bdf4fc96b0
BUG= R=rossberg@chromium.org Review URL: https://codereview.chromium.org/18602003 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@15639 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
15880 lines
540 KiB
C++
15880 lines
540 KiB
C++
// Copyright 2013 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "v8.h"
|
|
|
|
#include "accessors.h"
|
|
#include "api.h"
|
|
#include "arguments.h"
|
|
#include "bootstrapper.h"
|
|
#include "codegen.h"
|
|
#include "debug.h"
|
|
#include "deoptimizer.h"
|
|
#include "date.h"
|
|
#include "elements.h"
|
|
#include "execution.h"
|
|
#include "full-codegen.h"
|
|
#include "hydrogen.h"
|
|
#include "isolate-inl.h"
|
|
#include "objects-inl.h"
|
|
#include "objects-visiting.h"
|
|
#include "objects-visiting-inl.h"
|
|
#include "macro-assembler.h"
|
|
#include "mark-compact.h"
|
|
#include "safepoint-table.h"
|
|
#include "string-stream.h"
|
|
#include "utils.h"
|
|
|
|
#ifdef ENABLE_DISASSEMBLER
|
|
#include "disasm.h"
|
|
#include "disassembler.h"
|
|
#endif
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
MUST_USE_RESULT static MaybeObject* CreateJSValue(JSFunction* constructor,
|
|
Object* value) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
constructor->GetHeap()->AllocateJSObject(constructor);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
JSValue::cast(result)->set_value(value);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Object::ToObject(Context* native_context) {
|
|
if (IsNumber()) {
|
|
return CreateJSValue(native_context->number_function(), this);
|
|
} else if (IsBoolean()) {
|
|
return CreateJSValue(native_context->boolean_function(), this);
|
|
} else if (IsString()) {
|
|
return CreateJSValue(native_context->string_function(), this);
|
|
}
|
|
ASSERT(IsJSObject());
|
|
return this;
|
|
}
|
|
|
|
|
|
MaybeObject* Object::ToObject() {
|
|
if (IsJSReceiver()) {
|
|
return this;
|
|
} else if (IsNumber()) {
|
|
Isolate* isolate = Isolate::Current();
|
|
Context* native_context = isolate->context()->native_context();
|
|
return CreateJSValue(native_context->number_function(), this);
|
|
} else if (IsBoolean()) {
|
|
Isolate* isolate = HeapObject::cast(this)->GetIsolate();
|
|
Context* native_context = isolate->context()->native_context();
|
|
return CreateJSValue(native_context->boolean_function(), this);
|
|
} else if (IsString()) {
|
|
Isolate* isolate = HeapObject::cast(this)->GetIsolate();
|
|
Context* native_context = isolate->context()->native_context();
|
|
return CreateJSValue(native_context->string_function(), this);
|
|
} else if (IsSymbol()) {
|
|
Isolate* isolate = HeapObject::cast(this)->GetIsolate();
|
|
Context* native_context = isolate->context()->native_context();
|
|
return CreateJSValue(native_context->symbol_function(), this);
|
|
}
|
|
|
|
// Throw a type error.
|
|
return Failure::InternalError();
|
|
}
|
|
|
|
|
|
bool Object::BooleanValue() {
|
|
if (IsBoolean()) return IsTrue();
|
|
if (IsSmi()) return Smi::cast(this)->value() != 0;
|
|
if (IsUndefined() || IsNull()) return false;
|
|
if (IsUndetectableObject()) return false; // Undetectable object is false.
|
|
if (IsString()) return String::cast(this)->length() != 0;
|
|
if (IsHeapNumber()) return HeapNumber::cast(this)->HeapNumberBooleanValue();
|
|
return true;
|
|
}
|
|
|
|
|
|
void Object::Lookup(Name* name, LookupResult* result) {
|
|
Object* holder = NULL;
|
|
if (IsJSReceiver()) {
|
|
holder = this;
|
|
} else {
|
|
Context* native_context = result->isolate()->context()->native_context();
|
|
if (IsNumber()) {
|
|
holder = native_context->number_function()->instance_prototype();
|
|
} else if (IsString()) {
|
|
holder = native_context->string_function()->instance_prototype();
|
|
} else if (IsSymbol()) {
|
|
holder = native_context->symbol_function()->instance_prototype();
|
|
} else if (IsBoolean()) {
|
|
holder = native_context->boolean_function()->instance_prototype();
|
|
} else {
|
|
Isolate::Current()->PushStackTraceAndDie(
|
|
0xDEAD0000, this, JSReceiver::cast(this)->map(), 0xDEAD0001);
|
|
}
|
|
}
|
|
ASSERT(holder != NULL); // Cannot handle null or undefined.
|
|
JSReceiver::cast(holder)->Lookup(name, result);
|
|
}
|
|
|
|
|
|
MaybeObject* Object::GetPropertyWithReceiver(Object* receiver,
|
|
Name* name,
|
|
PropertyAttributes* attributes) {
|
|
LookupResult result(name->GetIsolate());
|
|
Lookup(name, &result);
|
|
MaybeObject* value = GetProperty(receiver, &result, name, attributes);
|
|
ASSERT(*attributes <= ABSENT);
|
|
return value;
|
|
}
|
|
|
|
|
|
bool Object::ToInt32(int32_t* value) {
|
|
if (IsSmi()) {
|
|
*value = Smi::cast(this)->value();
|
|
return true;
|
|
}
|
|
if (IsHeapNumber()) {
|
|
double num = HeapNumber::cast(this)->value();
|
|
if (FastI2D(FastD2I(num)) == num) {
|
|
*value = FastD2I(num);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Object::ToUint32(uint32_t* value) {
|
|
if (IsSmi()) {
|
|
int num = Smi::cast(this)->value();
|
|
if (num >= 0) {
|
|
*value = static_cast<uint32_t>(num);
|
|
return true;
|
|
}
|
|
}
|
|
if (IsHeapNumber()) {
|
|
double num = HeapNumber::cast(this)->value();
|
|
if (num >= 0 && FastUI2D(FastD2UI(num)) == num) {
|
|
*value = FastD2UI(num);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
template<typename To>
|
|
static inline To* CheckedCast(void *from) {
|
|
uintptr_t temp = reinterpret_cast<uintptr_t>(from);
|
|
ASSERT(temp % sizeof(To) == 0);
|
|
return reinterpret_cast<To*>(temp);
|
|
}
|
|
|
|
|
|
static MaybeObject* PerformCompare(const BitmaskCompareDescriptor& descriptor,
|
|
char* ptr,
|
|
Heap* heap) {
|
|
uint32_t bitmask = descriptor.bitmask;
|
|
uint32_t compare_value = descriptor.compare_value;
|
|
uint32_t value;
|
|
switch (descriptor.size) {
|
|
case 1:
|
|
value = static_cast<uint32_t>(*CheckedCast<uint8_t>(ptr));
|
|
compare_value &= 0xff;
|
|
bitmask &= 0xff;
|
|
break;
|
|
case 2:
|
|
value = static_cast<uint32_t>(*CheckedCast<uint16_t>(ptr));
|
|
compare_value &= 0xffff;
|
|
bitmask &= 0xffff;
|
|
break;
|
|
case 4:
|
|
value = *CheckedCast<uint32_t>(ptr);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
return heap->ToBoolean((bitmask & value) == (bitmask & compare_value));
|
|
}
|
|
|
|
|
|
static MaybeObject* PerformCompare(const PointerCompareDescriptor& descriptor,
|
|
char* ptr,
|
|
Heap* heap) {
|
|
uintptr_t compare_value =
|
|
reinterpret_cast<uintptr_t>(descriptor.compare_value);
|
|
uintptr_t value = *CheckedCast<uintptr_t>(ptr);
|
|
return heap->ToBoolean(compare_value == value);
|
|
}
|
|
|
|
|
|
static MaybeObject* GetPrimitiveValue(
|
|
const PrimitiveValueDescriptor& descriptor,
|
|
char* ptr,
|
|
Heap* heap) {
|
|
int32_t int32_value = 0;
|
|
switch (descriptor.data_type) {
|
|
case kDescriptorInt8Type:
|
|
int32_value = *CheckedCast<int8_t>(ptr);
|
|
break;
|
|
case kDescriptorUint8Type:
|
|
int32_value = *CheckedCast<uint8_t>(ptr);
|
|
break;
|
|
case kDescriptorInt16Type:
|
|
int32_value = *CheckedCast<int16_t>(ptr);
|
|
break;
|
|
case kDescriptorUint16Type:
|
|
int32_value = *CheckedCast<uint16_t>(ptr);
|
|
break;
|
|
case kDescriptorInt32Type:
|
|
int32_value = *CheckedCast<int32_t>(ptr);
|
|
break;
|
|
case kDescriptorUint32Type: {
|
|
uint32_t value = *CheckedCast<uint32_t>(ptr);
|
|
return heap->NumberFromUint32(value);
|
|
}
|
|
case kDescriptorBoolType: {
|
|
uint8_t byte = *CheckedCast<uint8_t>(ptr);
|
|
return heap->ToBoolean(byte & (0x1 << descriptor.bool_offset));
|
|
}
|
|
case kDescriptorFloatType: {
|
|
float value = *CheckedCast<float>(ptr);
|
|
return heap->NumberFromDouble(value);
|
|
}
|
|
case kDescriptorDoubleType: {
|
|
double value = *CheckedCast<double>(ptr);
|
|
return heap->NumberFromDouble(value);
|
|
}
|
|
}
|
|
return heap->NumberFromInt32(int32_value);
|
|
}
|
|
|
|
|
|
static MaybeObject* GetDeclaredAccessorProperty(Object* receiver,
|
|
DeclaredAccessorInfo* info,
|
|
Isolate* isolate) {
|
|
char* current = reinterpret_cast<char*>(receiver);
|
|
DeclaredAccessorDescriptorIterator iterator(info->descriptor());
|
|
while (true) {
|
|
const DeclaredAccessorDescriptorData* data = iterator.Next();
|
|
switch (data->type) {
|
|
case kDescriptorReturnObject: {
|
|
ASSERT(iterator.Complete());
|
|
current = *CheckedCast<char*>(current);
|
|
return *CheckedCast<Object*>(current);
|
|
}
|
|
case kDescriptorPointerDereference:
|
|
ASSERT(!iterator.Complete());
|
|
current = *reinterpret_cast<char**>(current);
|
|
break;
|
|
case kDescriptorPointerShift:
|
|
ASSERT(!iterator.Complete());
|
|
current += data->pointer_shift_descriptor.byte_offset;
|
|
break;
|
|
case kDescriptorObjectDereference: {
|
|
ASSERT(!iterator.Complete());
|
|
Object* object = CheckedCast<Object>(current);
|
|
int field = data->object_dereference_descriptor.internal_field;
|
|
Object* smi = JSObject::cast(object)->GetInternalField(field);
|
|
ASSERT(smi->IsSmi());
|
|
current = reinterpret_cast<char*>(smi);
|
|
break;
|
|
}
|
|
case kDescriptorBitmaskCompare:
|
|
ASSERT(iterator.Complete());
|
|
return PerformCompare(data->bitmask_compare_descriptor,
|
|
current,
|
|
isolate->heap());
|
|
case kDescriptorPointerCompare:
|
|
ASSERT(iterator.Complete());
|
|
return PerformCompare(data->pointer_compare_descriptor,
|
|
current,
|
|
isolate->heap());
|
|
case kDescriptorPrimitiveValue:
|
|
ASSERT(iterator.Complete());
|
|
return GetPrimitiveValue(data->primitive_value_descriptor,
|
|
current,
|
|
isolate->heap());
|
|
}
|
|
}
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::GetPropertyWithCallback(Object* receiver,
|
|
Object* structure,
|
|
Name* name) {
|
|
Isolate* isolate = name->GetIsolate();
|
|
// To accommodate both the old and the new api we switch on the
|
|
// data structure used to store the callbacks. Eventually foreign
|
|
// callbacks should be phased out.
|
|
if (structure->IsForeign()) {
|
|
AccessorDescriptor* callback =
|
|
reinterpret_cast<AccessorDescriptor*>(
|
|
Foreign::cast(structure)->foreign_address());
|
|
MaybeObject* value = (callback->getter)(receiver, callback->data);
|
|
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
|
|
return value;
|
|
}
|
|
|
|
// api style callbacks.
|
|
if (structure->IsAccessorInfo()) {
|
|
if (!AccessorInfo::cast(structure)->IsCompatibleReceiver(receiver)) {
|
|
Handle<Object> name_handle(name, isolate);
|
|
Handle<Object> receiver_handle(receiver, isolate);
|
|
Handle<Object> args[2] = { name_handle, receiver_handle };
|
|
Handle<Object> error =
|
|
isolate->factory()->NewTypeError("incompatible_method_receiver",
|
|
HandleVector(args,
|
|
ARRAY_SIZE(args)));
|
|
return isolate->Throw(*error);
|
|
}
|
|
// TODO(rossberg): Handling symbols in the API requires changing the API,
|
|
// so we do not support it for now.
|
|
if (name->IsSymbol()) return isolate->heap()->undefined_value();
|
|
if (structure->IsDeclaredAccessorInfo()) {
|
|
return GetDeclaredAccessorProperty(receiver,
|
|
DeclaredAccessorInfo::cast(structure),
|
|
isolate);
|
|
}
|
|
ExecutableAccessorInfo* data = ExecutableAccessorInfo::cast(structure);
|
|
Object* fun_obj = data->getter();
|
|
v8::AccessorGetter call_fun = v8::ToCData<v8::AccessorGetter>(fun_obj);
|
|
if (call_fun == NULL) return isolate->heap()->undefined_value();
|
|
HandleScope scope(isolate);
|
|
JSObject* self = JSObject::cast(receiver);
|
|
Handle<String> key(String::cast(name));
|
|
LOG(isolate, ApiNamedPropertyAccess("load", self, name));
|
|
PropertyCallbackArguments args(isolate, data->data(), self, this);
|
|
v8::Handle<v8::Value> result =
|
|
args.Call(call_fun, v8::Utils::ToLocal(key));
|
|
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
|
|
if (result.IsEmpty()) {
|
|
return isolate->heap()->undefined_value();
|
|
}
|
|
Object* return_value = *v8::Utils::OpenHandle(*result);
|
|
return_value->VerifyApiCallResultType();
|
|
return return_value;
|
|
}
|
|
|
|
// __defineGetter__ callback
|
|
if (structure->IsAccessorPair()) {
|
|
Object* getter = AccessorPair::cast(structure)->getter();
|
|
if (getter->IsSpecFunction()) {
|
|
// TODO(rossberg): nicer would be to cast to some JSCallable here...
|
|
return GetPropertyWithDefinedGetter(receiver, JSReceiver::cast(getter));
|
|
}
|
|
// Getter is not a function.
|
|
return isolate->heap()->undefined_value();
|
|
}
|
|
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
MaybeObject* JSProxy::GetPropertyWithHandler(Object* receiver_raw,
|
|
Name* name_raw) {
|
|
Isolate* isolate = GetIsolate();
|
|
HandleScope scope(isolate);
|
|
Handle<Object> receiver(receiver_raw, isolate);
|
|
Handle<Object> name(name_raw, isolate);
|
|
|
|
// TODO(rossberg): adjust once there is a story for symbols vs proxies.
|
|
if (name->IsSymbol()) return isolate->heap()->undefined_value();
|
|
|
|
Handle<Object> args[] = { receiver, name };
|
|
Handle<Object> result = CallTrap(
|
|
"get", isolate->derived_get_trap(), ARRAY_SIZE(args), args);
|
|
if (isolate->has_pending_exception()) return Failure::Exception();
|
|
|
|
return *result;
|
|
}
|
|
|
|
|
|
Handle<Object> Object::GetProperty(Handle<Object> object, Handle<Name> name) {
|
|
// TODO(rossberg): The index test should not be here but in the GetProperty
|
|
// method (or somewhere else entirely). Needs more global clean-up.
|
|
uint32_t index;
|
|
if (name->AsArrayIndex(&index))
|
|
return GetElement(object, index);
|
|
Isolate* isolate = object->IsHeapObject()
|
|
? Handle<HeapObject>::cast(object)->GetIsolate()
|
|
: Isolate::Current();
|
|
CALL_HEAP_FUNCTION(isolate, object->GetProperty(*name), Object);
|
|
}
|
|
|
|
|
|
Handle<Object> Object::GetElement(Handle<Object> object, uint32_t index) {
|
|
Isolate* isolate = object->IsHeapObject()
|
|
? Handle<HeapObject>::cast(object)->GetIsolate()
|
|
: Isolate::Current();
|
|
CALL_HEAP_FUNCTION(isolate, object->GetElement(index), Object);
|
|
}
|
|
|
|
|
|
MaybeObject* JSProxy::GetElementWithHandler(Object* receiver,
|
|
uint32_t index) {
|
|
String* name;
|
|
MaybeObject* maybe = GetHeap()->Uint32ToString(index);
|
|
if (!maybe->To<String>(&name)) return maybe;
|
|
return GetPropertyWithHandler(receiver, name);
|
|
}
|
|
|
|
|
|
MaybeObject* JSProxy::SetElementWithHandler(JSReceiver* receiver,
|
|
uint32_t index,
|
|
Object* value,
|
|
StrictModeFlag strict_mode) {
|
|
String* name;
|
|
MaybeObject* maybe = GetHeap()->Uint32ToString(index);
|
|
if (!maybe->To<String>(&name)) return maybe;
|
|
return SetPropertyWithHandler(receiver, name, value, NONE, strict_mode);
|
|
}
|
|
|
|
|
|
bool JSProxy::HasElementWithHandler(uint32_t index) {
|
|
String* name;
|
|
MaybeObject* maybe = GetHeap()->Uint32ToString(index);
|
|
if (!maybe->To<String>(&name)) return maybe;
|
|
return HasPropertyWithHandler(name);
|
|
}
|
|
|
|
|
|
MaybeObject* Object::GetPropertyWithDefinedGetter(Object* receiver,
|
|
JSReceiver* getter) {
|
|
Isolate* isolate = getter->GetIsolate();
|
|
HandleScope scope(isolate);
|
|
Handle<JSReceiver> fun(getter);
|
|
Handle<Object> self(receiver, isolate);
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
Debug* debug = isolate->debug();
|
|
// Handle stepping into a getter if step into is active.
|
|
// TODO(rossberg): should this apply to getters that are function proxies?
|
|
if (debug->StepInActive() && fun->IsJSFunction()) {
|
|
debug->HandleStepIn(
|
|
Handle<JSFunction>::cast(fun), Handle<Object>::null(), 0, false);
|
|
}
|
|
#endif
|
|
|
|
bool has_pending_exception;
|
|
Handle<Object> result =
|
|
Execution::Call(fun, self, 0, NULL, &has_pending_exception, true);
|
|
// Check for pending exception and return the result.
|
|
if (has_pending_exception) return Failure::Exception();
|
|
return *result;
|
|
}
|
|
|
|
|
|
// Only deal with CALLBACKS and INTERCEPTOR
|
|
MaybeObject* JSObject::GetPropertyWithFailedAccessCheck(
|
|
Object* receiver,
|
|
LookupResult* result,
|
|
Name* name,
|
|
PropertyAttributes* attributes) {
|
|
if (result->IsProperty()) {
|
|
switch (result->type()) {
|
|
case CALLBACKS: {
|
|
// Only allow API accessors.
|
|
Object* obj = result->GetCallbackObject();
|
|
if (obj->IsAccessorInfo()) {
|
|
AccessorInfo* info = AccessorInfo::cast(obj);
|
|
if (info->all_can_read()) {
|
|
*attributes = result->GetAttributes();
|
|
return result->holder()->GetPropertyWithCallback(
|
|
receiver, result->GetCallbackObject(), name);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case NORMAL:
|
|
case FIELD:
|
|
case CONSTANT_FUNCTION: {
|
|
// Search ALL_CAN_READ accessors in prototype chain.
|
|
LookupResult r(GetIsolate());
|
|
result->holder()->LookupRealNamedPropertyInPrototypes(name, &r);
|
|
if (r.IsProperty()) {
|
|
return GetPropertyWithFailedAccessCheck(receiver,
|
|
&r,
|
|
name,
|
|
attributes);
|
|
}
|
|
break;
|
|
}
|
|
case INTERCEPTOR: {
|
|
// If the object has an interceptor, try real named properties.
|
|
// No access check in GetPropertyAttributeWithInterceptor.
|
|
LookupResult r(GetIsolate());
|
|
result->holder()->LookupRealNamedProperty(name, &r);
|
|
if (r.IsProperty()) {
|
|
return GetPropertyWithFailedAccessCheck(receiver,
|
|
&r,
|
|
name,
|
|
attributes);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
// No accessible property found.
|
|
*attributes = ABSENT;
|
|
Heap* heap = name->GetHeap();
|
|
heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_GET);
|
|
return heap->undefined_value();
|
|
}
|
|
|
|
|
|
PropertyAttributes JSObject::GetPropertyAttributeWithFailedAccessCheck(
|
|
Object* receiver,
|
|
LookupResult* result,
|
|
Name* name,
|
|
bool continue_search) {
|
|
if (result->IsProperty()) {
|
|
switch (result->type()) {
|
|
case CALLBACKS: {
|
|
// Only allow API accessors.
|
|
Object* obj = result->GetCallbackObject();
|
|
if (obj->IsAccessorInfo()) {
|
|
AccessorInfo* info = AccessorInfo::cast(obj);
|
|
if (info->all_can_read()) {
|
|
return result->GetAttributes();
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case NORMAL:
|
|
case FIELD:
|
|
case CONSTANT_FUNCTION: {
|
|
if (!continue_search) break;
|
|
// Search ALL_CAN_READ accessors in prototype chain.
|
|
LookupResult r(GetIsolate());
|
|
result->holder()->LookupRealNamedPropertyInPrototypes(name, &r);
|
|
if (r.IsProperty()) {
|
|
return GetPropertyAttributeWithFailedAccessCheck(receiver,
|
|
&r,
|
|
name,
|
|
continue_search);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case INTERCEPTOR: {
|
|
// If the object has an interceptor, try real named properties.
|
|
// No access check in GetPropertyAttributeWithInterceptor.
|
|
LookupResult r(GetIsolate());
|
|
if (continue_search) {
|
|
result->holder()->LookupRealNamedProperty(name, &r);
|
|
} else {
|
|
result->holder()->LocalLookupRealNamedProperty(name, &r);
|
|
}
|
|
if (!r.IsFound()) break;
|
|
return GetPropertyAttributeWithFailedAccessCheck(receiver,
|
|
&r,
|
|
name,
|
|
continue_search);
|
|
}
|
|
|
|
case HANDLER:
|
|
case TRANSITION:
|
|
case NONEXISTENT:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
GetIsolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS);
|
|
return ABSENT;
|
|
}
|
|
|
|
|
|
Object* JSObject::GetNormalizedProperty(LookupResult* result) {
|
|
ASSERT(!HasFastProperties());
|
|
Object* value = property_dictionary()->ValueAt(result->GetDictionaryEntry());
|
|
if (IsGlobalObject()) {
|
|
value = PropertyCell::cast(value)->value();
|
|
}
|
|
ASSERT(!value->IsPropertyCell() && !value->IsCell());
|
|
return value;
|
|
}
|
|
|
|
|
|
Handle<Object> JSObject::SetNormalizedProperty(Handle<JSObject> object,
|
|
LookupResult* result,
|
|
Handle<Object> value) {
|
|
CALL_HEAP_FUNCTION(object->GetIsolate(),
|
|
object->SetNormalizedProperty(result, *value),
|
|
Object);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetNormalizedProperty(LookupResult* result,
|
|
Object* value) {
|
|
ASSERT(!HasFastProperties());
|
|
if (IsGlobalObject()) {
|
|
PropertyCell* cell = PropertyCell::cast(
|
|
property_dictionary()->ValueAt(result->GetDictionaryEntry()));
|
|
MaybeObject* maybe_type = cell->SetValueInferType(value);
|
|
if (maybe_type->IsFailure()) return maybe_type;
|
|
} else {
|
|
property_dictionary()->ValueAtPut(result->GetDictionaryEntry(), value);
|
|
}
|
|
return value;
|
|
}
|
|
|
|
|
|
Handle<Object> JSObject::SetNormalizedProperty(Handle<JSObject> object,
|
|
Handle<Name> key,
|
|
Handle<Object> value,
|
|
PropertyDetails details) {
|
|
CALL_HEAP_FUNCTION(object->GetIsolate(),
|
|
object->SetNormalizedProperty(*key, *value, details),
|
|
Object);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetNormalizedProperty(Name* name,
|
|
Object* value,
|
|
PropertyDetails details) {
|
|
ASSERT(!HasFastProperties());
|
|
int entry = property_dictionary()->FindEntry(name);
|
|
if (entry == NameDictionary::kNotFound) {
|
|
Object* store_value = value;
|
|
if (IsGlobalObject()) {
|
|
Heap* heap = name->GetHeap();
|
|
MaybeObject* maybe_store_value = heap->AllocatePropertyCell(value);
|
|
if (!maybe_store_value->ToObject(&store_value)) return maybe_store_value;
|
|
}
|
|
Object* dict;
|
|
{ MaybeObject* maybe_dict =
|
|
property_dictionary()->Add(name, store_value, details);
|
|
if (!maybe_dict->ToObject(&dict)) return maybe_dict;
|
|
}
|
|
set_properties(NameDictionary::cast(dict));
|
|
return value;
|
|
}
|
|
|
|
PropertyDetails original_details = property_dictionary()->DetailsAt(entry);
|
|
int enumeration_index;
|
|
// Preserve the enumeration index unless the property was deleted.
|
|
if (original_details.IsDeleted()) {
|
|
enumeration_index = property_dictionary()->NextEnumerationIndex();
|
|
property_dictionary()->SetNextEnumerationIndex(enumeration_index + 1);
|
|
} else {
|
|
enumeration_index = original_details.dictionary_index();
|
|
ASSERT(enumeration_index > 0);
|
|
}
|
|
|
|
details = PropertyDetails(
|
|
details.attributes(), details.type(), enumeration_index);
|
|
|
|
if (IsGlobalObject()) {
|
|
PropertyCell* cell =
|
|
PropertyCell::cast(property_dictionary()->ValueAt(entry));
|
|
MaybeObject* maybe_type = cell->SetValueInferType(value);
|
|
if (maybe_type->IsFailure()) return maybe_type;
|
|
// Please note we have to update the property details.
|
|
property_dictionary()->DetailsAtPut(entry, details);
|
|
} else {
|
|
property_dictionary()->SetEntry(entry, name, value, details);
|
|
}
|
|
return value;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::DeleteNormalizedProperty(Name* name, DeleteMode mode) {
|
|
ASSERT(!HasFastProperties());
|
|
NameDictionary* dictionary = property_dictionary();
|
|
int entry = dictionary->FindEntry(name);
|
|
if (entry != NameDictionary::kNotFound) {
|
|
// If we have a global object set the cell to the hole.
|
|
if (IsGlobalObject()) {
|
|
PropertyDetails details = dictionary->DetailsAt(entry);
|
|
if (details.IsDontDelete()) {
|
|
if (mode != FORCE_DELETION) return GetHeap()->false_value();
|
|
// When forced to delete global properties, we have to make a
|
|
// map change to invalidate any ICs that think they can load
|
|
// from the DontDelete cell without checking if it contains
|
|
// the hole value.
|
|
Map* new_map;
|
|
MaybeObject* maybe_new_map = map()->CopyDropDescriptors();
|
|
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
|
|
|
|
ASSERT(new_map->is_dictionary_map());
|
|
set_map(new_map);
|
|
}
|
|
PropertyCell* cell = PropertyCell::cast(dictionary->ValueAt(entry));
|
|
MaybeObject* maybe_type =
|
|
cell->SetValueInferType(cell->GetHeap()->the_hole_value());
|
|
if (maybe_type->IsFailure()) return maybe_type;
|
|
dictionary->DetailsAtPut(entry, details.AsDeleted());
|
|
} else {
|
|
Object* deleted = dictionary->DeleteProperty(entry, mode);
|
|
if (deleted == GetHeap()->true_value()) {
|
|
FixedArray* new_properties = NULL;
|
|
MaybeObject* maybe_properties = dictionary->Shrink(name);
|
|
if (!maybe_properties->To(&new_properties)) {
|
|
return maybe_properties;
|
|
}
|
|
set_properties(new_properties);
|
|
}
|
|
return deleted;
|
|
}
|
|
}
|
|
return GetHeap()->true_value();
|
|
}
|
|
|
|
|
|
bool JSObject::IsDirty() {
|
|
Object* cons_obj = map()->constructor();
|
|
if (!cons_obj->IsJSFunction())
|
|
return true;
|
|
JSFunction* fun = JSFunction::cast(cons_obj);
|
|
if (!fun->shared()->IsApiFunction())
|
|
return true;
|
|
// If the object is fully fast case and has the same map it was
|
|
// created with then no changes can have been made to it.
|
|
return map() != fun->initial_map()
|
|
|| !HasFastObjectElements()
|
|
|| !HasFastProperties();
|
|
}
|
|
|
|
|
|
Handle<Object> Object::GetProperty(Handle<Object> object,
|
|
Handle<Object> receiver,
|
|
LookupResult* result,
|
|
Handle<Name> key,
|
|
PropertyAttributes* attributes) {
|
|
Isolate* isolate = object->IsHeapObject()
|
|
? Handle<HeapObject>::cast(object)->GetIsolate()
|
|
: Isolate::Current();
|
|
CALL_HEAP_FUNCTION(
|
|
isolate,
|
|
object->GetProperty(*receiver, result, *key, attributes),
|
|
Object);
|
|
}
|
|
|
|
|
|
MaybeObject* Object::GetPropertyOrFail(Handle<Object> object,
|
|
Handle<Object> receiver,
|
|
LookupResult* result,
|
|
Handle<Name> key,
|
|
PropertyAttributes* attributes) {
|
|
Isolate* isolate = object->IsHeapObject()
|
|
? Handle<HeapObject>::cast(object)->GetIsolate()
|
|
: Isolate::Current();
|
|
CALL_HEAP_FUNCTION_PASS_EXCEPTION(
|
|
isolate,
|
|
object->GetProperty(*receiver, result, *key, attributes));
|
|
}
|
|
|
|
|
|
MaybeObject* Object::GetProperty(Object* receiver,
|
|
LookupResult* result,
|
|
Name* name,
|
|
PropertyAttributes* attributes) {
|
|
// Make sure that the top context does not change when doing
|
|
// callbacks or interceptor calls.
|
|
AssertNoContextChange ncc;
|
|
Isolate* isolate = name->GetIsolate();
|
|
Heap* heap = isolate->heap();
|
|
|
|
// Traverse the prototype chain from the current object (this) to
|
|
// the holder and check for access rights. This avoids traversing the
|
|
// objects more than once in case of interceptors, because the
|
|
// holder will always be the interceptor holder and the search may
|
|
// only continue with a current object just after the interceptor
|
|
// holder in the prototype chain.
|
|
// Proxy handlers do not use the proxy's prototype, so we can skip this.
|
|
if (!result->IsHandler()) {
|
|
Object* last = result->IsProperty()
|
|
? result->holder()
|
|
: Object::cast(heap->null_value());
|
|
ASSERT(this != this->GetPrototype(isolate));
|
|
for (Object* current = this;
|
|
true;
|
|
current = current->GetPrototype(isolate)) {
|
|
if (current->IsAccessCheckNeeded()) {
|
|
// Check if we're allowed to read from the current object. Note
|
|
// that even though we may not actually end up loading the named
|
|
// property from the current object, we still check that we have
|
|
// access to it.
|
|
JSObject* checked = JSObject::cast(current);
|
|
if (!heap->isolate()->MayNamedAccess(checked, name, v8::ACCESS_GET)) {
|
|
return checked->GetPropertyWithFailedAccessCheck(receiver,
|
|
result,
|
|
name,
|
|
attributes);
|
|
}
|
|
}
|
|
// Stop traversing the chain once we reach the last object in the
|
|
// chain; either the holder of the result or null in case of an
|
|
// absent property.
|
|
if (current == last) break;
|
|
}
|
|
}
|
|
|
|
if (!result->IsProperty()) {
|
|
*attributes = ABSENT;
|
|
return heap->undefined_value();
|
|
}
|
|
*attributes = result->GetAttributes();
|
|
Object* value;
|
|
switch (result->type()) {
|
|
case NORMAL:
|
|
value = result->holder()->GetNormalizedProperty(result);
|
|
ASSERT(!value->IsTheHole() || result->IsReadOnly());
|
|
return value->IsTheHole() ? heap->undefined_value() : value;
|
|
case FIELD: {
|
|
MaybeObject* maybe_result = result->holder()->FastPropertyAt(
|
|
result->representation(),
|
|
result->GetFieldIndex().field_index());
|
|
if (!maybe_result->To(&value)) return maybe_result;
|
|
ASSERT(!value->IsTheHole() || result->IsReadOnly());
|
|
return value->IsTheHole() ? heap->undefined_value() : value;
|
|
}
|
|
case CONSTANT_FUNCTION:
|
|
return result->GetConstantFunction();
|
|
case CALLBACKS:
|
|
return result->holder()->GetPropertyWithCallback(
|
|
receiver, result->GetCallbackObject(), name);
|
|
case HANDLER:
|
|
return result->proxy()->GetPropertyWithHandler(receiver, name);
|
|
case INTERCEPTOR:
|
|
return result->holder()->GetPropertyWithInterceptor(
|
|
receiver, name, attributes);
|
|
case TRANSITION:
|
|
case NONEXISTENT:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
MaybeObject* Object::GetElementWithReceiver(Object* receiver, uint32_t index) {
|
|
Isolate* isolate = IsSmi()
|
|
? Isolate::Current()
|
|
: HeapObject::cast(this)->GetIsolate();
|
|
Heap* heap = isolate->heap();
|
|
Object* holder = this;
|
|
|
|
// Iterate up the prototype chain until an element is found or the null
|
|
// prototype is encountered.
|
|
for (holder = this;
|
|
holder != heap->null_value();
|
|
holder = holder->GetPrototype(isolate)) {
|
|
if (!holder->IsJSObject()) {
|
|
Context* native_context = isolate->context()->native_context();
|
|
if (holder->IsNumber()) {
|
|
holder = native_context->number_function()->instance_prototype();
|
|
} else if (holder->IsString()) {
|
|
holder = native_context->string_function()->instance_prototype();
|
|
} else if (holder->IsSymbol()) {
|
|
holder = native_context->symbol_function()->instance_prototype();
|
|
} else if (holder->IsBoolean()) {
|
|
holder = native_context->boolean_function()->instance_prototype();
|
|
} else if (holder->IsJSProxy()) {
|
|
return JSProxy::cast(holder)->GetElementWithHandler(receiver, index);
|
|
} else {
|
|
// Undefined and null have no indexed properties.
|
|
ASSERT(holder->IsUndefined() || holder->IsNull());
|
|
return heap->undefined_value();
|
|
}
|
|
}
|
|
|
|
// Inline the case for JSObjects. Doing so significantly improves the
|
|
// performance of fetching elements where checking the prototype chain is
|
|
// necessary.
|
|
JSObject* js_object = JSObject::cast(holder);
|
|
|
|
// Check access rights if needed.
|
|
if (js_object->IsAccessCheckNeeded()) {
|
|
Isolate* isolate = heap->isolate();
|
|
if (!isolate->MayIndexedAccess(js_object, index, v8::ACCESS_GET)) {
|
|
isolate->ReportFailedAccessCheck(js_object, v8::ACCESS_GET);
|
|
return heap->undefined_value();
|
|
}
|
|
}
|
|
|
|
if (js_object->HasIndexedInterceptor()) {
|
|
return js_object->GetElementWithInterceptor(receiver, index);
|
|
}
|
|
|
|
if (js_object->elements() != heap->empty_fixed_array()) {
|
|
MaybeObject* result = js_object->GetElementsAccessor()->Get(
|
|
receiver, js_object, index);
|
|
if (result != heap->the_hole_value()) return result;
|
|
}
|
|
}
|
|
|
|
return heap->undefined_value();
|
|
}
|
|
|
|
|
|
Object* Object::GetPrototype(Isolate* isolate) {
|
|
if (IsSmi()) {
|
|
Context* context = isolate->context()->native_context();
|
|
return context->number_function()->instance_prototype();
|
|
}
|
|
|
|
HeapObject* heap_object = HeapObject::cast(this);
|
|
|
|
// The object is either a number, a string, a boolean,
|
|
// a real JS object, or a Harmony proxy.
|
|
if (heap_object->IsJSReceiver()) {
|
|
return heap_object->map()->prototype();
|
|
}
|
|
Context* context = isolate->context()->native_context();
|
|
|
|
if (heap_object->IsHeapNumber()) {
|
|
return context->number_function()->instance_prototype();
|
|
}
|
|
if (heap_object->IsString()) {
|
|
return context->string_function()->instance_prototype();
|
|
}
|
|
if (heap_object->IsSymbol()) {
|
|
return context->symbol_function()->instance_prototype();
|
|
}
|
|
if (heap_object->IsBoolean()) {
|
|
return context->boolean_function()->instance_prototype();
|
|
} else {
|
|
return isolate->heap()->null_value();
|
|
}
|
|
}
|
|
|
|
|
|
MaybeObject* Object::GetHash(CreationFlag flag) {
|
|
// The object is either a number, a name, an odd-ball,
|
|
// a real JS object, or a Harmony proxy.
|
|
if (IsNumber()) {
|
|
uint32_t hash = ComputeLongHash(double_to_uint64(Number()));
|
|
return Smi::FromInt(hash & Smi::kMaxValue);
|
|
}
|
|
if (IsName()) {
|
|
uint32_t hash = Name::cast(this)->Hash();
|
|
return Smi::FromInt(hash);
|
|
}
|
|
if (IsOddball()) {
|
|
uint32_t hash = Oddball::cast(this)->to_string()->Hash();
|
|
return Smi::FromInt(hash);
|
|
}
|
|
if (IsJSReceiver()) {
|
|
return JSReceiver::cast(this)->GetIdentityHash(flag);
|
|
}
|
|
|
|
UNREACHABLE();
|
|
return Smi::FromInt(0);
|
|
}
|
|
|
|
|
|
bool Object::SameValue(Object* other) {
|
|
if (other == this) return true;
|
|
|
|
// The object is either a number, a name, an odd-ball,
|
|
// a real JS object, or a Harmony proxy.
|
|
if (IsNumber() && other->IsNumber()) {
|
|
double this_value = Number();
|
|
double other_value = other->Number();
|
|
return (this_value == other_value) ||
|
|
(std::isnan(this_value) && std::isnan(other_value));
|
|
}
|
|
if (IsString() && other->IsString()) {
|
|
return String::cast(this)->Equals(String::cast(other));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void Object::ShortPrint(FILE* out) {
|
|
HeapStringAllocator allocator;
|
|
StringStream accumulator(&allocator);
|
|
ShortPrint(&accumulator);
|
|
accumulator.OutputToFile(out);
|
|
}
|
|
|
|
|
|
void Object::ShortPrint(StringStream* accumulator) {
|
|
if (IsSmi()) {
|
|
Smi::cast(this)->SmiPrint(accumulator);
|
|
} else if (IsFailure()) {
|
|
Failure::cast(this)->FailurePrint(accumulator);
|
|
} else {
|
|
HeapObject::cast(this)->HeapObjectShortPrint(accumulator);
|
|
}
|
|
}
|
|
|
|
|
|
void Smi::SmiPrint(FILE* out) {
|
|
PrintF(out, "%d", value());
|
|
}
|
|
|
|
|
|
void Smi::SmiPrint(StringStream* accumulator) {
|
|
accumulator->Add("%d", value());
|
|
}
|
|
|
|
|
|
void Failure::FailurePrint(StringStream* accumulator) {
|
|
accumulator->Add("Failure(%p)", reinterpret_cast<void*>(value()));
|
|
}
|
|
|
|
|
|
void Failure::FailurePrint(FILE* out) {
|
|
PrintF(out, "Failure(%p)", reinterpret_cast<void*>(value()));
|
|
}
|
|
|
|
|
|
// Should a word be prefixed by 'a' or 'an' in order to read naturally in
|
|
// English? Returns false for non-ASCII or words that don't start with
|
|
// a capital letter. The a/an rule follows pronunciation in English.
|
|
// We don't use the BBC's overcorrect "an historic occasion" though if
|
|
// you speak a dialect you may well say "an 'istoric occasion".
|
|
static bool AnWord(String* str) {
|
|
if (str->length() == 0) return false; // A nothing.
|
|
int c0 = str->Get(0);
|
|
int c1 = str->length() > 1 ? str->Get(1) : 0;
|
|
if (c0 == 'U') {
|
|
if (c1 > 'Z') {
|
|
return true; // An Umpire, but a UTF8String, a U.
|
|
}
|
|
} else if (c0 == 'A' || c0 == 'E' || c0 == 'I' || c0 == 'O') {
|
|
return true; // An Ape, an ABCBook.
|
|
} else if ((c1 == 0 || (c1 >= 'A' && c1 <= 'Z')) &&
|
|
(c0 == 'F' || c0 == 'H' || c0 == 'M' || c0 == 'N' || c0 == 'R' ||
|
|
c0 == 'S' || c0 == 'X')) {
|
|
return true; // An MP3File, an M.
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
MaybeObject* String::SlowTryFlatten(PretenureFlag pretenure) {
|
|
#ifdef DEBUG
|
|
// Do not attempt to flatten in debug mode when allocation is not
|
|
// allowed. This is to avoid an assertion failure when allocating.
|
|
// Flattening strings is the only case where we always allow
|
|
// allocation because no GC is performed if the allocation fails.
|
|
if (!AllowHeapAllocation::IsAllowed()) return this;
|
|
#endif
|
|
|
|
Heap* heap = GetHeap();
|
|
switch (StringShape(this).representation_tag()) {
|
|
case kConsStringTag: {
|
|
ConsString* cs = ConsString::cast(this);
|
|
if (cs->second()->length() == 0) {
|
|
return cs->first();
|
|
}
|
|
// There's little point in putting the flat string in new space if the
|
|
// cons string is in old space. It can never get GCed until there is
|
|
// an old space GC.
|
|
PretenureFlag tenure = heap->InNewSpace(this) ? pretenure : TENURED;
|
|
int len = length();
|
|
Object* object;
|
|
String* result;
|
|
if (IsOneByteRepresentation()) {
|
|
{ MaybeObject* maybe_object =
|
|
heap->AllocateRawOneByteString(len, tenure);
|
|
if (!maybe_object->ToObject(&object)) return maybe_object;
|
|
}
|
|
result = String::cast(object);
|
|
String* first = cs->first();
|
|
int first_length = first->length();
|
|
uint8_t* dest = SeqOneByteString::cast(result)->GetChars();
|
|
WriteToFlat(first, dest, 0, first_length);
|
|
String* second = cs->second();
|
|
WriteToFlat(second,
|
|
dest + first_length,
|
|
0,
|
|
len - first_length);
|
|
} else {
|
|
{ MaybeObject* maybe_object =
|
|
heap->AllocateRawTwoByteString(len, tenure);
|
|
if (!maybe_object->ToObject(&object)) return maybe_object;
|
|
}
|
|
result = String::cast(object);
|
|
uc16* dest = SeqTwoByteString::cast(result)->GetChars();
|
|
String* first = cs->first();
|
|
int first_length = first->length();
|
|
WriteToFlat(first, dest, 0, first_length);
|
|
String* second = cs->second();
|
|
WriteToFlat(second,
|
|
dest + first_length,
|
|
0,
|
|
len - first_length);
|
|
}
|
|
cs->set_first(result);
|
|
cs->set_second(heap->empty_string(), SKIP_WRITE_BARRIER);
|
|
return result;
|
|
}
|
|
default:
|
|
return this;
|
|
}
|
|
}
|
|
|
|
|
|
bool String::MakeExternal(v8::String::ExternalStringResource* resource) {
|
|
// Externalizing twice leaks the external resource, so it's
|
|
// prohibited by the API.
|
|
ASSERT(!this->IsExternalString());
|
|
#ifdef DEBUG
|
|
if (FLAG_enable_slow_asserts) {
|
|
// Assert that the resource and the string are equivalent.
|
|
ASSERT(static_cast<size_t>(this->length()) == resource->length());
|
|
ScopedVector<uc16> smart_chars(this->length());
|
|
String::WriteToFlat(this, smart_chars.start(), 0, this->length());
|
|
ASSERT(memcmp(smart_chars.start(),
|
|
resource->data(),
|
|
resource->length() * sizeof(smart_chars[0])) == 0);
|
|
}
|
|
#endif // DEBUG
|
|
Heap* heap = GetHeap();
|
|
int size = this->Size(); // Byte size of the original string.
|
|
if (size < ExternalString::kShortSize) {
|
|
return false;
|
|
}
|
|
bool is_ascii = this->IsOneByteRepresentation();
|
|
bool is_internalized = this->IsInternalizedString();
|
|
|
|
// Morph the object to an external string by adjusting the map and
|
|
// reinitializing the fields.
|
|
if (size >= ExternalString::kSize) {
|
|
this->set_map_no_write_barrier(
|
|
is_internalized
|
|
? (is_ascii
|
|
? heap->external_internalized_string_with_one_byte_data_map()
|
|
: heap->external_internalized_string_map())
|
|
: (is_ascii
|
|
? heap->external_string_with_one_byte_data_map()
|
|
: heap->external_string_map()));
|
|
} else {
|
|
this->set_map_no_write_barrier(
|
|
is_internalized
|
|
? (is_ascii
|
|
? heap->
|
|
short_external_internalized_string_with_one_byte_data_map()
|
|
: heap->short_external_internalized_string_map())
|
|
: (is_ascii
|
|
? heap->short_external_string_with_one_byte_data_map()
|
|
: heap->short_external_string_map()));
|
|
}
|
|
ExternalTwoByteString* self = ExternalTwoByteString::cast(this);
|
|
self->set_resource(resource);
|
|
if (is_internalized) self->Hash(); // Force regeneration of the hash value.
|
|
|
|
// Fill the remainder of the string with dead wood.
|
|
int new_size = this->Size(); // Byte size of the external String object.
|
|
heap->CreateFillerObjectAt(this->address() + new_size, size - new_size);
|
|
if (Marking::IsBlack(Marking::MarkBitFrom(this))) {
|
|
MemoryChunk::IncrementLiveBytesFromMutator(this->address(),
|
|
new_size - size);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool String::MakeExternal(v8::String::ExternalAsciiStringResource* resource) {
|
|
#ifdef DEBUG
|
|
if (FLAG_enable_slow_asserts) {
|
|
// Assert that the resource and the string are equivalent.
|
|
ASSERT(static_cast<size_t>(this->length()) == resource->length());
|
|
if (this->IsTwoByteRepresentation()) {
|
|
ScopedVector<uint16_t> smart_chars(this->length());
|
|
String::WriteToFlat(this, smart_chars.start(), 0, this->length());
|
|
ASSERT(String::IsOneByte(smart_chars.start(), this->length()));
|
|
}
|
|
ScopedVector<char> smart_chars(this->length());
|
|
String::WriteToFlat(this, smart_chars.start(), 0, this->length());
|
|
ASSERT(memcmp(smart_chars.start(),
|
|
resource->data(),
|
|
resource->length() * sizeof(smart_chars[0])) == 0);
|
|
}
|
|
#endif // DEBUG
|
|
Heap* heap = GetHeap();
|
|
int size = this->Size(); // Byte size of the original string.
|
|
if (size < ExternalString::kShortSize) {
|
|
return false;
|
|
}
|
|
bool is_internalized = this->IsInternalizedString();
|
|
|
|
// Morph the object to an external string by adjusting the map and
|
|
// reinitializing the fields. Use short version if space is limited.
|
|
if (size >= ExternalString::kSize) {
|
|
this->set_map_no_write_barrier(
|
|
is_internalized ? heap->external_ascii_internalized_string_map()
|
|
: heap->external_ascii_string_map());
|
|
} else {
|
|
this->set_map_no_write_barrier(
|
|
is_internalized ? heap->short_external_ascii_internalized_string_map()
|
|
: heap->short_external_ascii_string_map());
|
|
}
|
|
ExternalAsciiString* self = ExternalAsciiString::cast(this);
|
|
self->set_resource(resource);
|
|
if (is_internalized) self->Hash(); // Force regeneration of the hash value.
|
|
|
|
// Fill the remainder of the string with dead wood.
|
|
int new_size = this->Size(); // Byte size of the external String object.
|
|
heap->CreateFillerObjectAt(this->address() + new_size, size - new_size);
|
|
if (Marking::IsBlack(Marking::MarkBitFrom(this))) {
|
|
MemoryChunk::IncrementLiveBytesFromMutator(this->address(),
|
|
new_size - size);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
void String::StringShortPrint(StringStream* accumulator) {
|
|
int len = length();
|
|
if (len > kMaxShortPrintLength) {
|
|
accumulator->Add("<Very long string[%u]>", len);
|
|
return;
|
|
}
|
|
|
|
if (!LooksValid()) {
|
|
accumulator->Add("<Invalid String>");
|
|
return;
|
|
}
|
|
|
|
ConsStringIteratorOp op;
|
|
StringCharacterStream stream(this, &op);
|
|
|
|
bool truncated = false;
|
|
if (len > kMaxShortPrintLength) {
|
|
len = kMaxShortPrintLength;
|
|
truncated = true;
|
|
}
|
|
bool ascii = true;
|
|
for (int i = 0; i < len; i++) {
|
|
uint16_t c = stream.GetNext();
|
|
|
|
if (c < 32 || c >= 127) {
|
|
ascii = false;
|
|
}
|
|
}
|
|
stream.Reset(this);
|
|
if (ascii) {
|
|
accumulator->Add("<String[%u]: ", length());
|
|
for (int i = 0; i < len; i++) {
|
|
accumulator->Put(static_cast<char>(stream.GetNext()));
|
|
}
|
|
accumulator->Put('>');
|
|
} else {
|
|
// Backslash indicates that the string contains control
|
|
// characters and that backslashes are therefore escaped.
|
|
accumulator->Add("<String[%u]\\: ", length());
|
|
for (int i = 0; i < len; i++) {
|
|
uint16_t c = stream.GetNext();
|
|
if (c == '\n') {
|
|
accumulator->Add("\\n");
|
|
} else if (c == '\r') {
|
|
accumulator->Add("\\r");
|
|
} else if (c == '\\') {
|
|
accumulator->Add("\\\\");
|
|
} else if (c < 32 || c > 126) {
|
|
accumulator->Add("\\x%02x", c);
|
|
} else {
|
|
accumulator->Put(static_cast<char>(c));
|
|
}
|
|
}
|
|
if (truncated) {
|
|
accumulator->Put('.');
|
|
accumulator->Put('.');
|
|
accumulator->Put('.');
|
|
}
|
|
accumulator->Put('>');
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
void JSObject::JSObjectShortPrint(StringStream* accumulator) {
|
|
switch (map()->instance_type()) {
|
|
case JS_ARRAY_TYPE: {
|
|
double length = JSArray::cast(this)->length()->IsUndefined()
|
|
? 0
|
|
: JSArray::cast(this)->length()->Number();
|
|
accumulator->Add("<JS Array[%u]>", static_cast<uint32_t>(length));
|
|
break;
|
|
}
|
|
case JS_WEAK_MAP_TYPE: {
|
|
accumulator->Add("<JS WeakMap>");
|
|
break;
|
|
}
|
|
case JS_REGEXP_TYPE: {
|
|
accumulator->Add("<JS RegExp>");
|
|
break;
|
|
}
|
|
case JS_FUNCTION_TYPE: {
|
|
JSFunction* function = JSFunction::cast(this);
|
|
Object* fun_name = function->shared()->DebugName();
|
|
bool printed = false;
|
|
if (fun_name->IsString()) {
|
|
String* str = String::cast(fun_name);
|
|
if (str->length() > 0) {
|
|
accumulator->Add("<JS Function ");
|
|
accumulator->Put(str);
|
|
printed = true;
|
|
}
|
|
}
|
|
if (!printed) {
|
|
accumulator->Add("<JS Function");
|
|
}
|
|
accumulator->Add(" (SharedFunctionInfo %p)",
|
|
reinterpret_cast<void*>(function->shared()));
|
|
accumulator->Put('>');
|
|
break;
|
|
}
|
|
case JS_GENERATOR_OBJECT_TYPE: {
|
|
accumulator->Add("<JS Generator>");
|
|
break;
|
|
}
|
|
case JS_MODULE_TYPE: {
|
|
accumulator->Add("<JS Module>");
|
|
break;
|
|
}
|
|
// All other JSObjects are rather similar to each other (JSObject,
|
|
// JSGlobalProxy, JSGlobalObject, JSUndetectableObject, JSValue).
|
|
default: {
|
|
Map* map_of_this = map();
|
|
Heap* heap = GetHeap();
|
|
Object* constructor = map_of_this->constructor();
|
|
bool printed = false;
|
|
if (constructor->IsHeapObject() &&
|
|
!heap->Contains(HeapObject::cast(constructor))) {
|
|
accumulator->Add("!!!INVALID CONSTRUCTOR!!!");
|
|
} else {
|
|
bool global_object = IsJSGlobalProxy();
|
|
if (constructor->IsJSFunction()) {
|
|
if (!heap->Contains(JSFunction::cast(constructor)->shared())) {
|
|
accumulator->Add("!!!INVALID SHARED ON CONSTRUCTOR!!!");
|
|
} else {
|
|
Object* constructor_name =
|
|
JSFunction::cast(constructor)->shared()->name();
|
|
if (constructor_name->IsString()) {
|
|
String* str = String::cast(constructor_name);
|
|
if (str->length() > 0) {
|
|
bool vowel = AnWord(str);
|
|
accumulator->Add("<%sa%s ",
|
|
global_object ? "Global Object: " : "",
|
|
vowel ? "n" : "");
|
|
accumulator->Put(str);
|
|
accumulator->Add(" with %smap %p",
|
|
map_of_this->is_deprecated() ? "deprecated " : "",
|
|
map_of_this);
|
|
printed = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!printed) {
|
|
accumulator->Add("<JS %sObject", global_object ? "Global " : "");
|
|
}
|
|
}
|
|
if (IsJSValue()) {
|
|
accumulator->Add(" value = ");
|
|
JSValue::cast(this)->value()->ShortPrint(accumulator);
|
|
}
|
|
accumulator->Put('>');
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void JSObject::PrintElementsTransition(
|
|
FILE* file, ElementsKind from_kind, FixedArrayBase* from_elements,
|
|
ElementsKind to_kind, FixedArrayBase* to_elements) {
|
|
if (from_kind != to_kind) {
|
|
PrintF(file, "elements transition [");
|
|
PrintElementsKind(file, from_kind);
|
|
PrintF(file, " -> ");
|
|
PrintElementsKind(file, to_kind);
|
|
PrintF(file, "] in ");
|
|
JavaScriptFrame::PrintTop(GetIsolate(), file, false, true);
|
|
PrintF(file, " for ");
|
|
ShortPrint(file);
|
|
PrintF(file, " from ");
|
|
from_elements->ShortPrint(file);
|
|
PrintF(file, " to ");
|
|
to_elements->ShortPrint(file);
|
|
PrintF(file, "\n");
|
|
}
|
|
}
|
|
|
|
|
|
void HeapObject::HeapObjectShortPrint(StringStream* accumulator) {
|
|
Heap* heap = GetHeap();
|
|
if (!heap->Contains(this)) {
|
|
accumulator->Add("!!!INVALID POINTER!!!");
|
|
return;
|
|
}
|
|
if (!heap->Contains(map())) {
|
|
accumulator->Add("!!!INVALID MAP!!!");
|
|
return;
|
|
}
|
|
|
|
accumulator->Add("%p ", this);
|
|
|
|
if (IsString()) {
|
|
String::cast(this)->StringShortPrint(accumulator);
|
|
return;
|
|
}
|
|
if (IsJSObject()) {
|
|
JSObject::cast(this)->JSObjectShortPrint(accumulator);
|
|
return;
|
|
}
|
|
switch (map()->instance_type()) {
|
|
case MAP_TYPE:
|
|
accumulator->Add("<Map(elements=%u)>", Map::cast(this)->elements_kind());
|
|
break;
|
|
case FIXED_ARRAY_TYPE:
|
|
accumulator->Add("<FixedArray[%u]>", FixedArray::cast(this)->length());
|
|
break;
|
|
case FIXED_DOUBLE_ARRAY_TYPE:
|
|
accumulator->Add("<FixedDoubleArray[%u]>",
|
|
FixedDoubleArray::cast(this)->length());
|
|
break;
|
|
case BYTE_ARRAY_TYPE:
|
|
accumulator->Add("<ByteArray[%u]>", ByteArray::cast(this)->length());
|
|
break;
|
|
case FREE_SPACE_TYPE:
|
|
accumulator->Add("<FreeSpace[%u]>", FreeSpace::cast(this)->Size());
|
|
break;
|
|
case EXTERNAL_PIXEL_ARRAY_TYPE:
|
|
accumulator->Add("<ExternalPixelArray[%u]>",
|
|
ExternalPixelArray::cast(this)->length());
|
|
break;
|
|
case EXTERNAL_BYTE_ARRAY_TYPE:
|
|
accumulator->Add("<ExternalByteArray[%u]>",
|
|
ExternalByteArray::cast(this)->length());
|
|
break;
|
|
case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE:
|
|
accumulator->Add("<ExternalUnsignedByteArray[%u]>",
|
|
ExternalUnsignedByteArray::cast(this)->length());
|
|
break;
|
|
case EXTERNAL_SHORT_ARRAY_TYPE:
|
|
accumulator->Add("<ExternalShortArray[%u]>",
|
|
ExternalShortArray::cast(this)->length());
|
|
break;
|
|
case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE:
|
|
accumulator->Add("<ExternalUnsignedShortArray[%u]>",
|
|
ExternalUnsignedShortArray::cast(this)->length());
|
|
break;
|
|
case EXTERNAL_INT_ARRAY_TYPE:
|
|
accumulator->Add("<ExternalIntArray[%u]>",
|
|
ExternalIntArray::cast(this)->length());
|
|
break;
|
|
case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE:
|
|
accumulator->Add("<ExternalUnsignedIntArray[%u]>",
|
|
ExternalUnsignedIntArray::cast(this)->length());
|
|
break;
|
|
case EXTERNAL_FLOAT_ARRAY_TYPE:
|
|
accumulator->Add("<ExternalFloatArray[%u]>",
|
|
ExternalFloatArray::cast(this)->length());
|
|
break;
|
|
case EXTERNAL_DOUBLE_ARRAY_TYPE:
|
|
accumulator->Add("<ExternalDoubleArray[%u]>",
|
|
ExternalDoubleArray::cast(this)->length());
|
|
break;
|
|
case SHARED_FUNCTION_INFO_TYPE: {
|
|
SharedFunctionInfo* shared = SharedFunctionInfo::cast(this);
|
|
SmartArrayPointer<char> debug_name =
|
|
shared->DebugName()->ToCString();
|
|
if (debug_name[0] != 0) {
|
|
accumulator->Add("<SharedFunctionInfo %s>", *debug_name);
|
|
} else {
|
|
accumulator->Add("<SharedFunctionInfo>");
|
|
}
|
|
break;
|
|
}
|
|
case JS_MESSAGE_OBJECT_TYPE:
|
|
accumulator->Add("<JSMessageObject>");
|
|
break;
|
|
#define MAKE_STRUCT_CASE(NAME, Name, name) \
|
|
case NAME##_TYPE: \
|
|
accumulator->Put('<'); \
|
|
accumulator->Add(#Name); \
|
|
accumulator->Put('>'); \
|
|
break;
|
|
STRUCT_LIST(MAKE_STRUCT_CASE)
|
|
#undef MAKE_STRUCT_CASE
|
|
case CODE_TYPE:
|
|
accumulator->Add("<Code>");
|
|
break;
|
|
case ODDBALL_TYPE: {
|
|
if (IsUndefined())
|
|
accumulator->Add("<undefined>");
|
|
else if (IsTheHole())
|
|
accumulator->Add("<the hole>");
|
|
else if (IsNull())
|
|
accumulator->Add("<null>");
|
|
else if (IsTrue())
|
|
accumulator->Add("<true>");
|
|
else if (IsFalse())
|
|
accumulator->Add("<false>");
|
|
else
|
|
accumulator->Add("<Odd Oddball>");
|
|
break;
|
|
}
|
|
case SYMBOL_TYPE: {
|
|
Symbol* symbol = Symbol::cast(this);
|
|
accumulator->Add("<Symbol: %d", symbol->Hash());
|
|
if (!symbol->name()->IsUndefined()) {
|
|
accumulator->Add(" ");
|
|
String::cast(symbol->name())->StringShortPrint(accumulator);
|
|
}
|
|
accumulator->Add(">");
|
|
break;
|
|
}
|
|
case HEAP_NUMBER_TYPE:
|
|
accumulator->Add("<Number: ");
|
|
HeapNumber::cast(this)->HeapNumberPrint(accumulator);
|
|
accumulator->Put('>');
|
|
break;
|
|
case JS_PROXY_TYPE:
|
|
accumulator->Add("<JSProxy>");
|
|
break;
|
|
case JS_FUNCTION_PROXY_TYPE:
|
|
accumulator->Add("<JSFunctionProxy>");
|
|
break;
|
|
case FOREIGN_TYPE:
|
|
accumulator->Add("<Foreign>");
|
|
break;
|
|
case CELL_TYPE:
|
|
accumulator->Add("Cell for ");
|
|
Cell::cast(this)->value()->ShortPrint(accumulator);
|
|
break;
|
|
case PROPERTY_CELL_TYPE:
|
|
accumulator->Add("PropertyCell for ");
|
|
PropertyCell::cast(this)->value()->ShortPrint(accumulator);
|
|
break;
|
|
default:
|
|
accumulator->Add("<Other heap object (%d)>", map()->instance_type());
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
void HeapObject::Iterate(ObjectVisitor* v) {
|
|
// Handle header
|
|
IteratePointer(v, kMapOffset);
|
|
// Handle object body
|
|
Map* m = map();
|
|
IterateBody(m->instance_type(), SizeFromMap(m), v);
|
|
}
|
|
|
|
|
|
void HeapObject::IterateBody(InstanceType type, int object_size,
|
|
ObjectVisitor* v) {
|
|
// Avoiding <Type>::cast(this) because it accesses the map pointer field.
|
|
// During GC, the map pointer field is encoded.
|
|
if (type < FIRST_NONSTRING_TYPE) {
|
|
switch (type & kStringRepresentationMask) {
|
|
case kSeqStringTag:
|
|
break;
|
|
case kConsStringTag:
|
|
ConsString::BodyDescriptor::IterateBody(this, v);
|
|
break;
|
|
case kSlicedStringTag:
|
|
SlicedString::BodyDescriptor::IterateBody(this, v);
|
|
break;
|
|
case kExternalStringTag:
|
|
if ((type & kStringEncodingMask) == kOneByteStringTag) {
|
|
reinterpret_cast<ExternalAsciiString*>(this)->
|
|
ExternalAsciiStringIterateBody(v);
|
|
} else {
|
|
reinterpret_cast<ExternalTwoByteString*>(this)->
|
|
ExternalTwoByteStringIterateBody(v);
|
|
}
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
switch (type) {
|
|
case FIXED_ARRAY_TYPE:
|
|
FixedArray::BodyDescriptor::IterateBody(this, object_size, v);
|
|
break;
|
|
case FIXED_DOUBLE_ARRAY_TYPE:
|
|
break;
|
|
case JS_OBJECT_TYPE:
|
|
case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
|
|
case JS_GENERATOR_OBJECT_TYPE:
|
|
case JS_MODULE_TYPE:
|
|
case JS_VALUE_TYPE:
|
|
case JS_DATE_TYPE:
|
|
case JS_ARRAY_TYPE:
|
|
case JS_ARRAY_BUFFER_TYPE:
|
|
case JS_TYPED_ARRAY_TYPE:
|
|
case JS_DATA_VIEW_TYPE:
|
|
case JS_SET_TYPE:
|
|
case JS_MAP_TYPE:
|
|
case JS_WEAK_MAP_TYPE:
|
|
case JS_REGEXP_TYPE:
|
|
case JS_GLOBAL_PROXY_TYPE:
|
|
case JS_GLOBAL_OBJECT_TYPE:
|
|
case JS_BUILTINS_OBJECT_TYPE:
|
|
case JS_MESSAGE_OBJECT_TYPE:
|
|
JSObject::BodyDescriptor::IterateBody(this, object_size, v);
|
|
break;
|
|
case JS_FUNCTION_TYPE:
|
|
reinterpret_cast<JSFunction*>(this)
|
|
->JSFunctionIterateBody(object_size, v);
|
|
break;
|
|
case ODDBALL_TYPE:
|
|
Oddball::BodyDescriptor::IterateBody(this, v);
|
|
break;
|
|
case JS_PROXY_TYPE:
|
|
JSProxy::BodyDescriptor::IterateBody(this, v);
|
|
break;
|
|
case JS_FUNCTION_PROXY_TYPE:
|
|
JSFunctionProxy::BodyDescriptor::IterateBody(this, v);
|
|
break;
|
|
case FOREIGN_TYPE:
|
|
reinterpret_cast<Foreign*>(this)->ForeignIterateBody(v);
|
|
break;
|
|
case MAP_TYPE:
|
|
Map::BodyDescriptor::IterateBody(this, v);
|
|
break;
|
|
case CODE_TYPE:
|
|
reinterpret_cast<Code*>(this)->CodeIterateBody(v);
|
|
break;
|
|
case CELL_TYPE:
|
|
Cell::BodyDescriptor::IterateBody(this, v);
|
|
break;
|
|
case PROPERTY_CELL_TYPE:
|
|
PropertyCell::BodyDescriptor::IterateBody(this, v);
|
|
break;
|
|
case SYMBOL_TYPE:
|
|
Symbol::BodyDescriptor::IterateBody(this, v);
|
|
break;
|
|
case HEAP_NUMBER_TYPE:
|
|
case FILLER_TYPE:
|
|
case BYTE_ARRAY_TYPE:
|
|
case FREE_SPACE_TYPE:
|
|
case EXTERNAL_PIXEL_ARRAY_TYPE:
|
|
case EXTERNAL_BYTE_ARRAY_TYPE:
|
|
case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE:
|
|
case EXTERNAL_SHORT_ARRAY_TYPE:
|
|
case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE:
|
|
case EXTERNAL_INT_ARRAY_TYPE:
|
|
case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE:
|
|
case EXTERNAL_FLOAT_ARRAY_TYPE:
|
|
case EXTERNAL_DOUBLE_ARRAY_TYPE:
|
|
break;
|
|
case SHARED_FUNCTION_INFO_TYPE: {
|
|
SharedFunctionInfo::BodyDescriptor::IterateBody(this, v);
|
|
break;
|
|
}
|
|
|
|
#define MAKE_STRUCT_CASE(NAME, Name, name) \
|
|
case NAME##_TYPE:
|
|
STRUCT_LIST(MAKE_STRUCT_CASE)
|
|
#undef MAKE_STRUCT_CASE
|
|
StructBodyDescriptor::IterateBody(this, object_size, v);
|
|
break;
|
|
default:
|
|
PrintF("Unknown type: %d\n", type);
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
bool HeapNumber::HeapNumberBooleanValue() {
|
|
// NaN, +0, and -0 should return the false object
|
|
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
union IeeeDoubleLittleEndianArchType u;
|
|
#elif __BYTE_ORDER == __BIG_ENDIAN
|
|
union IeeeDoubleBigEndianArchType u;
|
|
#endif
|
|
u.d = value();
|
|
if (u.bits.exp == 2047) {
|
|
// Detect NaN for IEEE double precision floating point.
|
|
if ((u.bits.man_low | u.bits.man_high) != 0) return false;
|
|
}
|
|
if (u.bits.exp == 0) {
|
|
// Detect +0, and -0 for IEEE double precision floating point.
|
|
if ((u.bits.man_low | u.bits.man_high) == 0) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
void HeapNumber::HeapNumberPrint(FILE* out) {
|
|
PrintF(out, "%.16g", Number());
|
|
}
|
|
|
|
|
|
void HeapNumber::HeapNumberPrint(StringStream* accumulator) {
|
|
// The Windows version of vsnprintf can allocate when printing a %g string
|
|
// into a buffer that may not be big enough. We don't want random memory
|
|
// allocation when producing post-crash stack traces, so we print into a
|
|
// buffer that is plenty big enough for any floating point number, then
|
|
// print that using vsnprintf (which may truncate but never allocate if
|
|
// there is no more space in the buffer).
|
|
EmbeddedVector<char, 100> buffer;
|
|
OS::SNPrintF(buffer, "%.16g", Number());
|
|
accumulator->Add("%s", buffer.start());
|
|
}
|
|
|
|
|
|
String* JSReceiver::class_name() {
|
|
if (IsJSFunction() && IsJSFunctionProxy()) {
|
|
return GetHeap()->function_class_string();
|
|
}
|
|
if (map()->constructor()->IsJSFunction()) {
|
|
JSFunction* constructor = JSFunction::cast(map()->constructor());
|
|
return String::cast(constructor->shared()->instance_class_name());
|
|
}
|
|
// If the constructor is not present, return "Object".
|
|
return GetHeap()->Object_string();
|
|
}
|
|
|
|
|
|
String* JSReceiver::constructor_name() {
|
|
if (map()->constructor()->IsJSFunction()) {
|
|
JSFunction* constructor = JSFunction::cast(map()->constructor());
|
|
String* name = String::cast(constructor->shared()->name());
|
|
if (name->length() > 0) return name;
|
|
String* inferred_name = constructor->shared()->inferred_name();
|
|
if (inferred_name->length() > 0) return inferred_name;
|
|
Object* proto = GetPrototype();
|
|
if (proto->IsJSObject()) return JSObject::cast(proto)->constructor_name();
|
|
}
|
|
// TODO(rossberg): what about proxies?
|
|
// If the constructor is not present, return "Object".
|
|
return GetHeap()->Object_string();
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::AddFastPropertyUsingMap(Map* new_map,
|
|
Name* name,
|
|
Object* value,
|
|
int field_index,
|
|
Representation representation) {
|
|
// This method is used to transition to a field. If we are transitioning to a
|
|
// double field, allocate new storage.
|
|
Object* storage;
|
|
MaybeObject* maybe_storage =
|
|
value->AllocateNewStorageFor(GetHeap(), representation);
|
|
if (!maybe_storage->To(&storage)) return maybe_storage;
|
|
|
|
if (map()->unused_property_fields() == 0) {
|
|
int new_unused = new_map->unused_property_fields();
|
|
FixedArray* values;
|
|
MaybeObject* maybe_values =
|
|
properties()->CopySize(properties()->length() + new_unused + 1);
|
|
if (!maybe_values->To(&values)) return maybe_values;
|
|
|
|
set_properties(values);
|
|
}
|
|
|
|
set_map(new_map);
|
|
|
|
FastPropertyAtPut(field_index, storage);
|
|
return value;
|
|
}
|
|
|
|
|
|
static bool IsIdentifier(UnicodeCache* cache, Name* name) {
|
|
// Checks whether the buffer contains an identifier (no escape).
|
|
if (!name->IsString()) return false;
|
|
String* string = String::cast(name);
|
|
if (string->length() == 0) return false;
|
|
ConsStringIteratorOp op;
|
|
StringCharacterStream stream(string, &op);
|
|
if (!cache->IsIdentifierStart(stream.GetNext())) {
|
|
return false;
|
|
}
|
|
while (stream.HasMore()) {
|
|
if (!cache->IsIdentifierPart(stream.GetNext())) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::AddFastProperty(Name* name,
|
|
Object* value,
|
|
PropertyAttributes attributes,
|
|
StoreFromKeyed store_mode,
|
|
ValueType value_type) {
|
|
ASSERT(!IsJSGlobalProxy());
|
|
ASSERT(DescriptorArray::kNotFound ==
|
|
map()->instance_descriptors()->Search(
|
|
name, map()->NumberOfOwnDescriptors()));
|
|
|
|
// Normalize the object if the name is an actual name (not the
|
|
// hidden strings) and is not a real identifier.
|
|
// Normalize the object if it will have too many fast properties.
|
|
Isolate* isolate = GetHeap()->isolate();
|
|
if ((!name->IsSymbol() && !IsIdentifier(isolate->unicode_cache(), name)
|
|
&& name != isolate->heap()->hidden_string()) ||
|
|
(map()->unused_property_fields() == 0 &&
|
|
TooManyFastProperties(properties()->length(), store_mode))) {
|
|
Object* obj;
|
|
MaybeObject* maybe_obj =
|
|
NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
|
|
return AddSlowProperty(name, value, attributes);
|
|
}
|
|
|
|
// Compute the new index for new field.
|
|
int index = map()->NextFreePropertyIndex();
|
|
|
|
// Allocate new instance descriptors with (name, index) added
|
|
if (IsJSContextExtensionObject()) value_type = FORCE_TAGGED;
|
|
Representation representation = value->OptimalRepresentation(value_type);
|
|
|
|
FieldDescriptor new_field(name, index, attributes, representation);
|
|
|
|
ASSERT(index < map()->inobject_properties() ||
|
|
(index - map()->inobject_properties()) < properties()->length() ||
|
|
map()->unused_property_fields() == 0);
|
|
|
|
FixedArray* values = NULL;
|
|
|
|
// TODO(verwaest): Merge with AddFastPropertyUsingMap.
|
|
if (map()->unused_property_fields() == 0) {
|
|
// Make room for the new value
|
|
MaybeObject* maybe_values =
|
|
properties()->CopySize(properties()->length() + kFieldsAdded);
|
|
if (!maybe_values->To(&values)) return maybe_values;
|
|
}
|
|
|
|
TransitionFlag flag = INSERT_TRANSITION;
|
|
|
|
Heap* heap = isolate->heap();
|
|
|
|
Object* storage;
|
|
MaybeObject* maybe_storage =
|
|
value->AllocateNewStorageFor(heap, representation);
|
|
if (!maybe_storage->To(&storage)) return maybe_storage;
|
|
|
|
// Note that Map::CopyAddDescriptor has side-effects, the new map is already
|
|
// inserted in the transition tree. No more allocations that might fail are
|
|
// allowed after this point.
|
|
Map* new_map;
|
|
MaybeObject* maybe_new_map = map()->CopyAddDescriptor(&new_field, flag);
|
|
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
|
|
|
|
if (map()->unused_property_fields() == 0) {
|
|
ASSERT(values != NULL);
|
|
set_properties(values);
|
|
new_map->set_unused_property_fields(kFieldsAdded - 1);
|
|
} else {
|
|
new_map->set_unused_property_fields(map()->unused_property_fields() - 1);
|
|
}
|
|
|
|
set_map(new_map);
|
|
|
|
FastPropertyAtPut(index, storage);
|
|
return value;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::AddConstantFunctionProperty(
|
|
Name* name,
|
|
JSFunction* function,
|
|
PropertyAttributes attributes) {
|
|
// Allocate new instance descriptors with (name, function) added
|
|
ConstantFunctionDescriptor d(name, function, attributes);
|
|
|
|
TransitionFlag flag =
|
|
// Do not add transitions to global objects.
|
|
(IsGlobalObject() ||
|
|
// Don't add transitions to special properties with non-trivial
|
|
// attributes.
|
|
attributes != NONE)
|
|
? OMIT_TRANSITION
|
|
: INSERT_TRANSITION;
|
|
|
|
Map* new_map;
|
|
MaybeObject* maybe_new_map = map()->CopyAddDescriptor(&d, flag);
|
|
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
|
|
|
|
set_map(new_map);
|
|
return function;
|
|
}
|
|
|
|
|
|
// Add property in slow mode
|
|
MaybeObject* JSObject::AddSlowProperty(Name* name,
|
|
Object* value,
|
|
PropertyAttributes attributes) {
|
|
ASSERT(!HasFastProperties());
|
|
NameDictionary* dict = property_dictionary();
|
|
Object* store_value = value;
|
|
if (IsGlobalObject()) {
|
|
// In case name is an orphaned property reuse the cell.
|
|
int entry = dict->FindEntry(name);
|
|
if (entry != NameDictionary::kNotFound) {
|
|
store_value = dict->ValueAt(entry);
|
|
MaybeObject* maybe_type =
|
|
PropertyCell::cast(store_value)->SetValueInferType(value);
|
|
if (maybe_type->IsFailure()) return maybe_type;
|
|
// Assign an enumeration index to the property and update
|
|
// SetNextEnumerationIndex.
|
|
int index = dict->NextEnumerationIndex();
|
|
PropertyDetails details = PropertyDetails(attributes, NORMAL, index);
|
|
dict->SetNextEnumerationIndex(index + 1);
|
|
dict->SetEntry(entry, name, store_value, details);
|
|
return value;
|
|
}
|
|
Heap* heap = GetHeap();
|
|
{ MaybeObject* maybe_store_value =
|
|
heap->AllocatePropertyCell(value);
|
|
if (!maybe_store_value->ToObject(&store_value)) return maybe_store_value;
|
|
}
|
|
MaybeObject* maybe_type =
|
|
PropertyCell::cast(store_value)->SetValueInferType(value);
|
|
if (maybe_type->IsFailure()) return maybe_type;
|
|
}
|
|
PropertyDetails details = PropertyDetails(attributes, NORMAL, 0);
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = dict->Add(name, store_value, details);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
if (dict != result) set_properties(NameDictionary::cast(result));
|
|
return value;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::AddProperty(Name* name,
|
|
Object* value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
JSReceiver::StoreFromKeyed store_mode,
|
|
ExtensibilityCheck extensibility_check,
|
|
ValueType value_type) {
|
|
ASSERT(!IsJSGlobalProxy());
|
|
Map* map_of_this = map();
|
|
Heap* heap = GetHeap();
|
|
Isolate* isolate = heap->isolate();
|
|
MaybeObject* result;
|
|
if (extensibility_check == PERFORM_EXTENSIBILITY_CHECK &&
|
|
!map_of_this->is_extensible()) {
|
|
if (strict_mode == kNonStrictMode) {
|
|
return value;
|
|
} else {
|
|
Handle<Object> args[1] = {Handle<Name>(name)};
|
|
return isolate->Throw(
|
|
*isolate->factory()->NewTypeError("object_not_extensible",
|
|
HandleVector(args, 1)));
|
|
}
|
|
}
|
|
|
|
if (HasFastProperties()) {
|
|
// Ensure the descriptor array does not get too big.
|
|
if (map_of_this->NumberOfOwnDescriptors() <
|
|
DescriptorArray::kMaxNumberOfDescriptors) {
|
|
if (value->IsJSFunction()) {
|
|
result = AddConstantFunctionProperty(name,
|
|
JSFunction::cast(value),
|
|
attributes);
|
|
} else {
|
|
result = AddFastProperty(
|
|
name, value, attributes, store_mode, value_type);
|
|
}
|
|
} else {
|
|
// Normalize the object to prevent very large instance descriptors.
|
|
// This eliminates unwanted N^2 allocation and lookup behavior.
|
|
Object* obj;
|
|
MaybeObject* maybe = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
|
|
if (!maybe->To(&obj)) return maybe;
|
|
result = AddSlowProperty(name, value, attributes);
|
|
}
|
|
} else {
|
|
result = AddSlowProperty(name, value, attributes);
|
|
}
|
|
|
|
Handle<Object> hresult;
|
|
if (!result->ToHandle(&hresult, isolate)) return result;
|
|
|
|
if (FLAG_harmony_observation && map()->is_observed()) {
|
|
EnqueueChangeRecord(handle(this, isolate),
|
|
"new",
|
|
handle(name, isolate),
|
|
handle(heap->the_hole_value(), isolate));
|
|
}
|
|
|
|
return *hresult;
|
|
}
|
|
|
|
|
|
void JSObject::EnqueueChangeRecord(Handle<JSObject> object,
|
|
const char* type_str,
|
|
Handle<Name> name,
|
|
Handle<Object> old_value) {
|
|
Isolate* isolate = object->GetIsolate();
|
|
HandleScope scope(isolate);
|
|
Handle<String> type = isolate->factory()->InternalizeUtf8String(type_str);
|
|
if (object->IsJSGlobalObject()) {
|
|
object = handle(JSGlobalObject::cast(*object)->global_receiver(), isolate);
|
|
}
|
|
Handle<Object> args[] = { type, object, name, old_value };
|
|
bool threw;
|
|
Execution::Call(Handle<JSFunction>(isolate->observers_notify_change()),
|
|
isolate->factory()->undefined_value(),
|
|
old_value->IsTheHole() ? 3 : 4, args,
|
|
&threw);
|
|
ASSERT(!threw);
|
|
}
|
|
|
|
|
|
void JSObject::DeliverChangeRecords(Isolate* isolate) {
|
|
ASSERT(isolate->observer_delivery_pending());
|
|
bool threw = false;
|
|
Execution::Call(
|
|
isolate->observers_deliver_changes(),
|
|
isolate->factory()->undefined_value(),
|
|
0,
|
|
NULL,
|
|
&threw);
|
|
ASSERT(!threw);
|
|
isolate->set_observer_delivery_pending(false);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetPropertyPostInterceptor(
|
|
Name* name,
|
|
Object* value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
ExtensibilityCheck extensibility_check) {
|
|
// Check local property, ignore interceptor.
|
|
LookupResult result(GetIsolate());
|
|
LocalLookupRealNamedProperty(name, &result);
|
|
if (!result.IsFound()) map()->LookupTransition(this, name, &result);
|
|
if (result.IsFound()) {
|
|
// An existing property or a map transition was found. Use set property to
|
|
// handle all these cases.
|
|
return SetProperty(&result, name, value, attributes, strict_mode);
|
|
}
|
|
bool done = false;
|
|
MaybeObject* result_object;
|
|
result_object =
|
|
SetPropertyViaPrototypes(name, value, attributes, strict_mode, &done);
|
|
if (done) return result_object;
|
|
// Add a new real property.
|
|
return AddProperty(name, value, attributes, strict_mode,
|
|
MAY_BE_STORE_FROM_KEYED, extensibility_check);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::ReplaceSlowProperty(Name* name,
|
|
Object* value,
|
|
PropertyAttributes attributes) {
|
|
NameDictionary* dictionary = property_dictionary();
|
|
int old_index = dictionary->FindEntry(name);
|
|
int new_enumeration_index = 0; // 0 means "Use the next available index."
|
|
if (old_index != -1) {
|
|
// All calls to ReplaceSlowProperty have had all transitions removed.
|
|
new_enumeration_index = dictionary->DetailsAt(old_index).dictionary_index();
|
|
}
|
|
|
|
PropertyDetails new_details(attributes, NORMAL, new_enumeration_index);
|
|
return SetNormalizedProperty(name, value, new_details);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::ConvertTransitionToMapTransition(
|
|
int transition_index,
|
|
Name* name,
|
|
Object* new_value,
|
|
PropertyAttributes attributes) {
|
|
Map* old_map = map();
|
|
Map* old_target = old_map->GetTransition(transition_index);
|
|
Object* result;
|
|
|
|
MaybeObject* maybe_result = ConvertDescriptorToField(
|
|
name, new_value, attributes, OMIT_TRANSITION_KEEP_REPRESENTATIONS);
|
|
if (!maybe_result->To(&result)) return maybe_result;
|
|
|
|
if (!HasFastProperties()) return result;
|
|
|
|
// This method should only be used to convert existing transitions.
|
|
Map* new_map = map();
|
|
|
|
// TODO(verwaest): From here on we lose existing map transitions, causing
|
|
// invalid back pointers. This will change once we can store multiple
|
|
// transitions with the same key.
|
|
bool owned_descriptors = old_map->owns_descriptors();
|
|
if (owned_descriptors ||
|
|
old_target->instance_descriptors() == old_map->instance_descriptors()) {
|
|
// Since the conversion above generated a new fast map with an additional
|
|
// property which can be shared as well, install this descriptor pointer
|
|
// along the entire chain of smaller maps.
|
|
Map* map;
|
|
DescriptorArray* new_descriptors = new_map->instance_descriptors();
|
|
DescriptorArray* old_descriptors = old_map->instance_descriptors();
|
|
for (Object* current = old_map;
|
|
!current->IsUndefined();
|
|
current = map->GetBackPointer()) {
|
|
map = Map::cast(current);
|
|
if (map->instance_descriptors() != old_descriptors) break;
|
|
map->SetEnumLength(Map::kInvalidEnumCache);
|
|
map->set_instance_descriptors(new_descriptors);
|
|
}
|
|
old_map->set_owns_descriptors(false);
|
|
}
|
|
|
|
old_target->DeprecateTransitionTree();
|
|
|
|
old_map->SetTransition(transition_index, new_map);
|
|
new_map->SetBackPointer(old_map);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::ConvertDescriptorToField(Name* name,
|
|
Object* new_value,
|
|
PropertyAttributes attributes,
|
|
TransitionFlag flag) {
|
|
if (map()->unused_property_fields() == 0 &&
|
|
TooManyFastProperties(properties()->length(), MAY_BE_STORE_FROM_KEYED)) {
|
|
Object* obj;
|
|
MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
return ReplaceSlowProperty(name, new_value, attributes);
|
|
}
|
|
|
|
Representation representation = IsJSContextExtensionObject()
|
|
? Representation::Tagged() : new_value->OptimalRepresentation();
|
|
int index = map()->NextFreePropertyIndex();
|
|
FieldDescriptor new_field(name, index, attributes, representation);
|
|
|
|
// Make a new map for the object.
|
|
Map* new_map;
|
|
MaybeObject* maybe_new_map = map()->CopyInsertDescriptor(&new_field, flag);
|
|
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
|
|
|
|
// Make new properties array if necessary.
|
|
FixedArray* new_properties = NULL;
|
|
int new_unused_property_fields = map()->unused_property_fields() - 1;
|
|
if (map()->unused_property_fields() == 0) {
|
|
new_unused_property_fields = kFieldsAdded - 1;
|
|
MaybeObject* maybe_new_properties =
|
|
properties()->CopySize(properties()->length() + kFieldsAdded);
|
|
if (!maybe_new_properties->To(&new_properties)) return maybe_new_properties;
|
|
}
|
|
|
|
Heap* heap = GetHeap();
|
|
Object* storage;
|
|
MaybeObject* maybe_storage =
|
|
new_value->AllocateNewStorageFor(heap, representation);
|
|
if (!maybe_storage->To(&storage)) return maybe_storage;
|
|
|
|
// Update pointers to commit changes.
|
|
// Object points to the new map.
|
|
new_map->set_unused_property_fields(new_unused_property_fields);
|
|
set_map(new_map);
|
|
if (new_properties != NULL) {
|
|
set_properties(new_properties);
|
|
}
|
|
FastPropertyAtPut(index, new_value);
|
|
return new_value;
|
|
}
|
|
|
|
|
|
const char* Representation::Mnemonic() const {
|
|
switch (kind_) {
|
|
case kNone: return "v";
|
|
case kTagged: return "t";
|
|
case kSmi: return "s";
|
|
case kDouble: return "d";
|
|
case kInteger32: return "i";
|
|
case kHeapObject: return "h";
|
|
case kExternal: return "x";
|
|
default:
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
enum RightTrimMode { FROM_GC, FROM_MUTATOR };
|
|
|
|
|
|
static void ZapEndOfFixedArray(Address new_end, int to_trim) {
|
|
// If we are doing a big trim in old space then we zap the space.
|
|
Object** zap = reinterpret_cast<Object**>(new_end);
|
|
zap++; // Header of filler must be at least one word so skip that.
|
|
for (int i = 1; i < to_trim; i++) {
|
|
*zap++ = Smi::FromInt(0);
|
|
}
|
|
}
|
|
|
|
|
|
template<RightTrimMode trim_mode>
|
|
static void RightTrimFixedArray(Heap* heap, FixedArray* elms, int to_trim) {
|
|
ASSERT(elms->map() != HEAP->fixed_cow_array_map());
|
|
// For now this trick is only applied to fixed arrays in new and paged space.
|
|
ASSERT(!HEAP->lo_space()->Contains(elms));
|
|
|
|
const int len = elms->length();
|
|
|
|
ASSERT(to_trim < len);
|
|
|
|
Address new_end = elms->address() + FixedArray::SizeFor(len - to_trim);
|
|
|
|
if (trim_mode != FROM_GC || Heap::ShouldZapGarbage()) {
|
|
ZapEndOfFixedArray(new_end, to_trim);
|
|
}
|
|
|
|
int size_delta = to_trim * kPointerSize;
|
|
|
|
// Technically in new space this write might be omitted (except for
|
|
// debug mode which iterates through the heap), but to play safer
|
|
// we still do it.
|
|
heap->CreateFillerObjectAt(new_end, size_delta);
|
|
|
|
elms->set_length(len - to_trim);
|
|
|
|
// Maintain marking consistency for IncrementalMarking.
|
|
if (Marking::IsBlack(Marking::MarkBitFrom(elms))) {
|
|
if (trim_mode == FROM_GC) {
|
|
MemoryChunk::IncrementLiveBytesFromGC(elms->address(), -size_delta);
|
|
} else {
|
|
MemoryChunk::IncrementLiveBytesFromMutator(elms->address(), -size_delta);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool Map::InstancesNeedRewriting(Map* target,
|
|
int target_number_of_fields,
|
|
int target_inobject,
|
|
int target_unused) {
|
|
// If fields were added (or removed), rewrite the instance.
|
|
int number_of_fields = NumberOfFields();
|
|
ASSERT(target_number_of_fields >= number_of_fields);
|
|
if (target_number_of_fields != number_of_fields) return true;
|
|
|
|
if (FLAG_track_double_fields) {
|
|
// If smi descriptors were replaced by double descriptors, rewrite.
|
|
DescriptorArray* old_desc = instance_descriptors();
|
|
DescriptorArray* new_desc = target->instance_descriptors();
|
|
int limit = NumberOfOwnDescriptors();
|
|
for (int i = 0; i < limit; i++) {
|
|
if (new_desc->GetDetails(i).representation().IsDouble() &&
|
|
!old_desc->GetDetails(i).representation().IsDouble()) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If no fields were added, and no inobject properties were removed, setting
|
|
// the map is sufficient.
|
|
if (target_inobject == inobject_properties()) return false;
|
|
// In-object slack tracking may have reduced the object size of the new map.
|
|
// In that case, succeed if all existing fields were inobject, and they still
|
|
// fit within the new inobject size.
|
|
ASSERT(target_inobject < inobject_properties());
|
|
if (target_number_of_fields <= target_inobject) {
|
|
ASSERT(target_number_of_fields + target_unused == target_inobject);
|
|
return false;
|
|
}
|
|
// Otherwise, properties will need to be moved to the backing store.
|
|
return true;
|
|
}
|
|
|
|
|
|
// To migrate an instance to a map:
|
|
// - First check whether the instance needs to be rewritten. If not, simply
|
|
// change the map.
|
|
// - Otherwise, allocate a fixed array large enough to hold all fields, in
|
|
// addition to unused space.
|
|
// - Copy all existing properties in, in the following order: backing store
|
|
// properties, unused fields, inobject properties.
|
|
// - If all allocation succeeded, commit the state atomically:
|
|
// * Copy inobject properties from the backing store back into the object.
|
|
// * Trim the difference in instance size of the object. This also cleanly
|
|
// frees inobject properties that moved to the backing store.
|
|
// * If there are properties left in the backing store, trim of the space used
|
|
// to temporarily store the inobject properties.
|
|
// * If there are properties left in the backing store, install the backing
|
|
// store.
|
|
MaybeObject* JSObject::MigrateToMap(Map* new_map) {
|
|
Heap* heap = GetHeap();
|
|
Map* old_map = map();
|
|
int number_of_fields = new_map->NumberOfFields();
|
|
int inobject = new_map->inobject_properties();
|
|
int unused = new_map->unused_property_fields();
|
|
|
|
// Nothing to do if no functions were converted to fields.
|
|
if (!old_map->InstancesNeedRewriting(
|
|
new_map, number_of_fields, inobject, unused)) {
|
|
set_map(new_map);
|
|
return this;
|
|
}
|
|
|
|
int total_size = number_of_fields + unused;
|
|
int external = total_size - inobject;
|
|
FixedArray* array;
|
|
MaybeObject* maybe_array = heap->AllocateFixedArray(total_size);
|
|
if (!maybe_array->To(&array)) return maybe_array;
|
|
|
|
DescriptorArray* old_descriptors = old_map->instance_descriptors();
|
|
DescriptorArray* new_descriptors = new_map->instance_descriptors();
|
|
int descriptors = new_map->NumberOfOwnDescriptors();
|
|
|
|
for (int i = 0; i < descriptors; i++) {
|
|
PropertyDetails details = new_descriptors->GetDetails(i);
|
|
if (details.type() != FIELD) continue;
|
|
PropertyDetails old_details = old_descriptors->GetDetails(i);
|
|
ASSERT(old_details.type() == CONSTANT_FUNCTION ||
|
|
old_details.type() == FIELD);
|
|
Object* value = old_details.type() == CONSTANT_FUNCTION
|
|
? old_descriptors->GetValue(i)
|
|
: RawFastPropertyAt(old_descriptors->GetFieldIndex(i));
|
|
if (FLAG_track_double_fields &&
|
|
!old_details.representation().IsDouble() &&
|
|
details.representation().IsDouble()) {
|
|
if (old_details.representation().IsNone()) value = Smi::FromInt(0);
|
|
// Objects must be allocated in the old object space, since the
|
|
// overall number of HeapNumbers needed for the conversion might
|
|
// exceed the capacity of new space, and we would fail repeatedly
|
|
// trying to migrate the instance.
|
|
MaybeObject* maybe_storage =
|
|
value->AllocateNewStorageFor(heap, details.representation(), TENURED);
|
|
if (!maybe_storage->To(&value)) return maybe_storage;
|
|
}
|
|
ASSERT(!(FLAG_track_double_fields &&
|
|
details.representation().IsDouble() &&
|
|
value->IsSmi()));
|
|
int target_index = new_descriptors->GetFieldIndex(i) - inobject;
|
|
if (target_index < 0) target_index += total_size;
|
|
array->set(target_index, value);
|
|
}
|
|
|
|
// From here on we cannot fail anymore.
|
|
|
|
// Copy (real) inobject properties. If necessary, stop at number_of_fields to
|
|
// avoid overwriting |one_pointer_filler_map|.
|
|
int limit = Min(inobject, number_of_fields);
|
|
for (int i = 0; i < limit; i++) {
|
|
FastPropertyAtPut(i, array->get(external + i));
|
|
}
|
|
|
|
// Create filler object past the new instance size.
|
|
int new_instance_size = new_map->instance_size();
|
|
int instance_size_delta = old_map->instance_size() - new_instance_size;
|
|
ASSERT(instance_size_delta >= 0);
|
|
Address address = this->address() + new_instance_size;
|
|
heap->CreateFillerObjectAt(address, instance_size_delta);
|
|
|
|
// If there are properties in the new backing store, trim it to the correct
|
|
// size and install the backing store into the object.
|
|
if (external > 0) {
|
|
RightTrimFixedArray<FROM_MUTATOR>(heap, array, inobject);
|
|
set_properties(array);
|
|
}
|
|
|
|
set_map(new_map);
|
|
|
|
return this;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::GeneralizeFieldRepresentation(
|
|
int modify_index,
|
|
Representation new_representation) {
|
|
Map* new_map;
|
|
MaybeObject* maybe_new_map =
|
|
map()->GeneralizeRepresentation(modify_index, new_representation);
|
|
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
|
|
if (map() == new_map) return this;
|
|
|
|
return MigrateToMap(new_map);
|
|
}
|
|
|
|
|
|
int Map::NumberOfFields() {
|
|
DescriptorArray* descriptors = instance_descriptors();
|
|
int result = 0;
|
|
for (int i = 0; i < NumberOfOwnDescriptors(); i++) {
|
|
if (descriptors->GetDetails(i).type() == FIELD) result++;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Map::CopyGeneralizeAllRepresentations() {
|
|
Map* new_map;
|
|
MaybeObject* maybe_map = this->Copy();
|
|
if (!maybe_map->To(&new_map)) return maybe_map;
|
|
|
|
new_map->instance_descriptors()->InitializeRepresentations(
|
|
Representation::Tagged());
|
|
if (FLAG_trace_generalization) {
|
|
PrintF("failed generalization %p -> %p\n",
|
|
static_cast<void*>(this), static_cast<void*>(new_map));
|
|
}
|
|
return new_map;
|
|
}
|
|
|
|
|
|
void Map::DeprecateTransitionTree() {
|
|
if (!FLAG_track_fields) return;
|
|
if (is_deprecated()) return;
|
|
if (HasTransitionArray()) {
|
|
TransitionArray* transitions = this->transitions();
|
|
for (int i = 0; i < transitions->number_of_transitions(); i++) {
|
|
transitions->GetTarget(i)->DeprecateTransitionTree();
|
|
}
|
|
}
|
|
deprecate();
|
|
dependent_code()->DeoptimizeDependentCodeGroup(
|
|
GetIsolate(), DependentCode::kTransitionGroup);
|
|
dependent_code()->DeoptimizeDependentCodeGroup(
|
|
GetIsolate(), DependentCode::kPrototypeCheckGroup);
|
|
}
|
|
|
|
|
|
// Invalidates a transition target at |key|, and installs |new_descriptors| over
|
|
// the current instance_descriptors to ensure proper sharing of descriptor
|
|
// arrays.
|
|
void Map::DeprecateTarget(Name* key, DescriptorArray* new_descriptors) {
|
|
if (HasTransitionArray()) {
|
|
TransitionArray* transitions = this->transitions();
|
|
int transition = transitions->Search(key);
|
|
if (transition != TransitionArray::kNotFound) {
|
|
transitions->GetTarget(transition)->DeprecateTransitionTree();
|
|
}
|
|
}
|
|
|
|
// Don't overwrite the empty descriptor array.
|
|
if (NumberOfOwnDescriptors() == 0) return;
|
|
|
|
DescriptorArray* to_replace = instance_descriptors();
|
|
Map* current = this;
|
|
while (current->instance_descriptors() == to_replace) {
|
|
current->SetEnumLength(Map::kInvalidEnumCache);
|
|
current->set_instance_descriptors(new_descriptors);
|
|
Object* next = current->GetBackPointer();
|
|
if (next->IsUndefined()) break;
|
|
current = Map::cast(next);
|
|
}
|
|
|
|
set_owns_descriptors(false);
|
|
}
|
|
|
|
|
|
Map* Map::FindRootMap() {
|
|
Map* result = this;
|
|
while (true) {
|
|
Object* back = result->GetBackPointer();
|
|
if (back->IsUndefined()) return result;
|
|
result = Map::cast(back);
|
|
}
|
|
}
|
|
|
|
|
|
// Returns NULL if the updated map is incompatible.
|
|
Map* Map::FindUpdatedMap(int verbatim,
|
|
int length,
|
|
DescriptorArray* descriptors) {
|
|
// This can only be called on roots of transition trees.
|
|
ASSERT(GetBackPointer()->IsUndefined());
|
|
|
|
Map* current = this;
|
|
|
|
for (int i = verbatim; i < length; i++) {
|
|
if (!current->HasTransitionArray()) break;
|
|
Name* name = descriptors->GetKey(i);
|
|
TransitionArray* transitions = current->transitions();
|
|
int transition = transitions->Search(name);
|
|
if (transition == TransitionArray::kNotFound) break;
|
|
current = transitions->GetTarget(transition);
|
|
PropertyDetails details = descriptors->GetDetails(i);
|
|
PropertyDetails target_details =
|
|
current->instance_descriptors()->GetDetails(i);
|
|
if (details.attributes() != target_details.attributes()) return NULL;
|
|
if (details.type() == CALLBACKS) {
|
|
if (target_details.type() != CALLBACKS) return NULL;
|
|
if (descriptors->GetValue(i) !=
|
|
current->instance_descriptors()->GetValue(i)) {
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
return current;
|
|
}
|
|
|
|
|
|
Map* Map::FindLastMatchMap(int verbatim,
|
|
int length,
|
|
DescriptorArray* descriptors) {
|
|
// This can only be called on roots of transition trees.
|
|
ASSERT(GetBackPointer()->IsUndefined());
|
|
|
|
Map* current = this;
|
|
|
|
for (int i = verbatim; i < length; i++) {
|
|
if (!current->HasTransitionArray()) break;
|
|
Name* name = descriptors->GetKey(i);
|
|
TransitionArray* transitions = current->transitions();
|
|
int transition = transitions->Search(name);
|
|
if (transition == TransitionArray::kNotFound) break;
|
|
|
|
Map* next = transitions->GetTarget(transition);
|
|
DescriptorArray* next_descriptors = next->instance_descriptors();
|
|
|
|
if (next_descriptors->GetValue(i) != descriptors->GetValue(i)) break;
|
|
|
|
PropertyDetails details = descriptors->GetDetails(i);
|
|
PropertyDetails next_details = next_descriptors->GetDetails(i);
|
|
if (details.type() != next_details.type()) break;
|
|
if (details.attributes() != next_details.attributes()) break;
|
|
if (!details.representation().Equals(next_details.representation())) break;
|
|
|
|
current = next;
|
|
}
|
|
return current;
|
|
}
|
|
|
|
|
|
// Generalize the representation of the descriptor at |modify_index|.
|
|
// This method rewrites the transition tree to reflect the new change. To avoid
|
|
// high degrees over polymorphism, and to stabilize quickly, on every rewrite
|
|
// the new type is deduced by merging the current type with any potential new
|
|
// (partial) version of the type in the transition tree.
|
|
// To do this, on each rewrite:
|
|
// - Search the root of the transition tree using FindRootMap.
|
|
// - Find |updated|, the newest matching version of this map using
|
|
// FindUpdatedMap. This uses the keys in the own map's descriptor array to
|
|
// walk the transition tree.
|
|
// - Merge/generalize the descriptor array of the current map and |updated|.
|
|
// - Generalize the |modify_index| descriptor using |new_representation|.
|
|
// - Walk the tree again starting from the root towards |updated|. Stop at
|
|
// |split_map|, the first map who's descriptor array does not match the merged
|
|
// descriptor array.
|
|
// - If |updated| == |split_map|, |updated| is in the expected state. Return it.
|
|
// - Otherwise, invalidate the outdated transition target from |updated|, and
|
|
// replace its transition tree with a new branch for the updated descriptors.
|
|
MaybeObject* Map::GeneralizeRepresentation(int modify_index,
|
|
Representation new_representation) {
|
|
Map* old_map = this;
|
|
DescriptorArray* old_descriptors = old_map->instance_descriptors();
|
|
Representation old_representation =
|
|
old_descriptors->GetDetails(modify_index).representation();
|
|
|
|
// It's fine to transition from None to anything but double without any
|
|
// modification to the object, because the default uninitialized value for
|
|
// representation None can be overwritten by both smi and tagged values.
|
|
// Doubles, however, would require a box allocation.
|
|
if (old_representation.IsNone() &&
|
|
!new_representation.IsNone() &&
|
|
!new_representation.IsDouble()) {
|
|
if (FLAG_trace_generalization) {
|
|
PrintF("initializing representation %i: %p -> %s\n",
|
|
modify_index,
|
|
static_cast<void*>(this),
|
|
new_representation.Mnemonic());
|
|
}
|
|
old_descriptors->SetRepresentation(modify_index, new_representation);
|
|
return old_map;
|
|
}
|
|
|
|
int descriptors = old_map->NumberOfOwnDescriptors();
|
|
Map* root_map = old_map->FindRootMap();
|
|
|
|
// Check the state of the root map.
|
|
if (!old_map->EquivalentToForTransition(root_map)) {
|
|
return CopyGeneralizeAllRepresentations();
|
|
}
|
|
|
|
int verbatim = root_map->NumberOfOwnDescriptors();
|
|
|
|
Map* updated = root_map->FindUpdatedMap(
|
|
verbatim, descriptors, old_descriptors);
|
|
if (updated == NULL) return CopyGeneralizeAllRepresentations();
|
|
|
|
DescriptorArray* updated_descriptors = updated->instance_descriptors();
|
|
|
|
int valid = updated->NumberOfOwnDescriptors();
|
|
if (updated_descriptors->IsMoreGeneralThan(
|
|
verbatim, valid, descriptors, old_descriptors)) {
|
|
Representation updated_representation =
|
|
updated_descriptors->GetDetails(modify_index).representation();
|
|
if (new_representation.fits_into(updated_representation)) {
|
|
if (FLAG_trace_generalization &&
|
|
!(modify_index == 0 && new_representation.IsNone())) {
|
|
PropertyDetails old_details = old_descriptors->GetDetails(modify_index);
|
|
PrintF("migrating to existing map %p(%s) -> %p(%s)\n",
|
|
static_cast<void*>(this),
|
|
old_details.representation().Mnemonic(),
|
|
static_cast<void*>(updated),
|
|
updated_representation.Mnemonic());
|
|
}
|
|
return updated;
|
|
}
|
|
}
|
|
|
|
DescriptorArray* new_descriptors;
|
|
MaybeObject* maybe_descriptors = updated_descriptors->Merge(
|
|
verbatim, valid, descriptors, old_descriptors);
|
|
if (!maybe_descriptors->To(&new_descriptors)) return maybe_descriptors;
|
|
|
|
old_representation =
|
|
new_descriptors->GetDetails(modify_index).representation();
|
|
Representation updated_representation =
|
|
new_representation.generalize(old_representation);
|
|
if (!updated_representation.Equals(old_representation)) {
|
|
new_descriptors->SetRepresentation(modify_index, updated_representation);
|
|
}
|
|
|
|
Map* split_map = root_map->FindLastMatchMap(
|
|
verbatim, descriptors, new_descriptors);
|
|
|
|
int split_descriptors = split_map->NumberOfOwnDescriptors();
|
|
// This is shadowed by |updated_descriptors| being more general than
|
|
// |old_descriptors|.
|
|
ASSERT(descriptors != split_descriptors);
|
|
|
|
int descriptor = split_descriptors;
|
|
split_map->DeprecateTarget(
|
|
old_descriptors->GetKey(descriptor), new_descriptors);
|
|
|
|
if (FLAG_trace_generalization &&
|
|
!(modify_index == 0 && new_representation.IsNone())) {
|
|
PrintF("migrating to new map %i: %p(%s) -> %p(%s) (%i steps)\n",
|
|
modify_index,
|
|
static_cast<void*>(this),
|
|
old_representation.Mnemonic(),
|
|
static_cast<void*>(new_descriptors),
|
|
updated_representation.Mnemonic(),
|
|
descriptors - descriptor);
|
|
}
|
|
|
|
Map* new_map = split_map;
|
|
// Add missing transitions.
|
|
for (; descriptor < descriptors; descriptor++) {
|
|
MaybeObject* maybe_map = new_map->CopyInstallDescriptors(
|
|
descriptor, new_descriptors);
|
|
if (!maybe_map->To(&new_map)) {
|
|
// Create a handle for the last created map to ensure it stays alive
|
|
// during GC. Its descriptor array is too large, but it will be
|
|
// overwritten during retry anyway.
|
|
Handle<Map>(new_map);
|
|
return maybe_map;
|
|
}
|
|
}
|
|
|
|
new_map->set_owns_descriptors(true);
|
|
return new_map;
|
|
}
|
|
|
|
|
|
Map* Map::CurrentMapForDeprecated() {
|
|
DisallowHeapAllocation no_allocation;
|
|
if (!is_deprecated()) return this;
|
|
|
|
DescriptorArray* old_descriptors = instance_descriptors();
|
|
|
|
int descriptors = NumberOfOwnDescriptors();
|
|
Map* root_map = FindRootMap();
|
|
|
|
// Check the state of the root map.
|
|
if (!EquivalentToForTransition(root_map)) return NULL;
|
|
int verbatim = root_map->NumberOfOwnDescriptors();
|
|
|
|
Map* updated = root_map->FindUpdatedMap(
|
|
verbatim, descriptors, old_descriptors);
|
|
if (updated == NULL) return NULL;
|
|
|
|
DescriptorArray* updated_descriptors = updated->instance_descriptors();
|
|
int valid = updated->NumberOfOwnDescriptors();
|
|
if (!updated_descriptors->IsMoreGeneralThan(
|
|
verbatim, valid, descriptors, old_descriptors)) {
|
|
return NULL;
|
|
}
|
|
|
|
return updated;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetPropertyWithInterceptor(
|
|
Name* name,
|
|
Object* value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode) {
|
|
// TODO(rossberg): Support symbols in the API.
|
|
if (name->IsSymbol()) return value;
|
|
Isolate* isolate = GetIsolate();
|
|
HandleScope scope(isolate);
|
|
Handle<JSObject> this_handle(this);
|
|
Handle<String> name_handle(String::cast(name));
|
|
Handle<Object> value_handle(value, isolate);
|
|
Handle<InterceptorInfo> interceptor(GetNamedInterceptor());
|
|
if (!interceptor->setter()->IsUndefined()) {
|
|
LOG(isolate, ApiNamedPropertyAccess("interceptor-named-set", this, name));
|
|
PropertyCallbackArguments args(isolate, interceptor->data(), this, this);
|
|
v8::NamedPropertySetter setter =
|
|
v8::ToCData<v8::NamedPropertySetter>(interceptor->setter());
|
|
Handle<Object> value_unhole(value->IsTheHole() ?
|
|
isolate->heap()->undefined_value() :
|
|
value,
|
|
isolate);
|
|
v8::Handle<v8::Value> result = args.Call(setter,
|
|
v8::Utils::ToLocal(name_handle),
|
|
v8::Utils::ToLocal(value_unhole));
|
|
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
|
|
if (!result.IsEmpty()) return *value_handle;
|
|
}
|
|
MaybeObject* raw_result =
|
|
this_handle->SetPropertyPostInterceptor(*name_handle,
|
|
*value_handle,
|
|
attributes,
|
|
strict_mode,
|
|
PERFORM_EXTENSIBILITY_CHECK);
|
|
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
|
|
return raw_result;
|
|
}
|
|
|
|
|
|
Handle<Object> JSReceiver::SetProperty(Handle<JSReceiver> object,
|
|
Handle<Name> key,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode) {
|
|
CALL_HEAP_FUNCTION(object->GetIsolate(),
|
|
object->SetProperty(*key, *value, attributes, strict_mode),
|
|
Object);
|
|
}
|
|
|
|
|
|
MaybeObject* JSReceiver::SetPropertyOrFail(
|
|
Handle<JSReceiver> object,
|
|
Handle<Name> key,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
JSReceiver::StoreFromKeyed store_mode) {
|
|
CALL_HEAP_FUNCTION_PASS_EXCEPTION(
|
|
object->GetIsolate(),
|
|
object->SetProperty(*key, *value, attributes, strict_mode, store_mode));
|
|
}
|
|
|
|
|
|
MaybeObject* JSReceiver::SetProperty(Name* name,
|
|
Object* value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
JSReceiver::StoreFromKeyed store_mode) {
|
|
LookupResult result(GetIsolate());
|
|
LocalLookup(name, &result, true);
|
|
if (!result.IsFound()) {
|
|
map()->LookupTransition(JSObject::cast(this), name, &result);
|
|
}
|
|
return SetProperty(&result, name, value, attributes, strict_mode, store_mode);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetPropertyWithCallback(Object* structure,
|
|
Name* name,
|
|
Object* value,
|
|
JSObject* holder,
|
|
StrictModeFlag strict_mode) {
|
|
Isolate* isolate = GetIsolate();
|
|
HandleScope scope(isolate);
|
|
|
|
// We should never get here to initialize a const with the hole
|
|
// value since a const declaration would conflict with the setter.
|
|
ASSERT(!value->IsTheHole());
|
|
Handle<Object> value_handle(value, isolate);
|
|
|
|
// To accommodate both the old and the new api we switch on the
|
|
// data structure used to store the callbacks. Eventually foreign
|
|
// callbacks should be phased out.
|
|
if (structure->IsForeign()) {
|
|
AccessorDescriptor* callback =
|
|
reinterpret_cast<AccessorDescriptor*>(
|
|
Foreign::cast(structure)->foreign_address());
|
|
MaybeObject* obj = (callback->setter)(this, value, callback->data);
|
|
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
|
|
if (obj->IsFailure()) return obj;
|
|
return *value_handle;
|
|
}
|
|
|
|
if (structure->IsExecutableAccessorInfo()) {
|
|
// api style callbacks
|
|
ExecutableAccessorInfo* data = ExecutableAccessorInfo::cast(structure);
|
|
if (!data->IsCompatibleReceiver(this)) {
|
|
Handle<Object> name_handle(name, isolate);
|
|
Handle<Object> receiver_handle(this, isolate);
|
|
Handle<Object> args[2] = { name_handle, receiver_handle };
|
|
Handle<Object> error =
|
|
isolate->factory()->NewTypeError("incompatible_method_receiver",
|
|
HandleVector(args,
|
|
ARRAY_SIZE(args)));
|
|
return isolate->Throw(*error);
|
|
}
|
|
// TODO(rossberg): Support symbols in the API.
|
|
if (name->IsSymbol()) return value;
|
|
Object* call_obj = data->setter();
|
|
v8::AccessorSetter call_fun = v8::ToCData<v8::AccessorSetter>(call_obj);
|
|
if (call_fun == NULL) return value;
|
|
Handle<String> key(String::cast(name));
|
|
LOG(isolate, ApiNamedPropertyAccess("store", this, name));
|
|
PropertyCallbackArguments args(
|
|
isolate, data->data(), this, JSObject::cast(holder));
|
|
args.Call(call_fun,
|
|
v8::Utils::ToLocal(key),
|
|
v8::Utils::ToLocal(value_handle));
|
|
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
|
|
return *value_handle;
|
|
}
|
|
|
|
if (structure->IsAccessorPair()) {
|
|
Object* setter = AccessorPair::cast(structure)->setter();
|
|
if (setter->IsSpecFunction()) {
|
|
// TODO(rossberg): nicer would be to cast to some JSCallable here...
|
|
return SetPropertyWithDefinedSetter(JSReceiver::cast(setter), value);
|
|
} else {
|
|
if (strict_mode == kNonStrictMode) {
|
|
return value;
|
|
}
|
|
Handle<Name> key(name);
|
|
Handle<Object> holder_handle(holder, isolate);
|
|
Handle<Object> args[2] = { key, holder_handle };
|
|
return isolate->Throw(
|
|
*isolate->factory()->NewTypeError("no_setter_in_callback",
|
|
HandleVector(args, 2)));
|
|
}
|
|
}
|
|
|
|
// TODO(dcarney): Handle correctly.
|
|
if (structure->IsDeclaredAccessorInfo()) {
|
|
return value;
|
|
}
|
|
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
MaybeObject* JSReceiver::SetPropertyWithDefinedSetter(JSReceiver* setter,
|
|
Object* value) {
|
|
Isolate* isolate = GetIsolate();
|
|
Handle<Object> value_handle(value, isolate);
|
|
Handle<JSReceiver> fun(setter, isolate);
|
|
Handle<JSReceiver> self(this, isolate);
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
Debug* debug = isolate->debug();
|
|
// Handle stepping into a setter if step into is active.
|
|
// TODO(rossberg): should this apply to getters that are function proxies?
|
|
if (debug->StepInActive() && fun->IsJSFunction()) {
|
|
debug->HandleStepIn(
|
|
Handle<JSFunction>::cast(fun), Handle<Object>::null(), 0, false);
|
|
}
|
|
#endif
|
|
bool has_pending_exception;
|
|
Handle<Object> argv[] = { value_handle };
|
|
Execution::Call(fun, self, ARRAY_SIZE(argv), argv, &has_pending_exception);
|
|
// Check for pending exception and return the result.
|
|
if (has_pending_exception) return Failure::Exception();
|
|
return *value_handle;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetElementWithCallbackSetterInPrototypes(
|
|
uint32_t index,
|
|
Object* value,
|
|
bool* found,
|
|
StrictModeFlag strict_mode) {
|
|
Heap* heap = GetHeap();
|
|
for (Object* pt = GetPrototype();
|
|
pt != heap->null_value();
|
|
pt = pt->GetPrototype(GetIsolate())) {
|
|
if (pt->IsJSProxy()) {
|
|
String* name;
|
|
MaybeObject* maybe = heap->Uint32ToString(index);
|
|
if (!maybe->To<String>(&name)) {
|
|
*found = true; // Force abort
|
|
return maybe;
|
|
}
|
|
return JSProxy::cast(pt)->SetPropertyViaPrototypesWithHandler(
|
|
this, name, value, NONE, strict_mode, found);
|
|
}
|
|
if (!JSObject::cast(pt)->HasDictionaryElements()) {
|
|
continue;
|
|
}
|
|
SeededNumberDictionary* dictionary =
|
|
JSObject::cast(pt)->element_dictionary();
|
|
int entry = dictionary->FindEntry(index);
|
|
if (entry != SeededNumberDictionary::kNotFound) {
|
|
PropertyDetails details = dictionary->DetailsAt(entry);
|
|
if (details.type() == CALLBACKS) {
|
|
*found = true;
|
|
return SetElementWithCallback(dictionary->ValueAt(entry),
|
|
index,
|
|
value,
|
|
JSObject::cast(pt),
|
|
strict_mode);
|
|
}
|
|
}
|
|
}
|
|
*found = false;
|
|
return heap->the_hole_value();
|
|
}
|
|
|
|
MaybeObject* JSObject::SetPropertyViaPrototypes(
|
|
Name* name,
|
|
Object* value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
bool* done) {
|
|
Heap* heap = GetHeap();
|
|
Isolate* isolate = heap->isolate();
|
|
|
|
*done = false;
|
|
// We could not find a local property so let's check whether there is an
|
|
// accessor that wants to handle the property, or whether the property is
|
|
// read-only on the prototype chain.
|
|
LookupResult result(isolate);
|
|
LookupRealNamedPropertyInPrototypes(name, &result);
|
|
if (result.IsFound()) {
|
|
switch (result.type()) {
|
|
case NORMAL:
|
|
case FIELD:
|
|
case CONSTANT_FUNCTION:
|
|
*done = result.IsReadOnly();
|
|
break;
|
|
case INTERCEPTOR: {
|
|
PropertyAttributes attr =
|
|
result.holder()->GetPropertyAttributeWithInterceptor(
|
|
this, name, true);
|
|
*done = !!(attr & READ_ONLY);
|
|
break;
|
|
}
|
|
case CALLBACKS: {
|
|
if (!FLAG_es5_readonly && result.IsReadOnly()) break;
|
|
*done = true;
|
|
return SetPropertyWithCallback(result.GetCallbackObject(),
|
|
name, value, result.holder(), strict_mode);
|
|
}
|
|
case HANDLER: {
|
|
return result.proxy()->SetPropertyViaPrototypesWithHandler(
|
|
this, name, value, attributes, strict_mode, done);
|
|
}
|
|
case TRANSITION:
|
|
case NONEXISTENT:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we get here with *done true, we have encountered a read-only property.
|
|
if (!FLAG_es5_readonly) *done = false;
|
|
if (*done) {
|
|
if (strict_mode == kNonStrictMode) return value;
|
|
Handle<Object> args[] = { Handle<Object>(name, isolate),
|
|
Handle<Object>(this, isolate)};
|
|
return isolate->Throw(*isolate->factory()->NewTypeError(
|
|
"strict_read_only_property", HandleVector(args, ARRAY_SIZE(args))));
|
|
}
|
|
return heap->the_hole_value();
|
|
}
|
|
|
|
|
|
void Map::EnsureDescriptorSlack(Handle<Map> map, int slack) {
|
|
Handle<DescriptorArray> descriptors(map->instance_descriptors());
|
|
if (slack <= descriptors->NumberOfSlackDescriptors()) return;
|
|
int number_of_descriptors = descriptors->number_of_descriptors();
|
|
Isolate* isolate = map->GetIsolate();
|
|
Handle<DescriptorArray> new_descriptors =
|
|
isolate->factory()->NewDescriptorArray(number_of_descriptors, slack);
|
|
DescriptorArray::WhitenessWitness witness(*new_descriptors);
|
|
|
|
for (int i = 0; i < number_of_descriptors; ++i) {
|
|
new_descriptors->CopyFrom(i, *descriptors, i, witness);
|
|
}
|
|
|
|
map->set_instance_descriptors(*new_descriptors);
|
|
}
|
|
|
|
|
|
void Map::AppendCallbackDescriptors(Handle<Map> map,
|
|
Handle<Object> descriptors) {
|
|
Isolate* isolate = map->GetIsolate();
|
|
Handle<DescriptorArray> array(map->instance_descriptors());
|
|
NeanderArray callbacks(descriptors);
|
|
int nof_callbacks = callbacks.length();
|
|
|
|
ASSERT(array->NumberOfSlackDescriptors() >= nof_callbacks);
|
|
|
|
// Ensure the keys are unique names before writing them into the
|
|
// instance descriptor. Since it may cause a GC, it has to be done before we
|
|
// temporarily put the heap in an invalid state while appending descriptors.
|
|
for (int i = 0; i < nof_callbacks; ++i) {
|
|
Handle<AccessorInfo> entry(AccessorInfo::cast(callbacks.get(i)));
|
|
if (!entry->name()->IsUniqueName()) {
|
|
Handle<String> key =
|
|
isolate->factory()->InternalizedStringFromString(
|
|
Handle<String>(String::cast(entry->name())));
|
|
entry->set_name(*key);
|
|
}
|
|
}
|
|
|
|
int nof = map->NumberOfOwnDescriptors();
|
|
|
|
// Fill in new callback descriptors. Process the callbacks from
|
|
// back to front so that the last callback with a given name takes
|
|
// precedence over previously added callbacks with that name.
|
|
for (int i = nof_callbacks - 1; i >= 0; i--) {
|
|
AccessorInfo* entry = AccessorInfo::cast(callbacks.get(i));
|
|
Name* key = Name::cast(entry->name());
|
|
// Check if a descriptor with this name already exists before writing.
|
|
if (array->Search(key, nof) == DescriptorArray::kNotFound) {
|
|
CallbacksDescriptor desc(key, entry, entry->property_attributes());
|
|
array->Append(&desc);
|
|
nof += 1;
|
|
}
|
|
}
|
|
|
|
map->SetNumberOfOwnDescriptors(nof);
|
|
}
|
|
|
|
|
|
static bool ContainsMap(MapHandleList* maps, Handle<Map> map) {
|
|
ASSERT(!map.is_null());
|
|
for (int i = 0; i < maps->length(); ++i) {
|
|
if (!maps->at(i).is_null() && maps->at(i).is_identical_to(map)) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
static Handle<T> MaybeNull(T* p) {
|
|
if (p == NULL) return Handle<T>::null();
|
|
return Handle<T>(p);
|
|
}
|
|
|
|
|
|
Handle<Map> Map::FindTransitionedMap(MapHandleList* candidates) {
|
|
ElementsKind kind = elements_kind();
|
|
Handle<Map> transitioned_map = Handle<Map>::null();
|
|
Handle<Map> current_map(this);
|
|
bool packed = IsFastPackedElementsKind(kind);
|
|
if (IsTransitionableFastElementsKind(kind)) {
|
|
while (CanTransitionToMoreGeneralFastElementsKind(kind, false)) {
|
|
kind = GetNextMoreGeneralFastElementsKind(kind, false);
|
|
Handle<Map> maybe_transitioned_map =
|
|
MaybeNull(current_map->LookupElementsTransitionMap(kind));
|
|
if (maybe_transitioned_map.is_null()) break;
|
|
if (ContainsMap(candidates, maybe_transitioned_map) &&
|
|
(packed || !IsFastPackedElementsKind(kind))) {
|
|
transitioned_map = maybe_transitioned_map;
|
|
if (!IsFastPackedElementsKind(kind)) packed = false;
|
|
}
|
|
current_map = maybe_transitioned_map;
|
|
}
|
|
}
|
|
return transitioned_map;
|
|
}
|
|
|
|
|
|
static Map* FindClosestElementsTransition(Map* map, ElementsKind to_kind) {
|
|
Map* current_map = map;
|
|
int index = GetSequenceIndexFromFastElementsKind(map->elements_kind());
|
|
int to_index = IsFastElementsKind(to_kind)
|
|
? GetSequenceIndexFromFastElementsKind(to_kind)
|
|
: GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
|
|
|
|
ASSERT(index <= to_index);
|
|
|
|
for (; index < to_index; ++index) {
|
|
if (!current_map->HasElementsTransition()) return current_map;
|
|
current_map = current_map->elements_transition_map();
|
|
}
|
|
if (!IsFastElementsKind(to_kind) && current_map->HasElementsTransition()) {
|
|
Map* next_map = current_map->elements_transition_map();
|
|
if (next_map->elements_kind() == to_kind) return next_map;
|
|
}
|
|
ASSERT(IsFastElementsKind(to_kind)
|
|
? current_map->elements_kind() == to_kind
|
|
: current_map->elements_kind() == TERMINAL_FAST_ELEMENTS_KIND);
|
|
return current_map;
|
|
}
|
|
|
|
|
|
Map* Map::LookupElementsTransitionMap(ElementsKind to_kind) {
|
|
Map* to_map = FindClosestElementsTransition(this, to_kind);
|
|
if (to_map->elements_kind() == to_kind) return to_map;
|
|
return NULL;
|
|
}
|
|
|
|
|
|
bool Map::IsMapInArrayPrototypeChain() {
|
|
Isolate* isolate = GetIsolate();
|
|
if (isolate->initial_array_prototype()->map() == this) {
|
|
return true;
|
|
}
|
|
|
|
if (isolate->initial_object_prototype()->map() == this) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
static MaybeObject* AddMissingElementsTransitions(Map* map,
|
|
ElementsKind to_kind) {
|
|
ASSERT(IsFastElementsKind(map->elements_kind()));
|
|
int index = GetSequenceIndexFromFastElementsKind(map->elements_kind());
|
|
int to_index = IsFastElementsKind(to_kind)
|
|
? GetSequenceIndexFromFastElementsKind(to_kind)
|
|
: GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
|
|
|
|
ASSERT(index <= to_index);
|
|
|
|
Map* current_map = map;
|
|
|
|
for (; index < to_index; ++index) {
|
|
ElementsKind next_kind = GetFastElementsKindFromSequenceIndex(index + 1);
|
|
MaybeObject* maybe_next_map =
|
|
current_map->CopyAsElementsKind(next_kind, INSERT_TRANSITION);
|
|
if (!maybe_next_map->To(¤t_map)) return maybe_next_map;
|
|
}
|
|
|
|
// In case we are exiting the fast elements kind system, just add the map in
|
|
// the end.
|
|
if (!IsFastElementsKind(to_kind)) {
|
|
MaybeObject* maybe_next_map =
|
|
current_map->CopyAsElementsKind(to_kind, INSERT_TRANSITION);
|
|
if (!maybe_next_map->To(¤t_map)) return maybe_next_map;
|
|
}
|
|
|
|
ASSERT(current_map->elements_kind() == to_kind);
|
|
return current_map;
|
|
}
|
|
|
|
|
|
Handle<Map> JSObject::GetElementsTransitionMap(Handle<JSObject> object,
|
|
ElementsKind to_kind) {
|
|
Isolate* isolate = object->GetIsolate();
|
|
CALL_HEAP_FUNCTION(isolate,
|
|
object->GetElementsTransitionMap(isolate, to_kind),
|
|
Map);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::GetElementsTransitionMapSlow(ElementsKind to_kind) {
|
|
Map* start_map = map();
|
|
ElementsKind from_kind = start_map->elements_kind();
|
|
|
|
if (from_kind == to_kind) {
|
|
return start_map;
|
|
}
|
|
|
|
bool allow_store_transition =
|
|
// Only remember the map transition if there is not an already existing
|
|
// non-matching element transition.
|
|
!start_map->IsUndefined() && !start_map->is_shared() &&
|
|
IsFastElementsKind(from_kind);
|
|
|
|
// Only store fast element maps in ascending generality.
|
|
if (IsFastElementsKind(to_kind)) {
|
|
allow_store_transition &=
|
|
IsTransitionableFastElementsKind(from_kind) &&
|
|
IsMoreGeneralElementsKindTransition(from_kind, to_kind);
|
|
}
|
|
|
|
if (!allow_store_transition) {
|
|
return start_map->CopyAsElementsKind(to_kind, OMIT_TRANSITION);
|
|
}
|
|
|
|
return start_map->AsElementsKind(to_kind);
|
|
}
|
|
|
|
|
|
MaybeObject* Map::AsElementsKind(ElementsKind kind) {
|
|
Map* closest_map = FindClosestElementsTransition(this, kind);
|
|
|
|
if (closest_map->elements_kind() == kind) {
|
|
return closest_map;
|
|
}
|
|
|
|
return AddMissingElementsTransitions(closest_map, kind);
|
|
}
|
|
|
|
|
|
void JSObject::LocalLookupRealNamedProperty(Name* name, LookupResult* result) {
|
|
if (IsJSGlobalProxy()) {
|
|
Object* proto = GetPrototype();
|
|
if (proto->IsNull()) return result->NotFound();
|
|
ASSERT(proto->IsJSGlobalObject());
|
|
return JSObject::cast(proto)->LocalLookupRealNamedProperty(name, result);
|
|
}
|
|
|
|
if (HasFastProperties()) {
|
|
map()->LookupDescriptor(this, name, result);
|
|
// A property or a map transition was found. We return all of these result
|
|
// types because LocalLookupRealNamedProperty is used when setting
|
|
// properties where map transitions are handled.
|
|
ASSERT(!result->IsFound() ||
|
|
(result->holder() == this && result->IsFastPropertyType()));
|
|
// Disallow caching for uninitialized constants. These can only
|
|
// occur as fields.
|
|
if (result->IsField() &&
|
|
result->IsReadOnly() &&
|
|
RawFastPropertyAt(result->GetFieldIndex().field_index())->IsTheHole()) {
|
|
result->DisallowCaching();
|
|
}
|
|
return;
|
|
}
|
|
|
|
int entry = property_dictionary()->FindEntry(name);
|
|
if (entry != NameDictionary::kNotFound) {
|
|
Object* value = property_dictionary()->ValueAt(entry);
|
|
if (IsGlobalObject()) {
|
|
PropertyDetails d = property_dictionary()->DetailsAt(entry);
|
|
if (d.IsDeleted()) {
|
|
result->NotFound();
|
|
return;
|
|
}
|
|
value = PropertyCell::cast(value)->value();
|
|
}
|
|
// Make sure to disallow caching for uninitialized constants
|
|
// found in the dictionary-mode objects.
|
|
if (value->IsTheHole()) result->DisallowCaching();
|
|
result->DictionaryResult(this, entry);
|
|
return;
|
|
}
|
|
|
|
result->NotFound();
|
|
}
|
|
|
|
|
|
void JSObject::LookupRealNamedProperty(Name* name, LookupResult* result) {
|
|
LocalLookupRealNamedProperty(name, result);
|
|
if (result->IsFound()) return;
|
|
|
|
LookupRealNamedPropertyInPrototypes(name, result);
|
|
}
|
|
|
|
|
|
void JSObject::LookupRealNamedPropertyInPrototypes(Name* name,
|
|
LookupResult* result) {
|
|
Isolate* isolate = GetIsolate();
|
|
Heap* heap = isolate->heap();
|
|
for (Object* pt = GetPrototype();
|
|
pt != heap->null_value();
|
|
pt = pt->GetPrototype(isolate)) {
|
|
if (pt->IsJSProxy()) {
|
|
return result->HandlerResult(JSProxy::cast(pt));
|
|
}
|
|
JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result);
|
|
ASSERT(!(result->IsFound() && result->type() == INTERCEPTOR));
|
|
if (result->IsFound()) return;
|
|
}
|
|
result->NotFound();
|
|
}
|
|
|
|
|
|
// We only need to deal with CALLBACKS and INTERCEPTORS
|
|
MaybeObject* JSObject::SetPropertyWithFailedAccessCheck(
|
|
LookupResult* result,
|
|
Name* name,
|
|
Object* value,
|
|
bool check_prototype,
|
|
StrictModeFlag strict_mode) {
|
|
if (check_prototype && !result->IsProperty()) {
|
|
LookupRealNamedPropertyInPrototypes(name, result);
|
|
}
|
|
|
|
if (result->IsProperty()) {
|
|
if (!result->IsReadOnly()) {
|
|
switch (result->type()) {
|
|
case CALLBACKS: {
|
|
Object* obj = result->GetCallbackObject();
|
|
if (obj->IsAccessorInfo()) {
|
|
AccessorInfo* info = AccessorInfo::cast(obj);
|
|
if (info->all_can_write()) {
|
|
return SetPropertyWithCallback(result->GetCallbackObject(),
|
|
name,
|
|
value,
|
|
result->holder(),
|
|
strict_mode);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case INTERCEPTOR: {
|
|
// Try lookup real named properties. Note that only property can be
|
|
// set is callbacks marked as ALL_CAN_WRITE on the prototype chain.
|
|
LookupResult r(GetIsolate());
|
|
LookupRealNamedProperty(name, &r);
|
|
if (r.IsProperty()) {
|
|
return SetPropertyWithFailedAccessCheck(&r,
|
|
name,
|
|
value,
|
|
check_prototype,
|
|
strict_mode);
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Isolate* isolate = GetIsolate();
|
|
HandleScope scope(isolate);
|
|
Handle<Object> value_handle(value, isolate);
|
|
isolate->ReportFailedAccessCheck(this, v8::ACCESS_SET);
|
|
return *value_handle;
|
|
}
|
|
|
|
|
|
MaybeObject* JSReceiver::SetProperty(LookupResult* result,
|
|
Name* key,
|
|
Object* value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
JSReceiver::StoreFromKeyed store_mode) {
|
|
if (result->IsHandler()) {
|
|
return result->proxy()->SetPropertyWithHandler(
|
|
this, key, value, attributes, strict_mode);
|
|
} else {
|
|
return JSObject::cast(this)->SetPropertyForResult(
|
|
result, key, value, attributes, strict_mode, store_mode);
|
|
}
|
|
}
|
|
|
|
|
|
bool JSProxy::HasPropertyWithHandler(Name* name_raw) {
|
|
Isolate* isolate = GetIsolate();
|
|
HandleScope scope(isolate);
|
|
Handle<Object> receiver(this, isolate);
|
|
Handle<Object> name(name_raw, isolate);
|
|
|
|
// TODO(rossberg): adjust once there is a story for symbols vs proxies.
|
|
if (name->IsSymbol()) return false;
|
|
|
|
Handle<Object> args[] = { name };
|
|
Handle<Object> result = CallTrap(
|
|
"has", isolate->derived_has_trap(), ARRAY_SIZE(args), args);
|
|
if (isolate->has_pending_exception()) return false;
|
|
|
|
return result->BooleanValue();
|
|
}
|
|
|
|
|
|
MUST_USE_RESULT MaybeObject* JSProxy::SetPropertyWithHandler(
|
|
JSReceiver* receiver_raw,
|
|
Name* name_raw,
|
|
Object* value_raw,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode) {
|
|
Isolate* isolate = GetIsolate();
|
|
HandleScope scope(isolate);
|
|
Handle<JSReceiver> receiver(receiver_raw);
|
|
Handle<Object> name(name_raw, isolate);
|
|
Handle<Object> value(value_raw, isolate);
|
|
|
|
// TODO(rossberg): adjust once there is a story for symbols vs proxies.
|
|
if (name->IsSymbol()) return *value;
|
|
|
|
Handle<Object> args[] = { receiver, name, value };
|
|
CallTrap("set", isolate->derived_set_trap(), ARRAY_SIZE(args), args);
|
|
if (isolate->has_pending_exception()) return Failure::Exception();
|
|
|
|
return *value;
|
|
}
|
|
|
|
|
|
MUST_USE_RESULT MaybeObject* JSProxy::SetPropertyViaPrototypesWithHandler(
|
|
JSReceiver* receiver_raw,
|
|
Name* name_raw,
|
|
Object* value_raw,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
bool* done) {
|
|
Isolate* isolate = GetIsolate();
|
|
Handle<JSProxy> proxy(this);
|
|
Handle<JSReceiver> receiver(receiver_raw);
|
|
Handle<Name> name(name_raw);
|
|
Handle<Object> value(value_raw, isolate);
|
|
Handle<Object> handler(this->handler(), isolate); // Trap might morph proxy.
|
|
|
|
// TODO(rossberg): adjust once there is a story for symbols vs proxies.
|
|
if (name->IsSymbol()) {
|
|
*done = false;
|
|
return isolate->heap()->the_hole_value();
|
|
}
|
|
|
|
*done = true; // except where redefined...
|
|
Handle<Object> args[] = { name };
|
|
Handle<Object> result = proxy->CallTrap(
|
|
"getPropertyDescriptor", Handle<Object>(), ARRAY_SIZE(args), args);
|
|
if (isolate->has_pending_exception()) return Failure::Exception();
|
|
|
|
if (result->IsUndefined()) {
|
|
*done = false;
|
|
return isolate->heap()->the_hole_value();
|
|
}
|
|
|
|
// Emulate [[GetProperty]] semantics for proxies.
|
|
bool has_pending_exception;
|
|
Handle<Object> argv[] = { result };
|
|
Handle<Object> desc =
|
|
Execution::Call(isolate->to_complete_property_descriptor(), result,
|
|
ARRAY_SIZE(argv), argv, &has_pending_exception);
|
|
if (has_pending_exception) return Failure::Exception();
|
|
|
|
// [[GetProperty]] requires to check that all properties are configurable.
|
|
Handle<String> configurable_name =
|
|
isolate->factory()->InternalizeOneByteString(
|
|
STATIC_ASCII_VECTOR("configurable_"));
|
|
Handle<Object> configurable(
|
|
v8::internal::GetProperty(isolate, desc, configurable_name));
|
|
ASSERT(!isolate->has_pending_exception());
|
|
ASSERT(configurable->IsTrue() || configurable->IsFalse());
|
|
if (configurable->IsFalse()) {
|
|
Handle<String> trap =
|
|
isolate->factory()->InternalizeOneByteString(
|
|
STATIC_ASCII_VECTOR("getPropertyDescriptor"));
|
|
Handle<Object> args[] = { handler, trap, name };
|
|
Handle<Object> error = isolate->factory()->NewTypeError(
|
|
"proxy_prop_not_configurable", HandleVector(args, ARRAY_SIZE(args)));
|
|
return isolate->Throw(*error);
|
|
}
|
|
ASSERT(configurable->IsTrue());
|
|
|
|
// Check for DataDescriptor.
|
|
Handle<String> hasWritable_name =
|
|
isolate->factory()->InternalizeOneByteString(
|
|
STATIC_ASCII_VECTOR("hasWritable_"));
|
|
Handle<Object> hasWritable(
|
|
v8::internal::GetProperty(isolate, desc, hasWritable_name));
|
|
ASSERT(!isolate->has_pending_exception());
|
|
ASSERT(hasWritable->IsTrue() || hasWritable->IsFalse());
|
|
if (hasWritable->IsTrue()) {
|
|
Handle<String> writable_name =
|
|
isolate->factory()->InternalizeOneByteString(
|
|
STATIC_ASCII_VECTOR("writable_"));
|
|
Handle<Object> writable(
|
|
v8::internal::GetProperty(isolate, desc, writable_name));
|
|
ASSERT(!isolate->has_pending_exception());
|
|
ASSERT(writable->IsTrue() || writable->IsFalse());
|
|
*done = writable->IsFalse();
|
|
if (!*done) return GetHeap()->the_hole_value();
|
|
if (strict_mode == kNonStrictMode) return *value;
|
|
Handle<Object> args[] = { name, receiver };
|
|
Handle<Object> error = isolate->factory()->NewTypeError(
|
|
"strict_read_only_property", HandleVector(args, ARRAY_SIZE(args)));
|
|
return isolate->Throw(*error);
|
|
}
|
|
|
|
// We have an AccessorDescriptor.
|
|
Handle<String> set_name = isolate->factory()->InternalizeOneByteString(
|
|
STATIC_ASCII_VECTOR("set_"));
|
|
Handle<Object> setter(v8::internal::GetProperty(isolate, desc, set_name));
|
|
ASSERT(!isolate->has_pending_exception());
|
|
if (!setter->IsUndefined()) {
|
|
// TODO(rossberg): nicer would be to cast to some JSCallable here...
|
|
return receiver->SetPropertyWithDefinedSetter(
|
|
JSReceiver::cast(*setter), *value);
|
|
}
|
|
|
|
if (strict_mode == kNonStrictMode) return *value;
|
|
Handle<Object> args2[] = { name, proxy };
|
|
Handle<Object> error = isolate->factory()->NewTypeError(
|
|
"no_setter_in_callback", HandleVector(args2, ARRAY_SIZE(args2)));
|
|
return isolate->Throw(*error);
|
|
}
|
|
|
|
|
|
MUST_USE_RESULT MaybeObject* JSProxy::DeletePropertyWithHandler(
|
|
Name* name_raw, DeleteMode mode) {
|
|
Isolate* isolate = GetIsolate();
|
|
HandleScope scope(isolate);
|
|
Handle<JSProxy> receiver(this);
|
|
Handle<Object> name(name_raw, isolate);
|
|
|
|
// TODO(rossberg): adjust once there is a story for symbols vs proxies.
|
|
if (name->IsSymbol()) return isolate->heap()->false_value();
|
|
|
|
Handle<Object> args[] = { name };
|
|
Handle<Object> result = CallTrap(
|
|
"delete", Handle<Object>(), ARRAY_SIZE(args), args);
|
|
if (isolate->has_pending_exception()) return Failure::Exception();
|
|
|
|
bool result_bool = result->BooleanValue();
|
|
if (mode == STRICT_DELETION && !result_bool) {
|
|
Handle<Object> handler(receiver->handler(), isolate);
|
|
Handle<String> trap_name = isolate->factory()->InternalizeOneByteString(
|
|
STATIC_ASCII_VECTOR("delete"));
|
|
Handle<Object> args[] = { handler, trap_name };
|
|
Handle<Object> error = isolate->factory()->NewTypeError(
|
|
"handler_failed", HandleVector(args, ARRAY_SIZE(args)));
|
|
isolate->Throw(*error);
|
|
return Failure::Exception();
|
|
}
|
|
return isolate->heap()->ToBoolean(result_bool);
|
|
}
|
|
|
|
|
|
MUST_USE_RESULT MaybeObject* JSProxy::DeleteElementWithHandler(
|
|
uint32_t index,
|
|
DeleteMode mode) {
|
|
Isolate* isolate = GetIsolate();
|
|
HandleScope scope(isolate);
|
|
Handle<String> name = isolate->factory()->Uint32ToString(index);
|
|
return JSProxy::DeletePropertyWithHandler(*name, mode);
|
|
}
|
|
|
|
|
|
MUST_USE_RESULT PropertyAttributes JSProxy::GetPropertyAttributeWithHandler(
|
|
JSReceiver* receiver_raw,
|
|
Name* name_raw) {
|
|
Isolate* isolate = GetIsolate();
|
|
HandleScope scope(isolate);
|
|
Handle<JSProxy> proxy(this);
|
|
Handle<Object> handler(this->handler(), isolate); // Trap might morph proxy.
|
|
Handle<JSReceiver> receiver(receiver_raw);
|
|
Handle<Object> name(name_raw, isolate);
|
|
|
|
// TODO(rossberg): adjust once there is a story for symbols vs proxies.
|
|
if (name->IsSymbol()) return ABSENT;
|
|
|
|
Handle<Object> args[] = { name };
|
|
Handle<Object> result = CallTrap(
|
|
"getPropertyDescriptor", Handle<Object>(), ARRAY_SIZE(args), args);
|
|
if (isolate->has_pending_exception()) return NONE;
|
|
|
|
if (result->IsUndefined()) return ABSENT;
|
|
|
|
bool has_pending_exception;
|
|
Handle<Object> argv[] = { result };
|
|
Handle<Object> desc =
|
|
Execution::Call(isolate->to_complete_property_descriptor(), result,
|
|
ARRAY_SIZE(argv), argv, &has_pending_exception);
|
|
if (has_pending_exception) return NONE;
|
|
|
|
// Convert result to PropertyAttributes.
|
|
Handle<String> enum_n = isolate->factory()->InternalizeOneByteString(
|
|
STATIC_ASCII_VECTOR("enumerable"));
|
|
Handle<Object> enumerable(v8::internal::GetProperty(isolate, desc, enum_n));
|
|
if (isolate->has_pending_exception()) return NONE;
|
|
Handle<String> conf_n = isolate->factory()->InternalizeOneByteString(
|
|
STATIC_ASCII_VECTOR("configurable"));
|
|
Handle<Object> configurable(v8::internal::GetProperty(isolate, desc, conf_n));
|
|
if (isolate->has_pending_exception()) return NONE;
|
|
Handle<String> writ_n = isolate->factory()->InternalizeOneByteString(
|
|
STATIC_ASCII_VECTOR("writable"));
|
|
Handle<Object> writable(v8::internal::GetProperty(isolate, desc, writ_n));
|
|
if (isolate->has_pending_exception()) return NONE;
|
|
|
|
if (configurable->IsFalse()) {
|
|
Handle<String> trap = isolate->factory()->InternalizeOneByteString(
|
|
STATIC_ASCII_VECTOR("getPropertyDescriptor"));
|
|
Handle<Object> args[] = { handler, trap, name };
|
|
Handle<Object> error = isolate->factory()->NewTypeError(
|
|
"proxy_prop_not_configurable", HandleVector(args, ARRAY_SIZE(args)));
|
|
isolate->Throw(*error);
|
|
return NONE;
|
|
}
|
|
|
|
int attributes = NONE;
|
|
if (!enumerable->BooleanValue()) attributes |= DONT_ENUM;
|
|
if (!configurable->BooleanValue()) attributes |= DONT_DELETE;
|
|
if (!writable->BooleanValue()) attributes |= READ_ONLY;
|
|
return static_cast<PropertyAttributes>(attributes);
|
|
}
|
|
|
|
|
|
MUST_USE_RESULT PropertyAttributes JSProxy::GetElementAttributeWithHandler(
|
|
JSReceiver* receiver_raw,
|
|
uint32_t index) {
|
|
Isolate* isolate = GetIsolate();
|
|
HandleScope scope(isolate);
|
|
Handle<JSProxy> proxy(this);
|
|
Handle<JSReceiver> receiver(receiver_raw);
|
|
Handle<String> name = isolate->factory()->Uint32ToString(index);
|
|
return proxy->GetPropertyAttributeWithHandler(*receiver, *name);
|
|
}
|
|
|
|
|
|
void JSProxy::Fix() {
|
|
Isolate* isolate = GetIsolate();
|
|
HandleScope scope(isolate);
|
|
Handle<JSProxy> self(this);
|
|
|
|
// Save identity hash.
|
|
MaybeObject* maybe_hash = GetIdentityHash(OMIT_CREATION);
|
|
|
|
if (IsJSFunctionProxy()) {
|
|
isolate->factory()->BecomeJSFunction(self);
|
|
// Code will be set on the JavaScript side.
|
|
} else {
|
|
isolate->factory()->BecomeJSObject(self);
|
|
}
|
|
ASSERT(self->IsJSObject());
|
|
|
|
// Inherit identity, if it was present.
|
|
Object* hash;
|
|
if (maybe_hash->To<Object>(&hash) && hash->IsSmi()) {
|
|
Handle<JSObject> new_self(JSObject::cast(*self));
|
|
isolate->factory()->SetIdentityHash(new_self, Smi::cast(hash));
|
|
}
|
|
}
|
|
|
|
|
|
MUST_USE_RESULT Handle<Object> JSProxy::CallTrap(const char* name,
|
|
Handle<Object> derived,
|
|
int argc,
|
|
Handle<Object> argv[]) {
|
|
Isolate* isolate = GetIsolate();
|
|
Handle<Object> handler(this->handler(), isolate);
|
|
|
|
Handle<String> trap_name = isolate->factory()->InternalizeUtf8String(name);
|
|
Handle<Object> trap(v8::internal::GetProperty(isolate, handler, trap_name));
|
|
if (isolate->has_pending_exception()) return trap;
|
|
|
|
if (trap->IsUndefined()) {
|
|
if (derived.is_null()) {
|
|
Handle<Object> args[] = { handler, trap_name };
|
|
Handle<Object> error = isolate->factory()->NewTypeError(
|
|
"handler_trap_missing", HandleVector(args, ARRAY_SIZE(args)));
|
|
isolate->Throw(*error);
|
|
return Handle<Object>();
|
|
}
|
|
trap = Handle<Object>(derived);
|
|
}
|
|
|
|
bool threw;
|
|
return Execution::Call(trap, handler, argc, argv, &threw);
|
|
}
|
|
|
|
|
|
void JSObject::AllocateStorageForMap(Handle<JSObject> object, Handle<Map> map) {
|
|
CALL_HEAP_FUNCTION_VOID(
|
|
object->GetIsolate(),
|
|
object->AllocateStorageForMap(*map));
|
|
}
|
|
|
|
|
|
void JSObject::MigrateInstance(Handle<JSObject> object) {
|
|
if (FLAG_trace_migration) {
|
|
PrintF("migrating instance %p (%p)\n",
|
|
static_cast<void*>(*object),
|
|
static_cast<void*>(object->map()));
|
|
}
|
|
CALL_HEAP_FUNCTION_VOID(
|
|
object->GetIsolate(),
|
|
object->MigrateInstance());
|
|
}
|
|
|
|
|
|
Handle<Object> JSObject::TryMigrateInstance(Handle<JSObject> object) {
|
|
if (FLAG_trace_migration) {
|
|
PrintF("migrating instance (no new maps) %p (%p)\n",
|
|
static_cast<void*>(*object),
|
|
static_cast<void*>(object->map()));
|
|
}
|
|
CALL_HEAP_FUNCTION(
|
|
object->GetIsolate(),
|
|
object->MigrateInstance(),
|
|
Object);
|
|
}
|
|
|
|
|
|
Handle<Map> Map::GeneralizeRepresentation(Handle<Map> map,
|
|
int modify_index,
|
|
Representation representation) {
|
|
CALL_HEAP_FUNCTION(
|
|
map->GetIsolate(),
|
|
map->GeneralizeRepresentation(modify_index, representation),
|
|
Map);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetPropertyForResult(LookupResult* lookup,
|
|
Name* name_raw,
|
|
Object* value_raw,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
StoreFromKeyed store_mode) {
|
|
Heap* heap = GetHeap();
|
|
Isolate* isolate = heap->isolate();
|
|
// Make sure that the top context does not change when doing callbacks or
|
|
// interceptor calls.
|
|
AssertNoContextChange ncc;
|
|
|
|
// Optimization for 2-byte strings often used as keys in a decompression
|
|
// dictionary. We internalize these short keys to avoid constantly
|
|
// reallocating them.
|
|
if (name_raw->IsString() && !name_raw->IsInternalizedString() &&
|
|
String::cast(name_raw)->length() <= 2) {
|
|
Object* internalized_version;
|
|
{ MaybeObject* maybe_string_version =
|
|
heap->InternalizeString(String::cast(name_raw));
|
|
if (maybe_string_version->ToObject(&internalized_version)) {
|
|
name_raw = String::cast(internalized_version);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check access rights if needed.
|
|
if (IsAccessCheckNeeded()) {
|
|
if (!isolate->MayNamedAccess(this, name_raw, v8::ACCESS_SET)) {
|
|
return SetPropertyWithFailedAccessCheck(
|
|
lookup, name_raw, value_raw, true, strict_mode);
|
|
}
|
|
}
|
|
|
|
if (IsJSGlobalProxy()) {
|
|
Object* proto = GetPrototype();
|
|
if (proto->IsNull()) return value_raw;
|
|
ASSERT(proto->IsJSGlobalObject());
|
|
return JSObject::cast(proto)->SetPropertyForResult(
|
|
lookup, name_raw, value_raw, attributes, strict_mode, store_mode);
|
|
}
|
|
|
|
ASSERT(!lookup->IsFound() || lookup->holder() == this ||
|
|
lookup->holder()->map()->is_hidden_prototype());
|
|
|
|
// From this point on everything needs to be handlified, because
|
|
// SetPropertyViaPrototypes might call back into JavaScript.
|
|
HandleScope scope(isolate);
|
|
Handle<JSObject> self(this);
|
|
Handle<Name> name(name_raw);
|
|
Handle<Object> value(value_raw, isolate);
|
|
|
|
if (!lookup->IsProperty() && !self->IsJSContextExtensionObject()) {
|
|
bool done = false;
|
|
MaybeObject* result_object = self->SetPropertyViaPrototypes(
|
|
*name, *value, attributes, strict_mode, &done);
|
|
if (done) return result_object;
|
|
}
|
|
|
|
if (!lookup->IsFound()) {
|
|
// Neither properties nor transitions found.
|
|
return self->AddProperty(
|
|
*name, *value, attributes, strict_mode, store_mode);
|
|
}
|
|
|
|
if (lookup->IsProperty() && lookup->IsReadOnly()) {
|
|
if (strict_mode == kStrictMode) {
|
|
Handle<Object> args[] = { name, self };
|
|
return isolate->Throw(*isolate->factory()->NewTypeError(
|
|
"strict_read_only_property", HandleVector(args, ARRAY_SIZE(args))));
|
|
} else {
|
|
return *value;
|
|
}
|
|
}
|
|
|
|
Handle<Object> old_value(heap->the_hole_value(), isolate);
|
|
if (FLAG_harmony_observation &&
|
|
map()->is_observed() && lookup->IsDataProperty()) {
|
|
old_value = Object::GetProperty(self, name);
|
|
}
|
|
|
|
// This is a real property that is not read-only, or it is a
|
|
// transition or null descriptor and there are no setters in the prototypes.
|
|
MaybeObject* result = *value;
|
|
switch (lookup->type()) {
|
|
case NORMAL:
|
|
result = lookup->holder()->SetNormalizedProperty(lookup, *value);
|
|
break;
|
|
case FIELD: {
|
|
Representation representation = lookup->representation();
|
|
if (!value->FitsRepresentation(representation)) {
|
|
MaybeObject* maybe_failure =
|
|
lookup->holder()->GeneralizeFieldRepresentation(
|
|
lookup->GetDescriptorIndex(), value->OptimalRepresentation());
|
|
if (maybe_failure->IsFailure()) return maybe_failure;
|
|
DescriptorArray* desc = lookup->holder()->map()->instance_descriptors();
|
|
int descriptor = lookup->GetDescriptorIndex();
|
|
representation = desc->GetDetails(descriptor).representation();
|
|
}
|
|
if (FLAG_track_double_fields && representation.IsDouble()) {
|
|
HeapNumber* storage =
|
|
HeapNumber::cast(lookup->holder()->RawFastPropertyAt(
|
|
lookup->GetFieldIndex().field_index()));
|
|
storage->set_value(value->Number());
|
|
result = *value;
|
|
break;
|
|
}
|
|
lookup->holder()->FastPropertyAtPut(
|
|
lookup->GetFieldIndex().field_index(), *value);
|
|
result = *value;
|
|
break;
|
|
}
|
|
case CONSTANT_FUNCTION:
|
|
// Only replace the function if necessary.
|
|
if (*value == lookup->GetConstantFunction()) return *value;
|
|
// Preserve the attributes of this existing property.
|
|
attributes = lookup->GetAttributes();
|
|
result =
|
|
lookup->holder()->ConvertDescriptorToField(*name, *value, attributes);
|
|
break;
|
|
case CALLBACKS: {
|
|
Object* callback_object = lookup->GetCallbackObject();
|
|
return self->SetPropertyWithCallback(
|
|
callback_object, *name, *value, lookup->holder(), strict_mode);
|
|
}
|
|
case INTERCEPTOR:
|
|
result = lookup->holder()->SetPropertyWithInterceptor(
|
|
*name, *value, attributes, strict_mode);
|
|
break;
|
|
case TRANSITION: {
|
|
Map* transition_map = lookup->GetTransitionTarget();
|
|
int descriptor = transition_map->LastAdded();
|
|
|
|
DescriptorArray* descriptors = transition_map->instance_descriptors();
|
|
PropertyDetails details = descriptors->GetDetails(descriptor);
|
|
|
|
if (details.type() == FIELD) {
|
|
if (attributes == details.attributes()) {
|
|
Representation representation = details.representation();
|
|
if (!value->FitsRepresentation(representation)) {
|
|
MaybeObject* maybe_map = transition_map->GeneralizeRepresentation(
|
|
descriptor, value->OptimalRepresentation());
|
|
if (!maybe_map->To(&transition_map)) return maybe_map;
|
|
Object* back = transition_map->GetBackPointer();
|
|
if (back->IsMap()) {
|
|
MaybeObject* maybe_failure =
|
|
lookup->holder()->MigrateToMap(Map::cast(back));
|
|
if (maybe_failure->IsFailure()) return maybe_failure;
|
|
}
|
|
DescriptorArray* desc = transition_map->instance_descriptors();
|
|
int descriptor = transition_map->LastAdded();
|
|
representation = desc->GetDetails(descriptor).representation();
|
|
}
|
|
int field_index = descriptors->GetFieldIndex(descriptor);
|
|
result = lookup->holder()->AddFastPropertyUsingMap(
|
|
transition_map, *name, *value, field_index, representation);
|
|
} else {
|
|
result = lookup->holder()->ConvertDescriptorToField(
|
|
*name, *value, attributes);
|
|
}
|
|
} else if (details.type() == CALLBACKS) {
|
|
result = lookup->holder()->ConvertDescriptorToField(
|
|
*name, *value, attributes);
|
|
} else {
|
|
ASSERT(details.type() == CONSTANT_FUNCTION);
|
|
|
|
Object* constant_function = descriptors->GetValue(descriptor);
|
|
if (constant_function == *value) {
|
|
// If the same constant function is being added we can simply
|
|
// transition to the target map.
|
|
lookup->holder()->set_map(transition_map);
|
|
result = constant_function;
|
|
} else {
|
|
// Otherwise, replace with a map transition to a new map with a FIELD,
|
|
// even if the value is a constant function.
|
|
result = lookup->holder()->ConvertTransitionToMapTransition(
|
|
lookup->GetTransitionIndex(), *name, *value, attributes);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case HANDLER:
|
|
case NONEXISTENT:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
Handle<Object> hresult;
|
|
if (!result->ToHandle(&hresult, isolate)) return result;
|
|
|
|
if (FLAG_harmony_observation && map()->is_observed()) {
|
|
if (lookup->IsTransition()) {
|
|
EnqueueChangeRecord(self, "new", name, old_value);
|
|
} else {
|
|
LookupResult new_lookup(isolate);
|
|
self->LocalLookup(*name, &new_lookup, true);
|
|
if (new_lookup.IsDataProperty()) {
|
|
Handle<Object> new_value = Object::GetProperty(self, name);
|
|
if (!new_value->SameValue(*old_value)) {
|
|
EnqueueChangeRecord(self, "updated", name, old_value);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return *hresult;
|
|
}
|
|
|
|
|
|
// Set a real local property, even if it is READ_ONLY. If the property is not
|
|
// present, add it with attributes NONE. This code is an exact clone of
|
|
// SetProperty, with the check for IsReadOnly and the check for a
|
|
// callback setter removed. The two lines looking up the LookupResult
|
|
// result are also added. If one of the functions is changed, the other
|
|
// should be.
|
|
// Note that this method cannot be used to set the prototype of a function
|
|
// because ConvertDescriptorToField() which is called in "case CALLBACKS:"
|
|
// doesn't handle function prototypes correctly.
|
|
Handle<Object> JSObject::SetLocalPropertyIgnoreAttributes(
|
|
Handle<JSObject> object,
|
|
Handle<Name> key,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
ValueType value_type) {
|
|
CALL_HEAP_FUNCTION(
|
|
object->GetIsolate(),
|
|
object->SetLocalPropertyIgnoreAttributes(
|
|
*key, *value, attributes, value_type),
|
|
Object);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetLocalPropertyIgnoreAttributes(
|
|
Name* name_raw,
|
|
Object* value_raw,
|
|
PropertyAttributes attributes,
|
|
ValueType value_type) {
|
|
// Make sure that the top context does not change when doing callbacks or
|
|
// interceptor calls.
|
|
AssertNoContextChange ncc;
|
|
Isolate* isolate = GetIsolate();
|
|
LookupResult lookup(isolate);
|
|
LocalLookup(name_raw, &lookup, true);
|
|
if (!lookup.IsFound()) map()->LookupTransition(this, name_raw, &lookup);
|
|
// Check access rights if needed.
|
|
if (IsAccessCheckNeeded()) {
|
|
if (!isolate->MayNamedAccess(this, name_raw, v8::ACCESS_SET)) {
|
|
return SetPropertyWithFailedAccessCheck(&lookup,
|
|
name_raw,
|
|
value_raw,
|
|
false,
|
|
kNonStrictMode);
|
|
}
|
|
}
|
|
|
|
if (IsJSGlobalProxy()) {
|
|
Object* proto = GetPrototype();
|
|
if (proto->IsNull()) return value_raw;
|
|
ASSERT(proto->IsJSGlobalObject());
|
|
return JSObject::cast(proto)->SetLocalPropertyIgnoreAttributes(
|
|
name_raw,
|
|
value_raw,
|
|
attributes,
|
|
value_type);
|
|
}
|
|
|
|
// Check for accessor in prototype chain removed here in clone.
|
|
if (!lookup.IsFound()) {
|
|
// Neither properties nor transitions found.
|
|
return AddProperty(
|
|
name_raw, value_raw, attributes, kNonStrictMode,
|
|
MAY_BE_STORE_FROM_KEYED, PERFORM_EXTENSIBILITY_CHECK, value_type);
|
|
}
|
|
|
|
// From this point on everything needs to be handlified.
|
|
HandleScope scope(isolate);
|
|
Handle<JSObject> self(this);
|
|
Handle<Name> name(name_raw);
|
|
Handle<Object> value(value_raw, isolate);
|
|
|
|
Handle<Object> old_value(isolate->heap()->the_hole_value(), isolate);
|
|
PropertyAttributes old_attributes = ABSENT;
|
|
bool is_observed = FLAG_harmony_observation && self->map()->is_observed();
|
|
if (is_observed) {
|
|
if (lookup.IsDataProperty()) old_value = Object::GetProperty(self, name);
|
|
old_attributes = lookup.GetAttributes();
|
|
}
|
|
|
|
// Check of IsReadOnly removed from here in clone.
|
|
MaybeObject* result = *value;
|
|
switch (lookup.type()) {
|
|
case NORMAL: {
|
|
PropertyDetails details = PropertyDetails(attributes, NORMAL, 0);
|
|
result = self->SetNormalizedProperty(*name, *value, details);
|
|
break;
|
|
}
|
|
case FIELD: {
|
|
Representation representation = lookup.representation();
|
|
Representation value_representation =
|
|
value->OptimalRepresentation(value_type);
|
|
if (value_representation.IsNone()) break;
|
|
if (!value_representation.fits_into(representation)) {
|
|
MaybeObject* maybe_failure = self->GeneralizeFieldRepresentation(
|
|
lookup.GetDescriptorIndex(), value_representation);
|
|
if (maybe_failure->IsFailure()) return maybe_failure;
|
|
DescriptorArray* desc = self->map()->instance_descriptors();
|
|
int descriptor = lookup.GetDescriptorIndex();
|
|
representation = desc->GetDetails(descriptor).representation();
|
|
}
|
|
if (FLAG_track_double_fields && representation.IsDouble()) {
|
|
HeapNumber* storage =
|
|
HeapNumber::cast(self->RawFastPropertyAt(
|
|
lookup.GetFieldIndex().field_index()));
|
|
storage->set_value(value->Number());
|
|
result = *value;
|
|
break;
|
|
}
|
|
self->FastPropertyAtPut(lookup.GetFieldIndex().field_index(), *value);
|
|
result = *value;
|
|
break;
|
|
}
|
|
case CONSTANT_FUNCTION:
|
|
// Only replace the function if necessary.
|
|
if (*value != lookup.GetConstantFunction()) {
|
|
// Preserve the attributes of this existing property.
|
|
attributes = lookup.GetAttributes();
|
|
result = self->ConvertDescriptorToField(*name, *value, attributes);
|
|
}
|
|
break;
|
|
case CALLBACKS:
|
|
case INTERCEPTOR:
|
|
// Override callback in clone
|
|
result = self->ConvertDescriptorToField(*name, *value, attributes);
|
|
break;
|
|
case TRANSITION: {
|
|
Map* transition_map = lookup.GetTransitionTarget();
|
|
int descriptor = transition_map->LastAdded();
|
|
|
|
DescriptorArray* descriptors = transition_map->instance_descriptors();
|
|
PropertyDetails details = descriptors->GetDetails(descriptor);
|
|
|
|
if (details.type() == FIELD) {
|
|
if (attributes == details.attributes()) {
|
|
Representation representation = details.representation();
|
|
Representation value_representation =
|
|
value->OptimalRepresentation(value_type);
|
|
if (!value_representation.fits_into(representation)) {
|
|
MaybeObject* maybe_map = transition_map->GeneralizeRepresentation(
|
|
descriptor, value_representation);
|
|
if (!maybe_map->To(&transition_map)) return maybe_map;
|
|
Object* back = transition_map->GetBackPointer();
|
|
if (back->IsMap()) {
|
|
MaybeObject* maybe_failure = self->MigrateToMap(Map::cast(back));
|
|
if (maybe_failure->IsFailure()) return maybe_failure;
|
|
}
|
|
DescriptorArray* desc = transition_map->instance_descriptors();
|
|
int descriptor = transition_map->LastAdded();
|
|
representation = desc->GetDetails(descriptor).representation();
|
|
}
|
|
int field_index = descriptors->GetFieldIndex(descriptor);
|
|
result = self->AddFastPropertyUsingMap(
|
|
transition_map, *name, *value, field_index, representation);
|
|
} else {
|
|
result = self->ConvertDescriptorToField(*name, *value, attributes);
|
|
}
|
|
} else if (details.type() == CALLBACKS) {
|
|
result = self->ConvertDescriptorToField(*name, *value, attributes);
|
|
} else {
|
|
ASSERT(details.type() == CONSTANT_FUNCTION);
|
|
|
|
// Replace transition to CONSTANT FUNCTION with a map transition to a
|
|
// new map with a FIELD, even if the value is a function.
|
|
result = self->ConvertTransitionToMapTransition(
|
|
lookup.GetTransitionIndex(), *name, *value, attributes);
|
|
}
|
|
break;
|
|
}
|
|
case HANDLER:
|
|
case NONEXISTENT:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
Handle<Object> hresult;
|
|
if (!result->ToHandle(&hresult, isolate)) return result;
|
|
|
|
if (is_observed) {
|
|
if (lookup.IsTransition()) {
|
|
EnqueueChangeRecord(self, "new", name, old_value);
|
|
} else if (old_value->IsTheHole()) {
|
|
EnqueueChangeRecord(self, "reconfigured", name, old_value);
|
|
} else {
|
|
LookupResult new_lookup(isolate);
|
|
self->LocalLookup(*name, &new_lookup, true);
|
|
bool value_changed = false;
|
|
if (new_lookup.IsDataProperty()) {
|
|
Handle<Object> new_value = Object::GetProperty(self, name);
|
|
value_changed = !old_value->SameValue(*new_value);
|
|
}
|
|
if (new_lookup.GetAttributes() != old_attributes) {
|
|
if (!value_changed) old_value = isolate->factory()->the_hole_value();
|
|
EnqueueChangeRecord(self, "reconfigured", name, old_value);
|
|
} else if (value_changed) {
|
|
EnqueueChangeRecord(self, "updated", name, old_value);
|
|
}
|
|
}
|
|
}
|
|
|
|
return *hresult;
|
|
}
|
|
|
|
|
|
PropertyAttributes JSObject::GetPropertyAttributePostInterceptor(
|
|
JSObject* receiver,
|
|
Name* name,
|
|
bool continue_search) {
|
|
// Check local property, ignore interceptor.
|
|
LookupResult result(GetIsolate());
|
|
LocalLookupRealNamedProperty(name, &result);
|
|
if (result.IsFound()) return result.GetAttributes();
|
|
|
|
if (continue_search) {
|
|
// Continue searching via the prototype chain.
|
|
Object* pt = GetPrototype();
|
|
if (!pt->IsNull()) {
|
|
return JSObject::cast(pt)->
|
|
GetPropertyAttributeWithReceiver(receiver, name);
|
|
}
|
|
}
|
|
return ABSENT;
|
|
}
|
|
|
|
|
|
PropertyAttributes JSObject::GetPropertyAttributeWithInterceptor(
|
|
JSObject* receiver,
|
|
Name* name,
|
|
bool continue_search) {
|
|
// TODO(rossberg): Support symbols in the API.
|
|
if (name->IsSymbol()) return ABSENT;
|
|
|
|
Isolate* isolate = GetIsolate();
|
|
|
|
// Make sure that the top context does not change when doing
|
|
// callbacks or interceptor calls.
|
|
AssertNoContextChange ncc;
|
|
|
|
HandleScope scope(isolate);
|
|
Handle<InterceptorInfo> interceptor(GetNamedInterceptor());
|
|
Handle<JSObject> receiver_handle(receiver);
|
|
Handle<JSObject> holder_handle(this);
|
|
Handle<String> name_handle(String::cast(name));
|
|
PropertyCallbackArguments args(isolate, interceptor->data(), receiver, this);
|
|
if (!interceptor->query()->IsUndefined()) {
|
|
v8::NamedPropertyQuery query =
|
|
v8::ToCData<v8::NamedPropertyQuery>(interceptor->query());
|
|
LOG(isolate,
|
|
ApiNamedPropertyAccess("interceptor-named-has", *holder_handle, name));
|
|
v8::Handle<v8::Integer> result =
|
|
args.Call(query, v8::Utils::ToLocal(name_handle));
|
|
if (!result.IsEmpty()) {
|
|
ASSERT(result->IsInt32());
|
|
return static_cast<PropertyAttributes>(result->Int32Value());
|
|
}
|
|
} else if (!interceptor->getter()->IsUndefined()) {
|
|
v8::NamedPropertyGetter getter =
|
|
v8::ToCData<v8::NamedPropertyGetter>(interceptor->getter());
|
|
LOG(isolate,
|
|
ApiNamedPropertyAccess("interceptor-named-get-has", this, name));
|
|
v8::Handle<v8::Value> result =
|
|
args.Call(getter, v8::Utils::ToLocal(name_handle));
|
|
if (!result.IsEmpty()) return DONT_ENUM;
|
|
}
|
|
return holder_handle->GetPropertyAttributePostInterceptor(*receiver_handle,
|
|
*name_handle,
|
|
continue_search);
|
|
}
|
|
|
|
|
|
PropertyAttributes JSReceiver::GetPropertyAttributeWithReceiver(
|
|
JSReceiver* receiver,
|
|
Name* key) {
|
|
uint32_t index = 0;
|
|
if (IsJSObject() && key->AsArrayIndex(&index)) {
|
|
return JSObject::cast(this)->GetElementAttributeWithReceiver(
|
|
receiver, index, true);
|
|
}
|
|
// Named property.
|
|
LookupResult lookup(GetIsolate());
|
|
Lookup(key, &lookup);
|
|
return GetPropertyAttributeForResult(receiver, &lookup, key, true);
|
|
}
|
|
|
|
|
|
PropertyAttributes JSReceiver::GetPropertyAttributeForResult(
|
|
JSReceiver* receiver,
|
|
LookupResult* lookup,
|
|
Name* name,
|
|
bool continue_search) {
|
|
// Check access rights if needed.
|
|
if (IsAccessCheckNeeded()) {
|
|
JSObject* this_obj = JSObject::cast(this);
|
|
Heap* heap = GetHeap();
|
|
if (!heap->isolate()->MayNamedAccess(this_obj, name, v8::ACCESS_HAS)) {
|
|
return this_obj->GetPropertyAttributeWithFailedAccessCheck(
|
|
receiver, lookup, name, continue_search);
|
|
}
|
|
}
|
|
if (lookup->IsFound()) {
|
|
switch (lookup->type()) {
|
|
case NORMAL: // fall through
|
|
case FIELD:
|
|
case CONSTANT_FUNCTION:
|
|
case CALLBACKS:
|
|
return lookup->GetAttributes();
|
|
case HANDLER: {
|
|
return JSProxy::cast(lookup->proxy())->GetPropertyAttributeWithHandler(
|
|
receiver, name);
|
|
}
|
|
case INTERCEPTOR:
|
|
return lookup->holder()->GetPropertyAttributeWithInterceptor(
|
|
JSObject::cast(receiver), name, continue_search);
|
|
case TRANSITION:
|
|
case NONEXISTENT:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
return ABSENT;
|
|
}
|
|
|
|
|
|
PropertyAttributes JSReceiver::GetLocalPropertyAttribute(Name* name) {
|
|
// Check whether the name is an array index.
|
|
uint32_t index = 0;
|
|
if (IsJSObject() && name->AsArrayIndex(&index)) {
|
|
return GetLocalElementAttribute(index);
|
|
}
|
|
// Named property.
|
|
LookupResult lookup(GetIsolate());
|
|
LocalLookup(name, &lookup, true);
|
|
return GetPropertyAttributeForResult(this, &lookup, name, false);
|
|
}
|
|
|
|
|
|
PropertyAttributes JSObject::GetElementAttributeWithReceiver(
|
|
JSReceiver* receiver, uint32_t index, bool continue_search) {
|
|
Isolate* isolate = GetIsolate();
|
|
|
|
// Check access rights if needed.
|
|
if (IsAccessCheckNeeded()) {
|
|
if (!isolate->MayIndexedAccess(this, index, v8::ACCESS_HAS)) {
|
|
isolate->ReportFailedAccessCheck(this, v8::ACCESS_HAS);
|
|
return ABSENT;
|
|
}
|
|
}
|
|
|
|
if (IsJSGlobalProxy()) {
|
|
Object* proto = GetPrototype();
|
|
if (proto->IsNull()) return ABSENT;
|
|
ASSERT(proto->IsJSGlobalObject());
|
|
return JSObject::cast(proto)->GetElementAttributeWithReceiver(
|
|
receiver, index, continue_search);
|
|
}
|
|
|
|
// Check for lookup interceptor except when bootstrapping.
|
|
if (HasIndexedInterceptor() && !isolate->bootstrapper()->IsActive()) {
|
|
return GetElementAttributeWithInterceptor(receiver, index, continue_search);
|
|
}
|
|
|
|
return GetElementAttributeWithoutInterceptor(
|
|
receiver, index, continue_search);
|
|
}
|
|
|
|
|
|
PropertyAttributes JSObject::GetElementAttributeWithInterceptor(
|
|
JSReceiver* receiver, uint32_t index, bool continue_search) {
|
|
Isolate* isolate = GetIsolate();
|
|
// Make sure that the top context does not change when doing
|
|
// callbacks or interceptor calls.
|
|
AssertNoContextChange ncc;
|
|
HandleScope scope(isolate);
|
|
Handle<InterceptorInfo> interceptor(GetIndexedInterceptor());
|
|
Handle<JSReceiver> hreceiver(receiver);
|
|
Handle<JSObject> holder(this);
|
|
PropertyCallbackArguments args(isolate, interceptor->data(), receiver, this);
|
|
if (!interceptor->query()->IsUndefined()) {
|
|
v8::IndexedPropertyQuery query =
|
|
v8::ToCData<v8::IndexedPropertyQuery>(interceptor->query());
|
|
LOG(isolate,
|
|
ApiIndexedPropertyAccess("interceptor-indexed-has", this, index));
|
|
v8::Handle<v8::Integer> result = args.Call(query, index);
|
|
if (!result.IsEmpty())
|
|
return static_cast<PropertyAttributes>(result->Int32Value());
|
|
} else if (!interceptor->getter()->IsUndefined()) {
|
|
v8::IndexedPropertyGetter getter =
|
|
v8::ToCData<v8::IndexedPropertyGetter>(interceptor->getter());
|
|
LOG(isolate,
|
|
ApiIndexedPropertyAccess("interceptor-indexed-get-has", this, index));
|
|
v8::Handle<v8::Value> result = args.Call(getter, index);
|
|
if (!result.IsEmpty()) return NONE;
|
|
}
|
|
|
|
return holder->GetElementAttributeWithoutInterceptor(
|
|
*hreceiver, index, continue_search);
|
|
}
|
|
|
|
|
|
PropertyAttributes JSObject::GetElementAttributeWithoutInterceptor(
|
|
JSReceiver* receiver, uint32_t index, bool continue_search) {
|
|
PropertyAttributes attr = GetElementsAccessor()->GetAttributes(
|
|
receiver, this, index);
|
|
if (attr != ABSENT) return attr;
|
|
|
|
// Handle [] on String objects.
|
|
if (IsStringObjectWithCharacterAt(index)) {
|
|
return static_cast<PropertyAttributes>(READ_ONLY | DONT_DELETE);
|
|
}
|
|
|
|
if (!continue_search) return ABSENT;
|
|
|
|
Object* pt = GetPrototype();
|
|
if (pt->IsJSProxy()) {
|
|
// We need to follow the spec and simulate a call to [[GetOwnProperty]].
|
|
return JSProxy::cast(pt)->GetElementAttributeWithHandler(receiver, index);
|
|
}
|
|
if (pt->IsNull()) return ABSENT;
|
|
return JSObject::cast(pt)->GetElementAttributeWithReceiver(
|
|
receiver, index, true);
|
|
}
|
|
|
|
|
|
MaybeObject* NormalizedMapCache::Get(JSObject* obj,
|
|
PropertyNormalizationMode mode) {
|
|
Isolate* isolate = obj->GetIsolate();
|
|
Map* fast = obj->map();
|
|
int index = fast->Hash() % kEntries;
|
|
Object* result = get(index);
|
|
if (result->IsMap() &&
|
|
Map::cast(result)->EquivalentToForNormalization(fast, mode)) {
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap) {
|
|
Map::cast(result)->SharedMapVerify();
|
|
}
|
|
#endif
|
|
#ifdef DEBUG
|
|
if (FLAG_enable_slow_asserts) {
|
|
// The cached map should match newly created normalized map bit-by-bit,
|
|
// except for the code cache, which can contain some ics which can be
|
|
// applied to the shared map.
|
|
Object* fresh;
|
|
MaybeObject* maybe_fresh =
|
|
fast->CopyNormalized(mode, SHARED_NORMALIZED_MAP);
|
|
if (maybe_fresh->ToObject(&fresh)) {
|
|
ASSERT(memcmp(Map::cast(fresh)->address(),
|
|
Map::cast(result)->address(),
|
|
Map::kCodeCacheOffset) == 0);
|
|
STATIC_ASSERT(Map::kDependentCodeOffset ==
|
|
Map::kCodeCacheOffset + kPointerSize);
|
|
int offset = Map::kDependentCodeOffset + kPointerSize;
|
|
ASSERT(memcmp(Map::cast(fresh)->address() + offset,
|
|
Map::cast(result)->address() + offset,
|
|
Map::kSize - offset) == 0);
|
|
}
|
|
}
|
|
#endif
|
|
return result;
|
|
}
|
|
|
|
{ MaybeObject* maybe_result =
|
|
fast->CopyNormalized(mode, SHARED_NORMALIZED_MAP);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
ASSERT(Map::cast(result)->is_dictionary_map());
|
|
set(index, result);
|
|
isolate->counters()->normalized_maps()->Increment();
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
void NormalizedMapCache::Clear() {
|
|
int entries = length();
|
|
for (int i = 0; i != entries; i++) {
|
|
set_undefined(i);
|
|
}
|
|
}
|
|
|
|
|
|
void JSObject::UpdateMapCodeCache(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Code> code) {
|
|
Isolate* isolate = object->GetIsolate();
|
|
CALL_HEAP_FUNCTION_VOID(isolate,
|
|
object->UpdateMapCodeCache(*name, *code));
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::UpdateMapCodeCache(Name* name, Code* code) {
|
|
if (map()->is_shared()) {
|
|
// Fast case maps are never marked as shared.
|
|
ASSERT(!HasFastProperties());
|
|
// Replace the map with an identical copy that can be safely modified.
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = map()->CopyNormalized(KEEP_INOBJECT_PROPERTIES,
|
|
UNIQUE_NORMALIZED_MAP);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
GetIsolate()->counters()->normalized_maps()->Increment();
|
|
|
|
set_map(Map::cast(obj));
|
|
}
|
|
return map()->UpdateCodeCache(name, code);
|
|
}
|
|
|
|
|
|
void JSObject::NormalizeProperties(Handle<JSObject> object,
|
|
PropertyNormalizationMode mode,
|
|
int expected_additional_properties) {
|
|
CALL_HEAP_FUNCTION_VOID(object->GetIsolate(),
|
|
object->NormalizeProperties(
|
|
mode, expected_additional_properties));
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::NormalizeProperties(PropertyNormalizationMode mode,
|
|
int expected_additional_properties) {
|
|
if (!HasFastProperties()) return this;
|
|
|
|
// The global object is always normalized.
|
|
ASSERT(!IsGlobalObject());
|
|
// JSGlobalProxy must never be normalized
|
|
ASSERT(!IsJSGlobalProxy());
|
|
|
|
Map* map_of_this = map();
|
|
|
|
// Allocate new content.
|
|
int real_size = map_of_this->NumberOfOwnDescriptors();
|
|
int property_count = real_size;
|
|
if (expected_additional_properties > 0) {
|
|
property_count += expected_additional_properties;
|
|
} else {
|
|
property_count += 2; // Make space for two more properties.
|
|
}
|
|
NameDictionary* dictionary;
|
|
MaybeObject* maybe_dictionary =
|
|
NameDictionary::Allocate(GetHeap(), property_count);
|
|
if (!maybe_dictionary->To(&dictionary)) return maybe_dictionary;
|
|
|
|
DescriptorArray* descs = map_of_this->instance_descriptors();
|
|
for (int i = 0; i < real_size; i++) {
|
|
PropertyDetails details = descs->GetDetails(i);
|
|
switch (details.type()) {
|
|
case CONSTANT_FUNCTION: {
|
|
PropertyDetails d = PropertyDetails(
|
|
details.attributes(), NORMAL, i + 1);
|
|
Object* value = descs->GetConstantFunction(i);
|
|
MaybeObject* maybe_dictionary =
|
|
dictionary->Add(descs->GetKey(i), value, d);
|
|
if (!maybe_dictionary->To(&dictionary)) return maybe_dictionary;
|
|
break;
|
|
}
|
|
case FIELD: {
|
|
PropertyDetails d =
|
|
PropertyDetails(details.attributes(), NORMAL, i + 1);
|
|
Object* value = RawFastPropertyAt(descs->GetFieldIndex(i));
|
|
MaybeObject* maybe_dictionary =
|
|
dictionary->Add(descs->GetKey(i), value, d);
|
|
if (!maybe_dictionary->To(&dictionary)) return maybe_dictionary;
|
|
break;
|
|
}
|
|
case CALLBACKS: {
|
|
Object* value = descs->GetCallbacksObject(i);
|
|
PropertyDetails d = PropertyDetails(
|
|
details.attributes(), CALLBACKS, i + 1);
|
|
MaybeObject* maybe_dictionary =
|
|
dictionary->Add(descs->GetKey(i), value, d);
|
|
if (!maybe_dictionary->To(&dictionary)) return maybe_dictionary;
|
|
break;
|
|
}
|
|
case INTERCEPTOR:
|
|
break;
|
|
case HANDLER:
|
|
case NORMAL:
|
|
case TRANSITION:
|
|
case NONEXISTENT:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
|
|
Heap* current_heap = GetHeap();
|
|
|
|
// Copy the next enumeration index from instance descriptor.
|
|
dictionary->SetNextEnumerationIndex(real_size + 1);
|
|
|
|
Map* new_map;
|
|
MaybeObject* maybe_map =
|
|
current_heap->isolate()->context()->native_context()->
|
|
normalized_map_cache()->Get(this, mode);
|
|
if (!maybe_map->To(&new_map)) return maybe_map;
|
|
ASSERT(new_map->is_dictionary_map());
|
|
|
|
// We have now successfully allocated all the necessary objects.
|
|
// Changes can now be made with the guarantee that all of them take effect.
|
|
|
|
// Resize the object in the heap if necessary.
|
|
int new_instance_size = new_map->instance_size();
|
|
int instance_size_delta = map_of_this->instance_size() - new_instance_size;
|
|
ASSERT(instance_size_delta >= 0);
|
|
current_heap->CreateFillerObjectAt(this->address() + new_instance_size,
|
|
instance_size_delta);
|
|
if (Marking::IsBlack(Marking::MarkBitFrom(this))) {
|
|
MemoryChunk::IncrementLiveBytesFromMutator(this->address(),
|
|
-instance_size_delta);
|
|
}
|
|
|
|
set_map(new_map);
|
|
map_of_this->NotifyLeafMapLayoutChange();
|
|
|
|
set_properties(dictionary);
|
|
|
|
current_heap->isolate()->counters()->props_to_dictionary()->Increment();
|
|
|
|
#ifdef DEBUG
|
|
if (FLAG_trace_normalization) {
|
|
PrintF("Object properties have been normalized:\n");
|
|
Print();
|
|
}
|
|
#endif
|
|
return this;
|
|
}
|
|
|
|
|
|
void JSObject::TransformToFastProperties(Handle<JSObject> object,
|
|
int unused_property_fields) {
|
|
CALL_HEAP_FUNCTION_VOID(
|
|
object->GetIsolate(),
|
|
object->TransformToFastProperties(unused_property_fields));
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::TransformToFastProperties(int unused_property_fields) {
|
|
if (HasFastProperties()) return this;
|
|
ASSERT(!IsGlobalObject());
|
|
return property_dictionary()->
|
|
TransformPropertiesToFastFor(this, unused_property_fields);
|
|
}
|
|
|
|
|
|
static MUST_USE_RESULT MaybeObject* CopyFastElementsToDictionary(
|
|
Isolate* isolate,
|
|
FixedArrayBase* array,
|
|
int length,
|
|
SeededNumberDictionary* dictionary) {
|
|
Heap* heap = isolate->heap();
|
|
bool has_double_elements = array->IsFixedDoubleArray();
|
|
for (int i = 0; i < length; i++) {
|
|
Object* value = NULL;
|
|
if (has_double_elements) {
|
|
FixedDoubleArray* double_array = FixedDoubleArray::cast(array);
|
|
if (double_array->is_the_hole(i)) {
|
|
value = isolate->heap()->the_hole_value();
|
|
} else {
|
|
// Objects must be allocated in the old object space, since the
|
|
// overall number of HeapNumbers needed for the conversion might
|
|
// exceed the capacity of new space, and we would fail repeatedly
|
|
// trying to convert the FixedDoubleArray.
|
|
MaybeObject* maybe_value_object =
|
|
heap->AllocateHeapNumber(double_array->get_scalar(i), TENURED);
|
|
if (!maybe_value_object->ToObject(&value)) return maybe_value_object;
|
|
}
|
|
} else {
|
|
value = FixedArray::cast(array)->get(i);
|
|
}
|
|
if (!value->IsTheHole()) {
|
|
PropertyDetails details = PropertyDetails(NONE, NORMAL, 0);
|
|
MaybeObject* maybe_result =
|
|
dictionary->AddNumberEntry(i, value, details);
|
|
if (!maybe_result->To(&dictionary)) return maybe_result;
|
|
}
|
|
}
|
|
return dictionary;
|
|
}
|
|
|
|
|
|
Handle<SeededNumberDictionary> JSObject::NormalizeElements(
|
|
Handle<JSObject> object) {
|
|
CALL_HEAP_FUNCTION(object->GetIsolate(),
|
|
object->NormalizeElements(),
|
|
SeededNumberDictionary);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::NormalizeElements() {
|
|
ASSERT(!HasExternalArrayElements());
|
|
|
|
// Find the backing store.
|
|
FixedArrayBase* array = FixedArrayBase::cast(elements());
|
|
Map* old_map = array->map();
|
|
bool is_arguments =
|
|
(old_map == old_map->GetHeap()->non_strict_arguments_elements_map());
|
|
if (is_arguments) {
|
|
array = FixedArrayBase::cast(FixedArray::cast(array)->get(1));
|
|
}
|
|
if (array->IsDictionary()) return array;
|
|
|
|
ASSERT(HasFastSmiOrObjectElements() ||
|
|
HasFastDoubleElements() ||
|
|
HasFastArgumentsElements());
|
|
// Compute the effective length and allocate a new backing store.
|
|
int length = IsJSArray()
|
|
? Smi::cast(JSArray::cast(this)->length())->value()
|
|
: array->length();
|
|
int old_capacity = 0;
|
|
int used_elements = 0;
|
|
GetElementsCapacityAndUsage(&old_capacity, &used_elements);
|
|
SeededNumberDictionary* dictionary;
|
|
MaybeObject* maybe_dictionary =
|
|
SeededNumberDictionary::Allocate(GetHeap(), used_elements);
|
|
if (!maybe_dictionary->To(&dictionary)) return maybe_dictionary;
|
|
|
|
maybe_dictionary = CopyFastElementsToDictionary(
|
|
GetIsolate(), array, length, dictionary);
|
|
if (!maybe_dictionary->To(&dictionary)) return maybe_dictionary;
|
|
|
|
// Switch to using the dictionary as the backing storage for elements.
|
|
if (is_arguments) {
|
|
FixedArray::cast(elements())->set(1, dictionary);
|
|
} else {
|
|
// Set the new map first to satify the elements type assert in
|
|
// set_elements().
|
|
Map* new_map;
|
|
MaybeObject* maybe = GetElementsTransitionMap(GetIsolate(),
|
|
DICTIONARY_ELEMENTS);
|
|
if (!maybe->To(&new_map)) return maybe;
|
|
set_map(new_map);
|
|
set_elements(dictionary);
|
|
}
|
|
|
|
old_map->GetHeap()->isolate()->counters()->elements_to_dictionary()->
|
|
Increment();
|
|
|
|
#ifdef DEBUG
|
|
if (FLAG_trace_normalization) {
|
|
PrintF("Object elements have been normalized:\n");
|
|
Print();
|
|
}
|
|
#endif
|
|
|
|
ASSERT(HasDictionaryElements() || HasDictionaryArgumentsElements());
|
|
return dictionary;
|
|
}
|
|
|
|
|
|
Smi* JSReceiver::GenerateIdentityHash() {
|
|
Isolate* isolate = GetIsolate();
|
|
|
|
int hash_value;
|
|
int attempts = 0;
|
|
do {
|
|
// Generate a random 32-bit hash value but limit range to fit
|
|
// within a smi.
|
|
hash_value = V8::RandomPrivate(isolate) & Smi::kMaxValue;
|
|
attempts++;
|
|
} while (hash_value == 0 && attempts < 30);
|
|
hash_value = hash_value != 0 ? hash_value : 1; // never return 0
|
|
|
|
return Smi::FromInt(hash_value);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetIdentityHash(Smi* hash, CreationFlag flag) {
|
|
MaybeObject* maybe = SetHiddenProperty(GetHeap()->identity_hash_string(),
|
|
hash);
|
|
if (maybe->IsFailure()) return maybe;
|
|
return this;
|
|
}
|
|
|
|
|
|
int JSObject::GetIdentityHash(Handle<JSObject> obj) {
|
|
CALL_AND_RETRY_OR_DIE(obj->GetIsolate(),
|
|
obj->GetIdentityHash(ALLOW_CREATION),
|
|
return Smi::cast(__object__)->value(),
|
|
return 0);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::GetIdentityHash(CreationFlag flag) {
|
|
Object* stored_value = GetHiddenProperty(GetHeap()->identity_hash_string());
|
|
if (stored_value->IsSmi()) return stored_value;
|
|
|
|
// Do not generate permanent identity hash code if not requested.
|
|
if (flag == OMIT_CREATION) return GetHeap()->undefined_value();
|
|
|
|
Smi* hash = GenerateIdentityHash();
|
|
MaybeObject* result = SetHiddenProperty(GetHeap()->identity_hash_string(),
|
|
hash);
|
|
if (result->IsFailure()) return result;
|
|
if (result->ToObjectUnchecked()->IsUndefined()) {
|
|
// Trying to get hash of detached proxy.
|
|
return Smi::FromInt(0);
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
|
|
MaybeObject* JSProxy::GetIdentityHash(CreationFlag flag) {
|
|
Object* hash = this->hash();
|
|
if (!hash->IsSmi() && flag == ALLOW_CREATION) {
|
|
hash = GenerateIdentityHash();
|
|
set_hash(hash);
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
|
|
Object* JSObject::GetHiddenProperty(Name* key) {
|
|
ASSERT(key->IsUniqueName());
|
|
if (IsJSGlobalProxy()) {
|
|
// For a proxy, use the prototype as target object.
|
|
Object* proxy_parent = GetPrototype();
|
|
// If the proxy is detached, return undefined.
|
|
if (proxy_parent->IsNull()) return GetHeap()->the_hole_value();
|
|
ASSERT(proxy_parent->IsJSGlobalObject());
|
|
return JSObject::cast(proxy_parent)->GetHiddenProperty(key);
|
|
}
|
|
ASSERT(!IsJSGlobalProxy());
|
|
MaybeObject* hidden_lookup =
|
|
GetHiddenPropertiesHashTable(ONLY_RETURN_INLINE_VALUE);
|
|
Object* inline_value = hidden_lookup->ToObjectUnchecked();
|
|
|
|
if (inline_value->IsSmi()) {
|
|
// Handle inline-stored identity hash.
|
|
if (key == GetHeap()->identity_hash_string()) {
|
|
return inline_value;
|
|
} else {
|
|
return GetHeap()->the_hole_value();
|
|
}
|
|
}
|
|
|
|
if (inline_value->IsUndefined()) return GetHeap()->the_hole_value();
|
|
|
|
ObjectHashTable* hashtable = ObjectHashTable::cast(inline_value);
|
|
Object* entry = hashtable->Lookup(key);
|
|
return entry;
|
|
}
|
|
|
|
|
|
Handle<Object> JSObject::SetHiddenProperty(Handle<JSObject> obj,
|
|
Handle<Name> key,
|
|
Handle<Object> value) {
|
|
CALL_HEAP_FUNCTION(obj->GetIsolate(),
|
|
obj->SetHiddenProperty(*key, *value),
|
|
Object);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetHiddenProperty(Name* key, Object* value) {
|
|
ASSERT(key->IsUniqueName());
|
|
if (IsJSGlobalProxy()) {
|
|
// For a proxy, use the prototype as target object.
|
|
Object* proxy_parent = GetPrototype();
|
|
// If the proxy is detached, return undefined.
|
|
if (proxy_parent->IsNull()) return GetHeap()->undefined_value();
|
|
ASSERT(proxy_parent->IsJSGlobalObject());
|
|
return JSObject::cast(proxy_parent)->SetHiddenProperty(key, value);
|
|
}
|
|
ASSERT(!IsJSGlobalProxy());
|
|
MaybeObject* hidden_lookup =
|
|
GetHiddenPropertiesHashTable(ONLY_RETURN_INLINE_VALUE);
|
|
Object* inline_value = hidden_lookup->ToObjectUnchecked();
|
|
|
|
// If there is no backing store yet, store the identity hash inline.
|
|
if (value->IsSmi() &&
|
|
key == GetHeap()->identity_hash_string() &&
|
|
(inline_value->IsUndefined() || inline_value->IsSmi())) {
|
|
return SetHiddenPropertiesHashTable(value);
|
|
}
|
|
|
|
hidden_lookup = GetHiddenPropertiesHashTable(CREATE_NEW_IF_ABSENT);
|
|
ObjectHashTable* hashtable;
|
|
if (!hidden_lookup->To(&hashtable)) return hidden_lookup;
|
|
|
|
// If it was found, check if the key is already in the dictionary.
|
|
MaybeObject* insert_result = hashtable->Put(key, value);
|
|
ObjectHashTable* new_table;
|
|
if (!insert_result->To(&new_table)) return insert_result;
|
|
if (new_table != hashtable) {
|
|
// If adding the key expanded the dictionary (i.e., Add returned a new
|
|
// dictionary), store it back to the object.
|
|
MaybeObject* store_result = SetHiddenPropertiesHashTable(new_table);
|
|
if (store_result->IsFailure()) return store_result;
|
|
}
|
|
// Return this to mark success.
|
|
return this;
|
|
}
|
|
|
|
|
|
void JSObject::DeleteHiddenProperty(Name* key) {
|
|
ASSERT(key->IsUniqueName());
|
|
if (IsJSGlobalProxy()) {
|
|
// For a proxy, use the prototype as target object.
|
|
Object* proxy_parent = GetPrototype();
|
|
// If the proxy is detached, return immediately.
|
|
if (proxy_parent->IsNull()) return;
|
|
ASSERT(proxy_parent->IsJSGlobalObject());
|
|
JSObject::cast(proxy_parent)->DeleteHiddenProperty(key);
|
|
return;
|
|
}
|
|
ASSERT(!IsJSGlobalProxy());
|
|
MaybeObject* hidden_lookup =
|
|
GetHiddenPropertiesHashTable(ONLY_RETURN_INLINE_VALUE);
|
|
Object* inline_value = hidden_lookup->ToObjectUnchecked();
|
|
|
|
// We never delete (inline-stored) identity hashes.
|
|
ASSERT(key != GetHeap()->identity_hash_string());
|
|
if (inline_value->IsUndefined() || inline_value->IsSmi()) return;
|
|
|
|
ObjectHashTable* hashtable = ObjectHashTable::cast(inline_value);
|
|
MaybeObject* delete_result = hashtable->Put(key, GetHeap()->the_hole_value());
|
|
USE(delete_result);
|
|
ASSERT(!delete_result->IsFailure()); // Delete does not cause GC.
|
|
}
|
|
|
|
|
|
bool JSObject::HasHiddenProperties() {
|
|
return GetPropertyAttributePostInterceptor(this,
|
|
GetHeap()->hidden_string(),
|
|
false) != ABSENT;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::GetHiddenPropertiesHashTable(
|
|
InitializeHiddenProperties init_option) {
|
|
ASSERT(!IsJSGlobalProxy());
|
|
Object* inline_value;
|
|
if (HasFastProperties()) {
|
|
// If the object has fast properties, check whether the first slot
|
|
// in the descriptor array matches the hidden string. Since the
|
|
// hidden strings hash code is zero (and no other name has hash
|
|
// code zero) it will always occupy the first entry if present.
|
|
DescriptorArray* descriptors = this->map()->instance_descriptors();
|
|
if (descriptors->number_of_descriptors() > 0) {
|
|
int sorted_index = descriptors->GetSortedKeyIndex(0);
|
|
if (descriptors->GetKey(sorted_index) == GetHeap()->hidden_string() &&
|
|
sorted_index < map()->NumberOfOwnDescriptors()) {
|
|
ASSERT(descriptors->GetType(sorted_index) == FIELD);
|
|
MaybeObject* maybe_value = this->FastPropertyAt(
|
|
descriptors->GetDetails(sorted_index).representation(),
|
|
descriptors->GetFieldIndex(sorted_index));
|
|
if (!maybe_value->To(&inline_value)) return maybe_value;
|
|
} else {
|
|
inline_value = GetHeap()->undefined_value();
|
|
}
|
|
} else {
|
|
inline_value = GetHeap()->undefined_value();
|
|
}
|
|
} else {
|
|
PropertyAttributes attributes;
|
|
// You can't install a getter on a property indexed by the hidden string,
|
|
// so we can be sure that GetLocalPropertyPostInterceptor returns a real
|
|
// object.
|
|
inline_value =
|
|
GetLocalPropertyPostInterceptor(this,
|
|
GetHeap()->hidden_string(),
|
|
&attributes)->ToObjectUnchecked();
|
|
}
|
|
|
|
if (init_option == ONLY_RETURN_INLINE_VALUE ||
|
|
inline_value->IsHashTable()) {
|
|
return inline_value;
|
|
}
|
|
|
|
ObjectHashTable* hashtable;
|
|
static const int kInitialCapacity = 4;
|
|
MaybeObject* maybe_obj =
|
|
ObjectHashTable::Allocate(GetHeap(),
|
|
kInitialCapacity,
|
|
ObjectHashTable::USE_CUSTOM_MINIMUM_CAPACITY);
|
|
if (!maybe_obj->To<ObjectHashTable>(&hashtable)) return maybe_obj;
|
|
|
|
if (inline_value->IsSmi()) {
|
|
// We were storing the identity hash inline and now allocated an actual
|
|
// dictionary. Put the identity hash into the new dictionary.
|
|
MaybeObject* insert_result =
|
|
hashtable->Put(GetHeap()->identity_hash_string(), inline_value);
|
|
ObjectHashTable* new_table;
|
|
if (!insert_result->To(&new_table)) return insert_result;
|
|
// We expect no resizing for the first insert.
|
|
ASSERT_EQ(hashtable, new_table);
|
|
}
|
|
|
|
MaybeObject* store_result =
|
|
SetPropertyPostInterceptor(GetHeap()->hidden_string(),
|
|
hashtable,
|
|
DONT_ENUM,
|
|
kNonStrictMode,
|
|
OMIT_EXTENSIBILITY_CHECK);
|
|
if (store_result->IsFailure()) return store_result;
|
|
return hashtable;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetHiddenPropertiesHashTable(Object* value) {
|
|
ASSERT(!IsJSGlobalProxy());
|
|
// We can store the identity hash inline iff there is no backing store
|
|
// for hidden properties yet.
|
|
ASSERT(HasHiddenProperties() != value->IsSmi());
|
|
if (HasFastProperties()) {
|
|
// If the object has fast properties, check whether the first slot
|
|
// in the descriptor array matches the hidden string. Since the
|
|
// hidden strings hash code is zero (and no other name has hash
|
|
// code zero) it will always occupy the first entry if present.
|
|
DescriptorArray* descriptors = this->map()->instance_descriptors();
|
|
if (descriptors->number_of_descriptors() > 0) {
|
|
int sorted_index = descriptors->GetSortedKeyIndex(0);
|
|
if (descriptors->GetKey(sorted_index) == GetHeap()->hidden_string() &&
|
|
sorted_index < map()->NumberOfOwnDescriptors()) {
|
|
ASSERT(descriptors->GetType(sorted_index) == FIELD);
|
|
FastPropertyAtPut(descriptors->GetFieldIndex(sorted_index), value);
|
|
return this;
|
|
}
|
|
}
|
|
}
|
|
MaybeObject* store_result =
|
|
SetPropertyPostInterceptor(GetHeap()->hidden_string(),
|
|
value,
|
|
DONT_ENUM,
|
|
kNonStrictMode,
|
|
OMIT_EXTENSIBILITY_CHECK);
|
|
if (store_result->IsFailure()) return store_result;
|
|
return this;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::DeletePropertyPostInterceptor(Name* name,
|
|
DeleteMode mode) {
|
|
// Check local property, ignore interceptor.
|
|
LookupResult result(GetIsolate());
|
|
LocalLookupRealNamedProperty(name, &result);
|
|
if (!result.IsFound()) return GetHeap()->true_value();
|
|
|
|
// Normalize object if needed.
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
|
|
return DeleteNormalizedProperty(name, mode);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::DeletePropertyWithInterceptor(Name* name) {
|
|
// TODO(rossberg): Support symbols in the API.
|
|
if (name->IsSymbol()) return GetHeap()->false_value();
|
|
|
|
Isolate* isolate = GetIsolate();
|
|
HandleScope scope(isolate);
|
|
Handle<InterceptorInfo> interceptor(GetNamedInterceptor());
|
|
Handle<String> name_handle(String::cast(name));
|
|
Handle<JSObject> this_handle(this);
|
|
if (!interceptor->deleter()->IsUndefined()) {
|
|
v8::NamedPropertyDeleter deleter =
|
|
v8::ToCData<v8::NamedPropertyDeleter>(interceptor->deleter());
|
|
LOG(isolate,
|
|
ApiNamedPropertyAccess("interceptor-named-delete", *this_handle, name));
|
|
PropertyCallbackArguments args(isolate, interceptor->data(), this, this);
|
|
v8::Handle<v8::Boolean> result =
|
|
args.Call(deleter, v8::Utils::ToLocal(name_handle));
|
|
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
|
|
if (!result.IsEmpty()) {
|
|
ASSERT(result->IsBoolean());
|
|
Handle<Object> result_internal = v8::Utils::OpenHandle(*result);
|
|
result_internal->VerifyApiCallResultType();
|
|
return *result_internal;
|
|
}
|
|
}
|
|
MaybeObject* raw_result =
|
|
this_handle->DeletePropertyPostInterceptor(*name_handle, NORMAL_DELETION);
|
|
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
|
|
return raw_result;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::DeleteElementWithInterceptor(uint32_t index) {
|
|
Isolate* isolate = GetIsolate();
|
|
Heap* heap = isolate->heap();
|
|
// Make sure that the top context does not change when doing
|
|
// callbacks or interceptor calls.
|
|
AssertNoContextChange ncc;
|
|
HandleScope scope(isolate);
|
|
Handle<InterceptorInfo> interceptor(GetIndexedInterceptor());
|
|
if (interceptor->deleter()->IsUndefined()) return heap->false_value();
|
|
v8::IndexedPropertyDeleter deleter =
|
|
v8::ToCData<v8::IndexedPropertyDeleter>(interceptor->deleter());
|
|
Handle<JSObject> this_handle(this);
|
|
LOG(isolate,
|
|
ApiIndexedPropertyAccess("interceptor-indexed-delete", this, index));
|
|
PropertyCallbackArguments args(isolate, interceptor->data(), this, this);
|
|
v8::Handle<v8::Boolean> result = args.Call(deleter, index);
|
|
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
|
|
if (!result.IsEmpty()) {
|
|
ASSERT(result->IsBoolean());
|
|
Handle<Object> result_internal = v8::Utils::OpenHandle(*result);
|
|
result_internal->VerifyApiCallResultType();
|
|
return *result_internal;
|
|
}
|
|
MaybeObject* raw_result = this_handle->GetElementsAccessor()->Delete(
|
|
*this_handle,
|
|
index,
|
|
NORMAL_DELETION);
|
|
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
|
|
return raw_result;
|
|
}
|
|
|
|
|
|
Handle<Object> JSObject::DeleteElement(Handle<JSObject> obj,
|
|
uint32_t index) {
|
|
CALL_HEAP_FUNCTION(obj->GetIsolate(),
|
|
obj->DeleteElement(index, JSObject::NORMAL_DELETION),
|
|
Object);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::DeleteElement(uint32_t index, DeleteMode mode) {
|
|
Isolate* isolate = GetIsolate();
|
|
// Check access rights if needed.
|
|
if (IsAccessCheckNeeded() &&
|
|
!isolate->MayIndexedAccess(this, index, v8::ACCESS_DELETE)) {
|
|
isolate->ReportFailedAccessCheck(this, v8::ACCESS_DELETE);
|
|
return isolate->heap()->false_value();
|
|
}
|
|
|
|
if (IsStringObjectWithCharacterAt(index)) {
|
|
if (mode == STRICT_DELETION) {
|
|
// Deleting a non-configurable property in strict mode.
|
|
HandleScope scope(isolate);
|
|
Handle<Object> holder(this, isolate);
|
|
Handle<Object> name = isolate->factory()->NewNumberFromUint(index);
|
|
Handle<Object> args[2] = { name, holder };
|
|
Handle<Object> error =
|
|
isolate->factory()->NewTypeError("strict_delete_property",
|
|
HandleVector(args, 2));
|
|
return isolate->Throw(*error);
|
|
}
|
|
return isolate->heap()->false_value();
|
|
}
|
|
|
|
if (IsJSGlobalProxy()) {
|
|
Object* proto = GetPrototype();
|
|
if (proto->IsNull()) return isolate->heap()->false_value();
|
|
ASSERT(proto->IsJSGlobalObject());
|
|
return JSGlobalObject::cast(proto)->DeleteElement(index, mode);
|
|
}
|
|
|
|
// From this point on everything needs to be handlified.
|
|
HandleScope scope(isolate);
|
|
Handle<JSObject> self(this);
|
|
|
|
Handle<Object> old_value;
|
|
bool should_enqueue_change_record = false;
|
|
if (FLAG_harmony_observation && self->map()->is_observed()) {
|
|
should_enqueue_change_record = self->HasLocalElement(index);
|
|
if (should_enqueue_change_record) {
|
|
old_value = self->GetLocalElementAccessorPair(index) != NULL
|
|
? Handle<Object>::cast(isolate->factory()->the_hole_value())
|
|
: Object::GetElement(self, index);
|
|
}
|
|
}
|
|
|
|
MaybeObject* result;
|
|
// Skip interceptor if forcing deletion.
|
|
if (self->HasIndexedInterceptor() && mode != FORCE_DELETION) {
|
|
result = self->DeleteElementWithInterceptor(index);
|
|
} else {
|
|
result = self->GetElementsAccessor()->Delete(*self, index, mode);
|
|
}
|
|
|
|
Handle<Object> hresult;
|
|
if (!result->ToHandle(&hresult, isolate)) return result;
|
|
|
|
if (should_enqueue_change_record && !self->HasLocalElement(index)) {
|
|
Handle<String> name = isolate->factory()->Uint32ToString(index);
|
|
EnqueueChangeRecord(self, "deleted", name, old_value);
|
|
}
|
|
|
|
return *hresult;
|
|
}
|
|
|
|
|
|
Handle<Object> JSObject::DeleteProperty(Handle<JSObject> obj,
|
|
Handle<Name> prop) {
|
|
CALL_HEAP_FUNCTION(obj->GetIsolate(),
|
|
obj->DeleteProperty(*prop, JSObject::NORMAL_DELETION),
|
|
Object);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::DeleteProperty(Name* name, DeleteMode mode) {
|
|
Isolate* isolate = GetIsolate();
|
|
// ECMA-262, 3rd, 8.6.2.5
|
|
ASSERT(name->IsName());
|
|
|
|
// Check access rights if needed.
|
|
if (IsAccessCheckNeeded() &&
|
|
!isolate->MayNamedAccess(this, name, v8::ACCESS_DELETE)) {
|
|
isolate->ReportFailedAccessCheck(this, v8::ACCESS_DELETE);
|
|
return isolate->heap()->false_value();
|
|
}
|
|
|
|
if (IsJSGlobalProxy()) {
|
|
Object* proto = GetPrototype();
|
|
if (proto->IsNull()) return isolate->heap()->false_value();
|
|
ASSERT(proto->IsJSGlobalObject());
|
|
return JSGlobalObject::cast(proto)->DeleteProperty(name, mode);
|
|
}
|
|
|
|
uint32_t index = 0;
|
|
if (name->AsArrayIndex(&index)) {
|
|
return DeleteElement(index, mode);
|
|
}
|
|
|
|
LookupResult lookup(isolate);
|
|
LocalLookup(name, &lookup, true);
|
|
if (!lookup.IsFound()) return isolate->heap()->true_value();
|
|
// Ignore attributes if forcing a deletion.
|
|
if (lookup.IsDontDelete() && mode != FORCE_DELETION) {
|
|
if (mode == STRICT_DELETION) {
|
|
// Deleting a non-configurable property in strict mode.
|
|
HandleScope scope(isolate);
|
|
Handle<Object> args[2] = { Handle<Object>(name, isolate),
|
|
Handle<Object>(this, isolate) };
|
|
return isolate->Throw(*isolate->factory()->NewTypeError(
|
|
"strict_delete_property", HandleVector(args, 2)));
|
|
}
|
|
return isolate->heap()->false_value();
|
|
}
|
|
|
|
// From this point on everything needs to be handlified.
|
|
HandleScope scope(isolate);
|
|
Handle<JSObject> self(this);
|
|
Handle<Name> hname(name);
|
|
|
|
Handle<Object> old_value = isolate->factory()->the_hole_value();
|
|
bool is_observed = FLAG_harmony_observation && self->map()->is_observed();
|
|
if (is_observed && lookup.IsDataProperty()) {
|
|
old_value = Object::GetProperty(self, hname);
|
|
}
|
|
MaybeObject* result;
|
|
|
|
// Check for interceptor.
|
|
if (lookup.IsInterceptor()) {
|
|
// Skip interceptor if forcing a deletion.
|
|
if (mode == FORCE_DELETION) {
|
|
result = self->DeletePropertyPostInterceptor(*hname, mode);
|
|
} else {
|
|
result = self->DeletePropertyWithInterceptor(*hname);
|
|
}
|
|
} else {
|
|
// Normalize object if needed.
|
|
Object* obj;
|
|
result = self->NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
|
|
if (!result->To(&obj)) return result;
|
|
// Make sure the properties are normalized before removing the entry.
|
|
result = self->DeleteNormalizedProperty(*hname, mode);
|
|
}
|
|
|
|
Handle<Object> hresult;
|
|
if (!result->ToHandle(&hresult, isolate)) return result;
|
|
|
|
if (is_observed && !self->HasLocalProperty(*hname)) {
|
|
EnqueueChangeRecord(self, "deleted", hname, old_value);
|
|
}
|
|
|
|
return *hresult;
|
|
}
|
|
|
|
|
|
MaybeObject* JSReceiver::DeleteElement(uint32_t index, DeleteMode mode) {
|
|
if (IsJSProxy()) {
|
|
return JSProxy::cast(this)->DeleteElementWithHandler(index, mode);
|
|
}
|
|
return JSObject::cast(this)->DeleteElement(index, mode);
|
|
}
|
|
|
|
|
|
MaybeObject* JSReceiver::DeleteProperty(Name* name, DeleteMode mode) {
|
|
if (IsJSProxy()) {
|
|
return JSProxy::cast(this)->DeletePropertyWithHandler(name, mode);
|
|
}
|
|
return JSObject::cast(this)->DeleteProperty(name, mode);
|
|
}
|
|
|
|
|
|
bool JSObject::ReferencesObjectFromElements(FixedArray* elements,
|
|
ElementsKind kind,
|
|
Object* object) {
|
|
ASSERT(IsFastObjectElementsKind(kind) ||
|
|
kind == DICTIONARY_ELEMENTS);
|
|
if (IsFastObjectElementsKind(kind)) {
|
|
int length = IsJSArray()
|
|
? Smi::cast(JSArray::cast(this)->length())->value()
|
|
: elements->length();
|
|
for (int i = 0; i < length; ++i) {
|
|
Object* element = elements->get(i);
|
|
if (!element->IsTheHole() && element == object) return true;
|
|
}
|
|
} else {
|
|
Object* key =
|
|
SeededNumberDictionary::cast(elements)->SlowReverseLookup(object);
|
|
if (!key->IsUndefined()) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// Check whether this object references another object.
|
|
bool JSObject::ReferencesObject(Object* obj) {
|
|
Map* map_of_this = map();
|
|
Heap* heap = GetHeap();
|
|
DisallowHeapAllocation no_allocation;
|
|
|
|
// Is the object the constructor for this object?
|
|
if (map_of_this->constructor() == obj) {
|
|
return true;
|
|
}
|
|
|
|
// Is the object the prototype for this object?
|
|
if (map_of_this->prototype() == obj) {
|
|
return true;
|
|
}
|
|
|
|
// Check if the object is among the named properties.
|
|
Object* key = SlowReverseLookup(obj);
|
|
if (!key->IsUndefined()) {
|
|
return true;
|
|
}
|
|
|
|
// Check if the object is among the indexed properties.
|
|
ElementsKind kind = GetElementsKind();
|
|
switch (kind) {
|
|
case EXTERNAL_PIXEL_ELEMENTS:
|
|
case EXTERNAL_BYTE_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
|
|
case EXTERNAL_SHORT_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
|
|
case EXTERNAL_INT_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
|
|
case EXTERNAL_FLOAT_ELEMENTS:
|
|
case EXTERNAL_DOUBLE_ELEMENTS:
|
|
case FAST_DOUBLE_ELEMENTS:
|
|
case FAST_HOLEY_DOUBLE_ELEMENTS:
|
|
// Raw pixels and external arrays do not reference other
|
|
// objects.
|
|
break;
|
|
case FAST_SMI_ELEMENTS:
|
|
case FAST_HOLEY_SMI_ELEMENTS:
|
|
break;
|
|
case FAST_ELEMENTS:
|
|
case FAST_HOLEY_ELEMENTS:
|
|
case DICTIONARY_ELEMENTS: {
|
|
FixedArray* elements = FixedArray::cast(this->elements());
|
|
if (ReferencesObjectFromElements(elements, kind, obj)) return true;
|
|
break;
|
|
}
|
|
case NON_STRICT_ARGUMENTS_ELEMENTS: {
|
|
FixedArray* parameter_map = FixedArray::cast(elements());
|
|
// Check the mapped parameters.
|
|
int length = parameter_map->length();
|
|
for (int i = 2; i < length; ++i) {
|
|
Object* value = parameter_map->get(i);
|
|
if (!value->IsTheHole() && value == obj) return true;
|
|
}
|
|
// Check the arguments.
|
|
FixedArray* arguments = FixedArray::cast(parameter_map->get(1));
|
|
kind = arguments->IsDictionary() ? DICTIONARY_ELEMENTS :
|
|
FAST_HOLEY_ELEMENTS;
|
|
if (ReferencesObjectFromElements(arguments, kind, obj)) return true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// For functions check the context.
|
|
if (IsJSFunction()) {
|
|
// Get the constructor function for arguments array.
|
|
JSObject* arguments_boilerplate =
|
|
heap->isolate()->context()->native_context()->
|
|
arguments_boilerplate();
|
|
JSFunction* arguments_function =
|
|
JSFunction::cast(arguments_boilerplate->map()->constructor());
|
|
|
|
// Get the context and don't check if it is the native context.
|
|
JSFunction* f = JSFunction::cast(this);
|
|
Context* context = f->context();
|
|
if (context->IsNativeContext()) {
|
|
return false;
|
|
}
|
|
|
|
// Check the non-special context slots.
|
|
for (int i = Context::MIN_CONTEXT_SLOTS; i < context->length(); i++) {
|
|
// Only check JS objects.
|
|
if (context->get(i)->IsJSObject()) {
|
|
JSObject* ctxobj = JSObject::cast(context->get(i));
|
|
// If it is an arguments array check the content.
|
|
if (ctxobj->map()->constructor() == arguments_function) {
|
|
if (ctxobj->ReferencesObject(obj)) {
|
|
return true;
|
|
}
|
|
} else if (ctxobj == obj) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check the context extension (if any) if it can have references.
|
|
if (context->has_extension() && !context->IsCatchContext()) {
|
|
return JSObject::cast(context->extension())->ReferencesObject(obj);
|
|
}
|
|
}
|
|
|
|
// No references to object.
|
|
return false;
|
|
}
|
|
|
|
|
|
Handle<Object> JSObject::PreventExtensions(Handle<JSObject> object) {
|
|
CALL_HEAP_FUNCTION(object->GetIsolate(), object->PreventExtensions(), Object);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::PreventExtensions() {
|
|
Isolate* isolate = GetIsolate();
|
|
if (IsAccessCheckNeeded() &&
|
|
!isolate->MayNamedAccess(this,
|
|
isolate->heap()->undefined_value(),
|
|
v8::ACCESS_KEYS)) {
|
|
isolate->ReportFailedAccessCheck(this, v8::ACCESS_KEYS);
|
|
return isolate->heap()->false_value();
|
|
}
|
|
|
|
if (IsJSGlobalProxy()) {
|
|
Object* proto = GetPrototype();
|
|
if (proto->IsNull()) return this;
|
|
ASSERT(proto->IsJSGlobalObject());
|
|
return JSObject::cast(proto)->PreventExtensions();
|
|
}
|
|
|
|
// It's not possible to seal objects with external array elements
|
|
if (HasExternalArrayElements()) {
|
|
HandleScope scope(isolate);
|
|
Handle<Object> object(this, isolate);
|
|
Handle<Object> error =
|
|
isolate->factory()->NewTypeError(
|
|
"cant_prevent_ext_external_array_elements",
|
|
HandleVector(&object, 1));
|
|
return isolate->Throw(*error);
|
|
}
|
|
|
|
// If there are fast elements we normalize.
|
|
SeededNumberDictionary* dictionary = NULL;
|
|
{ MaybeObject* maybe = NormalizeElements();
|
|
if (!maybe->To<SeededNumberDictionary>(&dictionary)) return maybe;
|
|
}
|
|
ASSERT(HasDictionaryElements() || HasDictionaryArgumentsElements());
|
|
// Make sure that we never go back to fast case.
|
|
dictionary->set_requires_slow_elements();
|
|
|
|
// Do a map transition, other objects with this map may still
|
|
// be extensible.
|
|
// TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps.
|
|
Map* new_map;
|
|
MaybeObject* maybe = map()->Copy();
|
|
if (!maybe->To(&new_map)) return maybe;
|
|
|
|
new_map->set_is_extensible(false);
|
|
set_map(new_map);
|
|
ASSERT(!map()->is_extensible());
|
|
return new_map;
|
|
}
|
|
|
|
|
|
template<typename Dictionary>
|
|
static void FreezeDictionary(Dictionary* dictionary) {
|
|
int capacity = dictionary->Capacity();
|
|
for (int i = 0; i < capacity; i++) {
|
|
Object* k = dictionary->KeyAt(i);
|
|
if (dictionary->IsKey(k)) {
|
|
PropertyDetails details = dictionary->DetailsAt(i);
|
|
int attrs = DONT_DELETE;
|
|
// READ_ONLY is an invalid attribute for JS setters/getters.
|
|
if (details.type() != CALLBACKS ||
|
|
!dictionary->ValueAt(i)->IsAccessorPair()) {
|
|
attrs |= READ_ONLY;
|
|
}
|
|
details = details.CopyAddAttributes(
|
|
static_cast<PropertyAttributes>(attrs));
|
|
dictionary->DetailsAtPut(i, details);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
MUST_USE_RESULT MaybeObject* JSObject::Freeze(Isolate* isolate) {
|
|
// Freezing non-strict arguments should be handled elsewhere.
|
|
ASSERT(!HasNonStrictArgumentsElements());
|
|
|
|
Heap* heap = isolate->heap();
|
|
|
|
if (map()->is_frozen()) return this;
|
|
|
|
if (IsAccessCheckNeeded() &&
|
|
!isolate->MayNamedAccess(this,
|
|
heap->undefined_value(),
|
|
v8::ACCESS_KEYS)) {
|
|
isolate->ReportFailedAccessCheck(this, v8::ACCESS_KEYS);
|
|
return heap->false_value();
|
|
}
|
|
|
|
if (IsJSGlobalProxy()) {
|
|
Object* proto = GetPrototype();
|
|
if (proto->IsNull()) return this;
|
|
ASSERT(proto->IsJSGlobalObject());
|
|
return JSObject::cast(proto)->Freeze(isolate);
|
|
}
|
|
|
|
// It's not possible to freeze objects with external array elements
|
|
if (HasExternalArrayElements()) {
|
|
HandleScope scope(isolate);
|
|
Handle<Object> object(this, isolate);
|
|
Handle<Object> error =
|
|
isolate->factory()->NewTypeError(
|
|
"cant_prevent_ext_external_array_elements",
|
|
HandleVector(&object, 1));
|
|
return isolate->Throw(*error);
|
|
}
|
|
|
|
SeededNumberDictionary* new_element_dictionary = NULL;
|
|
if (!elements()->IsDictionary()) {
|
|
int length = IsJSArray()
|
|
? Smi::cast(JSArray::cast(this)->length())->value()
|
|
: elements()->length();
|
|
if (length > 0) {
|
|
int capacity = 0;
|
|
int used = 0;
|
|
GetElementsCapacityAndUsage(&capacity, &used);
|
|
MaybeObject* maybe_dict = SeededNumberDictionary::Allocate(heap, used);
|
|
if (!maybe_dict->To(&new_element_dictionary)) return maybe_dict;
|
|
|
|
// Move elements to a dictionary; avoid calling NormalizeElements to avoid
|
|
// unnecessary transitions.
|
|
maybe_dict = CopyFastElementsToDictionary(isolate, elements(), length,
|
|
new_element_dictionary);
|
|
if (!maybe_dict->To(&new_element_dictionary)) return maybe_dict;
|
|
} else {
|
|
// No existing elements, use a pre-allocated empty backing store
|
|
new_element_dictionary = heap->empty_slow_element_dictionary();
|
|
}
|
|
}
|
|
|
|
LookupResult result(isolate);
|
|
map()->LookupTransition(this, heap->frozen_symbol(), &result);
|
|
if (result.IsTransition()) {
|
|
Map* transition_map = result.GetTransitionTarget();
|
|
ASSERT(transition_map->has_dictionary_elements());
|
|
ASSERT(transition_map->is_frozen());
|
|
ASSERT(!transition_map->is_extensible());
|
|
set_map(transition_map);
|
|
} else if (HasFastProperties() && map()->CanHaveMoreTransitions()) {
|
|
// Create a new descriptor array with fully-frozen properties
|
|
int num_descriptors = map()->NumberOfOwnDescriptors();
|
|
DescriptorArray* new_descriptors;
|
|
MaybeObject* maybe_descriptors =
|
|
map()->instance_descriptors()->CopyUpToAddAttributes(num_descriptors,
|
|
FROZEN);
|
|
if (!maybe_descriptors->To(&new_descriptors)) return maybe_descriptors;
|
|
|
|
Map* new_map;
|
|
MaybeObject* maybe_new_map = map()->CopyReplaceDescriptors(
|
|
new_descriptors, INSERT_TRANSITION, heap->frozen_symbol());
|
|
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
|
|
new_map->freeze();
|
|
new_map->set_is_extensible(false);
|
|
new_map->set_elements_kind(DICTIONARY_ELEMENTS);
|
|
set_map(new_map);
|
|
} else {
|
|
// Slow path: need to normalize properties for safety
|
|
MaybeObject* maybe = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
|
|
if (maybe->IsFailure()) return maybe;
|
|
|
|
// Create a new map, since other objects with this map may be extensible.
|
|
// TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps.
|
|
Map* new_map;
|
|
MaybeObject* maybe_copy = map()->Copy();
|
|
if (!maybe_copy->To(&new_map)) return maybe_copy;
|
|
new_map->freeze();
|
|
new_map->set_is_extensible(false);
|
|
new_map->set_elements_kind(DICTIONARY_ELEMENTS);
|
|
set_map(new_map);
|
|
|
|
// Freeze dictionary-mode properties
|
|
FreezeDictionary(property_dictionary());
|
|
}
|
|
|
|
ASSERT(map()->has_dictionary_elements());
|
|
if (new_element_dictionary != NULL) {
|
|
set_elements(new_element_dictionary);
|
|
}
|
|
|
|
if (elements() != heap->empty_slow_element_dictionary()) {
|
|
SeededNumberDictionary* dictionary = element_dictionary();
|
|
// Make sure we never go back to the fast case
|
|
dictionary->set_requires_slow_elements();
|
|
// Freeze all elements in the dictionary
|
|
FreezeDictionary(dictionary);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
|
|
MUST_USE_RESULT MaybeObject* JSObject::DeepCopy(Isolate* isolate) {
|
|
StackLimitCheck check(isolate);
|
|
if (check.HasOverflowed()) return isolate->StackOverflow();
|
|
|
|
if (map()->is_deprecated()) {
|
|
MaybeObject* maybe_failure = MigrateInstance();
|
|
if (maybe_failure->IsFailure()) return maybe_failure;
|
|
}
|
|
|
|
Heap* heap = isolate->heap();
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = heap->CopyJSObject(this);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
JSObject* copy = JSObject::cast(result);
|
|
|
|
// Deep copy local properties.
|
|
if (copy->HasFastProperties()) {
|
|
DescriptorArray* descriptors = copy->map()->instance_descriptors();
|
|
int limit = copy->map()->NumberOfOwnDescriptors();
|
|
for (int i = 0; i < limit; i++) {
|
|
PropertyDetails details = descriptors->GetDetails(i);
|
|
if (details.type() != FIELD) continue;
|
|
int index = descriptors->GetFieldIndex(i);
|
|
Object* value = RawFastPropertyAt(index);
|
|
if (value->IsJSObject()) {
|
|
JSObject* js_object = JSObject::cast(value);
|
|
MaybeObject* maybe_copy = js_object->DeepCopy(isolate);
|
|
if (!maybe_copy->To(&value)) return maybe_copy;
|
|
} else {
|
|
Representation representation = details.representation();
|
|
MaybeObject* maybe_storage =
|
|
value->AllocateNewStorageFor(heap, representation);
|
|
if (!maybe_storage->To(&value)) return maybe_storage;
|
|
}
|
|
copy->FastPropertyAtPut(index, value);
|
|
}
|
|
} else {
|
|
{ MaybeObject* maybe_result =
|
|
heap->AllocateFixedArray(copy->NumberOfLocalProperties());
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
FixedArray* names = FixedArray::cast(result);
|
|
copy->GetLocalPropertyNames(names, 0);
|
|
for (int i = 0; i < names->length(); i++) {
|
|
ASSERT(names->get(i)->IsString());
|
|
String* key_string = String::cast(names->get(i));
|
|
PropertyAttributes attributes =
|
|
copy->GetLocalPropertyAttribute(key_string);
|
|
// Only deep copy fields from the object literal expression.
|
|
// In particular, don't try to copy the length attribute of
|
|
// an array.
|
|
if (attributes != NONE) continue;
|
|
Object* value =
|
|
copy->GetProperty(key_string, &attributes)->ToObjectUnchecked();
|
|
if (value->IsJSObject()) {
|
|
JSObject* js_object = JSObject::cast(value);
|
|
{ MaybeObject* maybe_result = js_object->DeepCopy(isolate);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
{ MaybeObject* maybe_result =
|
|
// Creating object copy for literals. No strict mode needed.
|
|
copy->SetProperty(key_string, result, NONE, kNonStrictMode);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Deep copy local elements.
|
|
// Pixel elements cannot be created using an object literal.
|
|
ASSERT(!copy->HasExternalArrayElements());
|
|
switch (copy->GetElementsKind()) {
|
|
case FAST_SMI_ELEMENTS:
|
|
case FAST_ELEMENTS:
|
|
case FAST_HOLEY_SMI_ELEMENTS:
|
|
case FAST_HOLEY_ELEMENTS: {
|
|
FixedArray* elements = FixedArray::cast(copy->elements());
|
|
if (elements->map() == heap->fixed_cow_array_map()) {
|
|
isolate->counters()->cow_arrays_created_runtime()->Increment();
|
|
#ifdef DEBUG
|
|
for (int i = 0; i < elements->length(); i++) {
|
|
ASSERT(!elements->get(i)->IsJSObject());
|
|
}
|
|
#endif
|
|
} else {
|
|
for (int i = 0; i < elements->length(); i++) {
|
|
Object* value = elements->get(i);
|
|
ASSERT(value->IsSmi() ||
|
|
value->IsTheHole() ||
|
|
(IsFastObjectElementsKind(copy->GetElementsKind())));
|
|
if (value->IsJSObject()) {
|
|
JSObject* js_object = JSObject::cast(value);
|
|
{ MaybeObject* maybe_result = js_object->DeepCopy(isolate);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
elements->set(i, result);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case DICTIONARY_ELEMENTS: {
|
|
SeededNumberDictionary* element_dictionary = copy->element_dictionary();
|
|
int capacity = element_dictionary->Capacity();
|
|
for (int i = 0; i < capacity; i++) {
|
|
Object* k = element_dictionary->KeyAt(i);
|
|
if (element_dictionary->IsKey(k)) {
|
|
Object* value = element_dictionary->ValueAt(i);
|
|
if (value->IsJSObject()) {
|
|
JSObject* js_object = JSObject::cast(value);
|
|
{ MaybeObject* maybe_result = js_object->DeepCopy(isolate);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
element_dictionary->ValueAtPut(i, result);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case NON_STRICT_ARGUMENTS_ELEMENTS:
|
|
UNIMPLEMENTED();
|
|
break;
|
|
case EXTERNAL_PIXEL_ELEMENTS:
|
|
case EXTERNAL_BYTE_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
|
|
case EXTERNAL_SHORT_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
|
|
case EXTERNAL_INT_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
|
|
case EXTERNAL_FLOAT_ELEMENTS:
|
|
case EXTERNAL_DOUBLE_ELEMENTS:
|
|
case FAST_DOUBLE_ELEMENTS:
|
|
case FAST_HOLEY_DOUBLE_ELEMENTS:
|
|
// No contained objects, nothing to do.
|
|
break;
|
|
}
|
|
return copy;
|
|
}
|
|
|
|
|
|
// Tests for the fast common case for property enumeration:
|
|
// - This object and all prototypes has an enum cache (which means that
|
|
// it is no proxy, has no interceptors and needs no access checks).
|
|
// - This object has no elements.
|
|
// - No prototype has enumerable properties/elements.
|
|
bool JSReceiver::IsSimpleEnum() {
|
|
Heap* heap = GetHeap();
|
|
for (Object* o = this;
|
|
o != heap->null_value();
|
|
o = JSObject::cast(o)->GetPrototype()) {
|
|
if (!o->IsJSObject()) return false;
|
|
JSObject* curr = JSObject::cast(o);
|
|
int enum_length = curr->map()->EnumLength();
|
|
if (enum_length == Map::kInvalidEnumCache) return false;
|
|
ASSERT(!curr->HasNamedInterceptor());
|
|
ASSERT(!curr->HasIndexedInterceptor());
|
|
ASSERT(!curr->IsAccessCheckNeeded());
|
|
if (curr->NumberOfEnumElements() > 0) return false;
|
|
if (curr != this && enum_length != 0) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
int Map::NumberOfDescribedProperties(DescriptorFlag which,
|
|
PropertyAttributes filter) {
|
|
int result = 0;
|
|
DescriptorArray* descs = instance_descriptors();
|
|
int limit = which == ALL_DESCRIPTORS
|
|
? descs->number_of_descriptors()
|
|
: NumberOfOwnDescriptors();
|
|
for (int i = 0; i < limit; i++) {
|
|
if ((descs->GetDetails(i).attributes() & filter) == 0 &&
|
|
((filter & SYMBOLIC) == 0 || !descs->GetKey(i)->IsSymbol())) {
|
|
result++;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
int Map::NextFreePropertyIndex() {
|
|
int max_index = -1;
|
|
int number_of_own_descriptors = NumberOfOwnDescriptors();
|
|
DescriptorArray* descs = instance_descriptors();
|
|
for (int i = 0; i < number_of_own_descriptors; i++) {
|
|
if (descs->GetType(i) == FIELD) {
|
|
int current_index = descs->GetFieldIndex(i);
|
|
if (current_index > max_index) max_index = current_index;
|
|
}
|
|
}
|
|
return max_index + 1;
|
|
}
|
|
|
|
|
|
AccessorDescriptor* Map::FindAccessor(Name* name) {
|
|
DescriptorArray* descs = instance_descriptors();
|
|
int number_of_own_descriptors = NumberOfOwnDescriptors();
|
|
for (int i = 0; i < number_of_own_descriptors; i++) {
|
|
if (descs->GetType(i) == CALLBACKS && name->Equals(descs->GetKey(i))) {
|
|
return descs->GetCallbacks(i);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void JSReceiver::LocalLookup(
|
|
Name* name, LookupResult* result, bool search_hidden_prototypes) {
|
|
ASSERT(name->IsName());
|
|
|
|
Heap* heap = GetHeap();
|
|
|
|
if (IsJSGlobalProxy()) {
|
|
Object* proto = GetPrototype();
|
|
if (proto->IsNull()) return result->NotFound();
|
|
ASSERT(proto->IsJSGlobalObject());
|
|
return JSReceiver::cast(proto)->LocalLookup(
|
|
name, result, search_hidden_prototypes);
|
|
}
|
|
|
|
if (IsJSProxy()) {
|
|
result->HandlerResult(JSProxy::cast(this));
|
|
return;
|
|
}
|
|
|
|
// Do not use inline caching if the object is a non-global object
|
|
// that requires access checks.
|
|
if (IsAccessCheckNeeded()) {
|
|
result->DisallowCaching();
|
|
}
|
|
|
|
JSObject* js_object = JSObject::cast(this);
|
|
|
|
// Check for lookup interceptor except when bootstrapping.
|
|
if (js_object->HasNamedInterceptor() &&
|
|
!heap->isolate()->bootstrapper()->IsActive()) {
|
|
result->InterceptorResult(js_object);
|
|
return;
|
|
}
|
|
|
|
js_object->LocalLookupRealNamedProperty(name, result);
|
|
if (result->IsFound() || !search_hidden_prototypes) return;
|
|
|
|
Object* proto = js_object->GetPrototype();
|
|
if (!proto->IsJSReceiver()) return;
|
|
JSReceiver* receiver = JSReceiver::cast(proto);
|
|
if (receiver->map()->is_hidden_prototype()) {
|
|
receiver->LocalLookup(name, result, search_hidden_prototypes);
|
|
}
|
|
}
|
|
|
|
|
|
void JSReceiver::Lookup(Name* name, LookupResult* result) {
|
|
// Ecma-262 3rd 8.6.2.4
|
|
Heap* heap = GetHeap();
|
|
for (Object* current = this;
|
|
current != heap->null_value();
|
|
current = JSObject::cast(current)->GetPrototype()) {
|
|
JSReceiver::cast(current)->LocalLookup(name, result, false);
|
|
if (result->IsFound()) return;
|
|
}
|
|
result->NotFound();
|
|
}
|
|
|
|
|
|
// Search object and its prototype chain for callback properties.
|
|
void JSObject::LookupCallbackProperty(Name* name, LookupResult* result) {
|
|
Heap* heap = GetHeap();
|
|
for (Object* current = this;
|
|
current != heap->null_value() && current->IsJSObject();
|
|
current = JSObject::cast(current)->GetPrototype()) {
|
|
JSObject::cast(current)->LocalLookupRealNamedProperty(name, result);
|
|
if (result->IsPropertyCallbacks()) return;
|
|
}
|
|
result->NotFound();
|
|
}
|
|
|
|
|
|
// Try to update an accessor in an elements dictionary. Return true if the
|
|
// update succeeded, and false otherwise.
|
|
static bool UpdateGetterSetterInDictionary(
|
|
SeededNumberDictionary* dictionary,
|
|
uint32_t index,
|
|
Object* getter,
|
|
Object* setter,
|
|
PropertyAttributes attributes) {
|
|
int entry = dictionary->FindEntry(index);
|
|
if (entry != SeededNumberDictionary::kNotFound) {
|
|
Object* result = dictionary->ValueAt(entry);
|
|
PropertyDetails details = dictionary->DetailsAt(entry);
|
|
if (details.type() == CALLBACKS && result->IsAccessorPair()) {
|
|
ASSERT(!details.IsDontDelete());
|
|
if (details.attributes() != attributes) {
|
|
dictionary->DetailsAtPut(
|
|
entry,
|
|
PropertyDetails(attributes, CALLBACKS, index));
|
|
}
|
|
AccessorPair::cast(result)->SetComponents(getter, setter);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void JSObject::DefineElementAccessor(Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> getter,
|
|
Handle<Object> setter,
|
|
PropertyAttributes attributes) {
|
|
switch (object->GetElementsKind()) {
|
|
case FAST_SMI_ELEMENTS:
|
|
case FAST_ELEMENTS:
|
|
case FAST_DOUBLE_ELEMENTS:
|
|
case FAST_HOLEY_SMI_ELEMENTS:
|
|
case FAST_HOLEY_ELEMENTS:
|
|
case FAST_HOLEY_DOUBLE_ELEMENTS:
|
|
break;
|
|
case EXTERNAL_PIXEL_ELEMENTS:
|
|
case EXTERNAL_BYTE_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
|
|
case EXTERNAL_SHORT_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
|
|
case EXTERNAL_INT_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
|
|
case EXTERNAL_FLOAT_ELEMENTS:
|
|
case EXTERNAL_DOUBLE_ELEMENTS:
|
|
// Ignore getters and setters on pixel and external array elements.
|
|
return;
|
|
case DICTIONARY_ELEMENTS:
|
|
if (UpdateGetterSetterInDictionary(object->element_dictionary(),
|
|
index,
|
|
*getter,
|
|
*setter,
|
|
attributes)) {
|
|
return;
|
|
}
|
|
break;
|
|
case NON_STRICT_ARGUMENTS_ELEMENTS: {
|
|
// Ascertain whether we have read-only properties or an existing
|
|
// getter/setter pair in an arguments elements dictionary backing
|
|
// store.
|
|
FixedArray* parameter_map = FixedArray::cast(object->elements());
|
|
uint32_t length = parameter_map->length();
|
|
Object* probe =
|
|
index < (length - 2) ? parameter_map->get(index + 2) : NULL;
|
|
if (probe == NULL || probe->IsTheHole()) {
|
|
FixedArray* arguments = FixedArray::cast(parameter_map->get(1));
|
|
if (arguments->IsDictionary()) {
|
|
SeededNumberDictionary* dictionary =
|
|
SeededNumberDictionary::cast(arguments);
|
|
if (UpdateGetterSetterInDictionary(dictionary,
|
|
index,
|
|
*getter,
|
|
*setter,
|
|
attributes)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
Isolate* isolate = object->GetIsolate();
|
|
Handle<AccessorPair> accessors = isolate->factory()->NewAccessorPair();
|
|
accessors->SetComponents(*getter, *setter);
|
|
|
|
CALL_HEAP_FUNCTION_VOID(
|
|
isolate, object->SetElementCallback(index, *accessors, attributes));
|
|
}
|
|
|
|
|
|
Handle<AccessorPair> JSObject::CreateAccessorPairFor(Handle<JSObject> object,
|
|
Handle<Name> name) {
|
|
Isolate* isolate = object->GetIsolate();
|
|
LookupResult result(isolate);
|
|
object->LocalLookupRealNamedProperty(*name, &result);
|
|
if (result.IsPropertyCallbacks()) {
|
|
// Note that the result can actually have IsDontDelete() == true when we
|
|
// e.g. have to fall back to the slow case while adding a setter after
|
|
// successfully reusing a map transition for a getter. Nevertheless, this is
|
|
// OK, because the assertion only holds for the whole addition of both
|
|
// accessors, not for the addition of each part. See first comment in
|
|
// DefinePropertyAccessor below.
|
|
Object* obj = result.GetCallbackObject();
|
|
if (obj->IsAccessorPair()) {
|
|
return AccessorPair::Copy(handle(AccessorPair::cast(obj), isolate));
|
|
}
|
|
}
|
|
return isolate->factory()->NewAccessorPair();
|
|
}
|
|
|
|
|
|
void JSObject::DefinePropertyAccessor(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> getter,
|
|
Handle<Object> setter,
|
|
PropertyAttributes attributes) {
|
|
// We could assert that the property is configurable here, but we would need
|
|
// to do a lookup, which seems to be a bit of overkill.
|
|
bool only_attribute_changes = getter->IsNull() && setter->IsNull();
|
|
if (object->HasFastProperties() && !only_attribute_changes &&
|
|
(object->map()->NumberOfOwnDescriptors() <
|
|
DescriptorArray::kMaxNumberOfDescriptors)) {
|
|
bool getterOk = getter->IsNull() ||
|
|
DefineFastAccessor(object, name, ACCESSOR_GETTER, getter, attributes);
|
|
bool setterOk = !getterOk || setter->IsNull() ||
|
|
DefineFastAccessor(object, name, ACCESSOR_SETTER, setter, attributes);
|
|
if (getterOk && setterOk) return;
|
|
}
|
|
|
|
Handle<AccessorPair> accessors = CreateAccessorPairFor(object, name);
|
|
accessors->SetComponents(*getter, *setter);
|
|
|
|
CALL_HEAP_FUNCTION_VOID(
|
|
object->GetIsolate(),
|
|
object->SetPropertyCallback(*name, *accessors, attributes));
|
|
}
|
|
|
|
|
|
bool JSObject::CanSetCallback(Name* name) {
|
|
ASSERT(!IsAccessCheckNeeded() ||
|
|
GetIsolate()->MayNamedAccess(this, name, v8::ACCESS_SET));
|
|
|
|
// Check if there is an API defined callback object which prohibits
|
|
// callback overwriting in this object or its prototype chain.
|
|
// This mechanism is needed for instance in a browser setting, where
|
|
// certain accessors such as window.location should not be allowed
|
|
// to be overwritten because allowing overwriting could potentially
|
|
// cause security problems.
|
|
LookupResult callback_result(GetIsolate());
|
|
LookupCallbackProperty(name, &callback_result);
|
|
if (callback_result.IsFound()) {
|
|
Object* obj = callback_result.GetCallbackObject();
|
|
if (obj->IsAccessorInfo() &&
|
|
AccessorInfo::cast(obj)->prohibits_overwriting()) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetElementCallback(uint32_t index,
|
|
Object* structure,
|
|
PropertyAttributes attributes) {
|
|
PropertyDetails details = PropertyDetails(attributes, CALLBACKS, 0);
|
|
|
|
// Normalize elements to make this operation simple.
|
|
SeededNumberDictionary* dictionary;
|
|
{ MaybeObject* maybe_dictionary = NormalizeElements();
|
|
if (!maybe_dictionary->To(&dictionary)) return maybe_dictionary;
|
|
}
|
|
ASSERT(HasDictionaryElements() || HasDictionaryArgumentsElements());
|
|
|
|
// Update the dictionary with the new CALLBACKS property.
|
|
{ MaybeObject* maybe_dictionary = dictionary->Set(index, structure, details);
|
|
if (!maybe_dictionary->To(&dictionary)) return maybe_dictionary;
|
|
}
|
|
|
|
dictionary->set_requires_slow_elements();
|
|
// Update the dictionary backing store on the object.
|
|
if (elements()->map() == GetHeap()->non_strict_arguments_elements_map()) {
|
|
// Also delete any parameter alias.
|
|
//
|
|
// TODO(kmillikin): when deleting the last parameter alias we could
|
|
// switch to a direct backing store without the parameter map. This
|
|
// would allow GC of the context.
|
|
FixedArray* parameter_map = FixedArray::cast(elements());
|
|
if (index < static_cast<uint32_t>(parameter_map->length()) - 2) {
|
|
parameter_map->set(index + 2, GetHeap()->the_hole_value());
|
|
}
|
|
parameter_map->set(1, dictionary);
|
|
} else {
|
|
set_elements(dictionary);
|
|
}
|
|
|
|
return GetHeap()->undefined_value();
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetPropertyCallback(Name* name,
|
|
Object* structure,
|
|
PropertyAttributes attributes) {
|
|
// Normalize object to make this operation simple.
|
|
MaybeObject* maybe_ok = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
|
|
if (maybe_ok->IsFailure()) return maybe_ok;
|
|
|
|
// For the global object allocate a new map to invalidate the global inline
|
|
// caches which have a global property cell reference directly in the code.
|
|
if (IsGlobalObject()) {
|
|
Map* new_map;
|
|
MaybeObject* maybe_new_map = map()->CopyDropDescriptors();
|
|
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
|
|
ASSERT(new_map->is_dictionary_map());
|
|
|
|
set_map(new_map);
|
|
// When running crankshaft, changing the map is not enough. We
|
|
// need to deoptimize all functions that rely on this global
|
|
// object.
|
|
Deoptimizer::DeoptimizeGlobalObject(this);
|
|
}
|
|
|
|
// Update the dictionary with the new CALLBACKS property.
|
|
PropertyDetails details = PropertyDetails(attributes, CALLBACKS, 0);
|
|
maybe_ok = SetNormalizedProperty(name, structure, details);
|
|
if (maybe_ok->IsFailure()) return maybe_ok;
|
|
|
|
return GetHeap()->undefined_value();
|
|
}
|
|
|
|
|
|
void JSObject::DefineAccessor(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> getter,
|
|
Handle<Object> setter,
|
|
PropertyAttributes attributes) {
|
|
Isolate* isolate = object->GetIsolate();
|
|
// Check access rights if needed.
|
|
if (object->IsAccessCheckNeeded() &&
|
|
!isolate->MayNamedAccess(*object, *name, v8::ACCESS_SET)) {
|
|
isolate->ReportFailedAccessCheck(*object, v8::ACCESS_SET);
|
|
return;
|
|
}
|
|
|
|
if (object->IsJSGlobalProxy()) {
|
|
Handle<Object> proto(object->GetPrototype(), isolate);
|
|
if (proto->IsNull()) return;
|
|
ASSERT(proto->IsJSGlobalObject());
|
|
DefineAccessor(
|
|
Handle<JSObject>::cast(proto), name, getter, setter, attributes);
|
|
return;
|
|
}
|
|
|
|
// Make sure that the top context does not change when doing callbacks or
|
|
// interceptor calls.
|
|
AssertNoContextChange ncc;
|
|
|
|
// Try to flatten before operating on the string.
|
|
if (name->IsString()) String::cast(*name)->TryFlatten();
|
|
|
|
if (!object->CanSetCallback(*name)) return;
|
|
|
|
uint32_t index = 0;
|
|
bool is_element = name->AsArrayIndex(&index);
|
|
|
|
Handle<Object> old_value = isolate->factory()->the_hole_value();
|
|
bool is_observed = FLAG_harmony_observation && object->map()->is_observed();
|
|
bool preexists = false;
|
|
if (is_observed) {
|
|
if (is_element) {
|
|
preexists = object->HasLocalElement(index);
|
|
if (preexists && object->GetLocalElementAccessorPair(index) == NULL) {
|
|
old_value = Object::GetElement(object, index);
|
|
}
|
|
} else {
|
|
LookupResult lookup(isolate);
|
|
object->LocalLookup(*name, &lookup, true);
|
|
preexists = lookup.IsProperty();
|
|
if (preexists && lookup.IsDataProperty()) {
|
|
old_value = Object::GetProperty(object, name);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (is_element) {
|
|
DefineElementAccessor(object, index, getter, setter, attributes);
|
|
} else {
|
|
DefinePropertyAccessor(object, name, getter, setter, attributes);
|
|
}
|
|
|
|
if (is_observed) {
|
|
const char* type = preexists ? "reconfigured" : "new";
|
|
EnqueueChangeRecord(object, type, name, old_value);
|
|
}
|
|
}
|
|
|
|
|
|
static bool TryAccessorTransition(JSObject* self,
|
|
Map* transitioned_map,
|
|
int target_descriptor,
|
|
AccessorComponent component,
|
|
Object* accessor,
|
|
PropertyAttributes attributes) {
|
|
DescriptorArray* descs = transitioned_map->instance_descriptors();
|
|
PropertyDetails details = descs->GetDetails(target_descriptor);
|
|
|
|
// If the transition target was not callbacks, fall back to the slow case.
|
|
if (details.type() != CALLBACKS) return false;
|
|
Object* descriptor = descs->GetCallbacksObject(target_descriptor);
|
|
if (!descriptor->IsAccessorPair()) return false;
|
|
|
|
Object* target_accessor = AccessorPair::cast(descriptor)->get(component);
|
|
PropertyAttributes target_attributes = details.attributes();
|
|
|
|
// Reuse transition if adding same accessor with same attributes.
|
|
if (target_accessor == accessor && target_attributes == attributes) {
|
|
self->set_map(transitioned_map);
|
|
return true;
|
|
}
|
|
|
|
// If either not the same accessor, or not the same attributes, fall back to
|
|
// the slow case.
|
|
return false;
|
|
}
|
|
|
|
|
|
static MaybeObject* CopyInsertDescriptor(Map* map,
|
|
Name* name,
|
|
AccessorPair* accessors,
|
|
PropertyAttributes attributes) {
|
|
CallbacksDescriptor new_accessors_desc(name, accessors, attributes);
|
|
return map->CopyInsertDescriptor(&new_accessors_desc, INSERT_TRANSITION);
|
|
}
|
|
|
|
|
|
static Handle<Map> CopyInsertDescriptor(Handle<Map> map,
|
|
Handle<Name> name,
|
|
Handle<AccessorPair> accessors,
|
|
PropertyAttributes attributes) {
|
|
CALL_HEAP_FUNCTION(map->GetIsolate(),
|
|
CopyInsertDescriptor(*map, *name, *accessors, attributes),
|
|
Map);
|
|
}
|
|
|
|
|
|
bool JSObject::DefineFastAccessor(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
AccessorComponent component,
|
|
Handle<Object> accessor,
|
|
PropertyAttributes attributes) {
|
|
ASSERT(accessor->IsSpecFunction() || accessor->IsUndefined());
|
|
Isolate* isolate = object->GetIsolate();
|
|
LookupResult result(isolate);
|
|
object->LocalLookup(*name, &result);
|
|
|
|
if (result.IsFound() && !result.IsPropertyCallbacks()) {
|
|
return false;
|
|
}
|
|
|
|
// Return success if the same accessor with the same attributes already exist.
|
|
AccessorPair* source_accessors = NULL;
|
|
if (result.IsPropertyCallbacks()) {
|
|
Object* callback_value = result.GetCallbackObject();
|
|
if (callback_value->IsAccessorPair()) {
|
|
source_accessors = AccessorPair::cast(callback_value);
|
|
Object* entry = source_accessors->get(component);
|
|
if (entry == *accessor && result.GetAttributes() == attributes) {
|
|
return true;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
int descriptor_number = result.GetDescriptorIndex();
|
|
|
|
object->map()->LookupTransition(*object, *name, &result);
|
|
|
|
if (result.IsFound()) {
|
|
Map* target = result.GetTransitionTarget();
|
|
ASSERT(target->NumberOfOwnDescriptors() ==
|
|
object->map()->NumberOfOwnDescriptors());
|
|
// This works since descriptors are sorted in order of addition.
|
|
ASSERT(object->map()->instance_descriptors()->
|
|
GetKey(descriptor_number) == *name);
|
|
return TryAccessorTransition(*object, target, descriptor_number,
|
|
component, *accessor, attributes);
|
|
}
|
|
} else {
|
|
// If not, lookup a transition.
|
|
object->map()->LookupTransition(*object, *name, &result);
|
|
|
|
// If there is a transition, try to follow it.
|
|
if (result.IsFound()) {
|
|
Map* target = result.GetTransitionTarget();
|
|
int descriptor_number = target->LastAdded();
|
|
ASSERT(target->instance_descriptors()->GetKey(descriptor_number)
|
|
->Equals(*name));
|
|
return TryAccessorTransition(*object, target, descriptor_number,
|
|
component, *accessor, attributes);
|
|
}
|
|
}
|
|
|
|
// If there is no transition yet, add a transition to the a new accessor pair
|
|
// containing the accessor. Allocate a new pair if there were no source
|
|
// accessors. Otherwise, copy the pair and modify the accessor.
|
|
Handle<AccessorPair> accessors = source_accessors != NULL
|
|
? AccessorPair::Copy(Handle<AccessorPair>(source_accessors))
|
|
: isolate->factory()->NewAccessorPair();
|
|
accessors->set(component, *accessor);
|
|
Handle<Map> new_map = CopyInsertDescriptor(Handle<Map>(object->map()),
|
|
name, accessors, attributes);
|
|
object->set_map(*new_map);
|
|
return true;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::DefineAccessor(AccessorInfo* info) {
|
|
Isolate* isolate = GetIsolate();
|
|
Name* name = Name::cast(info->name());
|
|
// Check access rights if needed.
|
|
if (IsAccessCheckNeeded() &&
|
|
!isolate->MayNamedAccess(this, name, v8::ACCESS_SET)) {
|
|
isolate->ReportFailedAccessCheck(this, v8::ACCESS_SET);
|
|
return isolate->heap()->undefined_value();
|
|
}
|
|
|
|
if (IsJSGlobalProxy()) {
|
|
Object* proto = GetPrototype();
|
|
if (proto->IsNull()) return this;
|
|
ASSERT(proto->IsJSGlobalObject());
|
|
return JSObject::cast(proto)->DefineAccessor(info);
|
|
}
|
|
|
|
// Make sure that the top context does not change when doing callbacks or
|
|
// interceptor calls.
|
|
AssertNoContextChange ncc;
|
|
|
|
// Try to flatten before operating on the string.
|
|
if (name->IsString()) String::cast(name)->TryFlatten();
|
|
|
|
if (!CanSetCallback(name)) return isolate->heap()->undefined_value();
|
|
|
|
uint32_t index = 0;
|
|
bool is_element = name->AsArrayIndex(&index);
|
|
|
|
if (is_element) {
|
|
if (IsJSArray()) return isolate->heap()->undefined_value();
|
|
|
|
// Accessors overwrite previous callbacks (cf. with getters/setters).
|
|
switch (GetElementsKind()) {
|
|
case FAST_SMI_ELEMENTS:
|
|
case FAST_ELEMENTS:
|
|
case FAST_DOUBLE_ELEMENTS:
|
|
case FAST_HOLEY_SMI_ELEMENTS:
|
|
case FAST_HOLEY_ELEMENTS:
|
|
case FAST_HOLEY_DOUBLE_ELEMENTS:
|
|
break;
|
|
case EXTERNAL_PIXEL_ELEMENTS:
|
|
case EXTERNAL_BYTE_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
|
|
case EXTERNAL_SHORT_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
|
|
case EXTERNAL_INT_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
|
|
case EXTERNAL_FLOAT_ELEMENTS:
|
|
case EXTERNAL_DOUBLE_ELEMENTS:
|
|
// Ignore getters and setters on pixel and external array
|
|
// elements.
|
|
return isolate->heap()->undefined_value();
|
|
case DICTIONARY_ELEMENTS:
|
|
break;
|
|
case NON_STRICT_ARGUMENTS_ELEMENTS:
|
|
UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
|
|
MaybeObject* maybe_ok =
|
|
SetElementCallback(index, info, info->property_attributes());
|
|
if (maybe_ok->IsFailure()) return maybe_ok;
|
|
} else {
|
|
// Lookup the name.
|
|
LookupResult result(isolate);
|
|
LocalLookup(name, &result, true);
|
|
// ES5 forbids turning a property into an accessor if it's not
|
|
// configurable (that is IsDontDelete in ES3 and v8), see 8.6.1 (Table 5).
|
|
if (result.IsFound() && (result.IsReadOnly() || result.IsDontDelete())) {
|
|
return isolate->heap()->undefined_value();
|
|
}
|
|
|
|
MaybeObject* maybe_ok =
|
|
SetPropertyCallback(name, info, info->property_attributes());
|
|
if (maybe_ok->IsFailure()) return maybe_ok;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
|
|
Object* JSObject::LookupAccessor(Name* name, AccessorComponent component) {
|
|
Heap* heap = GetHeap();
|
|
|
|
// Make sure that the top context does not change when doing callbacks or
|
|
// interceptor calls.
|
|
AssertNoContextChange ncc;
|
|
|
|
// Check access rights if needed.
|
|
if (IsAccessCheckNeeded() &&
|
|
!heap->isolate()->MayNamedAccess(this, name, v8::ACCESS_HAS)) {
|
|
heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS);
|
|
return heap->undefined_value();
|
|
}
|
|
|
|
// Make the lookup and include prototypes.
|
|
uint32_t index = 0;
|
|
if (name->AsArrayIndex(&index)) {
|
|
for (Object* obj = this;
|
|
obj != heap->null_value();
|
|
obj = JSReceiver::cast(obj)->GetPrototype()) {
|
|
if (obj->IsJSObject() && JSObject::cast(obj)->HasDictionaryElements()) {
|
|
JSObject* js_object = JSObject::cast(obj);
|
|
SeededNumberDictionary* dictionary = js_object->element_dictionary();
|
|
int entry = dictionary->FindEntry(index);
|
|
if (entry != SeededNumberDictionary::kNotFound) {
|
|
Object* element = dictionary->ValueAt(entry);
|
|
if (dictionary->DetailsAt(entry).type() == CALLBACKS &&
|
|
element->IsAccessorPair()) {
|
|
return AccessorPair::cast(element)->GetComponent(component);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (Object* obj = this;
|
|
obj != heap->null_value();
|
|
obj = JSReceiver::cast(obj)->GetPrototype()) {
|
|
LookupResult result(heap->isolate());
|
|
JSReceiver::cast(obj)->LocalLookup(name, &result);
|
|
if (result.IsFound()) {
|
|
if (result.IsReadOnly()) return heap->undefined_value();
|
|
if (result.IsPropertyCallbacks()) {
|
|
Object* obj = result.GetCallbackObject();
|
|
if (obj->IsAccessorPair()) {
|
|
return AccessorPair::cast(obj)->GetComponent(component);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return heap->undefined_value();
|
|
}
|
|
|
|
|
|
Object* JSObject::SlowReverseLookup(Object* value) {
|
|
if (HasFastProperties()) {
|
|
int number_of_own_descriptors = map()->NumberOfOwnDescriptors();
|
|
DescriptorArray* descs = map()->instance_descriptors();
|
|
for (int i = 0; i < number_of_own_descriptors; i++) {
|
|
if (descs->GetType(i) == FIELD) {
|
|
Object* property = RawFastPropertyAt(descs->GetFieldIndex(i));
|
|
if (FLAG_track_double_fields &&
|
|
descs->GetDetails(i).representation().IsDouble()) {
|
|
ASSERT(property->IsHeapNumber());
|
|
if (value->IsNumber() && property->Number() == value->Number()) {
|
|
return descs->GetKey(i);
|
|
}
|
|
} else if (property == value) {
|
|
return descs->GetKey(i);
|
|
}
|
|
} else if (descs->GetType(i) == CONSTANT_FUNCTION) {
|
|
if (descs->GetConstantFunction(i) == value) {
|
|
return descs->GetKey(i);
|
|
}
|
|
}
|
|
}
|
|
return GetHeap()->undefined_value();
|
|
} else {
|
|
return property_dictionary()->SlowReverseLookup(value);
|
|
}
|
|
}
|
|
|
|
|
|
MaybeObject* Map::RawCopy(int instance_size) {
|
|
Map* result;
|
|
MaybeObject* maybe_result =
|
|
GetHeap()->AllocateMap(instance_type(), instance_size);
|
|
if (!maybe_result->To(&result)) return maybe_result;
|
|
|
|
result->set_prototype(prototype());
|
|
result->set_constructor(constructor());
|
|
result->set_bit_field(bit_field());
|
|
result->set_bit_field2(bit_field2());
|
|
int new_bit_field3 = bit_field3();
|
|
new_bit_field3 = OwnsDescriptors::update(new_bit_field3, true);
|
|
new_bit_field3 = NumberOfOwnDescriptorsBits::update(new_bit_field3, 0);
|
|
new_bit_field3 = EnumLengthBits::update(new_bit_field3, kInvalidEnumCache);
|
|
new_bit_field3 = Deprecated::update(new_bit_field3, false);
|
|
result->set_bit_field3(new_bit_field3);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Map::CopyNormalized(PropertyNormalizationMode mode,
|
|
NormalizedMapSharingMode sharing) {
|
|
int new_instance_size = instance_size();
|
|
if (mode == CLEAR_INOBJECT_PROPERTIES) {
|
|
new_instance_size -= inobject_properties() * kPointerSize;
|
|
}
|
|
|
|
Map* result;
|
|
MaybeObject* maybe_result = RawCopy(new_instance_size);
|
|
if (!maybe_result->To(&result)) return maybe_result;
|
|
|
|
if (mode != CLEAR_INOBJECT_PROPERTIES) {
|
|
result->set_inobject_properties(inobject_properties());
|
|
}
|
|
|
|
result->set_is_shared(sharing == SHARED_NORMALIZED_MAP);
|
|
result->set_dictionary_map(true);
|
|
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap && result->is_shared()) {
|
|
result->SharedMapVerify();
|
|
}
|
|
#endif
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Map::CopyDropDescriptors() {
|
|
Map* result;
|
|
MaybeObject* maybe_result = RawCopy(instance_size());
|
|
if (!maybe_result->To(&result)) return maybe_result;
|
|
|
|
// Please note instance_type and instance_size are set when allocated.
|
|
result->set_inobject_properties(inobject_properties());
|
|
result->set_unused_property_fields(unused_property_fields());
|
|
|
|
result->set_pre_allocated_property_fields(pre_allocated_property_fields());
|
|
result->set_is_shared(false);
|
|
result->ClearCodeCache(GetHeap());
|
|
NotifyLeafMapLayoutChange();
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Map::ShareDescriptor(DescriptorArray* descriptors,
|
|
Descriptor* descriptor) {
|
|
// Sanity check. This path is only to be taken if the map owns its descriptor
|
|
// array, implying that its NumberOfOwnDescriptors equals the number of
|
|
// descriptors in the descriptor array.
|
|
ASSERT(NumberOfOwnDescriptors() ==
|
|
instance_descriptors()->number_of_descriptors());
|
|
Map* result;
|
|
MaybeObject* maybe_result = CopyDropDescriptors();
|
|
if (!maybe_result->To(&result)) return maybe_result;
|
|
|
|
Name* name = descriptor->GetKey();
|
|
|
|
TransitionArray* transitions;
|
|
MaybeObject* maybe_transitions =
|
|
AddTransition(name, result, SIMPLE_TRANSITION);
|
|
if (!maybe_transitions->To(&transitions)) return maybe_transitions;
|
|
|
|
int old_size = descriptors->number_of_descriptors();
|
|
|
|
DescriptorArray* new_descriptors;
|
|
|
|
if (descriptors->NumberOfSlackDescriptors() > 0) {
|
|
new_descriptors = descriptors;
|
|
new_descriptors->Append(descriptor);
|
|
} else {
|
|
// Descriptor arrays grow by 50%.
|
|
MaybeObject* maybe_descriptors = DescriptorArray::Allocate(
|
|
old_size, old_size < 4 ? 1 : old_size / 2);
|
|
if (!maybe_descriptors->To(&new_descriptors)) return maybe_descriptors;
|
|
|
|
DescriptorArray::WhitenessWitness witness(new_descriptors);
|
|
|
|
// Copy the descriptors, inserting a descriptor.
|
|
for (int i = 0; i < old_size; ++i) {
|
|
new_descriptors->CopyFrom(i, descriptors, i, witness);
|
|
}
|
|
|
|
new_descriptors->Append(descriptor, witness);
|
|
|
|
if (old_size > 0) {
|
|
// If the source descriptors had an enum cache we copy it. This ensures
|
|
// that the maps to which we push the new descriptor array back can rely
|
|
// on a cache always being available once it is set. If the map has more
|
|
// enumerated descriptors than available in the original cache, the cache
|
|
// will be lazily replaced by the extended cache when needed.
|
|
if (descriptors->HasEnumCache()) {
|
|
new_descriptors->CopyEnumCacheFrom(descriptors);
|
|
}
|
|
|
|
Map* map;
|
|
// Replace descriptors by new_descriptors in all maps that share it.
|
|
for (Object* current = GetBackPointer();
|
|
!current->IsUndefined();
|
|
current = map->GetBackPointer()) {
|
|
map = Map::cast(current);
|
|
if (map->instance_descriptors() != descriptors) break;
|
|
map->set_instance_descriptors(new_descriptors);
|
|
}
|
|
|
|
set_instance_descriptors(new_descriptors);
|
|
}
|
|
}
|
|
|
|
result->SetBackPointer(this);
|
|
result->InitializeDescriptors(new_descriptors);
|
|
ASSERT(result->NumberOfOwnDescriptors() == NumberOfOwnDescriptors() + 1);
|
|
|
|
set_transitions(transitions);
|
|
set_owns_descriptors(false);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Map::CopyReplaceDescriptors(DescriptorArray* descriptors,
|
|
TransitionFlag flag,
|
|
Name* name,
|
|
SimpleTransitionFlag simple_flag) {
|
|
ASSERT(descriptors->IsSortedNoDuplicates());
|
|
|
|
Map* result;
|
|
MaybeObject* maybe_result = CopyDropDescriptors();
|
|
if (!maybe_result->To(&result)) return maybe_result;
|
|
|
|
result->InitializeDescriptors(descriptors);
|
|
|
|
if (flag == INSERT_TRANSITION && CanHaveMoreTransitions()) {
|
|
TransitionArray* transitions;
|
|
MaybeObject* maybe_transitions = AddTransition(name, result, simple_flag);
|
|
if (!maybe_transitions->To(&transitions)) return maybe_transitions;
|
|
set_transitions(transitions);
|
|
result->SetBackPointer(this);
|
|
} else if (flag != OMIT_TRANSITION_KEEP_REPRESENTATIONS) {
|
|
descriptors->InitializeRepresentations(Representation::Tagged());
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
// Since this method is used to rewrite an existing transition tree, it can
|
|
// always insert transitions without checking.
|
|
MaybeObject* Map::CopyInstallDescriptors(int new_descriptor,
|
|
DescriptorArray* descriptors) {
|
|
ASSERT(descriptors->IsSortedNoDuplicates());
|
|
|
|
Map* result;
|
|
MaybeObject* maybe_result = CopyDropDescriptors();
|
|
if (!maybe_result->To(&result)) return maybe_result;
|
|
|
|
result->InitializeDescriptors(descriptors);
|
|
result->SetNumberOfOwnDescriptors(new_descriptor + 1);
|
|
|
|
int unused_property_fields = this->unused_property_fields();
|
|
if (descriptors->GetDetails(new_descriptor).type() == FIELD) {
|
|
unused_property_fields = this->unused_property_fields() - 1;
|
|
if (unused_property_fields < 0) {
|
|
unused_property_fields += JSObject::kFieldsAdded;
|
|
}
|
|
}
|
|
|
|
result->set_unused_property_fields(unused_property_fields);
|
|
result->set_owns_descriptors(false);
|
|
|
|
Name* name = descriptors->GetKey(new_descriptor);
|
|
TransitionArray* transitions;
|
|
MaybeObject* maybe_transitions =
|
|
AddTransition(name, result, SIMPLE_TRANSITION);
|
|
if (!maybe_transitions->To(&transitions)) return maybe_transitions;
|
|
|
|
set_transitions(transitions);
|
|
result->SetBackPointer(this);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Map::CopyAsElementsKind(ElementsKind kind, TransitionFlag flag) {
|
|
if (flag == INSERT_TRANSITION) {
|
|
ASSERT(!HasElementsTransition() ||
|
|
((elements_transition_map()->elements_kind() == DICTIONARY_ELEMENTS ||
|
|
IsExternalArrayElementsKind(
|
|
elements_transition_map()->elements_kind())) &&
|
|
(kind == DICTIONARY_ELEMENTS ||
|
|
IsExternalArrayElementsKind(kind))));
|
|
ASSERT(!IsFastElementsKind(kind) ||
|
|
IsMoreGeneralElementsKindTransition(elements_kind(), kind));
|
|
ASSERT(kind != elements_kind());
|
|
}
|
|
|
|
bool insert_transition =
|
|
flag == INSERT_TRANSITION && !HasElementsTransition();
|
|
|
|
if (insert_transition && owns_descriptors()) {
|
|
// In case the map owned its own descriptors, share the descriptors and
|
|
// transfer ownership to the new map.
|
|
Map* new_map;
|
|
MaybeObject* maybe_new_map = CopyDropDescriptors();
|
|
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
|
|
|
|
MaybeObject* added_elements = set_elements_transition_map(new_map);
|
|
if (added_elements->IsFailure()) return added_elements;
|
|
|
|
new_map->set_elements_kind(kind);
|
|
new_map->InitializeDescriptors(instance_descriptors());
|
|
new_map->SetBackPointer(this);
|
|
set_owns_descriptors(false);
|
|
return new_map;
|
|
}
|
|
|
|
// In case the map did not own its own descriptors, a split is forced by
|
|
// copying the map; creating a new descriptor array cell.
|
|
// Create a new free-floating map only if we are not allowed to store it.
|
|
Map* new_map;
|
|
MaybeObject* maybe_new_map = Copy();
|
|
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
|
|
|
|
new_map->set_elements_kind(kind);
|
|
|
|
if (insert_transition) {
|
|
MaybeObject* added_elements = set_elements_transition_map(new_map);
|
|
if (added_elements->IsFailure()) return added_elements;
|
|
new_map->SetBackPointer(this);
|
|
}
|
|
|
|
return new_map;
|
|
}
|
|
|
|
|
|
MaybeObject* Map::CopyWithPreallocatedFieldDescriptors() {
|
|
if (pre_allocated_property_fields() == 0) return CopyDropDescriptors();
|
|
|
|
// If the map has pre-allocated properties always start out with a descriptor
|
|
// array describing these properties.
|
|
ASSERT(constructor()->IsJSFunction());
|
|
JSFunction* ctor = JSFunction::cast(constructor());
|
|
Map* map = ctor->initial_map();
|
|
DescriptorArray* descriptors = map->instance_descriptors();
|
|
|
|
int number_of_own_descriptors = map->NumberOfOwnDescriptors();
|
|
DescriptorArray* new_descriptors;
|
|
MaybeObject* maybe_descriptors =
|
|
descriptors->CopyUpTo(number_of_own_descriptors);
|
|
if (!maybe_descriptors->To(&new_descriptors)) return maybe_descriptors;
|
|
|
|
return CopyReplaceDescriptors(new_descriptors, OMIT_TRANSITION);
|
|
}
|
|
|
|
|
|
Handle<Map> Map::Copy(Handle<Map> map) {
|
|
CALL_HEAP_FUNCTION(map->GetIsolate(), map->Copy(), Map);
|
|
}
|
|
|
|
|
|
MaybeObject* Map::Copy() {
|
|
DescriptorArray* descriptors = instance_descriptors();
|
|
DescriptorArray* new_descriptors;
|
|
int number_of_own_descriptors = NumberOfOwnDescriptors();
|
|
MaybeObject* maybe_descriptors =
|
|
descriptors->CopyUpTo(number_of_own_descriptors);
|
|
if (!maybe_descriptors->To(&new_descriptors)) return maybe_descriptors;
|
|
|
|
return CopyReplaceDescriptors(new_descriptors, OMIT_TRANSITION);
|
|
}
|
|
|
|
|
|
MaybeObject* Map::CopyAddDescriptor(Descriptor* descriptor,
|
|
TransitionFlag flag) {
|
|
DescriptorArray* descriptors = instance_descriptors();
|
|
|
|
// Ensure the key is unique.
|
|
MaybeObject* maybe_failure = descriptor->KeyToUniqueName();
|
|
if (maybe_failure->IsFailure()) return maybe_failure;
|
|
|
|
int old_size = NumberOfOwnDescriptors();
|
|
int new_size = old_size + 1;
|
|
|
|
if (flag == INSERT_TRANSITION &&
|
|
owns_descriptors() &&
|
|
CanHaveMoreTransitions()) {
|
|
return ShareDescriptor(descriptors, descriptor);
|
|
}
|
|
|
|
DescriptorArray* new_descriptors;
|
|
MaybeObject* maybe_descriptors = DescriptorArray::Allocate(old_size, 1);
|
|
if (!maybe_descriptors->To(&new_descriptors)) return maybe_descriptors;
|
|
|
|
DescriptorArray::WhitenessWitness witness(new_descriptors);
|
|
|
|
// Copy the descriptors, inserting a descriptor.
|
|
for (int i = 0; i < old_size; ++i) {
|
|
new_descriptors->CopyFrom(i, descriptors, i, witness);
|
|
}
|
|
|
|
if (old_size != descriptors->number_of_descriptors()) {
|
|
new_descriptors->SetNumberOfDescriptors(new_size);
|
|
new_descriptors->Set(old_size, descriptor, witness);
|
|
new_descriptors->Sort();
|
|
} else {
|
|
new_descriptors->Append(descriptor, witness);
|
|
}
|
|
|
|
Name* key = descriptor->GetKey();
|
|
return CopyReplaceDescriptors(new_descriptors, flag, key, SIMPLE_TRANSITION);
|
|
}
|
|
|
|
|
|
MaybeObject* Map::CopyInsertDescriptor(Descriptor* descriptor,
|
|
TransitionFlag flag) {
|
|
DescriptorArray* old_descriptors = instance_descriptors();
|
|
|
|
// Ensure the key is unique.
|
|
MaybeObject* maybe_result = descriptor->KeyToUniqueName();
|
|
if (maybe_result->IsFailure()) return maybe_result;
|
|
|
|
// We replace the key if it is already present.
|
|
int index = old_descriptors->SearchWithCache(descriptor->GetKey(), this);
|
|
if (index != DescriptorArray::kNotFound) {
|
|
return CopyReplaceDescriptor(old_descriptors, descriptor, index, flag);
|
|
}
|
|
return CopyAddDescriptor(descriptor, flag);
|
|
}
|
|
|
|
|
|
MaybeObject* DescriptorArray::CopyUpToAddAttributes(
|
|
int enumeration_index, PropertyAttributes attributes) {
|
|
if (enumeration_index == 0) return GetHeap()->empty_descriptor_array();
|
|
|
|
int size = enumeration_index;
|
|
|
|
DescriptorArray* descriptors;
|
|
MaybeObject* maybe_descriptors = Allocate(size);
|
|
if (!maybe_descriptors->To(&descriptors)) return maybe_descriptors;
|
|
DescriptorArray::WhitenessWitness witness(descriptors);
|
|
|
|
if (attributes != NONE) {
|
|
for (int i = 0; i < size; ++i) {
|
|
Object* value = GetValue(i);
|
|
PropertyDetails details = GetDetails(i);
|
|
int mask = DONT_DELETE | DONT_ENUM;
|
|
// READ_ONLY is an invalid attribute for JS setters/getters.
|
|
if (details.type() != CALLBACKS || !value->IsAccessorPair()) {
|
|
mask |= READ_ONLY;
|
|
}
|
|
details = details.CopyAddAttributes(
|
|
static_cast<PropertyAttributes>(attributes & mask));
|
|
Descriptor desc(GetKey(i), value, details);
|
|
descriptors->Set(i, &desc, witness);
|
|
}
|
|
} else {
|
|
for (int i = 0; i < size; ++i) {
|
|
descriptors->CopyFrom(i, this, i, witness);
|
|
}
|
|
}
|
|
|
|
if (number_of_descriptors() != enumeration_index) descriptors->Sort();
|
|
|
|
return descriptors;
|
|
}
|
|
|
|
|
|
MaybeObject* Map::CopyReplaceDescriptor(DescriptorArray* descriptors,
|
|
Descriptor* descriptor,
|
|
int insertion_index,
|
|
TransitionFlag flag) {
|
|
// Ensure the key is unique.
|
|
MaybeObject* maybe_failure = descriptor->KeyToUniqueName();
|
|
if (maybe_failure->IsFailure()) return maybe_failure;
|
|
|
|
Name* key = descriptor->GetKey();
|
|
ASSERT(key == descriptors->GetKey(insertion_index));
|
|
|
|
int new_size = NumberOfOwnDescriptors();
|
|
ASSERT(0 <= insertion_index && insertion_index < new_size);
|
|
|
|
ASSERT_LT(insertion_index, new_size);
|
|
|
|
DescriptorArray* new_descriptors;
|
|
MaybeObject* maybe_descriptors = DescriptorArray::Allocate(new_size);
|
|
if (!maybe_descriptors->To(&new_descriptors)) return maybe_descriptors;
|
|
DescriptorArray::WhitenessWitness witness(new_descriptors);
|
|
|
|
for (int i = 0; i < new_size; ++i) {
|
|
if (i == insertion_index) {
|
|
new_descriptors->Set(i, descriptor, witness);
|
|
} else {
|
|
new_descriptors->CopyFrom(i, descriptors, i, witness);
|
|
}
|
|
}
|
|
|
|
// Re-sort if descriptors were removed.
|
|
if (new_size != descriptors->length()) new_descriptors->Sort();
|
|
|
|
SimpleTransitionFlag simple_flag =
|
|
(insertion_index == descriptors->number_of_descriptors() - 1)
|
|
? SIMPLE_TRANSITION
|
|
: FULL_TRANSITION;
|
|
return CopyReplaceDescriptors(new_descriptors, flag, key, simple_flag);
|
|
}
|
|
|
|
|
|
void Map::UpdateCodeCache(Handle<Map> map,
|
|
Handle<Name> name,
|
|
Handle<Code> code) {
|
|
Isolate* isolate = map->GetIsolate();
|
|
CALL_HEAP_FUNCTION_VOID(isolate,
|
|
map->UpdateCodeCache(*name, *code));
|
|
}
|
|
|
|
|
|
MaybeObject* Map::UpdateCodeCache(Name* name, Code* code) {
|
|
ASSERT(!is_shared() || code->allowed_in_shared_map_code_cache());
|
|
|
|
// Allocate the code cache if not present.
|
|
if (code_cache()->IsFixedArray()) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = GetHeap()->AllocateCodeCache();
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
set_code_cache(result);
|
|
}
|
|
|
|
// Update the code cache.
|
|
return CodeCache::cast(code_cache())->Update(name, code);
|
|
}
|
|
|
|
|
|
Object* Map::FindInCodeCache(Name* name, Code::Flags flags) {
|
|
// Do a lookup if a code cache exists.
|
|
if (!code_cache()->IsFixedArray()) {
|
|
return CodeCache::cast(code_cache())->Lookup(name, flags);
|
|
} else {
|
|
return GetHeap()->undefined_value();
|
|
}
|
|
}
|
|
|
|
|
|
int Map::IndexInCodeCache(Object* name, Code* code) {
|
|
// Get the internal index if a code cache exists.
|
|
if (!code_cache()->IsFixedArray()) {
|
|
return CodeCache::cast(code_cache())->GetIndex(name, code);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
void Map::RemoveFromCodeCache(Name* name, Code* code, int index) {
|
|
// No GC is supposed to happen between a call to IndexInCodeCache and
|
|
// RemoveFromCodeCache so the code cache must be there.
|
|
ASSERT(!code_cache()->IsFixedArray());
|
|
CodeCache::cast(code_cache())->RemoveByIndex(name, code, index);
|
|
}
|
|
|
|
|
|
// An iterator over all map transitions in an descriptor array, reusing the map
|
|
// field of the contens array while it is running.
|
|
class IntrusiveMapTransitionIterator {
|
|
public:
|
|
explicit IntrusiveMapTransitionIterator(TransitionArray* transition_array)
|
|
: transition_array_(transition_array) { }
|
|
|
|
void Start() {
|
|
ASSERT(!IsIterating());
|
|
*TransitionArrayHeader() = Smi::FromInt(0);
|
|
}
|
|
|
|
bool IsIterating() {
|
|
return (*TransitionArrayHeader())->IsSmi();
|
|
}
|
|
|
|
Map* Next() {
|
|
ASSERT(IsIterating());
|
|
int index = Smi::cast(*TransitionArrayHeader())->value();
|
|
int number_of_transitions = transition_array_->number_of_transitions();
|
|
while (index < number_of_transitions) {
|
|
*TransitionArrayHeader() = Smi::FromInt(index + 1);
|
|
return transition_array_->GetTarget(index);
|
|
}
|
|
|
|
if (index == number_of_transitions &&
|
|
transition_array_->HasElementsTransition()) {
|
|
Map* elements_transition = transition_array_->elements_transition();
|
|
*TransitionArrayHeader() = Smi::FromInt(index + 1);
|
|
return elements_transition;
|
|
}
|
|
*TransitionArrayHeader() = transition_array_->GetHeap()->fixed_array_map();
|
|
return NULL;
|
|
}
|
|
|
|
private:
|
|
Object** TransitionArrayHeader() {
|
|
return HeapObject::RawField(transition_array_, TransitionArray::kMapOffset);
|
|
}
|
|
|
|
TransitionArray* transition_array_;
|
|
};
|
|
|
|
|
|
// An iterator over all prototype transitions, reusing the map field of the
|
|
// underlying array while it is running.
|
|
class IntrusivePrototypeTransitionIterator {
|
|
public:
|
|
explicit IntrusivePrototypeTransitionIterator(HeapObject* proto_trans)
|
|
: proto_trans_(proto_trans) { }
|
|
|
|
void Start() {
|
|
ASSERT(!IsIterating());
|
|
*Header() = Smi::FromInt(0);
|
|
}
|
|
|
|
bool IsIterating() {
|
|
return (*Header())->IsSmi();
|
|
}
|
|
|
|
Map* Next() {
|
|
ASSERT(IsIterating());
|
|
int transitionNumber = Smi::cast(*Header())->value();
|
|
if (transitionNumber < NumberOfTransitions()) {
|
|
*Header() = Smi::FromInt(transitionNumber + 1);
|
|
return GetTransition(transitionNumber);
|
|
}
|
|
*Header() = proto_trans_->GetHeap()->fixed_array_map();
|
|
return NULL;
|
|
}
|
|
|
|
private:
|
|
Object** Header() {
|
|
return HeapObject::RawField(proto_trans_, FixedArray::kMapOffset);
|
|
}
|
|
|
|
int NumberOfTransitions() {
|
|
FixedArray* proto_trans = reinterpret_cast<FixedArray*>(proto_trans_);
|
|
Object* num = proto_trans->get(Map::kProtoTransitionNumberOfEntriesOffset);
|
|
return Smi::cast(num)->value();
|
|
}
|
|
|
|
Map* GetTransition(int transitionNumber) {
|
|
FixedArray* proto_trans = reinterpret_cast<FixedArray*>(proto_trans_);
|
|
return Map::cast(proto_trans->get(IndexFor(transitionNumber)));
|
|
}
|
|
|
|
int IndexFor(int transitionNumber) {
|
|
return Map::kProtoTransitionHeaderSize +
|
|
Map::kProtoTransitionMapOffset +
|
|
transitionNumber * Map::kProtoTransitionElementsPerEntry;
|
|
}
|
|
|
|
HeapObject* proto_trans_;
|
|
};
|
|
|
|
|
|
// To traverse the transition tree iteratively, we have to store two kinds of
|
|
// information in a map: The parent map in the traversal and which children of a
|
|
// node have already been visited. To do this without additional memory, we
|
|
// temporarily reuse two maps with known values:
|
|
//
|
|
// (1) The map of the map temporarily holds the parent, and is restored to the
|
|
// meta map afterwards.
|
|
//
|
|
// (2) The info which children have already been visited depends on which part
|
|
// of the map we currently iterate:
|
|
//
|
|
// (a) If we currently follow normal map transitions, we temporarily store
|
|
// the current index in the map of the FixedArray of the desciptor
|
|
// array's contents, and restore it to the fixed array map afterwards.
|
|
// Note that a single descriptor can have 0, 1, or 2 transitions.
|
|
//
|
|
// (b) If we currently follow prototype transitions, we temporarily store
|
|
// the current index in the map of the FixedArray holding the prototype
|
|
// transitions, and restore it to the fixed array map afterwards.
|
|
//
|
|
// Note that the child iterator is just a concatenation of two iterators: One
|
|
// iterating over map transitions and one iterating over prototype transisitons.
|
|
class TraversableMap : public Map {
|
|
public:
|
|
// Record the parent in the traversal within this map. Note that this destroys
|
|
// this map's map!
|
|
void SetParent(TraversableMap* parent) { set_map_no_write_barrier(parent); }
|
|
|
|
// Reset the current map's map, returning the parent previously stored in it.
|
|
TraversableMap* GetAndResetParent() {
|
|
TraversableMap* old_parent = static_cast<TraversableMap*>(map());
|
|
set_map_no_write_barrier(GetHeap()->meta_map());
|
|
return old_parent;
|
|
}
|
|
|
|
// Start iterating over this map's children, possibly destroying a FixedArray
|
|
// map (see explanation above).
|
|
void ChildIteratorStart() {
|
|
if (HasTransitionArray()) {
|
|
if (HasPrototypeTransitions()) {
|
|
IntrusivePrototypeTransitionIterator(GetPrototypeTransitions()).Start();
|
|
}
|
|
|
|
IntrusiveMapTransitionIterator(transitions()).Start();
|
|
}
|
|
}
|
|
|
|
// If we have an unvisited child map, return that one and advance. If we have
|
|
// none, return NULL and reset any destroyed FixedArray maps.
|
|
TraversableMap* ChildIteratorNext() {
|
|
TransitionArray* transition_array = unchecked_transition_array();
|
|
if (!transition_array->map()->IsSmi() &&
|
|
!transition_array->IsTransitionArray()) {
|
|
return NULL;
|
|
}
|
|
|
|
if (transition_array->HasPrototypeTransitions()) {
|
|
HeapObject* proto_transitions =
|
|
transition_array->UncheckedPrototypeTransitions();
|
|
IntrusivePrototypeTransitionIterator proto_iterator(proto_transitions);
|
|
if (proto_iterator.IsIterating()) {
|
|
Map* next = proto_iterator.Next();
|
|
if (next != NULL) return static_cast<TraversableMap*>(next);
|
|
}
|
|
}
|
|
|
|
IntrusiveMapTransitionIterator transition_iterator(transition_array);
|
|
if (transition_iterator.IsIterating()) {
|
|
Map* next = transition_iterator.Next();
|
|
if (next != NULL) return static_cast<TraversableMap*>(next);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
};
|
|
|
|
|
|
// Traverse the transition tree in postorder without using the C++ stack by
|
|
// doing pointer reversal.
|
|
void Map::TraverseTransitionTree(TraverseCallback callback, void* data) {
|
|
TraversableMap* current = static_cast<TraversableMap*>(this);
|
|
current->ChildIteratorStart();
|
|
while (true) {
|
|
TraversableMap* child = current->ChildIteratorNext();
|
|
if (child != NULL) {
|
|
child->ChildIteratorStart();
|
|
child->SetParent(current);
|
|
current = child;
|
|
} else {
|
|
TraversableMap* parent = current->GetAndResetParent();
|
|
callback(current, data);
|
|
if (current == this) break;
|
|
current = parent;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
MaybeObject* CodeCache::Update(Name* name, Code* code) {
|
|
// The number of monomorphic stubs for normal load/store/call IC's can grow to
|
|
// a large number and therefore they need to go into a hash table. They are
|
|
// used to load global properties from cells.
|
|
if (code->type() == Code::NORMAL) {
|
|
// Make sure that a hash table is allocated for the normal load code cache.
|
|
if (normal_type_cache()->IsUndefined()) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
CodeCacheHashTable::Allocate(GetHeap(),
|
|
CodeCacheHashTable::kInitialSize);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
set_normal_type_cache(result);
|
|
}
|
|
return UpdateNormalTypeCache(name, code);
|
|
} else {
|
|
ASSERT(default_cache()->IsFixedArray());
|
|
return UpdateDefaultCache(name, code);
|
|
}
|
|
}
|
|
|
|
|
|
MaybeObject* CodeCache::UpdateDefaultCache(Name* name, Code* code) {
|
|
// When updating the default code cache we disregard the type encoded in the
|
|
// flags. This allows call constant stubs to overwrite call field
|
|
// stubs, etc.
|
|
Code::Flags flags = Code::RemoveTypeFromFlags(code->flags());
|
|
|
|
// First check whether we can update existing code cache without
|
|
// extending it.
|
|
FixedArray* cache = default_cache();
|
|
int length = cache->length();
|
|
int deleted_index = -1;
|
|
for (int i = 0; i < length; i += kCodeCacheEntrySize) {
|
|
Object* key = cache->get(i);
|
|
if (key->IsNull()) {
|
|
if (deleted_index < 0) deleted_index = i;
|
|
continue;
|
|
}
|
|
if (key->IsUndefined()) {
|
|
if (deleted_index >= 0) i = deleted_index;
|
|
cache->set(i + kCodeCacheEntryNameOffset, name);
|
|
cache->set(i + kCodeCacheEntryCodeOffset, code);
|
|
return this;
|
|
}
|
|
if (name->Equals(Name::cast(key))) {
|
|
Code::Flags found =
|
|
Code::cast(cache->get(i + kCodeCacheEntryCodeOffset))->flags();
|
|
if (Code::RemoveTypeFromFlags(found) == flags) {
|
|
cache->set(i + kCodeCacheEntryCodeOffset, code);
|
|
return this;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reached the end of the code cache. If there were deleted
|
|
// elements, reuse the space for the first of them.
|
|
if (deleted_index >= 0) {
|
|
cache->set(deleted_index + kCodeCacheEntryNameOffset, name);
|
|
cache->set(deleted_index + kCodeCacheEntryCodeOffset, code);
|
|
return this;
|
|
}
|
|
|
|
// Extend the code cache with some new entries (at least one). Must be a
|
|
// multiple of the entry size.
|
|
int new_length = length + ((length >> 1)) + kCodeCacheEntrySize;
|
|
new_length = new_length - new_length % kCodeCacheEntrySize;
|
|
ASSERT((new_length % kCodeCacheEntrySize) == 0);
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = cache->CopySize(new_length);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
// Add the (name, code) pair to the new cache.
|
|
cache = FixedArray::cast(result);
|
|
cache->set(length + kCodeCacheEntryNameOffset, name);
|
|
cache->set(length + kCodeCacheEntryCodeOffset, code);
|
|
set_default_cache(cache);
|
|
return this;
|
|
}
|
|
|
|
|
|
MaybeObject* CodeCache::UpdateNormalTypeCache(Name* name, Code* code) {
|
|
// Adding a new entry can cause a new cache to be allocated.
|
|
CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache());
|
|
Object* new_cache;
|
|
{ MaybeObject* maybe_new_cache = cache->Put(name, code);
|
|
if (!maybe_new_cache->ToObject(&new_cache)) return maybe_new_cache;
|
|
}
|
|
set_normal_type_cache(new_cache);
|
|
return this;
|
|
}
|
|
|
|
|
|
Object* CodeCache::Lookup(Name* name, Code::Flags flags) {
|
|
if (Code::ExtractTypeFromFlags(flags) == Code::NORMAL) {
|
|
return LookupNormalTypeCache(name, flags);
|
|
} else {
|
|
return LookupDefaultCache(name, flags);
|
|
}
|
|
}
|
|
|
|
|
|
Object* CodeCache::LookupDefaultCache(Name* name, Code::Flags flags) {
|
|
FixedArray* cache = default_cache();
|
|
int length = cache->length();
|
|
for (int i = 0; i < length; i += kCodeCacheEntrySize) {
|
|
Object* key = cache->get(i + kCodeCacheEntryNameOffset);
|
|
// Skip deleted elements.
|
|
if (key->IsNull()) continue;
|
|
if (key->IsUndefined()) return key;
|
|
if (name->Equals(Name::cast(key))) {
|
|
Code* code = Code::cast(cache->get(i + kCodeCacheEntryCodeOffset));
|
|
if (code->flags() == flags) {
|
|
return code;
|
|
}
|
|
}
|
|
}
|
|
return GetHeap()->undefined_value();
|
|
}
|
|
|
|
|
|
Object* CodeCache::LookupNormalTypeCache(Name* name, Code::Flags flags) {
|
|
if (!normal_type_cache()->IsUndefined()) {
|
|
CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache());
|
|
return cache->Lookup(name, flags);
|
|
} else {
|
|
return GetHeap()->undefined_value();
|
|
}
|
|
}
|
|
|
|
|
|
int CodeCache::GetIndex(Object* name, Code* code) {
|
|
if (code->type() == Code::NORMAL) {
|
|
if (normal_type_cache()->IsUndefined()) return -1;
|
|
CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache());
|
|
return cache->GetIndex(Name::cast(name), code->flags());
|
|
}
|
|
|
|
FixedArray* array = default_cache();
|
|
int len = array->length();
|
|
for (int i = 0; i < len; i += kCodeCacheEntrySize) {
|
|
if (array->get(i + kCodeCacheEntryCodeOffset) == code) return i + 1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
void CodeCache::RemoveByIndex(Object* name, Code* code, int index) {
|
|
if (code->type() == Code::NORMAL) {
|
|
ASSERT(!normal_type_cache()->IsUndefined());
|
|
CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache());
|
|
ASSERT(cache->GetIndex(Name::cast(name), code->flags()) == index);
|
|
cache->RemoveByIndex(index);
|
|
} else {
|
|
FixedArray* array = default_cache();
|
|
ASSERT(array->length() >= index && array->get(index)->IsCode());
|
|
// Use null instead of undefined for deleted elements to distinguish
|
|
// deleted elements from unused elements. This distinction is used
|
|
// when looking up in the cache and when updating the cache.
|
|
ASSERT_EQ(1, kCodeCacheEntryCodeOffset - kCodeCacheEntryNameOffset);
|
|
array->set_null(index - 1); // Name.
|
|
array->set_null(index); // Code.
|
|
}
|
|
}
|
|
|
|
|
|
// The key in the code cache hash table consists of the property name and the
|
|
// code object. The actual match is on the name and the code flags. If a key
|
|
// is created using the flags and not a code object it can only be used for
|
|
// lookup not to create a new entry.
|
|
class CodeCacheHashTableKey : public HashTableKey {
|
|
public:
|
|
CodeCacheHashTableKey(Name* name, Code::Flags flags)
|
|
: name_(name), flags_(flags), code_(NULL) { }
|
|
|
|
CodeCacheHashTableKey(Name* name, Code* code)
|
|
: name_(name),
|
|
flags_(code->flags()),
|
|
code_(code) { }
|
|
|
|
|
|
bool IsMatch(Object* other) {
|
|
if (!other->IsFixedArray()) return false;
|
|
FixedArray* pair = FixedArray::cast(other);
|
|
Name* name = Name::cast(pair->get(0));
|
|
Code::Flags flags = Code::cast(pair->get(1))->flags();
|
|
if (flags != flags_) {
|
|
return false;
|
|
}
|
|
return name_->Equals(name);
|
|
}
|
|
|
|
static uint32_t NameFlagsHashHelper(Name* name, Code::Flags flags) {
|
|
return name->Hash() ^ flags;
|
|
}
|
|
|
|
uint32_t Hash() { return NameFlagsHashHelper(name_, flags_); }
|
|
|
|
uint32_t HashForObject(Object* obj) {
|
|
FixedArray* pair = FixedArray::cast(obj);
|
|
Name* name = Name::cast(pair->get(0));
|
|
Code* code = Code::cast(pair->get(1));
|
|
return NameFlagsHashHelper(name, code->flags());
|
|
}
|
|
|
|
MUST_USE_RESULT MaybeObject* AsObject(Heap* heap) {
|
|
ASSERT(code_ != NULL);
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = heap->AllocateFixedArray(2);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
FixedArray* pair = FixedArray::cast(obj);
|
|
pair->set(0, name_);
|
|
pair->set(1, code_);
|
|
return pair;
|
|
}
|
|
|
|
private:
|
|
Name* name_;
|
|
Code::Flags flags_;
|
|
// TODO(jkummerow): We should be able to get by without this.
|
|
Code* code_;
|
|
};
|
|
|
|
|
|
Object* CodeCacheHashTable::Lookup(Name* name, Code::Flags flags) {
|
|
CodeCacheHashTableKey key(name, flags);
|
|
int entry = FindEntry(&key);
|
|
if (entry == kNotFound) return GetHeap()->undefined_value();
|
|
return get(EntryToIndex(entry) + 1);
|
|
}
|
|
|
|
|
|
MaybeObject* CodeCacheHashTable::Put(Name* name, Code* code) {
|
|
CodeCacheHashTableKey key(name, code);
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = EnsureCapacity(1, &key);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
|
|
// Don't use |this|, as the table might have grown.
|
|
CodeCacheHashTable* cache = reinterpret_cast<CodeCacheHashTable*>(obj);
|
|
|
|
int entry = cache->FindInsertionEntry(key.Hash());
|
|
Object* k;
|
|
{ MaybeObject* maybe_k = key.AsObject(GetHeap());
|
|
if (!maybe_k->ToObject(&k)) return maybe_k;
|
|
}
|
|
|
|
cache->set(EntryToIndex(entry), k);
|
|
cache->set(EntryToIndex(entry) + 1, code);
|
|
cache->ElementAdded();
|
|
return cache;
|
|
}
|
|
|
|
|
|
int CodeCacheHashTable::GetIndex(Name* name, Code::Flags flags) {
|
|
CodeCacheHashTableKey key(name, flags);
|
|
int entry = FindEntry(&key);
|
|
return (entry == kNotFound) ? -1 : entry;
|
|
}
|
|
|
|
|
|
void CodeCacheHashTable::RemoveByIndex(int index) {
|
|
ASSERT(index >= 0);
|
|
Heap* heap = GetHeap();
|
|
set(EntryToIndex(index), heap->the_hole_value());
|
|
set(EntryToIndex(index) + 1, heap->the_hole_value());
|
|
ElementRemoved();
|
|
}
|
|
|
|
|
|
void PolymorphicCodeCache::Update(Handle<PolymorphicCodeCache> cache,
|
|
MapHandleList* maps,
|
|
Code::Flags flags,
|
|
Handle<Code> code) {
|
|
Isolate* isolate = cache->GetIsolate();
|
|
CALL_HEAP_FUNCTION_VOID(isolate, cache->Update(maps, flags, *code));
|
|
}
|
|
|
|
|
|
MaybeObject* PolymorphicCodeCache::Update(MapHandleList* maps,
|
|
Code::Flags flags,
|
|
Code* code) {
|
|
// Initialize cache if necessary.
|
|
if (cache()->IsUndefined()) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
PolymorphicCodeCacheHashTable::Allocate(
|
|
GetHeap(),
|
|
PolymorphicCodeCacheHashTable::kInitialSize);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
set_cache(result);
|
|
} else {
|
|
// This entry shouldn't be contained in the cache yet.
|
|
ASSERT(PolymorphicCodeCacheHashTable::cast(cache())
|
|
->Lookup(maps, flags)->IsUndefined());
|
|
}
|
|
PolymorphicCodeCacheHashTable* hash_table =
|
|
PolymorphicCodeCacheHashTable::cast(cache());
|
|
Object* new_cache;
|
|
{ MaybeObject* maybe_new_cache = hash_table->Put(maps, flags, code);
|
|
if (!maybe_new_cache->ToObject(&new_cache)) return maybe_new_cache;
|
|
}
|
|
set_cache(new_cache);
|
|
return this;
|
|
}
|
|
|
|
|
|
Handle<Object> PolymorphicCodeCache::Lookup(MapHandleList* maps,
|
|
Code::Flags flags) {
|
|
if (!cache()->IsUndefined()) {
|
|
PolymorphicCodeCacheHashTable* hash_table =
|
|
PolymorphicCodeCacheHashTable::cast(cache());
|
|
return Handle<Object>(hash_table->Lookup(maps, flags), GetIsolate());
|
|
} else {
|
|
return GetIsolate()->factory()->undefined_value();
|
|
}
|
|
}
|
|
|
|
|
|
// Despite their name, object of this class are not stored in the actual
|
|
// hash table; instead they're temporarily used for lookups. It is therefore
|
|
// safe to have a weak (non-owning) pointer to a MapList as a member field.
|
|
class PolymorphicCodeCacheHashTableKey : public HashTableKey {
|
|
public:
|
|
// Callers must ensure that |maps| outlives the newly constructed object.
|
|
PolymorphicCodeCacheHashTableKey(MapHandleList* maps, int code_flags)
|
|
: maps_(maps),
|
|
code_flags_(code_flags) {}
|
|
|
|
bool IsMatch(Object* other) {
|
|
MapHandleList other_maps(kDefaultListAllocationSize);
|
|
int other_flags;
|
|
FromObject(other, &other_flags, &other_maps);
|
|
if (code_flags_ != other_flags) return false;
|
|
if (maps_->length() != other_maps.length()) return false;
|
|
// Compare just the hashes first because it's faster.
|
|
int this_hash = MapsHashHelper(maps_, code_flags_);
|
|
int other_hash = MapsHashHelper(&other_maps, other_flags);
|
|
if (this_hash != other_hash) return false;
|
|
|
|
// Full comparison: for each map in maps_, look for an equivalent map in
|
|
// other_maps. This implementation is slow, but probably good enough for
|
|
// now because the lists are short (<= 4 elements currently).
|
|
for (int i = 0; i < maps_->length(); ++i) {
|
|
bool match_found = false;
|
|
for (int j = 0; j < other_maps.length(); ++j) {
|
|
if (*(maps_->at(i)) == *(other_maps.at(j))) {
|
|
match_found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!match_found) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static uint32_t MapsHashHelper(MapHandleList* maps, int code_flags) {
|
|
uint32_t hash = code_flags;
|
|
for (int i = 0; i < maps->length(); ++i) {
|
|
hash ^= maps->at(i)->Hash();
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
uint32_t Hash() {
|
|
return MapsHashHelper(maps_, code_flags_);
|
|
}
|
|
|
|
uint32_t HashForObject(Object* obj) {
|
|
MapHandleList other_maps(kDefaultListAllocationSize);
|
|
int other_flags;
|
|
FromObject(obj, &other_flags, &other_maps);
|
|
return MapsHashHelper(&other_maps, other_flags);
|
|
}
|
|
|
|
MUST_USE_RESULT MaybeObject* AsObject(Heap* heap) {
|
|
Object* obj;
|
|
// The maps in |maps_| must be copied to a newly allocated FixedArray,
|
|
// both because the referenced MapList is short-lived, and because C++
|
|
// objects can't be stored in the heap anyway.
|
|
{ MaybeObject* maybe_obj =
|
|
heap->AllocateUninitializedFixedArray(maps_->length() + 1);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
FixedArray* list = FixedArray::cast(obj);
|
|
list->set(0, Smi::FromInt(code_flags_));
|
|
for (int i = 0; i < maps_->length(); ++i) {
|
|
list->set(i + 1, *maps_->at(i));
|
|
}
|
|
return list;
|
|
}
|
|
|
|
private:
|
|
static MapHandleList* FromObject(Object* obj,
|
|
int* code_flags,
|
|
MapHandleList* maps) {
|
|
FixedArray* list = FixedArray::cast(obj);
|
|
maps->Rewind(0);
|
|
*code_flags = Smi::cast(list->get(0))->value();
|
|
for (int i = 1; i < list->length(); ++i) {
|
|
maps->Add(Handle<Map>(Map::cast(list->get(i))));
|
|
}
|
|
return maps;
|
|
}
|
|
|
|
MapHandleList* maps_; // weak.
|
|
int code_flags_;
|
|
static const int kDefaultListAllocationSize = kMaxKeyedPolymorphism + 1;
|
|
};
|
|
|
|
|
|
Object* PolymorphicCodeCacheHashTable::Lookup(MapHandleList* maps,
|
|
int code_flags) {
|
|
PolymorphicCodeCacheHashTableKey key(maps, code_flags);
|
|
int entry = FindEntry(&key);
|
|
if (entry == kNotFound) return GetHeap()->undefined_value();
|
|
return get(EntryToIndex(entry) + 1);
|
|
}
|
|
|
|
|
|
MaybeObject* PolymorphicCodeCacheHashTable::Put(MapHandleList* maps,
|
|
int code_flags,
|
|
Code* code) {
|
|
PolymorphicCodeCacheHashTableKey key(maps, code_flags);
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = EnsureCapacity(1, &key);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
PolymorphicCodeCacheHashTable* cache =
|
|
reinterpret_cast<PolymorphicCodeCacheHashTable*>(obj);
|
|
int entry = cache->FindInsertionEntry(key.Hash());
|
|
{ MaybeObject* maybe_obj = key.AsObject(GetHeap());
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
cache->set(EntryToIndex(entry), obj);
|
|
cache->set(EntryToIndex(entry) + 1, code);
|
|
cache->ElementAdded();
|
|
return cache;
|
|
}
|
|
|
|
|
|
MaybeObject* FixedArray::AddKeysFromJSArray(JSArray* array) {
|
|
ElementsAccessor* accessor = array->GetElementsAccessor();
|
|
MaybeObject* maybe_result =
|
|
accessor->AddElementsToFixedArray(array, array, this);
|
|
FixedArray* result;
|
|
if (!maybe_result->To<FixedArray>(&result)) return maybe_result;
|
|
#ifdef DEBUG
|
|
if (FLAG_enable_slow_asserts) {
|
|
for (int i = 0; i < result->length(); i++) {
|
|
Object* current = result->get(i);
|
|
ASSERT(current->IsNumber() || current->IsName());
|
|
}
|
|
}
|
|
#endif
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* FixedArray::UnionOfKeys(FixedArray* other) {
|
|
ElementsAccessor* accessor = ElementsAccessor::ForArray(other);
|
|
MaybeObject* maybe_result =
|
|
accessor->AddElementsToFixedArray(NULL, NULL, this, other);
|
|
FixedArray* result;
|
|
if (!maybe_result->To(&result)) return maybe_result;
|
|
#ifdef DEBUG
|
|
if (FLAG_enable_slow_asserts) {
|
|
for (int i = 0; i < result->length(); i++) {
|
|
Object* current = result->get(i);
|
|
ASSERT(current->IsNumber() || current->IsName());
|
|
}
|
|
}
|
|
#endif
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* FixedArray::CopySize(int new_length) {
|
|
Heap* heap = GetHeap();
|
|
if (new_length == 0) return heap->empty_fixed_array();
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = heap->AllocateFixedArray(new_length);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
FixedArray* result = FixedArray::cast(obj);
|
|
// Copy the content
|
|
DisallowHeapAllocation no_gc;
|
|
int len = length();
|
|
if (new_length < len) len = new_length;
|
|
// We are taking the map from the old fixed array so the map is sure to
|
|
// be an immortal immutable object.
|
|
result->set_map_no_write_barrier(map());
|
|
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
|
|
for (int i = 0; i < len; i++) {
|
|
result->set(i, get(i), mode);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
void FixedArray::CopyTo(int pos, FixedArray* dest, int dest_pos, int len) {
|
|
DisallowHeapAllocation no_gc;
|
|
WriteBarrierMode mode = dest->GetWriteBarrierMode(no_gc);
|
|
for (int index = 0; index < len; index++) {
|
|
dest->set(dest_pos+index, get(pos+index), mode);
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
bool FixedArray::IsEqualTo(FixedArray* other) {
|
|
if (length() != other->length()) return false;
|
|
for (int i = 0 ; i < length(); ++i) {
|
|
if (get(i) != other->get(i)) return false;
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
|
|
MaybeObject* DescriptorArray::Allocate(int number_of_descriptors, int slack) {
|
|
Heap* heap = Isolate::Current()->heap();
|
|
// Do not use DescriptorArray::cast on incomplete object.
|
|
int size = number_of_descriptors + slack;
|
|
if (size == 0) return heap->empty_descriptor_array();
|
|
FixedArray* result;
|
|
// Allocate the array of keys.
|
|
MaybeObject* maybe_array = heap->AllocateFixedArray(LengthFor(size));
|
|
if (!maybe_array->To(&result)) return maybe_array;
|
|
|
|
result->set(kDescriptorLengthIndex, Smi::FromInt(number_of_descriptors));
|
|
result->set(kEnumCacheIndex, Smi::FromInt(0));
|
|
return result;
|
|
}
|
|
|
|
|
|
void DescriptorArray::ClearEnumCache() {
|
|
set(kEnumCacheIndex, Smi::FromInt(0));
|
|
}
|
|
|
|
|
|
void DescriptorArray::SetEnumCache(FixedArray* bridge_storage,
|
|
FixedArray* new_cache,
|
|
Object* new_index_cache) {
|
|
ASSERT(bridge_storage->length() >= kEnumCacheBridgeLength);
|
|
ASSERT(new_index_cache->IsSmi() || new_index_cache->IsFixedArray());
|
|
ASSERT(!IsEmpty());
|
|
ASSERT(!HasEnumCache() || new_cache->length() > GetEnumCache()->length());
|
|
FixedArray::cast(bridge_storage)->
|
|
set(kEnumCacheBridgeCacheIndex, new_cache);
|
|
FixedArray::cast(bridge_storage)->
|
|
set(kEnumCacheBridgeIndicesCacheIndex, new_index_cache);
|
|
set(kEnumCacheIndex, bridge_storage);
|
|
}
|
|
|
|
|
|
void DescriptorArray::CopyFrom(int dst_index,
|
|
DescriptorArray* src,
|
|
int src_index,
|
|
const WhitenessWitness& witness) {
|
|
Object* value = src->GetValue(src_index);
|
|
PropertyDetails details = src->GetDetails(src_index);
|
|
Descriptor desc(src->GetKey(src_index), value, details);
|
|
Set(dst_index, &desc, witness);
|
|
}
|
|
|
|
|
|
// Generalize the |other| descriptor array by merging it into the (at least
|
|
// partly) updated |this| descriptor array.
|
|
// The method merges two descriptor array in three parts. Both descriptor arrays
|
|
// are identical up to |verbatim|. They also overlap in keys up to |valid|.
|
|
// Between |verbatim| and |valid|, the resulting descriptor type as well as the
|
|
// representation are generalized from both |this| and |other|. Beyond |valid|,
|
|
// the descriptors are copied verbatim from |other| up to |new_size|.
|
|
// In case of incompatible types, the type and representation of |other| is
|
|
// used.
|
|
MaybeObject* DescriptorArray::Merge(int verbatim,
|
|
int valid,
|
|
int new_size,
|
|
DescriptorArray* other) {
|
|
ASSERT(verbatim <= valid);
|
|
ASSERT(valid <= new_size);
|
|
|
|
DescriptorArray* result;
|
|
// Allocate a new descriptor array large enough to hold the required
|
|
// descriptors, with minimally the exact same size as this descriptor array.
|
|
MaybeObject* maybe_descriptors = DescriptorArray::Allocate(
|
|
new_size, Max(new_size, other->number_of_descriptors()) - new_size);
|
|
if (!maybe_descriptors->To(&result)) return maybe_descriptors;
|
|
ASSERT(result->length() > length() ||
|
|
result->NumberOfSlackDescriptors() > 0 ||
|
|
result->number_of_descriptors() == other->number_of_descriptors());
|
|
ASSERT(result->number_of_descriptors() == new_size);
|
|
|
|
DescriptorArray::WhitenessWitness witness(result);
|
|
|
|
int descriptor;
|
|
|
|
// 0 -> |verbatim|
|
|
int current_offset = 0;
|
|
for (descriptor = 0; descriptor < verbatim; descriptor++) {
|
|
if (GetDetails(descriptor).type() == FIELD) current_offset++;
|
|
result->CopyFrom(descriptor, this, descriptor, witness);
|
|
}
|
|
|
|
// |verbatim| -> |valid|
|
|
for (; descriptor < valid; descriptor++) {
|
|
Name* key = GetKey(descriptor);
|
|
PropertyDetails details = GetDetails(descriptor);
|
|
PropertyDetails other_details = other->GetDetails(descriptor);
|
|
|
|
if (details.type() == FIELD || other_details.type() == FIELD ||
|
|
(details.type() == CONSTANT_FUNCTION &&
|
|
other_details.type() == CONSTANT_FUNCTION &&
|
|
GetValue(descriptor) != other->GetValue(descriptor))) {
|
|
Representation representation =
|
|
details.representation().generalize(other_details.representation());
|
|
FieldDescriptor d(key,
|
|
current_offset++,
|
|
other_details.attributes(),
|
|
representation);
|
|
result->Set(descriptor, &d, witness);
|
|
} else {
|
|
result->CopyFrom(descriptor, other, descriptor, witness);
|
|
}
|
|
}
|
|
|
|
// |valid| -> |new_size|
|
|
for (; descriptor < new_size; descriptor++) {
|
|
PropertyDetails details = other->GetDetails(descriptor);
|
|
if (details.type() == FIELD) {
|
|
Name* key = other->GetKey(descriptor);
|
|
FieldDescriptor d(key,
|
|
current_offset++,
|
|
details.attributes(),
|
|
details.representation());
|
|
result->Set(descriptor, &d, witness);
|
|
} else {
|
|
result->CopyFrom(descriptor, other, descriptor, witness);
|
|
}
|
|
}
|
|
|
|
result->Sort();
|
|
return result;
|
|
}
|
|
|
|
|
|
// Checks whether a merge of |other| into |this| would return a copy of |this|.
|
|
bool DescriptorArray::IsMoreGeneralThan(int verbatim,
|
|
int valid,
|
|
int new_size,
|
|
DescriptorArray* other) {
|
|
ASSERT(verbatim <= valid);
|
|
ASSERT(valid <= new_size);
|
|
if (valid != new_size) return false;
|
|
|
|
for (int descriptor = verbatim; descriptor < valid; descriptor++) {
|
|
PropertyDetails details = GetDetails(descriptor);
|
|
PropertyDetails other_details = other->GetDetails(descriptor);
|
|
if (!other_details.representation().fits_into(details.representation())) {
|
|
return false;
|
|
}
|
|
if (details.type() == CONSTANT_FUNCTION) {
|
|
if (other_details.type() != CONSTANT_FUNCTION) return false;
|
|
if (GetValue(descriptor) != other->GetValue(descriptor)) return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// We need the whiteness witness since sort will reshuffle the entries in the
|
|
// descriptor array. If the descriptor array were to be black, the shuffling
|
|
// would move a slot that was already recorded as pointing into an evacuation
|
|
// candidate. This would result in missing updates upon evacuation.
|
|
void DescriptorArray::Sort() {
|
|
// In-place heap sort.
|
|
int len = number_of_descriptors();
|
|
// Reset sorting since the descriptor array might contain invalid pointers.
|
|
for (int i = 0; i < len; ++i) SetSortedKey(i, i);
|
|
// Bottom-up max-heap construction.
|
|
// Index of the last node with children
|
|
const int max_parent_index = (len / 2) - 1;
|
|
for (int i = max_parent_index; i >= 0; --i) {
|
|
int parent_index = i;
|
|
const uint32_t parent_hash = GetSortedKey(i)->Hash();
|
|
while (parent_index <= max_parent_index) {
|
|
int child_index = 2 * parent_index + 1;
|
|
uint32_t child_hash = GetSortedKey(child_index)->Hash();
|
|
if (child_index + 1 < len) {
|
|
uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash();
|
|
if (right_child_hash > child_hash) {
|
|
child_index++;
|
|
child_hash = right_child_hash;
|
|
}
|
|
}
|
|
if (child_hash <= parent_hash) break;
|
|
SwapSortedKeys(parent_index, child_index);
|
|
// Now element at child_index could be < its children.
|
|
parent_index = child_index; // parent_hash remains correct.
|
|
}
|
|
}
|
|
|
|
// Extract elements and create sorted array.
|
|
for (int i = len - 1; i > 0; --i) {
|
|
// Put max element at the back of the array.
|
|
SwapSortedKeys(0, i);
|
|
// Shift down the new top element.
|
|
int parent_index = 0;
|
|
const uint32_t parent_hash = GetSortedKey(parent_index)->Hash();
|
|
const int max_parent_index = (i / 2) - 1;
|
|
while (parent_index <= max_parent_index) {
|
|
int child_index = parent_index * 2 + 1;
|
|
uint32_t child_hash = GetSortedKey(child_index)->Hash();
|
|
if (child_index + 1 < i) {
|
|
uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash();
|
|
if (right_child_hash > child_hash) {
|
|
child_index++;
|
|
child_hash = right_child_hash;
|
|
}
|
|
}
|
|
if (child_hash <= parent_hash) break;
|
|
SwapSortedKeys(parent_index, child_index);
|
|
parent_index = child_index;
|
|
}
|
|
}
|
|
ASSERT(IsSortedNoDuplicates());
|
|
}
|
|
|
|
|
|
Handle<AccessorPair> AccessorPair::Copy(Handle<AccessorPair> pair) {
|
|
Handle<AccessorPair> copy = pair->GetIsolate()->factory()->NewAccessorPair();
|
|
copy->set_getter(pair->getter());
|
|
copy->set_setter(pair->setter());
|
|
return copy;
|
|
}
|
|
|
|
|
|
Object* AccessorPair::GetComponent(AccessorComponent component) {
|
|
Object* accessor = get(component);
|
|
return accessor->IsTheHole() ? GetHeap()->undefined_value() : accessor;
|
|
}
|
|
|
|
|
|
MaybeObject* DeoptimizationInputData::Allocate(int deopt_entry_count,
|
|
PretenureFlag pretenure) {
|
|
ASSERT(deopt_entry_count > 0);
|
|
return HEAP->AllocateFixedArray(LengthFor(deopt_entry_count),
|
|
pretenure);
|
|
}
|
|
|
|
|
|
MaybeObject* DeoptimizationOutputData::Allocate(int number_of_deopt_points,
|
|
PretenureFlag pretenure) {
|
|
if (number_of_deopt_points == 0) return HEAP->empty_fixed_array();
|
|
return HEAP->AllocateFixedArray(LengthOfFixedArray(number_of_deopt_points),
|
|
pretenure);
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
bool DescriptorArray::IsEqualTo(DescriptorArray* other) {
|
|
if (IsEmpty()) return other->IsEmpty();
|
|
if (other->IsEmpty()) return false;
|
|
if (length() != other->length()) return false;
|
|
for (int i = 0; i < length(); ++i) {
|
|
if (get(i) != other->get(i)) return false;
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
|
|
bool String::LooksValid() {
|
|
if (!Isolate::Current()->heap()->Contains(this)) return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
String::FlatContent String::GetFlatContent() {
|
|
ASSERT(!AllowHeapAllocation::IsAllowed());
|
|
int length = this->length();
|
|
StringShape shape(this);
|
|
String* string = this;
|
|
int offset = 0;
|
|
if (shape.representation_tag() == kConsStringTag) {
|
|
ConsString* cons = ConsString::cast(string);
|
|
if (cons->second()->length() != 0) {
|
|
return FlatContent();
|
|
}
|
|
string = cons->first();
|
|
shape = StringShape(string);
|
|
}
|
|
if (shape.representation_tag() == kSlicedStringTag) {
|
|
SlicedString* slice = SlicedString::cast(string);
|
|
offset = slice->offset();
|
|
string = slice->parent();
|
|
shape = StringShape(string);
|
|
ASSERT(shape.representation_tag() != kConsStringTag &&
|
|
shape.representation_tag() != kSlicedStringTag);
|
|
}
|
|
if (shape.encoding_tag() == kOneByteStringTag) {
|
|
const uint8_t* start;
|
|
if (shape.representation_tag() == kSeqStringTag) {
|
|
start = SeqOneByteString::cast(string)->GetChars();
|
|
} else {
|
|
start = ExternalAsciiString::cast(string)->GetChars();
|
|
}
|
|
return FlatContent(Vector<const uint8_t>(start + offset, length));
|
|
} else {
|
|
ASSERT(shape.encoding_tag() == kTwoByteStringTag);
|
|
const uc16* start;
|
|
if (shape.representation_tag() == kSeqStringTag) {
|
|
start = SeqTwoByteString::cast(string)->GetChars();
|
|
} else {
|
|
start = ExternalTwoByteString::cast(string)->GetChars();
|
|
}
|
|
return FlatContent(Vector<const uc16>(start + offset, length));
|
|
}
|
|
}
|
|
|
|
|
|
SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls,
|
|
RobustnessFlag robust_flag,
|
|
int offset,
|
|
int length,
|
|
int* length_return) {
|
|
if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) {
|
|
return SmartArrayPointer<char>(NULL);
|
|
}
|
|
Heap* heap = GetHeap();
|
|
|
|
// Negative length means the to the end of the string.
|
|
if (length < 0) length = kMaxInt - offset;
|
|
|
|
// Compute the size of the UTF-8 string. Start at the specified offset.
|
|
Access<ConsStringIteratorOp> op(
|
|
heap->isolate()->objects_string_iterator());
|
|
StringCharacterStream stream(this, op.value(), offset);
|
|
int character_position = offset;
|
|
int utf8_bytes = 0;
|
|
int last = unibrow::Utf16::kNoPreviousCharacter;
|
|
while (stream.HasMore() && character_position++ < offset + length) {
|
|
uint16_t character = stream.GetNext();
|
|
utf8_bytes += unibrow::Utf8::Length(character, last);
|
|
last = character;
|
|
}
|
|
|
|
if (length_return) {
|
|
*length_return = utf8_bytes;
|
|
}
|
|
|
|
char* result = NewArray<char>(utf8_bytes + 1);
|
|
|
|
// Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset.
|
|
stream.Reset(this, offset);
|
|
character_position = offset;
|
|
int utf8_byte_position = 0;
|
|
last = unibrow::Utf16::kNoPreviousCharacter;
|
|
while (stream.HasMore() && character_position++ < offset + length) {
|
|
uint16_t character = stream.GetNext();
|
|
if (allow_nulls == DISALLOW_NULLS && character == 0) {
|
|
character = ' ';
|
|
}
|
|
utf8_byte_position +=
|
|
unibrow::Utf8::Encode(result + utf8_byte_position, character, last);
|
|
last = character;
|
|
}
|
|
result[utf8_byte_position] = 0;
|
|
return SmartArrayPointer<char>(result);
|
|
}
|
|
|
|
|
|
SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls,
|
|
RobustnessFlag robust_flag,
|
|
int* length_return) {
|
|
return ToCString(allow_nulls, robust_flag, 0, -1, length_return);
|
|
}
|
|
|
|
|
|
const uc16* String::GetTwoByteData() {
|
|
return GetTwoByteData(0);
|
|
}
|
|
|
|
|
|
const uc16* String::GetTwoByteData(unsigned start) {
|
|
ASSERT(!IsOneByteRepresentationUnderneath());
|
|
switch (StringShape(this).representation_tag()) {
|
|
case kSeqStringTag:
|
|
return SeqTwoByteString::cast(this)->SeqTwoByteStringGetData(start);
|
|
case kExternalStringTag:
|
|
return ExternalTwoByteString::cast(this)->
|
|
ExternalTwoByteStringGetData(start);
|
|
case kSlicedStringTag: {
|
|
SlicedString* slice = SlicedString::cast(this);
|
|
return slice->parent()->GetTwoByteData(start + slice->offset());
|
|
}
|
|
case kConsStringTag:
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
SmartArrayPointer<uc16> String::ToWideCString(RobustnessFlag robust_flag) {
|
|
if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) {
|
|
return SmartArrayPointer<uc16>();
|
|
}
|
|
Heap* heap = GetHeap();
|
|
|
|
Access<ConsStringIteratorOp> op(
|
|
heap->isolate()->objects_string_iterator());
|
|
StringCharacterStream stream(this, op.value());
|
|
|
|
uc16* result = NewArray<uc16>(length() + 1);
|
|
|
|
int i = 0;
|
|
while (stream.HasMore()) {
|
|
uint16_t character = stream.GetNext();
|
|
result[i++] = character;
|
|
}
|
|
result[i] = 0;
|
|
return SmartArrayPointer<uc16>(result);
|
|
}
|
|
|
|
|
|
const uc16* SeqTwoByteString::SeqTwoByteStringGetData(unsigned start) {
|
|
return reinterpret_cast<uc16*>(
|
|
reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize) + start;
|
|
}
|
|
|
|
|
|
void Relocatable::PostGarbageCollectionProcessing() {
|
|
Isolate* isolate = Isolate::Current();
|
|
Relocatable* current = isolate->relocatable_top();
|
|
while (current != NULL) {
|
|
current->PostGarbageCollection();
|
|
current = current->prev_;
|
|
}
|
|
}
|
|
|
|
|
|
// Reserve space for statics needing saving and restoring.
|
|
int Relocatable::ArchiveSpacePerThread() {
|
|
return sizeof(Isolate::Current()->relocatable_top());
|
|
}
|
|
|
|
|
|
// Archive statics that are thread local.
|
|
char* Relocatable::ArchiveState(Isolate* isolate, char* to) {
|
|
*reinterpret_cast<Relocatable**>(to) = isolate->relocatable_top();
|
|
isolate->set_relocatable_top(NULL);
|
|
return to + ArchiveSpacePerThread();
|
|
}
|
|
|
|
|
|
// Restore statics that are thread local.
|
|
char* Relocatable::RestoreState(Isolate* isolate, char* from) {
|
|
isolate->set_relocatable_top(*reinterpret_cast<Relocatable**>(from));
|
|
return from + ArchiveSpacePerThread();
|
|
}
|
|
|
|
|
|
char* Relocatable::Iterate(ObjectVisitor* v, char* thread_storage) {
|
|
Relocatable* top = *reinterpret_cast<Relocatable**>(thread_storage);
|
|
Iterate(v, top);
|
|
return thread_storage + ArchiveSpacePerThread();
|
|
}
|
|
|
|
|
|
void Relocatable::Iterate(ObjectVisitor* v) {
|
|
Isolate* isolate = Isolate::Current();
|
|
Iterate(v, isolate->relocatable_top());
|
|
}
|
|
|
|
|
|
void Relocatable::Iterate(ObjectVisitor* v, Relocatable* top) {
|
|
Relocatable* current = top;
|
|
while (current != NULL) {
|
|
current->IterateInstance(v);
|
|
current = current->prev_;
|
|
}
|
|
}
|
|
|
|
|
|
FlatStringReader::FlatStringReader(Isolate* isolate, Handle<String> str)
|
|
: Relocatable(isolate),
|
|
str_(str.location()),
|
|
length_(str->length()) {
|
|
PostGarbageCollection();
|
|
}
|
|
|
|
|
|
FlatStringReader::FlatStringReader(Isolate* isolate, Vector<const char> input)
|
|
: Relocatable(isolate),
|
|
str_(0),
|
|
is_ascii_(true),
|
|
length_(input.length()),
|
|
start_(input.start()) { }
|
|
|
|
|
|
void FlatStringReader::PostGarbageCollection() {
|
|
if (str_ == NULL) return;
|
|
Handle<String> str(str_);
|
|
ASSERT(str->IsFlat());
|
|
DisallowHeapAllocation no_gc;
|
|
// This does not actually prevent the vector from being relocated later.
|
|
String::FlatContent content = str->GetFlatContent();
|
|
ASSERT(content.IsFlat());
|
|
is_ascii_ = content.IsAscii();
|
|
if (is_ascii_) {
|
|
start_ = content.ToOneByteVector().start();
|
|
} else {
|
|
start_ = content.ToUC16Vector().start();
|
|
}
|
|
}
|
|
|
|
|
|
String* ConsStringIteratorOp::Operate(String* string,
|
|
unsigned* offset_out,
|
|
int32_t* type_out,
|
|
unsigned* length_out) {
|
|
ASSERT(string->IsConsString());
|
|
ConsString* cons_string = ConsString::cast(string);
|
|
// Set up search data.
|
|
root_ = cons_string;
|
|
consumed_ = *offset_out;
|
|
// Now search.
|
|
return Search(offset_out, type_out, length_out);
|
|
}
|
|
|
|
|
|
String* ConsStringIteratorOp::Search(unsigned* offset_out,
|
|
int32_t* type_out,
|
|
unsigned* length_out) {
|
|
ConsString* cons_string = root_;
|
|
// Reset the stack, pushing the root string.
|
|
depth_ = 1;
|
|
maximum_depth_ = 1;
|
|
frames_[0] = cons_string;
|
|
const unsigned consumed = consumed_;
|
|
unsigned offset = 0;
|
|
while (true) {
|
|
// Loop until the string is found which contains the target offset.
|
|
String* string = cons_string->first();
|
|
unsigned length = string->length();
|
|
int32_t type;
|
|
if (consumed < offset + length) {
|
|
// Target offset is in the left branch.
|
|
// Keep going if we're still in a ConString.
|
|
type = string->map()->instance_type();
|
|
if ((type & kStringRepresentationMask) == kConsStringTag) {
|
|
cons_string = ConsString::cast(string);
|
|
PushLeft(cons_string);
|
|
continue;
|
|
}
|
|
// Tell the stack we're done decending.
|
|
AdjustMaximumDepth();
|
|
} else {
|
|
// Descend right.
|
|
// Update progress through the string.
|
|
offset += length;
|
|
// Keep going if we're still in a ConString.
|
|
string = cons_string->second();
|
|
type = string->map()->instance_type();
|
|
if ((type & kStringRepresentationMask) == kConsStringTag) {
|
|
cons_string = ConsString::cast(string);
|
|
PushRight(cons_string);
|
|
// TODO(dcarney) Add back root optimization.
|
|
continue;
|
|
}
|
|
// Need this to be updated for the current string.
|
|
length = string->length();
|
|
// Account for the possibility of an empty right leaf.
|
|
// This happens only if we have asked for an offset outside the string.
|
|
if (length == 0) {
|
|
// Reset depth so future operations will return null immediately.
|
|
Reset();
|
|
return NULL;
|
|
}
|
|
// Tell the stack we're done decending.
|
|
AdjustMaximumDepth();
|
|
// Pop stack so next iteration is in correct place.
|
|
Pop();
|
|
}
|
|
ASSERT(length != 0);
|
|
// Adjust return values and exit.
|
|
consumed_ = offset + length;
|
|
*offset_out = consumed - offset;
|
|
*type_out = type;
|
|
*length_out = length;
|
|
return string;
|
|
}
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
String* ConsStringIteratorOp::NextLeaf(bool* blew_stack,
|
|
int32_t* type_out,
|
|
unsigned* length_out) {
|
|
while (true) {
|
|
// Tree traversal complete.
|
|
if (depth_ == 0) {
|
|
*blew_stack = false;
|
|
return NULL;
|
|
}
|
|
// We've lost track of higher nodes.
|
|
if (maximum_depth_ - depth_ == kStackSize) {
|
|
*blew_stack = true;
|
|
return NULL;
|
|
}
|
|
// Go right.
|
|
ConsString* cons_string = frames_[OffsetForDepth(depth_ - 1)];
|
|
String* string = cons_string->second();
|
|
int32_t type = string->map()->instance_type();
|
|
if ((type & kStringRepresentationMask) != kConsStringTag) {
|
|
// Pop stack so next iteration is in correct place.
|
|
Pop();
|
|
unsigned length = static_cast<unsigned>(string->length());
|
|
// Could be a flattened ConsString.
|
|
if (length == 0) continue;
|
|
*length_out = length;
|
|
*type_out = type;
|
|
consumed_ += length;
|
|
return string;
|
|
}
|
|
cons_string = ConsString::cast(string);
|
|
// TODO(dcarney) Add back root optimization.
|
|
PushRight(cons_string);
|
|
// Need to traverse all the way left.
|
|
while (true) {
|
|
// Continue left.
|
|
string = cons_string->first();
|
|
type = string->map()->instance_type();
|
|
if ((type & kStringRepresentationMask) != kConsStringTag) {
|
|
AdjustMaximumDepth();
|
|
unsigned length = static_cast<unsigned>(string->length());
|
|
ASSERT(length != 0);
|
|
*length_out = length;
|
|
*type_out = type;
|
|
consumed_ += length;
|
|
return string;
|
|
}
|
|
cons_string = ConsString::cast(string);
|
|
PushLeft(cons_string);
|
|
}
|
|
}
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
uint16_t ConsString::ConsStringGet(int index) {
|
|
ASSERT(index >= 0 && index < this->length());
|
|
|
|
// Check for a flattened cons string
|
|
if (second()->length() == 0) {
|
|
String* left = first();
|
|
return left->Get(index);
|
|
}
|
|
|
|
String* string = String::cast(this);
|
|
|
|
while (true) {
|
|
if (StringShape(string).IsCons()) {
|
|
ConsString* cons_string = ConsString::cast(string);
|
|
String* left = cons_string->first();
|
|
if (left->length() > index) {
|
|
string = left;
|
|
} else {
|
|
index -= left->length();
|
|
string = cons_string->second();
|
|
}
|
|
} else {
|
|
return string->Get(index);
|
|
}
|
|
}
|
|
|
|
UNREACHABLE();
|
|
return 0;
|
|
}
|
|
|
|
|
|
uint16_t SlicedString::SlicedStringGet(int index) {
|
|
return parent()->Get(offset() + index);
|
|
}
|
|
|
|
|
|
template <typename sinkchar>
|
|
void String::WriteToFlat(String* src,
|
|
sinkchar* sink,
|
|
int f,
|
|
int t) {
|
|
String* source = src;
|
|
int from = f;
|
|
int to = t;
|
|
while (true) {
|
|
ASSERT(0 <= from && from <= to && to <= source->length());
|
|
switch (StringShape(source).full_representation_tag()) {
|
|
case kOneByteStringTag | kExternalStringTag: {
|
|
CopyChars(sink,
|
|
ExternalAsciiString::cast(source)->GetChars() + from,
|
|
to - from);
|
|
return;
|
|
}
|
|
case kTwoByteStringTag | kExternalStringTag: {
|
|
const uc16* data =
|
|
ExternalTwoByteString::cast(source)->GetChars();
|
|
CopyChars(sink,
|
|
data + from,
|
|
to - from);
|
|
return;
|
|
}
|
|
case kOneByteStringTag | kSeqStringTag: {
|
|
CopyChars(sink,
|
|
SeqOneByteString::cast(source)->GetChars() + from,
|
|
to - from);
|
|
return;
|
|
}
|
|
case kTwoByteStringTag | kSeqStringTag: {
|
|
CopyChars(sink,
|
|
SeqTwoByteString::cast(source)->GetChars() + from,
|
|
to - from);
|
|
return;
|
|
}
|
|
case kOneByteStringTag | kConsStringTag:
|
|
case kTwoByteStringTag | kConsStringTag: {
|
|
ConsString* cons_string = ConsString::cast(source);
|
|
String* first = cons_string->first();
|
|
int boundary = first->length();
|
|
if (to - boundary >= boundary - from) {
|
|
// Right hand side is longer. Recurse over left.
|
|
if (from < boundary) {
|
|
WriteToFlat(first, sink, from, boundary);
|
|
sink += boundary - from;
|
|
from = 0;
|
|
} else {
|
|
from -= boundary;
|
|
}
|
|
to -= boundary;
|
|
source = cons_string->second();
|
|
} else {
|
|
// Left hand side is longer. Recurse over right.
|
|
if (to > boundary) {
|
|
String* second = cons_string->second();
|
|
// When repeatedly appending to a string, we get a cons string that
|
|
// is unbalanced to the left, a list, essentially. We inline the
|
|
// common case of sequential ascii right child.
|
|
if (to - boundary == 1) {
|
|
sink[boundary - from] = static_cast<sinkchar>(second->Get(0));
|
|
} else if (second->IsSeqOneByteString()) {
|
|
CopyChars(sink + boundary - from,
|
|
SeqOneByteString::cast(second)->GetChars(),
|
|
to - boundary);
|
|
} else {
|
|
WriteToFlat(second,
|
|
sink + boundary - from,
|
|
0,
|
|
to - boundary);
|
|
}
|
|
to = boundary;
|
|
}
|
|
source = first;
|
|
}
|
|
break;
|
|
}
|
|
case kOneByteStringTag | kSlicedStringTag:
|
|
case kTwoByteStringTag | kSlicedStringTag: {
|
|
SlicedString* slice = SlicedString::cast(source);
|
|
unsigned offset = slice->offset();
|
|
WriteToFlat(slice->parent(), sink, from + offset, to + offset);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Compares the contents of two strings by reading and comparing
|
|
// int-sized blocks of characters.
|
|
template <typename Char>
|
|
static inline bool CompareRawStringContents(const Char* const a,
|
|
const Char* const b,
|
|
int length) {
|
|
int i = 0;
|
|
#ifndef V8_HOST_CAN_READ_UNALIGNED
|
|
// If this architecture isn't comfortable reading unaligned ints
|
|
// then we have to check that the strings are aligned before
|
|
// comparing them blockwise.
|
|
const int kAlignmentMask = sizeof(uint32_t) - 1; // NOLINT
|
|
uint32_t pa_addr = reinterpret_cast<uint32_t>(a);
|
|
uint32_t pb_addr = reinterpret_cast<uint32_t>(b);
|
|
if (((pa_addr & kAlignmentMask) | (pb_addr & kAlignmentMask)) == 0) {
|
|
#endif
|
|
const int kStepSize = sizeof(int) / sizeof(Char); // NOLINT
|
|
int endpoint = length - kStepSize;
|
|
// Compare blocks until we reach near the end of the string.
|
|
for (; i <= endpoint; i += kStepSize) {
|
|
uint32_t wa = *reinterpret_cast<const uint32_t*>(a + i);
|
|
uint32_t wb = *reinterpret_cast<const uint32_t*>(b + i);
|
|
if (wa != wb) {
|
|
return false;
|
|
}
|
|
}
|
|
#ifndef V8_HOST_CAN_READ_UNALIGNED
|
|
}
|
|
#endif
|
|
// Compare the remaining characters that didn't fit into a block.
|
|
for (; i < length; i++) {
|
|
if (a[i] != b[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
template<typename Chars1, typename Chars2>
|
|
class RawStringComparator : public AllStatic {
|
|
public:
|
|
static inline bool compare(const Chars1* a, const Chars2* b, int len) {
|
|
ASSERT(sizeof(Chars1) != sizeof(Chars2));
|
|
for (int i = 0; i < len; i++) {
|
|
if (a[i] != b[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
|
|
template<>
|
|
class RawStringComparator<uint16_t, uint16_t> {
|
|
public:
|
|
static inline bool compare(const uint16_t* a, const uint16_t* b, int len) {
|
|
return CompareRawStringContents(a, b, len);
|
|
}
|
|
};
|
|
|
|
|
|
template<>
|
|
class RawStringComparator<uint8_t, uint8_t> {
|
|
public:
|
|
static inline bool compare(const uint8_t* a, const uint8_t* b, int len) {
|
|
return CompareRawStringContents(a, b, len);
|
|
}
|
|
};
|
|
|
|
|
|
class StringComparator {
|
|
class State {
|
|
public:
|
|
explicit inline State(ConsStringIteratorOp* op)
|
|
: op_(op), is_one_byte_(true), length_(0), buffer8_(NULL) {}
|
|
|
|
inline void Init(String* string, unsigned len) {
|
|
op_->Reset();
|
|
int32_t type = string->map()->instance_type();
|
|
String::Visit(string, 0, *this, *op_, type, len);
|
|
}
|
|
|
|
inline void VisitOneByteString(const uint8_t* chars, unsigned length) {
|
|
is_one_byte_ = true;
|
|
buffer8_ = chars;
|
|
length_ = length;
|
|
}
|
|
|
|
inline void VisitTwoByteString(const uint16_t* chars, unsigned length) {
|
|
is_one_byte_ = false;
|
|
buffer16_ = chars;
|
|
length_ = length;
|
|
}
|
|
|
|
void Advance(unsigned consumed) {
|
|
ASSERT(consumed <= length_);
|
|
// Still in buffer.
|
|
if (length_ != consumed) {
|
|
if (is_one_byte_) {
|
|
buffer8_ += consumed;
|
|
} else {
|
|
buffer16_ += consumed;
|
|
}
|
|
length_ -= consumed;
|
|
return;
|
|
}
|
|
// Advance state.
|
|
ASSERT(op_->HasMore());
|
|
int32_t type = 0;
|
|
unsigned length = 0;
|
|
String* next = op_->ContinueOperation(&type, &length);
|
|
ASSERT(next != NULL);
|
|
ConsStringNullOp null_op;
|
|
String::Visit(next, 0, *this, null_op, type, length);
|
|
}
|
|
|
|
ConsStringIteratorOp* const op_;
|
|
bool is_one_byte_;
|
|
unsigned length_;
|
|
union {
|
|
const uint8_t* buffer8_;
|
|
const uint16_t* buffer16_;
|
|
};
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(State);
|
|
};
|
|
|
|
public:
|
|
inline StringComparator(ConsStringIteratorOp* op_1,
|
|
ConsStringIteratorOp* op_2)
|
|
: state_1_(op_1),
|
|
state_2_(op_2) {
|
|
}
|
|
|
|
template<typename Chars1, typename Chars2>
|
|
static inline bool Equals(State* state_1, State* state_2, unsigned to_check) {
|
|
const Chars1* a = reinterpret_cast<const Chars1*>(state_1->buffer8_);
|
|
const Chars2* b = reinterpret_cast<const Chars2*>(state_2->buffer8_);
|
|
return RawStringComparator<Chars1, Chars2>::compare(a, b, to_check);
|
|
}
|
|
|
|
bool Equals(unsigned length, String* string_1, String* string_2) {
|
|
ASSERT(length != 0);
|
|
state_1_.Init(string_1, length);
|
|
state_2_.Init(string_2, length);
|
|
while (true) {
|
|
unsigned to_check = Min(state_1_.length_, state_2_.length_);
|
|
ASSERT(to_check > 0 && to_check <= length);
|
|
bool is_equal;
|
|
if (state_1_.is_one_byte_) {
|
|
if (state_2_.is_one_byte_) {
|
|
is_equal = Equals<uint8_t, uint8_t>(&state_1_, &state_2_, to_check);
|
|
} else {
|
|
is_equal = Equals<uint8_t, uint16_t>(&state_1_, &state_2_, to_check);
|
|
}
|
|
} else {
|
|
if (state_2_.is_one_byte_) {
|
|
is_equal = Equals<uint16_t, uint8_t>(&state_1_, &state_2_, to_check);
|
|
} else {
|
|
is_equal = Equals<uint16_t, uint16_t>(&state_1_, &state_2_, to_check);
|
|
}
|
|
}
|
|
// Looping done.
|
|
if (!is_equal) return false;
|
|
length -= to_check;
|
|
// Exit condition. Strings are equal.
|
|
if (length == 0) return true;
|
|
state_1_.Advance(to_check);
|
|
state_2_.Advance(to_check);
|
|
}
|
|
}
|
|
|
|
private:
|
|
State state_1_;
|
|
State state_2_;
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(StringComparator);
|
|
};
|
|
|
|
|
|
bool String::SlowEquals(String* other) {
|
|
// Fast check: negative check with lengths.
|
|
int len = length();
|
|
if (len != other->length()) return false;
|
|
if (len == 0) return true;
|
|
|
|
// Fast check: if hash code is computed for both strings
|
|
// a fast negative check can be performed.
|
|
if (HasHashCode() && other->HasHashCode()) {
|
|
#ifdef DEBUG
|
|
if (FLAG_enable_slow_asserts) {
|
|
if (Hash() != other->Hash()) {
|
|
bool found_difference = false;
|
|
for (int i = 0; i < len; i++) {
|
|
if (Get(i) != other->Get(i)) {
|
|
found_difference = true;
|
|
break;
|
|
}
|
|
}
|
|
ASSERT(found_difference);
|
|
}
|
|
}
|
|
#endif
|
|
if (Hash() != other->Hash()) return false;
|
|
}
|
|
|
|
// We know the strings are both non-empty. Compare the first chars
|
|
// before we try to flatten the strings.
|
|
if (this->Get(0) != other->Get(0)) return false;
|
|
|
|
String* lhs = this->TryFlattenGetString();
|
|
String* rhs = other->TryFlattenGetString();
|
|
|
|
// TODO(dcarney): Compare all types of flat strings with a Visitor.
|
|
if (StringShape(lhs).IsSequentialAscii() &&
|
|
StringShape(rhs).IsSequentialAscii()) {
|
|
const uint8_t* str1 = SeqOneByteString::cast(lhs)->GetChars();
|
|
const uint8_t* str2 = SeqOneByteString::cast(rhs)->GetChars();
|
|
return CompareRawStringContents(str1, str2, len);
|
|
}
|
|
|
|
Isolate* isolate = GetIsolate();
|
|
StringComparator comparator(isolate->objects_string_compare_iterator_a(),
|
|
isolate->objects_string_compare_iterator_b());
|
|
|
|
return comparator.Equals(static_cast<unsigned>(len), lhs, rhs);
|
|
}
|
|
|
|
|
|
bool String::MarkAsUndetectable() {
|
|
if (StringShape(this).IsInternalized()) return false;
|
|
|
|
Map* map = this->map();
|
|
Heap* heap = GetHeap();
|
|
if (map == heap->string_map()) {
|
|
this->set_map(heap->undetectable_string_map());
|
|
return true;
|
|
} else if (map == heap->ascii_string_map()) {
|
|
this->set_map(heap->undetectable_ascii_string_map());
|
|
return true;
|
|
}
|
|
// Rest cannot be marked as undetectable
|
|
return false;
|
|
}
|
|
|
|
|
|
bool String::IsUtf8EqualTo(Vector<const char> str, bool allow_prefix_match) {
|
|
int slen = length();
|
|
// Can't check exact length equality, but we can check bounds.
|
|
int str_len = str.length();
|
|
if (!allow_prefix_match &&
|
|
(str_len < slen ||
|
|
str_len > slen*static_cast<int>(unibrow::Utf8::kMaxEncodedSize))) {
|
|
return false;
|
|
}
|
|
int i;
|
|
unsigned remaining_in_str = static_cast<unsigned>(str_len);
|
|
const uint8_t* utf8_data = reinterpret_cast<const uint8_t*>(str.start());
|
|
for (i = 0; i < slen && remaining_in_str > 0; i++) {
|
|
unsigned cursor = 0;
|
|
uint32_t r = unibrow::Utf8::ValueOf(utf8_data, remaining_in_str, &cursor);
|
|
ASSERT(cursor > 0 && cursor <= remaining_in_str);
|
|
if (r > unibrow::Utf16::kMaxNonSurrogateCharCode) {
|
|
if (i > slen - 1) return false;
|
|
if (Get(i++) != unibrow::Utf16::LeadSurrogate(r)) return false;
|
|
if (Get(i) != unibrow::Utf16::TrailSurrogate(r)) return false;
|
|
} else {
|
|
if (Get(i) != r) return false;
|
|
}
|
|
utf8_data += cursor;
|
|
remaining_in_str -= cursor;
|
|
}
|
|
return (allow_prefix_match || i == slen) && remaining_in_str == 0;
|
|
}
|
|
|
|
|
|
bool String::IsOneByteEqualTo(Vector<const uint8_t> str) {
|
|
int slen = length();
|
|
if (str.length() != slen) return false;
|
|
DisallowHeapAllocation no_gc;
|
|
FlatContent content = GetFlatContent();
|
|
if (content.IsAscii()) {
|
|
return CompareChars(content.ToOneByteVector().start(),
|
|
str.start(), slen) == 0;
|
|
}
|
|
for (int i = 0; i < slen; i++) {
|
|
if (Get(i) != static_cast<uint16_t>(str[i])) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool String::IsTwoByteEqualTo(Vector<const uc16> str) {
|
|
int slen = length();
|
|
if (str.length() != slen) return false;
|
|
DisallowHeapAllocation no_gc;
|
|
FlatContent content = GetFlatContent();
|
|
if (content.IsTwoByte()) {
|
|
return CompareChars(content.ToUC16Vector().start(), str.start(), slen) == 0;
|
|
}
|
|
for (int i = 0; i < slen; i++) {
|
|
if (Get(i) != str[i]) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
class IteratingStringHasher: public StringHasher {
|
|
public:
|
|
static inline uint32_t Hash(String* string, uint32_t seed) {
|
|
const unsigned len = static_cast<unsigned>(string->length());
|
|
IteratingStringHasher hasher(len, seed);
|
|
if (hasher.has_trivial_hash()) {
|
|
return hasher.GetHashField();
|
|
}
|
|
int32_t type = string->map()->instance_type();
|
|
ConsStringNullOp null_op;
|
|
String::Visit(string, 0, hasher, null_op, type, len);
|
|
// Flat strings terminate immediately.
|
|
if (hasher.consumed_ == len) {
|
|
ASSERT(!string->IsConsString());
|
|
return hasher.GetHashField();
|
|
}
|
|
ASSERT(string->IsConsString());
|
|
// This is a ConsString, iterate across it.
|
|
ConsStringIteratorOp op;
|
|
unsigned offset = 0;
|
|
unsigned leaf_length = len;
|
|
string = op.Operate(string, &offset, &type, &leaf_length);
|
|
while (true) {
|
|
ASSERT(hasher.consumed_ < len);
|
|
String::Visit(string, 0, hasher, null_op, type, leaf_length);
|
|
if (hasher.consumed_ == len) break;
|
|
string = op.ContinueOperation(&type, &leaf_length);
|
|
// This should be taken care of by the length check.
|
|
ASSERT(string != NULL);
|
|
}
|
|
return hasher.GetHashField();
|
|
}
|
|
inline void VisitOneByteString(const uint8_t* chars, unsigned length) {
|
|
AddCharacters(chars, static_cast<int>(length));
|
|
consumed_ += length;
|
|
}
|
|
inline void VisitTwoByteString(const uint16_t* chars, unsigned length) {
|
|
AddCharacters(chars, static_cast<int>(length));
|
|
consumed_ += length;
|
|
}
|
|
|
|
private:
|
|
inline IteratingStringHasher(int len, uint32_t seed)
|
|
: StringHasher(len, seed),
|
|
consumed_(0) {}
|
|
unsigned consumed_;
|
|
DISALLOW_COPY_AND_ASSIGN(IteratingStringHasher);
|
|
};
|
|
|
|
|
|
uint32_t String::ComputeAndSetHash() {
|
|
// Should only be called if hash code has not yet been computed.
|
|
ASSERT(!HasHashCode());
|
|
|
|
// Store the hash code in the object.
|
|
uint32_t field = IteratingStringHasher::Hash(this, GetHeap()->HashSeed());
|
|
set_hash_field(field);
|
|
|
|
// Check the hash code is there.
|
|
ASSERT(HasHashCode());
|
|
uint32_t result = field >> kHashShift;
|
|
ASSERT(result != 0); // Ensure that the hash value of 0 is never computed.
|
|
return result;
|
|
}
|
|
|
|
|
|
bool String::ComputeArrayIndex(uint32_t* index) {
|
|
int length = this->length();
|
|
if (length == 0 || length > kMaxArrayIndexSize) return false;
|
|
ConsStringIteratorOp op;
|
|
StringCharacterStream stream(this, &op);
|
|
uint16_t ch = stream.GetNext();
|
|
|
|
// If the string begins with a '0' character, it must only consist
|
|
// of it to be a legal array index.
|
|
if (ch == '0') {
|
|
*index = 0;
|
|
return length == 1;
|
|
}
|
|
|
|
// Convert string to uint32 array index; character by character.
|
|
int d = ch - '0';
|
|
if (d < 0 || d > 9) return false;
|
|
uint32_t result = d;
|
|
while (stream.HasMore()) {
|
|
d = stream.GetNext() - '0';
|
|
if (d < 0 || d > 9) return false;
|
|
// Check that the new result is below the 32 bit limit.
|
|
if (result > 429496729U - ((d > 5) ? 1 : 0)) return false;
|
|
result = (result * 10) + d;
|
|
}
|
|
|
|
*index = result;
|
|
return true;
|
|
}
|
|
|
|
|
|
bool String::SlowAsArrayIndex(uint32_t* index) {
|
|
if (length() <= kMaxCachedArrayIndexLength) {
|
|
Hash(); // force computation of hash code
|
|
uint32_t field = hash_field();
|
|
if ((field & kIsNotArrayIndexMask) != 0) return false;
|
|
// Isolate the array index form the full hash field.
|
|
*index = (kArrayIndexHashMask & field) >> kHashShift;
|
|
return true;
|
|
} else {
|
|
return ComputeArrayIndex(index);
|
|
}
|
|
}
|
|
|
|
|
|
Handle<String> SeqString::Truncate(Handle<SeqString> string, int new_length) {
|
|
int new_size, old_size;
|
|
int old_length = string->length();
|
|
if (old_length <= new_length) return string;
|
|
|
|
if (string->IsSeqOneByteString()) {
|
|
old_size = SeqOneByteString::SizeFor(old_length);
|
|
new_size = SeqOneByteString::SizeFor(new_length);
|
|
} else {
|
|
ASSERT(string->IsSeqTwoByteString());
|
|
old_size = SeqTwoByteString::SizeFor(old_length);
|
|
new_size = SeqTwoByteString::SizeFor(new_length);
|
|
}
|
|
|
|
int delta = old_size - new_size;
|
|
string->set_length(new_length);
|
|
|
|
Address start_of_string = string->address();
|
|
ASSERT_OBJECT_ALIGNED(start_of_string);
|
|
ASSERT_OBJECT_ALIGNED(start_of_string + new_size);
|
|
|
|
Heap* heap = string->GetHeap();
|
|
NewSpace* newspace = heap->new_space();
|
|
if (newspace->Contains(start_of_string) &&
|
|
newspace->top() == start_of_string + old_size) {
|
|
// Last allocated object in new space. Simply lower allocation top.
|
|
*(newspace->allocation_top_address()) = start_of_string + new_size;
|
|
} else {
|
|
// Sizes are pointer size aligned, so that we can use filler objects
|
|
// that are a multiple of pointer size.
|
|
heap->CreateFillerObjectAt(start_of_string + new_size, delta);
|
|
}
|
|
if (Marking::IsBlack(Marking::MarkBitFrom(start_of_string))) {
|
|
MemoryChunk::IncrementLiveBytesFromMutator(start_of_string, -delta);
|
|
}
|
|
|
|
|
|
if (new_length == 0) return heap->isolate()->factory()->empty_string();
|
|
return string;
|
|
}
|
|
|
|
|
|
AllocationSiteInfo* AllocationSiteInfo::FindForJSObject(JSObject* object) {
|
|
// Currently, AllocationSiteInfo objects are only allocated immediately
|
|
// after JSArrays in NewSpace, and detecting whether a JSArray has one
|
|
// involves carefully checking the object immediately after the JSArray
|
|
// (if there is one) to see if it's an AllocationSiteInfo.
|
|
if (FLAG_track_allocation_sites && object->GetHeap()->InNewSpace(object)) {
|
|
Address ptr_end = (reinterpret_cast<Address>(object) - kHeapObjectTag) +
|
|
object->Size();
|
|
if ((ptr_end + AllocationSiteInfo::kSize) <=
|
|
object->GetHeap()->NewSpaceTop()) {
|
|
// There is room in newspace for allocation info. Do we have some?
|
|
Map** possible_allocation_site_info_map =
|
|
reinterpret_cast<Map**>(ptr_end);
|
|
if (*possible_allocation_site_info_map ==
|
|
object->GetHeap()->allocation_site_info_map()) {
|
|
AllocationSiteInfo* info = AllocationSiteInfo::cast(
|
|
reinterpret_cast<Object*>(ptr_end + 1));
|
|
return info;
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
uint32_t StringHasher::MakeArrayIndexHash(uint32_t value, int length) {
|
|
// For array indexes mix the length into the hash as an array index could
|
|
// be zero.
|
|
ASSERT(length > 0);
|
|
ASSERT(length <= String::kMaxArrayIndexSize);
|
|
ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
|
|
(1 << String::kArrayIndexValueBits));
|
|
|
|
value <<= String::kHashShift;
|
|
value |= length << String::kArrayIndexHashLengthShift;
|
|
|
|
ASSERT((value & String::kIsNotArrayIndexMask) == 0);
|
|
ASSERT((length > String::kMaxCachedArrayIndexLength) ||
|
|
(value & String::kContainsCachedArrayIndexMask) == 0);
|
|
return value;
|
|
}
|
|
|
|
|
|
uint32_t StringHasher::GetHashField() {
|
|
if (length_ <= String::kMaxHashCalcLength) {
|
|
if (is_array_index_) {
|
|
return MakeArrayIndexHash(array_index_, length_);
|
|
}
|
|
return (GetHashCore(raw_running_hash_) << String::kHashShift) |
|
|
String::kIsNotArrayIndexMask;
|
|
} else {
|
|
return (length_ << String::kHashShift) | String::kIsNotArrayIndexMask;
|
|
}
|
|
}
|
|
|
|
|
|
uint32_t StringHasher::ComputeUtf8Hash(Vector<const char> chars,
|
|
uint32_t seed,
|
|
int* utf16_length_out) {
|
|
int vector_length = chars.length();
|
|
// Handle some edge cases
|
|
if (vector_length <= 1) {
|
|
ASSERT(vector_length == 0 ||
|
|
static_cast<uint8_t>(chars.start()[0]) <=
|
|
unibrow::Utf8::kMaxOneByteChar);
|
|
*utf16_length_out = vector_length;
|
|
return HashSequentialString(chars.start(), vector_length, seed);
|
|
}
|
|
// Start with a fake length which won't affect computation.
|
|
// It will be updated later.
|
|
StringHasher hasher(String::kMaxArrayIndexSize, seed);
|
|
unsigned remaining = static_cast<unsigned>(vector_length);
|
|
const uint8_t* stream = reinterpret_cast<const uint8_t*>(chars.start());
|
|
int utf16_length = 0;
|
|
bool is_index = true;
|
|
ASSERT(hasher.is_array_index_);
|
|
while (remaining > 0) {
|
|
unsigned consumed = 0;
|
|
uint32_t c = unibrow::Utf8::ValueOf(stream, remaining, &consumed);
|
|
ASSERT(consumed > 0 && consumed <= remaining);
|
|
stream += consumed;
|
|
remaining -= consumed;
|
|
bool is_two_characters = c > unibrow::Utf16::kMaxNonSurrogateCharCode;
|
|
utf16_length += is_two_characters ? 2 : 1;
|
|
// No need to keep hashing. But we do need to calculate utf16_length.
|
|
if (utf16_length > String::kMaxHashCalcLength) continue;
|
|
if (is_two_characters) {
|
|
uint16_t c1 = unibrow::Utf16::LeadSurrogate(c);
|
|
uint16_t c2 = unibrow::Utf16::TrailSurrogate(c);
|
|
hasher.AddCharacter(c1);
|
|
hasher.AddCharacter(c2);
|
|
if (is_index) is_index = hasher.UpdateIndex(c1);
|
|
if (is_index) is_index = hasher.UpdateIndex(c2);
|
|
} else {
|
|
hasher.AddCharacter(c);
|
|
if (is_index) is_index = hasher.UpdateIndex(c);
|
|
}
|
|
}
|
|
*utf16_length_out = static_cast<int>(utf16_length);
|
|
// Must set length here so that hash computation is correct.
|
|
hasher.length_ = utf16_length;
|
|
return hasher.GetHashField();
|
|
}
|
|
|
|
|
|
MaybeObject* String::SubString(int start, int end, PretenureFlag pretenure) {
|
|
Heap* heap = GetHeap();
|
|
if (start == 0 && end == length()) return this;
|
|
MaybeObject* result = heap->AllocateSubString(this, start, end, pretenure);
|
|
return result;
|
|
}
|
|
|
|
|
|
void String::PrintOn(FILE* file) {
|
|
int length = this->length();
|
|
for (int i = 0; i < length; i++) {
|
|
PrintF(file, "%c", Get(i));
|
|
}
|
|
}
|
|
|
|
|
|
static void TrimEnumCache(Heap* heap, Map* map, DescriptorArray* descriptors) {
|
|
int live_enum = map->EnumLength();
|
|
if (live_enum == Map::kInvalidEnumCache) {
|
|
live_enum = map->NumberOfDescribedProperties(OWN_DESCRIPTORS, DONT_ENUM);
|
|
}
|
|
if (live_enum == 0) return descriptors->ClearEnumCache();
|
|
|
|
FixedArray* enum_cache = descriptors->GetEnumCache();
|
|
|
|
int to_trim = enum_cache->length() - live_enum;
|
|
if (to_trim <= 0) return;
|
|
RightTrimFixedArray<FROM_GC>(heap, descriptors->GetEnumCache(), to_trim);
|
|
|
|
if (!descriptors->HasEnumIndicesCache()) return;
|
|
FixedArray* enum_indices_cache = descriptors->GetEnumIndicesCache();
|
|
RightTrimFixedArray<FROM_GC>(heap, enum_indices_cache, to_trim);
|
|
}
|
|
|
|
|
|
static void TrimDescriptorArray(Heap* heap,
|
|
Map* map,
|
|
DescriptorArray* descriptors,
|
|
int number_of_own_descriptors) {
|
|
int number_of_descriptors = descriptors->number_of_descriptors_storage();
|
|
int to_trim = number_of_descriptors - number_of_own_descriptors;
|
|
if (to_trim == 0) return;
|
|
|
|
RightTrimFixedArray<FROM_GC>(
|
|
heap, descriptors, to_trim * DescriptorArray::kDescriptorSize);
|
|
descriptors->SetNumberOfDescriptors(number_of_own_descriptors);
|
|
|
|
if (descriptors->HasEnumCache()) TrimEnumCache(heap, map, descriptors);
|
|
descriptors->Sort();
|
|
}
|
|
|
|
|
|
// Clear a possible back pointer in case the transition leads to a dead map.
|
|
// Return true in case a back pointer has been cleared and false otherwise.
|
|
static bool ClearBackPointer(Heap* heap, Map* target) {
|
|
if (Marking::MarkBitFrom(target).Get()) return false;
|
|
target->SetBackPointer(heap->undefined_value(), SKIP_WRITE_BARRIER);
|
|
return true;
|
|
}
|
|
|
|
|
|
// TODO(mstarzinger): This method should be moved into MarkCompactCollector,
|
|
// because it cannot be called from outside the GC and we already have methods
|
|
// depending on the transitions layout in the GC anyways.
|
|
void Map::ClearNonLiveTransitions(Heap* heap) {
|
|
// If there are no transitions to be cleared, return.
|
|
// TODO(verwaest) Should be an assert, otherwise back pointers are not
|
|
// properly cleared.
|
|
if (!HasTransitionArray()) return;
|
|
|
|
TransitionArray* t = transitions();
|
|
MarkCompactCollector* collector = heap->mark_compact_collector();
|
|
|
|
int transition_index = 0;
|
|
|
|
DescriptorArray* descriptors = instance_descriptors();
|
|
bool descriptors_owner_died = false;
|
|
|
|
// Compact all live descriptors to the left.
|
|
for (int i = 0; i < t->number_of_transitions(); ++i) {
|
|
Map* target = t->GetTarget(i);
|
|
if (ClearBackPointer(heap, target)) {
|
|
if (target->instance_descriptors() == descriptors) {
|
|
descriptors_owner_died = true;
|
|
}
|
|
} else {
|
|
if (i != transition_index) {
|
|
Name* key = t->GetKey(i);
|
|
t->SetKey(transition_index, key);
|
|
Object** key_slot = t->GetKeySlot(transition_index);
|
|
collector->RecordSlot(key_slot, key_slot, key);
|
|
// Target slots do not need to be recorded since maps are not compacted.
|
|
t->SetTarget(transition_index, t->GetTarget(i));
|
|
}
|
|
transition_index++;
|
|
}
|
|
}
|
|
|
|
if (t->HasElementsTransition() &&
|
|
ClearBackPointer(heap, t->elements_transition())) {
|
|
if (t->elements_transition()->instance_descriptors() == descriptors) {
|
|
descriptors_owner_died = true;
|
|
}
|
|
t->ClearElementsTransition();
|
|
} else {
|
|
// If there are no transitions to be cleared, return.
|
|
// TODO(verwaest) Should be an assert, otherwise back pointers are not
|
|
// properly cleared.
|
|
if (transition_index == t->number_of_transitions()) return;
|
|
}
|
|
|
|
int number_of_own_descriptors = NumberOfOwnDescriptors();
|
|
|
|
if (descriptors_owner_died) {
|
|
if (number_of_own_descriptors > 0) {
|
|
TrimDescriptorArray(heap, this, descriptors, number_of_own_descriptors);
|
|
ASSERT(descriptors->number_of_descriptors() == number_of_own_descriptors);
|
|
} else {
|
|
ASSERT(descriptors == GetHeap()->empty_descriptor_array());
|
|
}
|
|
}
|
|
|
|
int trim = t->number_of_transitions() - transition_index;
|
|
if (trim > 0) {
|
|
RightTrimFixedArray<FROM_GC>(heap, t, t->IsSimpleTransition()
|
|
? trim : trim * TransitionArray::kTransitionSize);
|
|
}
|
|
}
|
|
|
|
|
|
int Map::Hash() {
|
|
// For performance reasons we only hash the 3 most variable fields of a map:
|
|
// constructor, prototype and bit_field2.
|
|
|
|
// Shift away the tag.
|
|
int hash = (static_cast<uint32_t>(
|
|
reinterpret_cast<uintptr_t>(constructor())) >> 2);
|
|
|
|
// XOR-ing the prototype and constructor directly yields too many zero bits
|
|
// when the two pointers are close (which is fairly common).
|
|
// To avoid this we shift the prototype 4 bits relatively to the constructor.
|
|
hash ^= (static_cast<uint32_t>(
|
|
reinterpret_cast<uintptr_t>(prototype())) << 2);
|
|
|
|
return hash ^ (hash >> 16) ^ bit_field2();
|
|
}
|
|
|
|
|
|
static bool CheckEquivalent(Map* first, Map* second) {
|
|
return
|
|
first->constructor() == second->constructor() &&
|
|
first->prototype() == second->prototype() &&
|
|
first->instance_type() == second->instance_type() &&
|
|
first->bit_field() == second->bit_field() &&
|
|
first->bit_field2() == second->bit_field2() &&
|
|
first->is_observed() == second->is_observed() &&
|
|
first->function_with_prototype() == second->function_with_prototype();
|
|
}
|
|
|
|
|
|
bool Map::EquivalentToForTransition(Map* other) {
|
|
return CheckEquivalent(this, other);
|
|
}
|
|
|
|
|
|
bool Map::EquivalentToForNormalization(Map* other,
|
|
PropertyNormalizationMode mode) {
|
|
int properties = mode == CLEAR_INOBJECT_PROPERTIES
|
|
? 0 : other->inobject_properties();
|
|
return CheckEquivalent(this, other) && inobject_properties() == properties;
|
|
}
|
|
|
|
|
|
void JSFunction::JSFunctionIterateBody(int object_size, ObjectVisitor* v) {
|
|
// Iterate over all fields in the body but take care in dealing with
|
|
// the code entry.
|
|
IteratePointers(v, kPropertiesOffset, kCodeEntryOffset);
|
|
v->VisitCodeEntry(this->address() + kCodeEntryOffset);
|
|
IteratePointers(v, kCodeEntryOffset + kPointerSize, object_size);
|
|
}
|
|
|
|
|
|
void JSFunction::MarkForLazyRecompilation() {
|
|
ASSERT(is_compiled() || GetIsolate()->DebuggerHasBreakPoints());
|
|
ASSERT(!IsOptimized());
|
|
ASSERT(shared()->allows_lazy_compilation() ||
|
|
code()->optimizable());
|
|
set_code_no_write_barrier(
|
|
GetIsolate()->builtins()->builtin(Builtins::kLazyRecompile));
|
|
// No write barrier required, since the builtin is part of the root set.
|
|
}
|
|
|
|
|
|
void JSFunction::MarkForParallelRecompilation() {
|
|
ASSERT(is_compiled() || GetIsolate()->DebuggerHasBreakPoints());
|
|
ASSERT(!IsOptimized());
|
|
ASSERT(shared()->allows_lazy_compilation() || code()->optimizable());
|
|
if (!FLAG_parallel_recompilation) {
|
|
JSFunction::MarkForLazyRecompilation();
|
|
return;
|
|
}
|
|
if (FLAG_trace_parallel_recompilation) {
|
|
PrintF(" ** Marking ");
|
|
PrintName();
|
|
PrintF(" for parallel recompilation.\n");
|
|
}
|
|
set_code_no_write_barrier(
|
|
GetIsolate()->builtins()->builtin(Builtins::kParallelRecompile));
|
|
// No write barrier required, since the builtin is part of the root set.
|
|
}
|
|
|
|
|
|
void JSFunction::MarkForInstallingRecompiledCode() {
|
|
// The debugger could have switched the builtin to lazy compile.
|
|
// In that case, simply carry on. It will be dealt with later.
|
|
ASSERT(!IsOptimized());
|
|
ASSERT(shared()->allows_lazy_compilation() || code()->optimizable());
|
|
ASSERT(FLAG_parallel_recompilation);
|
|
set_code_no_write_barrier(
|
|
GetIsolate()->builtins()->builtin(Builtins::kInstallRecompiledCode));
|
|
// No write barrier required, since the builtin is part of the root set.
|
|
}
|
|
|
|
|
|
void JSFunction::MarkInRecompileQueue() {
|
|
// We can only arrive here via the parallel-recompilation builtin. If
|
|
// break points were set, the code would point to the lazy-compile builtin.
|
|
ASSERT(!GetIsolate()->DebuggerHasBreakPoints());
|
|
ASSERT(IsMarkedForParallelRecompilation() && !IsOptimized());
|
|
ASSERT(shared()->allows_lazy_compilation() || code()->optimizable());
|
|
ASSERT(FLAG_parallel_recompilation);
|
|
if (FLAG_trace_parallel_recompilation) {
|
|
PrintF(" ** Queueing ");
|
|
PrintName();
|
|
PrintF(" for parallel recompilation.\n");
|
|
}
|
|
set_code_no_write_barrier(
|
|
GetIsolate()->builtins()->builtin(Builtins::kInRecompileQueue));
|
|
// No write barrier required, since the builtin is part of the root set.
|
|
}
|
|
|
|
|
|
static bool CompileLazyHelper(CompilationInfo* info,
|
|
ClearExceptionFlag flag) {
|
|
// Compile the source information to a code object.
|
|
ASSERT(info->IsOptimizing() || !info->shared_info()->is_compiled());
|
|
ASSERT(!info->isolate()->has_pending_exception());
|
|
bool result = Compiler::CompileLazy(info);
|
|
ASSERT(result != Isolate::Current()->has_pending_exception());
|
|
if (!result && flag == CLEAR_EXCEPTION) {
|
|
info->isolate()->clear_pending_exception();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
bool SharedFunctionInfo::CompileLazy(Handle<SharedFunctionInfo> shared,
|
|
ClearExceptionFlag flag) {
|
|
ASSERT(shared->allows_lazy_compilation_without_context());
|
|
CompilationInfoWithZone info(shared);
|
|
return CompileLazyHelper(&info, flag);
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::AddToOptimizedCodeMap(
|
|
Handle<SharedFunctionInfo> shared,
|
|
Handle<Context> native_context,
|
|
Handle<Code> code,
|
|
Handle<FixedArray> literals) {
|
|
CALL_HEAP_FUNCTION_VOID(
|
|
shared->GetIsolate(),
|
|
shared->AddToOptimizedCodeMap(*native_context, *code, *literals));
|
|
}
|
|
|
|
|
|
MaybeObject* SharedFunctionInfo::AddToOptimizedCodeMap(Context* native_context,
|
|
Code* code,
|
|
FixedArray* literals) {
|
|
ASSERT(code->kind() == Code::OPTIMIZED_FUNCTION);
|
|
ASSERT(native_context->IsNativeContext());
|
|
STATIC_ASSERT(kEntryLength == 3);
|
|
Heap* heap = GetHeap();
|
|
FixedArray* new_code_map;
|
|
Object* value = optimized_code_map();
|
|
if (value->IsSmi()) {
|
|
// No optimized code map.
|
|
ASSERT_EQ(0, Smi::cast(value)->value());
|
|
// Crate 3 entries per context {context, code, literals}.
|
|
MaybeObject* maybe = heap->AllocateFixedArray(kInitialLength);
|
|
if (!maybe->To(&new_code_map)) return maybe;
|
|
new_code_map->set(kEntriesStart + 0, native_context);
|
|
new_code_map->set(kEntriesStart + 1, code);
|
|
new_code_map->set(kEntriesStart + 2, literals);
|
|
} else {
|
|
// Copy old map and append one new entry.
|
|
FixedArray* old_code_map = FixedArray::cast(value);
|
|
ASSERT_EQ(-1, SearchOptimizedCodeMap(native_context));
|
|
int old_length = old_code_map->length();
|
|
int new_length = old_length + kEntryLength;
|
|
MaybeObject* maybe = old_code_map->CopySize(new_length);
|
|
if (!maybe->To(&new_code_map)) return maybe;
|
|
new_code_map->set(old_length + 0, native_context);
|
|
new_code_map->set(old_length + 1, code);
|
|
new_code_map->set(old_length + 2, literals);
|
|
// Zap the old map for the sake of the heap verifier.
|
|
if (Heap::ShouldZapGarbage()) {
|
|
Object** data = old_code_map->data_start();
|
|
MemsetPointer(data, heap->the_hole_value(), old_length);
|
|
}
|
|
}
|
|
#ifdef DEBUG
|
|
for (int i = kEntriesStart; i < new_code_map->length(); i += kEntryLength) {
|
|
ASSERT(new_code_map->get(i)->IsNativeContext());
|
|
ASSERT(new_code_map->get(i + 1)->IsCode());
|
|
ASSERT(Code::cast(new_code_map->get(i + 1))->kind() ==
|
|
Code::OPTIMIZED_FUNCTION);
|
|
ASSERT(new_code_map->get(i + 2)->IsFixedArray());
|
|
}
|
|
#endif
|
|
set_optimized_code_map(new_code_map);
|
|
return new_code_map;
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::InstallFromOptimizedCodeMap(JSFunction* function,
|
|
int index) {
|
|
ASSERT(index > kEntriesStart);
|
|
FixedArray* code_map = FixedArray::cast(optimized_code_map());
|
|
if (!bound()) {
|
|
FixedArray* cached_literals = FixedArray::cast(code_map->get(index + 1));
|
|
ASSERT(cached_literals != NULL);
|
|
function->set_literals(cached_literals);
|
|
}
|
|
Code* code = Code::cast(code_map->get(index));
|
|
ASSERT(code != NULL);
|
|
ASSERT(function->context()->native_context() == code_map->get(index - 1));
|
|
function->ReplaceCode(code);
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::ClearOptimizedCodeMap() {
|
|
FixedArray* code_map = FixedArray::cast(optimized_code_map());
|
|
|
|
// If the next map link slot is already used then the function was
|
|
// enqueued with code flushing and we remove it now.
|
|
if (!code_map->get(kNextMapIndex)->IsUndefined()) {
|
|
CodeFlusher* flusher = GetHeap()->mark_compact_collector()->code_flusher();
|
|
flusher->EvictOptimizedCodeMap(this);
|
|
}
|
|
|
|
ASSERT(code_map->get(kNextMapIndex)->IsUndefined());
|
|
set_optimized_code_map(Smi::FromInt(0));
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::EvictFromOptimizedCodeMap(Code* optimized_code,
|
|
const char* reason) {
|
|
if (optimized_code_map()->IsSmi()) return;
|
|
|
|
int i;
|
|
bool removed_entry = false;
|
|
FixedArray* code_map = FixedArray::cast(optimized_code_map());
|
|
for (i = kEntriesStart; i < code_map->length(); i += kEntryLength) {
|
|
ASSERT(code_map->get(i)->IsNativeContext());
|
|
if (Code::cast(code_map->get(i + 1)) == optimized_code) {
|
|
if (FLAG_trace_opt) {
|
|
PrintF("[evicting entry from optimizing code map (%s) for ", reason);
|
|
ShortPrint();
|
|
PrintF("]\n");
|
|
}
|
|
removed_entry = true;
|
|
break;
|
|
}
|
|
}
|
|
while (i < (code_map->length() - kEntryLength)) {
|
|
code_map->set(i, code_map->get(i + kEntryLength));
|
|
code_map->set(i + 1, code_map->get(i + 1 + kEntryLength));
|
|
code_map->set(i + 2, code_map->get(i + 2 + kEntryLength));
|
|
i += kEntryLength;
|
|
}
|
|
if (removed_entry) {
|
|
// Always trim even when array is cleared because of heap verifier.
|
|
RightTrimFixedArray<FROM_MUTATOR>(GetHeap(), code_map, kEntryLength);
|
|
if (code_map->length() == kEntriesStart) {
|
|
ClearOptimizedCodeMap();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::TrimOptimizedCodeMap(int shrink_by) {
|
|
FixedArray* code_map = FixedArray::cast(optimized_code_map());
|
|
ASSERT(shrink_by % kEntryLength == 0);
|
|
ASSERT(shrink_by <= code_map->length() - kEntriesStart);
|
|
// Always trim even when array is cleared because of heap verifier.
|
|
RightTrimFixedArray<FROM_GC>(GetHeap(), code_map, shrink_by);
|
|
if (code_map->length() == kEntriesStart) {
|
|
ClearOptimizedCodeMap();
|
|
}
|
|
}
|
|
|
|
|
|
bool JSFunction::CompileLazy(Handle<JSFunction> function,
|
|
ClearExceptionFlag flag) {
|
|
bool result = true;
|
|
if (function->shared()->is_compiled()) {
|
|
function->ReplaceCode(function->shared()->code());
|
|
} else {
|
|
ASSERT(function->shared()->allows_lazy_compilation());
|
|
CompilationInfoWithZone info(function);
|
|
result = CompileLazyHelper(&info, flag);
|
|
ASSERT(!result || function->is_compiled());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
bool JSFunction::CompileOptimized(Handle<JSFunction> function,
|
|
BailoutId osr_ast_id,
|
|
ClearExceptionFlag flag) {
|
|
CompilationInfoWithZone info(function);
|
|
info.SetOptimizing(osr_ast_id);
|
|
return CompileLazyHelper(&info, flag);
|
|
}
|
|
|
|
|
|
bool JSFunction::EnsureCompiled(Handle<JSFunction> function,
|
|
ClearExceptionFlag flag) {
|
|
return function->is_compiled() || CompileLazy(function, flag);
|
|
}
|
|
|
|
|
|
bool JSFunction::IsInlineable() {
|
|
if (IsBuiltin()) return false;
|
|
SharedFunctionInfo* shared_info = shared();
|
|
// Check that the function has a script associated with it.
|
|
if (!shared_info->script()->IsScript()) return false;
|
|
if (shared_info->optimization_disabled()) return false;
|
|
Code* code = shared_info->code();
|
|
if (code->kind() == Code::OPTIMIZED_FUNCTION) return true;
|
|
// If we never ran this (unlikely) then lets try to optimize it.
|
|
if (code->kind() != Code::FUNCTION) return true;
|
|
return code->optimizable();
|
|
}
|
|
|
|
|
|
void JSObject::OptimizeAsPrototype(Handle<JSObject> object) {
|
|
CALL_HEAP_FUNCTION_VOID(object->GetIsolate(), object->OptimizeAsPrototype());
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::OptimizeAsPrototype() {
|
|
if (IsGlobalObject()) return this;
|
|
|
|
// Make sure prototypes are fast objects and their maps have the bit set
|
|
// so they remain fast.
|
|
if (!HasFastProperties()) {
|
|
MaybeObject* new_proto = TransformToFastProperties(0);
|
|
if (new_proto->IsFailure()) return new_proto;
|
|
ASSERT(new_proto == this);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
|
|
static MUST_USE_RESULT MaybeObject* CacheInitialJSArrayMaps(
|
|
Context* native_context, Map* initial_map) {
|
|
// Replace all of the cached initial array maps in the native context with
|
|
// the appropriate transitioned elements kind maps.
|
|
Heap* heap = native_context->GetHeap();
|
|
MaybeObject* maybe_maps =
|
|
heap->AllocateFixedArrayWithHoles(kElementsKindCount, TENURED);
|
|
FixedArray* maps;
|
|
if (!maybe_maps->To(&maps)) return maybe_maps;
|
|
|
|
Map* current_map = initial_map;
|
|
ElementsKind kind = current_map->elements_kind();
|
|
ASSERT(kind == GetInitialFastElementsKind());
|
|
maps->set(kind, current_map);
|
|
for (int i = GetSequenceIndexFromFastElementsKind(kind) + 1;
|
|
i < kFastElementsKindCount; ++i) {
|
|
Map* new_map;
|
|
ElementsKind next_kind = GetFastElementsKindFromSequenceIndex(i);
|
|
if (current_map->HasElementsTransition()) {
|
|
new_map = current_map->elements_transition_map();
|
|
ASSERT(new_map->elements_kind() == next_kind);
|
|
} else {
|
|
MaybeObject* maybe_new_map =
|
|
current_map->CopyAsElementsKind(next_kind, INSERT_TRANSITION);
|
|
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
|
|
}
|
|
maps->set(next_kind, new_map);
|
|
current_map = new_map;
|
|
}
|
|
native_context->set_js_array_maps(maps);
|
|
return initial_map;
|
|
}
|
|
|
|
|
|
Handle<Object> CacheInitialJSArrayMaps(Handle<Context> native_context,
|
|
Handle<Map> initial_map) {
|
|
CALL_HEAP_FUNCTION(native_context->GetIsolate(),
|
|
CacheInitialJSArrayMaps(*native_context, *initial_map),
|
|
Object);
|
|
}
|
|
|
|
|
|
MaybeObject* JSFunction::SetInstancePrototype(Object* value) {
|
|
ASSERT(value->IsJSReceiver());
|
|
Heap* heap = GetHeap();
|
|
|
|
// First some logic for the map of the prototype to make sure it is in fast
|
|
// mode.
|
|
if (value->IsJSObject()) {
|
|
MaybeObject* ok = JSObject::cast(value)->OptimizeAsPrototype();
|
|
if (ok->IsFailure()) return ok;
|
|
}
|
|
|
|
// Now some logic for the maps of the objects that are created by using this
|
|
// function as a constructor.
|
|
if (has_initial_map()) {
|
|
// If the function has allocated the initial map replace it with a
|
|
// copy containing the new prototype. Also complete any in-object
|
|
// slack tracking that is in progress at this point because it is
|
|
// still tracking the old copy.
|
|
if (shared()->IsInobjectSlackTrackingInProgress()) {
|
|
shared()->CompleteInobjectSlackTracking();
|
|
}
|
|
Map* new_map;
|
|
MaybeObject* maybe_object = initial_map()->Copy();
|
|
if (!maybe_object->To(&new_map)) return maybe_object;
|
|
new_map->set_prototype(value);
|
|
|
|
// If the function is used as the global Array function, cache the
|
|
// initial map (and transitioned versions) in the native context.
|
|
Context* native_context = context()->native_context();
|
|
Object* array_function = native_context->get(Context::ARRAY_FUNCTION_INDEX);
|
|
if (array_function->IsJSFunction() &&
|
|
this == JSFunction::cast(array_function)) {
|
|
MaybeObject* ok = CacheInitialJSArrayMaps(native_context, new_map);
|
|
if (ok->IsFailure()) return ok;
|
|
}
|
|
|
|
set_initial_map(new_map);
|
|
} else {
|
|
// Put the value in the initial map field until an initial map is
|
|
// needed. At that point, a new initial map is created and the
|
|
// prototype is put into the initial map where it belongs.
|
|
set_prototype_or_initial_map(value);
|
|
}
|
|
heap->ClearInstanceofCache();
|
|
return value;
|
|
}
|
|
|
|
|
|
MaybeObject* JSFunction::SetPrototype(Object* value) {
|
|
ASSERT(should_have_prototype());
|
|
Object* construct_prototype = value;
|
|
|
|
// If the value is not a JSReceiver, store the value in the map's
|
|
// constructor field so it can be accessed. Also, set the prototype
|
|
// used for constructing objects to the original object prototype.
|
|
// See ECMA-262 13.2.2.
|
|
if (!value->IsJSReceiver()) {
|
|
// Copy the map so this does not affect unrelated functions.
|
|
// Remove map transitions because they point to maps with a
|
|
// different prototype.
|
|
Map* new_map;
|
|
MaybeObject* maybe_new_map = map()->Copy();
|
|
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
|
|
|
|
Heap* heap = new_map->GetHeap();
|
|
set_map(new_map);
|
|
new_map->set_constructor(value);
|
|
new_map->set_non_instance_prototype(true);
|
|
construct_prototype =
|
|
heap->isolate()->context()->native_context()->
|
|
initial_object_prototype();
|
|
} else {
|
|
map()->set_non_instance_prototype(false);
|
|
}
|
|
|
|
return SetInstancePrototype(construct_prototype);
|
|
}
|
|
|
|
|
|
void JSFunction::RemovePrototype() {
|
|
Context* native_context = context()->native_context();
|
|
Map* no_prototype_map = shared()->is_classic_mode()
|
|
? native_context->function_without_prototype_map()
|
|
: native_context->strict_mode_function_without_prototype_map();
|
|
|
|
if (map() == no_prototype_map) return;
|
|
|
|
ASSERT(map() == (shared()->is_classic_mode()
|
|
? native_context->function_map()
|
|
: native_context->strict_mode_function_map()));
|
|
|
|
set_map(no_prototype_map);
|
|
set_prototype_or_initial_map(no_prototype_map->GetHeap()->the_hole_value());
|
|
}
|
|
|
|
|
|
void JSFunction::SetInstanceClassName(String* name) {
|
|
shared()->set_instance_class_name(name);
|
|
}
|
|
|
|
|
|
void JSFunction::PrintName(FILE* out) {
|
|
SmartArrayPointer<char> name = shared()->DebugName()->ToCString();
|
|
PrintF(out, "%s", *name);
|
|
}
|
|
|
|
|
|
Context* JSFunction::NativeContextFromLiterals(FixedArray* literals) {
|
|
return Context::cast(literals->get(JSFunction::kLiteralNativeContextIndex));
|
|
}
|
|
|
|
|
|
bool JSFunction::PassesHydrogenFilter() {
|
|
String* name = shared()->DebugName();
|
|
if (*FLAG_hydrogen_filter != '\0') {
|
|
Vector<const char> filter = CStrVector(FLAG_hydrogen_filter);
|
|
if (filter[0] != '-' && name->IsUtf8EqualTo(filter)) return true;
|
|
if (filter[0] == '-' &&
|
|
!name->IsUtf8EqualTo(filter.SubVector(1, filter.length()))) {
|
|
return true;
|
|
}
|
|
if (filter[filter.length() - 1] == '*' &&
|
|
name->IsUtf8EqualTo(filter.SubVector(0, filter.length() - 1), true)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
MaybeObject* Oddball::Initialize(const char* to_string,
|
|
Object* to_number,
|
|
byte kind) {
|
|
String* internalized_to_string;
|
|
{ MaybeObject* maybe_string =
|
|
Isolate::Current()->heap()->InternalizeUtf8String(
|
|
CStrVector(to_string));
|
|
if (!maybe_string->To(&internalized_to_string)) return maybe_string;
|
|
}
|
|
set_to_string(internalized_to_string);
|
|
set_to_number(to_number);
|
|
set_kind(kind);
|
|
return this;
|
|
}
|
|
|
|
|
|
String* SharedFunctionInfo::DebugName() {
|
|
Object* n = name();
|
|
if (!n->IsString() || String::cast(n)->length() == 0) return inferred_name();
|
|
return String::cast(n);
|
|
}
|
|
|
|
|
|
bool SharedFunctionInfo::HasSourceCode() {
|
|
return !script()->IsUndefined() &&
|
|
!reinterpret_cast<Script*>(script())->source()->IsUndefined();
|
|
}
|
|
|
|
|
|
Handle<Object> SharedFunctionInfo::GetSourceCode() {
|
|
if (!HasSourceCode()) return GetIsolate()->factory()->undefined_value();
|
|
Handle<String> source(String::cast(Script::cast(script())->source()));
|
|
return SubString(source, start_position(), end_position());
|
|
}
|
|
|
|
|
|
int SharedFunctionInfo::SourceSize() {
|
|
return end_position() - start_position();
|
|
}
|
|
|
|
|
|
int SharedFunctionInfo::CalculateInstanceSize() {
|
|
int instance_size =
|
|
JSObject::kHeaderSize +
|
|
expected_nof_properties() * kPointerSize;
|
|
if (instance_size > JSObject::kMaxInstanceSize) {
|
|
instance_size = JSObject::kMaxInstanceSize;
|
|
}
|
|
return instance_size;
|
|
}
|
|
|
|
|
|
int SharedFunctionInfo::CalculateInObjectProperties() {
|
|
return (CalculateInstanceSize() - JSObject::kHeaderSize) / kPointerSize;
|
|
}
|
|
|
|
|
|
// Support function for printing the source code to a StringStream
|
|
// without any allocation in the heap.
|
|
void SharedFunctionInfo::SourceCodePrint(StringStream* accumulator,
|
|
int max_length) {
|
|
// For some native functions there is no source.
|
|
if (!HasSourceCode()) {
|
|
accumulator->Add("<No Source>");
|
|
return;
|
|
}
|
|
|
|
// Get the source for the script which this function came from.
|
|
// Don't use String::cast because we don't want more assertion errors while
|
|
// we are already creating a stack dump.
|
|
String* script_source =
|
|
reinterpret_cast<String*>(Script::cast(script())->source());
|
|
|
|
if (!script_source->LooksValid()) {
|
|
accumulator->Add("<Invalid Source>");
|
|
return;
|
|
}
|
|
|
|
if (!is_toplevel()) {
|
|
accumulator->Add("function ");
|
|
Object* name = this->name();
|
|
if (name->IsString() && String::cast(name)->length() > 0) {
|
|
accumulator->PrintName(name);
|
|
}
|
|
}
|
|
|
|
int len = end_position() - start_position();
|
|
if (len <= max_length || max_length < 0) {
|
|
accumulator->Put(script_source, start_position(), end_position());
|
|
} else {
|
|
accumulator->Put(script_source,
|
|
start_position(),
|
|
start_position() + max_length);
|
|
accumulator->Add("...\n");
|
|
}
|
|
}
|
|
|
|
|
|
static bool IsCodeEquivalent(Code* code, Code* recompiled) {
|
|
if (code->instruction_size() != recompiled->instruction_size()) return false;
|
|
ByteArray* code_relocation = code->relocation_info();
|
|
ByteArray* recompiled_relocation = recompiled->relocation_info();
|
|
int length = code_relocation->length();
|
|
if (length != recompiled_relocation->length()) return false;
|
|
int compare = memcmp(code_relocation->GetDataStartAddress(),
|
|
recompiled_relocation->GetDataStartAddress(),
|
|
length);
|
|
return compare == 0;
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::EnableDeoptimizationSupport(Code* recompiled) {
|
|
ASSERT(!has_deoptimization_support());
|
|
DisallowHeapAllocation no_allocation;
|
|
Code* code = this->code();
|
|
if (IsCodeEquivalent(code, recompiled)) {
|
|
// Copy the deoptimization data from the recompiled code.
|
|
code->set_deoptimization_data(recompiled->deoptimization_data());
|
|
code->set_has_deoptimization_support(true);
|
|
} else {
|
|
// TODO(3025757): In case the recompiled isn't equivalent to the
|
|
// old code, we have to replace it. We should try to avoid this
|
|
// altogether because it flushes valuable type feedback by
|
|
// effectively resetting all IC state.
|
|
ReplaceCode(recompiled);
|
|
}
|
|
ASSERT(has_deoptimization_support());
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::DisableOptimization(const char* reason) {
|
|
// Disable optimization for the shared function info and mark the
|
|
// code as non-optimizable. The marker on the shared function info
|
|
// is there because we flush non-optimized code thereby loosing the
|
|
// non-optimizable information for the code. When the code is
|
|
// regenerated and set on the shared function info it is marked as
|
|
// non-optimizable if optimization is disabled for the shared
|
|
// function info.
|
|
set_optimization_disabled(true);
|
|
// Code should be the lazy compilation stub or else unoptimized. If the
|
|
// latter, disable optimization for the code too.
|
|
ASSERT(code()->kind() == Code::FUNCTION || code()->kind() == Code::BUILTIN);
|
|
if (code()->kind() == Code::FUNCTION) {
|
|
code()->set_optimizable(false);
|
|
}
|
|
if (FLAG_trace_opt) {
|
|
PrintF("[disabled optimization for ");
|
|
ShortPrint();
|
|
PrintF(", reason: %s]\n", reason);
|
|
}
|
|
}
|
|
|
|
|
|
bool SharedFunctionInfo::VerifyBailoutId(BailoutId id) {
|
|
ASSERT(!id.IsNone());
|
|
Code* unoptimized = code();
|
|
DeoptimizationOutputData* data =
|
|
DeoptimizationOutputData::cast(unoptimized->deoptimization_data());
|
|
unsigned ignore = Deoptimizer::GetOutputInfo(data, id, this);
|
|
USE(ignore);
|
|
return true; // Return true if there was no ASSERT.
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::StartInobjectSlackTracking(Map* map) {
|
|
ASSERT(!IsInobjectSlackTrackingInProgress());
|
|
|
|
if (!FLAG_clever_optimizations) return;
|
|
|
|
// Only initiate the tracking the first time.
|
|
if (live_objects_may_exist()) return;
|
|
set_live_objects_may_exist(true);
|
|
|
|
// No tracking during the snapshot construction phase.
|
|
if (Serializer::enabled()) return;
|
|
|
|
if (map->unused_property_fields() == 0) return;
|
|
|
|
// Nonzero counter is a leftover from the previous attempt interrupted
|
|
// by GC, keep it.
|
|
if (construction_count() == 0) {
|
|
set_construction_count(kGenerousAllocationCount);
|
|
}
|
|
set_initial_map(map);
|
|
Builtins* builtins = map->GetHeap()->isolate()->builtins();
|
|
ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubGeneric),
|
|
construct_stub());
|
|
set_construct_stub(builtins->builtin(Builtins::kJSConstructStubCountdown));
|
|
}
|
|
|
|
|
|
// Called from GC, hence reinterpret_cast and unchecked accessors.
|
|
void SharedFunctionInfo::DetachInitialMap() {
|
|
Map* map = reinterpret_cast<Map*>(initial_map());
|
|
|
|
// Make the map remember to restore the link if it survives the GC.
|
|
map->set_bit_field2(
|
|
map->bit_field2() | (1 << Map::kAttachedToSharedFunctionInfo));
|
|
|
|
// Undo state changes made by StartInobjectTracking (except the
|
|
// construction_count). This way if the initial map does not survive the GC
|
|
// then StartInobjectTracking will be called again the next time the
|
|
// constructor is called. The countdown will continue and (possibly after
|
|
// several more GCs) CompleteInobjectSlackTracking will eventually be called.
|
|
Heap* heap = map->GetHeap();
|
|
set_initial_map(heap->undefined_value());
|
|
Builtins* builtins = heap->isolate()->builtins();
|
|
ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubCountdown),
|
|
*RawField(this, kConstructStubOffset));
|
|
set_construct_stub(builtins->builtin(Builtins::kJSConstructStubGeneric));
|
|
// It is safe to clear the flag: it will be set again if the map is live.
|
|
set_live_objects_may_exist(false);
|
|
}
|
|
|
|
|
|
// Called from GC, hence reinterpret_cast and unchecked accessors.
|
|
void SharedFunctionInfo::AttachInitialMap(Map* map) {
|
|
map->set_bit_field2(
|
|
map->bit_field2() & ~(1 << Map::kAttachedToSharedFunctionInfo));
|
|
|
|
// Resume inobject slack tracking.
|
|
set_initial_map(map);
|
|
Builtins* builtins = map->GetHeap()->isolate()->builtins();
|
|
ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubGeneric),
|
|
*RawField(this, kConstructStubOffset));
|
|
set_construct_stub(builtins->builtin(Builtins::kJSConstructStubCountdown));
|
|
// The map survived the gc, so there may be objects referencing it.
|
|
set_live_objects_may_exist(true);
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::ResetForNewContext(int new_ic_age) {
|
|
code()->ClearInlineCaches();
|
|
set_ic_age(new_ic_age);
|
|
if (code()->kind() == Code::FUNCTION) {
|
|
code()->set_profiler_ticks(0);
|
|
if (optimization_disabled() &&
|
|
opt_count() >= FLAG_max_opt_count) {
|
|
// Re-enable optimizations if they were disabled due to opt_count limit.
|
|
set_optimization_disabled(false);
|
|
code()->set_optimizable(true);
|
|
}
|
|
set_opt_count(0);
|
|
set_deopt_count(0);
|
|
}
|
|
}
|
|
|
|
|
|
static void GetMinInobjectSlack(Map* map, void* data) {
|
|
int slack = map->unused_property_fields();
|
|
if (*reinterpret_cast<int*>(data) > slack) {
|
|
*reinterpret_cast<int*>(data) = slack;
|
|
}
|
|
}
|
|
|
|
|
|
static void ShrinkInstanceSize(Map* map, void* data) {
|
|
int slack = *reinterpret_cast<int*>(data);
|
|
map->set_inobject_properties(map->inobject_properties() - slack);
|
|
map->set_unused_property_fields(map->unused_property_fields() - slack);
|
|
map->set_instance_size(map->instance_size() - slack * kPointerSize);
|
|
|
|
// Visitor id might depend on the instance size, recalculate it.
|
|
map->set_visitor_id(StaticVisitorBase::GetVisitorId(map));
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::CompleteInobjectSlackTracking() {
|
|
ASSERT(live_objects_may_exist() && IsInobjectSlackTrackingInProgress());
|
|
Map* map = Map::cast(initial_map());
|
|
|
|
Heap* heap = map->GetHeap();
|
|
set_initial_map(heap->undefined_value());
|
|
Builtins* builtins = heap->isolate()->builtins();
|
|
ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubCountdown),
|
|
construct_stub());
|
|
set_construct_stub(builtins->builtin(Builtins::kJSConstructStubGeneric));
|
|
|
|
int slack = map->unused_property_fields();
|
|
map->TraverseTransitionTree(&GetMinInobjectSlack, &slack);
|
|
if (slack != 0) {
|
|
// Resize the initial map and all maps in its transition tree.
|
|
map->TraverseTransitionTree(&ShrinkInstanceSize, &slack);
|
|
|
|
// Give the correct expected_nof_properties to initial maps created later.
|
|
ASSERT(expected_nof_properties() >= slack);
|
|
set_expected_nof_properties(expected_nof_properties() - slack);
|
|
}
|
|
}
|
|
|
|
|
|
int SharedFunctionInfo::SearchOptimizedCodeMap(Context* native_context) {
|
|
ASSERT(native_context->IsNativeContext());
|
|
if (!FLAG_cache_optimized_code) return -1;
|
|
Object* value = optimized_code_map();
|
|
if (!value->IsSmi()) {
|
|
FixedArray* optimized_code_map = FixedArray::cast(value);
|
|
int length = optimized_code_map->length();
|
|
for (int i = kEntriesStart; i < length; i += kEntryLength) {
|
|
if (optimized_code_map->get(i) == native_context) {
|
|
return i + 1;
|
|
}
|
|
}
|
|
if (FLAG_trace_opt) {
|
|
PrintF("[didn't find optimized code in optimized code map for ");
|
|
ShortPrint();
|
|
PrintF("]\n");
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
#define DECLARE_TAG(ignore1, name, ignore2) name,
|
|
const char* const VisitorSynchronization::kTags[
|
|
VisitorSynchronization::kNumberOfSyncTags] = {
|
|
VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_TAG)
|
|
};
|
|
#undef DECLARE_TAG
|
|
|
|
|
|
#define DECLARE_TAG(ignore1, ignore2, name) name,
|
|
const char* const VisitorSynchronization::kTagNames[
|
|
VisitorSynchronization::kNumberOfSyncTags] = {
|
|
VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_TAG)
|
|
};
|
|
#undef DECLARE_TAG
|
|
|
|
|
|
void ObjectVisitor::VisitCodeTarget(RelocInfo* rinfo) {
|
|
ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode()));
|
|
Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
|
|
Object* old_target = target;
|
|
VisitPointer(&target);
|
|
CHECK_EQ(target, old_target); // VisitPointer doesn't change Code* *target.
|
|
}
|
|
|
|
|
|
void ObjectVisitor::VisitCodeAgeSequence(RelocInfo* rinfo) {
|
|
ASSERT(RelocInfo::IsCodeAgeSequence(rinfo->rmode()));
|
|
Object* stub = rinfo->code_age_stub();
|
|
if (stub) {
|
|
VisitPointer(&stub);
|
|
}
|
|
}
|
|
|
|
|
|
void ObjectVisitor::VisitCodeEntry(Address entry_address) {
|
|
Object* code = Code::GetObjectFromEntryAddress(entry_address);
|
|
Object* old_code = code;
|
|
VisitPointer(&code);
|
|
if (code != old_code) {
|
|
Memory::Address_at(entry_address) = reinterpret_cast<Code*>(code)->entry();
|
|
}
|
|
}
|
|
|
|
|
|
void ObjectVisitor::VisitCell(RelocInfo* rinfo) {
|
|
ASSERT(rinfo->rmode() == RelocInfo::CELL);
|
|
Object* cell = rinfo->target_cell();
|
|
Object* old_cell = cell;
|
|
VisitPointer(&cell);
|
|
if (cell != old_cell) {
|
|
rinfo->set_target_cell(reinterpret_cast<Cell*>(cell));
|
|
}
|
|
}
|
|
|
|
|
|
void ObjectVisitor::VisitDebugTarget(RelocInfo* rinfo) {
|
|
ASSERT((RelocInfo::IsJSReturn(rinfo->rmode()) &&
|
|
rinfo->IsPatchedReturnSequence()) ||
|
|
(RelocInfo::IsDebugBreakSlot(rinfo->rmode()) &&
|
|
rinfo->IsPatchedDebugBreakSlotSequence()));
|
|
Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address());
|
|
Object* old_target = target;
|
|
VisitPointer(&target);
|
|
CHECK_EQ(target, old_target); // VisitPointer doesn't change Code* *target.
|
|
}
|
|
|
|
|
|
void ObjectVisitor::VisitEmbeddedPointer(RelocInfo* rinfo) {
|
|
ASSERT(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
|
|
VisitPointer(rinfo->target_object_address());
|
|
}
|
|
|
|
|
|
void ObjectVisitor::VisitExternalReference(RelocInfo* rinfo) {
|
|
Address* p = rinfo->target_reference_address();
|
|
VisitExternalReferences(p, p + 1);
|
|
}
|
|
|
|
|
|
void Code::InvalidateRelocation() {
|
|
set_relocation_info(GetHeap()->empty_byte_array());
|
|
}
|
|
|
|
|
|
void Code::Relocate(intptr_t delta) {
|
|
for (RelocIterator it(this, RelocInfo::kApplyMask); !it.done(); it.next()) {
|
|
it.rinfo()->apply(delta);
|
|
}
|
|
CPU::FlushICache(instruction_start(), instruction_size());
|
|
}
|
|
|
|
|
|
void Code::CopyFrom(const CodeDesc& desc) {
|
|
ASSERT(Marking::Color(this) == Marking::WHITE_OBJECT);
|
|
|
|
// copy code
|
|
CopyBytes(instruction_start(), desc.buffer,
|
|
static_cast<size_t>(desc.instr_size));
|
|
|
|
// copy reloc info
|
|
CopyBytes(relocation_start(),
|
|
desc.buffer + desc.buffer_size - desc.reloc_size,
|
|
static_cast<size_t>(desc.reloc_size));
|
|
|
|
// unbox handles and relocate
|
|
intptr_t delta = instruction_start() - desc.buffer;
|
|
int mode_mask = RelocInfo::kCodeTargetMask |
|
|
RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
|
|
RelocInfo::ModeMask(RelocInfo::CELL) |
|
|
RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
|
|
RelocInfo::kApplyMask;
|
|
// Needed to find target_object and runtime_entry on X64
|
|
Assembler* origin = desc.origin;
|
|
AllowDeferredHandleDereference embedding_raw_address;
|
|
for (RelocIterator it(this, mode_mask); !it.done(); it.next()) {
|
|
RelocInfo::Mode mode = it.rinfo()->rmode();
|
|
if (mode == RelocInfo::EMBEDDED_OBJECT) {
|
|
Handle<Object> p = it.rinfo()->target_object_handle(origin);
|
|
it.rinfo()->set_target_object(*p, SKIP_WRITE_BARRIER);
|
|
} else if (mode == RelocInfo::CELL) {
|
|
Handle<Cell> cell = it.rinfo()->target_cell_handle();
|
|
it.rinfo()->set_target_cell(*cell, SKIP_WRITE_BARRIER);
|
|
} else if (RelocInfo::IsCodeTarget(mode)) {
|
|
// rewrite code handles in inline cache targets to direct
|
|
// pointers to the first instruction in the code object
|
|
Handle<Object> p = it.rinfo()->target_object_handle(origin);
|
|
Code* code = Code::cast(*p);
|
|
it.rinfo()->set_target_address(code->instruction_start(),
|
|
SKIP_WRITE_BARRIER);
|
|
} else if (RelocInfo::IsRuntimeEntry(mode)) {
|
|
Address p = it.rinfo()->target_runtime_entry(origin);
|
|
it.rinfo()->set_target_runtime_entry(p, SKIP_WRITE_BARRIER);
|
|
} else {
|
|
it.rinfo()->apply(delta);
|
|
}
|
|
}
|
|
CPU::FlushICache(instruction_start(), instruction_size());
|
|
}
|
|
|
|
|
|
// Locate the source position which is closest to the address in the code. This
|
|
// is using the source position information embedded in the relocation info.
|
|
// The position returned is relative to the beginning of the script where the
|
|
// source for this function is found.
|
|
int Code::SourcePosition(Address pc) {
|
|
int distance = kMaxInt;
|
|
int position = RelocInfo::kNoPosition; // Initially no position found.
|
|
// Run through all the relocation info to find the best matching source
|
|
// position. All the code needs to be considered as the sequence of the
|
|
// instructions in the code does not necessarily follow the same order as the
|
|
// source.
|
|
RelocIterator it(this, RelocInfo::kPositionMask);
|
|
while (!it.done()) {
|
|
// Only look at positions after the current pc.
|
|
if (it.rinfo()->pc() < pc) {
|
|
// Get position and distance.
|
|
|
|
int dist = static_cast<int>(pc - it.rinfo()->pc());
|
|
int pos = static_cast<int>(it.rinfo()->data());
|
|
// If this position is closer than the current candidate or if it has the
|
|
// same distance as the current candidate and the position is higher then
|
|
// this position is the new candidate.
|
|
if ((dist < distance) ||
|
|
(dist == distance && pos > position)) {
|
|
position = pos;
|
|
distance = dist;
|
|
}
|
|
}
|
|
it.next();
|
|
}
|
|
return position;
|
|
}
|
|
|
|
|
|
// Same as Code::SourcePosition above except it only looks for statement
|
|
// positions.
|
|
int Code::SourceStatementPosition(Address pc) {
|
|
// First find the position as close as possible using all position
|
|
// information.
|
|
int position = SourcePosition(pc);
|
|
// Now find the closest statement position before the position.
|
|
int statement_position = 0;
|
|
RelocIterator it(this, RelocInfo::kPositionMask);
|
|
while (!it.done()) {
|
|
if (RelocInfo::IsStatementPosition(it.rinfo()->rmode())) {
|
|
int p = static_cast<int>(it.rinfo()->data());
|
|
if (statement_position < p && p <= position) {
|
|
statement_position = p;
|
|
}
|
|
}
|
|
it.next();
|
|
}
|
|
return statement_position;
|
|
}
|
|
|
|
|
|
SafepointEntry Code::GetSafepointEntry(Address pc) {
|
|
SafepointTable table(this);
|
|
return table.FindEntry(pc);
|
|
}
|
|
|
|
|
|
Object* Code::FindNthObject(int n, Map* match_map) {
|
|
ASSERT(is_inline_cache_stub());
|
|
DisallowHeapAllocation no_allocation;
|
|
int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
|
|
for (RelocIterator it(this, mask); !it.done(); it.next()) {
|
|
RelocInfo* info = it.rinfo();
|
|
Object* object = info->target_object();
|
|
if (object->IsHeapObject()) {
|
|
if (HeapObject::cast(object)->map() == match_map) {
|
|
if (--n == 0) return object;
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
Map* Code::FindFirstMap() {
|
|
Object* result = FindNthObject(1, GetHeap()->meta_map());
|
|
return (result != NULL) ? Map::cast(result) : NULL;
|
|
}
|
|
|
|
|
|
void Code::ReplaceNthObject(int n,
|
|
Map* match_map,
|
|
Object* replace_with) {
|
|
ASSERT(is_inline_cache_stub());
|
|
DisallowHeapAllocation no_allocation;
|
|
int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
|
|
for (RelocIterator it(this, mask); !it.done(); it.next()) {
|
|
RelocInfo* info = it.rinfo();
|
|
Object* object = info->target_object();
|
|
if (object->IsHeapObject()) {
|
|
if (HeapObject::cast(object)->map() == match_map) {
|
|
if (--n == 0) {
|
|
info->set_target_object(replace_with);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void Code::FindAllMaps(MapHandleList* maps) {
|
|
ASSERT(is_inline_cache_stub());
|
|
DisallowHeapAllocation no_allocation;
|
|
int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
|
|
for (RelocIterator it(this, mask); !it.done(); it.next()) {
|
|
RelocInfo* info = it.rinfo();
|
|
Object* object = info->target_object();
|
|
if (object->IsMap()) maps->Add(Handle<Map>(Map::cast(object)));
|
|
}
|
|
}
|
|
|
|
|
|
void Code::ReplaceFirstMap(Map* replace_with) {
|
|
ReplaceNthObject(1, GetHeap()->meta_map(), replace_with);
|
|
}
|
|
|
|
|
|
Code* Code::FindFirstCode() {
|
|
ASSERT(is_inline_cache_stub());
|
|
DisallowHeapAllocation no_allocation;
|
|
int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET);
|
|
for (RelocIterator it(this, mask); !it.done(); it.next()) {
|
|
RelocInfo* info = it.rinfo();
|
|
return Code::GetCodeFromTargetAddress(info->target_address());
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void Code::FindAllCode(CodeHandleList* code_list, int length) {
|
|
ASSERT(is_inline_cache_stub());
|
|
DisallowHeapAllocation no_allocation;
|
|
int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET);
|
|
int i = 0;
|
|
for (RelocIterator it(this, mask); !it.done(); it.next()) {
|
|
if (i++ == length) return;
|
|
RelocInfo* info = it.rinfo();
|
|
Code* code = Code::GetCodeFromTargetAddress(info->target_address());
|
|
ASSERT(code->kind() == Code::STUB);
|
|
code_list->Add(Handle<Code>(code));
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
Name* Code::FindFirstName() {
|
|
ASSERT(is_inline_cache_stub());
|
|
DisallowHeapAllocation no_allocation;
|
|
int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
|
|
for (RelocIterator it(this, mask); !it.done(); it.next()) {
|
|
RelocInfo* info = it.rinfo();
|
|
Object* object = info->target_object();
|
|
if (object->IsName()) return Name::cast(object);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void Code::ReplaceNthCell(int n, Cell* replace_with) {
|
|
ASSERT(is_inline_cache_stub());
|
|
DisallowHeapAllocation no_allocation;
|
|
int mask = RelocInfo::ModeMask(RelocInfo::CELL);
|
|
for (RelocIterator it(this, mask); !it.done(); it.next()) {
|
|
RelocInfo* info = it.rinfo();
|
|
if (--n == 0) {
|
|
info->set_target_cell(replace_with);
|
|
return;
|
|
}
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void Code::ClearInlineCaches() {
|
|
int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
|
|
RelocInfo::ModeMask(RelocInfo::CONSTRUCT_CALL) |
|
|
RelocInfo::ModeMask(RelocInfo::CODE_TARGET_WITH_ID) |
|
|
RelocInfo::ModeMask(RelocInfo::CODE_TARGET_CONTEXT);
|
|
for (RelocIterator it(this, mask); !it.done(); it.next()) {
|
|
RelocInfo* info = it.rinfo();
|
|
Code* target(Code::GetCodeFromTargetAddress(info->target_address()));
|
|
if (target->is_inline_cache_stub()) {
|
|
IC::Clear(info->pc());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Code::ClearTypeFeedbackCells(Heap* heap) {
|
|
if (kind() != FUNCTION) return;
|
|
Object* raw_info = type_feedback_info();
|
|
if (raw_info->IsTypeFeedbackInfo()) {
|
|
TypeFeedbackCells* type_feedback_cells =
|
|
TypeFeedbackInfo::cast(raw_info)->type_feedback_cells();
|
|
for (int i = 0; i < type_feedback_cells->CellCount(); i++) {
|
|
Cell* cell = type_feedback_cells->GetCell(i);
|
|
// Don't clear AllocationSites
|
|
Object* value = cell->value();
|
|
if (value == NULL || !value->IsAllocationSite()) {
|
|
cell->set_value(TypeFeedbackCells::RawUninitializedSentinel(heap));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool Code::allowed_in_shared_map_code_cache() {
|
|
return is_keyed_load_stub() || is_keyed_store_stub() ||
|
|
(is_compare_ic_stub() &&
|
|
ICCompareStub::CompareState(stub_info()) == CompareIC::KNOWN_OBJECT);
|
|
}
|
|
|
|
|
|
void Code::MakeCodeAgeSequenceYoung(byte* sequence) {
|
|
PatchPlatformCodeAge(sequence, kNoAge, NO_MARKING_PARITY);
|
|
}
|
|
|
|
|
|
void Code::MakeOlder(MarkingParity current_parity) {
|
|
byte* sequence = FindCodeAgeSequence();
|
|
if (sequence != NULL) {
|
|
Age age;
|
|
MarkingParity code_parity;
|
|
GetCodeAgeAndParity(sequence, &age, &code_parity);
|
|
if (age != kLastCodeAge && code_parity != current_parity) {
|
|
PatchPlatformCodeAge(sequence, static_cast<Age>(age + 1),
|
|
current_parity);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool Code::IsOld() {
|
|
byte* sequence = FindCodeAgeSequence();
|
|
if (sequence == NULL) return false;
|
|
Age age;
|
|
MarkingParity parity;
|
|
GetCodeAgeAndParity(sequence, &age, &parity);
|
|
return age >= kSexagenarianCodeAge;
|
|
}
|
|
|
|
|
|
byte* Code::FindCodeAgeSequence() {
|
|
return FLAG_age_code &&
|
|
prologue_offset() != kPrologueOffsetNotSet &&
|
|
(kind() == OPTIMIZED_FUNCTION ||
|
|
(kind() == FUNCTION && !has_debug_break_slots()))
|
|
? instruction_start() + prologue_offset()
|
|
: NULL;
|
|
}
|
|
|
|
|
|
int Code::GetAge() {
|
|
byte* sequence = FindCodeAgeSequence();
|
|
if (sequence == NULL) {
|
|
return Code::kNoAge;
|
|
}
|
|
Age age;
|
|
MarkingParity parity;
|
|
GetCodeAgeAndParity(sequence, &age, &parity);
|
|
return age;
|
|
}
|
|
|
|
|
|
void Code::GetCodeAgeAndParity(Code* code, Age* age,
|
|
MarkingParity* parity) {
|
|
Isolate* isolate = Isolate::Current();
|
|
Builtins* builtins = isolate->builtins();
|
|
Code* stub = NULL;
|
|
#define HANDLE_CODE_AGE(AGE) \
|
|
stub = *builtins->Make##AGE##CodeYoungAgainEvenMarking(); \
|
|
if (code == stub) { \
|
|
*age = k##AGE##CodeAge; \
|
|
*parity = EVEN_MARKING_PARITY; \
|
|
return; \
|
|
} \
|
|
stub = *builtins->Make##AGE##CodeYoungAgainOddMarking(); \
|
|
if (code == stub) { \
|
|
*age = k##AGE##CodeAge; \
|
|
*parity = ODD_MARKING_PARITY; \
|
|
return; \
|
|
}
|
|
CODE_AGE_LIST(HANDLE_CODE_AGE)
|
|
#undef HANDLE_CODE_AGE
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
Code* Code::GetCodeAgeStub(Age age, MarkingParity parity) {
|
|
Isolate* isolate = Isolate::Current();
|
|
Builtins* builtins = isolate->builtins();
|
|
switch (age) {
|
|
#define HANDLE_CODE_AGE(AGE) \
|
|
case k##AGE##CodeAge: { \
|
|
Code* stub = parity == EVEN_MARKING_PARITY \
|
|
? *builtins->Make##AGE##CodeYoungAgainEvenMarking() \
|
|
: *builtins->Make##AGE##CodeYoungAgainOddMarking(); \
|
|
return stub; \
|
|
}
|
|
CODE_AGE_LIST(HANDLE_CODE_AGE)
|
|
#undef HANDLE_CODE_AGE
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void Code::PrintDeoptLocation(int bailout_id) {
|
|
const char* last_comment = NULL;
|
|
int mask = RelocInfo::ModeMask(RelocInfo::COMMENT)
|
|
| RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY);
|
|
for (RelocIterator it(this, mask); !it.done(); it.next()) {
|
|
RelocInfo* info = it.rinfo();
|
|
if (info->rmode() == RelocInfo::COMMENT) {
|
|
last_comment = reinterpret_cast<const char*>(info->data());
|
|
} else if (last_comment != NULL) {
|
|
if ((bailout_id == Deoptimizer::GetDeoptimizationId(
|
|
GetIsolate(), info->target_address(), Deoptimizer::EAGER)) ||
|
|
(bailout_id == Deoptimizer::GetDeoptimizationId(
|
|
GetIsolate(), info->target_address(), Deoptimizer::SOFT))) {
|
|
CHECK(RelocInfo::IsRuntimeEntry(info->rmode()));
|
|
PrintF(" %s\n", last_comment);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool Code::CanDeoptAt(Address pc) {
|
|
DeoptimizationInputData* deopt_data =
|
|
DeoptimizationInputData::cast(deoptimization_data());
|
|
Address code_start_address = instruction_start();
|
|
for (int i = 0; i < deopt_data->DeoptCount(); i++) {
|
|
if (deopt_data->Pc(i)->value() == -1) continue;
|
|
Address address = code_start_address + deopt_data->Pc(i)->value();
|
|
if (address == pc) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// Identify kind of code.
|
|
const char* Code::Kind2String(Kind kind) {
|
|
switch (kind) {
|
|
#define CASE(name) case name: return #name;
|
|
CODE_KIND_LIST(CASE)
|
|
#undef CASE
|
|
case NUMBER_OF_KINDS: break;
|
|
}
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
#ifdef ENABLE_DISASSEMBLER
|
|
|
|
void DeoptimizationInputData::DeoptimizationInputDataPrint(FILE* out) {
|
|
disasm::NameConverter converter;
|
|
int deopt_count = DeoptCount();
|
|
PrintF(out, "Deoptimization Input Data (deopt points = %d)\n", deopt_count);
|
|
if (0 == deopt_count) return;
|
|
|
|
PrintF(out, "%6s %6s %6s %6s %12s\n", "index", "ast id", "argc", "pc",
|
|
FLAG_print_code_verbose ? "commands" : "");
|
|
for (int i = 0; i < deopt_count; i++) {
|
|
PrintF(out, "%6d %6d %6d %6d",
|
|
i,
|
|
AstId(i).ToInt(),
|
|
ArgumentsStackHeight(i)->value(),
|
|
Pc(i)->value());
|
|
|
|
if (!FLAG_print_code_verbose) {
|
|
PrintF(out, "\n");
|
|
continue;
|
|
}
|
|
// Print details of the frame translation.
|
|
int translation_index = TranslationIndex(i)->value();
|
|
TranslationIterator iterator(TranslationByteArray(), translation_index);
|
|
Translation::Opcode opcode =
|
|
static_cast<Translation::Opcode>(iterator.Next());
|
|
ASSERT(Translation::BEGIN == opcode);
|
|
int frame_count = iterator.Next();
|
|
int jsframe_count = iterator.Next();
|
|
PrintF(out, " %s {frame count=%d, js frame count=%d}\n",
|
|
Translation::StringFor(opcode),
|
|
frame_count,
|
|
jsframe_count);
|
|
|
|
while (iterator.HasNext() &&
|
|
Translation::BEGIN !=
|
|
(opcode = static_cast<Translation::Opcode>(iterator.Next()))) {
|
|
PrintF(out, "%24s %s ", "", Translation::StringFor(opcode));
|
|
|
|
switch (opcode) {
|
|
case Translation::BEGIN:
|
|
UNREACHABLE();
|
|
break;
|
|
|
|
case Translation::JS_FRAME: {
|
|
int ast_id = iterator.Next();
|
|
int function_id = iterator.Next();
|
|
unsigned height = iterator.Next();
|
|
PrintF(out, "{ast_id=%d, function=", ast_id);
|
|
if (function_id != Translation::kSelfLiteralId) {
|
|
Object* function = LiteralArray()->get(function_id);
|
|
JSFunction::cast(function)->PrintName(out);
|
|
} else {
|
|
PrintF(out, "<self>");
|
|
}
|
|
PrintF(out, ", height=%u}", height);
|
|
break;
|
|
}
|
|
|
|
case Translation::COMPILED_STUB_FRAME: {
|
|
Code::Kind stub_kind = static_cast<Code::Kind>(iterator.Next());
|
|
PrintF(out, "{kind=%d}", stub_kind);
|
|
break;
|
|
}
|
|
|
|
case Translation::ARGUMENTS_ADAPTOR_FRAME:
|
|
case Translation::CONSTRUCT_STUB_FRAME: {
|
|
int function_id = iterator.Next();
|
|
JSFunction* function =
|
|
JSFunction::cast(LiteralArray()->get(function_id));
|
|
unsigned height = iterator.Next();
|
|
PrintF(out, "{function=");
|
|
function->PrintName(out);
|
|
PrintF(out, ", height=%u}", height);
|
|
break;
|
|
}
|
|
|
|
case Translation::GETTER_STUB_FRAME:
|
|
case Translation::SETTER_STUB_FRAME: {
|
|
int function_id = iterator.Next();
|
|
JSFunction* function =
|
|
JSFunction::cast(LiteralArray()->get(function_id));
|
|
PrintF(out, "{function=");
|
|
function->PrintName(out);
|
|
PrintF(out, "}");
|
|
break;
|
|
}
|
|
|
|
case Translation::REGISTER: {
|
|
int reg_code = iterator.Next();
|
|
PrintF(out, "{input=%s}", converter.NameOfCPURegister(reg_code));
|
|
break;
|
|
}
|
|
|
|
case Translation::INT32_REGISTER: {
|
|
int reg_code = iterator.Next();
|
|
PrintF(out, "{input=%s}", converter.NameOfCPURegister(reg_code));
|
|
break;
|
|
}
|
|
|
|
case Translation::UINT32_REGISTER: {
|
|
int reg_code = iterator.Next();
|
|
PrintF(out, "{input=%s (unsigned)}",
|
|
converter.NameOfCPURegister(reg_code));
|
|
break;
|
|
}
|
|
|
|
case Translation::DOUBLE_REGISTER: {
|
|
int reg_code = iterator.Next();
|
|
PrintF(out, "{input=%s}",
|
|
DoubleRegister::AllocationIndexToString(reg_code));
|
|
break;
|
|
}
|
|
|
|
case Translation::STACK_SLOT: {
|
|
int input_slot_index = iterator.Next();
|
|
PrintF(out, "{input=%d}", input_slot_index);
|
|
break;
|
|
}
|
|
|
|
case Translation::INT32_STACK_SLOT: {
|
|
int input_slot_index = iterator.Next();
|
|
PrintF(out, "{input=%d}", input_slot_index);
|
|
break;
|
|
}
|
|
|
|
case Translation::UINT32_STACK_SLOT: {
|
|
int input_slot_index = iterator.Next();
|
|
PrintF(out, "{input=%d (unsigned)}", input_slot_index);
|
|
break;
|
|
}
|
|
|
|
case Translation::DOUBLE_STACK_SLOT: {
|
|
int input_slot_index = iterator.Next();
|
|
PrintF(out, "{input=%d}", input_slot_index);
|
|
break;
|
|
}
|
|
|
|
case Translation::LITERAL: {
|
|
unsigned literal_index = iterator.Next();
|
|
PrintF(out, "{literal_id=%u}", literal_index);
|
|
break;
|
|
}
|
|
|
|
case Translation::ARGUMENTS_OBJECT: {
|
|
int args_length = iterator.Next();
|
|
PrintF(out, "{length=%d}", args_length);
|
|
break;
|
|
}
|
|
}
|
|
PrintF(out, "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void DeoptimizationOutputData::DeoptimizationOutputDataPrint(FILE* out) {
|
|
PrintF(out, "Deoptimization Output Data (deopt points = %d)\n",
|
|
this->DeoptPoints());
|
|
if (this->DeoptPoints() == 0) return;
|
|
|
|
PrintF("%6s %8s %s\n", "ast id", "pc", "state");
|
|
for (int i = 0; i < this->DeoptPoints(); i++) {
|
|
int pc_and_state = this->PcAndState(i)->value();
|
|
PrintF("%6d %8d %s\n",
|
|
this->AstId(i).ToInt(),
|
|
FullCodeGenerator::PcField::decode(pc_and_state),
|
|
FullCodeGenerator::State2String(
|
|
FullCodeGenerator::StateField::decode(pc_and_state)));
|
|
}
|
|
}
|
|
|
|
|
|
const char* Code::ICState2String(InlineCacheState state) {
|
|
switch (state) {
|
|
case UNINITIALIZED: return "UNINITIALIZED";
|
|
case PREMONOMORPHIC: return "PREMONOMORPHIC";
|
|
case MONOMORPHIC: return "MONOMORPHIC";
|
|
case MONOMORPHIC_PROTOTYPE_FAILURE: return "MONOMORPHIC_PROTOTYPE_FAILURE";
|
|
case POLYMORPHIC: return "POLYMORPHIC";
|
|
case MEGAMORPHIC: return "MEGAMORPHIC";
|
|
case GENERIC: return "GENERIC";
|
|
case DEBUG_STUB: return "DEBUG_STUB";
|
|
}
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
const char* Code::StubType2String(StubType type) {
|
|
switch (type) {
|
|
case NORMAL: return "NORMAL";
|
|
case FIELD: return "FIELD";
|
|
case CONSTANT_FUNCTION: return "CONSTANT_FUNCTION";
|
|
case CALLBACKS: return "CALLBACKS";
|
|
case INTERCEPTOR: return "INTERCEPTOR";
|
|
case MAP_TRANSITION: return "MAP_TRANSITION";
|
|
case NONEXISTENT: return "NONEXISTENT";
|
|
}
|
|
UNREACHABLE(); // keep the compiler happy
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void Code::PrintExtraICState(FILE* out, Kind kind, ExtraICState extra) {
|
|
PrintF(out, "extra_ic_state = ");
|
|
const char* name = NULL;
|
|
switch (kind) {
|
|
case CALL_IC:
|
|
if (extra == STRING_INDEX_OUT_OF_BOUNDS) {
|
|
name = "STRING_INDEX_OUT_OF_BOUNDS";
|
|
}
|
|
break;
|
|
case STORE_IC:
|
|
case KEYED_STORE_IC:
|
|
if (extra == kStrictMode) {
|
|
name = "STRICT";
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (name != NULL) {
|
|
PrintF(out, "%s\n", name);
|
|
} else {
|
|
PrintF(out, "%d\n", extra);
|
|
}
|
|
}
|
|
|
|
|
|
void Code::Disassemble(const char* name, FILE* out) {
|
|
PrintF(out, "kind = %s\n", Kind2String(kind()));
|
|
if (is_inline_cache_stub()) {
|
|
PrintF(out, "ic_state = %s\n", ICState2String(ic_state()));
|
|
PrintExtraICState(out, kind(), needs_extended_extra_ic_state(kind()) ?
|
|
extended_extra_ic_state() : extra_ic_state());
|
|
if (ic_state() == MONOMORPHIC) {
|
|
PrintF(out, "type = %s\n", StubType2String(type()));
|
|
}
|
|
if (is_call_stub() || is_keyed_call_stub()) {
|
|
PrintF(out, "argc = %d\n", arguments_count());
|
|
}
|
|
if (is_compare_ic_stub()) {
|
|
ASSERT(major_key() == CodeStub::CompareIC);
|
|
CompareIC::State left_state, right_state, handler_state;
|
|
Token::Value op;
|
|
ICCompareStub::DecodeMinorKey(stub_info(), &left_state, &right_state,
|
|
&handler_state, &op);
|
|
PrintF(out, "compare_state = %s*%s -> %s\n",
|
|
CompareIC::GetStateName(left_state),
|
|
CompareIC::GetStateName(right_state),
|
|
CompareIC::GetStateName(handler_state));
|
|
PrintF(out, "compare_operation = %s\n", Token::Name(op));
|
|
}
|
|
}
|
|
if ((name != NULL) && (name[0] != '\0')) {
|
|
PrintF(out, "name = %s\n", name);
|
|
}
|
|
if (kind() == OPTIMIZED_FUNCTION) {
|
|
PrintF(out, "stack_slots = %d\n", stack_slots());
|
|
}
|
|
|
|
PrintF(out, "Instructions (size = %d)\n", instruction_size());
|
|
Disassembler::Decode(out, this);
|
|
PrintF(out, "\n");
|
|
|
|
if (kind() == FUNCTION) {
|
|
DeoptimizationOutputData* data =
|
|
DeoptimizationOutputData::cast(this->deoptimization_data());
|
|
data->DeoptimizationOutputDataPrint(out);
|
|
} else if (kind() == OPTIMIZED_FUNCTION) {
|
|
DeoptimizationInputData* data =
|
|
DeoptimizationInputData::cast(this->deoptimization_data());
|
|
data->DeoptimizationInputDataPrint(out);
|
|
}
|
|
PrintF("\n");
|
|
|
|
if (is_crankshafted()) {
|
|
SafepointTable table(this);
|
|
PrintF(out, "Safepoints (size = %u)\n", table.size());
|
|
for (unsigned i = 0; i < table.length(); i++) {
|
|
unsigned pc_offset = table.GetPcOffset(i);
|
|
PrintF(out, "%p %4d ", (instruction_start() + pc_offset), pc_offset);
|
|
table.PrintEntry(i);
|
|
PrintF(out, " (sp -> fp)");
|
|
SafepointEntry entry = table.GetEntry(i);
|
|
if (entry.deoptimization_index() != Safepoint::kNoDeoptimizationIndex) {
|
|
PrintF(out, " %6d", entry.deoptimization_index());
|
|
} else {
|
|
PrintF(out, " <none>");
|
|
}
|
|
if (entry.argument_count() > 0) {
|
|
PrintF(out, " argc: %d", entry.argument_count());
|
|
}
|
|
PrintF(out, "\n");
|
|
}
|
|
PrintF(out, "\n");
|
|
} else if (kind() == FUNCTION) {
|
|
unsigned offset = back_edge_table_offset();
|
|
// If there is no back edge table, the "table start" will be at or after
|
|
// (due to alignment) the end of the instruction stream.
|
|
if (static_cast<int>(offset) < instruction_size()) {
|
|
Address back_edge_cursor = instruction_start() + offset;
|
|
uint32_t table_length = Memory::uint32_at(back_edge_cursor);
|
|
PrintF(out, "Back edges (size = %u)\n", table_length);
|
|
PrintF(out, "ast_id pc_offset loop_depth\n");
|
|
for (uint32_t i = 0; i < table_length; ++i) {
|
|
uint32_t ast_id = Memory::uint32_at(back_edge_cursor);
|
|
uint32_t pc_offset = Memory::uint32_at(back_edge_cursor + kIntSize);
|
|
uint8_t loop_depth = Memory::uint8_at(back_edge_cursor + 2 * kIntSize);
|
|
PrintF(out, "%6u %9u %10u\n", ast_id, pc_offset, loop_depth);
|
|
back_edge_cursor += FullCodeGenerator::kBackEdgeEntrySize;
|
|
}
|
|
PrintF(out, "\n");
|
|
}
|
|
#ifdef OBJECT_PRINT
|
|
if (!type_feedback_info()->IsUndefined()) {
|
|
TypeFeedbackInfo::cast(type_feedback_info())->TypeFeedbackInfoPrint(out);
|
|
PrintF(out, "\n");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
PrintF("RelocInfo (size = %d)\n", relocation_size());
|
|
for (RelocIterator it(this); !it.done(); it.next()) {
|
|
it.rinfo()->Print(GetIsolate(), out);
|
|
}
|
|
PrintF(out, "\n");
|
|
}
|
|
#endif // ENABLE_DISASSEMBLER
|
|
|
|
|
|
MaybeObject* JSObject::SetFastElementsCapacityAndLength(
|
|
int capacity,
|
|
int length,
|
|
SetFastElementsCapacitySmiMode smi_mode) {
|
|
Heap* heap = GetHeap();
|
|
// We should never end in here with a pixel or external array.
|
|
ASSERT(!HasExternalArrayElements());
|
|
ASSERT(!map()->is_observed());
|
|
|
|
// Allocate a new fast elements backing store.
|
|
FixedArray* new_elements;
|
|
MaybeObject* maybe = heap->AllocateUninitializedFixedArray(capacity);
|
|
if (!maybe->To(&new_elements)) return maybe;
|
|
|
|
ElementsKind elements_kind = GetElementsKind();
|
|
ElementsKind new_elements_kind;
|
|
// The resized array has FAST_*_SMI_ELEMENTS if the capacity mode forces it,
|
|
// or if it's allowed and the old elements array contained only SMIs.
|
|
bool has_fast_smi_elements =
|
|
(smi_mode == kForceSmiElements) ||
|
|
((smi_mode == kAllowSmiElements) && HasFastSmiElements());
|
|
if (has_fast_smi_elements) {
|
|
if (IsHoleyElementsKind(elements_kind)) {
|
|
new_elements_kind = FAST_HOLEY_SMI_ELEMENTS;
|
|
} else {
|
|
new_elements_kind = FAST_SMI_ELEMENTS;
|
|
}
|
|
} else {
|
|
if (IsHoleyElementsKind(elements_kind)) {
|
|
new_elements_kind = FAST_HOLEY_ELEMENTS;
|
|
} else {
|
|
new_elements_kind = FAST_ELEMENTS;
|
|
}
|
|
}
|
|
FixedArrayBase* old_elements = elements();
|
|
ElementsAccessor* accessor = ElementsAccessor::ForKind(new_elements_kind);
|
|
MaybeObject* maybe_obj =
|
|
accessor->CopyElements(this, new_elements, elements_kind);
|
|
if (maybe_obj->IsFailure()) return maybe_obj;
|
|
|
|
if (elements_kind != NON_STRICT_ARGUMENTS_ELEMENTS) {
|
|
Map* new_map = map();
|
|
if (new_elements_kind != elements_kind) {
|
|
MaybeObject* maybe =
|
|
GetElementsTransitionMap(GetIsolate(), new_elements_kind);
|
|
if (!maybe->To(&new_map)) return maybe;
|
|
}
|
|
ValidateElements();
|
|
set_map_and_elements(new_map, new_elements);
|
|
} else {
|
|
FixedArray* parameter_map = FixedArray::cast(old_elements);
|
|
parameter_map->set(1, new_elements);
|
|
}
|
|
|
|
if (FLAG_trace_elements_transitions) {
|
|
PrintElementsTransition(stdout, elements_kind, old_elements,
|
|
GetElementsKind(), new_elements);
|
|
}
|
|
|
|
if (IsJSArray()) {
|
|
JSArray::cast(this)->set_length(Smi::FromInt(length));
|
|
}
|
|
return new_elements;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetFastDoubleElementsCapacityAndLength(
|
|
int capacity,
|
|
int length) {
|
|
Heap* heap = GetHeap();
|
|
// We should never end in here with a pixel or external array.
|
|
ASSERT(!HasExternalArrayElements());
|
|
ASSERT(!map()->is_observed());
|
|
|
|
FixedArrayBase* elems;
|
|
{ MaybeObject* maybe_obj =
|
|
heap->AllocateUninitializedFixedDoubleArray(capacity);
|
|
if (!maybe_obj->To(&elems)) return maybe_obj;
|
|
}
|
|
|
|
ElementsKind elements_kind = GetElementsKind();
|
|
ElementsKind new_elements_kind = elements_kind;
|
|
if (IsHoleyElementsKind(elements_kind)) {
|
|
new_elements_kind = FAST_HOLEY_DOUBLE_ELEMENTS;
|
|
} else {
|
|
new_elements_kind = FAST_DOUBLE_ELEMENTS;
|
|
}
|
|
|
|
Map* new_map;
|
|
{ MaybeObject* maybe_obj =
|
|
GetElementsTransitionMap(heap->isolate(), new_elements_kind);
|
|
if (!maybe_obj->To(&new_map)) return maybe_obj;
|
|
}
|
|
|
|
FixedArrayBase* old_elements = elements();
|
|
ElementsAccessor* accessor = ElementsAccessor::ForKind(FAST_DOUBLE_ELEMENTS);
|
|
{ MaybeObject* maybe_obj =
|
|
accessor->CopyElements(this, elems, elements_kind);
|
|
if (maybe_obj->IsFailure()) return maybe_obj;
|
|
}
|
|
if (elements_kind != NON_STRICT_ARGUMENTS_ELEMENTS) {
|
|
ValidateElements();
|
|
set_map_and_elements(new_map, elems);
|
|
} else {
|
|
FixedArray* parameter_map = FixedArray::cast(old_elements);
|
|
parameter_map->set(1, elems);
|
|
}
|
|
|
|
if (FLAG_trace_elements_transitions) {
|
|
PrintElementsTransition(stdout, elements_kind, old_elements,
|
|
GetElementsKind(), elems);
|
|
}
|
|
|
|
if (IsJSArray()) {
|
|
JSArray::cast(this)->set_length(Smi::FromInt(length));
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
|
|
MaybeObject* JSArray::Initialize(int capacity, int length) {
|
|
ASSERT(capacity >= 0);
|
|
return GetHeap()->AllocateJSArrayStorage(this, length, capacity,
|
|
INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
|
|
}
|
|
|
|
|
|
void JSArray::Expand(int required_size) {
|
|
GetIsolate()->factory()->SetElementsCapacityAndLength(
|
|
Handle<JSArray>(this), required_size, required_size);
|
|
}
|
|
|
|
|
|
// Returns false if the passed-in index is marked non-configurable,
|
|
// which will cause the ES5 truncation operation to halt, and thus
|
|
// no further old values need be collected.
|
|
static bool GetOldValue(Isolate* isolate,
|
|
Handle<JSObject> object,
|
|
uint32_t index,
|
|
List<Handle<Object> >* old_values,
|
|
List<uint32_t>* indices) {
|
|
PropertyAttributes attributes = object->GetLocalElementAttribute(index);
|
|
ASSERT(attributes != ABSENT);
|
|
if (attributes == DONT_DELETE) return false;
|
|
old_values->Add(object->GetLocalElementAccessorPair(index) == NULL
|
|
? Object::GetElement(object, index)
|
|
: Handle<Object>::cast(isolate->factory()->the_hole_value()));
|
|
indices->Add(index);
|
|
return true;
|
|
}
|
|
|
|
static void EnqueueSpliceRecord(Handle<JSArray> object,
|
|
uint32_t index,
|
|
Handle<JSArray> deleted,
|
|
uint32_t add_count) {
|
|
Isolate* isolate = object->GetIsolate();
|
|
HandleScope scope(isolate);
|
|
Handle<Object> index_object = isolate->factory()->NewNumberFromUint(index);
|
|
Handle<Object> add_count_object =
|
|
isolate->factory()->NewNumberFromUint(add_count);
|
|
|
|
Handle<Object> args[] =
|
|
{ object, index_object, deleted, add_count_object };
|
|
|
|
bool threw;
|
|
Execution::Call(Handle<JSFunction>(isolate->observers_enqueue_splice()),
|
|
isolate->factory()->undefined_value(), ARRAY_SIZE(args), args,
|
|
&threw);
|
|
ASSERT(!threw);
|
|
}
|
|
|
|
|
|
static void BeginPerformSplice(Handle<JSArray> object) {
|
|
Isolate* isolate = object->GetIsolate();
|
|
HandleScope scope(isolate);
|
|
Handle<Object> args[] = { object };
|
|
|
|
bool threw;
|
|
Execution::Call(Handle<JSFunction>(isolate->observers_begin_perform_splice()),
|
|
isolate->factory()->undefined_value(), ARRAY_SIZE(args), args,
|
|
&threw);
|
|
ASSERT(!threw);
|
|
}
|
|
|
|
|
|
static void EndPerformSplice(Handle<JSArray> object) {
|
|
Isolate* isolate = object->GetIsolate();
|
|
HandleScope scope(isolate);
|
|
Handle<Object> args[] = { object };
|
|
|
|
bool threw;
|
|
Execution::Call(Handle<JSFunction>(isolate->observers_end_perform_splice()),
|
|
isolate->factory()->undefined_value(), ARRAY_SIZE(args), args,
|
|
&threw);
|
|
ASSERT(!threw);
|
|
}
|
|
|
|
|
|
MaybeObject* JSArray::SetElementsLength(Object* len) {
|
|
// We should never end in here with a pixel or external array.
|
|
ASSERT(AllowsSetElementsLength());
|
|
if (!(FLAG_harmony_observation && map()->is_observed()))
|
|
return GetElementsAccessor()->SetLength(this, len);
|
|
|
|
Isolate* isolate = GetIsolate();
|
|
HandleScope scope(isolate);
|
|
Handle<JSArray> self(this);
|
|
List<uint32_t> indices;
|
|
List<Handle<Object> > old_values;
|
|
Handle<Object> old_length_handle(self->length(), isolate);
|
|
Handle<Object> new_length_handle(len, isolate);
|
|
uint32_t old_length = 0;
|
|
CHECK(old_length_handle->ToArrayIndex(&old_length));
|
|
uint32_t new_length = 0;
|
|
if (!new_length_handle->ToArrayIndex(&new_length))
|
|
return Failure::InternalError();
|
|
|
|
// Observed arrays should always be in dictionary mode;
|
|
// if they were in fast mode, the below is slower than necessary
|
|
// as it iterates over the array backing store multiple times.
|
|
ASSERT(self->HasDictionaryElements());
|
|
static const PropertyAttributes kNoAttrFilter = NONE;
|
|
int num_elements = self->NumberOfLocalElements(kNoAttrFilter);
|
|
if (num_elements > 0) {
|
|
if (old_length == static_cast<uint32_t>(num_elements)) {
|
|
// Simple case for arrays without holes.
|
|
for (uint32_t i = old_length - 1; i + 1 > new_length; --i) {
|
|
if (!GetOldValue(isolate, self, i, &old_values, &indices)) break;
|
|
}
|
|
} else {
|
|
// For sparse arrays, only iterate over existing elements.
|
|
Handle<FixedArray> keys = isolate->factory()->NewFixedArray(num_elements);
|
|
self->GetLocalElementKeys(*keys, kNoAttrFilter);
|
|
while (num_elements-- > 0) {
|
|
uint32_t index = NumberToUint32(keys->get(num_elements));
|
|
if (index < new_length) break;
|
|
if (!GetOldValue(isolate, self, index, &old_values, &indices)) break;
|
|
}
|
|
}
|
|
}
|
|
|
|
MaybeObject* result =
|
|
self->GetElementsAccessor()->SetLength(*self, *new_length_handle);
|
|
Handle<Object> hresult;
|
|
if (!result->ToHandle(&hresult, isolate)) return result;
|
|
|
|
CHECK(self->length()->ToArrayIndex(&new_length));
|
|
if (old_length == new_length) return *hresult;
|
|
|
|
BeginPerformSplice(self);
|
|
|
|
for (int i = 0; i < indices.length(); ++i) {
|
|
JSObject::EnqueueChangeRecord(
|
|
self, "deleted", isolate->factory()->Uint32ToString(indices[i]),
|
|
old_values[i]);
|
|
}
|
|
JSObject::EnqueueChangeRecord(
|
|
self, "updated", isolate->factory()->length_string(),
|
|
old_length_handle);
|
|
|
|
EndPerformSplice(self);
|
|
|
|
uint32_t index = Min(old_length, new_length);
|
|
uint32_t add_count = new_length > old_length ? new_length - old_length : 0;
|
|
uint32_t delete_count = new_length < old_length ? old_length - new_length : 0;
|
|
Handle<JSArray> deleted = isolate->factory()->NewJSArray(0);
|
|
if (delete_count > 0) {
|
|
for (int i = indices.length() - 1; i >= 0; i--) {
|
|
JSObject::SetElement(deleted, indices[i] - index, old_values[i], NONE,
|
|
kNonStrictMode);
|
|
}
|
|
|
|
SetProperty(deleted, isolate->factory()->length_string(),
|
|
isolate->factory()->NewNumberFromUint(delete_count),
|
|
NONE, kNonStrictMode);
|
|
}
|
|
|
|
EnqueueSpliceRecord(self, index, deleted, add_count);
|
|
|
|
return *hresult;
|
|
}
|
|
|
|
|
|
Handle<Map> Map::GetPrototypeTransition(Handle<Map> map,
|
|
Handle<Object> prototype) {
|
|
FixedArray* cache = map->GetPrototypeTransitions();
|
|
int number_of_transitions = map->NumberOfProtoTransitions();
|
|
const int proto_offset =
|
|
kProtoTransitionHeaderSize + kProtoTransitionPrototypeOffset;
|
|
const int map_offset = kProtoTransitionHeaderSize + kProtoTransitionMapOffset;
|
|
const int step = kProtoTransitionElementsPerEntry;
|
|
for (int i = 0; i < number_of_transitions; i++) {
|
|
if (cache->get(proto_offset + i * step) == *prototype) {
|
|
Object* result = cache->get(map_offset + i * step);
|
|
return Handle<Map>(Map::cast(result));
|
|
}
|
|
}
|
|
return Handle<Map>();
|
|
}
|
|
|
|
|
|
Handle<Map> Map::PutPrototypeTransition(Handle<Map> map,
|
|
Handle<Object> prototype,
|
|
Handle<Map> target_map) {
|
|
ASSERT(target_map->IsMap());
|
|
ASSERT(HeapObject::cast(*prototype)->map()->IsMap());
|
|
// Don't cache prototype transition if this map is shared.
|
|
if (map->is_shared() || !FLAG_cache_prototype_transitions) return map;
|
|
|
|
const int step = kProtoTransitionElementsPerEntry;
|
|
const int header = kProtoTransitionHeaderSize;
|
|
|
|
Handle<FixedArray> cache(map->GetPrototypeTransitions());
|
|
int capacity = (cache->length() - header) / step;
|
|
int transitions = map->NumberOfProtoTransitions() + 1;
|
|
|
|
if (transitions > capacity) {
|
|
if (capacity > kMaxCachedPrototypeTransitions) return map;
|
|
|
|
// Grow array by factor 2 over and above what we need.
|
|
Factory* factory = map->GetIsolate()->factory();
|
|
cache = factory->CopySizeFixedArray(cache, transitions * 2 * step + header);
|
|
|
|
CALL_AND_RETRY_OR_DIE(map->GetIsolate(),
|
|
map->SetPrototypeTransitions(*cache),
|
|
break,
|
|
return Handle<Map>());
|
|
}
|
|
|
|
// Reload number of transitions as GC might shrink them.
|
|
int last = map->NumberOfProtoTransitions();
|
|
int entry = header + last * step;
|
|
|
|
cache->set(entry + kProtoTransitionPrototypeOffset, *prototype);
|
|
cache->set(entry + kProtoTransitionMapOffset, *target_map);
|
|
map->SetNumberOfProtoTransitions(transitions);
|
|
|
|
return map;
|
|
}
|
|
|
|
|
|
void Map::ZapTransitions() {
|
|
TransitionArray* transition_array = transitions();
|
|
// TODO(mstarzinger): Temporarily use a slower version instead of the faster
|
|
// MemsetPointer to investigate a crasher. Switch back to MemsetPointer.
|
|
Object** data = transition_array->data_start();
|
|
Object* the_hole = GetHeap()->the_hole_value();
|
|
int length = transition_array->length();
|
|
for (int i = 0; i < length; i++) {
|
|
data[i] = the_hole;
|
|
}
|
|
}
|
|
|
|
|
|
void Map::ZapPrototypeTransitions() {
|
|
FixedArray* proto_transitions = GetPrototypeTransitions();
|
|
MemsetPointer(proto_transitions->data_start(),
|
|
GetHeap()->the_hole_value(),
|
|
proto_transitions->length());
|
|
}
|
|
|
|
|
|
void Map::AddDependentCompilationInfo(DependentCode::DependencyGroup group,
|
|
CompilationInfo* info) {
|
|
Handle<DependentCode> dep(dependent_code());
|
|
Handle<DependentCode> codes =
|
|
DependentCode::Insert(dep, group, info->object_wrapper());
|
|
if (*codes != dependent_code()) set_dependent_code(*codes);
|
|
info->dependencies(group)->Add(Handle<HeapObject>(this), info->zone());
|
|
}
|
|
|
|
|
|
void Map::AddDependentCode(DependentCode::DependencyGroup group,
|
|
Handle<Code> code) {
|
|
Handle<DependentCode> codes = DependentCode::Insert(
|
|
Handle<DependentCode>(dependent_code()), group, code);
|
|
if (*codes != dependent_code()) set_dependent_code(*codes);
|
|
}
|
|
|
|
|
|
DependentCode::GroupStartIndexes::GroupStartIndexes(DependentCode* entries) {
|
|
Recompute(entries);
|
|
}
|
|
|
|
|
|
void DependentCode::GroupStartIndexes::Recompute(DependentCode* entries) {
|
|
start_indexes_[0] = 0;
|
|
for (int g = 1; g <= kGroupCount; g++) {
|
|
int count = entries->number_of_entries(static_cast<DependencyGroup>(g - 1));
|
|
start_indexes_[g] = start_indexes_[g - 1] + count;
|
|
}
|
|
}
|
|
|
|
|
|
DependentCode* DependentCode::ForObject(Handle<HeapObject> object,
|
|
DependencyGroup group) {
|
|
AllowDeferredHandleDereference dependencies_are_safe;
|
|
if (group == DependentCode::kPropertyCellChangedGroup) {
|
|
return Handle<PropertyCell>::cast(object)->dependent_code();
|
|
}
|
|
return Handle<Map>::cast(object)->dependent_code();
|
|
}
|
|
|
|
|
|
Handle<DependentCode> DependentCode::Insert(Handle<DependentCode> entries,
|
|
DependencyGroup group,
|
|
Handle<Object> object) {
|
|
GroupStartIndexes starts(*entries);
|
|
int start = starts.at(group);
|
|
int end = starts.at(group + 1);
|
|
int number_of_entries = starts.number_of_entries();
|
|
if (start < end && entries->object_at(end - 1) == *object) {
|
|
// Do not append the compilation info if it is already in the array.
|
|
// It is sufficient to just check only the last element because
|
|
// we process embedded maps of an optimized code in one batch.
|
|
return entries;
|
|
}
|
|
if (entries->length() < kCodesStartIndex + number_of_entries + 1) {
|
|
Factory* factory = entries->GetIsolate()->factory();
|
|
int capacity = kCodesStartIndex + number_of_entries + 1;
|
|
if (capacity > 5) capacity = capacity * 5 / 4;
|
|
Handle<DependentCode> new_entries = Handle<DependentCode>::cast(
|
|
factory->CopySizeFixedArray(entries, capacity));
|
|
// The number of codes can change after GC.
|
|
starts.Recompute(*entries);
|
|
start = starts.at(group);
|
|
end = starts.at(group + 1);
|
|
number_of_entries = starts.number_of_entries();
|
|
for (int i = 0; i < number_of_entries; i++) {
|
|
entries->clear_at(i);
|
|
}
|
|
// If the old fixed array was empty, we need to reset counters of the
|
|
// new array.
|
|
if (number_of_entries == 0) {
|
|
for (int g = 0; g < kGroupCount; g++) {
|
|
new_entries->set_number_of_entries(static_cast<DependencyGroup>(g), 0);
|
|
}
|
|
}
|
|
entries = new_entries;
|
|
}
|
|
entries->ExtendGroup(group);
|
|
entries->set_object_at(end, *object);
|
|
entries->set_number_of_entries(group, end + 1 - start);
|
|
return entries;
|
|
}
|
|
|
|
|
|
void DependentCode::UpdateToFinishedCode(DependencyGroup group,
|
|
CompilationInfo* info,
|
|
Code* code) {
|
|
DisallowHeapAllocation no_gc;
|
|
AllowDeferredHandleDereference get_object_wrapper;
|
|
Foreign* info_wrapper = *info->object_wrapper();
|
|
GroupStartIndexes starts(this);
|
|
int start = starts.at(group);
|
|
int end = starts.at(group + 1);
|
|
for (int i = start; i < end; i++) {
|
|
if (object_at(i) == info_wrapper) {
|
|
set_object_at(i, code);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
for (int i = start; i < end; i++) {
|
|
ASSERT(is_code_at(i) || compilation_info_at(i) != info);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
void DependentCode::RemoveCompilationInfo(DependentCode::DependencyGroup group,
|
|
CompilationInfo* info) {
|
|
DisallowHeapAllocation no_allocation;
|
|
AllowDeferredHandleDereference get_object_wrapper;
|
|
Foreign* info_wrapper = *info->object_wrapper();
|
|
GroupStartIndexes starts(this);
|
|
int start = starts.at(group);
|
|
int end = starts.at(group + 1);
|
|
// Find compilation info wrapper.
|
|
int info_pos = -1;
|
|
for (int i = start; i < end; i++) {
|
|
if (object_at(i) == info_wrapper) {
|
|
info_pos = i;
|
|
break;
|
|
}
|
|
}
|
|
if (info_pos == -1) return; // Not found.
|
|
int gap = info_pos;
|
|
// Use the last of each group to fill the gap in the previous group.
|
|
for (int i = group; i < kGroupCount; i++) {
|
|
int last_of_group = starts.at(i + 1) - 1;
|
|
ASSERT(last_of_group >= gap);
|
|
if (last_of_group == gap) continue;
|
|
copy(last_of_group, gap);
|
|
gap = last_of_group;
|
|
}
|
|
ASSERT(gap == starts.number_of_entries() - 1);
|
|
clear_at(gap); // Clear last gap.
|
|
set_number_of_entries(group, end - start - 1);
|
|
|
|
#ifdef DEBUG
|
|
for (int i = start; i < end - 1; i++) {
|
|
ASSERT(is_code_at(i) || compilation_info_at(i) != info);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
bool DependentCode::Contains(DependencyGroup group, Code* code) {
|
|
GroupStartIndexes starts(this);
|
|
int number_of_entries = starts.number_of_entries();
|
|
for (int i = 0; i < number_of_entries; i++) {
|
|
if (object_at(i) == code) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
class DeoptimizeDependentCodeFilter : public OptimizedFunctionFilter {
|
|
public:
|
|
virtual bool TakeFunction(JSFunction* function) {
|
|
return function->code()->marked_for_deoptimization();
|
|
}
|
|
};
|
|
|
|
|
|
void DependentCode::DeoptimizeDependentCodeGroup(
|
|
Isolate* isolate,
|
|
DependentCode::DependencyGroup group) {
|
|
DisallowHeapAllocation no_allocation_scope;
|
|
DependentCode::GroupStartIndexes starts(this);
|
|
int start = starts.at(group);
|
|
int end = starts.at(group + 1);
|
|
int code_entries = starts.number_of_entries();
|
|
if (start == end) return;
|
|
for (int i = start; i < end; i++) {
|
|
if (is_code_at(i)) {
|
|
Code* code = code_at(i);
|
|
code->set_marked_for_deoptimization(true);
|
|
} else {
|
|
CompilationInfo* info = compilation_info_at(i);
|
|
info->AbortDueToDependencyChange();
|
|
}
|
|
}
|
|
// Compact the array by moving all subsequent groups to fill in the new holes.
|
|
for (int src = end, dst = start; src < code_entries; src++, dst++) {
|
|
copy(src, dst);
|
|
}
|
|
// Now the holes are at the end of the array, zap them for heap-verifier.
|
|
int removed = end - start;
|
|
for (int i = code_entries - removed; i < code_entries; i++) {
|
|
clear_at(i);
|
|
}
|
|
set_number_of_entries(group, 0);
|
|
DeoptimizeDependentCodeFilter filter;
|
|
Deoptimizer::DeoptimizeAllFunctionsWith(isolate, &filter);
|
|
}
|
|
|
|
|
|
Handle<Object> JSObject::SetPrototype(Handle<JSObject> object,
|
|
Handle<Object> value,
|
|
bool skip_hidden_prototypes) {
|
|
#ifdef DEBUG
|
|
int size = object->Size();
|
|
#endif
|
|
|
|
Isolate* isolate = object->GetIsolate();
|
|
Heap* heap = isolate->heap();
|
|
// Silently ignore the change if value is not a JSObject or null.
|
|
// SpiderMonkey behaves this way.
|
|
if (!value->IsJSReceiver() && !value->IsNull()) return value;
|
|
|
|
// From 8.6.2 Object Internal Methods
|
|
// ...
|
|
// In addition, if [[Extensible]] is false the value of the [[Class]] and
|
|
// [[Prototype]] internal properties of the object may not be modified.
|
|
// ...
|
|
// Implementation specific extensions that modify [[Class]], [[Prototype]]
|
|
// or [[Extensible]] must not violate the invariants defined in the preceding
|
|
// paragraph.
|
|
if (!object->map()->is_extensible()) {
|
|
Handle<Object> args[] = { object };
|
|
Handle<Object> error = isolate->factory()->NewTypeError(
|
|
"non_extensible_proto", HandleVector(args, ARRAY_SIZE(args)));
|
|
isolate->Throw(*error);
|
|
return Handle<Object>();
|
|
}
|
|
|
|
// Before we can set the prototype we need to be sure
|
|
// prototype cycles are prevented.
|
|
// It is sufficient to validate that the receiver is not in the new prototype
|
|
// chain.
|
|
for (Object* pt = *value;
|
|
pt != heap->null_value();
|
|
pt = pt->GetPrototype(isolate)) {
|
|
if (JSReceiver::cast(pt) == *object) {
|
|
// Cycle detected.
|
|
Handle<Object> error = isolate->factory()->NewError(
|
|
"cyclic_proto", HandleVector<Object>(NULL, 0));
|
|
isolate->Throw(*error);
|
|
return Handle<Object>();
|
|
}
|
|
}
|
|
|
|
Handle<JSObject> real_receiver = object;
|
|
|
|
if (skip_hidden_prototypes) {
|
|
// Find the first object in the chain whose prototype object is not
|
|
// hidden and set the new prototype on that object.
|
|
Object* current_proto = real_receiver->GetPrototype();
|
|
while (current_proto->IsJSObject() &&
|
|
JSObject::cast(current_proto)->map()->is_hidden_prototype()) {
|
|
real_receiver = handle(JSObject::cast(current_proto), isolate);
|
|
current_proto = current_proto->GetPrototype(isolate);
|
|
}
|
|
}
|
|
|
|
// Set the new prototype of the object.
|
|
Handle<Map> map(real_receiver->map());
|
|
|
|
// Nothing to do if prototype is already set.
|
|
if (map->prototype() == *value) return value;
|
|
|
|
if (value->IsJSObject()) {
|
|
JSObject::OptimizeAsPrototype(Handle<JSObject>::cast(value));
|
|
}
|
|
|
|
Handle<Map> new_map = Map::GetPrototypeTransition(map, value);
|
|
if (new_map.is_null()) {
|
|
new_map = Map::Copy(map);
|
|
Map::PutPrototypeTransition(map, value, new_map);
|
|
new_map->set_prototype(*value);
|
|
}
|
|
ASSERT(new_map->prototype() == *value);
|
|
real_receiver->set_map(*new_map);
|
|
|
|
heap->ClearInstanceofCache();
|
|
ASSERT(size == object->Size());
|
|
return value;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::EnsureCanContainElements(Arguments* args,
|
|
uint32_t first_arg,
|
|
uint32_t arg_count,
|
|
EnsureElementsMode mode) {
|
|
// Elements in |Arguments| are ordered backwards (because they're on the
|
|
// stack), but the method that's called here iterates over them in forward
|
|
// direction.
|
|
return EnsureCanContainElements(
|
|
args->arguments() - first_arg - (arg_count - 1),
|
|
arg_count, mode);
|
|
}
|
|
|
|
|
|
PropertyType JSObject::GetLocalPropertyType(Name* name) {
|
|
uint32_t index = 0;
|
|
if (name->AsArrayIndex(&index)) {
|
|
return GetLocalElementType(index);
|
|
}
|
|
LookupResult lookup(GetIsolate());
|
|
LocalLookup(name, &lookup, true);
|
|
return lookup.type();
|
|
}
|
|
|
|
|
|
PropertyType JSObject::GetLocalElementType(uint32_t index) {
|
|
return GetElementsAccessor()->GetType(this, this, index);
|
|
}
|
|
|
|
|
|
AccessorPair* JSObject::GetLocalPropertyAccessorPair(Name* name) {
|
|
uint32_t index = 0;
|
|
if (name->AsArrayIndex(&index)) {
|
|
return GetLocalElementAccessorPair(index);
|
|
}
|
|
|
|
LookupResult lookup(GetIsolate());
|
|
LocalLookupRealNamedProperty(name, &lookup);
|
|
|
|
if (lookup.IsPropertyCallbacks() &&
|
|
lookup.GetCallbackObject()->IsAccessorPair()) {
|
|
return AccessorPair::cast(lookup.GetCallbackObject());
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
AccessorPair* JSObject::GetLocalElementAccessorPair(uint32_t index) {
|
|
if (IsJSGlobalProxy()) {
|
|
Object* proto = GetPrototype();
|
|
if (proto->IsNull()) return NULL;
|
|
ASSERT(proto->IsJSGlobalObject());
|
|
return JSObject::cast(proto)->GetLocalElementAccessorPair(index);
|
|
}
|
|
|
|
// Check for lookup interceptor.
|
|
if (HasIndexedInterceptor()) return NULL;
|
|
|
|
return GetElementsAccessor()->GetAccessorPair(this, this, index);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetElementWithInterceptor(uint32_t index,
|
|
Object* value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
bool check_prototype,
|
|
SetPropertyMode set_mode) {
|
|
Isolate* isolate = GetIsolate();
|
|
// Make sure that the top context does not change when doing
|
|
// callbacks or interceptor calls.
|
|
AssertNoContextChange ncc;
|
|
HandleScope scope(isolate);
|
|
Handle<InterceptorInfo> interceptor(GetIndexedInterceptor());
|
|
Handle<JSObject> this_handle(this);
|
|
Handle<Object> value_handle(value, isolate);
|
|
if (!interceptor->setter()->IsUndefined()) {
|
|
v8::IndexedPropertySetter setter =
|
|
v8::ToCData<v8::IndexedPropertySetter>(interceptor->setter());
|
|
LOG(isolate,
|
|
ApiIndexedPropertyAccess("interceptor-indexed-set", this, index));
|
|
PropertyCallbackArguments args(isolate, interceptor->data(), this, this);
|
|
v8::Handle<v8::Value> result =
|
|
args.Call(setter, index, v8::Utils::ToLocal(value_handle));
|
|
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
|
|
if (!result.IsEmpty()) return *value_handle;
|
|
}
|
|
MaybeObject* raw_result =
|
|
this_handle->SetElementWithoutInterceptor(index,
|
|
*value_handle,
|
|
attributes,
|
|
strict_mode,
|
|
check_prototype,
|
|
set_mode);
|
|
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
|
|
return raw_result;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::GetElementWithCallback(Object* receiver,
|
|
Object* structure,
|
|
uint32_t index,
|
|
Object* holder) {
|
|
Isolate* isolate = GetIsolate();
|
|
ASSERT(!structure->IsForeign());
|
|
|
|
// api style callbacks.
|
|
if (structure->IsExecutableAccessorInfo()) {
|
|
Handle<ExecutableAccessorInfo> data(
|
|
ExecutableAccessorInfo::cast(structure));
|
|
Object* fun_obj = data->getter();
|
|
v8::AccessorGetter call_fun = v8::ToCData<v8::AccessorGetter>(fun_obj);
|
|
if (call_fun == NULL) return isolate->heap()->undefined_value();
|
|
HandleScope scope(isolate);
|
|
Handle<JSObject> self(JSObject::cast(receiver));
|
|
Handle<JSObject> holder_handle(JSObject::cast(holder));
|
|
Handle<Object> number = isolate->factory()->NewNumberFromUint(index);
|
|
Handle<String> key = isolate->factory()->NumberToString(number);
|
|
LOG(isolate, ApiNamedPropertyAccess("load", *self, *key));
|
|
PropertyCallbackArguments
|
|
args(isolate, data->data(), *self, *holder_handle);
|
|
v8::Handle<v8::Value> result = args.Call(call_fun, v8::Utils::ToLocal(key));
|
|
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
|
|
if (result.IsEmpty()) return isolate->heap()->undefined_value();
|
|
Handle<Object> result_internal = v8::Utils::OpenHandle(*result);
|
|
result_internal->VerifyApiCallResultType();
|
|
return *result_internal;
|
|
}
|
|
|
|
// __defineGetter__ callback
|
|
if (structure->IsAccessorPair()) {
|
|
Object* getter = AccessorPair::cast(structure)->getter();
|
|
if (getter->IsSpecFunction()) {
|
|
// TODO(rossberg): nicer would be to cast to some JSCallable here...
|
|
return GetPropertyWithDefinedGetter(receiver, JSReceiver::cast(getter));
|
|
}
|
|
// Getter is not a function.
|
|
return isolate->heap()->undefined_value();
|
|
}
|
|
|
|
if (structure->IsDeclaredAccessorInfo()) {
|
|
return GetDeclaredAccessorProperty(receiver,
|
|
DeclaredAccessorInfo::cast(structure),
|
|
isolate);
|
|
}
|
|
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetElementWithCallback(Object* structure,
|
|
uint32_t index,
|
|
Object* value,
|
|
JSObject* holder,
|
|
StrictModeFlag strict_mode) {
|
|
Isolate* isolate = GetIsolate();
|
|
HandleScope scope(isolate);
|
|
|
|
// We should never get here to initialize a const with the hole
|
|
// value since a const declaration would conflict with the setter.
|
|
ASSERT(!value->IsTheHole());
|
|
Handle<Object> value_handle(value, isolate);
|
|
|
|
// To accommodate both the old and the new api we switch on the
|
|
// data structure used to store the callbacks. Eventually foreign
|
|
// callbacks should be phased out.
|
|
ASSERT(!structure->IsForeign());
|
|
|
|
if (structure->IsExecutableAccessorInfo()) {
|
|
// api style callbacks
|
|
Handle<JSObject> self(this);
|
|
Handle<JSObject> holder_handle(JSObject::cast(holder));
|
|
Handle<ExecutableAccessorInfo> data(
|
|
ExecutableAccessorInfo::cast(structure));
|
|
Object* call_obj = data->setter();
|
|
v8::AccessorSetter call_fun = v8::ToCData<v8::AccessorSetter>(call_obj);
|
|
if (call_fun == NULL) return value;
|
|
Handle<Object> number = isolate->factory()->NewNumberFromUint(index);
|
|
Handle<String> key(isolate->factory()->NumberToString(number));
|
|
LOG(isolate, ApiNamedPropertyAccess("store", *self, *key));
|
|
PropertyCallbackArguments
|
|
args(isolate, data->data(), *self, *holder_handle);
|
|
args.Call(call_fun,
|
|
v8::Utils::ToLocal(key),
|
|
v8::Utils::ToLocal(value_handle));
|
|
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
|
|
return *value_handle;
|
|
}
|
|
|
|
if (structure->IsAccessorPair()) {
|
|
Handle<Object> setter(AccessorPair::cast(structure)->setter(), isolate);
|
|
if (setter->IsSpecFunction()) {
|
|
// TODO(rossberg): nicer would be to cast to some JSCallable here...
|
|
return SetPropertyWithDefinedSetter(JSReceiver::cast(*setter), value);
|
|
} else {
|
|
if (strict_mode == kNonStrictMode) {
|
|
return value;
|
|
}
|
|
Handle<Object> holder_handle(holder, isolate);
|
|
Handle<Object> key(isolate->factory()->NewNumberFromUint(index));
|
|
Handle<Object> args[2] = { key, holder_handle };
|
|
return isolate->Throw(
|
|
*isolate->factory()->NewTypeError("no_setter_in_callback",
|
|
HandleVector(args, 2)));
|
|
}
|
|
}
|
|
|
|
// TODO(dcarney): Handle correctly.
|
|
if (structure->IsDeclaredAccessorInfo()) return value;
|
|
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
bool JSObject::HasFastArgumentsElements() {
|
|
Heap* heap = GetHeap();
|
|
if (!elements()->IsFixedArray()) return false;
|
|
FixedArray* elements = FixedArray::cast(this->elements());
|
|
if (elements->map() != heap->non_strict_arguments_elements_map()) {
|
|
return false;
|
|
}
|
|
FixedArray* arguments = FixedArray::cast(elements->get(1));
|
|
return !arguments->IsDictionary();
|
|
}
|
|
|
|
|
|
bool JSObject::HasDictionaryArgumentsElements() {
|
|
Heap* heap = GetHeap();
|
|
if (!elements()->IsFixedArray()) return false;
|
|
FixedArray* elements = FixedArray::cast(this->elements());
|
|
if (elements->map() != heap->non_strict_arguments_elements_map()) {
|
|
return false;
|
|
}
|
|
FixedArray* arguments = FixedArray::cast(elements->get(1));
|
|
return arguments->IsDictionary();
|
|
}
|
|
|
|
|
|
// Adding n elements in fast case is O(n*n).
|
|
// Note: revisit design to have dual undefined values to capture absent
|
|
// elements.
|
|
MaybeObject* JSObject::SetFastElement(uint32_t index,
|
|
Object* value,
|
|
StrictModeFlag strict_mode,
|
|
bool check_prototype) {
|
|
ASSERT(HasFastSmiOrObjectElements() ||
|
|
HasFastArgumentsElements());
|
|
|
|
// Array optimizations rely on the prototype lookups of Array objects always
|
|
// returning undefined. If there is a store to the initial prototype object,
|
|
// make sure all of these optimizations are invalidated.
|
|
Isolate* isolate(GetIsolate());
|
|
if (isolate->is_initial_object_prototype(this) ||
|
|
isolate->is_initial_array_prototype(this)) {
|
|
HandleScope scope(GetIsolate());
|
|
map()->dependent_code()->DeoptimizeDependentCodeGroup(
|
|
GetIsolate(),
|
|
DependentCode::kElementsCantBeAddedGroup);
|
|
}
|
|
|
|
FixedArray* backing_store = FixedArray::cast(elements());
|
|
if (backing_store->map() == GetHeap()->non_strict_arguments_elements_map()) {
|
|
backing_store = FixedArray::cast(backing_store->get(1));
|
|
} else {
|
|
MaybeObject* maybe = EnsureWritableFastElements();
|
|
if (!maybe->To(&backing_store)) return maybe;
|
|
}
|
|
uint32_t capacity = static_cast<uint32_t>(backing_store->length());
|
|
|
|
if (check_prototype &&
|
|
(index >= capacity || backing_store->get(index)->IsTheHole())) {
|
|
bool found;
|
|
MaybeObject* result = SetElementWithCallbackSetterInPrototypes(index,
|
|
value,
|
|
&found,
|
|
strict_mode);
|
|
if (found) return result;
|
|
}
|
|
|
|
uint32_t new_capacity = capacity;
|
|
// Check if the length property of this object needs to be updated.
|
|
uint32_t array_length = 0;
|
|
bool must_update_array_length = false;
|
|
bool introduces_holes = true;
|
|
if (IsJSArray()) {
|
|
CHECK(JSArray::cast(this)->length()->ToArrayIndex(&array_length));
|
|
introduces_holes = index > array_length;
|
|
if (index >= array_length) {
|
|
must_update_array_length = true;
|
|
array_length = index + 1;
|
|
}
|
|
} else {
|
|
introduces_holes = index >= capacity;
|
|
}
|
|
|
|
// If the array is growing, and it's not growth by a single element at the
|
|
// end, make sure that the ElementsKind is HOLEY.
|
|
ElementsKind elements_kind = GetElementsKind();
|
|
if (introduces_holes &&
|
|
IsFastElementsKind(elements_kind) &&
|
|
!IsFastHoleyElementsKind(elements_kind)) {
|
|
ElementsKind transitioned_kind = GetHoleyElementsKind(elements_kind);
|
|
MaybeObject* maybe = TransitionElementsKind(transitioned_kind);
|
|
if (maybe->IsFailure()) return maybe;
|
|
}
|
|
|
|
// Check if the capacity of the backing store needs to be increased, or if
|
|
// a transition to slow elements is necessary.
|
|
if (index >= capacity) {
|
|
bool convert_to_slow = true;
|
|
if ((index - capacity) < kMaxGap) {
|
|
new_capacity = NewElementsCapacity(index + 1);
|
|
ASSERT(new_capacity > index);
|
|
if (!ShouldConvertToSlowElements(new_capacity)) {
|
|
convert_to_slow = false;
|
|
}
|
|
}
|
|
if (convert_to_slow) {
|
|
MaybeObject* result = NormalizeElements();
|
|
if (result->IsFailure()) return result;
|
|
return SetDictionaryElement(index, value, NONE, strict_mode,
|
|
check_prototype);
|
|
}
|
|
}
|
|
// Convert to fast double elements if appropriate.
|
|
if (HasFastSmiElements() && !value->IsSmi() && value->IsNumber()) {
|
|
// Consider fixing the boilerplate as well if we have one.
|
|
ElementsKind to_kind = IsHoleyElementsKind(elements_kind)
|
|
? FAST_HOLEY_DOUBLE_ELEMENTS
|
|
: FAST_DOUBLE_ELEMENTS;
|
|
|
|
MaybeObject* maybe_failure = UpdateAllocationSite(to_kind);
|
|
if (maybe_failure->IsFailure()) return maybe_failure;
|
|
|
|
MaybeObject* maybe =
|
|
SetFastDoubleElementsCapacityAndLength(new_capacity, array_length);
|
|
if (maybe->IsFailure()) return maybe;
|
|
FixedDoubleArray::cast(elements())->set(index, value->Number());
|
|
ValidateElements();
|
|
return value;
|
|
}
|
|
// Change elements kind from Smi-only to generic FAST if necessary.
|
|
if (HasFastSmiElements() && !value->IsSmi()) {
|
|
Map* new_map;
|
|
ElementsKind kind = HasFastHoleyElements()
|
|
? FAST_HOLEY_ELEMENTS
|
|
: FAST_ELEMENTS;
|
|
|
|
MaybeObject* maybe_failure = UpdateAllocationSite(kind);
|
|
if (maybe_failure->IsFailure()) return maybe_failure;
|
|
|
|
MaybeObject* maybe_new_map = GetElementsTransitionMap(GetIsolate(),
|
|
kind);
|
|
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
|
|
|
|
set_map(new_map);
|
|
}
|
|
// Increase backing store capacity if that's been decided previously.
|
|
if (new_capacity != capacity) {
|
|
FixedArray* new_elements;
|
|
SetFastElementsCapacitySmiMode smi_mode =
|
|
value->IsSmi() && HasFastSmiElements()
|
|
? kAllowSmiElements
|
|
: kDontAllowSmiElements;
|
|
{ MaybeObject* maybe =
|
|
SetFastElementsCapacityAndLength(new_capacity,
|
|
array_length,
|
|
smi_mode);
|
|
if (!maybe->To(&new_elements)) return maybe;
|
|
}
|
|
new_elements->set(index, value);
|
|
ValidateElements();
|
|
return value;
|
|
}
|
|
|
|
// Finally, set the new element and length.
|
|
ASSERT(elements()->IsFixedArray());
|
|
backing_store->set(index, value);
|
|
if (must_update_array_length) {
|
|
JSArray::cast(this)->set_length(Smi::FromInt(array_length));
|
|
}
|
|
return value;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetDictionaryElement(uint32_t index,
|
|
Object* value_raw,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
bool check_prototype,
|
|
SetPropertyMode set_mode) {
|
|
ASSERT(HasDictionaryElements() || HasDictionaryArgumentsElements());
|
|
Isolate* isolate = GetIsolate();
|
|
Heap* heap = isolate->heap();
|
|
Handle<JSObject> self(this);
|
|
Handle<Object> value(value_raw, isolate);
|
|
|
|
// Insert element in the dictionary.
|
|
Handle<FixedArray> elements(FixedArray::cast(this->elements()));
|
|
bool is_arguments =
|
|
(elements->map() == heap->non_strict_arguments_elements_map());
|
|
Handle<SeededNumberDictionary> dictionary(is_arguments
|
|
? SeededNumberDictionary::cast(elements->get(1))
|
|
: SeededNumberDictionary::cast(*elements));
|
|
|
|
int entry = dictionary->FindEntry(index);
|
|
if (entry != SeededNumberDictionary::kNotFound) {
|
|
Object* element = dictionary->ValueAt(entry);
|
|
PropertyDetails details = dictionary->DetailsAt(entry);
|
|
if (details.type() == CALLBACKS && set_mode == SET_PROPERTY) {
|
|
return SetElementWithCallback(element, index, *value, this, strict_mode);
|
|
} else {
|
|
dictionary->UpdateMaxNumberKey(index);
|
|
// If a value has not been initialized we allow writing to it even if it
|
|
// is read-only (a declared const that has not been initialized). If a
|
|
// value is being defined we skip attribute checks completely.
|
|
if (set_mode == DEFINE_PROPERTY) {
|
|
details = PropertyDetails(
|
|
attributes, NORMAL, details.dictionary_index());
|
|
dictionary->DetailsAtPut(entry, details);
|
|
} else if (details.IsReadOnly() && !element->IsTheHole()) {
|
|
if (strict_mode == kNonStrictMode) {
|
|
return isolate->heap()->undefined_value();
|
|
} else {
|
|
Handle<Object> holder(this, isolate);
|
|
Handle<Object> number = isolate->factory()->NewNumberFromUint(index);
|
|
Handle<Object> args[2] = { number, holder };
|
|
Handle<Object> error =
|
|
isolate->factory()->NewTypeError("strict_read_only_property",
|
|
HandleVector(args, 2));
|
|
return isolate->Throw(*error);
|
|
}
|
|
}
|
|
// Elements of the arguments object in slow mode might be slow aliases.
|
|
if (is_arguments && element->IsAliasedArgumentsEntry()) {
|
|
AliasedArgumentsEntry* entry = AliasedArgumentsEntry::cast(element);
|
|
Context* context = Context::cast(elements->get(0));
|
|
int context_index = entry->aliased_context_slot();
|
|
ASSERT(!context->get(context_index)->IsTheHole());
|
|
context->set(context_index, *value);
|
|
// For elements that are still writable we keep slow aliasing.
|
|
if (!details.IsReadOnly()) value = handle(element, isolate);
|
|
}
|
|
dictionary->ValueAtPut(entry, *value);
|
|
}
|
|
} else {
|
|
// Index not already used. Look for an accessor in the prototype chain.
|
|
// Can cause GC!
|
|
if (check_prototype) {
|
|
bool found;
|
|
MaybeObject* result = SetElementWithCallbackSetterInPrototypes(
|
|
index, *value, &found, strict_mode);
|
|
if (found) return result;
|
|
}
|
|
// When we set the is_extensible flag to false we always force the
|
|
// element into dictionary mode (and force them to stay there).
|
|
if (!self->map()->is_extensible()) {
|
|
if (strict_mode == kNonStrictMode) {
|
|
return isolate->heap()->undefined_value();
|
|
} else {
|
|
Handle<Object> number = isolate->factory()->NewNumberFromUint(index);
|
|
Handle<String> name = isolate->factory()->NumberToString(number);
|
|
Handle<Object> args[1] = { name };
|
|
Handle<Object> error =
|
|
isolate->factory()->NewTypeError("object_not_extensible",
|
|
HandleVector(args, 1));
|
|
return isolate->Throw(*error);
|
|
}
|
|
}
|
|
FixedArrayBase* new_dictionary;
|
|
PropertyDetails details = PropertyDetails(attributes, NORMAL, 0);
|
|
MaybeObject* maybe = dictionary->AddNumberEntry(index, *value, details);
|
|
if (!maybe->To(&new_dictionary)) return maybe;
|
|
if (*dictionary != SeededNumberDictionary::cast(new_dictionary)) {
|
|
if (is_arguments) {
|
|
elements->set(1, new_dictionary);
|
|
} else {
|
|
self->set_elements(new_dictionary);
|
|
}
|
|
dictionary =
|
|
handle(SeededNumberDictionary::cast(new_dictionary), isolate);
|
|
}
|
|
}
|
|
|
|
// Update the array length if this JSObject is an array.
|
|
if (self->IsJSArray()) {
|
|
MaybeObject* result =
|
|
JSArray::cast(*self)->JSArrayUpdateLengthFromIndex(index, *value);
|
|
if (result->IsFailure()) return result;
|
|
}
|
|
|
|
// Attempt to put this object back in fast case.
|
|
if (self->ShouldConvertToFastElements()) {
|
|
uint32_t new_length = 0;
|
|
if (self->IsJSArray()) {
|
|
CHECK(JSArray::cast(*self)->length()->ToArrayIndex(&new_length));
|
|
} else {
|
|
new_length = dictionary->max_number_key() + 1;
|
|
}
|
|
SetFastElementsCapacitySmiMode smi_mode = FLAG_smi_only_arrays
|
|
? kAllowSmiElements
|
|
: kDontAllowSmiElements;
|
|
bool has_smi_only_elements = false;
|
|
bool should_convert_to_fast_double_elements =
|
|
self->ShouldConvertToFastDoubleElements(&has_smi_only_elements);
|
|
if (has_smi_only_elements) {
|
|
smi_mode = kForceSmiElements;
|
|
}
|
|
MaybeObject* result = should_convert_to_fast_double_elements
|
|
? self->SetFastDoubleElementsCapacityAndLength(new_length, new_length)
|
|
: self->SetFastElementsCapacityAndLength(
|
|
new_length, new_length, smi_mode);
|
|
self->ValidateElements();
|
|
if (result->IsFailure()) return result;
|
|
#ifdef DEBUG
|
|
if (FLAG_trace_normalization) {
|
|
PrintF("Object elements are fast case again:\n");
|
|
Print();
|
|
}
|
|
#endif
|
|
}
|
|
return *value;
|
|
}
|
|
|
|
|
|
MUST_USE_RESULT MaybeObject* JSObject::SetFastDoubleElement(
|
|
uint32_t index,
|
|
Object* value,
|
|
StrictModeFlag strict_mode,
|
|
bool check_prototype) {
|
|
ASSERT(HasFastDoubleElements());
|
|
|
|
FixedArrayBase* base_elms = FixedArrayBase::cast(elements());
|
|
uint32_t elms_length = static_cast<uint32_t>(base_elms->length());
|
|
|
|
// If storing to an element that isn't in the array, pass the store request
|
|
// up the prototype chain before storing in the receiver's elements.
|
|
if (check_prototype &&
|
|
(index >= elms_length ||
|
|
FixedDoubleArray::cast(base_elms)->is_the_hole(index))) {
|
|
bool found;
|
|
MaybeObject* result = SetElementWithCallbackSetterInPrototypes(index,
|
|
value,
|
|
&found,
|
|
strict_mode);
|
|
if (found) return result;
|
|
}
|
|
|
|
// If the value object is not a heap number, switch to fast elements and try
|
|
// again.
|
|
bool value_is_smi = value->IsSmi();
|
|
bool introduces_holes = true;
|
|
uint32_t length = elms_length;
|
|
if (IsJSArray()) {
|
|
CHECK(JSArray::cast(this)->length()->ToArrayIndex(&length));
|
|
introduces_holes = index > length;
|
|
} else {
|
|
introduces_holes = index >= elms_length;
|
|
}
|
|
|
|
if (!value->IsNumber()) {
|
|
MaybeObject* maybe_obj = SetFastElementsCapacityAndLength(
|
|
elms_length,
|
|
length,
|
|
kDontAllowSmiElements);
|
|
if (maybe_obj->IsFailure()) return maybe_obj;
|
|
maybe_obj = SetFastElement(index, value, strict_mode, check_prototype);
|
|
if (maybe_obj->IsFailure()) return maybe_obj;
|
|
ValidateElements();
|
|
return maybe_obj;
|
|
}
|
|
|
|
double double_value = value_is_smi
|
|
? static_cast<double>(Smi::cast(value)->value())
|
|
: HeapNumber::cast(value)->value();
|
|
|
|
// If the array is growing, and it's not growth by a single element at the
|
|
// end, make sure that the ElementsKind is HOLEY.
|
|
ElementsKind elements_kind = GetElementsKind();
|
|
if (introduces_holes && !IsFastHoleyElementsKind(elements_kind)) {
|
|
ElementsKind transitioned_kind = GetHoleyElementsKind(elements_kind);
|
|
MaybeObject* maybe = TransitionElementsKind(transitioned_kind);
|
|
if (maybe->IsFailure()) return maybe;
|
|
}
|
|
|
|
// Check whether there is extra space in the fixed array.
|
|
if (index < elms_length) {
|
|
FixedDoubleArray* elms = FixedDoubleArray::cast(elements());
|
|
elms->set(index, double_value);
|
|
if (IsJSArray()) {
|
|
// Update the length of the array if needed.
|
|
uint32_t array_length = 0;
|
|
CHECK(JSArray::cast(this)->length()->ToArrayIndex(&array_length));
|
|
if (index >= array_length) {
|
|
JSArray::cast(this)->set_length(Smi::FromInt(index + 1));
|
|
}
|
|
}
|
|
return value;
|
|
}
|
|
|
|
// Allow gap in fast case.
|
|
if ((index - elms_length) < kMaxGap) {
|
|
// Try allocating extra space.
|
|
int new_capacity = NewElementsCapacity(index+1);
|
|
if (!ShouldConvertToSlowElements(new_capacity)) {
|
|
ASSERT(static_cast<uint32_t>(new_capacity) > index);
|
|
MaybeObject* maybe_obj =
|
|
SetFastDoubleElementsCapacityAndLength(new_capacity, index + 1);
|
|
if (maybe_obj->IsFailure()) return maybe_obj;
|
|
FixedDoubleArray::cast(elements())->set(index, double_value);
|
|
ValidateElements();
|
|
return value;
|
|
}
|
|
}
|
|
|
|
// Otherwise default to slow case.
|
|
ASSERT(HasFastDoubleElements());
|
|
ASSERT(map()->has_fast_double_elements());
|
|
ASSERT(elements()->IsFixedDoubleArray());
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = NormalizeElements();
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
ASSERT(HasDictionaryElements());
|
|
return SetElement(index, value, NONE, strict_mode, check_prototype);
|
|
}
|
|
|
|
|
|
MaybeObject* JSReceiver::SetElement(uint32_t index,
|
|
Object* value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
bool check_proto) {
|
|
if (IsJSProxy()) {
|
|
return JSProxy::cast(this)->SetElementWithHandler(
|
|
this, index, value, strict_mode);
|
|
} else {
|
|
return JSObject::cast(this)->SetElement(
|
|
index, value, attributes, strict_mode, check_proto);
|
|
}
|
|
}
|
|
|
|
|
|
Handle<Object> JSObject::SetOwnElement(Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
StrictModeFlag strict_mode) {
|
|
ASSERT(!object->HasExternalArrayElements());
|
|
CALL_HEAP_FUNCTION(
|
|
object->GetIsolate(),
|
|
object->SetElement(index, *value, NONE, strict_mode, false),
|
|
Object);
|
|
}
|
|
|
|
|
|
Handle<Object> JSObject::SetElement(Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
PropertyAttributes attr,
|
|
StrictModeFlag strict_mode,
|
|
SetPropertyMode set_mode) {
|
|
if (object->HasExternalArrayElements()) {
|
|
if (!value->IsNumber() && !value->IsUndefined()) {
|
|
bool has_exception;
|
|
Handle<Object> number = Execution::ToNumber(value, &has_exception);
|
|
if (has_exception) return Handle<Object>();
|
|
value = number;
|
|
}
|
|
}
|
|
CALL_HEAP_FUNCTION(
|
|
object->GetIsolate(),
|
|
object->SetElement(index, *value, attr, strict_mode, true, set_mode),
|
|
Object);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetElement(uint32_t index,
|
|
Object* value_raw,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
bool check_prototype,
|
|
SetPropertyMode set_mode) {
|
|
Isolate* isolate = GetIsolate();
|
|
|
|
// Check access rights if needed.
|
|
if (IsAccessCheckNeeded()) {
|
|
if (!isolate->MayIndexedAccess(this, index, v8::ACCESS_SET)) {
|
|
isolate->ReportFailedAccessCheck(this, v8::ACCESS_SET);
|
|
return value_raw;
|
|
}
|
|
}
|
|
|
|
if (IsJSGlobalProxy()) {
|
|
Object* proto = GetPrototype();
|
|
if (proto->IsNull()) return value_raw;
|
|
ASSERT(proto->IsJSGlobalObject());
|
|
return JSObject::cast(proto)->SetElement(index,
|
|
value_raw,
|
|
attributes,
|
|
strict_mode,
|
|
check_prototype,
|
|
set_mode);
|
|
}
|
|
|
|
// Don't allow element properties to be redefined for external arrays.
|
|
if (HasExternalArrayElements() && set_mode == DEFINE_PROPERTY) {
|
|
Handle<Object> number = isolate->factory()->NewNumberFromUint(index);
|
|
Handle<Object> args[] = { handle(this, isolate), number };
|
|
Handle<Object> error = isolate->factory()->NewTypeError(
|
|
"redef_external_array_element", HandleVector(args, ARRAY_SIZE(args)));
|
|
return isolate->Throw(*error);
|
|
}
|
|
|
|
// Normalize the elements to enable attributes on the property.
|
|
if ((attributes & (DONT_DELETE | DONT_ENUM | READ_ONLY)) != 0) {
|
|
SeededNumberDictionary* dictionary;
|
|
MaybeObject* maybe_object = NormalizeElements();
|
|
if (!maybe_object->To(&dictionary)) return maybe_object;
|
|
// Make sure that we never go back to fast case.
|
|
dictionary->set_requires_slow_elements();
|
|
}
|
|
|
|
if (!(FLAG_harmony_observation && map()->is_observed())) {
|
|
return HasIndexedInterceptor()
|
|
? SetElementWithInterceptor(
|
|
index, value_raw, attributes, strict_mode, check_prototype, set_mode)
|
|
: SetElementWithoutInterceptor(
|
|
index, value_raw, attributes, strict_mode, check_prototype, set_mode);
|
|
}
|
|
|
|
// From here on, everything has to be handlified.
|
|
Handle<JSObject> self(this);
|
|
Handle<Object> value(value_raw, isolate);
|
|
PropertyAttributes old_attributes = self->GetLocalElementAttribute(index);
|
|
Handle<Object> old_value = isolate->factory()->the_hole_value();
|
|
Handle<Object> old_length_handle;
|
|
Handle<Object> new_length_handle;
|
|
|
|
if (old_attributes != ABSENT) {
|
|
if (self->GetLocalElementAccessorPair(index) == NULL)
|
|
old_value = Object::GetElement(self, index);
|
|
} else if (self->IsJSArray()) {
|
|
// Store old array length in case adding an element grows the array.
|
|
old_length_handle = handle(Handle<JSArray>::cast(self)->length(), isolate);
|
|
}
|
|
|
|
// Check for lookup interceptor
|
|
MaybeObject* result = self->HasIndexedInterceptor()
|
|
? self->SetElementWithInterceptor(
|
|
index, *value, attributes, strict_mode, check_prototype, set_mode)
|
|
: self->SetElementWithoutInterceptor(
|
|
index, *value, attributes, strict_mode, check_prototype, set_mode);
|
|
|
|
Handle<Object> hresult;
|
|
if (!result->ToHandle(&hresult, isolate)) return result;
|
|
|
|
Handle<String> name = isolate->factory()->Uint32ToString(index);
|
|
PropertyAttributes new_attributes = self->GetLocalElementAttribute(index);
|
|
if (old_attributes == ABSENT) {
|
|
if (self->IsJSArray() &&
|
|
!old_length_handle->SameValue(Handle<JSArray>::cast(self)->length())) {
|
|
new_length_handle = handle(Handle<JSArray>::cast(self)->length(),
|
|
isolate);
|
|
uint32_t old_length = 0;
|
|
uint32_t new_length = 0;
|
|
CHECK(old_length_handle->ToArrayIndex(&old_length));
|
|
CHECK(new_length_handle->ToArrayIndex(&new_length));
|
|
|
|
BeginPerformSplice(Handle<JSArray>::cast(self));
|
|
EnqueueChangeRecord(self, "new", name, old_value);
|
|
EnqueueChangeRecord(self, "updated", isolate->factory()->length_string(),
|
|
old_length_handle);
|
|
EndPerformSplice(Handle<JSArray>::cast(self));
|
|
Handle<JSArray> deleted = isolate->factory()->NewJSArray(0);
|
|
EnqueueSpliceRecord(Handle<JSArray>::cast(self), old_length, deleted,
|
|
new_length - old_length);
|
|
} else {
|
|
EnqueueChangeRecord(self, "new", name, old_value);
|
|
}
|
|
} else if (old_value->IsTheHole()) {
|
|
EnqueueChangeRecord(self, "reconfigured", name, old_value);
|
|
} else {
|
|
Handle<Object> new_value = Object::GetElement(self, index);
|
|
bool value_changed = !old_value->SameValue(*new_value);
|
|
if (old_attributes != new_attributes) {
|
|
if (!value_changed) old_value = isolate->factory()->the_hole_value();
|
|
EnqueueChangeRecord(self, "reconfigured", name, old_value);
|
|
} else if (value_changed) {
|
|
EnqueueChangeRecord(self, "updated", name, old_value);
|
|
}
|
|
}
|
|
|
|
return *hresult;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetElementWithoutInterceptor(uint32_t index,
|
|
Object* value,
|
|
PropertyAttributes attr,
|
|
StrictModeFlag strict_mode,
|
|
bool check_prototype,
|
|
SetPropertyMode set_mode) {
|
|
ASSERT(HasDictionaryElements() ||
|
|
HasDictionaryArgumentsElements() ||
|
|
(attr & (DONT_DELETE | DONT_ENUM | READ_ONLY)) == 0);
|
|
Isolate* isolate = GetIsolate();
|
|
if (FLAG_trace_external_array_abuse &&
|
|
IsExternalArrayElementsKind(GetElementsKind())) {
|
|
CheckArrayAbuse(this, "external elements write", index);
|
|
}
|
|
if (FLAG_trace_js_array_abuse &&
|
|
!IsExternalArrayElementsKind(GetElementsKind())) {
|
|
if (IsJSArray()) {
|
|
CheckArrayAbuse(this, "elements write", index, true);
|
|
}
|
|
}
|
|
switch (GetElementsKind()) {
|
|
case FAST_SMI_ELEMENTS:
|
|
case FAST_ELEMENTS:
|
|
case FAST_HOLEY_SMI_ELEMENTS:
|
|
case FAST_HOLEY_ELEMENTS:
|
|
return SetFastElement(index, value, strict_mode, check_prototype);
|
|
case FAST_DOUBLE_ELEMENTS:
|
|
case FAST_HOLEY_DOUBLE_ELEMENTS:
|
|
return SetFastDoubleElement(index, value, strict_mode, check_prototype);
|
|
case EXTERNAL_PIXEL_ELEMENTS: {
|
|
ExternalPixelArray* pixels = ExternalPixelArray::cast(elements());
|
|
return pixels->SetValue(index, value);
|
|
}
|
|
case EXTERNAL_BYTE_ELEMENTS: {
|
|
ExternalByteArray* array = ExternalByteArray::cast(elements());
|
|
return array->SetValue(index, value);
|
|
}
|
|
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: {
|
|
ExternalUnsignedByteArray* array =
|
|
ExternalUnsignedByteArray::cast(elements());
|
|
return array->SetValue(index, value);
|
|
}
|
|
case EXTERNAL_SHORT_ELEMENTS: {
|
|
ExternalShortArray* array = ExternalShortArray::cast(elements());
|
|
return array->SetValue(index, value);
|
|
}
|
|
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: {
|
|
ExternalUnsignedShortArray* array =
|
|
ExternalUnsignedShortArray::cast(elements());
|
|
return array->SetValue(index, value);
|
|
}
|
|
case EXTERNAL_INT_ELEMENTS: {
|
|
ExternalIntArray* array = ExternalIntArray::cast(elements());
|
|
return array->SetValue(index, value);
|
|
}
|
|
case EXTERNAL_UNSIGNED_INT_ELEMENTS: {
|
|
ExternalUnsignedIntArray* array =
|
|
ExternalUnsignedIntArray::cast(elements());
|
|
return array->SetValue(index, value);
|
|
}
|
|
case EXTERNAL_FLOAT_ELEMENTS: {
|
|
ExternalFloatArray* array = ExternalFloatArray::cast(elements());
|
|
return array->SetValue(index, value);
|
|
}
|
|
case EXTERNAL_DOUBLE_ELEMENTS: {
|
|
ExternalDoubleArray* array = ExternalDoubleArray::cast(elements());
|
|
return array->SetValue(index, value);
|
|
}
|
|
case DICTIONARY_ELEMENTS:
|
|
return SetDictionaryElement(index, value, attr, strict_mode,
|
|
check_prototype, set_mode);
|
|
case NON_STRICT_ARGUMENTS_ELEMENTS: {
|
|
FixedArray* parameter_map = FixedArray::cast(elements());
|
|
uint32_t length = parameter_map->length();
|
|
Object* probe =
|
|
(index < length - 2) ? parameter_map->get(index + 2) : NULL;
|
|
if (probe != NULL && !probe->IsTheHole()) {
|
|
Context* context = Context::cast(parameter_map->get(0));
|
|
int context_index = Smi::cast(probe)->value();
|
|
ASSERT(!context->get(context_index)->IsTheHole());
|
|
context->set(context_index, value);
|
|
// Redefining attributes of an aliased element destroys fast aliasing.
|
|
if (set_mode == SET_PROPERTY || attr == NONE) return value;
|
|
parameter_map->set_the_hole(index + 2);
|
|
// For elements that are still writable we re-establish slow aliasing.
|
|
if ((attr & READ_ONLY) == 0) {
|
|
MaybeObject* maybe_entry =
|
|
isolate->heap()->AllocateAliasedArgumentsEntry(context_index);
|
|
if (!maybe_entry->ToObject(&value)) return maybe_entry;
|
|
}
|
|
}
|
|
FixedArray* arguments = FixedArray::cast(parameter_map->get(1));
|
|
if (arguments->IsDictionary()) {
|
|
return SetDictionaryElement(index, value, attr, strict_mode,
|
|
check_prototype, set_mode);
|
|
} else {
|
|
return SetFastElement(index, value, strict_mode, check_prototype);
|
|
}
|
|
}
|
|
}
|
|
// All possible cases have been handled above. Add a return to avoid the
|
|
// complaints from the compiler.
|
|
UNREACHABLE();
|
|
return isolate->heap()->null_value();
|
|
}
|
|
|
|
|
|
Handle<Object> JSObject::TransitionElementsKind(Handle<JSObject> object,
|
|
ElementsKind to_kind) {
|
|
CALL_HEAP_FUNCTION(object->GetIsolate(),
|
|
object->TransitionElementsKind(to_kind),
|
|
Object);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::UpdateAllocationSite(ElementsKind to_kind) {
|
|
if (!FLAG_track_allocation_sites || !IsJSArray()) {
|
|
return this;
|
|
}
|
|
|
|
AllocationSiteInfo* info = AllocationSiteInfo::FindForJSObject(this);
|
|
if (info == NULL || !info->IsValid()) {
|
|
return this;
|
|
}
|
|
|
|
// Walk through to the Allocation Site
|
|
AllocationSite* site = info->GetAllocationSite();
|
|
if (site->IsLiteralSite()) {
|
|
JSArray* transition_info = JSArray::cast(site->transition_info());
|
|
ElementsKind kind = transition_info->GetElementsKind();
|
|
// if kind is holey ensure that to_kind is as well.
|
|
if (IsHoleyElementsKind(kind)) {
|
|
to_kind = GetHoleyElementsKind(to_kind);
|
|
}
|
|
if (AllocationSite::GetMode(kind, to_kind) == TRACK_ALLOCATION_SITE) {
|
|
// If the array is huge, it's not likely to be defined in a local
|
|
// function, so we shouldn't make new instances of it very often.
|
|
uint32_t length = 0;
|
|
CHECK(transition_info->length()->ToArrayIndex(&length));
|
|
if (length <= AllocationSite::kMaximumArrayBytesToPretransition) {
|
|
if (FLAG_trace_track_allocation_sites) {
|
|
PrintF(
|
|
"AllocationSite: JSArray %p boilerplate updated %s->%s\n",
|
|
reinterpret_cast<void*>(this),
|
|
ElementsKindToString(kind),
|
|
ElementsKindToString(to_kind));
|
|
}
|
|
return transition_info->TransitionElementsKind(to_kind);
|
|
}
|
|
}
|
|
} else {
|
|
ElementsKind kind = site->GetElementsKind();
|
|
// if kind is holey ensure that to_kind is as well.
|
|
if (IsHoleyElementsKind(kind)) {
|
|
to_kind = GetHoleyElementsKind(to_kind);
|
|
}
|
|
if (AllocationSite::GetMode(kind, to_kind) == TRACK_ALLOCATION_SITE) {
|
|
if (FLAG_trace_track_allocation_sites) {
|
|
PrintF("AllocationSite: JSArray %p site updated %s->%s\n",
|
|
reinterpret_cast<void*>(this),
|
|
ElementsKindToString(kind),
|
|
ElementsKindToString(to_kind));
|
|
}
|
|
site->set_transition_info(Smi::FromInt(to_kind));
|
|
}
|
|
}
|
|
return this;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::TransitionElementsKind(ElementsKind to_kind) {
|
|
ASSERT(!map()->is_observed());
|
|
ElementsKind from_kind = map()->elements_kind();
|
|
|
|
if (IsFastHoleyElementsKind(from_kind)) {
|
|
to_kind = GetHoleyElementsKind(to_kind);
|
|
}
|
|
|
|
if (from_kind == to_kind) return this;
|
|
|
|
MaybeObject* maybe_failure = UpdateAllocationSite(to_kind);
|
|
if (maybe_failure->IsFailure()) return maybe_failure;
|
|
|
|
Isolate* isolate = GetIsolate();
|
|
if (elements() == isolate->heap()->empty_fixed_array() ||
|
|
(IsFastSmiOrObjectElementsKind(from_kind) &&
|
|
IsFastSmiOrObjectElementsKind(to_kind)) ||
|
|
(from_kind == FAST_DOUBLE_ELEMENTS &&
|
|
to_kind == FAST_HOLEY_DOUBLE_ELEMENTS)) {
|
|
ASSERT(from_kind != TERMINAL_FAST_ELEMENTS_KIND);
|
|
// No change is needed to the elements() buffer, the transition
|
|
// only requires a map change.
|
|
MaybeObject* maybe_new_map = GetElementsTransitionMap(isolate, to_kind);
|
|
Map* new_map;
|
|
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
|
|
set_map(new_map);
|
|
if (FLAG_trace_elements_transitions) {
|
|
FixedArrayBase* elms = FixedArrayBase::cast(elements());
|
|
PrintElementsTransition(stdout, from_kind, elms, to_kind, elms);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
FixedArrayBase* elms = FixedArrayBase::cast(elements());
|
|
uint32_t capacity = static_cast<uint32_t>(elms->length());
|
|
uint32_t length = capacity;
|
|
|
|
if (IsJSArray()) {
|
|
Object* raw_length = JSArray::cast(this)->length();
|
|
if (raw_length->IsUndefined()) {
|
|
// If length is undefined, then JSArray is being initialized and has no
|
|
// elements, assume a length of zero.
|
|
length = 0;
|
|
} else {
|
|
CHECK(JSArray::cast(this)->length()->ToArrayIndex(&length));
|
|
}
|
|
}
|
|
|
|
if (IsFastSmiElementsKind(from_kind) &&
|
|
IsFastDoubleElementsKind(to_kind)) {
|
|
MaybeObject* maybe_result =
|
|
SetFastDoubleElementsCapacityAndLength(capacity, length);
|
|
if (maybe_result->IsFailure()) return maybe_result;
|
|
ValidateElements();
|
|
return this;
|
|
}
|
|
|
|
if (IsFastDoubleElementsKind(from_kind) &&
|
|
IsFastObjectElementsKind(to_kind)) {
|
|
MaybeObject* maybe_result = SetFastElementsCapacityAndLength(
|
|
capacity, length, kDontAllowSmiElements);
|
|
if (maybe_result->IsFailure()) return maybe_result;
|
|
ValidateElements();
|
|
return this;
|
|
}
|
|
|
|
// This method should never be called for any other case than the ones
|
|
// handled above.
|
|
UNREACHABLE();
|
|
return GetIsolate()->heap()->null_value();
|
|
}
|
|
|
|
|
|
// static
|
|
bool Map::IsValidElementsTransition(ElementsKind from_kind,
|
|
ElementsKind to_kind) {
|
|
// Transitions can't go backwards.
|
|
if (!IsMoreGeneralElementsKindTransition(from_kind, to_kind)) {
|
|
return false;
|
|
}
|
|
|
|
// Transitions from HOLEY -> PACKED are not allowed.
|
|
return !IsFastHoleyElementsKind(from_kind) ||
|
|
IsFastHoleyElementsKind(to_kind);
|
|
}
|
|
|
|
|
|
MaybeObject* JSArray::JSArrayUpdateLengthFromIndex(uint32_t index,
|
|
Object* value) {
|
|
uint32_t old_len = 0;
|
|
CHECK(length()->ToArrayIndex(&old_len));
|
|
// Check to see if we need to update the length. For now, we make
|
|
// sure that the length stays within 32-bits (unsigned).
|
|
if (index >= old_len && index != 0xffffffff) {
|
|
Object* len;
|
|
{ MaybeObject* maybe_len =
|
|
GetHeap()->NumberFromDouble(static_cast<double>(index) + 1);
|
|
if (!maybe_len->ToObject(&len)) return maybe_len;
|
|
}
|
|
set_length(len);
|
|
}
|
|
return value;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::GetElementWithInterceptor(Object* receiver,
|
|
uint32_t index) {
|
|
Isolate* isolate = GetIsolate();
|
|
// Make sure that the top context does not change when doing
|
|
// callbacks or interceptor calls.
|
|
AssertNoContextChange ncc;
|
|
HandleScope scope(isolate);
|
|
Handle<InterceptorInfo> interceptor(GetIndexedInterceptor(), isolate);
|
|
Handle<Object> this_handle(receiver, isolate);
|
|
Handle<JSObject> holder_handle(this, isolate);
|
|
if (!interceptor->getter()->IsUndefined()) {
|
|
v8::IndexedPropertyGetter getter =
|
|
v8::ToCData<v8::IndexedPropertyGetter>(interceptor->getter());
|
|
LOG(isolate,
|
|
ApiIndexedPropertyAccess("interceptor-indexed-get", this, index));
|
|
PropertyCallbackArguments
|
|
args(isolate, interceptor->data(), receiver, this);
|
|
v8::Handle<v8::Value> result = args.Call(getter, index);
|
|
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
|
|
if (!result.IsEmpty()) {
|
|
Handle<Object> result_internal = v8::Utils::OpenHandle(*result);
|
|
result_internal->VerifyApiCallResultType();
|
|
return *result_internal;
|
|
}
|
|
}
|
|
|
|
Heap* heap = holder_handle->GetHeap();
|
|
ElementsAccessor* handler = holder_handle->GetElementsAccessor();
|
|
MaybeObject* raw_result = handler->Get(*this_handle,
|
|
*holder_handle,
|
|
index);
|
|
if (raw_result != heap->the_hole_value()) return raw_result;
|
|
|
|
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
|
|
|
|
Object* pt = holder_handle->GetPrototype();
|
|
if (pt == heap->null_value()) return heap->undefined_value();
|
|
return pt->GetElementWithReceiver(*this_handle, index);
|
|
}
|
|
|
|
|
|
bool JSObject::HasDenseElements() {
|
|
int capacity = 0;
|
|
int used = 0;
|
|
GetElementsCapacityAndUsage(&capacity, &used);
|
|
return (capacity == 0) || (used > (capacity / 2));
|
|
}
|
|
|
|
|
|
void JSObject::GetElementsCapacityAndUsage(int* capacity, int* used) {
|
|
*capacity = 0;
|
|
*used = 0;
|
|
|
|
FixedArrayBase* backing_store_base = FixedArrayBase::cast(elements());
|
|
FixedArray* backing_store = NULL;
|
|
switch (GetElementsKind()) {
|
|
case NON_STRICT_ARGUMENTS_ELEMENTS:
|
|
backing_store_base =
|
|
FixedArray::cast(FixedArray::cast(backing_store_base)->get(1));
|
|
backing_store = FixedArray::cast(backing_store_base);
|
|
if (backing_store->IsDictionary()) {
|
|
SeededNumberDictionary* dictionary =
|
|
SeededNumberDictionary::cast(backing_store);
|
|
*capacity = dictionary->Capacity();
|
|
*used = dictionary->NumberOfElements();
|
|
break;
|
|
}
|
|
// Fall through.
|
|
case FAST_SMI_ELEMENTS:
|
|
case FAST_ELEMENTS:
|
|
if (IsJSArray()) {
|
|
*capacity = backing_store_base->length();
|
|
*used = Smi::cast(JSArray::cast(this)->length())->value();
|
|
break;
|
|
}
|
|
// Fall through if packing is not guaranteed.
|
|
case FAST_HOLEY_SMI_ELEMENTS:
|
|
case FAST_HOLEY_ELEMENTS:
|
|
backing_store = FixedArray::cast(backing_store_base);
|
|
*capacity = backing_store->length();
|
|
for (int i = 0; i < *capacity; ++i) {
|
|
if (!backing_store->get(i)->IsTheHole()) ++(*used);
|
|
}
|
|
break;
|
|
case DICTIONARY_ELEMENTS: {
|
|
SeededNumberDictionary* dictionary =
|
|
SeededNumberDictionary::cast(FixedArray::cast(elements()));
|
|
*capacity = dictionary->Capacity();
|
|
*used = dictionary->NumberOfElements();
|
|
break;
|
|
}
|
|
case FAST_DOUBLE_ELEMENTS:
|
|
if (IsJSArray()) {
|
|
*capacity = backing_store_base->length();
|
|
*used = Smi::cast(JSArray::cast(this)->length())->value();
|
|
break;
|
|
}
|
|
// Fall through if packing is not guaranteed.
|
|
case FAST_HOLEY_DOUBLE_ELEMENTS: {
|
|
FixedDoubleArray* elms = FixedDoubleArray::cast(elements());
|
|
*capacity = elms->length();
|
|
for (int i = 0; i < *capacity; i++) {
|
|
if (!elms->is_the_hole(i)) ++(*used);
|
|
}
|
|
break;
|
|
}
|
|
case EXTERNAL_BYTE_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
|
|
case EXTERNAL_SHORT_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
|
|
case EXTERNAL_INT_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
|
|
case EXTERNAL_FLOAT_ELEMENTS:
|
|
case EXTERNAL_DOUBLE_ELEMENTS:
|
|
case EXTERNAL_PIXEL_ELEMENTS:
|
|
// External arrays are considered 100% used.
|
|
ExternalArray* external_array = ExternalArray::cast(elements());
|
|
*capacity = external_array->length();
|
|
*used = external_array->length();
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
bool JSObject::ShouldConvertToSlowElements(int new_capacity) {
|
|
STATIC_ASSERT(kMaxUncheckedOldFastElementsLength <=
|
|
kMaxUncheckedFastElementsLength);
|
|
if (new_capacity <= kMaxUncheckedOldFastElementsLength ||
|
|
(new_capacity <= kMaxUncheckedFastElementsLength &&
|
|
GetHeap()->InNewSpace(this))) {
|
|
return false;
|
|
}
|
|
// If the fast-case backing storage takes up roughly three times as
|
|
// much space (in machine words) as a dictionary backing storage
|
|
// would, the object should have slow elements.
|
|
int old_capacity = 0;
|
|
int used_elements = 0;
|
|
GetElementsCapacityAndUsage(&old_capacity, &used_elements);
|
|
int dictionary_size = SeededNumberDictionary::ComputeCapacity(used_elements) *
|
|
SeededNumberDictionary::kEntrySize;
|
|
return 3 * dictionary_size <= new_capacity;
|
|
}
|
|
|
|
|
|
bool JSObject::ShouldConvertToFastElements() {
|
|
ASSERT(HasDictionaryElements() || HasDictionaryArgumentsElements());
|
|
// If the elements are sparse, we should not go back to fast case.
|
|
if (!HasDenseElements()) return false;
|
|
// An object requiring access checks is never allowed to have fast
|
|
// elements. If it had fast elements we would skip security checks.
|
|
if (IsAccessCheckNeeded()) return false;
|
|
// Observed objects may not go to fast mode because they rely on map checks,
|
|
// and for fast element accesses we sometimes check element kinds only.
|
|
if (FLAG_harmony_observation && map()->is_observed()) return false;
|
|
|
|
FixedArray* elements = FixedArray::cast(this->elements());
|
|
SeededNumberDictionary* dictionary = NULL;
|
|
if (elements->map() == GetHeap()->non_strict_arguments_elements_map()) {
|
|
dictionary = SeededNumberDictionary::cast(elements->get(1));
|
|
} else {
|
|
dictionary = SeededNumberDictionary::cast(elements);
|
|
}
|
|
// If an element has been added at a very high index in the elements
|
|
// dictionary, we cannot go back to fast case.
|
|
if (dictionary->requires_slow_elements()) return false;
|
|
// If the dictionary backing storage takes up roughly half as much
|
|
// space (in machine words) as a fast-case backing storage would,
|
|
// the object should have fast elements.
|
|
uint32_t array_size = 0;
|
|
if (IsJSArray()) {
|
|
CHECK(JSArray::cast(this)->length()->ToArrayIndex(&array_size));
|
|
} else {
|
|
array_size = dictionary->max_number_key();
|
|
}
|
|
uint32_t dictionary_size = static_cast<uint32_t>(dictionary->Capacity()) *
|
|
SeededNumberDictionary::kEntrySize;
|
|
return 2 * dictionary_size >= array_size;
|
|
}
|
|
|
|
|
|
bool JSObject::ShouldConvertToFastDoubleElements(
|
|
bool* has_smi_only_elements) {
|
|
*has_smi_only_elements = false;
|
|
if (FLAG_unbox_double_arrays) {
|
|
ASSERT(HasDictionaryElements());
|
|
SeededNumberDictionary* dictionary =
|
|
SeededNumberDictionary::cast(elements());
|
|
bool found_double = false;
|
|
for (int i = 0; i < dictionary->Capacity(); i++) {
|
|
Object* key = dictionary->KeyAt(i);
|
|
if (key->IsNumber()) {
|
|
Object* value = dictionary->ValueAt(i);
|
|
if (!value->IsNumber()) return false;
|
|
if (!value->IsSmi()) {
|
|
found_double = true;
|
|
}
|
|
}
|
|
}
|
|
*has_smi_only_elements = !found_double;
|
|
return found_double;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
// Certain compilers request function template instantiation when they
|
|
// see the definition of the other template functions in the
|
|
// class. This requires us to have the template functions put
|
|
// together, so even though this function belongs in objects-debug.cc,
|
|
// we keep it here instead to satisfy certain compilers.
|
|
#ifdef OBJECT_PRINT
|
|
template<typename Shape, typename Key>
|
|
void Dictionary<Shape, Key>::Print(FILE* out) {
|
|
int capacity = HashTable<Shape, Key>::Capacity();
|
|
for (int i = 0; i < capacity; i++) {
|
|
Object* k = HashTable<Shape, Key>::KeyAt(i);
|
|
if (HashTable<Shape, Key>::IsKey(k)) {
|
|
PrintF(out, " ");
|
|
if (k->IsString()) {
|
|
String::cast(k)->StringPrint(out);
|
|
} else {
|
|
k->ShortPrint(out);
|
|
}
|
|
PrintF(out, ": ");
|
|
ValueAt(i)->ShortPrint(out);
|
|
PrintF(out, "\n");
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
void Dictionary<Shape, Key>::CopyValuesTo(FixedArray* elements) {
|
|
int pos = 0;
|
|
int capacity = HashTable<Shape, Key>::Capacity();
|
|
DisallowHeapAllocation no_gc;
|
|
WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc);
|
|
for (int i = 0; i < capacity; i++) {
|
|
Object* k = Dictionary<Shape, Key>::KeyAt(i);
|
|
if (Dictionary<Shape, Key>::IsKey(k)) {
|
|
elements->set(pos++, ValueAt(i), mode);
|
|
}
|
|
}
|
|
ASSERT(pos == elements->length());
|
|
}
|
|
|
|
|
|
InterceptorInfo* JSObject::GetNamedInterceptor() {
|
|
ASSERT(map()->has_named_interceptor());
|
|
JSFunction* constructor = JSFunction::cast(map()->constructor());
|
|
ASSERT(constructor->shared()->IsApiFunction());
|
|
Object* result =
|
|
constructor->shared()->get_api_func_data()->named_property_handler();
|
|
return InterceptorInfo::cast(result);
|
|
}
|
|
|
|
|
|
InterceptorInfo* JSObject::GetIndexedInterceptor() {
|
|
ASSERT(map()->has_indexed_interceptor());
|
|
JSFunction* constructor = JSFunction::cast(map()->constructor());
|
|
ASSERT(constructor->shared()->IsApiFunction());
|
|
Object* result =
|
|
constructor->shared()->get_api_func_data()->indexed_property_handler();
|
|
return InterceptorInfo::cast(result);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::GetPropertyPostInterceptor(
|
|
Object* receiver,
|
|
Name* name,
|
|
PropertyAttributes* attributes) {
|
|
// Check local property in holder, ignore interceptor.
|
|
LookupResult result(GetIsolate());
|
|
LocalLookupRealNamedProperty(name, &result);
|
|
if (result.IsFound()) {
|
|
return GetProperty(receiver, &result, name, attributes);
|
|
}
|
|
// Continue searching via the prototype chain.
|
|
Object* pt = GetPrototype();
|
|
*attributes = ABSENT;
|
|
if (pt->IsNull()) return GetHeap()->undefined_value();
|
|
return pt->GetPropertyWithReceiver(receiver, name, attributes);
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::GetLocalPropertyPostInterceptor(
|
|
Object* receiver,
|
|
Name* name,
|
|
PropertyAttributes* attributes) {
|
|
// Check local property in holder, ignore interceptor.
|
|
LookupResult result(GetIsolate());
|
|
LocalLookupRealNamedProperty(name, &result);
|
|
if (result.IsFound()) {
|
|
return GetProperty(receiver, &result, name, attributes);
|
|
}
|
|
return GetHeap()->undefined_value();
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::GetPropertyWithInterceptor(
|
|
Object* receiver,
|
|
Name* name,
|
|
PropertyAttributes* attributes) {
|
|
// TODO(rossberg): Support symbols in the API.
|
|
if (name->IsSymbol()) return GetHeap()->undefined_value();
|
|
|
|
Isolate* isolate = GetIsolate();
|
|
InterceptorInfo* interceptor = GetNamedInterceptor();
|
|
HandleScope scope(isolate);
|
|
Handle<Object> receiver_handle(receiver, isolate);
|
|
Handle<JSObject> holder_handle(this);
|
|
Handle<String> name_handle(String::cast(name));
|
|
|
|
if (!interceptor->getter()->IsUndefined()) {
|
|
v8::NamedPropertyGetter getter =
|
|
v8::ToCData<v8::NamedPropertyGetter>(interceptor->getter());
|
|
LOG(isolate,
|
|
ApiNamedPropertyAccess("interceptor-named-get", *holder_handle, name));
|
|
PropertyCallbackArguments
|
|
args(isolate, interceptor->data(), receiver, this);
|
|
v8::Handle<v8::Value> result =
|
|
args.Call(getter, v8::Utils::ToLocal(name_handle));
|
|
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
|
|
if (!result.IsEmpty()) {
|
|
*attributes = NONE;
|
|
Handle<Object> result_internal = v8::Utils::OpenHandle(*result);
|
|
result_internal->VerifyApiCallResultType();
|
|
return *result_internal;
|
|
}
|
|
}
|
|
|
|
MaybeObject* result = holder_handle->GetPropertyPostInterceptor(
|
|
*receiver_handle,
|
|
*name_handle,
|
|
attributes);
|
|
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
|
|
return result;
|
|
}
|
|
|
|
|
|
bool JSObject::HasRealNamedProperty(Isolate* isolate, Name* key) {
|
|
// Check access rights if needed.
|
|
if (IsAccessCheckNeeded()) {
|
|
if (!isolate->MayNamedAccess(this, key, v8::ACCESS_HAS)) {
|
|
isolate->ReportFailedAccessCheck(this, v8::ACCESS_HAS);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
LookupResult result(isolate);
|
|
LocalLookupRealNamedProperty(key, &result);
|
|
return result.IsFound() && !result.IsInterceptor();
|
|
}
|
|
|
|
|
|
bool JSObject::HasRealElementProperty(Isolate* isolate, uint32_t index) {
|
|
// Check access rights if needed.
|
|
if (IsAccessCheckNeeded()) {
|
|
if (!isolate->MayIndexedAccess(this, index, v8::ACCESS_HAS)) {
|
|
isolate->ReportFailedAccessCheck(this, v8::ACCESS_HAS);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (IsJSGlobalProxy()) {
|
|
Object* proto = GetPrototype();
|
|
if (proto->IsNull()) return false;
|
|
ASSERT(proto->IsJSGlobalObject());
|
|
return JSObject::cast(proto)->HasRealElementProperty(isolate, index);
|
|
}
|
|
|
|
return GetElementAttributeWithoutInterceptor(this, index, false) != ABSENT;
|
|
}
|
|
|
|
|
|
bool JSObject::HasRealNamedCallbackProperty(Isolate* isolate, Name* key) {
|
|
// Check access rights if needed.
|
|
if (IsAccessCheckNeeded()) {
|
|
if (!isolate->MayNamedAccess(this, key, v8::ACCESS_HAS)) {
|
|
isolate->ReportFailedAccessCheck(this, v8::ACCESS_HAS);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
LookupResult result(isolate);
|
|
LocalLookupRealNamedProperty(key, &result);
|
|
return result.IsPropertyCallbacks();
|
|
}
|
|
|
|
|
|
int JSObject::NumberOfLocalProperties(PropertyAttributes filter) {
|
|
if (HasFastProperties()) {
|
|
Map* map = this->map();
|
|
if (filter == NONE) return map->NumberOfOwnDescriptors();
|
|
if (filter & DONT_ENUM) {
|
|
int result = map->EnumLength();
|
|
if (result != Map::kInvalidEnumCache) return result;
|
|
}
|
|
return map->NumberOfDescribedProperties(OWN_DESCRIPTORS, filter);
|
|
}
|
|
return property_dictionary()->NumberOfElementsFilterAttributes(filter);
|
|
}
|
|
|
|
|
|
void FixedArray::SwapPairs(FixedArray* numbers, int i, int j) {
|
|
Object* temp = get(i);
|
|
set(i, get(j));
|
|
set(j, temp);
|
|
if (this != numbers) {
|
|
temp = numbers->get(i);
|
|
numbers->set(i, Smi::cast(numbers->get(j)));
|
|
numbers->set(j, Smi::cast(temp));
|
|
}
|
|
}
|
|
|
|
|
|
static void InsertionSortPairs(FixedArray* content,
|
|
FixedArray* numbers,
|
|
int len) {
|
|
for (int i = 1; i < len; i++) {
|
|
int j = i;
|
|
while (j > 0 &&
|
|
(NumberToUint32(numbers->get(j - 1)) >
|
|
NumberToUint32(numbers->get(j)))) {
|
|
content->SwapPairs(numbers, j - 1, j);
|
|
j--;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HeapSortPairs(FixedArray* content, FixedArray* numbers, int len) {
|
|
// In-place heap sort.
|
|
ASSERT(content->length() == numbers->length());
|
|
|
|
// Bottom-up max-heap construction.
|
|
for (int i = 1; i < len; ++i) {
|
|
int child_index = i;
|
|
while (child_index > 0) {
|
|
int parent_index = ((child_index + 1) >> 1) - 1;
|
|
uint32_t parent_value = NumberToUint32(numbers->get(parent_index));
|
|
uint32_t child_value = NumberToUint32(numbers->get(child_index));
|
|
if (parent_value < child_value) {
|
|
content->SwapPairs(numbers, parent_index, child_index);
|
|
} else {
|
|
break;
|
|
}
|
|
child_index = parent_index;
|
|
}
|
|
}
|
|
|
|
// Extract elements and create sorted array.
|
|
for (int i = len - 1; i > 0; --i) {
|
|
// Put max element at the back of the array.
|
|
content->SwapPairs(numbers, 0, i);
|
|
// Sift down the new top element.
|
|
int parent_index = 0;
|
|
while (true) {
|
|
int child_index = ((parent_index + 1) << 1) - 1;
|
|
if (child_index >= i) break;
|
|
uint32_t child1_value = NumberToUint32(numbers->get(child_index));
|
|
uint32_t child2_value = NumberToUint32(numbers->get(child_index + 1));
|
|
uint32_t parent_value = NumberToUint32(numbers->get(parent_index));
|
|
if (child_index + 1 >= i || child1_value > child2_value) {
|
|
if (parent_value > child1_value) break;
|
|
content->SwapPairs(numbers, parent_index, child_index);
|
|
parent_index = child_index;
|
|
} else {
|
|
if (parent_value > child2_value) break;
|
|
content->SwapPairs(numbers, parent_index, child_index + 1);
|
|
parent_index = child_index + 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Sort this array and the numbers as pairs wrt. the (distinct) numbers.
|
|
void FixedArray::SortPairs(FixedArray* numbers, uint32_t len) {
|
|
ASSERT(this->length() == numbers->length());
|
|
// For small arrays, simply use insertion sort.
|
|
if (len <= 10) {
|
|
InsertionSortPairs(this, numbers, len);
|
|
return;
|
|
}
|
|
// Check the range of indices.
|
|
uint32_t min_index = NumberToUint32(numbers->get(0));
|
|
uint32_t max_index = min_index;
|
|
uint32_t i;
|
|
for (i = 1; i < len; i++) {
|
|
if (NumberToUint32(numbers->get(i)) < min_index) {
|
|
min_index = NumberToUint32(numbers->get(i));
|
|
} else if (NumberToUint32(numbers->get(i)) > max_index) {
|
|
max_index = NumberToUint32(numbers->get(i));
|
|
}
|
|
}
|
|
if (max_index - min_index + 1 == len) {
|
|
// Indices form a contiguous range, unless there are duplicates.
|
|
// Do an in-place linear time sort assuming distinct numbers, but
|
|
// avoid hanging in case they are not.
|
|
for (i = 0; i < len; i++) {
|
|
uint32_t p;
|
|
uint32_t j = 0;
|
|
// While the current element at i is not at its correct position p,
|
|
// swap the elements at these two positions.
|
|
while ((p = NumberToUint32(numbers->get(i)) - min_index) != i &&
|
|
j++ < len) {
|
|
SwapPairs(numbers, i, p);
|
|
}
|
|
}
|
|
} else {
|
|
HeapSortPairs(this, numbers, len);
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
// Fill in the names of local properties into the supplied storage. The main
|
|
// purpose of this function is to provide reflection information for the object
|
|
// mirrors.
|
|
void JSObject::GetLocalPropertyNames(
|
|
FixedArray* storage, int index, PropertyAttributes filter) {
|
|
ASSERT(storage->length() >= (NumberOfLocalProperties(filter) - index));
|
|
if (HasFastProperties()) {
|
|
int real_size = map()->NumberOfOwnDescriptors();
|
|
DescriptorArray* descs = map()->instance_descriptors();
|
|
for (int i = 0; i < real_size; i++) {
|
|
if ((descs->GetDetails(i).attributes() & filter) == 0 &&
|
|
((filter & SYMBOLIC) == 0 || !descs->GetKey(i)->IsSymbol())) {
|
|
storage->set(index++, descs->GetKey(i));
|
|
}
|
|
}
|
|
} else {
|
|
property_dictionary()->CopyKeysTo(storage,
|
|
index,
|
|
filter,
|
|
NameDictionary::UNSORTED);
|
|
}
|
|
}
|
|
|
|
|
|
int JSObject::NumberOfLocalElements(PropertyAttributes filter) {
|
|
return GetLocalElementKeys(NULL, filter);
|
|
}
|
|
|
|
|
|
int JSObject::NumberOfEnumElements() {
|
|
// Fast case for objects with no elements.
|
|
if (!IsJSValue() && HasFastObjectElements()) {
|
|
uint32_t length = IsJSArray() ?
|
|
static_cast<uint32_t>(
|
|
Smi::cast(JSArray::cast(this)->length())->value()) :
|
|
static_cast<uint32_t>(FixedArray::cast(elements())->length());
|
|
if (length == 0) return 0;
|
|
}
|
|
// Compute the number of enumerable elements.
|
|
return NumberOfLocalElements(static_cast<PropertyAttributes>(DONT_ENUM));
|
|
}
|
|
|
|
|
|
int JSObject::GetLocalElementKeys(FixedArray* storage,
|
|
PropertyAttributes filter) {
|
|
int counter = 0;
|
|
switch (GetElementsKind()) {
|
|
case FAST_SMI_ELEMENTS:
|
|
case FAST_ELEMENTS:
|
|
case FAST_HOLEY_SMI_ELEMENTS:
|
|
case FAST_HOLEY_ELEMENTS: {
|
|
int length = IsJSArray() ?
|
|
Smi::cast(JSArray::cast(this)->length())->value() :
|
|
FixedArray::cast(elements())->length();
|
|
for (int i = 0; i < length; i++) {
|
|
if (!FixedArray::cast(elements())->get(i)->IsTheHole()) {
|
|
if (storage != NULL) {
|
|
storage->set(counter, Smi::FromInt(i));
|
|
}
|
|
counter++;
|
|
}
|
|
}
|
|
ASSERT(!storage || storage->length() >= counter);
|
|
break;
|
|
}
|
|
case FAST_DOUBLE_ELEMENTS:
|
|
case FAST_HOLEY_DOUBLE_ELEMENTS: {
|
|
int length = IsJSArray() ?
|
|
Smi::cast(JSArray::cast(this)->length())->value() :
|
|
FixedDoubleArray::cast(elements())->length();
|
|
for (int i = 0; i < length; i++) {
|
|
if (!FixedDoubleArray::cast(elements())->is_the_hole(i)) {
|
|
if (storage != NULL) {
|
|
storage->set(counter, Smi::FromInt(i));
|
|
}
|
|
counter++;
|
|
}
|
|
}
|
|
ASSERT(!storage || storage->length() >= counter);
|
|
break;
|
|
}
|
|
case EXTERNAL_PIXEL_ELEMENTS: {
|
|
int length = ExternalPixelArray::cast(elements())->length();
|
|
while (counter < length) {
|
|
if (storage != NULL) {
|
|
storage->set(counter, Smi::FromInt(counter));
|
|
}
|
|
counter++;
|
|
}
|
|
ASSERT(!storage || storage->length() >= counter);
|
|
break;
|
|
}
|
|
case EXTERNAL_BYTE_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
|
|
case EXTERNAL_SHORT_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
|
|
case EXTERNAL_INT_ELEMENTS:
|
|
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
|
|
case EXTERNAL_FLOAT_ELEMENTS:
|
|
case EXTERNAL_DOUBLE_ELEMENTS: {
|
|
int length = ExternalArray::cast(elements())->length();
|
|
while (counter < length) {
|
|
if (storage != NULL) {
|
|
storage->set(counter, Smi::FromInt(counter));
|
|
}
|
|
counter++;
|
|
}
|
|
ASSERT(!storage || storage->length() >= counter);
|
|
break;
|
|
}
|
|
case DICTIONARY_ELEMENTS: {
|
|
if (storage != NULL) {
|
|
element_dictionary()->CopyKeysTo(storage,
|
|
filter,
|
|
SeededNumberDictionary::SORTED);
|
|
}
|
|
counter += element_dictionary()->NumberOfElementsFilterAttributes(filter);
|
|
break;
|
|
}
|
|
case NON_STRICT_ARGUMENTS_ELEMENTS: {
|
|
FixedArray* parameter_map = FixedArray::cast(elements());
|
|
int mapped_length = parameter_map->length() - 2;
|
|
FixedArray* arguments = FixedArray::cast(parameter_map->get(1));
|
|
if (arguments->IsDictionary()) {
|
|
// Copy the keys from arguments first, because Dictionary::CopyKeysTo
|
|
// will insert in storage starting at index 0.
|
|
SeededNumberDictionary* dictionary =
|
|
SeededNumberDictionary::cast(arguments);
|
|
if (storage != NULL) {
|
|
dictionary->CopyKeysTo(
|
|
storage, filter, SeededNumberDictionary::UNSORTED);
|
|
}
|
|
counter += dictionary->NumberOfElementsFilterAttributes(filter);
|
|
for (int i = 0; i < mapped_length; ++i) {
|
|
if (!parameter_map->get(i + 2)->IsTheHole()) {
|
|
if (storage != NULL) storage->set(counter, Smi::FromInt(i));
|
|
++counter;
|
|
}
|
|
}
|
|
if (storage != NULL) storage->SortPairs(storage, counter);
|
|
|
|
} else {
|
|
int backing_length = arguments->length();
|
|
int i = 0;
|
|
for (; i < mapped_length; ++i) {
|
|
if (!parameter_map->get(i + 2)->IsTheHole()) {
|
|
if (storage != NULL) storage->set(counter, Smi::FromInt(i));
|
|
++counter;
|
|
} else if (i < backing_length && !arguments->get(i)->IsTheHole()) {
|
|
if (storage != NULL) storage->set(counter, Smi::FromInt(i));
|
|
++counter;
|
|
}
|
|
}
|
|
for (; i < backing_length; ++i) {
|
|
if (storage != NULL) storage->set(counter, Smi::FromInt(i));
|
|
++counter;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (this->IsJSValue()) {
|
|
Object* val = JSValue::cast(this)->value();
|
|
if (val->IsString()) {
|
|
String* str = String::cast(val);
|
|
if (storage) {
|
|
for (int i = 0; i < str->length(); i++) {
|
|
storage->set(counter + i, Smi::FromInt(i));
|
|
}
|
|
}
|
|
counter += str->length();
|
|
}
|
|
}
|
|
ASSERT(!storage || storage->length() == counter);
|
|
return counter;
|
|
}
|
|
|
|
|
|
int JSObject::GetEnumElementKeys(FixedArray* storage) {
|
|
return GetLocalElementKeys(storage,
|
|
static_cast<PropertyAttributes>(DONT_ENUM));
|
|
}
|
|
|
|
|
|
// StringKey simply carries a string object as key.
|
|
class StringKey : public HashTableKey {
|
|
public:
|
|
explicit StringKey(String* string) :
|
|
string_(string),
|
|
hash_(HashForObject(string)) { }
|
|
|
|
bool IsMatch(Object* string) {
|
|
// We know that all entries in a hash table had their hash keys created.
|
|
// Use that knowledge to have fast failure.
|
|
if (hash_ != HashForObject(string)) {
|
|
return false;
|
|
}
|
|
return string_->Equals(String::cast(string));
|
|
}
|
|
|
|
uint32_t Hash() { return hash_; }
|
|
|
|
uint32_t HashForObject(Object* other) { return String::cast(other)->Hash(); }
|
|
|
|
Object* AsObject(Heap* heap) { return string_; }
|
|
|
|
String* string_;
|
|
uint32_t hash_;
|
|
};
|
|
|
|
|
|
// StringSharedKeys are used as keys in the eval cache.
|
|
class StringSharedKey : public HashTableKey {
|
|
public:
|
|
StringSharedKey(String* source,
|
|
SharedFunctionInfo* shared,
|
|
LanguageMode language_mode,
|
|
int scope_position)
|
|
: source_(source),
|
|
shared_(shared),
|
|
language_mode_(language_mode),
|
|
scope_position_(scope_position) { }
|
|
|
|
bool IsMatch(Object* other) {
|
|
if (!other->IsFixedArray()) return false;
|
|
FixedArray* other_array = FixedArray::cast(other);
|
|
SharedFunctionInfo* shared = SharedFunctionInfo::cast(other_array->get(0));
|
|
if (shared != shared_) return false;
|
|
int language_unchecked = Smi::cast(other_array->get(2))->value();
|
|
ASSERT(language_unchecked == CLASSIC_MODE ||
|
|
language_unchecked == STRICT_MODE ||
|
|
language_unchecked == EXTENDED_MODE);
|
|
LanguageMode language_mode = static_cast<LanguageMode>(language_unchecked);
|
|
if (language_mode != language_mode_) return false;
|
|
int scope_position = Smi::cast(other_array->get(3))->value();
|
|
if (scope_position != scope_position_) return false;
|
|
String* source = String::cast(other_array->get(1));
|
|
return source->Equals(source_);
|
|
}
|
|
|
|
static uint32_t StringSharedHashHelper(String* source,
|
|
SharedFunctionInfo* shared,
|
|
LanguageMode language_mode,
|
|
int scope_position) {
|
|
uint32_t hash = source->Hash();
|
|
if (shared->HasSourceCode()) {
|
|
// Instead of using the SharedFunctionInfo pointer in the hash
|
|
// code computation, we use a combination of the hash of the
|
|
// script source code and the start position of the calling scope.
|
|
// We do this to ensure that the cache entries can survive garbage
|
|
// collection.
|
|
Script* script = Script::cast(shared->script());
|
|
hash ^= String::cast(script->source())->Hash();
|
|
if (language_mode == STRICT_MODE) hash ^= 0x8000;
|
|
if (language_mode == EXTENDED_MODE) hash ^= 0x0080;
|
|
hash += scope_position;
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
uint32_t Hash() {
|
|
return StringSharedHashHelper(
|
|
source_, shared_, language_mode_, scope_position_);
|
|
}
|
|
|
|
uint32_t HashForObject(Object* obj) {
|
|
FixedArray* other_array = FixedArray::cast(obj);
|
|
SharedFunctionInfo* shared = SharedFunctionInfo::cast(other_array->get(0));
|
|
String* source = String::cast(other_array->get(1));
|
|
int language_unchecked = Smi::cast(other_array->get(2))->value();
|
|
ASSERT(language_unchecked == CLASSIC_MODE ||
|
|
language_unchecked == STRICT_MODE ||
|
|
language_unchecked == EXTENDED_MODE);
|
|
LanguageMode language_mode = static_cast<LanguageMode>(language_unchecked);
|
|
int scope_position = Smi::cast(other_array->get(3))->value();
|
|
return StringSharedHashHelper(
|
|
source, shared, language_mode, scope_position);
|
|
}
|
|
|
|
MUST_USE_RESULT MaybeObject* AsObject(Heap* heap) {
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = heap->AllocateFixedArray(4);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
FixedArray* other_array = FixedArray::cast(obj);
|
|
other_array->set(0, shared_);
|
|
other_array->set(1, source_);
|
|
other_array->set(2, Smi::FromInt(language_mode_));
|
|
other_array->set(3, Smi::FromInt(scope_position_));
|
|
return other_array;
|
|
}
|
|
|
|
private:
|
|
String* source_;
|
|
SharedFunctionInfo* shared_;
|
|
LanguageMode language_mode_;
|
|
int scope_position_;
|
|
};
|
|
|
|
|
|
// RegExpKey carries the source and flags of a regular expression as key.
|
|
class RegExpKey : public HashTableKey {
|
|
public:
|
|
RegExpKey(String* string, JSRegExp::Flags flags)
|
|
: string_(string),
|
|
flags_(Smi::FromInt(flags.value())) { }
|
|
|
|
// Rather than storing the key in the hash table, a pointer to the
|
|
// stored value is stored where the key should be. IsMatch then
|
|
// compares the search key to the found object, rather than comparing
|
|
// a key to a key.
|
|
bool IsMatch(Object* obj) {
|
|
FixedArray* val = FixedArray::cast(obj);
|
|
return string_->Equals(String::cast(val->get(JSRegExp::kSourceIndex)))
|
|
&& (flags_ == val->get(JSRegExp::kFlagsIndex));
|
|
}
|
|
|
|
uint32_t Hash() { return RegExpHash(string_, flags_); }
|
|
|
|
Object* AsObject(Heap* heap) {
|
|
// Plain hash maps, which is where regexp keys are used, don't
|
|
// use this function.
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
uint32_t HashForObject(Object* obj) {
|
|
FixedArray* val = FixedArray::cast(obj);
|
|
return RegExpHash(String::cast(val->get(JSRegExp::kSourceIndex)),
|
|
Smi::cast(val->get(JSRegExp::kFlagsIndex)));
|
|
}
|
|
|
|
static uint32_t RegExpHash(String* string, Smi* flags) {
|
|
return string->Hash() + flags->value();
|
|
}
|
|
|
|
String* string_;
|
|
Smi* flags_;
|
|
};
|
|
|
|
|
|
// Utf8StringKey carries a vector of chars as key.
|
|
class Utf8StringKey : public HashTableKey {
|
|
public:
|
|
explicit Utf8StringKey(Vector<const char> string, uint32_t seed)
|
|
: string_(string), hash_field_(0), seed_(seed) { }
|
|
|
|
bool IsMatch(Object* string) {
|
|
return String::cast(string)->IsUtf8EqualTo(string_);
|
|
}
|
|
|
|
uint32_t Hash() {
|
|
if (hash_field_ != 0) return hash_field_ >> String::kHashShift;
|
|
hash_field_ = StringHasher::ComputeUtf8Hash(string_, seed_, &chars_);
|
|
uint32_t result = hash_field_ >> String::kHashShift;
|
|
ASSERT(result != 0); // Ensure that the hash value of 0 is never computed.
|
|
return result;
|
|
}
|
|
|
|
uint32_t HashForObject(Object* other) {
|
|
return String::cast(other)->Hash();
|
|
}
|
|
|
|
MaybeObject* AsObject(Heap* heap) {
|
|
if (hash_field_ == 0) Hash();
|
|
return heap->AllocateInternalizedStringFromUtf8(string_,
|
|
chars_,
|
|
hash_field_);
|
|
}
|
|
|
|
Vector<const char> string_;
|
|
uint32_t hash_field_;
|
|
int chars_; // Caches the number of characters when computing the hash code.
|
|
uint32_t seed_;
|
|
};
|
|
|
|
|
|
template <typename Char>
|
|
class SequentialStringKey : public HashTableKey {
|
|
public:
|
|
explicit SequentialStringKey(Vector<const Char> string, uint32_t seed)
|
|
: string_(string), hash_field_(0), seed_(seed) { }
|
|
|
|
uint32_t Hash() {
|
|
hash_field_ = StringHasher::HashSequentialString<Char>(string_.start(),
|
|
string_.length(),
|
|
seed_);
|
|
|
|
uint32_t result = hash_field_ >> String::kHashShift;
|
|
ASSERT(result != 0); // Ensure that the hash value of 0 is never computed.
|
|
return result;
|
|
}
|
|
|
|
|
|
uint32_t HashForObject(Object* other) {
|
|
return String::cast(other)->Hash();
|
|
}
|
|
|
|
Vector<const Char> string_;
|
|
uint32_t hash_field_;
|
|
uint32_t seed_;
|
|
};
|
|
|
|
|
|
|
|
class OneByteStringKey : public SequentialStringKey<uint8_t> {
|
|
public:
|
|
OneByteStringKey(Vector<const uint8_t> str, uint32_t seed)
|
|
: SequentialStringKey<uint8_t>(str, seed) { }
|
|
|
|
bool IsMatch(Object* string) {
|
|
return String::cast(string)->IsOneByteEqualTo(string_);
|
|
}
|
|
|
|
MaybeObject* AsObject(Heap* heap) {
|
|
if (hash_field_ == 0) Hash();
|
|
return heap->AllocateOneByteInternalizedString(string_, hash_field_);
|
|
}
|
|
};
|
|
|
|
|
|
class SubStringOneByteStringKey : public HashTableKey {
|
|
public:
|
|
explicit SubStringOneByteStringKey(Handle<SeqOneByteString> string,
|
|
int from,
|
|
int length)
|
|
: string_(string), from_(from), length_(length) { }
|
|
|
|
uint32_t Hash() {
|
|
ASSERT(length_ >= 0);
|
|
ASSERT(from_ + length_ <= string_->length());
|
|
uint8_t* chars = string_->GetChars() + from_;
|
|
hash_field_ = StringHasher::HashSequentialString(
|
|
chars, length_, string_->GetHeap()->HashSeed());
|
|
uint32_t result = hash_field_ >> String::kHashShift;
|
|
ASSERT(result != 0); // Ensure that the hash value of 0 is never computed.
|
|
return result;
|
|
}
|
|
|
|
|
|
uint32_t HashForObject(Object* other) {
|
|
return String::cast(other)->Hash();
|
|
}
|
|
|
|
bool IsMatch(Object* string) {
|
|
Vector<const uint8_t> chars(string_->GetChars() + from_, length_);
|
|
return String::cast(string)->IsOneByteEqualTo(chars);
|
|
}
|
|
|
|
MaybeObject* AsObject(Heap* heap) {
|
|
if (hash_field_ == 0) Hash();
|
|
Vector<const uint8_t> chars(string_->GetChars() + from_, length_);
|
|
return heap->AllocateOneByteInternalizedString(chars, hash_field_);
|
|
}
|
|
|
|
private:
|
|
Handle<SeqOneByteString> string_;
|
|
int from_;
|
|
int length_;
|
|
uint32_t hash_field_;
|
|
};
|
|
|
|
|
|
class TwoByteStringKey : public SequentialStringKey<uc16> {
|
|
public:
|
|
explicit TwoByteStringKey(Vector<const uc16> str, uint32_t seed)
|
|
: SequentialStringKey<uc16>(str, seed) { }
|
|
|
|
bool IsMatch(Object* string) {
|
|
return String::cast(string)->IsTwoByteEqualTo(string_);
|
|
}
|
|
|
|
MaybeObject* AsObject(Heap* heap) {
|
|
if (hash_field_ == 0) Hash();
|
|
return heap->AllocateTwoByteInternalizedString(string_, hash_field_);
|
|
}
|
|
};
|
|
|
|
|
|
// InternalizedStringKey carries a string/internalized-string object as key.
|
|
class InternalizedStringKey : public HashTableKey {
|
|
public:
|
|
explicit InternalizedStringKey(String* string)
|
|
: string_(string) { }
|
|
|
|
bool IsMatch(Object* string) {
|
|
return String::cast(string)->Equals(string_);
|
|
}
|
|
|
|
uint32_t Hash() { return string_->Hash(); }
|
|
|
|
uint32_t HashForObject(Object* other) {
|
|
return String::cast(other)->Hash();
|
|
}
|
|
|
|
MaybeObject* AsObject(Heap* heap) {
|
|
// Attempt to flatten the string, so that internalized strings will most
|
|
// often be flat strings.
|
|
string_ = string_->TryFlattenGetString();
|
|
// Internalize the string if possible.
|
|
Map* map = heap->InternalizedStringMapForString(string_);
|
|
if (map != NULL) {
|
|
string_->set_map_no_write_barrier(map);
|
|
ASSERT(string_->IsInternalizedString());
|
|
return string_;
|
|
}
|
|
// Otherwise allocate a new internalized string.
|
|
return heap->AllocateInternalizedStringImpl(
|
|
string_, string_->length(), string_->hash_field());
|
|
}
|
|
|
|
static uint32_t StringHash(Object* obj) {
|
|
return String::cast(obj)->Hash();
|
|
}
|
|
|
|
String* string_;
|
|
};
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
void HashTable<Shape, Key>::IteratePrefix(ObjectVisitor* v) {
|
|
IteratePointers(v, 0, kElementsStartOffset);
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
void HashTable<Shape, Key>::IterateElements(ObjectVisitor* v) {
|
|
IteratePointers(v,
|
|
kElementsStartOffset,
|
|
kHeaderSize + length() * kPointerSize);
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
MaybeObject* HashTable<Shape, Key>::Allocate(Heap* heap,
|
|
int at_least_space_for,
|
|
MinimumCapacity capacity_option,
|
|
PretenureFlag pretenure) {
|
|
ASSERT(!capacity_option || IS_POWER_OF_TWO(at_least_space_for));
|
|
int capacity = (capacity_option == USE_CUSTOM_MINIMUM_CAPACITY)
|
|
? at_least_space_for
|
|
: ComputeCapacity(at_least_space_for);
|
|
if (capacity > HashTable::kMaxCapacity) {
|
|
return Failure::OutOfMemoryException(0x10);
|
|
}
|
|
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj =
|
|
heap-> AllocateHashTable(EntryToIndex(capacity), pretenure);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
HashTable::cast(obj)->SetNumberOfElements(0);
|
|
HashTable::cast(obj)->SetNumberOfDeletedElements(0);
|
|
HashTable::cast(obj)->SetCapacity(capacity);
|
|
return obj;
|
|
}
|
|
|
|
|
|
// Find entry for key otherwise return kNotFound.
|
|
int NameDictionary::FindEntry(Name* key) {
|
|
if (!key->IsUniqueName()) {
|
|
return HashTable<NameDictionaryShape, Name*>::FindEntry(key);
|
|
}
|
|
|
|
// Optimized for unique names. Knowledge of the key type allows:
|
|
// 1. Move the check if the key is unique out of the loop.
|
|
// 2. Avoid comparing hash codes in unique-to-unique comparison.
|
|
// 3. Detect a case when a dictionary key is not unique but the key is.
|
|
// In case of positive result the dictionary key may be replaced by the
|
|
// internalized string with minimal performance penalty. It gives a chance
|
|
// to perform further lookups in code stubs (and significant performance
|
|
// boost a certain style of code).
|
|
|
|
// EnsureCapacity will guarantee the hash table is never full.
|
|
uint32_t capacity = Capacity();
|
|
uint32_t entry = FirstProbe(key->Hash(), capacity);
|
|
uint32_t count = 1;
|
|
|
|
while (true) {
|
|
int index = EntryToIndex(entry);
|
|
Object* element = get(index);
|
|
if (element->IsUndefined()) break; // Empty entry.
|
|
if (key == element) return entry;
|
|
if (!element->IsUniqueName() &&
|
|
!element->IsTheHole() &&
|
|
Name::cast(element)->Equals(key)) {
|
|
// Replace a key that is a non-internalized string by the equivalent
|
|
// internalized string for faster further lookups.
|
|
set(index, key);
|
|
return entry;
|
|
}
|
|
ASSERT(element->IsTheHole() || !Name::cast(element)->Equals(key));
|
|
entry = NextProbe(entry, count++, capacity);
|
|
}
|
|
return kNotFound;
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
MaybeObject* HashTable<Shape, Key>::Rehash(HashTable* new_table, Key key) {
|
|
ASSERT(NumberOfElements() < new_table->Capacity());
|
|
|
|
DisallowHeapAllocation no_gc;
|
|
WriteBarrierMode mode = new_table->GetWriteBarrierMode(no_gc);
|
|
|
|
// Copy prefix to new array.
|
|
for (int i = kPrefixStartIndex;
|
|
i < kPrefixStartIndex + Shape::kPrefixSize;
|
|
i++) {
|
|
new_table->set(i, get(i), mode);
|
|
}
|
|
|
|
// Rehash the elements.
|
|
int capacity = Capacity();
|
|
for (int i = 0; i < capacity; i++) {
|
|
uint32_t from_index = EntryToIndex(i);
|
|
Object* k = get(from_index);
|
|
if (IsKey(k)) {
|
|
uint32_t hash = HashTable<Shape, Key>::HashForObject(key, k);
|
|
uint32_t insertion_index =
|
|
EntryToIndex(new_table->FindInsertionEntry(hash));
|
|
for (int j = 0; j < Shape::kEntrySize; j++) {
|
|
new_table->set(insertion_index + j, get(from_index + j), mode);
|
|
}
|
|
}
|
|
}
|
|
new_table->SetNumberOfElements(NumberOfElements());
|
|
new_table->SetNumberOfDeletedElements(0);
|
|
return new_table;
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
MaybeObject* HashTable<Shape, Key>::EnsureCapacity(int n, Key key) {
|
|
int capacity = Capacity();
|
|
int nof = NumberOfElements() + n;
|
|
int nod = NumberOfDeletedElements();
|
|
// Return if:
|
|
// 50% is still free after adding n elements and
|
|
// at most 50% of the free elements are deleted elements.
|
|
if (nod <= (capacity - nof) >> 1) {
|
|
int needed_free = nof >> 1;
|
|
if (nof + needed_free <= capacity) return this;
|
|
}
|
|
|
|
const int kMinCapacityForPretenure = 256;
|
|
bool pretenure =
|
|
(capacity > kMinCapacityForPretenure) && !GetHeap()->InNewSpace(this);
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj =
|
|
Allocate(GetHeap(),
|
|
nof * 2,
|
|
USE_DEFAULT_MINIMUM_CAPACITY,
|
|
pretenure ? TENURED : NOT_TENURED);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
|
|
return Rehash(HashTable::cast(obj), key);
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
MaybeObject* HashTable<Shape, Key>::Shrink(Key key) {
|
|
int capacity = Capacity();
|
|
int nof = NumberOfElements();
|
|
|
|
// Shrink to fit the number of elements if only a quarter of the
|
|
// capacity is filled with elements.
|
|
if (nof > (capacity >> 2)) return this;
|
|
// Allocate a new dictionary with room for at least the current
|
|
// number of elements. The allocation method will make sure that
|
|
// there is extra room in the dictionary for additions. Don't go
|
|
// lower than room for 16 elements.
|
|
int at_least_room_for = nof;
|
|
if (at_least_room_for < 16) return this;
|
|
|
|
const int kMinCapacityForPretenure = 256;
|
|
bool pretenure =
|
|
(at_least_room_for > kMinCapacityForPretenure) &&
|
|
!GetHeap()->InNewSpace(this);
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj =
|
|
Allocate(GetHeap(),
|
|
at_least_room_for,
|
|
USE_DEFAULT_MINIMUM_CAPACITY,
|
|
pretenure ? TENURED : NOT_TENURED);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
|
|
return Rehash(HashTable::cast(obj), key);
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
uint32_t HashTable<Shape, Key>::FindInsertionEntry(uint32_t hash) {
|
|
uint32_t capacity = Capacity();
|
|
uint32_t entry = FirstProbe(hash, capacity);
|
|
uint32_t count = 1;
|
|
// EnsureCapacity will guarantee the hash table is never full.
|
|
while (true) {
|
|
Object* element = KeyAt(entry);
|
|
if (element->IsUndefined() || element->IsTheHole()) break;
|
|
entry = NextProbe(entry, count++, capacity);
|
|
}
|
|
return entry;
|
|
}
|
|
|
|
|
|
// Force instantiation of template instances class.
|
|
// Please note this list is compiler dependent.
|
|
|
|
template class HashTable<StringTableShape, HashTableKey*>;
|
|
|
|
template class HashTable<CompilationCacheShape, HashTableKey*>;
|
|
|
|
template class HashTable<MapCacheShape, HashTableKey*>;
|
|
|
|
template class HashTable<ObjectHashTableShape<1>, Object*>;
|
|
|
|
template class HashTable<ObjectHashTableShape<2>, Object*>;
|
|
|
|
template class Dictionary<NameDictionaryShape, Name*>;
|
|
|
|
template class Dictionary<SeededNumberDictionaryShape, uint32_t>;
|
|
|
|
template class Dictionary<UnseededNumberDictionaryShape, uint32_t>;
|
|
|
|
template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>::
|
|
Allocate(Heap* heap, int at_least_space_for, PretenureFlag pretenure);
|
|
|
|
template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>::
|
|
Allocate(Heap* heap, int at_least_space_for, PretenureFlag pretenure);
|
|
|
|
template MaybeObject* Dictionary<NameDictionaryShape, Name*>::
|
|
Allocate(Heap* heap, int n, PretenureFlag pretenure);
|
|
|
|
template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>::AtPut(
|
|
uint32_t, Object*);
|
|
|
|
template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>::
|
|
AtPut(uint32_t, Object*);
|
|
|
|
template Object* Dictionary<SeededNumberDictionaryShape, uint32_t>::
|
|
SlowReverseLookup(Object* value);
|
|
|
|
template Object* Dictionary<UnseededNumberDictionaryShape, uint32_t>::
|
|
SlowReverseLookup(Object* value);
|
|
|
|
template Object* Dictionary<NameDictionaryShape, Name*>::SlowReverseLookup(
|
|
Object*);
|
|
|
|
template void Dictionary<SeededNumberDictionaryShape, uint32_t>::CopyKeysTo(
|
|
FixedArray*,
|
|
PropertyAttributes,
|
|
Dictionary<SeededNumberDictionaryShape, uint32_t>::SortMode);
|
|
|
|
template Object* Dictionary<NameDictionaryShape, Name*>::DeleteProperty(
|
|
int, JSObject::DeleteMode);
|
|
|
|
template Object* Dictionary<SeededNumberDictionaryShape, uint32_t>::
|
|
DeleteProperty(int, JSObject::DeleteMode);
|
|
|
|
template MaybeObject* Dictionary<NameDictionaryShape, Name*>::Shrink(Name* n);
|
|
|
|
template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>::Shrink(
|
|
uint32_t);
|
|
|
|
template void Dictionary<NameDictionaryShape, Name*>::CopyKeysTo(
|
|
FixedArray*,
|
|
int,
|
|
PropertyAttributes,
|
|
Dictionary<NameDictionaryShape, Name*>::SortMode);
|
|
|
|
template int
|
|
Dictionary<NameDictionaryShape, Name*>::NumberOfElementsFilterAttributes(
|
|
PropertyAttributes);
|
|
|
|
template MaybeObject* Dictionary<NameDictionaryShape, Name*>::Add(
|
|
Name*, Object*, PropertyDetails);
|
|
|
|
template MaybeObject*
|
|
Dictionary<NameDictionaryShape, Name*>::GenerateNewEnumerationIndices();
|
|
|
|
template int
|
|
Dictionary<SeededNumberDictionaryShape, uint32_t>::
|
|
NumberOfElementsFilterAttributes(PropertyAttributes);
|
|
|
|
template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>::Add(
|
|
uint32_t, Object*, PropertyDetails);
|
|
|
|
template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>::Add(
|
|
uint32_t, Object*, PropertyDetails);
|
|
|
|
template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>::
|
|
EnsureCapacity(int, uint32_t);
|
|
|
|
template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>::
|
|
EnsureCapacity(int, uint32_t);
|
|
|
|
template MaybeObject* Dictionary<NameDictionaryShape, Name*>::
|
|
EnsureCapacity(int, Name*);
|
|
|
|
template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>::
|
|
AddEntry(uint32_t, Object*, PropertyDetails, uint32_t);
|
|
|
|
template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>::
|
|
AddEntry(uint32_t, Object*, PropertyDetails, uint32_t);
|
|
|
|
template MaybeObject* Dictionary<NameDictionaryShape, Name*>::AddEntry(
|
|
Name*, Object*, PropertyDetails, uint32_t);
|
|
|
|
template
|
|
int Dictionary<SeededNumberDictionaryShape, uint32_t>::NumberOfEnumElements();
|
|
|
|
template
|
|
int Dictionary<NameDictionaryShape, Name*>::NumberOfEnumElements();
|
|
|
|
template
|
|
int HashTable<SeededNumberDictionaryShape, uint32_t>::FindEntry(uint32_t);
|
|
|
|
|
|
// Collates undefined and unexisting elements below limit from position
|
|
// zero of the elements. The object stays in Dictionary mode.
|
|
MaybeObject* JSObject::PrepareSlowElementsForSort(uint32_t limit) {
|
|
ASSERT(HasDictionaryElements());
|
|
// Must stay in dictionary mode, either because of requires_slow_elements,
|
|
// or because we are not going to sort (and therefore compact) all of the
|
|
// elements.
|
|
SeededNumberDictionary* dict = element_dictionary();
|
|
HeapNumber* result_double = NULL;
|
|
if (limit > static_cast<uint32_t>(Smi::kMaxValue)) {
|
|
// Allocate space for result before we start mutating the object.
|
|
Object* new_double;
|
|
{ MaybeObject* maybe_new_double = GetHeap()->AllocateHeapNumber(0.0);
|
|
if (!maybe_new_double->ToObject(&new_double)) return maybe_new_double;
|
|
}
|
|
result_double = HeapNumber::cast(new_double);
|
|
}
|
|
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj =
|
|
SeededNumberDictionary::Allocate(GetHeap(), dict->NumberOfElements());
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
SeededNumberDictionary* new_dict = SeededNumberDictionary::cast(obj);
|
|
|
|
DisallowHeapAllocation no_alloc;
|
|
|
|
uint32_t pos = 0;
|
|
uint32_t undefs = 0;
|
|
int capacity = dict->Capacity();
|
|
for (int i = 0; i < capacity; i++) {
|
|
Object* k = dict->KeyAt(i);
|
|
if (dict->IsKey(k)) {
|
|
ASSERT(k->IsNumber());
|
|
ASSERT(!k->IsSmi() || Smi::cast(k)->value() >= 0);
|
|
ASSERT(!k->IsHeapNumber() || HeapNumber::cast(k)->value() >= 0);
|
|
ASSERT(!k->IsHeapNumber() || HeapNumber::cast(k)->value() <= kMaxUInt32);
|
|
Object* value = dict->ValueAt(i);
|
|
PropertyDetails details = dict->DetailsAt(i);
|
|
if (details.type() == CALLBACKS || details.IsReadOnly()) {
|
|
// Bail out and do the sorting of undefineds and array holes in JS.
|
|
// Also bail out if the element is not supposed to be moved.
|
|
return Smi::FromInt(-1);
|
|
}
|
|
uint32_t key = NumberToUint32(k);
|
|
// In the following we assert that adding the entry to the new dictionary
|
|
// does not cause GC. This is the case because we made sure to allocate
|
|
// the dictionary big enough above, so it need not grow.
|
|
if (key < limit) {
|
|
if (value->IsUndefined()) {
|
|
undefs++;
|
|
} else {
|
|
if (pos > static_cast<uint32_t>(Smi::kMaxValue)) {
|
|
// Adding an entry with the key beyond smi-range requires
|
|
// allocation. Bailout.
|
|
return Smi::FromInt(-1);
|
|
}
|
|
new_dict->AddNumberEntry(pos, value, details)->ToObjectUnchecked();
|
|
pos++;
|
|
}
|
|
} else {
|
|
if (key > static_cast<uint32_t>(Smi::kMaxValue)) {
|
|
// Adding an entry with the key beyond smi-range requires
|
|
// allocation. Bailout.
|
|
return Smi::FromInt(-1);
|
|
}
|
|
new_dict->AddNumberEntry(key, value, details)->ToObjectUnchecked();
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t result = pos;
|
|
PropertyDetails no_details = PropertyDetails(NONE, NORMAL, 0);
|
|
Heap* heap = GetHeap();
|
|
while (undefs > 0) {
|
|
if (pos > static_cast<uint32_t>(Smi::kMaxValue)) {
|
|
// Adding an entry with the key beyond smi-range requires
|
|
// allocation. Bailout.
|
|
return Smi::FromInt(-1);
|
|
}
|
|
new_dict->AddNumberEntry(pos, heap->undefined_value(), no_details)->
|
|
ToObjectUnchecked();
|
|
pos++;
|
|
undefs--;
|
|
}
|
|
|
|
set_elements(new_dict);
|
|
|
|
if (result <= static_cast<uint32_t>(Smi::kMaxValue)) {
|
|
return Smi::FromInt(static_cast<int>(result));
|
|
}
|
|
|
|
ASSERT_NE(NULL, result_double);
|
|
result_double->set_value(static_cast<double>(result));
|
|
return result_double;
|
|
}
|
|
|
|
|
|
// Collects all defined (non-hole) and non-undefined (array) elements at
|
|
// the start of the elements array.
|
|
// If the object is in dictionary mode, it is converted to fast elements
|
|
// mode.
|
|
MaybeObject* JSObject::PrepareElementsForSort(uint32_t limit) {
|
|
Heap* heap = GetHeap();
|
|
|
|
ASSERT(!map()->is_observed());
|
|
if (HasDictionaryElements()) {
|
|
// Convert to fast elements containing only the existing properties.
|
|
// Ordering is irrelevant, since we are going to sort anyway.
|
|
SeededNumberDictionary* dict = element_dictionary();
|
|
if (IsJSArray() || dict->requires_slow_elements() ||
|
|
dict->max_number_key() >= limit) {
|
|
return PrepareSlowElementsForSort(limit);
|
|
}
|
|
// Convert to fast elements.
|
|
|
|
Object* obj;
|
|
MaybeObject* maybe_obj = GetElementsTransitionMap(GetIsolate(),
|
|
FAST_HOLEY_ELEMENTS);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
Map* new_map = Map::cast(obj);
|
|
|
|
PretenureFlag tenure = heap->InNewSpace(this) ? NOT_TENURED: TENURED;
|
|
Object* new_array;
|
|
{ MaybeObject* maybe_new_array =
|
|
heap->AllocateFixedArray(dict->NumberOfElements(), tenure);
|
|
if (!maybe_new_array->ToObject(&new_array)) return maybe_new_array;
|
|
}
|
|
FixedArray* fast_elements = FixedArray::cast(new_array);
|
|
dict->CopyValuesTo(fast_elements);
|
|
ValidateElements();
|
|
|
|
set_map_and_elements(new_map, fast_elements);
|
|
} else if (HasExternalArrayElements()) {
|
|
// External arrays cannot have holes or undefined elements.
|
|
return Smi::FromInt(ExternalArray::cast(elements())->length());
|
|
} else if (!HasFastDoubleElements()) {
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = EnsureWritableFastElements();
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
}
|
|
ASSERT(HasFastSmiOrObjectElements() || HasFastDoubleElements());
|
|
|
|
// Collect holes at the end, undefined before that and the rest at the
|
|
// start, and return the number of non-hole, non-undefined values.
|
|
|
|
FixedArrayBase* elements_base = FixedArrayBase::cast(this->elements());
|
|
uint32_t elements_length = static_cast<uint32_t>(elements_base->length());
|
|
if (limit > elements_length) {
|
|
limit = elements_length ;
|
|
}
|
|
if (limit == 0) {
|
|
return Smi::FromInt(0);
|
|
}
|
|
|
|
HeapNumber* result_double = NULL;
|
|
if (limit > static_cast<uint32_t>(Smi::kMaxValue)) {
|
|
// Pessimistically allocate space for return value before
|
|
// we start mutating the array.
|
|
Object* new_double;
|
|
{ MaybeObject* maybe_new_double = heap->AllocateHeapNumber(0.0);
|
|
if (!maybe_new_double->ToObject(&new_double)) return maybe_new_double;
|
|
}
|
|
result_double = HeapNumber::cast(new_double);
|
|
}
|
|
|
|
uint32_t result = 0;
|
|
if (elements_base->map() == heap->fixed_double_array_map()) {
|
|
FixedDoubleArray* elements = FixedDoubleArray::cast(elements_base);
|
|
// Split elements into defined and the_hole, in that order.
|
|
unsigned int holes = limit;
|
|
// Assume most arrays contain no holes and undefined values, so minimize the
|
|
// number of stores of non-undefined, non-the-hole values.
|
|
for (unsigned int i = 0; i < holes; i++) {
|
|
if (elements->is_the_hole(i)) {
|
|
holes--;
|
|
} else {
|
|
continue;
|
|
}
|
|
// Position i needs to be filled.
|
|
while (holes > i) {
|
|
if (elements->is_the_hole(holes)) {
|
|
holes--;
|
|
} else {
|
|
elements->set(i, elements->get_scalar(holes));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
result = holes;
|
|
while (holes < limit) {
|
|
elements->set_the_hole(holes);
|
|
holes++;
|
|
}
|
|
} else {
|
|
FixedArray* elements = FixedArray::cast(elements_base);
|
|
DisallowHeapAllocation no_gc;
|
|
|
|
// Split elements into defined, undefined and the_hole, in that order. Only
|
|
// count locations for undefined and the hole, and fill them afterwards.
|
|
WriteBarrierMode write_barrier = elements->GetWriteBarrierMode(no_gc);
|
|
unsigned int undefs = limit;
|
|
unsigned int holes = limit;
|
|
// Assume most arrays contain no holes and undefined values, so minimize the
|
|
// number of stores of non-undefined, non-the-hole values.
|
|
for (unsigned int i = 0; i < undefs; i++) {
|
|
Object* current = elements->get(i);
|
|
if (current->IsTheHole()) {
|
|
holes--;
|
|
undefs--;
|
|
} else if (current->IsUndefined()) {
|
|
undefs--;
|
|
} else {
|
|
continue;
|
|
}
|
|
// Position i needs to be filled.
|
|
while (undefs > i) {
|
|
current = elements->get(undefs);
|
|
if (current->IsTheHole()) {
|
|
holes--;
|
|
undefs--;
|
|
} else if (current->IsUndefined()) {
|
|
undefs--;
|
|
} else {
|
|
elements->set(i, current, write_barrier);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
result = undefs;
|
|
while (undefs < holes) {
|
|
elements->set_undefined(undefs);
|
|
undefs++;
|
|
}
|
|
while (holes < limit) {
|
|
elements->set_the_hole(holes);
|
|
holes++;
|
|
}
|
|
}
|
|
|
|
if (result <= static_cast<uint32_t>(Smi::kMaxValue)) {
|
|
return Smi::FromInt(static_cast<int>(result));
|
|
}
|
|
ASSERT_NE(NULL, result_double);
|
|
result_double->set_value(static_cast<double>(result));
|
|
return result_double;
|
|
}
|
|
|
|
|
|
ExternalArrayType JSTypedArray::type() {
|
|
switch (elements()->map()->instance_type()) {
|
|
case EXTERNAL_BYTE_ARRAY_TYPE:
|
|
return kExternalByteArray;
|
|
case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE:
|
|
return kExternalUnsignedByteArray;
|
|
case EXTERNAL_SHORT_ARRAY_TYPE:
|
|
return kExternalShortArray;
|
|
case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE:
|
|
return kExternalUnsignedShortArray;
|
|
case EXTERNAL_INT_ARRAY_TYPE:
|
|
return kExternalIntArray;
|
|
case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE:
|
|
return kExternalUnsignedIntArray;
|
|
case EXTERNAL_FLOAT_ARRAY_TYPE:
|
|
return kExternalFloatArray;
|
|
case EXTERNAL_DOUBLE_ARRAY_TYPE:
|
|
return kExternalDoubleArray;
|
|
case EXTERNAL_PIXEL_ARRAY_TYPE:
|
|
return kExternalPixelArray;
|
|
default:
|
|
return static_cast<ExternalArrayType>(-1);
|
|
}
|
|
}
|
|
|
|
|
|
size_t JSTypedArray::element_size() {
|
|
switch (elements()->map()->instance_type()) {
|
|
case EXTERNAL_BYTE_ARRAY_TYPE:
|
|
return 1;
|
|
case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE:
|
|
return 1;
|
|
case EXTERNAL_SHORT_ARRAY_TYPE:
|
|
return 2;
|
|
case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE:
|
|
return 2;
|
|
case EXTERNAL_INT_ARRAY_TYPE:
|
|
return 4;
|
|
case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE:
|
|
return 4;
|
|
case EXTERNAL_FLOAT_ARRAY_TYPE:
|
|
return 4;
|
|
case EXTERNAL_DOUBLE_ARRAY_TYPE:
|
|
return 8;
|
|
case EXTERNAL_PIXEL_ARRAY_TYPE:
|
|
return 1;
|
|
default:
|
|
UNREACHABLE();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
Object* ExternalPixelArray::SetValue(uint32_t index, Object* value) {
|
|
uint8_t clamped_value = 0;
|
|
if (index < static_cast<uint32_t>(length())) {
|
|
if (value->IsSmi()) {
|
|
int int_value = Smi::cast(value)->value();
|
|
if (int_value < 0) {
|
|
clamped_value = 0;
|
|
} else if (int_value > 255) {
|
|
clamped_value = 255;
|
|
} else {
|
|
clamped_value = static_cast<uint8_t>(int_value);
|
|
}
|
|
} else if (value->IsHeapNumber()) {
|
|
double double_value = HeapNumber::cast(value)->value();
|
|
if (!(double_value > 0)) {
|
|
// NaN and less than zero clamp to zero.
|
|
clamped_value = 0;
|
|
} else if (double_value > 255) {
|
|
// Greater than 255 clamp to 255.
|
|
clamped_value = 255;
|
|
} else {
|
|
// Other doubles are rounded to the nearest integer.
|
|
clamped_value = static_cast<uint8_t>(lrint(double_value));
|
|
}
|
|
} else {
|
|
// Clamp undefined to zero (default). All other types have been
|
|
// converted to a number type further up in the call chain.
|
|
ASSERT(value->IsUndefined());
|
|
}
|
|
set(index, clamped_value);
|
|
}
|
|
return Smi::FromInt(clamped_value);
|
|
}
|
|
|
|
|
|
template<typename ExternalArrayClass, typename ValueType>
|
|
static MaybeObject* ExternalArrayIntSetter(Heap* heap,
|
|
ExternalArrayClass* receiver,
|
|
uint32_t index,
|
|
Object* value) {
|
|
ValueType cast_value = 0;
|
|
if (index < static_cast<uint32_t>(receiver->length())) {
|
|
if (value->IsSmi()) {
|
|
int int_value = Smi::cast(value)->value();
|
|
cast_value = static_cast<ValueType>(int_value);
|
|
} else if (value->IsHeapNumber()) {
|
|
double double_value = HeapNumber::cast(value)->value();
|
|
cast_value = static_cast<ValueType>(DoubleToInt32(double_value));
|
|
} else {
|
|
// Clamp undefined to zero (default). All other types have been
|
|
// converted to a number type further up in the call chain.
|
|
ASSERT(value->IsUndefined());
|
|
}
|
|
receiver->set(index, cast_value);
|
|
}
|
|
return heap->NumberFromInt32(cast_value);
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalByteArray::SetValue(uint32_t index, Object* value) {
|
|
return ExternalArrayIntSetter<ExternalByteArray, int8_t>
|
|
(GetHeap(), this, index, value);
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalUnsignedByteArray::SetValue(uint32_t index,
|
|
Object* value) {
|
|
return ExternalArrayIntSetter<ExternalUnsignedByteArray, uint8_t>
|
|
(GetHeap(), this, index, value);
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalShortArray::SetValue(uint32_t index,
|
|
Object* value) {
|
|
return ExternalArrayIntSetter<ExternalShortArray, int16_t>
|
|
(GetHeap(), this, index, value);
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalUnsignedShortArray::SetValue(uint32_t index,
|
|
Object* value) {
|
|
return ExternalArrayIntSetter<ExternalUnsignedShortArray, uint16_t>
|
|
(GetHeap(), this, index, value);
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalIntArray::SetValue(uint32_t index, Object* value) {
|
|
return ExternalArrayIntSetter<ExternalIntArray, int32_t>
|
|
(GetHeap(), this, index, value);
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalUnsignedIntArray::SetValue(uint32_t index, Object* value) {
|
|
uint32_t cast_value = 0;
|
|
Heap* heap = GetHeap();
|
|
if (index < static_cast<uint32_t>(length())) {
|
|
if (value->IsSmi()) {
|
|
int int_value = Smi::cast(value)->value();
|
|
cast_value = static_cast<uint32_t>(int_value);
|
|
} else if (value->IsHeapNumber()) {
|
|
double double_value = HeapNumber::cast(value)->value();
|
|
cast_value = static_cast<uint32_t>(DoubleToUint32(double_value));
|
|
} else {
|
|
// Clamp undefined to zero (default). All other types have been
|
|
// converted to a number type further up in the call chain.
|
|
ASSERT(value->IsUndefined());
|
|
}
|
|
set(index, cast_value);
|
|
}
|
|
return heap->NumberFromUint32(cast_value);
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalFloatArray::SetValue(uint32_t index, Object* value) {
|
|
float cast_value = static_cast<float>(OS::nan_value());
|
|
Heap* heap = GetHeap();
|
|
if (index < static_cast<uint32_t>(length())) {
|
|
if (value->IsSmi()) {
|
|
int int_value = Smi::cast(value)->value();
|
|
cast_value = static_cast<float>(int_value);
|
|
} else if (value->IsHeapNumber()) {
|
|
double double_value = HeapNumber::cast(value)->value();
|
|
cast_value = static_cast<float>(double_value);
|
|
} else {
|
|
// Clamp undefined to NaN (default). All other types have been
|
|
// converted to a number type further up in the call chain.
|
|
ASSERT(value->IsUndefined());
|
|
}
|
|
set(index, cast_value);
|
|
}
|
|
return heap->AllocateHeapNumber(cast_value);
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalDoubleArray::SetValue(uint32_t index, Object* value) {
|
|
double double_value = OS::nan_value();
|
|
Heap* heap = GetHeap();
|
|
if (index < static_cast<uint32_t>(length())) {
|
|
if (value->IsSmi()) {
|
|
int int_value = Smi::cast(value)->value();
|
|
double_value = static_cast<double>(int_value);
|
|
} else if (value->IsHeapNumber()) {
|
|
double_value = HeapNumber::cast(value)->value();
|
|
} else {
|
|
// Clamp undefined to NaN (default). All other types have been
|
|
// converted to a number type further up in the call chain.
|
|
ASSERT(value->IsUndefined());
|
|
}
|
|
set(index, double_value);
|
|
}
|
|
return heap->AllocateHeapNumber(double_value);
|
|
}
|
|
|
|
|
|
PropertyCell* GlobalObject::GetPropertyCell(LookupResult* result) {
|
|
ASSERT(!HasFastProperties());
|
|
Object* value = property_dictionary()->ValueAt(result->GetDictionaryEntry());
|
|
return PropertyCell::cast(value);
|
|
}
|
|
|
|
|
|
// TODO(mstarzinger): Temporary wrapper until handlified.
|
|
static Handle<NameDictionary> NameDictionaryAdd(Handle<NameDictionary> dict,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyDetails details) {
|
|
CALL_HEAP_FUNCTION(dict->GetIsolate(),
|
|
dict->Add(*name, *value, details),
|
|
NameDictionary);
|
|
}
|
|
|
|
|
|
Handle<PropertyCell> GlobalObject::EnsurePropertyCell(
|
|
Handle<GlobalObject> global,
|
|
Handle<Name> name) {
|
|
ASSERT(!global->HasFastProperties());
|
|
int entry = global->property_dictionary()->FindEntry(*name);
|
|
if (entry == NameDictionary::kNotFound) {
|
|
Isolate* isolate = global->GetIsolate();
|
|
Handle<PropertyCell> cell = isolate->factory()->NewPropertyCell(
|
|
isolate->factory()->the_hole_value());
|
|
PropertyDetails details(NONE, NORMAL, 0);
|
|
details = details.AsDeleted();
|
|
Handle<NameDictionary> dictionary = NameDictionaryAdd(
|
|
handle(global->property_dictionary()), name, cell, details);
|
|
global->set_properties(*dictionary);
|
|
return cell;
|
|
} else {
|
|
Object* value = global->property_dictionary()->ValueAt(entry);
|
|
ASSERT(value->IsPropertyCell());
|
|
return handle(PropertyCell::cast(value));
|
|
}
|
|
}
|
|
|
|
|
|
MaybeObject* StringTable::LookupString(String* string, Object** s) {
|
|
InternalizedStringKey key(string);
|
|
return LookupKey(&key, s);
|
|
}
|
|
|
|
|
|
// This class is used for looking up two character strings in the string table.
|
|
// If we don't have a hit we don't want to waste much time so we unroll the
|
|
// string hash calculation loop here for speed. Doesn't work if the two
|
|
// characters form a decimal integer, since such strings have a different hash
|
|
// algorithm.
|
|
class TwoCharHashTableKey : public HashTableKey {
|
|
public:
|
|
TwoCharHashTableKey(uint16_t c1, uint16_t c2, uint32_t seed)
|
|
: c1_(c1), c2_(c2) {
|
|
// Char 1.
|
|
uint32_t hash = seed;
|
|
hash += c1;
|
|
hash += hash << 10;
|
|
hash ^= hash >> 6;
|
|
// Char 2.
|
|
hash += c2;
|
|
hash += hash << 10;
|
|
hash ^= hash >> 6;
|
|
// GetHash.
|
|
hash += hash << 3;
|
|
hash ^= hash >> 11;
|
|
hash += hash << 15;
|
|
if ((hash & String::kHashBitMask) == 0) hash = StringHasher::kZeroHash;
|
|
hash_ = hash;
|
|
#ifdef DEBUG
|
|
// If this assert fails then we failed to reproduce the two-character
|
|
// version of the string hashing algorithm above. One reason could be
|
|
// that we were passed two digits as characters, since the hash
|
|
// algorithm is different in that case.
|
|
uint16_t chars[2] = {c1, c2};
|
|
uint32_t check_hash = StringHasher::HashSequentialString(chars, 2, seed);
|
|
hash = (hash << String::kHashShift) | String::kIsNotArrayIndexMask;
|
|
ASSERT_EQ(static_cast<int32_t>(hash), static_cast<int32_t>(check_hash));
|
|
#endif
|
|
}
|
|
|
|
bool IsMatch(Object* o) {
|
|
if (!o->IsString()) return false;
|
|
String* other = String::cast(o);
|
|
if (other->length() != 2) return false;
|
|
if (other->Get(0) != c1_) return false;
|
|
return other->Get(1) == c2_;
|
|
}
|
|
|
|
uint32_t Hash() { return hash_; }
|
|
uint32_t HashForObject(Object* key) {
|
|
if (!key->IsString()) return 0;
|
|
return String::cast(key)->Hash();
|
|
}
|
|
|
|
Object* AsObject(Heap* heap) {
|
|
// The TwoCharHashTableKey is only used for looking in the string
|
|
// table, not for adding to it.
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
private:
|
|
uint16_t c1_;
|
|
uint16_t c2_;
|
|
uint32_t hash_;
|
|
};
|
|
|
|
|
|
bool StringTable::LookupStringIfExists(String* string, String** result) {
|
|
InternalizedStringKey key(string);
|
|
int entry = FindEntry(&key);
|
|
if (entry == kNotFound) {
|
|
return false;
|
|
} else {
|
|
*result = String::cast(KeyAt(entry));
|
|
ASSERT(StringShape(*result).IsInternalized());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
bool StringTable::LookupTwoCharsStringIfExists(uint16_t c1,
|
|
uint16_t c2,
|
|
String** result) {
|
|
TwoCharHashTableKey key(c1, c2, GetHeap()->HashSeed());
|
|
int entry = FindEntry(&key);
|
|
if (entry == kNotFound) {
|
|
return false;
|
|
} else {
|
|
*result = String::cast(KeyAt(entry));
|
|
ASSERT(StringShape(*result).IsInternalized());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
MaybeObject* StringTable::LookupUtf8String(Vector<const char> str,
|
|
Object** s) {
|
|
Utf8StringKey key(str, GetHeap()->HashSeed());
|
|
return LookupKey(&key, s);
|
|
}
|
|
|
|
|
|
MaybeObject* StringTable::LookupOneByteString(Vector<const uint8_t> str,
|
|
Object** s) {
|
|
OneByteStringKey key(str, GetHeap()->HashSeed());
|
|
return LookupKey(&key, s);
|
|
}
|
|
|
|
|
|
MaybeObject* StringTable::LookupSubStringOneByteString(
|
|
Handle<SeqOneByteString> str,
|
|
int from,
|
|
int length,
|
|
Object** s) {
|
|
SubStringOneByteStringKey key(str, from, length);
|
|
return LookupKey(&key, s);
|
|
}
|
|
|
|
|
|
MaybeObject* StringTable::LookupTwoByteString(Vector<const uc16> str,
|
|
Object** s) {
|
|
TwoByteStringKey key(str, GetHeap()->HashSeed());
|
|
return LookupKey(&key, s);
|
|
}
|
|
|
|
|
|
MaybeObject* StringTable::LookupKey(HashTableKey* key, Object** s) {
|
|
int entry = FindEntry(key);
|
|
|
|
// String already in table.
|
|
if (entry != kNotFound) {
|
|
*s = KeyAt(entry);
|
|
return this;
|
|
}
|
|
|
|
// Adding new string. Grow table if needed.
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = EnsureCapacity(1, key);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
|
|
// Create string object.
|
|
Object* string;
|
|
{ MaybeObject* maybe_string = key->AsObject(GetHeap());
|
|
if (!maybe_string->ToObject(&string)) return maybe_string;
|
|
}
|
|
|
|
// If the string table grew as part of EnsureCapacity, obj is not
|
|
// the current string table and therefore we cannot use
|
|
// StringTable::cast here.
|
|
StringTable* table = reinterpret_cast<StringTable*>(obj);
|
|
|
|
// Add the new string and return it along with the string table.
|
|
entry = table->FindInsertionEntry(key->Hash());
|
|
table->set(EntryToIndex(entry), string);
|
|
table->ElementAdded();
|
|
*s = string;
|
|
return table;
|
|
}
|
|
|
|
|
|
// The key for the script compilation cache is dependent on the mode flags,
|
|
// because they change the global language mode and thus binding behaviour.
|
|
// If flags change at some point, we must ensure that we do not hit the cache
|
|
// for code compiled with different settings.
|
|
static LanguageMode CurrentGlobalLanguageMode() {
|
|
return FLAG_use_strict
|
|
? (FLAG_harmony_scoping ? EXTENDED_MODE : STRICT_MODE)
|
|
: CLASSIC_MODE;
|
|
}
|
|
|
|
|
|
Object* CompilationCacheTable::Lookup(String* src, Context* context) {
|
|
SharedFunctionInfo* shared = context->closure()->shared();
|
|
StringSharedKey key(src,
|
|
shared,
|
|
CurrentGlobalLanguageMode(),
|
|
RelocInfo::kNoPosition);
|
|
int entry = FindEntry(&key);
|
|
if (entry == kNotFound) return GetHeap()->undefined_value();
|
|
return get(EntryToIndex(entry) + 1);
|
|
}
|
|
|
|
|
|
Object* CompilationCacheTable::LookupEval(String* src,
|
|
Context* context,
|
|
LanguageMode language_mode,
|
|
int scope_position) {
|
|
StringSharedKey key(src,
|
|
context->closure()->shared(),
|
|
language_mode,
|
|
scope_position);
|
|
int entry = FindEntry(&key);
|
|
if (entry == kNotFound) return GetHeap()->undefined_value();
|
|
return get(EntryToIndex(entry) + 1);
|
|
}
|
|
|
|
|
|
Object* CompilationCacheTable::LookupRegExp(String* src,
|
|
JSRegExp::Flags flags) {
|
|
RegExpKey key(src, flags);
|
|
int entry = FindEntry(&key);
|
|
if (entry == kNotFound) return GetHeap()->undefined_value();
|
|
return get(EntryToIndex(entry) + 1);
|
|
}
|
|
|
|
|
|
MaybeObject* CompilationCacheTable::Put(String* src,
|
|
Context* context,
|
|
Object* value) {
|
|
SharedFunctionInfo* shared = context->closure()->shared();
|
|
StringSharedKey key(src,
|
|
shared,
|
|
CurrentGlobalLanguageMode(),
|
|
RelocInfo::kNoPosition);
|
|
CompilationCacheTable* cache;
|
|
MaybeObject* maybe_cache = EnsureCapacity(1, &key);
|
|
if (!maybe_cache->To(&cache)) return maybe_cache;
|
|
|
|
Object* k;
|
|
MaybeObject* maybe_k = key.AsObject(GetHeap());
|
|
if (!maybe_k->To(&k)) return maybe_k;
|
|
|
|
int entry = cache->FindInsertionEntry(key.Hash());
|
|
cache->set(EntryToIndex(entry), k);
|
|
cache->set(EntryToIndex(entry) + 1, value);
|
|
cache->ElementAdded();
|
|
return cache;
|
|
}
|
|
|
|
|
|
MaybeObject* CompilationCacheTable::PutEval(String* src,
|
|
Context* context,
|
|
SharedFunctionInfo* value,
|
|
int scope_position) {
|
|
StringSharedKey key(src,
|
|
context->closure()->shared(),
|
|
value->language_mode(),
|
|
scope_position);
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = EnsureCapacity(1, &key);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
|
|
CompilationCacheTable* cache =
|
|
reinterpret_cast<CompilationCacheTable*>(obj);
|
|
int entry = cache->FindInsertionEntry(key.Hash());
|
|
|
|
Object* k;
|
|
{ MaybeObject* maybe_k = key.AsObject(GetHeap());
|
|
if (!maybe_k->ToObject(&k)) return maybe_k;
|
|
}
|
|
|
|
cache->set(EntryToIndex(entry), k);
|
|
cache->set(EntryToIndex(entry) + 1, value);
|
|
cache->ElementAdded();
|
|
return cache;
|
|
}
|
|
|
|
|
|
MaybeObject* CompilationCacheTable::PutRegExp(String* src,
|
|
JSRegExp::Flags flags,
|
|
FixedArray* value) {
|
|
RegExpKey key(src, flags);
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = EnsureCapacity(1, &key);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
|
|
CompilationCacheTable* cache =
|
|
reinterpret_cast<CompilationCacheTable*>(obj);
|
|
int entry = cache->FindInsertionEntry(key.Hash());
|
|
// We store the value in the key slot, and compare the search key
|
|
// to the stored value with a custon IsMatch function during lookups.
|
|
cache->set(EntryToIndex(entry), value);
|
|
cache->set(EntryToIndex(entry) + 1, value);
|
|
cache->ElementAdded();
|
|
return cache;
|
|
}
|
|
|
|
|
|
void CompilationCacheTable::Remove(Object* value) {
|
|
Object* the_hole_value = GetHeap()->the_hole_value();
|
|
for (int entry = 0, size = Capacity(); entry < size; entry++) {
|
|
int entry_index = EntryToIndex(entry);
|
|
int value_index = entry_index + 1;
|
|
if (get(value_index) == value) {
|
|
NoWriteBarrierSet(this, entry_index, the_hole_value);
|
|
NoWriteBarrierSet(this, value_index, the_hole_value);
|
|
ElementRemoved();
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
// StringsKey used for HashTable where key is array of internalized strings.
|
|
class StringsKey : public HashTableKey {
|
|
public:
|
|
explicit StringsKey(FixedArray* strings) : strings_(strings) { }
|
|
|
|
bool IsMatch(Object* strings) {
|
|
FixedArray* o = FixedArray::cast(strings);
|
|
int len = strings_->length();
|
|
if (o->length() != len) return false;
|
|
for (int i = 0; i < len; i++) {
|
|
if (o->get(i) != strings_->get(i)) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
uint32_t Hash() { return HashForObject(strings_); }
|
|
|
|
uint32_t HashForObject(Object* obj) {
|
|
FixedArray* strings = FixedArray::cast(obj);
|
|
int len = strings->length();
|
|
uint32_t hash = 0;
|
|
for (int i = 0; i < len; i++) {
|
|
hash ^= String::cast(strings->get(i))->Hash();
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
Object* AsObject(Heap* heap) { return strings_; }
|
|
|
|
private:
|
|
FixedArray* strings_;
|
|
};
|
|
|
|
|
|
Object* MapCache::Lookup(FixedArray* array) {
|
|
StringsKey key(array);
|
|
int entry = FindEntry(&key);
|
|
if (entry == kNotFound) return GetHeap()->undefined_value();
|
|
return get(EntryToIndex(entry) + 1);
|
|
}
|
|
|
|
|
|
MaybeObject* MapCache::Put(FixedArray* array, Map* value) {
|
|
StringsKey key(array);
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = EnsureCapacity(1, &key);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
|
|
MapCache* cache = reinterpret_cast<MapCache*>(obj);
|
|
int entry = cache->FindInsertionEntry(key.Hash());
|
|
cache->set(EntryToIndex(entry), array);
|
|
cache->set(EntryToIndex(entry) + 1, value);
|
|
cache->ElementAdded();
|
|
return cache;
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
MaybeObject* Dictionary<Shape, Key>::Allocate(Heap* heap,
|
|
int at_least_space_for,
|
|
PretenureFlag pretenure) {
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj =
|
|
HashTable<Shape, Key>::Allocate(
|
|
heap,
|
|
at_least_space_for,
|
|
HashTable<Shape, Key>::USE_DEFAULT_MINIMUM_CAPACITY,
|
|
pretenure);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
// Initialize the next enumeration index.
|
|
Dictionary<Shape, Key>::cast(obj)->
|
|
SetNextEnumerationIndex(PropertyDetails::kInitialIndex);
|
|
return obj;
|
|
}
|
|
|
|
|
|
void NameDictionary::DoGenerateNewEnumerationIndices(
|
|
Handle<NameDictionary> dictionary) {
|
|
CALL_HEAP_FUNCTION_VOID(dictionary->GetIsolate(),
|
|
dictionary->GenerateNewEnumerationIndices());
|
|
}
|
|
|
|
template<typename Shape, typename Key>
|
|
MaybeObject* Dictionary<Shape, Key>::GenerateNewEnumerationIndices() {
|
|
Heap* heap = Dictionary<Shape, Key>::GetHeap();
|
|
int length = HashTable<Shape, Key>::NumberOfElements();
|
|
|
|
// Allocate and initialize iteration order array.
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = heap->AllocateFixedArray(length);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
FixedArray* iteration_order = FixedArray::cast(obj);
|
|
for (int i = 0; i < length; i++) {
|
|
iteration_order->set(i, Smi::FromInt(i));
|
|
}
|
|
|
|
// Allocate array with enumeration order.
|
|
{ MaybeObject* maybe_obj = heap->AllocateFixedArray(length);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
FixedArray* enumeration_order = FixedArray::cast(obj);
|
|
|
|
// Fill the enumeration order array with property details.
|
|
int capacity = HashTable<Shape, Key>::Capacity();
|
|
int pos = 0;
|
|
for (int i = 0; i < capacity; i++) {
|
|
if (Dictionary<Shape, Key>::IsKey(Dictionary<Shape, Key>::KeyAt(i))) {
|
|
int index = DetailsAt(i).dictionary_index();
|
|
enumeration_order->set(pos++, Smi::FromInt(index));
|
|
}
|
|
}
|
|
|
|
// Sort the arrays wrt. enumeration order.
|
|
iteration_order->SortPairs(enumeration_order, enumeration_order->length());
|
|
|
|
// Overwrite the enumeration_order with the enumeration indices.
|
|
for (int i = 0; i < length; i++) {
|
|
int index = Smi::cast(iteration_order->get(i))->value();
|
|
int enum_index = PropertyDetails::kInitialIndex + i;
|
|
enumeration_order->set(index, Smi::FromInt(enum_index));
|
|
}
|
|
|
|
// Update the dictionary with new indices.
|
|
capacity = HashTable<Shape, Key>::Capacity();
|
|
pos = 0;
|
|
for (int i = 0; i < capacity; i++) {
|
|
if (Dictionary<Shape, Key>::IsKey(Dictionary<Shape, Key>::KeyAt(i))) {
|
|
int enum_index = Smi::cast(enumeration_order->get(pos++))->value();
|
|
PropertyDetails details = DetailsAt(i);
|
|
PropertyDetails new_details = PropertyDetails(
|
|
details.attributes(), details.type(), enum_index);
|
|
DetailsAtPut(i, new_details);
|
|
}
|
|
}
|
|
|
|
// Set the next enumeration index.
|
|
SetNextEnumerationIndex(PropertyDetails::kInitialIndex+length);
|
|
return this;
|
|
}
|
|
|
|
template<typename Shape, typename Key>
|
|
MaybeObject* Dictionary<Shape, Key>::EnsureCapacity(int n, Key key) {
|
|
// Check whether there are enough enumeration indices to add n elements.
|
|
if (Shape::kIsEnumerable &&
|
|
!PropertyDetails::IsValidIndex(NextEnumerationIndex() + n)) {
|
|
// If not, we generate new indices for the properties.
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = GenerateNewEnumerationIndices();
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
}
|
|
return HashTable<Shape, Key>::EnsureCapacity(n, key);
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
Object* Dictionary<Shape, Key>::DeleteProperty(int entry,
|
|
JSReceiver::DeleteMode mode) {
|
|
Heap* heap = Dictionary<Shape, Key>::GetHeap();
|
|
PropertyDetails details = DetailsAt(entry);
|
|
// Ignore attributes if forcing a deletion.
|
|
if (details.IsDontDelete() && mode != JSReceiver::FORCE_DELETION) {
|
|
return heap->false_value();
|
|
}
|
|
SetEntry(entry, heap->the_hole_value(), heap->the_hole_value());
|
|
HashTable<Shape, Key>::ElementRemoved();
|
|
return heap->true_value();
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
MaybeObject* Dictionary<Shape, Key>::Shrink(Key key) {
|
|
return HashTable<Shape, Key>::Shrink(key);
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
MaybeObject* Dictionary<Shape, Key>::AtPut(Key key, Object* value) {
|
|
int entry = this->FindEntry(key);
|
|
|
|
// If the entry is present set the value;
|
|
if (entry != Dictionary<Shape, Key>::kNotFound) {
|
|
ValueAtPut(entry, value);
|
|
return this;
|
|
}
|
|
|
|
// Check whether the dictionary should be extended.
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = EnsureCapacity(1, key);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
|
|
Object* k;
|
|
{ MaybeObject* maybe_k = Shape::AsObject(this->GetHeap(), key);
|
|
if (!maybe_k->ToObject(&k)) return maybe_k;
|
|
}
|
|
PropertyDetails details = PropertyDetails(NONE, NORMAL, 0);
|
|
|
|
return Dictionary<Shape, Key>::cast(obj)->AddEntry(key, value, details,
|
|
Dictionary<Shape, Key>::Hash(key));
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
MaybeObject* Dictionary<Shape, Key>::Add(Key key,
|
|
Object* value,
|
|
PropertyDetails details) {
|
|
// Valdate key is absent.
|
|
SLOW_ASSERT((this->FindEntry(key) == Dictionary<Shape, Key>::kNotFound));
|
|
// Check whether the dictionary should be extended.
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = EnsureCapacity(1, key);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
|
|
return Dictionary<Shape, Key>::cast(obj)->AddEntry(key, value, details,
|
|
Dictionary<Shape, Key>::Hash(key));
|
|
}
|
|
|
|
|
|
// Add a key, value pair to the dictionary.
|
|
template<typename Shape, typename Key>
|
|
MaybeObject* Dictionary<Shape, Key>::AddEntry(Key key,
|
|
Object* value,
|
|
PropertyDetails details,
|
|
uint32_t hash) {
|
|
// Compute the key object.
|
|
Object* k;
|
|
{ MaybeObject* maybe_k = Shape::AsObject(this->GetHeap(), key);
|
|
if (!maybe_k->ToObject(&k)) return maybe_k;
|
|
}
|
|
|
|
uint32_t entry = Dictionary<Shape, Key>::FindInsertionEntry(hash);
|
|
// Insert element at empty or deleted entry
|
|
if (!details.IsDeleted() &&
|
|
details.dictionary_index() == 0 &&
|
|
Shape::kIsEnumerable) {
|
|
// Assign an enumeration index to the property and update
|
|
// SetNextEnumerationIndex.
|
|
int index = NextEnumerationIndex();
|
|
details = PropertyDetails(details.attributes(), details.type(), index);
|
|
SetNextEnumerationIndex(index + 1);
|
|
}
|
|
SetEntry(entry, k, value, details);
|
|
ASSERT((Dictionary<Shape, Key>::KeyAt(entry)->IsNumber() ||
|
|
Dictionary<Shape, Key>::KeyAt(entry)->IsName()));
|
|
HashTable<Shape, Key>::ElementAdded();
|
|
return this;
|
|
}
|
|
|
|
|
|
void SeededNumberDictionary::UpdateMaxNumberKey(uint32_t key) {
|
|
// If the dictionary requires slow elements an element has already
|
|
// been added at a high index.
|
|
if (requires_slow_elements()) return;
|
|
// Check if this index is high enough that we should require slow
|
|
// elements.
|
|
if (key > kRequiresSlowElementsLimit) {
|
|
set_requires_slow_elements();
|
|
return;
|
|
}
|
|
// Update max key value.
|
|
Object* max_index_object = get(kMaxNumberKeyIndex);
|
|
if (!max_index_object->IsSmi() || max_number_key() < key) {
|
|
FixedArray::set(kMaxNumberKeyIndex,
|
|
Smi::FromInt(key << kRequiresSlowElementsTagSize));
|
|
}
|
|
}
|
|
|
|
|
|
MaybeObject* SeededNumberDictionary::AddNumberEntry(uint32_t key,
|
|
Object* value,
|
|
PropertyDetails details) {
|
|
UpdateMaxNumberKey(key);
|
|
SLOW_ASSERT(this->FindEntry(key) == kNotFound);
|
|
return Add(key, value, details);
|
|
}
|
|
|
|
|
|
MaybeObject* UnseededNumberDictionary::AddNumberEntry(uint32_t key,
|
|
Object* value) {
|
|
SLOW_ASSERT(this->FindEntry(key) == kNotFound);
|
|
return Add(key, value, PropertyDetails(NONE, NORMAL, 0));
|
|
}
|
|
|
|
|
|
MaybeObject* SeededNumberDictionary::AtNumberPut(uint32_t key, Object* value) {
|
|
UpdateMaxNumberKey(key);
|
|
return AtPut(key, value);
|
|
}
|
|
|
|
|
|
MaybeObject* UnseededNumberDictionary::AtNumberPut(uint32_t key,
|
|
Object* value) {
|
|
return AtPut(key, value);
|
|
}
|
|
|
|
|
|
Handle<SeededNumberDictionary> SeededNumberDictionary::Set(
|
|
Handle<SeededNumberDictionary> dictionary,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
PropertyDetails details) {
|
|
CALL_HEAP_FUNCTION(dictionary->GetIsolate(),
|
|
dictionary->Set(index, *value, details),
|
|
SeededNumberDictionary);
|
|
}
|
|
|
|
|
|
Handle<UnseededNumberDictionary> UnseededNumberDictionary::Set(
|
|
Handle<UnseededNumberDictionary> dictionary,
|
|
uint32_t index,
|
|
Handle<Object> value) {
|
|
CALL_HEAP_FUNCTION(dictionary->GetIsolate(),
|
|
dictionary->Set(index, *value),
|
|
UnseededNumberDictionary);
|
|
}
|
|
|
|
|
|
MaybeObject* SeededNumberDictionary::Set(uint32_t key,
|
|
Object* value,
|
|
PropertyDetails details) {
|
|
int entry = FindEntry(key);
|
|
if (entry == kNotFound) return AddNumberEntry(key, value, details);
|
|
// Preserve enumeration index.
|
|
details = PropertyDetails(details.attributes(),
|
|
details.type(),
|
|
DetailsAt(entry).dictionary_index());
|
|
MaybeObject* maybe_object_key =
|
|
SeededNumberDictionaryShape::AsObject(GetHeap(), key);
|
|
Object* object_key;
|
|
if (!maybe_object_key->ToObject(&object_key)) return maybe_object_key;
|
|
SetEntry(entry, object_key, value, details);
|
|
return this;
|
|
}
|
|
|
|
|
|
MaybeObject* UnseededNumberDictionary::Set(uint32_t key,
|
|
Object* value) {
|
|
int entry = FindEntry(key);
|
|
if (entry == kNotFound) return AddNumberEntry(key, value);
|
|
MaybeObject* maybe_object_key =
|
|
UnseededNumberDictionaryShape::AsObject(GetHeap(), key);
|
|
Object* object_key;
|
|
if (!maybe_object_key->ToObject(&object_key)) return maybe_object_key;
|
|
SetEntry(entry, object_key, value);
|
|
return this;
|
|
}
|
|
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
int Dictionary<Shape, Key>::NumberOfElementsFilterAttributes(
|
|
PropertyAttributes filter) {
|
|
int capacity = HashTable<Shape, Key>::Capacity();
|
|
int result = 0;
|
|
for (int i = 0; i < capacity; i++) {
|
|
Object* k = HashTable<Shape, Key>::KeyAt(i);
|
|
if (HashTable<Shape, Key>::IsKey(k) &&
|
|
((filter & SYMBOLIC) == 0 || !k->IsSymbol())) {
|
|
PropertyDetails details = DetailsAt(i);
|
|
if (details.IsDeleted()) continue;
|
|
PropertyAttributes attr = details.attributes();
|
|
if ((attr & filter) == 0) result++;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
int Dictionary<Shape, Key>::NumberOfEnumElements() {
|
|
return NumberOfElementsFilterAttributes(
|
|
static_cast<PropertyAttributes>(DONT_ENUM));
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
void Dictionary<Shape, Key>::CopyKeysTo(
|
|
FixedArray* storage,
|
|
PropertyAttributes filter,
|
|
typename Dictionary<Shape, Key>::SortMode sort_mode) {
|
|
ASSERT(storage->length() >= NumberOfEnumElements());
|
|
int capacity = HashTable<Shape, Key>::Capacity();
|
|
int index = 0;
|
|
for (int i = 0; i < capacity; i++) {
|
|
Object* k = HashTable<Shape, Key>::KeyAt(i);
|
|
if (HashTable<Shape, Key>::IsKey(k)) {
|
|
PropertyDetails details = DetailsAt(i);
|
|
if (details.IsDeleted()) continue;
|
|
PropertyAttributes attr = details.attributes();
|
|
if ((attr & filter) == 0) storage->set(index++, k);
|
|
}
|
|
}
|
|
if (sort_mode == Dictionary<Shape, Key>::SORTED) {
|
|
storage->SortPairs(storage, index);
|
|
}
|
|
ASSERT(storage->length() >= index);
|
|
}
|
|
|
|
|
|
FixedArray* NameDictionary::CopyEnumKeysTo(FixedArray* storage) {
|
|
int length = storage->length();
|
|
ASSERT(length >= NumberOfEnumElements());
|
|
Heap* heap = GetHeap();
|
|
Object* undefined_value = heap->undefined_value();
|
|
int capacity = Capacity();
|
|
int properties = 0;
|
|
|
|
// Fill in the enumeration array by assigning enumerable keys at their
|
|
// enumeration index. This will leave holes in the array if there are keys
|
|
// that are deleted or not enumerable.
|
|
for (int i = 0; i < capacity; i++) {
|
|
Object* k = KeyAt(i);
|
|
if (IsKey(k) && !k->IsSymbol()) {
|
|
PropertyDetails details = DetailsAt(i);
|
|
if (details.IsDeleted() || details.IsDontEnum()) continue;
|
|
properties++;
|
|
storage->set(details.dictionary_index() - 1, k);
|
|
if (properties == length) break;
|
|
}
|
|
}
|
|
|
|
// There are holes in the enumeration array if less properties were assigned
|
|
// than the length of the array. If so, crunch all the existing properties
|
|
// together by shifting them to the left (maintaining the enumeration order),
|
|
// and trimming of the right side of the array.
|
|
if (properties < length) {
|
|
if (properties == 0) return heap->empty_fixed_array();
|
|
properties = 0;
|
|
for (int i = 0; i < length; ++i) {
|
|
Object* value = storage->get(i);
|
|
if (value != undefined_value) {
|
|
storage->set(properties, value);
|
|
++properties;
|
|
}
|
|
}
|
|
RightTrimFixedArray<FROM_MUTATOR>(heap, storage, length - properties);
|
|
}
|
|
return storage;
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
void Dictionary<Shape, Key>::CopyKeysTo(
|
|
FixedArray* storage,
|
|
int index,
|
|
PropertyAttributes filter,
|
|
typename Dictionary<Shape, Key>::SortMode sort_mode) {
|
|
ASSERT(storage->length() >= NumberOfElementsFilterAttributes(
|
|
static_cast<PropertyAttributes>(NONE)));
|
|
int capacity = HashTable<Shape, Key>::Capacity();
|
|
for (int i = 0; i < capacity; i++) {
|
|
Object* k = HashTable<Shape, Key>::KeyAt(i);
|
|
if (HashTable<Shape, Key>::IsKey(k)) {
|
|
PropertyDetails details = DetailsAt(i);
|
|
if (details.IsDeleted()) continue;
|
|
PropertyAttributes attr = details.attributes();
|
|
if ((attr & filter) == 0) storage->set(index++, k);
|
|
}
|
|
}
|
|
if (sort_mode == Dictionary<Shape, Key>::SORTED) {
|
|
storage->SortPairs(storage, index);
|
|
}
|
|
ASSERT(storage->length() >= index);
|
|
}
|
|
|
|
|
|
// Backwards lookup (slow).
|
|
template<typename Shape, typename Key>
|
|
Object* Dictionary<Shape, Key>::SlowReverseLookup(Object* value) {
|
|
int capacity = HashTable<Shape, Key>::Capacity();
|
|
for (int i = 0; i < capacity; i++) {
|
|
Object* k = HashTable<Shape, Key>::KeyAt(i);
|
|
if (Dictionary<Shape, Key>::IsKey(k)) {
|
|
Object* e = ValueAt(i);
|
|
if (e->IsPropertyCell()) {
|
|
e = PropertyCell::cast(e)->value();
|
|
}
|
|
if (e == value) return k;
|
|
}
|
|
}
|
|
Heap* heap = Dictionary<Shape, Key>::GetHeap();
|
|
return heap->undefined_value();
|
|
}
|
|
|
|
|
|
MaybeObject* NameDictionary::TransformPropertiesToFastFor(
|
|
JSObject* obj, int unused_property_fields) {
|
|
// Make sure we preserve dictionary representation if there are too many
|
|
// descriptors.
|
|
int number_of_elements = NumberOfElements();
|
|
if (number_of_elements > DescriptorArray::kMaxNumberOfDescriptors) return obj;
|
|
|
|
if (number_of_elements != NextEnumerationIndex()) {
|
|
MaybeObject* maybe_result = GenerateNewEnumerationIndices();
|
|
if (maybe_result->IsFailure()) return maybe_result;
|
|
}
|
|
|
|
int instance_descriptor_length = 0;
|
|
int number_of_fields = 0;
|
|
|
|
Heap* heap = GetHeap();
|
|
|
|
// Compute the length of the instance descriptor.
|
|
int capacity = Capacity();
|
|
for (int i = 0; i < capacity; i++) {
|
|
Object* k = KeyAt(i);
|
|
if (IsKey(k)) {
|
|
Object* value = ValueAt(i);
|
|
PropertyType type = DetailsAt(i).type();
|
|
ASSERT(type != FIELD);
|
|
instance_descriptor_length++;
|
|
if (type == NORMAL && !value->IsJSFunction()) {
|
|
number_of_fields += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
int inobject_props = obj->map()->inobject_properties();
|
|
|
|
// Allocate new map.
|
|
Map* new_map;
|
|
MaybeObject* maybe_new_map = obj->map()->CopyDropDescriptors();
|
|
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
|
|
new_map->set_dictionary_map(false);
|
|
|
|
if (instance_descriptor_length == 0) {
|
|
ASSERT_LE(unused_property_fields, inobject_props);
|
|
// Transform the object.
|
|
new_map->set_unused_property_fields(inobject_props);
|
|
obj->set_map(new_map);
|
|
obj->set_properties(heap->empty_fixed_array());
|
|
// Check that it really works.
|
|
ASSERT(obj->HasFastProperties());
|
|
return obj;
|
|
}
|
|
|
|
// Allocate the instance descriptor.
|
|
DescriptorArray* descriptors;
|
|
MaybeObject* maybe_descriptors =
|
|
DescriptorArray::Allocate(instance_descriptor_length);
|
|
if (!maybe_descriptors->To(&descriptors)) {
|
|
return maybe_descriptors;
|
|
}
|
|
|
|
DescriptorArray::WhitenessWitness witness(descriptors);
|
|
|
|
int number_of_allocated_fields =
|
|
number_of_fields + unused_property_fields - inobject_props;
|
|
if (number_of_allocated_fields < 0) {
|
|
// There is enough inobject space for all fields (including unused).
|
|
number_of_allocated_fields = 0;
|
|
unused_property_fields = inobject_props - number_of_fields;
|
|
}
|
|
|
|
// Allocate the fixed array for the fields.
|
|
FixedArray* fields;
|
|
MaybeObject* maybe_fields =
|
|
heap->AllocateFixedArray(number_of_allocated_fields);
|
|
if (!maybe_fields->To(&fields)) return maybe_fields;
|
|
|
|
// Fill in the instance descriptor and the fields.
|
|
int current_offset = 0;
|
|
for (int i = 0; i < capacity; i++) {
|
|
Object* k = KeyAt(i);
|
|
if (IsKey(k)) {
|
|
Object* value = ValueAt(i);
|
|
Name* key;
|
|
if (k->IsSymbol()) {
|
|
key = Symbol::cast(k);
|
|
} else {
|
|
// Ensure the key is a unique name before writing into the
|
|
// instance descriptor.
|
|
MaybeObject* maybe_key = heap->InternalizeString(String::cast(k));
|
|
if (!maybe_key->To(&key)) return maybe_key;
|
|
}
|
|
|
|
PropertyDetails details = DetailsAt(i);
|
|
int enumeration_index = details.dictionary_index();
|
|
PropertyType type = details.type();
|
|
|
|
if (value->IsJSFunction()) {
|
|
ConstantFunctionDescriptor d(key,
|
|
JSFunction::cast(value),
|
|
details.attributes());
|
|
descriptors->Set(enumeration_index - 1, &d, witness);
|
|
} else if (type == NORMAL) {
|
|
if (current_offset < inobject_props) {
|
|
obj->InObjectPropertyAtPut(current_offset,
|
|
value,
|
|
UPDATE_WRITE_BARRIER);
|
|
} else {
|
|
int offset = current_offset - inobject_props;
|
|
fields->set(offset, value);
|
|
}
|
|
FieldDescriptor d(key,
|
|
current_offset++,
|
|
details.attributes(),
|
|
// TODO(verwaest): value->OptimalRepresentation();
|
|
Representation::Tagged());
|
|
descriptors->Set(enumeration_index - 1, &d, witness);
|
|
} else if (type == CALLBACKS) {
|
|
CallbacksDescriptor d(key,
|
|
value,
|
|
details.attributes());
|
|
descriptors->Set(enumeration_index - 1, &d, witness);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
}
|
|
ASSERT(current_offset == number_of_fields);
|
|
|
|
descriptors->Sort();
|
|
|
|
new_map->InitializeDescriptors(descriptors);
|
|
new_map->set_unused_property_fields(unused_property_fields);
|
|
|
|
// Transform the object.
|
|
obj->set_map(new_map);
|
|
|
|
obj->set_properties(fields);
|
|
ASSERT(obj->IsJSObject());
|
|
|
|
// Check that it really works.
|
|
ASSERT(obj->HasFastProperties());
|
|
|
|
return obj;
|
|
}
|
|
|
|
|
|
bool ObjectHashSet::Contains(Object* key) {
|
|
ASSERT(IsKey(key));
|
|
|
|
// If the object does not have an identity hash, it was never used as a key.
|
|
{ MaybeObject* maybe_hash = key->GetHash(OMIT_CREATION);
|
|
if (maybe_hash->ToObjectUnchecked()->IsUndefined()) return false;
|
|
}
|
|
return (FindEntry(key) != kNotFound);
|
|
}
|
|
|
|
|
|
MaybeObject* ObjectHashSet::Add(Object* key) {
|
|
ASSERT(IsKey(key));
|
|
|
|
// Make sure the key object has an identity hash code.
|
|
int hash;
|
|
{ MaybeObject* maybe_hash = key->GetHash(ALLOW_CREATION);
|
|
if (maybe_hash->IsFailure()) return maybe_hash;
|
|
hash = Smi::cast(maybe_hash->ToObjectUnchecked())->value();
|
|
}
|
|
int entry = FindEntry(key);
|
|
|
|
// Check whether key is already present.
|
|
if (entry != kNotFound) return this;
|
|
|
|
// Check whether the hash set should be extended and add entry.
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = EnsureCapacity(1, key);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
ObjectHashSet* table = ObjectHashSet::cast(obj);
|
|
entry = table->FindInsertionEntry(hash);
|
|
table->set(EntryToIndex(entry), key);
|
|
table->ElementAdded();
|
|
return table;
|
|
}
|
|
|
|
|
|
MaybeObject* ObjectHashSet::Remove(Object* key) {
|
|
ASSERT(IsKey(key));
|
|
|
|
// If the object does not have an identity hash, it was never used as a key.
|
|
{ MaybeObject* maybe_hash = key->GetHash(OMIT_CREATION);
|
|
if (maybe_hash->ToObjectUnchecked()->IsUndefined()) return this;
|
|
}
|
|
int entry = FindEntry(key);
|
|
|
|
// Check whether key is actually present.
|
|
if (entry == kNotFound) return this;
|
|
|
|
// Remove entry and try to shrink this hash set.
|
|
set_the_hole(EntryToIndex(entry));
|
|
ElementRemoved();
|
|
return Shrink(key);
|
|
}
|
|
|
|
|
|
Object* ObjectHashTable::Lookup(Object* key) {
|
|
ASSERT(IsKey(key));
|
|
|
|
// If the object does not have an identity hash, it was never used as a key.
|
|
{ MaybeObject* maybe_hash = key->GetHash(OMIT_CREATION);
|
|
if (maybe_hash->ToObjectUnchecked()->IsUndefined()) {
|
|
return GetHeap()->the_hole_value();
|
|
}
|
|
}
|
|
int entry = FindEntry(key);
|
|
if (entry == kNotFound) return GetHeap()->the_hole_value();
|
|
return get(EntryToIndex(entry) + 1);
|
|
}
|
|
|
|
|
|
MaybeObject* ObjectHashTable::Put(Object* key, Object* value) {
|
|
ASSERT(IsKey(key));
|
|
|
|
// Make sure the key object has an identity hash code.
|
|
int hash;
|
|
{ MaybeObject* maybe_hash = key->GetHash(ALLOW_CREATION);
|
|
if (maybe_hash->IsFailure()) return maybe_hash;
|
|
hash = Smi::cast(maybe_hash->ToObjectUnchecked())->value();
|
|
}
|
|
int entry = FindEntry(key);
|
|
|
|
// Check whether to perform removal operation.
|
|
if (value->IsTheHole()) {
|
|
if (entry == kNotFound) return this;
|
|
RemoveEntry(entry);
|
|
return Shrink(key);
|
|
}
|
|
|
|
// Key is already in table, just overwrite value.
|
|
if (entry != kNotFound) {
|
|
set(EntryToIndex(entry) + 1, value);
|
|
return this;
|
|
}
|
|
|
|
// Check whether the hash table should be extended.
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = EnsureCapacity(1, key);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
ObjectHashTable* table = ObjectHashTable::cast(obj);
|
|
table->AddEntry(table->FindInsertionEntry(hash), key, value);
|
|
return table;
|
|
}
|
|
|
|
|
|
void ObjectHashTable::AddEntry(int entry, Object* key, Object* value) {
|
|
set(EntryToIndex(entry), key);
|
|
set(EntryToIndex(entry) + 1, value);
|
|
ElementAdded();
|
|
}
|
|
|
|
|
|
void ObjectHashTable::RemoveEntry(int entry) {
|
|
set_the_hole(EntryToIndex(entry));
|
|
set_the_hole(EntryToIndex(entry) + 1);
|
|
ElementRemoved();
|
|
}
|
|
|
|
|
|
DeclaredAccessorDescriptorIterator::DeclaredAccessorDescriptorIterator(
|
|
DeclaredAccessorDescriptor* descriptor)
|
|
: array_(descriptor->serialized_data()->GetDataStartAddress()),
|
|
length_(descriptor->serialized_data()->length()),
|
|
offset_(0) {
|
|
}
|
|
|
|
|
|
const DeclaredAccessorDescriptorData*
|
|
DeclaredAccessorDescriptorIterator::Next() {
|
|
ASSERT(offset_ < length_);
|
|
uint8_t* ptr = &array_[offset_];
|
|
ASSERT(reinterpret_cast<uintptr_t>(ptr) % sizeof(uintptr_t) == 0);
|
|
const DeclaredAccessorDescriptorData* data =
|
|
reinterpret_cast<const DeclaredAccessorDescriptorData*>(ptr);
|
|
offset_ += sizeof(*data);
|
|
ASSERT(offset_ <= length_);
|
|
return data;
|
|
}
|
|
|
|
|
|
Handle<DeclaredAccessorDescriptor> DeclaredAccessorDescriptor::Create(
|
|
Isolate* isolate,
|
|
const DeclaredAccessorDescriptorData& descriptor,
|
|
Handle<DeclaredAccessorDescriptor> previous) {
|
|
int previous_length =
|
|
previous.is_null() ? 0 : previous->serialized_data()->length();
|
|
int length = sizeof(descriptor) + previous_length;
|
|
Handle<ByteArray> serialized_descriptor =
|
|
isolate->factory()->NewByteArray(length);
|
|
Handle<DeclaredAccessorDescriptor> value =
|
|
isolate->factory()->NewDeclaredAccessorDescriptor();
|
|
value->set_serialized_data(*serialized_descriptor);
|
|
// Copy in the data.
|
|
{
|
|
DisallowHeapAllocation no_allocation;
|
|
uint8_t* array = serialized_descriptor->GetDataStartAddress();
|
|
if (previous_length != 0) {
|
|
uint8_t* previous_array =
|
|
previous->serialized_data()->GetDataStartAddress();
|
|
OS::MemCopy(array, previous_array, previous_length);
|
|
array += previous_length;
|
|
}
|
|
ASSERT(reinterpret_cast<uintptr_t>(array) % sizeof(uintptr_t) == 0);
|
|
DeclaredAccessorDescriptorData* data =
|
|
reinterpret_cast<DeclaredAccessorDescriptorData*>(array);
|
|
*data = descriptor;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
// Check if there is a break point at this code position.
|
|
bool DebugInfo::HasBreakPoint(int code_position) {
|
|
// Get the break point info object for this code position.
|
|
Object* break_point_info = GetBreakPointInfo(code_position);
|
|
|
|
// If there is no break point info object or no break points in the break
|
|
// point info object there is no break point at this code position.
|
|
if (break_point_info->IsUndefined()) return false;
|
|
return BreakPointInfo::cast(break_point_info)->GetBreakPointCount() > 0;
|
|
}
|
|
|
|
|
|
// Get the break point info object for this code position.
|
|
Object* DebugInfo::GetBreakPointInfo(int code_position) {
|
|
// Find the index of the break point info object for this code position.
|
|
int index = GetBreakPointInfoIndex(code_position);
|
|
|
|
// Return the break point info object if any.
|
|
if (index == kNoBreakPointInfo) return GetHeap()->undefined_value();
|
|
return BreakPointInfo::cast(break_points()->get(index));
|
|
}
|
|
|
|
|
|
// Clear a break point at the specified code position.
|
|
void DebugInfo::ClearBreakPoint(Handle<DebugInfo> debug_info,
|
|
int code_position,
|
|
Handle<Object> break_point_object) {
|
|
Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position),
|
|
Isolate::Current());
|
|
if (break_point_info->IsUndefined()) return;
|
|
BreakPointInfo::ClearBreakPoint(
|
|
Handle<BreakPointInfo>::cast(break_point_info),
|
|
break_point_object);
|
|
}
|
|
|
|
|
|
void DebugInfo::SetBreakPoint(Handle<DebugInfo> debug_info,
|
|
int code_position,
|
|
int source_position,
|
|
int statement_position,
|
|
Handle<Object> break_point_object) {
|
|
Isolate* isolate = Isolate::Current();
|
|
Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position),
|
|
isolate);
|
|
if (!break_point_info->IsUndefined()) {
|
|
BreakPointInfo::SetBreakPoint(
|
|
Handle<BreakPointInfo>::cast(break_point_info),
|
|
break_point_object);
|
|
return;
|
|
}
|
|
|
|
// Adding a new break point for a code position which did not have any
|
|
// break points before. Try to find a free slot.
|
|
int index = kNoBreakPointInfo;
|
|
for (int i = 0; i < debug_info->break_points()->length(); i++) {
|
|
if (debug_info->break_points()->get(i)->IsUndefined()) {
|
|
index = i;
|
|
break;
|
|
}
|
|
}
|
|
if (index == kNoBreakPointInfo) {
|
|
// No free slot - extend break point info array.
|
|
Handle<FixedArray> old_break_points =
|
|
Handle<FixedArray>(FixedArray::cast(debug_info->break_points()));
|
|
Handle<FixedArray> new_break_points =
|
|
isolate->factory()->NewFixedArray(
|
|
old_break_points->length() +
|
|
Debug::kEstimatedNofBreakPointsInFunction);
|
|
|
|
debug_info->set_break_points(*new_break_points);
|
|
for (int i = 0; i < old_break_points->length(); i++) {
|
|
new_break_points->set(i, old_break_points->get(i));
|
|
}
|
|
index = old_break_points->length();
|
|
}
|
|
ASSERT(index != kNoBreakPointInfo);
|
|
|
|
// Allocate new BreakPointInfo object and set the break point.
|
|
Handle<BreakPointInfo> new_break_point_info = Handle<BreakPointInfo>::cast(
|
|
isolate->factory()->NewStruct(BREAK_POINT_INFO_TYPE));
|
|
new_break_point_info->set_code_position(Smi::FromInt(code_position));
|
|
new_break_point_info->set_source_position(Smi::FromInt(source_position));
|
|
new_break_point_info->
|
|
set_statement_position(Smi::FromInt(statement_position));
|
|
new_break_point_info->set_break_point_objects(
|
|
isolate->heap()->undefined_value());
|
|
BreakPointInfo::SetBreakPoint(new_break_point_info, break_point_object);
|
|
debug_info->break_points()->set(index, *new_break_point_info);
|
|
}
|
|
|
|
|
|
// Get the break point objects for a code position.
|
|
Object* DebugInfo::GetBreakPointObjects(int code_position) {
|
|
Object* break_point_info = GetBreakPointInfo(code_position);
|
|
if (break_point_info->IsUndefined()) {
|
|
return GetHeap()->undefined_value();
|
|
}
|
|
return BreakPointInfo::cast(break_point_info)->break_point_objects();
|
|
}
|
|
|
|
|
|
// Get the total number of break points.
|
|
int DebugInfo::GetBreakPointCount() {
|
|
if (break_points()->IsUndefined()) return 0;
|
|
int count = 0;
|
|
for (int i = 0; i < break_points()->length(); i++) {
|
|
if (!break_points()->get(i)->IsUndefined()) {
|
|
BreakPointInfo* break_point_info =
|
|
BreakPointInfo::cast(break_points()->get(i));
|
|
count += break_point_info->GetBreakPointCount();
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
|
|
Object* DebugInfo::FindBreakPointInfo(Handle<DebugInfo> debug_info,
|
|
Handle<Object> break_point_object) {
|
|
Heap* heap = debug_info->GetHeap();
|
|
if (debug_info->break_points()->IsUndefined()) return heap->undefined_value();
|
|
for (int i = 0; i < debug_info->break_points()->length(); i++) {
|
|
if (!debug_info->break_points()->get(i)->IsUndefined()) {
|
|
Handle<BreakPointInfo> break_point_info =
|
|
Handle<BreakPointInfo>(BreakPointInfo::cast(
|
|
debug_info->break_points()->get(i)));
|
|
if (BreakPointInfo::HasBreakPointObject(break_point_info,
|
|
break_point_object)) {
|
|
return *break_point_info;
|
|
}
|
|
}
|
|
}
|
|
return heap->undefined_value();
|
|
}
|
|
|
|
|
|
// Find the index of the break point info object for the specified code
|
|
// position.
|
|
int DebugInfo::GetBreakPointInfoIndex(int code_position) {
|
|
if (break_points()->IsUndefined()) return kNoBreakPointInfo;
|
|
for (int i = 0; i < break_points()->length(); i++) {
|
|
if (!break_points()->get(i)->IsUndefined()) {
|
|
BreakPointInfo* break_point_info =
|
|
BreakPointInfo::cast(break_points()->get(i));
|
|
if (break_point_info->code_position()->value() == code_position) {
|
|
return i;
|
|
}
|
|
}
|
|
}
|
|
return kNoBreakPointInfo;
|
|
}
|
|
|
|
|
|
// Remove the specified break point object.
|
|
void BreakPointInfo::ClearBreakPoint(Handle<BreakPointInfo> break_point_info,
|
|
Handle<Object> break_point_object) {
|
|
Isolate* isolate = Isolate::Current();
|
|
// If there are no break points just ignore.
|
|
if (break_point_info->break_point_objects()->IsUndefined()) return;
|
|
// If there is a single break point clear it if it is the same.
|
|
if (!break_point_info->break_point_objects()->IsFixedArray()) {
|
|
if (break_point_info->break_point_objects() == *break_point_object) {
|
|
break_point_info->set_break_point_objects(
|
|
isolate->heap()->undefined_value());
|
|
}
|
|
return;
|
|
}
|
|
// If there are multiple break points shrink the array
|
|
ASSERT(break_point_info->break_point_objects()->IsFixedArray());
|
|
Handle<FixedArray> old_array =
|
|
Handle<FixedArray>(
|
|
FixedArray::cast(break_point_info->break_point_objects()));
|
|
Handle<FixedArray> new_array =
|
|
isolate->factory()->NewFixedArray(old_array->length() - 1);
|
|
int found_count = 0;
|
|
for (int i = 0; i < old_array->length(); i++) {
|
|
if (old_array->get(i) == *break_point_object) {
|
|
ASSERT(found_count == 0);
|
|
found_count++;
|
|
} else {
|
|
new_array->set(i - found_count, old_array->get(i));
|
|
}
|
|
}
|
|
// If the break point was found in the list change it.
|
|
if (found_count > 0) break_point_info->set_break_point_objects(*new_array);
|
|
}
|
|
|
|
|
|
// Add the specified break point object.
|
|
void BreakPointInfo::SetBreakPoint(Handle<BreakPointInfo> break_point_info,
|
|
Handle<Object> break_point_object) {
|
|
Isolate* isolate = break_point_info->GetIsolate();
|
|
|
|
// If there was no break point objects before just set it.
|
|
if (break_point_info->break_point_objects()->IsUndefined()) {
|
|
break_point_info->set_break_point_objects(*break_point_object);
|
|
return;
|
|
}
|
|
// If the break point object is the same as before just ignore.
|
|
if (break_point_info->break_point_objects() == *break_point_object) return;
|
|
// If there was one break point object before replace with array.
|
|
if (!break_point_info->break_point_objects()->IsFixedArray()) {
|
|
Handle<FixedArray> array = isolate->factory()->NewFixedArray(2);
|
|
array->set(0, break_point_info->break_point_objects());
|
|
array->set(1, *break_point_object);
|
|
break_point_info->set_break_point_objects(*array);
|
|
return;
|
|
}
|
|
// If there was more than one break point before extend array.
|
|
Handle<FixedArray> old_array =
|
|
Handle<FixedArray>(
|
|
FixedArray::cast(break_point_info->break_point_objects()));
|
|
Handle<FixedArray> new_array =
|
|
isolate->factory()->NewFixedArray(old_array->length() + 1);
|
|
for (int i = 0; i < old_array->length(); i++) {
|
|
// If the break point was there before just ignore.
|
|
if (old_array->get(i) == *break_point_object) return;
|
|
new_array->set(i, old_array->get(i));
|
|
}
|
|
// Add the new break point.
|
|
new_array->set(old_array->length(), *break_point_object);
|
|
break_point_info->set_break_point_objects(*new_array);
|
|
}
|
|
|
|
|
|
bool BreakPointInfo::HasBreakPointObject(
|
|
Handle<BreakPointInfo> break_point_info,
|
|
Handle<Object> break_point_object) {
|
|
// No break point.
|
|
if (break_point_info->break_point_objects()->IsUndefined()) return false;
|
|
// Single break point.
|
|
if (!break_point_info->break_point_objects()->IsFixedArray()) {
|
|
return break_point_info->break_point_objects() == *break_point_object;
|
|
}
|
|
// Multiple break points.
|
|
FixedArray* array = FixedArray::cast(break_point_info->break_point_objects());
|
|
for (int i = 0; i < array->length(); i++) {
|
|
if (array->get(i) == *break_point_object) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// Get the number of break points.
|
|
int BreakPointInfo::GetBreakPointCount() {
|
|
// No break point.
|
|
if (break_point_objects()->IsUndefined()) return 0;
|
|
// Single break point.
|
|
if (!break_point_objects()->IsFixedArray()) return 1;
|
|
// Multiple break points.
|
|
return FixedArray::cast(break_point_objects())->length();
|
|
}
|
|
#endif // ENABLE_DEBUGGER_SUPPORT
|
|
|
|
|
|
Object* JSDate::GetField(Object* object, Smi* index) {
|
|
return JSDate::cast(object)->DoGetField(
|
|
static_cast<FieldIndex>(index->value()));
|
|
}
|
|
|
|
|
|
Object* JSDate::DoGetField(FieldIndex index) {
|
|
ASSERT(index != kDateValue);
|
|
|
|
DateCache* date_cache = GetIsolate()->date_cache();
|
|
|
|
if (index < kFirstUncachedField) {
|
|
Object* stamp = cache_stamp();
|
|
if (stamp != date_cache->stamp() && stamp->IsSmi()) {
|
|
// Since the stamp is not NaN, the value is also not NaN.
|
|
int64_t local_time_ms =
|
|
date_cache->ToLocal(static_cast<int64_t>(value()->Number()));
|
|
SetLocalFields(local_time_ms, date_cache);
|
|
}
|
|
switch (index) {
|
|
case kYear: return year();
|
|
case kMonth: return month();
|
|
case kDay: return day();
|
|
case kWeekday: return weekday();
|
|
case kHour: return hour();
|
|
case kMinute: return min();
|
|
case kSecond: return sec();
|
|
default: UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
if (index >= kFirstUTCField) {
|
|
return GetUTCField(index, value()->Number(), date_cache);
|
|
}
|
|
|
|
double time = value()->Number();
|
|
if (std::isnan(time)) return GetIsolate()->heap()->nan_value();
|
|
|
|
int64_t local_time_ms = date_cache->ToLocal(static_cast<int64_t>(time));
|
|
int days = DateCache::DaysFromTime(local_time_ms);
|
|
|
|
if (index == kDays) return Smi::FromInt(days);
|
|
|
|
int time_in_day_ms = DateCache::TimeInDay(local_time_ms, days);
|
|
if (index == kMillisecond) return Smi::FromInt(time_in_day_ms % 1000);
|
|
ASSERT(index == kTimeInDay);
|
|
return Smi::FromInt(time_in_day_ms);
|
|
}
|
|
|
|
|
|
Object* JSDate::GetUTCField(FieldIndex index,
|
|
double value,
|
|
DateCache* date_cache) {
|
|
ASSERT(index >= kFirstUTCField);
|
|
|
|
if (std::isnan(value)) return GetIsolate()->heap()->nan_value();
|
|
|
|
int64_t time_ms = static_cast<int64_t>(value);
|
|
|
|
if (index == kTimezoneOffset) {
|
|
return Smi::FromInt(date_cache->TimezoneOffset(time_ms));
|
|
}
|
|
|
|
int days = DateCache::DaysFromTime(time_ms);
|
|
|
|
if (index == kWeekdayUTC) return Smi::FromInt(date_cache->Weekday(days));
|
|
|
|
if (index <= kDayUTC) {
|
|
int year, month, day;
|
|
date_cache->YearMonthDayFromDays(days, &year, &month, &day);
|
|
if (index == kYearUTC) return Smi::FromInt(year);
|
|
if (index == kMonthUTC) return Smi::FromInt(month);
|
|
ASSERT(index == kDayUTC);
|
|
return Smi::FromInt(day);
|
|
}
|
|
|
|
int time_in_day_ms = DateCache::TimeInDay(time_ms, days);
|
|
switch (index) {
|
|
case kHourUTC: return Smi::FromInt(time_in_day_ms / (60 * 60 * 1000));
|
|
case kMinuteUTC: return Smi::FromInt((time_in_day_ms / (60 * 1000)) % 60);
|
|
case kSecondUTC: return Smi::FromInt((time_in_day_ms / 1000) % 60);
|
|
case kMillisecondUTC: return Smi::FromInt(time_in_day_ms % 1000);
|
|
case kDaysUTC: return Smi::FromInt(days);
|
|
case kTimeInDayUTC: return Smi::FromInt(time_in_day_ms);
|
|
default: UNREACHABLE();
|
|
}
|
|
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void JSDate::SetValue(Object* value, bool is_value_nan) {
|
|
set_value(value);
|
|
if (is_value_nan) {
|
|
HeapNumber* nan = GetIsolate()->heap()->nan_value();
|
|
set_cache_stamp(nan, SKIP_WRITE_BARRIER);
|
|
set_year(nan, SKIP_WRITE_BARRIER);
|
|
set_month(nan, SKIP_WRITE_BARRIER);
|
|
set_day(nan, SKIP_WRITE_BARRIER);
|
|
set_hour(nan, SKIP_WRITE_BARRIER);
|
|
set_min(nan, SKIP_WRITE_BARRIER);
|
|
set_sec(nan, SKIP_WRITE_BARRIER);
|
|
set_weekday(nan, SKIP_WRITE_BARRIER);
|
|
} else {
|
|
set_cache_stamp(Smi::FromInt(DateCache::kInvalidStamp), SKIP_WRITE_BARRIER);
|
|
}
|
|
}
|
|
|
|
|
|
void JSDate::SetLocalFields(int64_t local_time_ms, DateCache* date_cache) {
|
|
int days = DateCache::DaysFromTime(local_time_ms);
|
|
int time_in_day_ms = DateCache::TimeInDay(local_time_ms, days);
|
|
int year, month, day;
|
|
date_cache->YearMonthDayFromDays(days, &year, &month, &day);
|
|
int weekday = date_cache->Weekday(days);
|
|
int hour = time_in_day_ms / (60 * 60 * 1000);
|
|
int min = (time_in_day_ms / (60 * 1000)) % 60;
|
|
int sec = (time_in_day_ms / 1000) % 60;
|
|
set_cache_stamp(date_cache->stamp());
|
|
set_year(Smi::FromInt(year), SKIP_WRITE_BARRIER);
|
|
set_month(Smi::FromInt(month), SKIP_WRITE_BARRIER);
|
|
set_day(Smi::FromInt(day), SKIP_WRITE_BARRIER);
|
|
set_weekday(Smi::FromInt(weekday), SKIP_WRITE_BARRIER);
|
|
set_hour(Smi::FromInt(hour), SKIP_WRITE_BARRIER);
|
|
set_min(Smi::FromInt(min), SKIP_WRITE_BARRIER);
|
|
set_sec(Smi::FromInt(sec), SKIP_WRITE_BARRIER);
|
|
}
|
|
|
|
|
|
void JSArrayBuffer::Neuter() {
|
|
ASSERT(is_external());
|
|
set_backing_store(NULL);
|
|
set_byte_length(Smi::FromInt(0));
|
|
}
|
|
|
|
|
|
void JSArrayBufferView::NeuterView() {
|
|
set_byte_offset(Smi::FromInt(0));
|
|
set_byte_length(Smi::FromInt(0));
|
|
}
|
|
|
|
|
|
void JSDataView::Neuter() {
|
|
NeuterView();
|
|
}
|
|
|
|
|
|
void JSTypedArray::Neuter() {
|
|
NeuterView();
|
|
set_length(Smi::FromInt(0));
|
|
set_elements(GetHeap()->EmptyExternalArrayForMap(map()));
|
|
}
|
|
|
|
|
|
Type* PropertyCell::type() {
|
|
return static_cast<Type*>(type_raw());
|
|
}
|
|
|
|
|
|
void PropertyCell::set_type(Type* type, WriteBarrierMode ignored) {
|
|
ASSERT(IsPropertyCell());
|
|
set_type_raw(type, ignored);
|
|
}
|
|
|
|
|
|
Type* PropertyCell::UpdateType(Handle<PropertyCell> cell,
|
|
Handle<Object> value) {
|
|
Isolate* isolate = cell->GetIsolate();
|
|
Handle<Type> old_type(cell->type(), isolate);
|
|
Handle<Type> new_type((value->IsSmi() || value->IsUndefined())
|
|
? Type::Constant(value, isolate)
|
|
: Type::Any(), isolate);
|
|
|
|
if (new_type->Is(old_type)) {
|
|
return *old_type;
|
|
}
|
|
|
|
cell->dependent_code()->DeoptimizeDependentCodeGroup(
|
|
isolate, DependentCode::kPropertyCellChangedGroup);
|
|
|
|
if (old_type->Is(Type::None()) || old_type->Is(Type::Undefined())) {
|
|
return *new_type;
|
|
}
|
|
|
|
return Type::Any();
|
|
}
|
|
|
|
|
|
MaybeObject* PropertyCell::SetValueInferType(Object* value,
|
|
WriteBarrierMode ignored) {
|
|
set_value(value, ignored);
|
|
if (!Type::Any()->Is(type())) {
|
|
IdempotentPointerToHandleCodeTrampoline trampoline(GetIsolate());
|
|
MaybeObject* maybe_type = trampoline.CallWithReturnValue(
|
|
&PropertyCell::UpdateType,
|
|
Handle<PropertyCell>(this),
|
|
Handle<Object>(value, GetIsolate()));
|
|
Type* new_type = NULL;
|
|
if (!maybe_type->To(&new_type)) return maybe_type;
|
|
set_type(new_type);
|
|
}
|
|
return value;
|
|
}
|
|
|
|
|
|
void PropertyCell::AddDependentCompilationInfo(CompilationInfo* info) {
|
|
Handle<DependentCode> dep(dependent_code());
|
|
Handle<DependentCode> codes =
|
|
DependentCode::Insert(dep, DependentCode::kPropertyCellChangedGroup,
|
|
info->object_wrapper());
|
|
if (*codes != dependent_code()) set_dependent_code(*codes);
|
|
info->dependencies(DependentCode::kPropertyCellChangedGroup)->Add(
|
|
Handle<HeapObject>(this), info->zone());
|
|
}
|
|
|
|
|
|
void PropertyCell::AddDependentCode(Handle<Code> code) {
|
|
Handle<DependentCode> codes = DependentCode::Insert(
|
|
Handle<DependentCode>(dependent_code()),
|
|
DependentCode::kPropertyCellChangedGroup, code);
|
|
if (*codes != dependent_code()) set_dependent_code(*codes);
|
|
}
|
|
|
|
|
|
} } // namespace v8::internal
|