&blockb);
m.Goto(&end);
m.Bind(&end);
m.Return(m.Int32Constant(constant));
CHECK_EQ(constant, m.Call());
}
TEST(RunLoop) {
RawMachineAssemblerTester<int32_t> m;
int constant = 999555;
RawMachineLabel header, body, exit;
m.Goto(&header);
m.Bind(&header);
m.Branch(m.Int32Constant(0), &body, &exit);
m.Bind(&body);
m.Goto(&header);
m.Bind(&exit);
m.Return(m.Int32Constant(constant));
CHECK_EQ(constant, m.Call());
}
template <typename R>
static void BuildDiamondPhi(RawMachineAssemblerTester<R>* m, Node* cond_node,
MachineRepresentation rep, Node* true_node,
Node* false_node) {
RawMachineLabel blocka, blockb, end;
m->Branch(cond_node, &blocka, &blockb);
m->Bind(&blocka);
m->Goto(&end);
m->Bind(&blockb);
m->Goto(&end);
m->Bind(&end);
Node* phi = m->Phi(rep, true_node, false_node);
m->Return(phi);
}
TEST(RunDiamondPhiConst) {
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
int false_val = 0xFF666;
int true_val = 0x00DDD;
Node* true_node = m.Int32Constant(true_val);
Node* false_node = m.Int32Constant(false_val);
BuildDiamondPhi(&m, m.Parameter(0), MachineRepresentation::kWord32, true_node,
false_node);
CHECK_EQ(false_val, m.Call(0));
CHECK_EQ(true_val, m.Call(1));
}
TEST(RunDiamondPhiNumber) {
RawMachineAssemblerTester<Object*> m(MachineType::Int32());
double false_val = -11.1;
double true_val = 200.1;
Node* true_node = m.NumberConstant(true_val);
Node* false_node = m.NumberConstant(false_val);
BuildDiamondPhi(&m, m.Parameter(0), MachineRepresentation::kTagged, true_node,
false_node);
m.CheckNumber(false_val, m.Call(0));
m.CheckNumber(true_val, m.Call(1));
}
TEST(RunDiamondPhiString) {
RawMachineAssemblerTester<Object*> m(MachineType::Int32());
const char* false_val = "false";
const char* true_val = "true";
Node* true_node = m.StringConstant(true_val);
Node* false_node = m.StringConstant(false_val);
BuildDiamondPhi(&m, m.Parameter(0), MachineRepresentation::kTagged, true_node,
false_node);
m.CheckString(false_val, m.Call(0));
m.CheckString(true_val, m.Call(1));
}
TEST(RunDiamondPhiParam) {
RawMachineAssemblerTester<int32_t> m(
MachineType::Int32(), MachineType::Int32(), MachineType::Int32());
BuildDiamondPhi(&m, m.Parameter(0), MachineRepresentation::kWord32,
m.Parameter(1), m.Parameter(2));
int32_t c1 = 0x260cb75a;
int32_t c2 = 0xcd3e9c8b;
int result = m.Call(0, c1, c2);
CHECK_EQ(c2, result);
result = m.Call(1, c1, c2);
CHECK_EQ(c1, result);
}
TEST(RunLoopPhiConst) {
RawMachineAssemblerTester<int32_t> m;
int true_val = 0x44000;
int false_val = 0x00888;
Node* cond_node = m.Int32Constant(0);
Node* true_node = m.Int32Constant(true_val);
Node* false_node = m.Int32Constant(false_val);
// x = false_val; while(false) { x = true_val; } return x;
RawMachineLabel body, header, end;
m.Goto(&header);
m.Bind(&header);
Node* phi = m.Phi(MachineRepresentation::kWord32, false_node, true_node);
m.Branch(cond_node, &body, &end);
m.Bind(&body);
m.Goto(&header);
m.Bind(&end);
m.Return(phi);
CHECK_EQ(false_val, m.Call());
}
TEST(RunLoopPhiParam) {
RawMachineAssemblerTester<int32_t> m(
MachineType::Int32(), MachineType::Int32(), MachineType::Int32());
RawMachineLabel blocka, blockb, end;
m.Goto(&blocka);
m.Bind(&blocka);
Node* phi =
m.Phi(MachineRepresentation::kWord32, m.Parameter(1), m.Parameter(2));
Node* cond =
m.Phi(MachineRepresentation::kWord32, m.Parameter(0), m.Int32Constant(0));
m.Branch(cond, &blockb, &end);
m.Bind(&blockb);
m.Goto(&blocka);
m.Bind(&end);
m.Return(phi);
int32_t c1 = 0xa81903b4;
int32_t c2 = 0x5a1207da;
int result = m.Call(0, c1, c2);
CHECK_EQ(c1, result);
result = m.Call(1, c1, c2);
CHECK_EQ(c2, result);
}
TEST(RunLoopPhiInduction) {
RawMachineAssemblerTester<int32_t> m;
int false_val = 0x10777;
// x = false_val; while(false) { x++; } return x;
RawMachineLabel header, body, end;
Node* false_node = m.Int32Constant(false_val);
m.Goto(&header);
m.Bind(&header);
Node* phi = m.Phi(MachineRepresentation::kWord32, false_node, false_node);
m.Branch(m.Int32Constant(0), &body, &end);
m.Bind(&body);
Node* add = m.Int32Add(phi, m.Int32Constant(1));
phi->ReplaceInput(1, add);
m.Goto(&header);
m.Bind(&end);
m.Return(phi);
CHECK_EQ(false_val, m.Call());
}
TEST(RunLoopIncrement) {
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
// x = 0; while(x ^ param) { x++; } return x;
RawMachineLabel header, body, end;
Node* zero = m.Int32Constant(0);
m.Goto(&header);
m.Bind(&header);
Node* phi = m.Phi(MachineRepresentation::kWord32, zero, zero);
m.Branch(m.WordXor(phi, bt.param0), &body, &end);
m.Bind(&body);
phi->ReplaceInput(1, m.Int32Add(phi, m.Int32Constant(1)));
m.Goto(&header);
m.Bind(&end);
bt.AddReturn(phi);
CHECK_EQ(11, bt.call(11, 0));
CHECK_EQ(110, bt.call(110, 0));
CHECK_EQ(176, bt.call(176, 0));
}
TEST(RunLoopIncrement2) {
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
// x = 0; while(x < param) { x++; } return x;
RawMachineLabel header, body, end;
Node* zero = m.Int32Constant(0);
m.Goto(&header);
m.Bind(&header);
Node* phi = m.Phi(MachineRepresentation::kWord32, zero, zero);
m.Branch(m.Int32LessThan(phi, bt.param0), &body, &end);
m.Bind(&body);
phi->ReplaceInput(1, m.Int32Add(phi, m.Int32Constant(1)));
m.Goto(&header);
m.Bind(&end);
bt.AddReturn(phi);
CHECK_EQ(11, bt.call(11, 0));
CHECK_EQ(110, bt.call(110, 0));
CHECK_EQ(176, bt.call(176, 0));
CHECK_EQ(0, bt.call(-200, 0));
}
TEST(RunLoopIncrement3) {
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
// x = 0; while(x < param) { x++; } return x;
RawMachineLabel header, body, end;
Node* zero = m.Int32Constant(0);
m.Goto(&header);
m.Bind(&header);
Node* phi = m.Phi(MachineRepresentation::kWord32, zero, zero);
m.Branch(m.Uint32LessThan(phi, bt.param0), &body, &end);
m.Bind(&body);
phi->ReplaceInput(1, m.Int32Add(phi, m.Int32Constant(1)));
m.Goto(&header);
m.Bind(&end);
bt.AddReturn(phi);
CHECK_EQ(11, bt.call(11, 0));
CHECK_EQ(110, bt.call(110, 0));
CHECK_EQ(176, bt.call(176, 0));
CHECK_EQ(200, bt.call(200, 0));
}
TEST(RunLoopDecrement) {
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
// x = param; while(x) { x--; } return x;
RawMachineLabel header, body, end;
m.Goto(&header);
m.Bind(&header);
Node* phi =
m.Phi(MachineRepresentation::kWord32, bt.param0, m.Int32Constant(0));
m.Branch(phi, &body, &end);
m.Bind(&body);
phi->ReplaceInput(1, m.Int32Sub(phi, m.Int32Constant(1)));
m.Goto(&header);
m.Bind(&end);
bt.AddReturn(phi);
CHECK_EQ(0, bt.call(11, 0));
CHECK_EQ(0, bt.call(110, 0));
CHECK_EQ(0, bt.call(197, 0));
}
TEST(RunLoopIncrementFloat32) {
RawMachineAssemblerTester<int32_t> m;
// x = -3.0f; while(x < 10f) { x = x + 0.5f; } return (int) (double) x;
RawMachineLabel header, body, end;
Node* minus_3 = m.Float32Constant(-3.0f);
Node* ten = m.Float32Constant(10.0f);
m.Goto(&header);
m.Bind(&header);
Node* phi = m.Phi(MachineRepresentation::kFloat32, minus_3, ten);
m.Branch(m.Float32LessThan(phi, ten), &body, &end);
m.Bind(&body);
phi->ReplaceInput(1, m.Float32Add(phi, m.Float32Constant(0.5f)));
m.Goto(&header);
m.Bind(&end);
m.Return(m.ChangeFloat64ToInt32(m.ChangeFloat32ToFloat64(phi)));
CHECK_EQ(10, m.Call());
}
TEST(RunLoopIncrementFloat64) {
RawMachineAssemblerTester<int32_t> m;
// x = -3.0; while(x < 10) { x = x + 0.5; } return (int) x;
RawMachineLabel header, body, end;
Node* minus_3 = m.Float64Constant(-3.0);
Node* ten = m.Float64Constant(10.0);
m.Goto(&header);
m.Bind(&header);
Node* phi = m.Phi(MachineRepresentation::kFloat64, minus_3, ten);
m.Branch(m.Float64LessThan(phi, ten), &body, &end);
m.Bind(&body);
phi->ReplaceInput(1, m.Float64Add(phi, m.Float64Constant(0.5)));
m.Goto(&header);
m.Bind(&end);
m.Return(m.ChangeFloat64ToInt32(phi));
CHECK_EQ(10, m.Call());
}
TEST(RunSwitch1) {
RawMachineAssemblerTester<int32_t> m;
int constant = 11223344;
RawMachineLabel block0, block1, def, end;
RawMachineLabel* case_labels[] = {&block0, &block1};
int32_t case_values[] = {0, 1};
m.Switch(m.Int32Constant(0), &def, case_values, case_labels,
arraysize(case_labels));
m.Bind(&block0);
m.Goto(&end);
m.Bind(&block1);
m.Goto(&end);
m.Bind(&def);
m.Goto(&end);
m.Bind(&end);
m.Return(m.Int32Constant(constant));
CHECK_EQ(constant, m.Call());
}
TEST(RunSwitch2) {
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
RawMachineLabel blocka, blockb, blockc;
RawMachineLabel* case_labels[] = {&blocka, &blockb};
int32_t case_values[] = {std::numeric_limits<int32_t>::min(),
std::numeric_limits<int32_t>::max()};
m.Switch(m.Parameter(0), &blockc, case_values, case_labels,
arraysize(case_labels));
m.Bind(&blocka);
m.Return(m.Int32Constant(-1));
m.Bind(&blockb);
m.Return(m.Int32Constant(1));
m.Bind(&blockc);
m.Return(m.Int32Constant(0));
CHECK_EQ(1, m.Call(std::numeric_limits<int32_t>::max()));
CHECK_EQ(-1, m.Call(std::numeric_limits<int32_t>::min()));
for (int i = -100; i < 100; i += 25) {
CHECK_EQ(0, m.Call(i));
}
}
TEST(RunSwitch3) {
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
RawMachineLabel blocka, blockb, blockc;
RawMachineLabel* case_labels[] = {&blocka, &blockb};
int32_t case_values[] = {std::numeric_limits<int32_t>::min() + 0,
std::numeric_limits<int32_t>::min() + 1};
m.Switch(m.Parameter(0), &blockc, case_values, case_labels,
arraysize(case_labels));
m.Bind(&blocka);
m.Return(m.Int32Constant(0));
m.Bind(&blockb);
m.Return(m.Int32Constant(1));
m.Bind(&blockc);
m.Return(m.Int32Constant(2));
CHECK_EQ(0, m.Call(std::numeric_limits<int32_t>::min() + 0));
CHECK_EQ(1, m.Call(std::numeric_limits<int32_t>::min() + 1));
for (int i = -100; i < 100; i += 25) {
CHECK_EQ(2, m.Call(i));
}
}
TEST(RunSwitch4) {
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
const size_t kNumCases = 512;
const size_t kNumValues = kNumCases + 1;
int32_t values[kNumValues];
m.main_isolate()->random_number_generator()->NextBytes(values,
sizeof(values));
RawMachineLabel end, def;
int32_t case_values[kNumCases];
RawMachineLabel* case_labels[kNumCases];
Node* results[kNumValues];
for (size_t i = 0; i < kNumCases; ++i) {
case_values[i] = static_cast<int32_t>(i);
case_labels[i] =
new (m.main_zone()->New(sizeof(RawMachineLabel))) RawMachineLabel;
}
m.Switch(m.Parameter(0), &def, case_values, case_labels,
arraysize(case_labels));
for (size_t i = 0; i < kNumCases; ++i) {
m.Bind(case_labels[i]);
results[i] = m.Int32Constant(values[i]);
m.Goto(&end);
}
m.Bind(&def);
results[kNumCases] = m.Int32Constant(values[kNumCases]);
m.Goto(&end);
m.Bind(&end);
const int num_results = static_cast<int>(arraysize(results));
Node* phi =
m.AddNode(m.common()->Phi(MachineRepresentation::kWord32, num_results),
num_results, results);
m.Return(phi);
for (size_t i = 0; i < kNumValues; ++i) {
CHECK_EQ(values[i], m.Call(static_cast<int>(i)));
}
}
TEST(RunInt32AddP) {
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Int32Add(bt.param0, bt.param1));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
// Use uint32_t because signed overflow is UB in C.
int expected = static_cast<int32_t>(*i + *j);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
TEST(RunInt32AddAndWord32EqualP) {
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Int32(), MachineType::Int32(), MachineType::Int32());
m.Return(m.Int32Add(m.Parameter(0),
m.Word32Equal(m.Parameter(1), m.Parameter(2))));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t const expected =
bit_cast<int32_t>(bit_cast<uint32_t>(*i) + (*j == *k));
CHECK_EQ(expected, m.Call(*i, *j, *k));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Int32(), MachineType::Int32(), MachineType::Int32());
m.Return(m.Int32Add(m.Word32Equal(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t const expected =
bit_cast<int32_t>((*i == *j) + bit_cast<uint32_t>(*k));
CHECK_EQ(expected, m.Call(*i, *j, *k));
}
}
}
}
}
TEST(RunInt32AddAndWord32EqualImm) {
{
FOR_INT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m(MachineType::Int32(),
MachineType::Int32());
m.Return(m.Int32Add(m.Int32Constant(*i),
m.Word32Equal(m.Parameter(0), m.Parameter(1))));
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t const expected =
bit_cast<int32_t>(bit_cast<uint32_t>(*i) + (*j == *k));
CHECK_EQ(expected, m.Call(*j, *k));
}
}
}
}
{
FOR_INT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m(MachineType::Int32(),
MachineType::Int32());
m.Return(m.Int32Add(m.Word32Equal(m.Int32Constant(*i), m.Parameter(0)),
m.Parameter(1)));
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t const expected =
bit_cast<int32_t>((*i == *j) + bit_cast<uint32_t>(*k));
CHECK_EQ(expected, m.Call(*j, *k));
}
}
}
}
}
TEST(RunInt32AddAndWord32NotEqualP) {
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Int32(), MachineType::Int32(), MachineType::Int32());
m.Return(m.Int32Add(m.Parameter(0),
m.Word32NotEqual(m.Parameter(1), m.Parameter(2))));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t const expected =
bit_cast<int32_t>(bit_cast<uint32_t>(*i) + (*j != *k));
CHECK_EQ(expected, m.Call(*i, *j, *k));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Int32(), MachineType::Int32(), MachineType::Int32());
m.Return(m.Int32Add(m.Word32NotEqual(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t const expected =
bit_cast<int32_t>((*i != *j) + bit_cast<uint32_t>(*k));
CHECK_EQ(expected, m.Call(*i, *j, *k));
}
}
}
}
}
TEST(RunInt32AddAndWord32NotEqualImm) {
{
FOR_INT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m(MachineType::Int32(),
MachineType::Int32());
m.Return(m.Int32Add(m.Int32Constant(*i),
m.Word32NotEqual(m.Parameter(0), m.Parameter(1))));
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t const expected =
bit_cast<int32_t>(bit_cast<uint32_t>(*i) + (*j != *k));
CHECK_EQ(expected, m.Call(*j, *k));
}
}
}
}
{
FOR_INT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m(MachineType::Int32(),
MachineType::Int32());
m.Return(m.Int32Add(m.Word32NotEqual(m.Int32Constant(*i), m.Parameter(0)),
m.Parameter(1)));
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t const expected =
bit_cast<int32_t>((*i != *j) + bit_cast<uint32_t>(*k));
CHECK_EQ(expected, m.Call(*j, *k));
}
}
}
}
}
TEST(RunInt32AddAndWord32SarP) {
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
m.Return(m.Int32Add(m.Parameter(0),
m.Word32Sar(m.Parameter(1), m.Parameter(2))));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
// Use uint32_t because signed overflow is UB in C.
int32_t expected = *i + (*j >> shift);
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Int32(), MachineType::Uint32(), MachineType::Uint32());
m.Return(m.Int32Add(m.Word32Sar(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_INT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
FOR_UINT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t expected = (*i >> shift) + *k;
CHECK_EQ(expected, m.Call(*i, shift, *k));
}
}
}
}
}
TEST(RunInt32AddAndWord32ShlP) {
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
m.Return(m.Int32Add(m.Parameter(0),
m.Word32Shl(m.Parameter(1), m.Parameter(2))));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
// Use uint32_t because signed overflow is UB in C.
int32_t expected = *i + (*j << shift);
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Int32(), MachineType::Uint32(), MachineType::Uint32());
m.Return(m.Int32Add(m.Word32Shl(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_INT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
FOR_UINT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t expected = (*i << shift) + *k;
CHECK_EQ(expected, m.Call(*i, shift, *k));
}
}
}
}
}
TEST(RunInt32AddAndWord32ShrP) {
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
m.Return(m.Int32Add(m.Parameter(0),
m.Word32Shr(m.Parameter(1), m.Parameter(2))));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
// Use uint32_t because signed overflow is UB in C.
int32_t expected = *i + (*j >> shift);
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
m.Return(m.Int32Add(m.Word32Shr(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
FOR_UINT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t expected = (*i >> shift) + *k;
CHECK_EQ(expected, m.Call(*i, shift, *k));
}
}
}
}
}
TEST(RunInt32AddInBranch) {
static const int32_t constant = 987654321;
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
RawMachineLabel blocka, blockb;
m.Branch(
m.Word32Equal(m.Int32Add(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i + *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
RawMachineLabel blocka, blockb;
m.Branch(
m.Word32NotEqual(m.Int32Add(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i + *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
RawMachineLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Int32Add(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i + *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
RawMachineLabel blocka, blockb;
m.Branch(m.Word32NotEqual(m.Int32Add(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i + *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<void> m;
const Operator* shops[] = {m.machine()->Word32Sar(),
m.machine()->Word32Shl(),
m.machine()->Word32Shr()};
for (size_t n = 0; n < arraysize(shops); n++) {
RawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
RawMachineLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Int32Add(m.Parameter(0),
m.AddNode(shops[n], m.Parameter(1),
m.Parameter(2))),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t right;
switch (shops[n]->opcode()) {
default:
UNREACHABLE();
case IrOpcode::kWord32Sar:
right = *j >> shift;
break;
case IrOpcode::kWord32Shl:
right = *j << shift;
break;
case IrOpcode::kWord32Shr:
right = static_cast<uint32_t>(*j) >> shift;
break;
}
int32_t expected = ((*i + right) == 0) ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
}
}
TEST(RunInt32AddInComparison) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Add(bt.param0, bt.param1), m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i + *j) == 0;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Constant(0), m.Int32Add(bt.param0, bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i + *j) == 0;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Word32Equal(m.Int32Add(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i + *j) == 0;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Word32Equal(m.Int32Add(m.Parameter(0), m.Int32Constant(*i)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*j + *i) == 0;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<void> m;
const Operator* shops[] = {m.machine()->Word32Sar(),
m.machine()->Word32Shl(),
m.machine()->Word32Shr()};
for (size_t n = 0; n < arraysize(shops); n++) {
RawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
m.Return(m.Word32Equal(
m.Int32Add(m.Parameter(0),
m.AddNode(shops[n], m.Parameter(1), m.Parameter(2))),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t right;
switch (shops[n]->opcode()) {
default:
UNREACHABLE();
case IrOpcode::kWord32Sar:
right = *j >> shift;
break;
case IrOpcode::kWord32Shl:
right = *j << shift;
break;
case IrOpcode::kWord32Shr:
right = static_cast<uint32_t>(*j) >> shift;
break;
}
int32_t expected = (*i + right) == 0;
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
}
}
TEST(RunInt32SubP) {
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
m.Return(m.Int32Sub(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = static_cast<int32_t>(*i - *j);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
TEST(RunInt32SubImm) {
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Int32Sub(m.Int32Constant(*i), m.Parameter(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i - *j;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Int32Sub(m.Parameter(0), m.Int32Constant(*i)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *j - *i;
CHECK_EQ(expected, m.Call(*j));
}
}
}
}
TEST(RunInt32SubImm2) {
BufferedRawMachineAssemblerTester<int32_t> r;
r.Return(r.Int32Sub(r.Int32Constant(-1), r.Int32Constant(0)));
CHECK_EQ(-1, r.Call());
}
TEST(RunInt32SubAndWord32SarP) {
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
m.Return(m.Int32Sub(m.Parameter(0),
m.Word32Sar(m.Parameter(1), m.Parameter(2))));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t expected = *i - (*j >> shift);
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Int32(), MachineType::Uint32(), MachineType::Uint32());
m.Return(m.Int32Sub(m.Word32Sar(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_INT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
FOR_UINT32_INPUTS(k) {
int32_t expected = (*i >> shift) - *k;
CHECK_EQ(expected, m.Call(*i, shift, *k));
}
}
}
}
}
TEST(RunInt32SubAndWord32ShlP) {
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
m.Return(m.Int32Sub(m.Parameter(0),
m.Word32Shl(m.Parameter(1), m.Parameter(2))));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t expected = *i - (*j << shift);
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Int32(), MachineType::Uint32(), MachineType::Uint32());
m.Return(m.Int32Sub(m.Word32Shl(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_INT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
FOR_UINT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t expected = (*i << shift) - *k;
CHECK_EQ(expected, m.Call(*i, shift, *k));
}
}
}
}
}
TEST(RunInt32SubAndWord32ShrP) {
{
RawMachineAssemblerTester<uint32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
m.Return(m.Int32Sub(m.Parameter(0),
m.Word32Shr(m.Parameter(1), m.Parameter(2))));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
// Use uint32_t because signed overflow is UB in C.
uint32_t expected = *i - (*j >> shift);
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
{
RawMachineAssemblerTester<uint32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
m.Return(m.Int32Sub(m.Word32Shr(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
FOR_UINT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
uint32_t expected = (*i >> shift) - *k;
CHECK_EQ(expected, m.Call(*i, shift, *k));
}
}
}
}
}
TEST(RunInt32SubInBranch) {
static const int constant = 987654321;
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
RawMachineLabel blocka, blockb;
m.Branch(
m.Word32Equal(m.Int32Sub(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i - *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
RawMachineLabel blocka, blockb;
m.Branch(
m.Word32NotEqual(m.Int32Sub(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i - *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
RawMachineLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Int32Sub(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i - *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m(MachineType::Uint32());
RawMachineLabel blocka, blockb;
m.Branch(m.Word32NotEqual(m.Int32Sub(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i - *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<void> m;
const Operator* shops[] = {m.machine()->Word32Sar(),
m.machine()->Word32Shl(),
m.machine()->Word32Shr()};
for (size_t n = 0; n < arraysize(shops); n++) {
RawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
RawMachineLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Int32Sub(m.Parameter(0),
m.AddNode(shops[n], m.Parameter(1),
m.Parameter(2))),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t right;
switch (shops[n]->opcode()) {
default:
UNREACHABLE();
case IrOpcode::kWord32Sar:
right = *j >> shift;
break;
case IrOpcode::kWord32Shl:
right = *j << shift;
break;
case IrOpcode::kWord32Shr:
right = static_cast<uint32_t>(*j) >> shift;
break;
}
int32_t expected = ((*i - right) == 0) ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
}
}
TEST(RunInt32SubInComparison) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Sub(bt.param0, bt.param1), m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i - *j) == 0;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Constant(0), m.Int32Sub(bt.param0, bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i - *j) == 0;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Word32Equal(m.Int32Sub(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i - *j) == 0;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Word32Equal(m.Int32Sub(m.Parameter(0), m.Int32Constant(*i)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*j - *i) == 0;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<void> m;
const Operator* shops[] = {m.machine()->Word32Sar(),
m.machine()->Word32Shl(),
m.machine()->Word32Shr()};
for (size_t n = 0; n < arraysize(shops); n++) {
RawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
m.Return(m.Word32Equal(
m.Int32Sub(m.Parameter(0),
m.AddNode(shops[n], m.Parameter(1), m.Parameter(2))),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t right;
switch (shops[n]->opcode()) {
default:
UNREACHABLE();
case IrOpcode::kWord32Sar:
right = *j >> shift;
break;
case IrOpcode::kWord32Shl:
right = *j << shift;
break;
case IrOpcode::kWord32Shr:
right = static_cast<uint32_t>(*j) >> shift;
break;
}
int32_t expected = (*i - right) == 0;
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
}
}
TEST(RunInt32MulP) {
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Int32Mul(bt.param0, bt.param1));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int expected = static_cast<int32_t>(*i * *j);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Int32Mul(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i * *j;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
}
TEST(RunInt32MulHighP) {
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Int32MulHigh(bt.param0, bt.param1));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = static_cast<int32_t>(
(static_cast<int64_t>(*i) * static_cast<int64_t>(*j)) >> 32);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
TEST(RunInt32MulImm) {
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Int32Mul(m.Int32Constant(*i), m.Parameter(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i * *j;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Int32Mul(m.Parameter(0), m.Int32Constant(*i)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *j * *i;
CHECK_EQ(expected, m.Call(*j));
}
}
}
}
TEST(RunInt32MulAndInt32AddP) {
{
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
int32_t p0 = *i;
int32_t p1 = *j;
m.Return(m.Int32Add(m.Int32Constant(p0),
m.Int32Mul(m.Parameter(0), m.Int32Constant(p1))));
FOR_INT32_INPUTS(k) {
int32_t p2 = *k;
int expected = p0 + static_cast<int32_t>(p1 * p2);
CHECK_EQ(expected, m.Call(p2));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Int32(), MachineType::Int32(), MachineType::Int32());
m.Return(
m.Int32Add(m.Parameter(0), m.Int32Mul(m.Parameter(1), m.Parameter(2))));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
int32_t p0 = *i;
int32_t p1 = *j;
int32_t p2 = *k;
int expected = p0 + static_cast<int32_t>(p1 * p2);
CHECK_EQ(expected, m.Call(p0, p1, p2));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Int32(), MachineType::Int32(), MachineType::Int32());
m.Return(
m.Int32Add(m.Int32Mul(m.Parameter(0), m.Parameter(1)), m.Parameter(2)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
int32_t p0 = *i;
int32_t p1 = *j;
int32_t p2 = *k;
int expected = static_cast<int32_t>(p0 * p1) + p2;
CHECK_EQ(expected, m.Call(p0, p1, p2));
}
}
}
}
{
FOR_INT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(
m.Int32Add(m.Int32Constant(*i), m.Int32Mul(bt.param0, bt.param1)));
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
int32_t p0 = *j;
int32_t p1 = *k;
int expected = *i + static_cast<int32_t>(p0 * p1);
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
}
TEST(RunInt32MulAndInt32SubP) {
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Int32(), MachineType::Int32());
m.Return(
m.Int32Sub(m.Parameter(0), m.Int32Mul(m.Parameter(1), m.Parameter(2))));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
uint32_t p0 = *i;
int32_t p1 = *j;
int32_t p2 = *k;
// Use uint32_t because signed overflow is UB in C.
int expected = p0 - static_cast<uint32_t>(p1 * p2);
CHECK_EQ(expected, m.Call(p0, p1, p2));
}
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(
m.Int32Sub(m.Int32Constant(*i), m.Int32Mul(bt.param0, bt.param1)));
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
int32_t p0 = *j;
int32_t p1 = *k;
// Use uint32_t because signed overflow is UB in C.
int expected = *i - static_cast<uint32_t>(p0 * p1);
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
}
TEST(RunUint32MulHighP) {
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Uint32MulHigh(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = bit_cast<int32_t>(static_cast<uint32_t>(
(static_cast<uint64_t>(*i) * static_cast<uint64_t>(*j)) >> 32));
CHECK_EQ(expected, bt.call(bit_cast<int32_t>(*i), bit_cast<int32_t>(*j)));
}
}
}
TEST(RunInt32DivP) {
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Int32Div(bt.param0, bt.param1));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int p0 = *i;
int p1 = *j;
if (p1 != 0 && (static_cast<uint32_t>(p0) != 0x80000000 || p1 != -1)) {
int expected = static_cast<int32_t>(p0 / p1);
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Int32Add(bt.param0, m.Int32Div(bt.param0, bt.param1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int p0 = *i;
int p1 = *j;
if (p1 != 0 && (static_cast<uint32_t>(p0) != 0x80000000 || p1 != -1)) {
int expected = static_cast<int32_t>(p0 + (p0 / p1));
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
}
TEST(RunUint32DivP) {
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Uint32Div(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t p0 = *i;
uint32_t p1 = *j;
if (p1 != 0) {
int32_t expected = bit_cast<int32_t>(p0 / p1);
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Int32Add(bt.param0, m.Uint32Div(bt.param0, bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t p0 = *i;
uint32_t p1 = *j;
if (p1 != 0) {
int32_t expected = bit_cast<int32_t>(p0 + (p0 / p1));
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
}
TEST(RunInt32ModP) {
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Int32Mod(bt.param0, bt.param1));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int p0 = *i;
int p1 = *j;
if (p1 != 0 && (static_cast<uint32_t>(p0) != 0x80000000 || p1 != -1)) {
int expected = static_cast<int32_t>(p0 % p1);
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Int32Add(bt.param0, m.Int32Mod(bt.param0, bt.param1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int p0 = *i;
int p1 = *j;
if (p1 != 0 && (static_cast<uint32_t>(p0) != 0x80000000 || p1 != -1)) {
int expected = static_cast<int32_t>(p0 + (p0 % p1));
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
}
TEST(RunUint32ModP) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Uint32Mod(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t p0 = *i;
uint32_t p1 = *j;
if (p1 != 0) {
uint32_t expected = static_cast<uint32_t>(p0 % p1);
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Int32Add(bt.param0, m.Uint32Mod(bt.param0, bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t p0 = *i;
uint32_t p1 = *j;
if (p1 != 0) {
uint32_t expected = static_cast<uint32_t>(p0 + (p0 % p1));
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
}
TEST(RunWord32AndP) {
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Word32And(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = *i & *j;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Word32And(bt.param0, m.Word32Not(bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = *i & ~(*j);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Word32And(m.Word32Not(bt.param0), bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = ~(*i) & *j;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
}
TEST(RunWord32AndAndWord32ShlP) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Shl(bt.param0, m.Word32And(bt.param1, m.Int32Constant(0x1f))));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i << (*j & 0x1f);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Shl(bt.param0, m.Word32And(m.Int32Constant(0x1f), bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i << (0x1f & *j);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
}
TEST(RunWord32AndAndWord32ShrP) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Shr(bt.param0, m.Word32And(bt.param1, m.Int32Constant(0x1f))));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i >> (*j & 0x1f);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Shr(bt.param0, m.Word32And(m.Int32Constant(0x1f), bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i >> (0x1f & *j);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
}
TEST(RunWord32AndAndWord32SarP) {
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(
m.Word32Sar(bt.param0, m.Word32And(bt.param1, m.Int32Constant(0x1f))));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = *i >> (*j & 0x1f);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(
m.Word32Sar(bt.param0, m.Word32And(m.Int32Constant(0x1f), bt.param1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = *i >> (0x1f & *j);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
}
TEST(RunWord32AndImm) {
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Word32And(m.Int32Constant(*i), m.Parameter(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i & *j;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Word32And(m.Int32Constant(*i), m.Word32Not(m.Parameter(0))));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i & ~(*j);
CHECK_EQ(expected, m.Call(*j));
}
}
}
}
TEST(RunWord32AndInBranch) {
static const int constant = 987654321;
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
RawMachineLabel blocka, blockb;
m.Branch(
m.Word32Equal(m.Word32And(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i & *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
RawMachineLabel blocka, blockb;
m.Branch(
m.Word32NotEqual(m.Word32And(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i & *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m(MachineType::Uint32());
RawMachineLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Word32And(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i & *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m(MachineType::Uint32());
RawMachineLabel blocka, blockb;
m.Branch(
m.Word32NotEqual(m.Word32And(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i & *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<void> m;
const Operator* shops[] = {m.machine()->Word32Sar(),
m.machine()->Word32Shl(),
m.machine()->Word32Shr()};
for (size_t n = 0; n < arraysize(shops); n++) {
RawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
RawMachineLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Word32And(m.Parameter(0),
m.AddNode(shops[n], m.Parameter(1),
m.Parameter(2))),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t right;
switch (shops[n]->opcode()) {
default:
UNREACHABLE();
case IrOpcode::kWord32Sar:
right = *j >> shift;
break;
case IrOpcode::kWord32Shl:
right = *j << shift;
break;
case IrOpcode::kWord32Shr:
right = static_cast<uint32_t>(*j) >> shift;
break;
}
int32_t expected = ((*i & right) == 0) ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
}
}
TEST(RunWord32AndInComparison) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Word32And(bt.param0, bt.param1), m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i & *j) == 0;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Constant(0), m.Word32And(bt.param0, bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i & *j) == 0;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Word32Equal(m.Word32And(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i & *j) == 0;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Word32Equal(m.Word32And(m.Parameter(0), m.Int32Constant(*i)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*j & *i) == 0;
CHECK_EQ(expected, m.Call(*j));
}
}
}
}
TEST(RunWord32OrP) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Word32Or(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i | *j;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Word32Or(bt.param0, m.Word32Not(bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i | ~(*j);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Word32Or(m.Word32Not(bt.param0), bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = ~(*i) | *j;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
}
TEST(RunWord32OrImm) {
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Word32Or(m.Int32Constant(*i), m.Parameter(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i | *j;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Word32Or(m.Int32Constant(*i), m.Word32Not(m.Parameter(0))));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i | ~(*j);
CHECK_EQ(expected, m.Call(*j));
}
}
}
}
TEST(RunWord32OrInBranch) {
static const int constant = 987654321;
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
RawMachineLabel blocka, blockb;
m.Branch(
m.Word32Equal(m.Word32Or(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = (*i | *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
RawMachineLabel blocka, blockb;
m.Branch(
m.Word32NotEqual(m.Word32Or(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = (*i | *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_INT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
RawMachineLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Word32Or(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_INT32_INPUTS(j) {
int32_t expected = (*i | *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_INT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
RawMachineLabel blocka, blockb;
m.Branch(m.Word32NotEqual(m.Word32Or(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_INT32_INPUTS(j) {
int32_t expected = (*i | *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<void> m;
const Operator* shops[] = {m.machine()->Word32Sar(),
m.machine()->Word32Shl(),
m.machine()->Word32Shr()};
for (size_t n = 0; n < arraysize(shops); n++) {
RawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
RawMachineLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Word32Or(m.Parameter(0),
m.AddNode(shops[n], m.Parameter(1),
m.Parameter(2))),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t right;
switch (shops[n]->opcode()) {
default:
UNREACHABLE();
case IrOpcode::kWord32Sar:
right = *j >> shift;
break;
case IrOpcode::kWord32Shl:
right = *j << shift;
break;
case IrOpcode::kWord32Shr:
right = static_cast<uint32_t>(*j) >> shift;
break;
}
int32_t expected = ((*i | right) == 0) ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
}
}
TEST(RunWord32OrInComparison) {
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Word32Or(bt.param0, bt.param1), m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i | *j) == 0;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Constant(0), m.Word32Or(bt.param0, bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i | *j) == 0;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Word32Equal(m.Word32Or(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i | *j) == 0;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Word32Equal(m.Word32Or(m.Parameter(0), m.Int32Constant(*i)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*j | *i) == 0;
CHECK_EQ(expected, m.Call(*j));
}
}
}
}
TEST(RunWord32XorP) {
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Word32Xor(m.Int32Constant(*i), m.Parameter(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i ^ *j;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Word32Xor(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i ^ *j;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Word32Xor(bt.param0, m.Word32Not(bt.param1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = *i ^ ~(*j);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Word32Xor(m.Word32Not(bt.param0), bt.param1));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = ~(*i) ^ *j;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Word32Xor(m.Int32Constant(*i), m.Word32Not(m.Parameter(0))));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i ^ ~(*j);
CHECK_EQ(expected, m.Call(*j));
}
}
}
}
TEST(RunWord32XorInBranch) {
static const uint32_t constant = 987654321;
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
RawMachineLabel blocka, blockb;
m.Branch(
m.Word32Equal(m.Word32Xor(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i ^ *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
RawMachineLabel blocka, blockb;
m.Branch(
m.Word32NotEqual(m.Word32Xor(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i ^ *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
RawMachineLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Word32Xor(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i ^ *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
RawMachineLabel blocka, blockb;
m.Branch(
m.Word32NotEqual(m.Word32Xor(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i ^ *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<void> m;
const Operator* shops[] = {m.machine()->Word32Sar(),
m.machine()->Word32Shl(),
m.machine()->Word32Shr()};
for (size_t n = 0; n < arraysize(shops); n++) {
RawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
RawMachineLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Word32Xor(m.Parameter(0),
m.AddNode(shops[n], m.Parameter(1),
m.Parameter(2))),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t right;
switch (shops[n]->opcode()) {
default:
UNREACHABLE();
case IrOpcode::kWord32Sar:
right = *j >> shift;
break;
case IrOpcode::kWord32Shl:
right = *j << shift;
break;
case IrOpcode::kWord32Shr:
right = static_cast<uint32_t>(*j) >> shift;
break;
}
int32_t expected = ((*i ^ right) == 0) ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
}
}
TEST(RunWord32ShlP) {
{
FOR_UINT32_SHIFTS(shift) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Word32Shl(m.Parameter(0), m.Int32Constant(shift)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *j << shift;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Word32Shl(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
uint32_t expected = *i << shift;
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
}
TEST(RunWord32ShlInComparison) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Word32Shl(bt.param0, bt.param1), m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
uint32_t expected = 0 == (*i << shift);
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Constant(0), m.Word32Shl(bt.param0, bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
uint32_t expected = 0 == (*i << shift);
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
{
FOR_UINT32_SHIFTS(shift) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(
m.Word32Equal(m.Int32Constant(0),
m.Word32Shl(m.Parameter(0), m.Int32Constant(shift))));
FOR_UINT32_INPUTS(i) {
uint32_t expected = 0 == (*i << shift);
CHECK_EQ(expected, m.Call(*i));
}
}
}
{
FOR_UINT32_SHIFTS(shift) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(
m.Word32Equal(m.Word32Shl(m.Parameter(0), m.Int32Constant(shift)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
uint32_t expected = 0 == (*i << shift);
CHECK_EQ(expected, m.Call(*i));
}
}
}
}
TEST(RunWord32ShrP) {
{
FOR_UINT32_SHIFTS(shift) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(m.Word32Shr(m.Parameter(0), m.Int32Constant(shift)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *j >> shift;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Word32Shr(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
uint32_t expected = *i >> shift;
CHECK_EQ(expected, bt.call(*i, shift));
}
}
CHECK_EQ(0x00010000u, bt.call(0x80000000, 15));
}
}
TEST(RunWord32ShrInComparison) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Word32Shr(bt.param0, bt.param1), m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
uint32_t expected = 0 == (*i >> shift);
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Constant(0), m.Word32Shr(bt.param0, bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
uint32_t expected = 0 == (*i >> shift);
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
{
FOR_UINT32_SHIFTS(shift) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(
m.Word32Equal(m.Int32Constant(0),
m.Word32Shr(m.Parameter(0), m.Int32Constant(shift))));
FOR_UINT32_INPUTS(i) {
uint32_t expected = 0 == (*i >> shift);
CHECK_EQ(expected, m.Call(*i));
}
}
}
{
FOR_UINT32_SHIFTS(shift) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(
m.Word32Equal(m.Word32Shr(m.Parameter(0), m.Int32Constant(shift)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
uint32_t expected = 0 == (*i >> shift);
CHECK_EQ(expected, m.Call(*i));
}
}
}
}
TEST(RunWord32SarP) {
{
FOR_INT32_SHIFTS(shift) {
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
m.Return(m.Word32Sar(m.Parameter(0), m.Int32Constant(shift)));
FOR_INT32_INPUTS(j) {
int32_t expected = *j >> shift;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Word32Sar(bt.param0, bt.param1));
FOR_INT32_INPUTS(i) {
FOR_INT32_SHIFTS(shift) {
int32_t expected = *i >> shift;
CHECK_EQ(expected, bt.call(*i, shift));
}
}
CHECK_EQ(bit_cast<int32_t>(0xFFFF0000), bt.call(0x80000000, 15));
}
}
TEST(RunWord32SarInComparison) {
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Word32Sar(bt.param0, bt.param1), m.Int32Constant(0)));
FOR_INT32_INPUTS(i) {
FOR_INT32_SHIFTS(shift) {
int32_t expected = 0 == (*i >> shift);
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Constant(0), m.Word32Sar(bt.param0, bt.param1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_SHIFTS(shift) {
int32_t expected = 0 == (*i >> shift);
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
{
FOR_INT32_SHIFTS(shift) {
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
m.Return(
m.Word32Equal(m.Int32Constant(0),
m.Word32Sar(m.Parameter(0), m.Int32Constant(shift))));
FOR_INT32_INPUTS(i) {
int32_t expected = 0 == (*i >> shift);
CHECK_EQ(expected, m.Call(*i));
}
}
}
{
FOR_INT32_SHIFTS(shift) {
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
m.Return(
m.Word32Equal(m.Word32Sar(m.Parameter(0), m.Int32Constant(shift)),
m.Int32Constant(0)));
FOR_INT32_INPUTS(i) {
int32_t expected = 0 == (*i >> shift);
CHECK_EQ(expected, m.Call(*i));
}
}
}
}
TEST(RunWord32RorP) {
{
FOR_UINT32_SHIFTS(shift) {
RawMachineAssemblerTester<int32_t> m(MachineType::Uint32());
m.Return(m.Word32Ror(m.Parameter(0), m.Int32Constant(shift)));
FOR_UINT32_INPUTS(j) {
int32_t expected = base::bits::RotateRight32(*j, shift);
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Word32Ror(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
uint32_t expected = base::bits::RotateRight32(*i, shift);
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
}
TEST(RunWord32RorInComparison) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Word32Ror(bt.param0, bt.param1), m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
uint32_t expected = 0 == base::bits::RotateRight32(*i, shift);
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Constant(0), m.Word32Ror(bt.param0, bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
uint32_t expected = 0 == base::bits::RotateRight32(*i, shift);
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
{
FOR_UINT32_SHIFTS(shift) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(
m.Word32Equal(m.Int32Constant(0),
m.Word32Ror(m.Parameter(0), m.Int32Constant(shift))));
FOR_UINT32_INPUTS(i) {
uint32_t expected = 0 == base::bits::RotateRight32(*i, shift);
CHECK_EQ(expected, m.Call(*i));
}
}
}
{
FOR_UINT32_SHIFTS(shift) {
RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
m.Return(
m.Word32Equal(m.Word32Ror(m.Parameter(0), m.Int32Constant(shift)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
uint32_t expected = 0 == base::bits::RotateRight32(*i, shift);
CHECK_EQ(expected, m.Call(*i));
}
}
}
}
TEST(RunWord32NotP) {
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
m.Return(m.Word32Not(m.Parameter(0)));
FOR_INT32_INPUTS(i) {
int expected = ~(*i);
CHECK_EQ(expected, m.Call(*i));
}
}
TEST(RunInt32NegP) {
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
m.Return(m.Int32Neg(m.Parameter(0)));
FOR_INT32_INPUTS(i) {
int expected = -*i;
CHECK_EQ(expected, m.Call(*i));
}
}
TEST(RunWord32EqualAndWord32SarP) {
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Int32(), MachineType::Int32(), MachineType::Uint32());
m.Return(m.Word32Equal(m.Parameter(0),
m.Word32Sar(m.Parameter(1), m.Parameter(2))));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t expected = (*i == (*j >> shift));
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Int32(), MachineType::Uint32(), MachineType::Int32());
m.Return(m.Word32Equal(m.Word32Sar(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_INT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
FOR_INT32_INPUTS(k) {
int32_t expected = ((*i >> shift) == *k);
CHECK_EQ(expected, m.Call(*i, shift, *k));
}
}
}
}
}
TEST(RunWord32EqualAndWord32ShlP) {
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
m.Return(m.Word32Equal(m.Parameter(0),
m.Word32Shl(m.Parameter(1), m.Parameter(2))));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t expected = (*i == (*j << shift));
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
m.Return(m.Word32Equal(m.Word32Shl(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
FOR_UINT32_INPUTS(k) {
int32_t expected = ((*i << shift) == *k);
CHECK_EQ(expected, m.Call(*i, shift, *k));
}
}
}
}
}
TEST(RunWord32EqualAndWord32ShrP) {
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
m.Return(m.Word32Equal(m.Parameter(0),
m.Word32Shr(m.Parameter(1), m.Parameter(2))));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t expected = (*i == (*j >> shift));
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
m.Return(m.Word32Equal(m.Word32Shr(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
FOR_UINT32_INPUTS(k) {
int32_t expected = ((*i >> shift) == *k);
CHECK_EQ(expected, m.Call(*i, shift, *k));
}
}
}
}
}
TEST(RunDeadNodes) {
for (int i = 0; true; i++) {
RawMachineAssemblerTester<int32_t> m(i == 5 ? MachineType::Int32()
: MachineType::None());
int constant = 0x55 + i;
switch (i) {
case 0:
m.Int32Constant(44);
break;
case 1:
m.StringConstant("unused");
break;
case 2:
m.NumberConstant(11.1);
break;
case 3:
m.PointerConstant(&constant);
break;
case 4:
m.LoadFromPointer(&constant, MachineType::Int32());
break;
case 5:
m.Parameter(0);
break;
default:
return;
}
m.Return(m.Int32Constant(constant));
if (i != 5) {
CHECK_EQ(constant, m.Call());
} else {
CHECK_EQ(constant, m.Call(0));
}
}
}
TEST(RunDeadInt32Binops) {
RawMachineAssemblerTester<int32_t> m;
const Operator* kOps[] = {
m.machine()->Word32And(), m.machine()->Word32Or(),
m.machine()->Word32Xor(), m.machine()->Word32Shl(),
m.machine()->Word32Shr(), m.machine()->Word32Sar(),
m.machine()->Word32Ror(), m.machine()->Word32Equal(),
m.machine()->Int32Add(), m.machine()->Int32Sub(),
m.machine()->Int32Mul(), m.machine()->Int32MulHigh(),
m.machine()->Int32Div(), m.machine()->Uint32Div(),
m.machine()->Int32Mod(), m.machine()->Uint32Mod(),
m.machine()->Uint32MulHigh(), m.machine()->Int32LessThan(),
m.machine()->Int32LessThanOrEqual(), m.machine()->Uint32LessThan(),
m.machine()->Uint32LessThanOrEqual()};
for (size_t i = 0; i < arraysize(kOps); ++i) {
RawMachineAssemblerTester<int32_t> m(MachineType::Int32(),
MachineType::Int32());
int32_t constant = static_cast<int32_t>(0x55555 + i);
m.AddNode(kOps[i], m.Parameter(0), m.Parameter(1));
m.Return(m.Int32Constant(constant));
CHECK_EQ(constant, m.Call(1, 1));
}
}
TEST(RunFloat32Add) {
BufferedRawMachineAssemblerTester<float> m(MachineType::Float32(),
MachineType::Float32());
m.Return(m.Float32Add(m.Parameter(0), m.Parameter(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(*i + *j, m.Call(*i, *j)); }
}
}
TEST(RunFloat32Sub) {
BufferedRawMachineAssemblerTester<float> m(MachineType::Float32(),
MachineType::Float32());
m.Return(m.Float32Sub(m.Parameter(0), m.Parameter(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(*i - *j, m.Call(*i, *j)); }
}
}
TEST(RunFloat32Neg) {
BufferedRawMachineAssemblerTester<float> m(MachineType::Float32());
m.Return(m.AddNode(m.machine()->Float32Neg(), m.Parameter(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(-0.0f - *i, m.Call(*i)); }
}
TEST(RunFloat32Mul) {
BufferedRawMachineAssemblerTester<float> m(MachineType::Float32(),
MachineType::Float32());
m.Return(m.Float32Mul(m.Parameter(0), m.Parameter(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(*i * *j, m.Call(*i, *j)); }
}
}
TEST(RunFloat32Div) {
BufferedRawMachineAssemblerTester<float> m(MachineType::Float32(),
MachineType::Float32());
m.Return(m.Float32Div(m.Parameter(0), m.Parameter(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(*i / *j, m.Call(*i, *j)); }
}
}
TEST(RunFloat64Add) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
MachineType::Float64());
m.Return(m.Float64Add(m.Parameter(0), m.Parameter(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(*i + *j, m.Call(*i, *j)); }
}
}
TEST(RunFloat64Sub) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
MachineType::Float64());
m.Return(m.Float64Sub(m.Parameter(0), m.Parameter(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(*i - *j, m.Call(*i, *j)); }
}
}
TEST(RunFloat64Neg) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.AddNode(m.machine()->Float64Neg(), m.Parameter(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_FLOAT_EQ(-0.0 - *i, m.Call(*i)); }
}
TEST(RunFloat64Mul) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
MachineType::Float64());
m.Return(m.Float64Mul(m.Parameter(0), m.Parameter(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(*i * *j, m.Call(*i, *j)); }
}
}
TEST(RunFloat64Div) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
MachineType::Float64());
m.Return(m.Float64Div(m.Parameter(0), m.Parameter(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(*i / *j, m.Call(*i, *j)); }
}
}
TEST(RunFloat64Mod) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
MachineType::Float64());
m.Return(m.Float64Mod(m.Parameter(0), m.Parameter(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(modulo(*i, *j), m.Call(*i, *j)); }
}
}
TEST(RunDeadFloat32Binops) {
RawMachineAssemblerTester<int32_t> m;
const Operator* ops[] = {m.machine()->Float32Add(), m.machine()->Float32Sub(),
m.machine()->Float32Mul(), m.machine()->Float32Div(),
NULL};
for (int i = 0; ops[i] != NULL; i++) {
RawMachineAssemblerTester<int32_t> m;
int constant = 0x53355 + i;
m.AddNode(ops[i], m.Float32Constant(0.1f), m.Float32Constant(1.11f));
m.Return(m.Int32Constant(constant));
CHECK_EQ(constant, m.Call());
}
}
TEST(RunDeadFloat64Binops) {
RawMachineAssemblerTester<int32_t> m;
const Operator* ops[] = {m.machine()->Float64Add(), m.machine()->Float64Sub(),
m.machine()->Float64Mul(), m.machine()->Float64Div(),
m.machine()->Float64Mod(), NULL};
for (int i = 0; ops[i] != NULL; i++) {
RawMachineAssemblerTester<int32_t> m;
int constant = 0x53355 + i;
m.AddNode(ops[i], m.Float64Constant(0.1), m.Float64Constant(1.11));
m.Return(m.Int32Constant(constant));
CHECK_EQ(constant, m.Call());
}
}
TEST(RunFloat32AddP) {
RawMachineAssemblerTester<int32_t> m;
Float32BinopTester bt(&m);
bt.AddReturn(m.Float32Add(bt.param0, bt.param1));
FOR_FLOAT32_INPUTS(pl) {
FOR_FLOAT32_INPUTS(pr) { CHECK_FLOAT_EQ(*pl + *pr, bt.call(*pl, *pr)); }
}
}
TEST(RunFloat64AddP) {
RawMachineAssemblerTester<int32_t> m;
Float64BinopTester bt(&m);
bt.AddReturn(m.Float64Add(bt.param0, bt.param1));
FOR_FLOAT64_INPUTS(pl) {
FOR_FLOAT64_INPUTS(pr) { CHECK_DOUBLE_EQ(*pl + *pr, bt.call(*pl, *pr)); }
}
}
TEST(RunFloat64MaxP) {
RawMachineAssemblerTester<int32_t> m;
Float64BinopTester bt(&m);
bt.AddReturn(m.Float64Max(bt.param0, bt.param1));
FOR_FLOAT64_INPUTS(pl) {
FOR_FLOAT64_INPUTS(pr) {
CHECK_DOUBLE_EQ(JSMax(*pl, *pr), bt.call(*pl, *pr));
}
}
}
TEST(RunFloat64MinP) {
RawMachineAssemblerTester<int32_t> m;
Float64BinopTester bt(&m);
bt.AddReturn(m.Float64Min(bt.param0, bt.param1));
FOR_FLOAT64_INPUTS(pl) {
FOR_FLOAT64_INPUTS(pr) {
CHECK_DOUBLE_EQ(JSMin(*pl, *pr), bt.call(*pl, *pr));
}
}
}
TEST(RunFloat32Max) {
RawMachineAssemblerTester<int32_t> m;
Float32BinopTester bt(&m);
bt.AddReturn(m.Float32Max(bt.param0, bt.param1));
FOR_FLOAT32_INPUTS(pl) {
FOR_FLOAT32_INPUTS(pr) {
CHECK_FLOAT_EQ(JSMax(*pl, *pr), bt.call(*pl, *pr));
}
}
}
TEST(RunFloat32Min) {
RawMachineAssemblerTester<int32_t> m;
Float32BinopTester bt(&m);
bt.AddReturn(m.Float32Min(bt.param0, bt.param1));
FOR_FLOAT32_INPUTS(pl) {
FOR_FLOAT32_INPUTS(pr) {
CHECK_FLOAT_EQ(JSMin(*pl, *pr), bt.call(*pl, *pr));
}
}
}
TEST(RunFloat64Max) {
RawMachineAssemblerTester<int32_t> m;
Float64BinopTester bt(&m);
bt.AddReturn(m.Float64Max(bt.param0, bt.param1));
FOR_FLOAT64_INPUTS(pl) {
FOR_FLOAT64_INPUTS(pr) {
CHECK_DOUBLE_EQ(JSMax(*pl, *pr), bt.call(*pl, *pr));
}
}
}
TEST(RunFloat64Min) {
RawMachineAssemblerTester<int32_t> m;
Float64BinopTester bt(&m);
bt.AddReturn(m.Float64Min(bt.param0, bt.param1));
FOR_FLOAT64_INPUTS(pl) {
FOR_FLOAT64_INPUTS(pr) {
CHECK_DOUBLE_EQ(JSMin(*pl, *pr), bt.call(*pl, *pr));
}
}
}
TEST(RunFloat32SubP) {
RawMachineAssemblerTester<int32_t> m;
Float32BinopTester bt(&m);
bt.AddReturn(m.Float32Sub(bt.param0, bt.param1));
FOR_FLOAT32_INPUTS(pl) {
FOR_FLOAT32_INPUTS(pr) { CHECK_FLOAT_EQ(*pl - *pr, bt.call(*pl, *pr)); }
}
}
TEST(RunFloat32SubImm1) {
FOR_FLOAT32_INPUTS(i) {
BufferedRawMachineAssemblerTester<float> m(MachineType::Float32());
m.Return(m.Float32Sub(m.Float32Constant(*i), m.Parameter(0)));
FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(*i - *j, m.Call(*j)); }
}
}
TEST(RunFloat32SubImm2) {
FOR_FLOAT32_INPUTS(i) {
BufferedRawMachineAssemblerTester<float> m(MachineType::Float32());
m.Return(m.Float32Sub(m.Parameter(0), m.Float32Constant(*i)));
FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(*j - *i, m.Call(*j)); }
}
}
TEST(RunFloat64SubImm1) {
FOR_FLOAT64_INPUTS(i) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Sub(m.Float64Constant(*i), m.Parameter(0)));
FOR_FLOAT64_INPUTS(j) { CHECK_FLOAT_EQ(*i - *j, m.Call(*j)); }
}
}
TEST(RunFloat64SubImm2) {
FOR_FLOAT64_INPUTS(i) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Sub(m.Parameter(0), m.Float64Constant(*i)));
FOR_FLOAT64_INPUTS(j) { CHECK_FLOAT_EQ(*j - *i, m.Call(*j)); }
}
}
TEST(RunFloat64SubP) {
RawMachineAssemblerTester<int32_t> m;
Float64BinopTester bt(&m);
bt.AddReturn(m.Float64Sub(bt.param0, bt.param1));
FOR_FLOAT64_INPUTS(pl) {
FOR_FLOAT64_INPUTS(pr) {
double expected = *pl - *pr;
CHECK_DOUBLE_EQ(expected, bt.call(*pl, *pr));
}
}
}
TEST(RunFloat32MulP) {
RawMachineAssemblerTester<int32_t> m;
Float32BinopTester bt(&m);
bt.AddReturn(m.Float32Mul(bt.param0, bt.param1));
FOR_FLOAT32_INPUTS(pl) {
FOR_FLOAT32_INPUTS(pr) { CHECK_FLOAT_EQ(*pl * *pr, bt.call(*pl, *pr)); }
}
}
TEST(RunFloat64MulP) {
RawMachineAssemblerTester<int32_t> m;
Float64BinopTester bt(&m);
bt.AddReturn(m.Float64Mul(bt.param0, bt.param1));
FOR_FLOAT64_INPUTS(pl) {
FOR_FLOAT64_INPUTS(pr) {
double expected = *pl * *pr;
CHECK_DOUBLE_EQ(expected, bt.call(*pl, *pr));
}
}
}
TEST(RunFloat64MulAndFloat64Add1) {
BufferedRawMachineAssemblerTester<double> m(
MachineType::Float64(), MachineType::Float64(), MachineType::Float64());
m.Return(m.Float64Add(m.Float64Mul(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
FOR_FLOAT64_INPUTS(k) {
CHECK_DOUBLE_EQ((*i * *j) + *k, m.Call(*i, *j, *k));
}
}
}
}
TEST(RunFloat64MulAndFloat64Add2) {
BufferedRawMachineAssemblerTester<double> m(
MachineType::Float64(), MachineType::Float64(), MachineType::Float64());
m.Return(m.Float64Add(m.Parameter(0),
m.Float64Mul(m.Parameter(1), m.Parameter(2))));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
FOR_FLOAT64_INPUTS(k) {
CHECK_DOUBLE_EQ(*i + (*j * *k), m.Call(*i, *j, *k));
}
}
}
}
TEST(RunFloat64MulAndFloat64Sub1) {
BufferedRawMachineAssemblerTester<double> m(
MachineType::Float64(), MachineType::Float64(), MachineType::Float64());
m.Return(m.Float64Sub(m.Float64Mul(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
FOR_FLOAT64_INPUTS(k) {
CHECK_DOUBLE_EQ((*i * *j) - *k, m.Call(*i, *j, *k));
}
}
}
}
TEST(RunFloat64MulAndFloat64Sub2) {
BufferedRawMachineAssemblerTester<double> m(
MachineType::Float64(), MachineType::Float64(), MachineType::Float64());
m.Return(m.Float64Sub(m.Parameter(0),
m.Float64Mul(m.Parameter(1), m.Parameter(2))));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
FOR_FLOAT64_INPUTS(k) {
CHECK_DOUBLE_EQ(*i - (*j * *k), m.Call(*i, *j, *k));
}
}
}
}
TEST(RunFloat64MulImm1) {
FOR_FLOAT64_INPUTS(i) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Mul(m.Float64Constant(*i), m.Parameter(0)));
FOR_FLOAT64_INPUTS(j) { CHECK_FLOAT_EQ(*i * *j, m.Call(*j)); }
}
}
TEST(RunFloat64MulImm2) {
FOR_FLOAT64_INPUTS(i) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Mul(m.Parameter(0), m.Float64Constant(*i)));
FOR_FLOAT64_INPUTS(j) { CHECK_FLOAT_EQ(*j * *i, m.Call(*j)); }
}
}
TEST(RunFloat32DivP) {
RawMachineAssemblerTester<int32_t> m;
Float32BinopTester bt(&m);
bt.AddReturn(m.Float32Div(bt.param0, bt.param1));
FOR_FLOAT32_INPUTS(pl) {
FOR_FLOAT32_INPUTS(pr) { CHECK_FLOAT_EQ(*pl / *pr, bt.call(*pl, *pr)); }
}
}
TEST(RunFloat64DivP) {
RawMachineAssemblerTester<int32_t> m;
Float64BinopTester bt(&m);
bt.AddReturn(m.Float64Div(bt.param0, bt.param1));
FOR_FLOAT64_INPUTS(pl) {
FOR_FLOAT64_INPUTS(pr) { CHECK_DOUBLE_EQ(*pl / *pr, bt.call(*pl, *pr)); }
}
}
TEST(RunFloat64ModP) {
RawMachineAssemblerTester<int32_t> m;
Float64BinopTester bt(&m);
bt.AddReturn(m.Float64Mod(bt.param0, bt.param1));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(modulo(*i, *j), bt.call(*i, *j)); }
}
}
TEST(RunChangeInt32ToFloat64_A) {
int32_t magic = 0x986234;
BufferedRawMachineAssemblerTester<double> m;
m.Return(m.ChangeInt32ToFloat64(m.Int32Constant(magic)));
CHECK_DOUBLE_EQ(static_cast<double>(magic), m.Call());
}
TEST(RunChangeInt32ToFloat64_B) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Int32());
m.Return(m.ChangeInt32ToFloat64(m.Parameter(0)));
FOR_INT32_INPUTS(i) { CHECK_DOUBLE_EQ(static_cast<double>(*i), m.Call(*i)); }
}
TEST(RunChangeUint32ToFloat64) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Uint32());
m.Return(m.ChangeUint32ToFloat64(m.Parameter(0)));
FOR_UINT32_INPUTS(i) { CHECK_DOUBLE_EQ(static_cast<double>(*i), m.Call(*i)); }
}
TEST(RunTruncateFloat32ToInt32) {
BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Float32());
m.Return(m.TruncateFloat32ToInt32(m.Parameter(0)));
// The upper bound is (INT32_MAX + 1), which is the lowest float-representable
// number above INT32_MAX which cannot be represented as int32.
float upper_bound = 2147483648.0f;
// We use INT32_MIN as a lower bound because (INT32_MIN - 1) is not
// representable as float, and no number between (INT32_MIN - 1) and INT32_MIN
// is.
float lower_bound = static_cast<float>(INT32_MIN);
FOR_FLOAT32_INPUTS(i) {
if (*i < upper_bound && *i >= lower_bound) {
CHECK_FLOAT_EQ(static_cast<int32_t>(*i), m.Call(*i));
}
}
}
TEST(RunTruncateFloat32ToUint32) {
BufferedRawMachineAssemblerTester<uint32_t> m(MachineType::Float32());
m.Return(m.TruncateFloat32ToUint32(m.Parameter(0)));
// The upper bound is (UINT32_MAX + 1), which is the lowest
// float-representable number above UINT32_MAX which cannot be represented as
// uint32.
double upper_bound = 4294967296.0f;
double lower_bound = -1.0f;
FOR_UINT32_INPUTS(i) {
volatile float input = static_cast<float>(*i);
if (input < upper_bound) {
CHECK_EQ(static_cast<uint32_t>(input), m.Call(input));
}
}
FOR_FLOAT32_INPUTS(j) {
if ((*j < upper_bound) && (*j > lower_bound)) {
CHECK_FLOAT_EQ(static_cast<uint32_t>(*j), m.Call(*j));
}
}
}
TEST(RunChangeFloat64ToInt32_A) {
BufferedRawMachineAssemblerTester<int32_t> m;
double magic = 11.1;
m.Return(m.ChangeFloat64ToInt32(m.Float64Constant(magic)));
CHECK_EQ(static_cast<int32_t>(magic), m.Call());
}
TEST(RunChangeFloat64ToInt32_B) {
BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Float64());
m.Return(m.ChangeFloat64ToInt32(m.Parameter(0)));
// Note we don't check fractional inputs, or inputs outside the range of
// int32, because these Convert operators really should be Change operators.
FOR_INT32_INPUTS(i) { CHECK_EQ(*i, m.Call(static_cast<double>(*i))); }
for (int32_t n = 1; n < 31; ++n) {
CHECK_EQ(1 << n, m.Call(static_cast<double>(1 << n)));
}
for (int32_t n = 1; n < 31; ++n) {
CHECK_EQ(3 << n, m.Call(static_cast<double>(3 << n)));
}
}
TEST(RunChangeFloat64ToUint32) {
BufferedRawMachineAssemblerTester<uint32_t> m(MachineType::Float64());
m.Return(m.ChangeFloat64ToUint32(m.Parameter(0)));
{
FOR_UINT32_INPUTS(i) { CHECK_EQ(*i, m.Call(static_cast<double>(*i))); }
}
// Check various powers of 2.
for (int32_t n = 1; n < 31; ++n) {
{ CHECK_EQ(1u << n, m.Call(static_cast<double>(1u << n))); }
{ CHECK_EQ(3u << n, m.Call(static_cast<double>(3u << n))); }
}
// Note we don't check fractional inputs, because these Convert operators
// really should be Change operators.
}
TEST(RunTruncateFloat64ToFloat32) {
BufferedRawMachineAssemblerTester<float> m(MachineType::Float64());
m.Return(m.TruncateFloat64ToFloat32(m.Parameter(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_FLOAT_EQ(DoubleToFloat32(*i), m.Call(*i)); }
}
uint64_t ToInt64(uint32_t low, uint32_t high) {
return (static_cast<uint64_t>(high) << 32) | static_cast<uint64_t>(low);
}
#if V8_TARGET_ARCH_32_BIT && !V8_TARGET_ARCH_X87
TEST(RunInt32PairAdd) {
BufferedRawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
uint32_t high;
uint32_t low;
Node* PairAdd = m.Int32PairAdd(m.Parameter(0), m.Parameter(1), m.Parameter(2),
m.Parameter(3));
m.StoreToPointer(&low, MachineRepresentation::kWord32,
m.Projection(0, PairAdd));
m.StoreToPointer(&high, MachineRepresentation::kWord32,
m.Projection(1, PairAdd));
m.Return(m.Int32Constant(74));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
m.Call(static_cast<uint32_t>(*i & 0xffffffff),
static_cast<uint32_t>(*i >> 32),
static_cast<uint32_t>(*j & 0xffffffff),
static_cast<uint32_t>(*j >> 32));
CHECK_EQ(*i + *j, ToInt64(low, high));
}
}
}
TEST(RunInt32PairAddUseOnlyHighWord) {
BufferedRawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
m.Return(m.Projection(1, m.Int32PairAdd(m.Parameter(0), m.Parameter(1),
m.Parameter(2), m.Parameter(3))));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
CHECK_EQ(
static_cast<uint32_t>((*i + *j) >> 32),
static_cast<uint32_t>(m.Call(static_cast<uint32_t>(*i & 0xffffffff),
static_cast<uint32_t>(*i >> 32),
static_cast<uint32_t>(*j & 0xffffffff),
static_cast<uint32_t>(*j >> 32))));
}
}
}
void TestInt32PairAddWithSharedInput(int a, int b, int c, int d) {
BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Uint32(),
MachineType::Uint32());
uint32_t high;
uint32_t low;
Node* PairAdd = m.Int32PairAdd(m.Parameter(a), m.Parameter(b), m.Parameter(c),
m.Parameter(d));
m.StoreToPointer(&low, MachineRepresentation::kWord32,
m.Projection(0, PairAdd));
m.StoreToPointer(&high, MachineRepresentation::kWord32,
m.Projection(1, PairAdd));
m.Return(m.Int32Constant(74));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
m.Call(*i, *j);
uint32_t inputs[] = {*i, *j};
CHECK_EQ(ToInt64(inputs[a], inputs[b]) + ToInt64(inputs[c], inputs[d]),
ToInt64(low, high));
}
}
}
TEST(RunInt32PairAddWithSharedInput) {
TestInt32PairAddWithSharedInput(0, 0, 0, 0);
TestInt32PairAddWithSharedInput(1, 0, 0, 0);
TestInt32PairAddWithSharedInput(0, 1, 0, 0);
TestInt32PairAddWithSharedInput(0, 0, 1, 0);
TestInt32PairAddWithSharedInput(0, 0, 0, 1);
TestInt32PairAddWithSharedInput(1, 1, 0, 0);
}
TEST(RunInt32PairSub) {
BufferedRawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
uint32_t high;
uint32_t low;
Node* PairSub = m.Int32PairSub(m.Parameter(0), m.Parameter(1), m.Parameter(2),
m.Parameter(3));
m.StoreToPointer(&low, MachineRepresentation::kWord32,
m.Projection(0, PairSub));
m.StoreToPointer(&high, MachineRepresentation::kWord32,
m.Projection(1, PairSub));
m.Return(m.Int32Constant(74));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
m.Call(static_cast<uint32_t>(*i & 0xffffffff),
static_cast<uint32_t>(*i >> 32),
static_cast<uint32_t>(*j & 0xffffffff),
static_cast<uint32_t>(*j >> 32));
CHECK_EQ(*i - *j, ToInt64(low, high));
}
}
}
TEST(RunInt32PairSubUseOnlyHighWord) {
BufferedRawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
m.Return(m.Projection(1, m.Int32PairSub(m.Parameter(0), m.Parameter(1),
m.Parameter(2), m.Parameter(3))));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
CHECK_EQ(
static_cast<uint32_t>((*i - *j) >> 32),
static_cast<uint32_t>(m.Call(static_cast<uint32_t>(*i & 0xffffffff),
static_cast<uint32_t>(*i >> 32),
static_cast<uint32_t>(*j & 0xffffffff),
static_cast<uint32_t>(*j >> 32))));
}
}
}
void TestInt32PairSubWithSharedInput(int a, int b, int c, int d) {
BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Uint32(),
MachineType::Uint32());
uint32_t high;
uint32_t low;
Node* PairSub = m.Int32PairSub(m.Parameter(a), m.Parameter(b), m.Parameter(c),
m.Parameter(d));
m.StoreToPointer(&low, MachineRepresentation::kWord32,
m.Projection(0, PairSub));
m.StoreToPointer(&high, MachineRepresentation::kWord32,
m.Projection(1, PairSub));
m.Return(m.Int32Constant(74));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
m.Call(*i, *j);
uint32_t inputs[] = {*i, *j};
CHECK_EQ(ToInt64(inputs[a], inputs[b]) - ToInt64(inputs[c], inputs[d]),
ToInt64(low, high));
}
}
}
TEST(RunInt32PairSubWithSharedInput) {
TestInt32PairSubWithSharedInput(0, 0, 0, 0);
TestInt32PairSubWithSharedInput(1, 0, 0, 0);
TestInt32PairSubWithSharedInput(0, 1, 0, 0);
TestInt32PairSubWithSharedInput(0, 0, 1, 0);
TestInt32PairSubWithSharedInput(0, 0, 0, 1);
TestInt32PairSubWithSharedInput(1, 1, 0, 0);
}
TEST(RunInt32PairMul) {
BufferedRawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
uint32_t high;
uint32_t low;
Node* PairMul = m.Int32PairMul(m.Parameter(0), m.Parameter(1), m.Parameter(2),
m.Parameter(3));
m.StoreToPointer(&low, MachineRepresentation::kWord32,
m.Projection(0, PairMul));
m.StoreToPointer(&high, MachineRepresentation::kWord32,
m.Projection(1, PairMul));
m.Return(m.Int32Constant(74));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
m.Call(static_cast<uint32_t>(*i & 0xffffffff),
static_cast<uint32_t>(*i >> 32),
static_cast<uint32_t>(*j & 0xffffffff),
static_cast<uint32_t>(*j >> 32));
CHECK_EQ(*i * *j, ToInt64(low, high));
}
}
}
TEST(RunInt32PairMulUseOnlyHighWord) {
BufferedRawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
m.Return(m.Projection(1, m.Int32PairMul(m.Parameter(0), m.Parameter(1),
m.Parameter(2), m.Parameter(3))));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
CHECK_EQ(
static_cast<uint32_t>((*i * *j) >> 32),
static_cast<uint32_t>(m.Call(static_cast<uint32_t>(*i & 0xffffffff),
static_cast<uint32_t>(*i >> 32),
static_cast<uint32_t>(*j & 0xffffffff),
static_cast<uint32_t>(*j >> 32))));
}
}
}
void TestInt32PairMulWithSharedInput(int a, int b, int c, int d) {
BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Uint32(),
MachineType::Uint32());
uint32_t high;
uint32_t low;
Node* PairMul = m.Int32PairMul(m.Parameter(a), m.Parameter(b), m.Parameter(c),
m.Parameter(d));
m.StoreToPointer(&low, MachineRepresentation::kWord32,
m.Projection(0, PairMul));
m.StoreToPointer(&high, MachineRepresentation::kWord32,
m.Projection(1, PairMul));
m.Return(m.Int32Constant(74));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
m.Call(*i, *j);
uint32_t inputs[] = {*i, *j};
CHECK_EQ(ToInt64(inputs[a], inputs[b]) * ToInt64(inputs[c], inputs[d]),
ToInt64(low, high));
}
}
}
TEST(RunInt32PairMulWithSharedInput) {
TestInt32PairMulWithSharedInput(0, 0, 0, 0);
TestInt32PairMulWithSharedInput(1, 0, 0, 0);
TestInt32PairMulWithSharedInput(0, 1, 0, 0);
TestInt32PairMulWithSharedInput(0, 0, 1, 0);
TestInt32PairMulWithSharedInput(0, 0, 0, 1);
TestInt32PairMulWithSharedInput(1, 1, 0, 0);
TestInt32PairMulWithSharedInput(0, 1, 1, 0);
}
TEST(RunWord32PairShl) {
BufferedRawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
uint32_t high;
uint32_t low;
Node* PairShl =
m.Word32PairShl(m.Parameter(0), m.Parameter(1), m.Parameter(2));
m.StoreToPointer(&low, MachineRepresentation::kWord32,
m.Projection(0, PairShl));
m.StoreToPointer(&high, MachineRepresentation::kWord32,
m.Projection(1, PairShl));
m.Return(m.Int32Constant(74));
FOR_UINT64_INPUTS(i) {
for (uint32_t j = 0; j < 64; j++) {
m.Call(static_cast<uint32_t>(*i & 0xffffffff),
static_cast<uint32_t>(*i >> 32), j);
CHECK_EQ(*i << j, ToInt64(low, high));
}
}
}
TEST(RunWord32PairShlUseOnlyHighWord) {
BufferedRawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
m.Return(m.Projection(
1, m.Word32PairShl(m.Parameter(0), m.Parameter(1), m.Parameter(2))));
FOR_UINT64_INPUTS(i) {
for (uint32_t j = 0; j < 64; j++) {
CHECK_EQ(
static_cast<uint32_t>((*i << j) >> 32),
static_cast<uint32_t>(m.Call(static_cast<uint32_t>(*i & 0xffffffff),
static_cast<uint32_t>(*i >> 32), j)));
}
}
}
void TestWord32PairShlWithSharedInput(int a, int b) {
BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Uint32(),
MachineType::Uint32());
uint32_t high;
uint32_t low;
Node* PairAdd =
m.Word32PairShl(m.Parameter(a), m.Parameter(b), m.Parameter(1));
m.StoreToPointer(&low, MachineRepresentation::kWord32,
m.Projection(0, PairAdd));
m.StoreToPointer(&high, MachineRepresentation::kWord32,
m.Projection(1, PairAdd));
m.Return(m.Int32Constant(74));
FOR_UINT32_INPUTS(i) {
for (uint32_t j = 0; j < 64; j++) {
m.Call(*i, j);
uint32_t inputs[] = {*i, j};
CHECK_EQ(ToInt64(inputs[a], inputs[b]) << j, ToInt64(low, high));
}
}
}
TEST(RunWord32PairShlWithSharedInput) {
TestWord32PairShlWithSharedInput(0, 0);
TestWord32PairShlWithSharedInput(0, 1);
TestWord32PairShlWithSharedInput(1, 0);
TestWord32PairShlWithSharedInput(1, 1);
}
TEST(RunWord32PairShr) {
BufferedRawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
uint32_t high;
uint32_t low;
Node* PairAdd =
m.Word32PairShr(m.Parameter(0), m.Parameter(1), m.Parameter(2));
m.StoreToPointer(&low, MachineRepresentation::kWord32,
m.Projection(0, PairAdd));
m.StoreToPointer(&high, MachineRepresentation::kWord32,
m.Projection(1, PairAdd));
m.Return(m.Int32Constant(74));
FOR_UINT64_INPUTS(i) {
for (uint32_t j = 0; j < 64; j++) {
m.Call(static_cast<uint32_t>(*i & 0xffffffff),
static_cast<uint32_t>(*i >> 32), j);
CHECK_EQ(*i >> j, ToInt64(low, high));
}
}
}
TEST(RunWord32PairShrUseOnlyHighWord) {
BufferedRawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
m.Return(m.Projection(
1, m.Word32PairShr(m.Parameter(0), m.Parameter(1), m.Parameter(2))));
FOR_UINT64_INPUTS(i) {
for (uint32_t j = 0; j < 64; j++) {
CHECK_EQ(
static_cast<uint32_t>((*i >> j) >> 32),
static_cast<uint32_t>(m.Call(static_cast<uint32_t>(*i & 0xffffffff),
static_cast<uint32_t>(*i >> 32), j)));
}
}
}
TEST(RunWord32PairSar) {
BufferedRawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
uint32_t high;
uint32_t low;
Node* PairAdd =
m.Word32PairSar(m.Parameter(0), m.Parameter(1), m.Parameter(2));
m.StoreToPointer(&low, MachineRepresentation::kWord32,
m.Projection(0, PairAdd));
m.StoreToPointer(&high, MachineRepresentation::kWord32,
m.Projection(1, PairAdd));
m.Return(m.Int32Constant(74));
FOR_INT64_INPUTS(i) {
for (uint32_t j = 0; j < 64; j++) {
m.Call(static_cast<uint32_t>(*i & 0xffffffff),
static_cast<uint32_t>(*i >> 32), j);
CHECK_EQ(*i >> j, static_cast<int64_t>(ToInt64(low, high)));
}
}
}
TEST(RunWord32PairSarUseOnlyHighWord) {
BufferedRawMachineAssemblerTester<int32_t> m(
MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
m.Return(m.Projection(
1, m.Word32PairSar(m.Parameter(0), m.Parameter(1), m.Parameter(2))));
FOR_INT64_INPUTS(i) {
for (uint32_t j = 0; j < 64; j++) {
CHECK_EQ(
static_cast<uint32_t>((*i >> j) >> 32),
static_cast<uint32_t>(m.Call(static_cast<uint32_t>(*i & 0xffffffff),
static_cast<uint32_t>(*i >> 32), j)));
}
}
}
#endif
TEST(RunDeadChangeFloat64ToInt32) {
RawMachineAssemblerTester<int32_t> m;
const int magic = 0x88abcda4;
m.ChangeFloat64ToInt32(m.Float64Constant(999.78));
m.Return(m.Int32Constant(magic));
CHECK_EQ(magic, m.Call());
}
TEST(RunDeadChangeInt32ToFloat64) {
RawMachineAssemblerTester<int32_t> m;
const int magic = 0x8834abcd;
m.ChangeInt32ToFloat64(m.Int32Constant(magic - 6888));
m.Return(m.Int32Constant(magic));
CHECK_EQ(magic, m.Call());
}
TEST(RunLoopPhiInduction2) {
RawMachineAssemblerTester<int32_t> m;
int false_val = 0x10777;
// x = false_val; while(false) { x++; } return x;
RawMachineLabel header, body, end;
Node* false_node = m.Int32Constant(false_val);
m.Goto(&header);
m.Bind(&header);
Node* phi = m.Phi(MachineRepresentation::kWord32, false_node, false_node);
m.Branch(m.Int32Constant(0), &body, &end);
m.Bind(&body);
Node* add = m.Int32Add(phi, m.Int32Constant(1));
phi->ReplaceInput(1, add);
m.Goto(&header);
m.Bind(&end);
m.Return(phi);
CHECK_EQ(false_val, m.Call());
}
TEST(RunFloatDiamond) {
RawMachineAssemblerTester<int32_t> m;
const int magic = 99645;
float buffer = 0.1f;
float constant = 99.99f;
RawMachineLabel blocka, blockb, end;
Node* k1 = m.Float32Constant(constant);
Node* k2 = m.Float32Constant(0 - constant);
m.Branch(m.Int32Constant(0), &blocka, &blockb);
m.Bind(&blocka);
m.Goto(&end);
m.Bind(&blockb);
m.Goto(&end);
m.Bind(&end);
Node* phi = m.Phi(MachineRepresentation::kFloat32, k2, k1);
m.Store(MachineRepresentation::kFloat32, m.PointerConstant(&buffer),
m.IntPtrConstant(0), phi, kNoWriteBarrier);
m.Return(m.Int32Constant(magic));
CHECK_EQ(magic, m.Call());
CHECK(constant == buffer);
}
TEST(RunDoubleDiamond) {
RawMachineAssemblerTester<int32_t> m;
const int magic = 99645;
double buffer = 0.1;
double constant = 99.99;
RawMachineLabel blocka, blockb, end;
Node* k1 = m.Float64Constant(constant);
Node* k2 = m.Float64Constant(0 - constant);
m.Branch(m.Int32Constant(0), &blocka, &blockb);
m.Bind(&blocka);
m.Goto(&end);
m.Bind(&blockb);
m.Goto(&end);
m.Bind(&end);
Node* phi = m.Phi(MachineRepresentation::kFloat64, k2, k1);
m.Store(MachineRepresentation::kFloat64, m.PointerConstant(&buffer),
m.Int32Constant(0), phi, kNoWriteBarrier);
m.Return(m.Int32Constant(magic));
CHECK_EQ(magic, m.Call());
CHECK_EQ(constant, buffer);
}
TEST(RunRefDiamond) {
RawMachineAssemblerTester<int32_t> m;
const int magic = 99644;
Handle<String> rexpected =
CcTest::i_isolate()->factory()->InternalizeUtf8String("A");
String* buffer;
RawMachineLabel blocka, blockb, end;
Node* k1 = m.StringConstant("A");
Node* k2 = m.StringConstant("B");
m.Branch(m.Int32Constant(0), &blocka, &blockb);
m.Bind(&blocka);
m.Goto(&end);
m.Bind(&blockb);
m.Goto(&end);
m.Bind(&end);
Node* phi = m.Phi(MachineRepresentation::kTagged, k2, k1);
m.Store(MachineRepresentation::kTagged, m.PointerConstant(&buffer),
m.Int32Constant(0), phi, kNoWriteBarrier);
m.Return(m.Int32Constant(magic));
CHECK_EQ(magic, m.Call());
CHECK(rexpected->SameValue(buffer));
}
TEST(RunDoubleRefDiamond) {
RawMachineAssemblerTester<int32_t> m;
const int magic = 99648;
double dbuffer = 0.1;
double dconstant = 99.99;
Handle<String> rexpected =
CcTest::i_isolate()->factory()->InternalizeUtf8String("AX");
String* rbuffer;
RawMachineLabel blocka, blockb, end;
Node* d1 = m.Float64Constant(dconstant);
Node* d2 = m.Float64Constant(0 - dconstant);
Node* r1 = m.StringConstant("AX");
Node* r2 = m.StringConstant("BX");
m.Branch(m.Int32Constant(0), &blocka, &blockb);
m.Bind(&blocka);
m.Goto(&end);
m.Bind(&blockb);
m.Goto(&end);
m.Bind(&end);
Node* dphi = m.Phi(MachineRepresentation::kFloat64, d2, d1);
Node* rphi = m.Phi(MachineRepresentation::kTagged, r2, r1);
m.Store(MachineRepresentation::kFloat64, m.PointerConstant(&dbuffer),
m.Int32Constant(0), dphi, kNoWriteBarrier);
m.Store(MachineRepresentation::kTagged, m.PointerConstant(&rbuffer),
m.Int32Constant(0), rphi, kNoWriteBarrier);
m.Return(m.Int32Constant(magic));
CHECK_EQ(magic, m.Call());
CHECK_EQ(dconstant, dbuffer);
CHECK(rexpected->SameValue(rbuffer));
}
TEST(RunDoubleRefDoubleDiamond) {
RawMachineAssemblerTester<int32_t> m;
const int magic = 99649;
double dbuffer = 0.1;
double dconstant = 99.997;
Handle<String> rexpected =
CcTest::i_isolate()->factory()->InternalizeUtf8String("AD");
String* rbuffer;
RawMachineLabel blocka, blockb, mid, blockd, blocke, end;
Node* d1 = m.Float64Constant(dconstant);
Node* d2 = m.Float64Constant(0 - dconstant);
Node* r1 = m.StringConstant("AD");
Node* r2 = m.StringConstant("BD");
m.Branch(m.Int32Constant(0), &blocka, &blockb);
m.Bind(&blocka);
m.Goto(&mid);
m.Bind(&blockb);
m.Goto(&mid);
m.Bind(&mid);
Node* dphi1 = m.Phi(MachineRepresentation::kFloat64, d2, d1);
Node* rphi1 = m.Phi(MachineRepresentation::kTagged, r2, r1);
m.Branch(m.Int32Constant(0), &blockd, &blocke);
m.Bind(&blockd);
m.Goto(&end);
m.Bind(&blocke);
m.Goto(&end);
m.Bind(&end);
Node* dphi2 = m.Phi(MachineRepresentation::kFloat64, d1, dphi1);
Node* rphi2 = m.Phi(MachineRepresentation::kTagged, r1, rphi1);
m.Store(MachineRepresentation::kFloat64, m.PointerConstant(&dbuffer),
m.Int32Constant(0), dphi2, kNoWriteBarrier);
m.Store(MachineRepresentation::kTagged, m.PointerConstant(&rbuffer),
m.Int32Constant(0), rphi2, kNoWriteBarrier);
m.Return(m.Int32Constant(magic));
CHECK_EQ(magic, m.Call());
CHECK_EQ(dconstant, dbuffer);
CHECK(rexpected->SameValue(rbuffer));
}
TEST(RunDoubleLoopPhi) {
RawMachineAssemblerTester<int32_t> m;
RawMachineLabel header, body, end;
int magic = 99773;
double buffer = 0.99;
double dconstant = 777.1;
Node* zero = m.Int32Constant(0);
Node* dk = m.Float64Constant(dconstant);
m.Goto(&header);
m.Bind(&header);
Node* phi = m.Phi(MachineRepresentation::kFloat64, dk, dk);
phi->ReplaceInput(1, phi);
m.Branch(zero, &body, &end);
m.Bind(&body);
m.Goto(&header);
m.Bind(&end);
m.Store(MachineRepresentation::kFloat64, m.PointerConstant(&buffer),
m.Int32Constant(0), phi, kNoWriteBarrier);
m.Return(m.Int32Constant(magic));
CHECK_EQ(magic, m.Call());
}
TEST(RunCountToTenAccRaw) {
RawMachineAssemblerTester<int32_t> m;
Node* zero = m.Int32Constant(0);
Node* ten = m.Int32Constant(10);
Node* one = m.Int32Constant(1);
RawMachineLabel header, body, body_cont, end;
m.Goto(&header);
m.Bind(&header);
Node* i = m.Phi(MachineRepresentation::kWord32, zero, zero);
Node* j = m.Phi(MachineRepresentation::kWord32, zero, zero);
m.Goto(&body);
m.Bind(&body);
Node* next_i = m.Int32Add(i, one);
Node* next_j = m.Int32Add(j, one);
m.Branch(m.Word32Equal(next_i, ten), &end, &body_cont);
m.Bind(&body_cont);
i->ReplaceInput(1, next_i);
j->ReplaceInput(1, next_j);
m.Goto(&header);
m.Bind(&end);
m.Return(ten);
CHECK_EQ(10, m.Call());
}
TEST(RunCountToTenAccRaw2) {
RawMachineAssemblerTester<int32_t> m;
Node* zero = m.Int32Constant(0);
Node* ten = m.Int32Constant(10);
Node* one = m.Int32Constant(1);
RawMachineLabel header, body, body_cont, end;
m.Goto(&header);
m.Bind(&header);
Node* i = m.Phi(MachineRepresentation::kWord32, zero, zero);
Node* j = m.Phi(MachineRepresentation::kWord32, zero, zero);
Node* k = m.Phi(MachineRepresentation::kWord32, zero, zero);
m.Goto(&body);
m.Bind(&body);
Node* next_i = m.Int32Add(i, one);
Node* next_j = m.Int32Add(j, one);
Node* next_k = m.Int32Add(j, one);
m.Branch(m.Word32Equal(next_i, ten), &end, &body_cont);
m.Bind(&body_cont);
i->ReplaceInput(1, next_i);
j->ReplaceInput(1, next_j);
k->ReplaceInput(1, next_k);
m.Goto(&header);
m.Bind(&end);
m.Return(ten);
CHECK_EQ(10, m.Call());
}
TEST(RunAddTree) {
RawMachineAssemblerTester<int32_t> m;
int32_t inputs[] = {11, 12, 13, 14, 15, 16, 17, 18};
Node* base = m.PointerConstant(inputs);
Node* n0 =
m.Load(MachineType::Int32(), base, m.Int32Constant(0 * sizeof(int32_t)));
Node* n1 =
m.Load(MachineType::Int32(), base, m.Int32Constant(1 * sizeof(int32_t)));
Node* n2 =
m.Load(MachineType::Int32(), base, m.Int32Constant(2 * sizeof(int32_t)));
Node* n3 =
m.Load(MachineType::Int32(), base, m.Int32Constant(3 * sizeof(int32_t)));
Node* n4 =
m.Load(MachineType::Int32(), base, m.Int32Constant(4 * sizeof(int32_t)));
Node* n5 =
m.Load(MachineType::Int32(), base, m.Int32Constant(5 * sizeof(int32_t)));
Node* n6 =
m.Load(MachineType::Int32(), base, m.Int32Constant(6 * sizeof(int32_t)));
Node* n7 =
m.Load(MachineType::Int32(), base, m.Int32Constant(7 * sizeof(int32_t)));
Node* i1 = m.Int32Add(n0, n1);
Node* i2 = m.Int32Add(n2, n3);
Node* i3 = m.Int32Add(n4, n5);
Node* i4 = m.Int32Add(n6, n7);
Node* i5 = m.Int32Add(i1, i2);
Node* i6 = m.Int32Add(i3, i4);
Node* i7 = m.Int32Add(i5, i6);
m.Return(i7);
CHECK_EQ(116, m.Call());
}
static const int kFloat64CompareHelperTestCases = 15;
static const int kFloat64CompareHelperNodeType = 4;
static int Float64CompareHelper(RawMachineAssemblerTester<int32_t>* m,
int test_case, int node_type, double x,
double y) {
static double buffer[2];
buffer[0] = x;
buffer[1] = y;
CHECK(0 <= test_case && test_case < kFloat64CompareHelperTestCases);
CHECK(0 <= node_type && node_type < kFloat64CompareHelperNodeType);
CHECK(x < y);
bool load_a = node_type / 2 == 1;
bool load_b = node_type % 2 == 1;
Node* a =
load_a ? m->Load(MachineType::Float64(), m->PointerConstant(&buffer[0]))
: m->Float64Constant(x);
Node* b =
load_b ? m->Load(MachineType::Float64(), m->PointerConstant(&buffer[1]))
: m->Float64Constant(y);
Node* cmp = NULL;
bool expected = false;
switch (test_case) {
// Equal tests.
case 0:
cmp = m->Float64Equal(a, b);
expected = false;
break;
case 1:
cmp = m->Float64Equal(a, a);
expected = true;
break;
// LessThan tests.
case 2:
cmp = m->Float64LessThan(a, b);
expected = true;
break;
case 3:
cmp = m->Float64LessThan(b, a);
expected = false;
break;
case 4:
cmp = m->Float64LessThan(a, a);
expected = false;
break;
// LessThanOrEqual tests.
case 5:
cmp = m->Float64LessThanOrEqual(a, b);
expected = true;
break;
case 6:
cmp = m->Float64LessThanOrEqual(b, a);
expected = false;
break;
case 7:
cmp = m->Float64LessThanOrEqual(a, a);
expected = true;
break;
// NotEqual tests.
case 8:
cmp = m->Float64NotEqual(a, b);
expected = true;
break;
case 9:
cmp = m->Float64NotEqual(b, a);
expected = true;
break;
case 10:
cmp = m->Float64NotEqual(a, a);
expected = false;
break;
// GreaterThan tests.
case 11:
cmp = m->Float64GreaterThan(a, a);
expected = false;
break;
case 12:
cmp = m->Float64GreaterThan(a, b);
expected = false;
break;
// GreaterThanOrEqual tests.
case 13:
cmp = m->Float64GreaterThanOrEqual(a, a);
expected = true;
break;
case 14:
cmp = m->Float64GreaterThanOrEqual(b, a);
expected = true;
break;
default:
UNREACHABLE();
}
m->Return(cmp);
return expected;
}
TEST(RunFloat64Compare) {
double inf = V8_INFINITY;
// All pairs (a1, a2) are of the form a1 < a2.
double inputs[] = {0.0, 1.0, -1.0, 0.22, -1.22, 0.22,
-inf, 0.22, 0.22, inf, -inf, inf};
for (int test = 0; test < kFloat64CompareHelperTestCases; test++) {
for (int node_type = 0; node_type < kFloat64CompareHelperNodeType;
node_type++) {
for (size_t input = 0; input < arraysize(inputs); input += 2) {
RawMachineAssemblerTester<int32_t> m;
int expected = Float64CompareHelper(&m, test, node_type, inputs[input],
inputs[input + 1]);
CHECK_EQ(expected, m.Call());
}
}
}
}
TEST(RunFloat64UnorderedCompare) {
RawMachineAssemblerTester<int32_t> m;
const Operator* operators[] = {m.machine()->Float64Equal(),
m.machine()->Float64LessThan(),
m.machine()->Float64LessThanOrEqual()};
double nan = std::numeric_limits<double>::quiet_NaN();
FOR_FLOAT64_INPUTS(i) {
for (size_t o = 0; o < arraysize(operators); ++o) {
for (int j = 0; j < 2; j++) {
RawMachineAssemblerTester<int32_t> m;
Node* a = m.Float64Constant(*i);
Node* b = m.Float64Constant(nan);
if (j == 1) std::swap(a, b);
m.Return(m.AddNode(operators[o], a, b));
CHECK_EQ(0, m.Call());
}
}
}
}
TEST(RunFloat64Equal) {
double input_a = 0.0;
double input_b = 0.0;
RawMachineAssemblerTester<int32_t> m;
Node* a = m.LoadFromPointer(&input_a, MachineType::Float64());
Node* b = m.LoadFromPointer(&input_b, MachineType::Float64());
m.Return(m.Float64Equal(a, b));
CompareWrapper cmp(IrOpcode::kFloat64Equal);
FOR_FLOAT64_INPUTS(pl) {
FOR_FLOAT64_INPUTS(pr) {
input_a = *pl;
input_b = *pr;
int32_t expected = cmp.Float64Compare(input_a, input_b) ? 1 : 0;
CHECK_EQ(expected, m.Call());
}
}
}
TEST(RunFloat64LessThan) {
double input_a = 0.0;
double input_b = 0.0;
RawMachineAssemblerTester<int32_t> m;
Node* a = m.LoadFromPointer(&input_a, MachineType::Float64());
Node* b = m.LoadFromPointer(&input_b, MachineType::Float64());
m.Return(m.Float64LessThan(a, b));
CompareWrapper cmp(IrOpcode::kFloat64LessThan);
FOR_FLOAT64_INPUTS(pl) {
FOR_FLOAT64_INPUTS(pr) {
input_a = *pl;
input_b = *pr;
int32_t expected = cmp.Float64Compare(input_a, input_b) ? 1 : 0;
CHECK_EQ(expected, m.Call());
}
}
}
static void IntPtrCompare(intptr_t left, intptr_t right) {
for (int test = 0; test < 7; test++) {
RawMachineAssemblerTester<bool> m(MachineType::Pointer(),
MachineType::Pointer());
Node* p0 = m.Parameter(0);
Node* p1 = m.Parameter(1);
Node* res = NULL;
bool expected = false;
switch (test) {
case 0:
res = m.IntPtrLessThan(p0, p1);
expected = true;
break;
case 1:
res = m.IntPtrLessThanOrEqual(p0, p1);
expected = true;
break;
case 2:
res = m.IntPtrEqual(p0, p1);
expected = false;
break;
case 3:
res = m.IntPtrGreaterThanOrEqual(p0, p1);
expected = false;
break;
case 4:
res = m.IntPtrGreaterThan(p0, p1);
expected = false;
break;
case 5:
res = m.IntPtrEqual(p0, p0);
expected = true;
break;
case 6:
res = m.IntPtrNotEqual(p0, p1);
expected = true;
break;
default:
UNREACHABLE();
break;
}
m.Return(res);
CHECK_EQ(expected, m.Call(reinterpret_cast<int32_t*>(left),
reinterpret_cast<int32_t*>(right)));
}
}
TEST(RunIntPtrCompare) {
intptr_t min = std::numeric_limits<intptr_t>::min();
intptr_t max = std::numeric_limits<intptr_t>::max();
// An ascending chain of intptr_t
intptr_t inputs[] = {min, min / 2, -1, 0, 1, max / 2, max};
for (size_t i = 0; i < arraysize(inputs) - 1; i++) {
IntPtrCompare(inputs[i], inputs[i + 1]);
}
}
TEST(RunTestIntPtrArithmetic) {
static const int kInputSize = 10;
int32_t inputs[kInputSize];
int32_t outputs[kInputSize];
for (int i = 0; i < kInputSize; i++) {
inputs[i] = i;
outputs[i] = -1;
}
RawMachineAssemblerTester<int32_t*> m;
Node* input = m.PointerConstant(&inputs[0]);
Node* output = m.PointerConstant(&outputs[kInputSize - 1]);
Node* elem_size = m.IntPtrConstant(sizeof(inputs[0]));
for (int i = 0; i < kInputSize; i++) {
m.Store(MachineRepresentation::kWord32, output,
m.Load(MachineType::Int32(), input), kNoWriteBarrier);
input = m.IntPtrAdd(input, elem_size);
output = m.IntPtrSub(output, elem_size);
}
m.Return(input);
CHECK_EQ(&inputs[kInputSize], m.Call());
for (int i = 0; i < kInputSize; i++) {
CHECK_EQ(i, inputs[i]);
CHECK_EQ(kInputSize - i - 1, outputs[i]);
}
}
TEST(RunSpillLotsOfThings) {
static const int kInputSize = 1000;
RawMachineAssemblerTester<int32_t> m;
Node* accs[kInputSize];
int32_t outputs[kInputSize];
Node* one = m.Int32Constant(1);
Node* acc = one;
for (int i = 0; i < kInputSize; i++) {
acc = m.Int32Add(acc, one);
accs[i] = acc;
}
for (int i = 0; i < kInputSize; i++) {
m.StoreToPointer(&outputs[i], MachineRepresentation::kWord32, accs[i]);
}
m.Return(one);
m.Call();
for (int i = 0; i < kInputSize; i++) {
CHECK_EQ(outputs[i], i + 2);
}
}
TEST(RunSpillConstantsAndParameters) {
static const int kInputSize = 1000;
static const int32_t kBase = 987;
RawMachineAssemblerTester<int32_t> m(MachineType::Int32(),
MachineType::Int32());
int32_t outputs[kInputSize];
Node* csts[kInputSize];
Node* accs[kInputSize];
Node* acc = m.Int32Constant(0);
for (int i = 0; i < kInputSize; i++) {
csts[i] = m.Int32Constant(static_cast<int32_t>(kBase + i));
}
for (int i = 0; i < kInputSize; i++) {
acc = m.Int32Add(acc, csts[i]);
accs[i] = acc;
}
for (int i = 0; i < kInputSize; i++) {
m.StoreToPointer(&outputs[i], MachineRepresentation::kWord32, accs[i]);
}
m.Return(m.Int32Add(acc, m.Int32Add(m.Parameter(0), m.Parameter(1))));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = *i + *j;
for (int k = 0; k < kInputSize; k++) {
expected += kBase + k;
}
CHECK_EQ(expected, m.Call(*i, *j));
expected = 0;
for (int k = 0; k < kInputSize; k++) {
expected += kBase + k;
CHECK_EQ(expected, outputs[k]);
}
}
}
}
TEST(RunNewSpaceConstantsInPhi) {
RawMachineAssemblerTester<Object*> m(MachineType::Int32());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapNumber> true_val = isolate->factory()->NewHeapNumber(11.2);
Handle<HeapNumber> false_val = isolate->factory()->NewHeapNumber(11.3);
Node* true_node = m.HeapConstant(true_val);
Node* false_node = m.HeapConstant(false_val);
RawMachineLabel blocka, blockb, end;
m.Branch(m.Parameter(0), &blocka, &blockb);
m.Bind(&blocka);
m.Goto(&end);
m.Bind(&blockb);
m.Goto(&end);
m.Bind(&end);
Node* phi = m.Phi(MachineRepresentation::kTagged, true_node, false_node);
m.Return(phi);
CHECK_EQ(*false_val, m.Call(0));
CHECK_EQ(*true_val, m.Call(1));
}
TEST(RunInt32AddWithOverflowP) {
int32_t actual_val = -1;
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
Node* add = m.Int32AddWithOverflow(bt.param0, bt.param1);
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
bt.AddReturn(ovf);
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected_val;
int expected_ovf = base::bits::SignedAddOverflow32(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, bt.call(*i, *j));
CHECK_EQ(expected_val, actual_val);
}
}
}
TEST(RunInt32AddWithOverflowImm) {
int32_t actual_val = -1, expected_val = 0;
FOR_INT32_INPUTS(i) {
{
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
Node* add = m.Int32AddWithOverflow(m.Int32Constant(*i), m.Parameter(0));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
m.Return(ovf);
FOR_INT32_INPUTS(j) {
int expected_ovf =
base::bits::SignedAddOverflow32(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, m.Call(*j));
CHECK_EQ(expected_val, actual_val);
}
}
{
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
Node* add = m.Int32AddWithOverflow(m.Parameter(0), m.Int32Constant(*i));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
m.Return(ovf);
FOR_INT32_INPUTS(j) {
int expected_ovf =
base::bits::SignedAddOverflow32(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, m.Call(*j));
CHECK_EQ(expected_val, actual_val);
}
}
FOR_INT32_INPUTS(j) {
RawMachineAssemblerTester<int32_t> m;
Node* add =
m.Int32AddWithOverflow(m.Int32Constant(*i), m.Int32Constant(*j));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
m.Return(ovf);
int expected_ovf = base::bits::SignedAddOverflow32(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, m.Call());
CHECK_EQ(expected_val, actual_val);
}
}
}
TEST(RunInt32AddWithOverflowInBranchP) {
int constant = 911777;
RawMachineLabel blocka, blockb;
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
Node* add = m.Int32AddWithOverflow(bt.param0, bt.param1);
Node* ovf = m.Projection(1, add);
m.Branch(ovf, &blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
Node* val = m.Projection(0, add);
bt.AddReturn(val);
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected;
if (base::bits::SignedAddOverflow32(*i, *j, &expected))
expected = constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
TEST(RunInt32SubWithOverflowP) {
int32_t actual_val = -1;
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
Node* add = m.Int32SubWithOverflow(bt.param0, bt.param1);
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
bt.AddReturn(ovf);
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected_val;
int expected_ovf = base::bits::SignedSubOverflow32(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, bt.call(*i, *j));
CHECK_EQ(expected_val, actual_val);
}
}
}
TEST(RunInt32SubWithOverflowImm) {
int32_t actual_val = -1, expected_val = 0;
FOR_INT32_INPUTS(i) {
{
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
Node* add = m.Int32SubWithOverflow(m.Int32Constant(*i), m.Parameter(0));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
m.Return(ovf);
FOR_INT32_INPUTS(j) {
int expected_ovf =
base::bits::SignedSubOverflow32(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, m.Call(*j));
CHECK_EQ(expected_val, actual_val);
}
}
{
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
Node* add = m.Int32SubWithOverflow(m.Parameter(0), m.Int32Constant(*i));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
m.Return(ovf);
FOR_INT32_INPUTS(j) {
int expected_ovf =
base::bits::SignedSubOverflow32(*j, *i, &expected_val);
CHECK_EQ(expected_ovf, m.Call(*j));
CHECK_EQ(expected_val, actual_val);
}
}
FOR_INT32_INPUTS(j) {
RawMachineAssemblerTester<int32_t> m;
Node* add =
m.Int32SubWithOverflow(m.Int32Constant(*i), m.Int32Constant(*j));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
m.Return(ovf);
int expected_ovf = base::bits::SignedSubOverflow32(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, m.Call());
CHECK_EQ(expected_val, actual_val);
}
}
}
TEST(RunInt32SubWithOverflowInBranchP) {
int constant = 911999;
RawMachineLabel blocka, blockb;
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
Node* sub = m.Int32SubWithOverflow(bt.param0, bt.param1);
Node* ovf = m.Projection(1, sub);
m.Branch(ovf, &blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
Node* val = m.Projection(0, sub);
bt.AddReturn(val);
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected;
if (base::bits::SignedSubOverflow32(*i, *j, &expected))
expected = constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
TEST(RunInt32MulWithOverflowP) {
int32_t actual_val = -1;
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
Node* add = m.Int32MulWithOverflow(bt.param0, bt.param1);
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
bt.AddReturn(ovf);
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected_val;
int expected_ovf = base::bits::SignedMulOverflow32(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, bt.call(*i, *j));
if (!expected_ovf) {
CHECK_EQ(expected_val, actual_val);
}
}
}
}
TEST(RunInt32MulWithOverflowImm) {
int32_t actual_val = -1, expected_val = 0;
FOR_INT32_INPUTS(i) {
{
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
Node* add = m.Int32MulWithOverflow(m.Int32Constant(*i), m.Parameter(0));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
m.Return(ovf);
FOR_INT32_INPUTS(j) {
int expected_ovf =
base::bits::SignedMulOverflow32(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, m.Call(*j));
if (!expected_ovf) {
CHECK_EQ(expected_val, actual_val);
}
}
}
{
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
Node* add = m.Int32MulWithOverflow(m.Parameter(0), m.Int32Constant(*i));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
m.Return(ovf);
FOR_INT32_INPUTS(j) {
int expected_ovf =
base::bits::SignedMulOverflow32(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, m.Call(*j));
if (!expected_ovf) {
CHECK_EQ(expected_val, actual_val);
}
}
}
FOR_INT32_INPUTS(j) {
RawMachineAssemblerTester<int32_t> m;
Node* add =
m.Int32MulWithOverflow(m.Int32Constant(*i), m.Int32Constant(*j));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
m.Return(ovf);
int expected_ovf = base::bits::SignedMulOverflow32(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, m.Call());
if (!expected_ovf) {
CHECK_EQ(expected_val, actual_val);
}
}
}
}
TEST(RunInt32MulWithOverflowInBranchP) {
int constant = 911777;
RawMachineLabel blocka, blockb;
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
Node* add = m.Int32MulWithOverflow(bt.param0, bt.param1);
Node* ovf = m.Projection(1, add);
m.Branch(ovf, &blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
Node* val = m.Projection(0, add);
bt.AddReturn(val);
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected;
if (base::bits::SignedMulOverflow32(*i, *j, &expected))
expected = constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
TEST(RunWord64EqualInBranchP) {
int64_t input;
RawMachineLabel blocka, blockb;
RawMachineAssemblerTester<int64_t> m;
if (!m.machine()->Is64()) return;
Node* value = m.LoadFromPointer(&input, MachineType::Int64());
m.Branch(m.Word64Equal(value, m.Int64Constant(0)), &blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(1));
m.Bind(&blockb);
m.Return(m.Int32Constant(2));
input = V8_INT64_C(0);
CHECK_EQ(1, m.Call());
input = V8_INT64_C(1);
CHECK_EQ(2, m.Call());
input = V8_INT64_C(0x100000000);
CHECK_EQ(2, m.Call());
}
TEST(RunChangeInt32ToInt64P) {
if (kPointerSize < 8) return;
int64_t actual = -1;
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
m.StoreToPointer(&actual, MachineRepresentation::kWord64,
m.ChangeInt32ToInt64(m.Parameter(0)));
m.Return(m.Int32Constant(0));
FOR_INT32_INPUTS(i) {
int64_t expected = *i;
CHECK_EQ(0, m.Call(*i));
CHECK_EQ(expected, actual);
}
}
TEST(RunChangeUint32ToUint64P) {
if (kPointerSize < 8) return;
int64_t actual = -1;
RawMachineAssemblerTester<int32_t> m(MachineType::Uint32());
m.StoreToPointer(&actual, MachineRepresentation::kWord64,
m.ChangeUint32ToUint64(m.Parameter(0)));
m.Return(m.Int32Constant(0));
FOR_UINT32_INPUTS(i) {
int64_t expected = static_cast<uint64_t>(*i);
CHECK_EQ(0, m.Call(*i));
CHECK_EQ(expected, actual);
}
}
TEST(RunTruncateInt64ToInt32P) {
if (kPointerSize < 8) return;
int64_t expected = -1;
RawMachineAssemblerTester<int32_t> m;
m.Return(m.TruncateInt64ToInt32(
m.LoadFromPointer(&expected, MachineType::Int64())));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
expected = (static_cast<uint64_t>(*j) << 32) | *i;
CHECK_EQ(static_cast<int32_t>(expected), m.Call());
}
}
}
TEST(RunTruncateFloat64ToWord32P) {
struct {
double from;
double raw;
} kValues[] = {{0, 0},
{0.5, 0},
{-0.5, 0},
{1.5, 1},
{-1.5, -1},
{5.5, 5},
{-5.0, -5},
{std::numeric_limits<double>::quiet_NaN(), 0},
{std::numeric_limits<double>::infinity(), 0},
{-std::numeric_limits<double>::quiet_NaN(), 0},
{-std::numeric_limits<double>::infinity(), 0},
{4.94065645841e-324, 0},
{-4.94065645841e-324, 0},
{0.9999999999999999, 0},
{-0.9999999999999999, 0},
{4294967296.0, 0},
{-4294967296.0, 0},
{9223372036854775000.0, 4294966272.0},
{-9223372036854775000.0, -4294966272.0},
{4.5036e+15, 372629504},
{-4.5036e+15, -372629504},
{287524199.5377777, 0x11234567},
{-287524199.5377777, -0x11234567},
{2300193596.302222, 2300193596.0},
{-2300193596.302222, -2300193596.0},
{4600387192.604444, 305419896},
{-4600387192.604444, -305419896},
{4823855600872397.0, 1737075661},
{-4823855600872397.0, -1737075661},
{4503603922337791.0, -1},
{-4503603922337791.0, 1},
{4503601774854143.0, 2147483647},
{-4503601774854143.0, -2147483647},
{9007207844675582.0, -2},
{-9007207844675582.0, 2},
{2.4178527921507624e+24, -536870912},
{-2.4178527921507624e+24, 536870912},
{2.417853945072267e+24, -536870912},
{-2.417853945072267e+24, 536870912},
{4.8357055843015248e+24, -1073741824},
{-4.8357055843015248e+24, 1073741824},
{4.8357078901445341e+24, -1073741824},
{-4.8357078901445341e+24, 1073741824},
{2147483647.0, 2147483647.0},
{-2147483648.0, -2147483648.0},
{9.6714111686030497e+24, -2147483648.0},
{-9.6714111686030497e+24, -2147483648.0},
{9.6714157802890681e+24, -2147483648.0},
{-9.6714157802890681e+24, -2147483648.0},
{1.9342813113834065e+25, 2147483648.0},
{-1.9342813113834065e+25, 2147483648.0},
{3.868562622766813e+25, 0},
{-3.868562622766813e+25, 0},
{1.7976931348623157e+308, 0},
{-1.7976931348623157e+308, 0}};
double input = -1.0;
RawMachineAssemblerTester<int32_t> m;
m.Return(m.TruncateFloat64ToWord32(
m.LoadFromPointer(&input, MachineType::Float64())));
for (size_t i = 0; i < arraysize(kValues); ++i) {
input = kValues[i].from;
uint64_t expected = static_cast<int64_t>(kValues[i].raw);
CHECK_EQ(static_cast<int>(expected), m.Call());
}
}
TEST(RunTruncateFloat64ToWord32SignExtension) {
BufferedRawMachineAssemblerTester<int32_t> r;
r.Return(r.Int32Sub(r.TruncateFloat64ToWord32(r.Float64Constant(-1.0)),
r.Int32Constant(0)));
CHECK_EQ(-1, r.Call());
}
TEST(RunChangeFloat32ToFloat64) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float32());
m.Return(m.ChangeFloat32ToFloat64(m.Parameter(0)));
FOR_FLOAT32_INPUTS(i) {
CHECK_DOUBLE_EQ(static_cast<double>(*i), m.Call(*i));
}
}
TEST(RunFloat32Constant) {
FOR_FLOAT32_INPUTS(i) {
BufferedRawMachineAssemblerTester<float> m;
m.Return(m.Float32Constant(*i));
CHECK_FLOAT_EQ(*i, m.Call());
}
}
TEST(RunFloat64ExtractLowWord32) {
BufferedRawMachineAssemblerTester<uint32_t> m(MachineType::Float64());
m.Return(m.Float64ExtractLowWord32(m.Parameter(0)));
FOR_FLOAT64_INPUTS(i) {
uint32_t expected = static_cast<uint32_t>(bit_cast<uint64_t>(*i));
CHECK_EQ(expected, m.Call(*i));
}
}
TEST(RunFloat64ExtractHighWord32) {
BufferedRawMachineAssemblerTester<uint32_t> m(MachineType::Float64());
m.Return(m.Float64ExtractHighWord32(m.Parameter(0)));
FOR_FLOAT64_INPUTS(i) {
uint32_t expected = static_cast<uint32_t>(bit_cast<uint64_t>(*i) >> 32);
CHECK_EQ(expected, m.Call(*i));
}
}
TEST(RunFloat64InsertLowWord32) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
MachineType::Int32());
m.Return(m.Float64InsertLowWord32(m.Parameter(0), m.Parameter(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_INT32_INPUTS(j) {
double expected = bit_cast<double>(
(bit_cast<uint64_t>(*i) & ~(V8_UINT64_C(0xFFFFFFFF))) |
(static_cast<uint64_t>(bit_cast<uint32_t>(*j))));
CHECK_DOUBLE_EQ(expected, m.Call(*i, *j));
}
}
}
TEST(RunFloat64InsertHighWord32) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
MachineType::Uint32());
m.Return(m.Float64InsertHighWord32(m.Parameter(0), m.Parameter(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint64_t expected = (bit_cast<uint64_t>(*i) & 0xFFFFFFFF) |
(static_cast<uint64_t>(*j) << 32);
CHECK_DOUBLE_EQ(bit_cast<double>(expected), m.Call(*i, *j));
}
}
}
TEST(RunFloat32Abs) {
BufferedRawMachineAssemblerTester<float> m(MachineType::Float32());
m.Return(m.Float32Abs(m.Parameter(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(std::abs(*i), m.Call(*i)); }
}
TEST(RunFloat64Abs) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Abs(m.Parameter(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(std::abs(*i), m.Call(*i)); }
}
TEST(RunFloat64Acos) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Acos(m.Parameter(0)));
FOR_FLOAT64_INPUTS(i) {
CHECK_DOUBLE_EQ(base::ieee754::acos(*i), m.Call(*i));
}
}
TEST(RunFloat64Acosh) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Acosh(m.Parameter(0)));
FOR_FLOAT64_INPUTS(i) {
CHECK_DOUBLE_EQ(base::ieee754::acosh(*i), m.Call(*i));
}
}
TEST(RunFloat64Asin) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Asin(m.Parameter(0)));
FOR_FLOAT64_INPUTS(i) {
CHECK_DOUBLE_EQ(base::ieee754::asin(*i), m.Call(*i));
}
}
TEST(RunFloat64Asinh) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Asinh(m.Parameter(0)));
FOR_FLOAT64_INPUTS(i) {
CHECK_DOUBLE_EQ(base::ieee754::asinh(*i), m.Call(*i));
}
}
TEST(RunFloat64Atan) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Atan(m.Parameter(0)));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
CHECK_DOUBLE_EQ(-0.0, m.Call(-0.0));
CHECK_DOUBLE_EQ(0.0, m.Call(0.0));
FOR_FLOAT64_INPUTS(i) {
CHECK_DOUBLE_EQ(base::ieee754::atan(*i), m.Call(*i));
}
}
TEST(RunFloat64Atanh) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Atanh(m.Parameter(0)));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
CHECK_DOUBLE_EQ(std::numeric_limits<double>::infinity(), m.Call(1.0));
CHECK_DOUBLE_EQ(-std::numeric_limits<double>::infinity(), m.Call(-1.0));
CHECK_DOUBLE_EQ(-0.0, m.Call(-0.0));
CHECK_DOUBLE_EQ(0.0, m.Call(0.0));
FOR_FLOAT64_INPUTS(i) {
CHECK_DOUBLE_EQ(base::ieee754::atanh(*i), m.Call(*i));
}
}
TEST(RunFloat64Atan2) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
MachineType::Float64());
m.Return(m.Float64Atan2(m.Parameter(0), m.Parameter(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
CHECK_DOUBLE_EQ(base::ieee754::atan2(*i, *j), m.Call(*i, *j));
}
}
}
TEST(RunFloat64Cos) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Cos(m.Parameter(0)));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::cos(*i), m.Call(*i)); }
}
TEST(RunFloat64Cosh) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Cosh(m.Parameter(0)));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
FOR_FLOAT64_INPUTS(i) {
CHECK_DOUBLE_EQ(base::ieee754::cosh(*i), m.Call(*i));
}
}
TEST(RunFloat64Exp) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Exp(m.Parameter(0)));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
CHECK_EQ(0.0, m.Call(-std::numeric_limits<double>::infinity()));
CHECK_DOUBLE_EQ(1.0, m.Call(-0.0));
CHECK_DOUBLE_EQ(1.0, m.Call(0.0));
CHECK_DOUBLE_EQ(std::numeric_limits<double>::infinity(),
m.Call(std::numeric_limits<double>::infinity()));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::exp(*i), m.Call(*i)); }
}
TEST(RunFloat64Expm1) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Expm1(m.Parameter(0)));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
CHECK_EQ(-1.0, m.Call(-std::numeric_limits<double>::infinity()));
CHECK_DOUBLE_EQ(std::numeric_limits<double>::infinity(),
m.Call(std::numeric_limits<double>::infinity()));
FOR_FLOAT64_INPUTS(i) {
CHECK_DOUBLE_EQ(base::ieee754::expm1(*i), m.Call(*i));
}
}
TEST(RunFloat64Log) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Log(m.Parameter(0)));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
CHECK(std::isnan(m.Call(-std::numeric_limits<double>::infinity())));
CHECK(std::isnan(m.Call(-1.0)));
CHECK_DOUBLE_EQ(-std::numeric_limits<double>::infinity(), m.Call(-0.0));
CHECK_DOUBLE_EQ(-std::numeric_limits<double>::infinity(), m.Call(0.0));
CHECK_DOUBLE_EQ(0.0, m.Call(1.0));
CHECK_DOUBLE_EQ(std::numeric_limits<double>::infinity(),
m.Call(std::numeric_limits<double>::infinity()));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::log(*i), m.Call(*i)); }
}
TEST(RunFloat64Log1p) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Log1p(m.Parameter(0)));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
CHECK(std::isnan(m.Call(-std::numeric_limits<double>::infinity())));
CHECK_DOUBLE_EQ(-std::numeric_limits<double>::infinity(), m.Call(-1.0));
CHECK_DOUBLE_EQ(0.0, m.Call(0.0));
CHECK_DOUBLE_EQ(-0.0, m.Call(-0.0));
CHECK_DOUBLE_EQ(std::numeric_limits<double>::infinity(),
m.Call(std::numeric_limits<double>::infinity()));
FOR_FLOAT64_INPUTS(i) {
CHECK_DOUBLE_EQ(base::ieee754::log1p(*i), m.Call(*i));
}
}
TEST(RunFloat64Log2) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Log2(m.Parameter(0)));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
CHECK(std::isnan(m.Call(-std::numeric_limits<double>::infinity())));
CHECK(std::isnan(m.Call(-1.0)));
CHECK_DOUBLE_EQ(-std::numeric_limits<double>::infinity(), m.Call(-0.0));
CHECK_DOUBLE_EQ(-std::numeric_limits<double>::infinity(), m.Call(0.0));
CHECK_DOUBLE_EQ(0.0, m.Call(1.0));
CHECK_DOUBLE_EQ(std::numeric_limits<double>::infinity(),
m.Call(std::numeric_limits<double>::infinity()));
FOR_FLOAT64_INPUTS(i) {
CHECK_DOUBLE_EQ(base::ieee754::log2(*i), m.Call(*i));
}
}
TEST(RunFloat64Log10) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Log10(m.Parameter(0)));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
CHECK(std::isnan(m.Call(-std::numeric_limits<double>::infinity())));
CHECK(std::isnan(m.Call(-1.0)));
CHECK_DOUBLE_EQ(-std::numeric_limits<double>::infinity(), m.Call(-0.0));
CHECK_DOUBLE_EQ(-std::numeric_limits<double>::infinity(), m.Call(0.0));
CHECK_DOUBLE_EQ(std::numeric_limits<double>::infinity(),
m.Call(std::numeric_limits<double>::infinity()));
FOR_FLOAT64_INPUTS(i) {
CHECK_DOUBLE_EQ(base::ieee754::log10(*i), m.Call(*i));
}
}
TEST(RunFloat64Cbrt) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Cbrt(m.Parameter(0)));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
CHECK_DOUBLE_EQ(std::numeric_limits<double>::infinity(),
m.Call(std::numeric_limits<double>::infinity()));
CHECK_DOUBLE_EQ(-std::numeric_limits<double>::infinity(),
m.Call(-std::numeric_limits<double>::infinity()));
FOR_FLOAT64_INPUTS(i) {
CHECK_DOUBLE_EQ(base::ieee754::cbrt(*i), m.Call(*i));
}
}
TEST(RunFloat64Sin) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Sin(m.Parameter(0)));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::sin(*i), m.Call(*i)); }
}
TEST(RunFloat64Sinh) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Sinh(m.Parameter(0)));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
FOR_FLOAT64_INPUTS(i) {
CHECK_DOUBLE_EQ(base::ieee754::sinh(*i), m.Call(*i));
}
}
TEST(RunFloat64Tan) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Tan(m.Parameter(0)));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::tan(*i), m.Call(*i)); }
}
TEST(RunFloat64Tanh) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
m.Return(m.Float64Tanh(m.Parameter(0)));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
FOR_FLOAT64_INPUTS(i) {
CHECK_DOUBLE_EQ(base::ieee754::tanh(*i), m.Call(*i));
}
}
static double two_30 = 1 << 30; // 2^30 is a smi boundary.
static double two_52 = two_30 * (1 << 22); // 2^52 is a precision boundary.
static double kValues[] = {0.1,
0.2,
0.49999999999999994,
0.5,
0.7,
1.0 - std::numeric_limits<double>::epsilon(),
-0.1,
-0.49999999999999994,
-0.5,
-0.7,
1.1,
1.0 + std::numeric_limits<double>::epsilon(),
1.5,
1.7,
-1,
-1 + std::numeric_limits<double>::epsilon(),
-1 - std::numeric_limits<double>::epsilon(),
-1.1,
-1.5,
-1.7,
std::numeric_limits<double>::min(),
-std::numeric_limits<double>::min(),
std::numeric_limits<double>::max(),
-std::numeric_limits<double>::max(),
std::numeric_limits<double>::infinity(),
-std::numeric_limits<double>::infinity(),
two_30,
two_30 + 0.1,
two_30 + 0.5,
two_30 + 0.7,
two_30 - 1,
two_30 - 1 + 0.1,
two_30 - 1 + 0.5,
two_30 - 1 + 0.7,
-two_30,
-two_30 + 0.1,
-two_30 + 0.5,
-two_30 + 0.7,
-two_30 + 1,
-two_30 + 1 + 0.1,
-two_30 + 1 + 0.5,
-two_30 + 1 + 0.7,
two_52,
two_52 + 0.1,
two_52 + 0.5,
two_52 + 0.5,
two_52 + 0.7,
two_52 + 0.7,
two_52 - 1,
two_52 - 1 + 0.1,
two_52 - 1 + 0.5,
two_52 - 1 + 0.7,
-two_52,
-two_52 + 0.1,
-two_52 + 0.5,
-two_52 + 0.7,
-two_52 + 1,
-two_52 + 1 + 0.1,
-two_52 + 1 + 0.5,
-two_52 + 1 + 0.7,
two_30,
two_30 - 0.1,
two_30 - 0.5,
two_30 - 0.7,
two_30 - 1,
two_30 - 1 - 0.1,
two_30 - 1 - 0.5,
two_30 - 1 - 0.7,
-two_30,
-two_30 - 0.1,
-two_30 - 0.5,
-two_30 - 0.7,
-two_30 + 1,
-two_30 + 1 - 0.1,
-two_30 + 1 - 0.5,
-two_30 + 1 - 0.7,
two_52,
two_52 - 0.1,
two_52 - 0.5,
two_52 - 0.5,
two_52 - 0.7,
two_52 - 0.7,
two_52 - 1,
two_52 - 1 - 0.1,
two_52 - 1 - 0.5,
two_52 - 1 - 0.7,
-two_52,
-two_52 - 0.1,
-two_52 - 0.5,
-two_52 - 0.7,
-two_52 + 1,
-two_52 + 1 - 0.1,
-two_52 + 1 - 0.5,
-two_52 + 1 - 0.7};
TEST(RunFloat32RoundDown) {
BufferedRawMachineAssemblerTester<float> m(MachineType::Float32());
if (!m.machine()->Float32RoundDown().IsSupported()) return;
m.Return(m.Float32RoundDown(m.Parameter(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(floorf(*i), m.Call(*i)); }
}
TEST(RunFloat64RoundDown1) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
if (!m.machine()->Float64RoundDown().IsSupported()) return;
m.Return(m.Float64RoundDown(m.Parameter(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(floor(*i), m.Call(*i)); }
}
TEST(RunFloat64RoundDown2) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
if (!m.machine()->Float64RoundDown().IsSupported()) return;
m.Return(m.Float64Sub(m.Float64Constant(-0.0),
m.Float64RoundDown(m.Float64Sub(m.Float64Constant(-0.0),
m.Parameter(0)))));
for (size_t i = 0; i < arraysize(kValues); ++i) {
CHECK_EQ(ceil(kValues[i]), m.Call(kValues[i]));
}
}
TEST(RunFloat32RoundUp) {
BufferedRawMachineAssemblerTester<float> m(MachineType::Float32());
if (!m.machine()->Float32RoundUp().IsSupported()) return;
m.Return(m.Float32RoundUp(m.Parameter(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(ceilf(*i), m.Call(*i)); }
}
TEST(RunFloat64RoundUp) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
if (!m.machine()->Float64RoundUp().IsSupported()) return;
m.Return(m.Float64RoundUp(m.Parameter(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(ceil(*i), m.Call(*i)); }
}
TEST(RunFloat32RoundTiesEven) {
BufferedRawMachineAssemblerTester<float> m(MachineType::Float32());
if (!m.machine()->Float32RoundTiesEven().IsSupported()) return;
m.Return(m.Float32RoundTiesEven(m.Parameter(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(nearbyint(*i), m.Call(*i)); }
}
TEST(RunFloat64RoundTiesEven) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
if (!m.machine()->Float64RoundTiesEven().IsSupported()) return;
m.Return(m.Float64RoundTiesEven(m.Parameter(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(nearbyint(*i), m.Call(*i)); }
}
TEST(RunFloat32RoundTruncate) {
BufferedRawMachineAssemblerTester<float> m(MachineType::Float32());
if (!m.machine()->Float32RoundTruncate().IsSupported()) return;
m.Return(m.Float32RoundTruncate(m.Parameter(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(truncf(*i), m.Call(*i)); }
}
TEST(RunFloat64RoundTruncate) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
if (!m.machine()->Float64RoundTruncate().IsSupported()) return;
m.Return(m.Float64RoundTruncate(m.Parameter(0)));
for (size_t i = 0; i < arraysize(kValues); ++i) {
CHECK_EQ(trunc(kValues[i]), m.Call(kValues[i]));
}
}
TEST(RunFloat64RoundTiesAway) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
if (!m.machine()->Float64RoundTiesAway().IsSupported()) return;
m.Return(m.Float64RoundTiesAway(m.Parameter(0)));
for (size_t i = 0; i < arraysize(kValues); ++i) {
CHECK_EQ(round(kValues[i]), m.Call(kValues[i]));
}
}
#if !USE_SIMULATOR
namespace {
int32_t const kMagicFoo0 = 0xdeadbeef;
int32_t foo0() { return kMagicFoo0; }
int32_t foo1(int32_t x) { return x; }
int32_t foo2(int32_t x, int32_t y) { return x - y; }
int32_t foo8(int32_t a, int32_t b, int32_t c, int32_t d, int32_t e, int32_t f,
int32_t g, int32_t h) {
return a + b + c + d + e + f + g + h;
}
int32_t foo9(int32_t a, int32_t b, int32_t c, int32_t d, int32_t e, int32_t f,
int32_t g, int32_t h, int32_t i) {
return a + b + c + d + e + f + g + h + i;
}
} // namespace
TEST(RunCallCFunction0) {
auto* foo0_ptr = &foo0;
RawMachineAssemblerTester<int32_t> m;
Node* function = m.LoadFromPointer(&foo0_ptr, MachineType::Pointer());
m.Return(m.CallCFunction0(MachineType::Int32(), function));
CHECK_EQ(kMagicFoo0, m.Call());
}
TEST(RunCallCFunction1) {
auto* foo1_ptr = &foo1;
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
Node* function = m.LoadFromPointer(&foo1_ptr, MachineType::Pointer());
m.Return(m.CallCFunction1(MachineType::Int32(), MachineType::Int32(),
function, m.Parameter(0)));
FOR_INT32_INPUTS(i) {
int32_t const expected = *i;
CHECK_EQ(expected, m.Call(expected));
}
}
TEST(RunCallCFunction2) {
auto* foo2_ptr = &foo2;
RawMachineAssemblerTester<int32_t> m(MachineType::Int32(),
MachineType::Int32());
Node* function = m.LoadFromPointer(&foo2_ptr, MachineType::Pointer());
m.Return(m.CallCFunction2(MachineType::Int32(), MachineType::Int32(),
MachineType::Int32(), function, m.Parameter(0),
m.Parameter(1)));
FOR_INT32_INPUTS(i) {
int32_t const x = *i;
FOR_INT32_INPUTS(j) {
int32_t const y = *j;
CHECK_EQ(x - y, m.Call(x, y));
}
}
}
TEST(RunCallCFunction8) {
auto* foo8_ptr = &foo8;
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
Node* function = m.LoadFromPointer(&foo8_ptr, MachineType::Pointer());
Node* param = m.Parameter(0);
m.Return(m.CallCFunction8(
MachineType::Int32(), MachineType::Int32(), MachineType::Int32(),
MachineType::Int32(), MachineType::Int32(), MachineType::Int32(),
MachineType::Int32(), MachineType::Int32(), MachineType::Int32(),
function, param, param, param, param, param, param, param, param));
FOR_INT32_INPUTS(i) {
int32_t const x = *i;
CHECK_EQ(x * 8, m.Call(x));
}
}
TEST(RunCallCFunction9) {
auto* foo9_ptr = &foo9;
RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
Node* function = m.LoadFromPointer(&foo9_ptr, MachineType::Pointer());
Node* param = m.Parameter(0);
m.Return(m.CallCFunction9(
MachineType::Int32(), MachineType::Int32(), MachineType::Int32(),
MachineType::Int32(), MachineType::Int32(), MachineType::Int32(),
MachineType::Int32(), MachineType::Int32(), MachineType::Int32(),
MachineType::Int32(), function, param,
m.Int32Add(param, m.Int32Constant(1)),
m.Int32Add(param, m.Int32Constant(2)),
m.Int32Add(param, m.Int32Constant(3)),
m.Int32Add(param, m.Int32Constant(4)),
m.Int32Add(param, m.Int32Constant(5)),
m.Int32Add(param, m.Int32Constant(6)),
m.Int32Add(param, m.Int32Constant(7)),
m.Int32Add(param, m.Int32Constant(8))));
FOR_INT32_INPUTS(i) {
int32_t const x = *i;
CHECK_EQ(x * 9 + 36, m.Call(x));
}
}
#endif // USE_SIMULATOR
#if V8_TARGET_ARCH_64_BIT
// TODO(titzer): run int64 tests on all platforms when supported.
TEST(RunBitcastInt64ToFloat64) {
int64_t input = 1;
double output = 0.0;
RawMachineAssemblerTester<int32_t> m;
m.StoreToPointer(
&output, MachineRepresentation::kFloat64,
m.BitcastInt64ToFloat64(m.LoadFromPointer(&input, MachineType::Int64())));
m.Return(m.Int32Constant(11));
FOR_INT64_INPUTS(i) {
input = *i;
CHECK_EQ(11, m.Call());
double expected = bit_cast<double>(input);
CHECK_EQ(bit_cast<int64_t>(expected), bit_cast<int64_t>(output));
}
}
TEST(RunBitcastFloat64ToInt64) {
BufferedRawMachineAssemblerTester<int64_t> m(MachineType::Float64());
m.Return(m.BitcastFloat64ToInt64(m.Parameter(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_EQ(bit_cast<int64_t>(*i), m.Call(*i)); }
}
TEST(RunTryTruncateFloat32ToInt64WithoutCheck) {
BufferedRawMachineAssemblerTester<int64_t> m(MachineType::Float32());
m.Return(m.TryTruncateFloat32ToInt64(m.Parameter(0)));
FOR_INT64_INPUTS(i) {
float input = static_cast<float>(*i);
if (input < static_cast<float>(INT64_MAX) &&
input >= static_cast<float>(INT64_MIN)) {
CHECK_EQ(static_cast<int64_t>(input), m.Call(input));
}
}
}
TEST(RunTryTruncateFloat32ToInt64WithCheck) {
int64_t success = 0;
BufferedRawMachineAssemblerTester<int64_t> m(MachineType::Float32());
Node* trunc = m.TryTruncateFloat32ToInt64(m.Parameter(0));
Node* val = m.Projection(0, trunc);
Node* check = m.Projection(1, trunc);
m.StoreToPointer(&success, MachineRepresentation::kWord64, check);
m.Return(val);
FOR_FLOAT32_INPUTS(i) {
if (*i < static_cast<float>(INT64_MAX) &&
*i >= static_cast<float>(INT64_MIN)) {
CHECK_EQ(static_cast<int64_t>(*i), m.Call(*i));
CHECK_NE(0, success);
} else {
m.Call(*i);
CHECK_EQ(0, success);
}
}
}
TEST(RunTryTruncateFloat64ToInt64WithoutCheck) {
BufferedRawMachineAssemblerTester<int64_t> m(MachineType::Float64());
m.Return(m.TryTruncateFloat64ToInt64(m.Parameter(0)));
FOR_INT64_INPUTS(i) {
double input = static_cast<double>(*i);
CHECK_EQ(static_cast<int64_t>(input), m.Call(input));
}
}
TEST(RunTryTruncateFloat64ToInt64WithCheck) {
int64_t success = 0;
BufferedRawMachineAssemblerTester<int64_t> m(MachineType::Float64());
Node* trunc = m.TryTruncateFloat64ToInt64(m.Parameter(0));
Node* val = m.Projection(0, trunc);
Node* check = m.Projection(1, trunc);
m.StoreToPointer(&success, MachineRepresentation::kWord64, check);
m.Return(val);
FOR_FLOAT64_INPUTS(i) {
if (*i < static_cast<double>(INT64_MAX) &&
*i >= static_cast<double>(INT64_MIN)) {
// Conversions within this range should succeed.
CHECK_EQ(static_cast<int64_t>(*i), m.Call(*i));
CHECK_NE(0, success);
} else {
m.Call(*i);
CHECK_EQ(0, success);
}
}
}
TEST(RunTryTruncateFloat32ToUint64WithoutCheck) {
BufferedRawMachineAssemblerTester<uint64_t> m(MachineType::Float32());
m.Return(m.TryTruncateFloat32ToUint64(m.Parameter(0)));
FOR_UINT64_INPUTS(i) {
float input = static_cast<float>(*i);
// This condition on 'input' is required because
// static_cast<float>(UINT64_MAX) results in a value outside uint64 range.
if (input < static_cast<float>(UINT64_MAX)) {
CHECK_EQ(static_cast<uint64_t>(input), m.Call(input));
}
}
}
TEST(RunTryTruncateFloat32ToUint64WithCheck) {
int64_t success = 0;
BufferedRawMachineAssemblerTester<uint64_t> m(MachineType::Float32());
Node* trunc = m.TryTruncateFloat32ToUint64(m.Parameter(0));
Node* val = m.Projection(0, trunc);
Node* check = m.Projection(1, trunc);
m.StoreToPointer(&success, MachineRepresentation::kWord64, check);
m.Return(val);
FOR_FLOAT32_INPUTS(i) {
if (*i < static_cast<float>(UINT64_MAX) && *i > -1.0) {
// Conversions within this range should succeed.
CHECK_EQ(static_cast<uint64_t>(*i), m.Call(*i));
CHECK_NE(0, success);
} else {
m.Call(*i);
CHECK_EQ(0, success);
}
}
}
TEST(RunTryTruncateFloat64ToUint64WithoutCheck) {
BufferedRawMachineAssemblerTester<uint64_t> m(MachineType::Float64());
m.Return(m.TryTruncateFloat64ToUint64(m.Parameter(0)));
FOR_UINT64_INPUTS(j) {
double input = static_cast<double>(*j);
if (input < static_cast<float>(UINT64_MAX)) {
CHECK_EQ(static_cast<uint64_t>(input), m.Call(input));
}
}
}
TEST(RunTryTruncateFloat64ToUint64WithCheck) {
int64_t success = 0;
BufferedRawMachineAssemblerTester<int64_t> m(MachineType::Float64());
Node* trunc = m.TryTruncateFloat64ToUint64(m.Parameter(0));
Node* val = m.Projection(0, trunc);
Node* check = m.Projection(1, trunc);
m.StoreToPointer(&success, MachineRepresentation::kWord64, check);
m.Return(val);
FOR_FLOAT64_INPUTS(i) {
if (*i < 18446744073709551616.0 && *i > -1) {
// Conversions within this range should succeed.
CHECK_EQ(static_cast<uint64_t>(*i), static_cast<uint64_t>(m.Call(*i)));
CHECK_NE(0, success);
} else {
m.Call(*i);
CHECK_EQ(0, success);
}
}
}
TEST(RunRoundInt64ToFloat32) {
BufferedRawMachineAssemblerTester<float> m(MachineType::Int64());
m.Return(m.RoundInt64ToFloat32(m.Parameter(0)));
FOR_INT64_INPUTS(i) { CHECK_EQ(static_cast<float>(*i), m.Call(*i)); }
}
TEST(RunRoundInt64ToFloat64) {
BufferedRawMachineAssemblerTester<double> m(MachineType::Int64());
m.Return(m.RoundInt64ToFloat64(m.Parameter(0)));
FOR_INT64_INPUTS(i) { CHECK_EQ(static_cast<double>(*i), m.Call(*i)); }
}
TEST(RunRoundUint64ToFloat64) {
struct {
uint64_t input;
uint64_t expected;
} values[] = {{0x0, 0x0},
{0x1, 0x3ff0000000000000},
{0xffffffff, 0x41efffffffe00000},
{0x1b09788b, 0x41bb09788b000000},
{0x4c5fce8, 0x419317f3a0000000},
{0xcc0de5bf, 0x41e981bcb7e00000},
{0x2, 0x4000000000000000},
{0x3, 0x4008000000000000},
{0x4, 0x4010000000000000},
{0x5, 0x4014000000000000},
{0x8, 0x4020000000000000},
{0x9, 0x4022000000000000},
{0xffffffffffffffff, 0x43f0000000000000},
{0xfffffffffffffffe, 0x43f0000000000000},
{0xfffffffffffffffd, 0x43f0000000000000},
{0x100000000, 0x41f0000000000000},
{0xffffffff00000000, 0x43efffffffe00000},
{0x1b09788b00000000, 0x43bb09788b000000},
{0x4c5fce800000000, 0x439317f3a0000000},
{0xcc0de5bf00000000, 0x43e981bcb7e00000},
{0x200000000, 0x4200000000000000},
{0x300000000, 0x4208000000000000},
{0x400000000, 0x4210000000000000},
{0x500000000, 0x4214000000000000},
{0x800000000, 0x4220000000000000},
{0x900000000, 0x4222000000000000},
{0x273a798e187937a3, 0x43c39d3cc70c3c9c},
{0xece3af835495a16b, 0x43ed9c75f06a92b4},
{0xb668ecc11223344, 0x43a6cd1d98224467},
{0x9e, 0x4063c00000000000},
{0x43, 0x4050c00000000000},
{0xaf73, 0x40e5ee6000000000},
{0x116b, 0x40b16b0000000000},
{0x658ecc, 0x415963b300000000},
{0x2b3b4c, 0x41459da600000000},
{0x88776655, 0x41e10eeccaa00000},
{0x70000000, 0x41dc000000000000},
{0x7200000, 0x419c800000000000},
{0x7fffffff, 0x41dfffffffc00000},
{0x56123761, 0x41d5848dd8400000},
{0x7fffff00, 0x41dfffffc0000000},
{0x761c4761eeeeeeee, 0x43dd8711d87bbbbc},
{0x80000000eeeeeeee, 0x43e00000001dddde},
{0x88888888dddddddd, 0x43e11111111bbbbc},
{0xa0000000dddddddd, 0x43e40000001bbbbc},
{0xddddddddaaaaaaaa, 0x43ebbbbbbbb55555},
{0xe0000000aaaaaaaa, 0x43ec000000155555},
{0xeeeeeeeeeeeeeeee, 0x43edddddddddddde},
{0xfffffffdeeeeeeee, 0x43efffffffbdddde},
{0xf0000000dddddddd, 0x43ee0000001bbbbc},
{0x7fffffdddddddd, 0x435ffffff7777777},
{0x3fffffaaaaaaaa, 0x434fffffd5555555},
{0x1fffffaaaaaaaa, 0x433fffffaaaaaaaa},
{0xfffff, 0x412ffffe00000000},
{0x7ffff, 0x411ffffc00000000},
{0x3ffff, 0x410ffff800000000},
{0x1ffff, 0x40fffff000000000},
{0xffff, 0x40efffe000000000},
{0x7fff, 0x40dfffc000000000},
{0x3fff, 0x40cfff8000000000},
{0x1fff, 0x40bfff0000000000},
{0xfff, 0x40affe0000000000},
{0x7ff, 0x409ffc0000000000},
{0x3ff, 0x408ff80000000000},
{0x1ff, 0x407ff00000000000},
{0x3fffffffffff, 0x42cfffffffffff80},
{0x1fffffffffff, 0x42bfffffffffff00},
{0xfffffffffff, 0x42affffffffffe00},
{0x7ffffffffff, 0x429ffffffffffc00},
{0x3ffffffffff, 0x428ffffffffff800},
{0x1ffffffffff, 0x427ffffffffff000},
{0x8000008000000000, 0x43e0000010000000},
{0x8000008000000001, 0x43e0000010000000},
{0x8000000000000400, 0x43e0000000000000},
{0x8000000000000401, 0x43e0000000000001}};
BufferedRawMachineAssemblerTester<double> m(MachineType::Uint64());
m.Return(m.RoundUint64ToFloat64(m.Parameter(0)));
for (size_t i = 0; i < arraysize(values); i++) {
CHECK_EQ(bit_cast<double>(values[i].expected), m.Call(values[i].input));
}
}
TEST(RunRoundUint64ToFloat32) {
struct {
uint64_t input;
uint32_t expected;
} values[] = {{0x0, 0x0},
{0x1, 0x3f800000},
{0xffffffff, 0x4f800000},
{0x1b09788b, 0x4dd84bc4},
{0x4c5fce8, 0x4c98bf9d},
{0xcc0de5bf, 0x4f4c0de6},
{0x2, 0x40000000},
{0x3, 0x40400000},
{0x4, 0x40800000},
{0x5, 0x40a00000},
{0x8, 0x41000000},
{0x9, 0x41100000},
{0xffffffffffffffff, 0x5f800000},
{0xfffffffffffffffe, 0x5f800000},
{0xfffffffffffffffd, 0x5f800000},
{0x0, 0x0},
{0x100000000, 0x4f800000},
{0xffffffff00000000, 0x5f800000},
{0x1b09788b00000000, 0x5dd84bc4},
{0x4c5fce800000000, 0x5c98bf9d},
{0xcc0de5bf00000000, 0x5f4c0de6},
{0x200000000, 0x50000000},
{0x300000000, 0x50400000},
{0x400000000, 0x50800000},
{0x500000000, 0x50a00000},
{0x800000000, 0x51000000},
{0x900000000, 0x51100000},
{0x273a798e187937a3, 0x5e1ce9e6},
{0xece3af835495a16b, 0x5f6ce3b0},
{0xb668ecc11223344, 0x5d3668ed},
{0x9e, 0x431e0000},
{0x43, 0x42860000},
{0xaf73, 0x472f7300},
{0x116b, 0x458b5800},
{0x658ecc, 0x4acb1d98},
{0x2b3b4c, 0x4a2ced30},
{0x88776655, 0x4f087766},
{0x70000000, 0x4ee00000},
{0x7200000, 0x4ce40000},
{0x7fffffff, 0x4f000000},
{0x56123761, 0x4eac246f},
{0x7fffff00, 0x4efffffe},
{0x761c4761eeeeeeee, 0x5eec388f},
{0x80000000eeeeeeee, 0x5f000000},
{0x88888888dddddddd, 0x5f088889},
{0xa0000000dddddddd, 0x5f200000},
{0xddddddddaaaaaaaa, 0x5f5dddde},
{0xe0000000aaaaaaaa, 0x5f600000},
{0xeeeeeeeeeeeeeeee, 0x5f6eeeef},
{0xfffffffdeeeeeeee, 0x5f800000},
{0xf0000000dddddddd, 0x5f700000},
{0x7fffffdddddddd, 0x5b000000},
{0x3fffffaaaaaaaa, 0x5a7fffff},
{0x1fffffaaaaaaaa, 0x59fffffd},
{0xfffff, 0x497ffff0},
{0x7ffff, 0x48ffffe0},
{0x3ffff, 0x487fffc0},
{0x1ffff, 0x47ffff80},
{0xffff, 0x477fff00},
{0x7fff, 0x46fffe00},
{0x3fff, 0x467ffc00},
{0x1fff, 0x45fff800},
{0xfff, 0x457ff000},
{0x7ff, 0x44ffe000},
{0x3ff, 0x447fc000},
{0x1ff, 0x43ff8000},
{0x3fffffffffff, 0x56800000},
{0x1fffffffffff, 0x56000000},
{0xfffffffffff, 0x55800000},
{0x7ffffffffff, 0x55000000},
{0x3ffffffffff, 0x54800000},
{0x1ffffffffff, 0x54000000},
{0x8000008000000000, 0x5f000000},
{0x8000008000000001, 0x5f000001},
{0x8000000000000400, 0x5f000000},
{0x8000000000000401, 0x5f000000}};
BufferedRawMachineAssemblerTester<float> m(MachineType::Uint64());
m.Return(m.RoundUint64ToFloat32(m.Parameter(0)));
for (size_t i = 0; i < arraysize(values); i++) {
CHECK_EQ(bit_cast<float>(values[i].expected), m.Call(values[i].input));
}
}
#endif
TEST(RunBitcastFloat32ToInt32) {
float input = 32.25;
RawMachineAssemblerTester<int32_t> m;
m.Return(m.BitcastFloat32ToInt32(
m.LoadFromPointer(&input, MachineType::Float32())));
FOR_FLOAT32_INPUTS(i) {
input = *i;
int32_t expected = bit_cast<int32_t>(input);
CHECK_EQ(expected, m.Call());
}
}
TEST(RunRoundInt32ToFloat32) {
BufferedRawMachineAssemblerTester<float> m(MachineType::Int32());
m.Return(m.RoundInt32ToFloat32(m.Parameter(0)));
FOR_INT32_INPUTS(i) {
volatile float expected = static_cast<float>(*i);
CHECK_EQ(expected, m.Call(*i));
}
}
TEST(RunRoundUint32ToFloat32) {
BufferedRawMachineAssemblerTester<float> m(MachineType::Uint32());
m.Return(m.RoundUint32ToFloat32(m.Parameter(0)));
FOR_UINT32_INPUTS(i) {
volatile float expected = static_cast<float>(*i);
CHECK_EQ(expected, m.Call(*i));
}
}
TEST(RunBitcastInt32ToFloat32) {
int32_t input = 1;
float output = 0.0;
RawMachineAssemblerTester<int32_t> m;
m.StoreToPointer(
&output, MachineRepresentation::kFloat32,
m.BitcastInt32ToFloat32(m.LoadFromPointer(&input, MachineType::Int32())));
m.Return(m.Int32Constant(11));
FOR_INT32_INPUTS(i) {
input = *i;
CHECK_EQ(11, m.Call());
float expected = bit_cast<float>(input);
CHECK_EQ(bit_cast<int32_t>(expected), bit_cast<int32_t>(output));
}
}
TEST(RunComputedCodeObject) {
GraphBuilderTester<int32_t> a;
a.Return(a.Int32Constant(33));
a.End();
Handle<Code> code_a = a.GetCode();
GraphBuilderTester<int32_t> b;
b.Return(b.Int32Constant(44));
b.End();
Handle<Code> code_b = b.GetCode();
RawMachineAssemblerTester<int32_t> r(MachineType::Int32());
RawMachineLabel tlabel;
RawMachineLabel flabel;
RawMachineLabel merge;
r.Branch(r.Parameter(0), &tlabel, &flabel);
r.Bind(&tlabel);
Node* fa = r.HeapConstant(code_a);
r.Goto(&merge);
r.Bind(&flabel);
Node* fb = r.HeapConstant(code_b);
r.Goto(&merge);
r.Bind(&merge);
Node* phi = r.Phi(MachineRepresentation::kWord32, fa, fb);
// TODO(titzer): all this descriptor hackery is just to call the above
// functions as code objects instead of direct addresses.
CSignature0<int32_t> sig;
CallDescriptor* c = Linkage::GetSimplifiedCDescriptor(r.zone(), &sig);
LinkageLocation ret[] = {c->GetReturnLocation(0)};
Signature<LinkageLocation> loc(1, 0, ret);
CallDescriptor* desc = new (r.zone()) CallDescriptor( // --
CallDescriptor::kCallCodeObject, // kind
MachineType::AnyTagged(), // target_type
c->GetInputLocation(0), // target_loc
&loc, // location_sig
0, // stack count
Operator::kNoProperties, // properties
c->CalleeSavedRegisters(), // callee saved
c->CalleeSavedFPRegisters(), // callee saved FP
CallDescriptor::kNoFlags, // flags
"c-call-as-code");
Node* call = r.AddNode(r.common()->Call(desc), phi);
r.Return(call);
CHECK_EQ(33, r.Call(1));
CHECK_EQ(44, r.Call(0));
}
TEST(ParentFramePointer) {
RawMachineAssemblerTester<int32_t> r(MachineType::Int32());
RawMachineLabel tlabel;
RawMachineLabel flabel;
RawMachineLabel merge;
Node* frame = r.LoadFramePointer();
Node* parent_frame = r.LoadParentFramePointer();
frame = r.Load(MachineType::IntPtr(), frame);
r.Branch(r.WordEqual(frame, parent_frame), &tlabel, &flabel);
r.Bind(&tlabel);
Node* fa = r.Int32Constant(1);
r.Goto(&merge);
r.Bind(&flabel);
Node* fb = r.Int32Constant(0);
r.Goto(&merge);
r.Bind(&merge);
Node* phi = r.Phi(MachineRepresentation::kWord32, fa, fb);
r.Return(phi);
CHECK_EQ(1, r.Call(1));
}
#if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
TEST(StackSlotAlignment) {
RawMachineAssemblerTester<int32_t> r;
RawMachineLabel tlabel;
RawMachineLabel flabel;
RawMachineLabel merge;
int alignments[] = {4, 8, 16};
int alignment_count = arraysize(alignments);
Node* alignment_counter = r.Int32Constant(0);
for (int i = 0; i < alignment_count; i++) {
for (int j = 0; j < 5; j++) {
Node* stack_slot =
r.StackSlot(MachineRepresentation::kWord32, alignments[i]);
alignment_counter = r.Int32Add(
alignment_counter,
r.Word32And(stack_slot, r.Int32Constant(alignments[i] - 1)));
}
}
r.Return(alignment_counter);
CHECK_EQ(0, r.Call());
}
#endif // V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
#if V8_TARGET_ARCH_64_BIT
TEST(Regression5923) {
{
BufferedRawMachineAssemblerTester<int64_t> m(MachineType::Int64());
m.Return(m.Int64Add(
m.Word64Shr(m.Parameter(0), m.Int64Constant(4611686018427387888)),
m.Parameter(0)));
int64_t input = 16;
m.Call(input);
}
{
BufferedRawMachineAssemblerTester<int64_t> m(MachineType::Int64());
m.Return(m.Int64Add(
m.Parameter(0),
m.Word64Shr(m.Parameter(0), m.Int64Constant(4611686018427387888))));
int64_t input = 16;
m.Call(input);
}
}
TEST(Regression5951) {
BufferedRawMachineAssemblerTester<int64_t> m(MachineType::Int64());
m.Return(m.Word64And(m.Word64Shr(m.Parameter(0), m.Int64Constant(0)),
m.Int64Constant(0xffffffffffffffffl)));
int64_t input = 1234;
CHECK_EQ(input, m.Call(input));
}
TEST(Regression6046a) {
BufferedRawMachineAssemblerTester<int64_t> m;
m.Return(m.Word64Shr(m.Word64And(m.Int64Constant(0), m.Int64Constant(0)),
m.Int64Constant(64)));
CHECK_EQ(0, m.Call());
}
TEST(Regression6122) {
BufferedRawMachineAssemblerTester<int64_t> m;
m.Return(m.Word64Shr(m.Word64And(m.Int64Constant(59), m.Int64Constant(-1)),
m.Int64Constant(0)));
CHECK_EQ(59, m.Call());
}
#endif // V8_TARGET_ARCH_64_BIT
TEST(Regression6046b) {
BufferedRawMachineAssemblerTester<int32_t> m;
m.Return(m.Word32Shr(m.Word32And(m.Int32Constant(0), m.Int32Constant(0)),
m.Int32Constant(32)));
CHECK_EQ(0, m.Call());
}
TEST(Regression6122b) {
BufferedRawMachineAssemblerTester<int32_t> m;
m.Return(m.Word32Shr(m.Word32And(m.Int32Constant(59), m.Int32Constant(-1)),
m.Int32Constant(0)));
CHECK_EQ(59, m.Call());
}
TEST(Regression6028) {
BufferedRawMachineAssemblerTester<int32_t> m;
m.Return(m.Word32Equal(
m.Word32And(m.Int32Constant(0x23),
m.Word32Sar(m.Int32Constant(1), m.Int32Constant(18))),
m.Int32Constant(0)));
CHECK_EQ(1, m.Call());
}
TEST(Regression5951_32bit) {
BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Int32());
m.Return(m.Word32And(m.Word32Shr(m.Parameter(0), m.Int32Constant(0)),
m.Int32Constant(0xffffffff)));
int32_t input = 1234;
CHECK_EQ(input, m.Call(input));
}
TEST(Regression738952) {
RawMachineAssemblerTester<int32_t> m;
int32_t sentinel = 1234;
// The index can be any value where the lower bits are 0 and the upper bits
// are not 0;
int64_t index = 3224;
index <<= 32;
double d = static_cast<double>(index);
m.Return(m.Load(MachineType::Int32(), m.PointerConstant(&sentinel),
m.TruncateFloat64ToWord32(m.Float64Constant(d))));
CHECK_EQ(sentinel, m.Call());
}
TEST(Regression6640) {
RawMachineAssemblerTester<int32_t> m;
int32_t old_value = 0;
int32_t new_value = 1;
Node* c = m.RelocatableInt32Constant(
old_value, RelocInfo::WASM_FUNCTION_TABLE_SIZE_REFERENCE);
m.Return(m.Word32Equal(c, c));
// Patch the code.
Handle<Code> code = m.GetCode();
for (RelocIterator it(*code,
1 << RelocInfo::WASM_FUNCTION_TABLE_SIZE_REFERENCE);
!it.done(); it.next()) {
it.rinfo()->update_wasm_function_table_size_reference(
code->GetIsolate(), old_value, new_value, FLUSH_ICACHE_IF_NEEDED);
}
CHECK(m.Call());
}
} // namespace compiler
} // namespace internal
} // namespace v8