v8/src/runtime.cc

14026 lines
479 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include <limits>
#include "v8.h"
#include "accessors.h"
#include "api.h"
#include "arguments.h"
#include "bootstrapper.h"
#include "codegen.h"
#include "compilation-cache.h"
#include "compiler.h"
#include "cpu.h"
#include "cpu-profiler.h"
#include "dateparser-inl.h"
#include "debug.h"
#include "deoptimizer.h"
#include "date.h"
#include "execution.h"
#include "full-codegen.h"
#include "global-handles.h"
#include "isolate-inl.h"
#include "jsregexp.h"
#include "jsregexp-inl.h"
#include "json-parser.h"
#include "json-stringifier.h"
#include "liveedit.h"
#include "misc-intrinsics.h"
#include "parser.h"
#include "platform.h"
#include "runtime-profiler.h"
#include "runtime.h"
#include "scopeinfo.h"
#include "smart-pointers.h"
#include "string-search.h"
#include "stub-cache.h"
#include "uri.h"
#include "v8conversions.h"
#include "v8threads.h"
#include "vm-state-inl.h"
#ifndef _STLP_VENDOR_CSTD
// STLPort doesn't import fpclassify and isless into the std namespace.
using std::fpclassify;
using std::isless;
#endif
namespace v8 {
namespace internal {
#define RUNTIME_ASSERT(value) \
if (!(value)) return isolate->ThrowIllegalOperation();
// Cast the given object to a value of the specified type and store
// it in a variable with the given name. If the object is not of the
// expected type call IllegalOperation and return.
#define CONVERT_ARG_CHECKED(Type, name, index) \
RUNTIME_ASSERT(args[index]->Is##Type()); \
Type* name = Type::cast(args[index]);
#define CONVERT_ARG_HANDLE_CHECKED(Type, name, index) \
RUNTIME_ASSERT(args[index]->Is##Type()); \
Handle<Type> name = args.at<Type>(index);
// Cast the given object to a boolean and store it in a variable with
// the given name. If the object is not a boolean call IllegalOperation
// and return.
#define CONVERT_BOOLEAN_ARG_CHECKED(name, index) \
RUNTIME_ASSERT(args[index]->IsBoolean()); \
bool name = args[index]->IsTrue();
// Cast the given argument to a Smi and store its value in an int variable
// with the given name. If the argument is not a Smi call IllegalOperation
// and return.
#define CONVERT_SMI_ARG_CHECKED(name, index) \
RUNTIME_ASSERT(args[index]->IsSmi()); \
int name = args.smi_at(index);
// Cast the given argument to a double and store it in a variable with
// the given name. If the argument is not a number (as opposed to
// the number not-a-number) call IllegalOperation and return.
#define CONVERT_DOUBLE_ARG_CHECKED(name, index) \
RUNTIME_ASSERT(args[index]->IsNumber()); \
double name = args.number_at(index);
// Call the specified converter on the object *comand store the result in
// a variable of the specified type with the given name. If the
// object is not a Number call IllegalOperation and return.
#define CONVERT_NUMBER_CHECKED(type, name, Type, obj) \
RUNTIME_ASSERT(obj->IsNumber()); \
type name = NumberTo##Type(obj);
// Cast the given argument to PropertyDetails and store its value in a
// variable with the given name. If the argument is not a Smi call
// IllegalOperation and return.
#define CONVERT_PROPERTY_DETAILS_CHECKED(name, index) \
RUNTIME_ASSERT(args[index]->IsSmi()); \
PropertyDetails name = PropertyDetails(Smi::cast(args[index]));
// Assert that the given argument has a valid value for a StrictModeFlag
// and store it in a StrictModeFlag variable with the given name.
#define CONVERT_STRICT_MODE_ARG_CHECKED(name, index) \
RUNTIME_ASSERT(args[index]->IsSmi()); \
RUNTIME_ASSERT(args.smi_at(index) == kStrictMode || \
args.smi_at(index) == kNonStrictMode); \
StrictModeFlag name = \
static_cast<StrictModeFlag>(args.smi_at(index));
// Assert that the given argument has a valid value for a LanguageMode
// and store it in a LanguageMode variable with the given name.
#define CONVERT_LANGUAGE_MODE_ARG(name, index) \
ASSERT(args[index]->IsSmi()); \
ASSERT(args.smi_at(index) == CLASSIC_MODE || \
args.smi_at(index) == STRICT_MODE || \
args.smi_at(index) == EXTENDED_MODE); \
LanguageMode name = \
static_cast<LanguageMode>(args.smi_at(index));
static Handle<Map> ComputeObjectLiteralMap(
Handle<Context> context,
Handle<FixedArray> constant_properties,
bool* is_result_from_cache) {
Isolate* isolate = context->GetIsolate();
int properties_length = constant_properties->length();
int number_of_properties = properties_length / 2;
// Check that there are only internal strings and array indices among keys.
int number_of_string_keys = 0;
for (int p = 0; p != properties_length; p += 2) {
Object* key = constant_properties->get(p);
uint32_t element_index = 0;
if (key->IsInternalizedString()) {
number_of_string_keys++;
} else if (key->ToArrayIndex(&element_index)) {
// An index key does not require space in the property backing store.
number_of_properties--;
} else {
// Bail out as a non-internalized-string non-index key makes caching
// impossible.
// ASSERT to make sure that the if condition after the loop is false.
ASSERT(number_of_string_keys != number_of_properties);
break;
}
}
// If we only have internalized strings and array indices among keys then we
// can use the map cache in the native context.
const int kMaxKeys = 10;
if ((number_of_string_keys == number_of_properties) &&
(number_of_string_keys < kMaxKeys)) {
// Create the fixed array with the key.
Handle<FixedArray> keys =
isolate->factory()->NewFixedArray(number_of_string_keys);
if (number_of_string_keys > 0) {
int index = 0;
for (int p = 0; p < properties_length; p += 2) {
Object* key = constant_properties->get(p);
if (key->IsInternalizedString()) {
keys->set(index++, key);
}
}
ASSERT(index == number_of_string_keys);
}
*is_result_from_cache = true;
return isolate->factory()->ObjectLiteralMapFromCache(context, keys);
}
*is_result_from_cache = false;
return isolate->factory()->CopyMap(
Handle<Map>(context->object_function()->initial_map()),
number_of_properties);
}
static Handle<Object> CreateLiteralBoilerplate(
Isolate* isolate,
Handle<FixedArray> literals,
Handle<FixedArray> constant_properties);
static Handle<Object> CreateObjectLiteralBoilerplate(
Isolate* isolate,
Handle<FixedArray> literals,
Handle<FixedArray> constant_properties,
bool should_have_fast_elements,
bool has_function_literal) {
// Get the native context from the literals array. This is the
// context in which the function was created and we use the object
// function from this context to create the object literal. We do
// not use the object function from the current native context
// because this might be the object function from another context
// which we should not have access to.
Handle<Context> context =
Handle<Context>(JSFunction::NativeContextFromLiterals(*literals));
// In case we have function literals, we want the object to be in
// slow properties mode for now. We don't go in the map cache because
// maps with constant functions can't be shared if the functions are
// not the same (which is the common case).
bool is_result_from_cache = false;
Handle<Map> map = has_function_literal
? Handle<Map>(context->object_function()->initial_map())
: ComputeObjectLiteralMap(context,
constant_properties,
&is_result_from_cache);
Handle<JSObject> boilerplate =
isolate->factory()->NewJSObjectFromMap(
map, isolate->heap()->GetPretenureMode());
// Normalize the elements of the boilerplate to save space if needed.
if (!should_have_fast_elements) JSObject::NormalizeElements(boilerplate);
// Add the constant properties to the boilerplate.
int length = constant_properties->length();
bool should_transform =
!is_result_from_cache && boilerplate->HasFastProperties();
if (should_transform || has_function_literal) {
// Normalize the properties of object to avoid n^2 behavior
// when extending the object multiple properties. Indicate the number of
// properties to be added.
JSObject::NormalizeProperties(
boilerplate, KEEP_INOBJECT_PROPERTIES, length / 2);
}
// TODO(verwaest): Support tracking representations in the boilerplate.
for (int index = 0; index < length; index +=2) {
Handle<Object> key(constant_properties->get(index+0), isolate);
Handle<Object> value(constant_properties->get(index+1), isolate);
if (value->IsFixedArray()) {
// The value contains the constant_properties of a
// simple object or array literal.
Handle<FixedArray> array = Handle<FixedArray>::cast(value);
value = CreateLiteralBoilerplate(isolate, literals, array);
if (value.is_null()) return value;
}
Handle<Object> result;
uint32_t element_index = 0;
if (key->IsInternalizedString()) {
if (Handle<String>::cast(key)->AsArrayIndex(&element_index)) {
// Array index as string (uint32).
result = JSObject::SetOwnElement(
boilerplate, element_index, value, kNonStrictMode);
} else {
Handle<String> name(String::cast(*key));
ASSERT(!name->AsArrayIndex(&element_index));
result = JSObject::SetLocalPropertyIgnoreAttributes(
boilerplate, name, value, NONE);
}
} else if (key->ToArrayIndex(&element_index)) {
// Array index (uint32).
result = JSObject::SetOwnElement(
boilerplate, element_index, value, kNonStrictMode);
} else {
// Non-uint32 number.
ASSERT(key->IsNumber());
double num = key->Number();
char arr[100];
Vector<char> buffer(arr, ARRAY_SIZE(arr));
const char* str = DoubleToCString(num, buffer);
Handle<String> name =
isolate->factory()->NewStringFromAscii(CStrVector(str));
result = JSObject::SetLocalPropertyIgnoreAttributes(
boilerplate, name, value, NONE);
}
// If setting the property on the boilerplate throws an
// exception, the exception is converted to an empty handle in
// the handle based operations. In that case, we need to
// convert back to an exception.
if (result.is_null()) return result;
}
// Transform to fast properties if necessary. For object literals with
// containing function literals we defer this operation until after all
// computed properties have been assigned so that we can generate
// constant function properties.
if (should_transform && !has_function_literal) {
JSObject::TransformToFastProperties(
boilerplate, boilerplate->map()->unused_property_fields());
}
return boilerplate;
}
MaybeObject* TransitionElements(Handle<Object> object,
ElementsKind to_kind,
Isolate* isolate) {
HandleScope scope(isolate);
if (!object->IsJSObject()) return isolate->ThrowIllegalOperation();
ElementsKind from_kind =
Handle<JSObject>::cast(object)->map()->elements_kind();
if (Map::IsValidElementsTransition(from_kind, to_kind)) {
Handle<Object> result = JSObject::TransitionElementsKind(
Handle<JSObject>::cast(object), to_kind);
if (result.is_null()) return isolate->ThrowIllegalOperation();
return *result;
}
return isolate->ThrowIllegalOperation();
}
static const int kSmiLiteralMinimumLength = 1024;
Handle<Object> Runtime::CreateArrayLiteralBoilerplate(
Isolate* isolate,
Handle<FixedArray> literals,
Handle<FixedArray> elements) {
// Create the JSArray.
Handle<JSFunction> constructor(
JSFunction::NativeContextFromLiterals(*literals)->array_function());
Handle<JSArray> object = Handle<JSArray>::cast(
isolate->factory()->NewJSObject(
constructor, isolate->heap()->GetPretenureMode()));
ElementsKind constant_elements_kind =
static_cast<ElementsKind>(Smi::cast(elements->get(0))->value());
Handle<FixedArrayBase> constant_elements_values(
FixedArrayBase::cast(elements->get(1)));
ASSERT(IsFastElementsKind(constant_elements_kind));
Context* native_context = isolate->context()->native_context();
Object* maybe_maps_array = native_context->js_array_maps();
ASSERT(!maybe_maps_array->IsUndefined());
Object* maybe_map = FixedArray::cast(maybe_maps_array)->get(
constant_elements_kind);
ASSERT(maybe_map->IsMap());
object->set_map(Map::cast(maybe_map));
Handle<FixedArrayBase> copied_elements_values;
if (IsFastDoubleElementsKind(constant_elements_kind)) {
ASSERT(FLAG_smi_only_arrays);
copied_elements_values = isolate->factory()->CopyFixedDoubleArray(
Handle<FixedDoubleArray>::cast(constant_elements_values));
} else {
ASSERT(IsFastSmiOrObjectElementsKind(constant_elements_kind));
const bool is_cow =
(constant_elements_values->map() ==
isolate->heap()->fixed_cow_array_map());
if (is_cow) {
copied_elements_values = constant_elements_values;
#if DEBUG
Handle<FixedArray> fixed_array_values =
Handle<FixedArray>::cast(copied_elements_values);
for (int i = 0; i < fixed_array_values->length(); i++) {
ASSERT(!fixed_array_values->get(i)->IsFixedArray());
}
#endif
} else {
Handle<FixedArray> fixed_array_values =
Handle<FixedArray>::cast(constant_elements_values);
Handle<FixedArray> fixed_array_values_copy =
isolate->factory()->CopyFixedArray(fixed_array_values);
copied_elements_values = fixed_array_values_copy;
for (int i = 0; i < fixed_array_values->length(); i++) {
Object* current = fixed_array_values->get(i);
if (current->IsFixedArray()) {
// The value contains the constant_properties of a
// simple object or array literal.
Handle<FixedArray> fa(FixedArray::cast(fixed_array_values->get(i)));
Handle<Object> result =
CreateLiteralBoilerplate(isolate, literals, fa);
if (result.is_null()) return result;
fixed_array_values_copy->set(i, *result);
}
}
}
}
object->set_elements(*copied_elements_values);
object->set_length(Smi::FromInt(copied_elements_values->length()));
// Ensure that the boilerplate object has FAST_*_ELEMENTS, unless the flag is
// on or the object is larger than the threshold.
if (!FLAG_smi_only_arrays &&
constant_elements_values->length() < kSmiLiteralMinimumLength) {
ElementsKind elements_kind = object->GetElementsKind();
if (!IsFastObjectElementsKind(elements_kind)) {
if (IsFastHoleyElementsKind(elements_kind)) {
CHECK(!TransitionElements(object, FAST_HOLEY_ELEMENTS,
isolate)->IsFailure());
} else {
CHECK(!TransitionElements(object, FAST_ELEMENTS, isolate)->IsFailure());
}
}
}
object->ValidateElements();
return object;
}
static Handle<Object> CreateLiteralBoilerplate(
Isolate* isolate,
Handle<FixedArray> literals,
Handle<FixedArray> array) {
Handle<FixedArray> elements = CompileTimeValue::GetElements(array);
const bool kHasNoFunctionLiteral = false;
switch (CompileTimeValue::GetLiteralType(array)) {
case CompileTimeValue::OBJECT_LITERAL_FAST_ELEMENTS:
return CreateObjectLiteralBoilerplate(isolate,
literals,
elements,
true,
kHasNoFunctionLiteral);
case CompileTimeValue::OBJECT_LITERAL_SLOW_ELEMENTS:
return CreateObjectLiteralBoilerplate(isolate,
literals,
elements,
false,
kHasNoFunctionLiteral);
case CompileTimeValue::ARRAY_LITERAL:
return Runtime::CreateArrayLiteralBoilerplate(
isolate, literals, elements);
default:
UNREACHABLE();
return Handle<Object>::null();
}
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateObjectLiteral) {
HandleScope scope(isolate);
ASSERT(args.length() == 4);
CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
CONVERT_SMI_ARG_CHECKED(literals_index, 1);
CONVERT_ARG_HANDLE_CHECKED(FixedArray, constant_properties, 2);
CONVERT_SMI_ARG_CHECKED(flags, 3);
bool should_have_fast_elements = (flags & ObjectLiteral::kFastElements) != 0;
bool has_function_literal = (flags & ObjectLiteral::kHasFunction) != 0;
// Check if boilerplate exists. If not, create it first.
Handle<Object> boilerplate(literals->get(literals_index), isolate);
if (*boilerplate == isolate->heap()->undefined_value()) {
boilerplate = CreateObjectLiteralBoilerplate(isolate,
literals,
constant_properties,
should_have_fast_elements,
has_function_literal);
RETURN_IF_EMPTY_HANDLE(isolate, boilerplate);
// Update the functions literal and return the boilerplate.
literals->set(literals_index, *boilerplate);
}
return JSObject::cast(*boilerplate)->DeepCopy(isolate);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateObjectLiteralShallow) {
HandleScope scope(isolate);
ASSERT(args.length() == 4);
CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
CONVERT_SMI_ARG_CHECKED(literals_index, 1);
CONVERT_ARG_HANDLE_CHECKED(FixedArray, constant_properties, 2);
CONVERT_SMI_ARG_CHECKED(flags, 3);
bool should_have_fast_elements = (flags & ObjectLiteral::kFastElements) != 0;
bool has_function_literal = (flags & ObjectLiteral::kHasFunction) != 0;
// Check if boilerplate exists. If not, create it first.
Handle<Object> boilerplate(literals->get(literals_index), isolate);
if (*boilerplate == isolate->heap()->undefined_value()) {
boilerplate = CreateObjectLiteralBoilerplate(isolate,
literals,
constant_properties,
should_have_fast_elements,
has_function_literal);
RETURN_IF_EMPTY_HANDLE(isolate, boilerplate);
// Update the functions literal and return the boilerplate.
literals->set(literals_index, *boilerplate);
}
return isolate->heap()->CopyJSObject(JSObject::cast(*boilerplate));
}
static Handle<AllocationSite> GetLiteralAllocationSite(
Isolate* isolate,
Handle<FixedArray> literals,
int literals_index,
Handle<FixedArray> elements) {
// Check if boilerplate exists. If not, create it first.
Handle<Object> literal_site(literals->get(literals_index), isolate);
Handle<AllocationSite> site;
if (*literal_site == isolate->heap()->undefined_value()) {
ASSERT(*elements != isolate->heap()->empty_fixed_array());
Handle<Object> boilerplate =
Runtime::CreateArrayLiteralBoilerplate(isolate, literals, elements);
if (boilerplate.is_null()) return site;
site = isolate->factory()->NewAllocationSite();
site->set_transition_info(*boilerplate);
literals->set(literals_index, *site);
} else {
site = Handle<AllocationSite>::cast(literal_site);
}
return site;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateArrayLiteral) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
CONVERT_SMI_ARG_CHECKED(literals_index, 1);
CONVERT_ARG_HANDLE_CHECKED(FixedArray, elements, 2);
Handle<AllocationSite> site = GetLiteralAllocationSite(isolate, literals,
literals_index, elements);
RETURN_IF_EMPTY_HANDLE(isolate, site);
JSObject* boilerplate = JSObject::cast(site->transition_info());
return boilerplate->DeepCopy(isolate);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateArrayLiteralShallow) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
CONVERT_SMI_ARG_CHECKED(literals_index, 1);
CONVERT_ARG_HANDLE_CHECKED(FixedArray, elements, 2);
Handle<AllocationSite> site = GetLiteralAllocationSite(isolate, literals,
literals_index, elements);
RETURN_IF_EMPTY_HANDLE(isolate, site);
JSObject* boilerplate = JSObject::cast(site->transition_info());
if (boilerplate->elements()->map() ==
isolate->heap()->fixed_cow_array_map()) {
isolate->counters()->cow_arrays_created_runtime()->Increment();
}
AllocationSiteMode mode = AllocationSite::GetMode(
boilerplate->GetElementsKind());
if (mode == TRACK_ALLOCATION_SITE) {
return isolate->heap()->CopyJSObjectWithAllocationSite(
boilerplate, *site);
}
return isolate->heap()->CopyJSObject(boilerplate);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateSymbol) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
Handle<Object> name(args[0], isolate);
RUNTIME_ASSERT(name->IsString() || name->IsUndefined());
Symbol* symbol;
MaybeObject* maybe = isolate->heap()->AllocateSymbol();
if (!maybe->To(&symbol)) return maybe;
if (name->IsString()) symbol->set_name(*name);
return symbol;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_SymbolName) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(Symbol, symbol, 0);
return symbol->name();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateJSProxy) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSReceiver, handler, 0);
Object* prototype = args[1];
Object* used_prototype =
prototype->IsJSReceiver() ? prototype : isolate->heap()->null_value();
return isolate->heap()->AllocateJSProxy(handler, used_prototype);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateJSFunctionProxy) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 4);
CONVERT_ARG_CHECKED(JSReceiver, handler, 0);
Object* call_trap = args[1];
RUNTIME_ASSERT(call_trap->IsJSFunction() || call_trap->IsJSFunctionProxy());
CONVERT_ARG_CHECKED(JSFunction, construct_trap, 2);
Object* prototype = args[3];
Object* used_prototype =
prototype->IsJSReceiver() ? prototype : isolate->heap()->null_value();
return isolate->heap()->AllocateJSFunctionProxy(
handler, call_trap, construct_trap, used_prototype);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_IsJSProxy) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
Object* obj = args[0];
return isolate->heap()->ToBoolean(obj->IsJSProxy());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_IsJSFunctionProxy) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
Object* obj = args[0];
return isolate->heap()->ToBoolean(obj->IsJSFunctionProxy());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetHandler) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSProxy, proxy, 0);
return proxy->handler();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetCallTrap) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSFunctionProxy, proxy, 0);
return proxy->call_trap();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetConstructTrap) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSFunctionProxy, proxy, 0);
return proxy->construct_trap();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_Fix) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSProxy, proxy, 0);
proxy->Fix();
return isolate->heap()->undefined_value();
}
void Runtime::FreeArrayBuffer(Isolate* isolate,
JSArrayBuffer* phantom_array_buffer) {
if (phantom_array_buffer->is_external()) return;
size_t allocated_length = NumberToSize(
isolate, phantom_array_buffer->byte_length());
isolate->heap()->AdjustAmountOfExternalAllocatedMemory(
-static_cast<intptr_t>(allocated_length));
CHECK(V8::ArrayBufferAllocator() != NULL);
V8::ArrayBufferAllocator()->Free(phantom_array_buffer->backing_store());
}
void Runtime::SetupArrayBuffer(Isolate* isolate,
Handle<JSArrayBuffer> array_buffer,
bool is_external,
void* data,
size_t allocated_length) {
ASSERT(array_buffer->GetInternalFieldCount() ==
v8::ArrayBuffer::kInternalFieldCount);
for (int i = 0; i < v8::ArrayBuffer::kInternalFieldCount; i++) {
array_buffer->SetInternalField(i, Smi::FromInt(0));
}
array_buffer->set_backing_store(data);
array_buffer->set_flag(Smi::FromInt(0));
array_buffer->set_is_external(is_external);
Handle<Object> byte_length =
isolate->factory()->NewNumberFromSize(allocated_length);
CHECK(byte_length->IsSmi() || byte_length->IsHeapNumber());
array_buffer->set_byte_length(*byte_length);
array_buffer->set_weak_next(isolate->heap()->array_buffers_list());
isolate->heap()->set_array_buffers_list(*array_buffer);
array_buffer->set_weak_first_view(isolate->heap()->undefined_value());
}
bool Runtime::SetupArrayBufferAllocatingData(
Isolate* isolate,
Handle<JSArrayBuffer> array_buffer,
size_t allocated_length) {
void* data;
CHECK(V8::ArrayBufferAllocator() != NULL);
if (allocated_length != 0) {
data = V8::ArrayBufferAllocator()->Allocate(allocated_length);
if (data == NULL) return false;
memset(data, 0, allocated_length);
} else {
data = NULL;
}
SetupArrayBuffer(isolate, array_buffer, false, data, allocated_length);
isolate->heap()->AdjustAmountOfExternalAllocatedMemory(allocated_length);
return true;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_ArrayBufferInitialize) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, holder, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, byteLength, 1);
size_t allocated_length;
if (byteLength->IsSmi()) {
allocated_length = Smi::cast(*byteLength)->value();
} else {
ASSERT(byteLength->IsHeapNumber());
double value = HeapNumber::cast(*byteLength)->value();
ASSERT(value >= 0);
if (value > std::numeric_limits<size_t>::max()) {
return isolate->Throw(
*isolate->factory()->NewRangeError("invalid_array_buffer_length",
HandleVector<Object>(NULL, 0)));
}
allocated_length = static_cast<size_t>(value);
}
if (!Runtime::SetupArrayBufferAllocatingData(isolate,
holder, allocated_length)) {
return isolate->Throw(*isolate->factory()->
NewRangeError("invalid_array_buffer_length",
HandleVector<Object>(NULL, 0)));
}
return *holder;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_ArrayBufferGetByteLength) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSArrayBuffer, holder, 0);
return holder->byte_length();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_ArrayBufferSliceImpl) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, source, 0);
CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, target, 1);
CONVERT_DOUBLE_ARG_CHECKED(first, 2);
size_t start = static_cast<size_t>(first);
size_t target_length = NumberToSize(isolate, target->byte_length());
if (target_length == 0) return isolate->heap()->undefined_value();
ASSERT(NumberToSize(isolate, source->byte_length()) - target_length >= start);
uint8_t* source_data = reinterpret_cast<uint8_t*>(source->backing_store());
uint8_t* target_data = reinterpret_cast<uint8_t*>(target->backing_store());
CopyBytes(target_data, source_data + start, target_length);
return isolate->heap()->undefined_value();
}
enum TypedArrayId {
// arrayIds below should be synchromized with typedarray.js natives.
ARRAY_ID_UINT8 = 1,
ARRAY_ID_INT8 = 2,
ARRAY_ID_UINT16 = 3,
ARRAY_ID_INT16 = 4,
ARRAY_ID_UINT32 = 5,
ARRAY_ID_INT32 = 6,
ARRAY_ID_FLOAT32 = 7,
ARRAY_ID_FLOAT64 = 8,
ARRAY_ID_UINT8C = 9
};
RUNTIME_FUNCTION(MaybeObject*, Runtime_TypedArrayInitialize) {
HandleScope scope(isolate);
ASSERT(args.length() == 5);
CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0);
CONVERT_SMI_ARG_CHECKED(arrayId, 1);
CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, buffer, 2);
CONVERT_ARG_HANDLE_CHECKED(Object, byte_offset_object, 3);
CONVERT_ARG_HANDLE_CHECKED(Object, byte_length_object, 4);
ASSERT(holder->GetInternalFieldCount() ==
v8::ArrayBufferView::kInternalFieldCount);
for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) {
holder->SetInternalField(i, Smi::FromInt(0));
}
ExternalArrayType arrayType;
size_t elementSize;
switch (arrayId) {
case ARRAY_ID_UINT8:
arrayType = kExternalUnsignedByteArray;
elementSize = 1;
break;
case ARRAY_ID_INT8:
arrayType = kExternalByteArray;
elementSize = 1;
break;
case ARRAY_ID_UINT16:
arrayType = kExternalUnsignedShortArray;
elementSize = 2;
break;
case ARRAY_ID_INT16:
arrayType = kExternalShortArray;
elementSize = 2;
break;
case ARRAY_ID_UINT32:
arrayType = kExternalUnsignedIntArray;
elementSize = 4;
break;
case ARRAY_ID_INT32:
arrayType = kExternalIntArray;
elementSize = 4;
break;
case ARRAY_ID_FLOAT32:
arrayType = kExternalFloatArray;
elementSize = 4;
break;
case ARRAY_ID_FLOAT64:
arrayType = kExternalDoubleArray;
elementSize = 8;
break;
case ARRAY_ID_UINT8C:
arrayType = kExternalPixelArray;
elementSize = 1;
break;
default:
UNREACHABLE();
return NULL;
}
holder->set_buffer(*buffer);
holder->set_byte_offset(*byte_offset_object);
holder->set_byte_length(*byte_length_object);
size_t byte_offset = NumberToSize(isolate, *byte_offset_object);
size_t byte_length = NumberToSize(isolate, *byte_length_object);
ASSERT(byte_length % elementSize == 0);
size_t length = byte_length / elementSize;
Handle<Object> length_obj = isolate->factory()->NewNumberFromSize(length);
holder->set_length(*length_obj);
holder->set_weak_next(buffer->weak_first_view());
buffer->set_weak_first_view(*holder);
Handle<ExternalArray> elements =
isolate->factory()->NewExternalArray(
static_cast<int>(length), arrayType,
static_cast<uint8_t*>(buffer->backing_store()) + byte_offset);
holder->set_elements(*elements);
return isolate->heap()->undefined_value();
}
#define TYPED_ARRAY_GETTER(getter, accessor) \
RUNTIME_FUNCTION(MaybeObject*, Runtime_TypedArrayGet##getter) { \
HandleScope scope(isolate); \
ASSERT(args.length() == 1); \
CONVERT_ARG_HANDLE_CHECKED(Object, holder, 0); \
if (!holder->IsJSTypedArray()) \
return isolate->Throw(*isolate->factory()->NewTypeError( \
"not_typed_array", HandleVector<Object>(NULL, 0))); \
Handle<JSTypedArray> typed_array(JSTypedArray::cast(*holder)); \
return typed_array->accessor(); \
}
TYPED_ARRAY_GETTER(Buffer, buffer)
TYPED_ARRAY_GETTER(ByteLength, byte_length)
TYPED_ARRAY_GETTER(ByteOffset, byte_offset)
TYPED_ARRAY_GETTER(Length, length)
#undef TYPED_ARRAY_GETTER
RUNTIME_FUNCTION(MaybeObject*, Runtime_TypedArraySetFastCases) {
HandleScope scope(isolate);
CONVERT_ARG_HANDLE_CHECKED(Object, target_obj, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, source_obj, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, offset_obj, 2);
if (!target_obj->IsJSTypedArray())
return isolate->Throw(*isolate->factory()->NewTypeError(
"not_typed_array", HandleVector<Object>(NULL, 0)));
if (!source_obj->IsJSTypedArray())
return isolate->heap()->false_value();
Handle<JSTypedArray> target(JSTypedArray::cast(*target_obj));
Handle<JSTypedArray> source(JSTypedArray::cast(*source_obj));
size_t offset = NumberToSize(isolate, *offset_obj);
size_t target_length = NumberToSize(isolate, target->length());
size_t source_length = NumberToSize(isolate, source->length());
size_t target_byte_length = NumberToSize(isolate, target->byte_length());
size_t source_byte_length = NumberToSize(isolate, source->byte_length());
if (offset > target_length ||
offset + source_length > target_length ||
offset + source_length < offset) // overflow
return isolate->Throw(*isolate->factory()->NewRangeError(
"typed_array_set_source_too_large", HandleVector<Object>(NULL, 0)));
Handle<JSArrayBuffer> target_buffer(JSArrayBuffer::cast(target->buffer()));
Handle<JSArrayBuffer> source_buffer(JSArrayBuffer::cast(source->buffer()));
size_t target_offset = NumberToSize(isolate, target->byte_offset());
size_t source_offset = NumberToSize(isolate, source->byte_offset());
uint8_t* target_base =
static_cast<uint8_t*>(target_buffer->backing_store()) + target_offset;
uint8_t* source_base =
static_cast<uint8_t*>(source_buffer->backing_store()) + source_offset;
// Typed arrays of the same type: use memmove.
if (target->type() == source->type()) {
memmove(target_base + offset * target->element_size(),
source_base, source_byte_length);
return isolate->heap()->true_value();
}
// Typed arrays of different types over the same backing store
if ((source_base <= target_base &&
source_base + source_byte_length > target_base) ||
(target_base <= source_base &&
target_base + target_byte_length > source_base)) {
size_t target_element_size = target->element_size();
size_t source_element_size = source->element_size();
size_t source_length = NumberToSize(isolate, source->length());
// Copy left part
size_t left_index;
{
// First un-mutated byte after the next write
uint8_t* target_ptr = target_base + (offset + 1) * target_element_size;
// Next read at source_ptr. We do not care for memory changing before
// source_ptr - we have already copied it.
uint8_t* source_ptr = source_base;
for (left_index = 0;
left_index < source_length && target_ptr <= source_ptr;
left_index++) {
Handle<Object> v = Object::GetElement(
source, static_cast<uint32_t>(left_index));
JSObject::SetElement(
target, static_cast<uint32_t>(offset + left_index), v,
NONE, kNonStrictMode);
target_ptr += target_element_size;
source_ptr += source_element_size;
}
}
// Copy right part
size_t right_index;
{
// First unmutated byte before the next write
uint8_t* target_ptr =
target_base + (offset + source_length - 1) * target_element_size;
// Next read before source_ptr. We do not care for memory changing after
// source_ptr - we have already copied it.
uint8_t* source_ptr =
source_base + source_length * source_element_size;
for (right_index = source_length - 1;
right_index >= left_index && target_ptr >= source_ptr;
right_index--) {
Handle<Object> v = Object::GetElement(
source, static_cast<uint32_t>(right_index));
JSObject::SetElement(
target, static_cast<uint32_t>(offset + right_index), v,
NONE, kNonStrictMode);
target_ptr -= target_element_size;
source_ptr -= source_element_size;
}
}
// There can be at most 8 entries left in the middle that need buffering
// (because the largest element_size is 8 times the smallest).
ASSERT((right_index + 1) - left_index <= 8);
Handle<Object> temp[8];
size_t idx;
for (idx = left_index; idx <= right_index; idx++) {
temp[idx - left_index] = Object::GetElement(
source, static_cast<uint32_t>(idx));
}
for (idx = left_index; idx <= right_index; idx++) {
JSObject::SetElement(
target, static_cast<uint32_t>(offset + idx), temp[idx-left_index],
NONE, kNonStrictMode);
}
} else { // Non-overlapping typed arrays
for (size_t idx = 0; idx < source_length; idx++) {
Handle<Object> value = Object::GetElement(
source, static_cast<uint32_t>(idx));
JSObject::SetElement(
target, static_cast<uint32_t>(offset + idx), value,
NONE, kNonStrictMode);
}
}
return isolate->heap()->true_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DataViewInitialize) {
HandleScope scope(isolate);
ASSERT(args.length() == 4);
CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0);
CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, buffer, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, byte_offset, 2);
CONVERT_ARG_HANDLE_CHECKED(Object, byte_length, 3);
ASSERT(holder->GetInternalFieldCount() ==
v8::ArrayBufferView::kInternalFieldCount);
for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) {
holder->SetInternalField(i, Smi::FromInt(0));
}
holder->set_buffer(*buffer);
ASSERT(byte_offset->IsNumber());
ASSERT(
NumberToSize(isolate, buffer->byte_length()) >=
NumberToSize(isolate, *byte_offset)
+ NumberToSize(isolate, *byte_length));
holder->set_byte_offset(*byte_offset);
ASSERT(byte_length->IsNumber());
holder->set_byte_length(*byte_length);
holder->set_weak_next(buffer->weak_first_view());
buffer->set_weak_first_view(*holder);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DataViewGetBuffer) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSDataView, data_view, 0);
return data_view->buffer();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DataViewGetByteOffset) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSDataView, data_view, 0);
return data_view->byte_offset();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DataViewGetByteLength) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSDataView, data_view, 0);
return data_view->byte_length();
}
inline static bool NeedToFlipBytes(bool is_little_endian) {
#ifdef V8_TARGET_LITTLE_ENDIAN
return !is_little_endian;
#else
return is_little_endian;
#endif
}
template<int n>
inline void CopyBytes(uint8_t* target, uint8_t* source) {
for (int i = 0; i < n; i++) {
*(target++) = *(source++);
}
}
template<int n>
inline void FlipBytes(uint8_t* target, uint8_t* source) {
source = source + (n-1);
for (int i = 0; i < n; i++) {
*(target++) = *(source--);
}
}
template<typename T>
inline static bool DataViewGetValue(
Isolate* isolate,
Handle<JSDataView> data_view,
Handle<Object> byte_offset_obj,
bool is_little_endian,
T* result) {
size_t byte_offset = NumberToSize(isolate, *byte_offset_obj);
Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(data_view->buffer()));
size_t data_view_byte_offset =
NumberToSize(isolate, data_view->byte_offset());
size_t data_view_byte_length =
NumberToSize(isolate, data_view->byte_length());
if (byte_offset + sizeof(T) > data_view_byte_length ||
byte_offset + sizeof(T) < byte_offset) { // overflow
return false;
}
union Value {
T data;
uint8_t bytes[sizeof(T)];
};
Value value;
size_t buffer_offset = data_view_byte_offset + byte_offset;
ASSERT(
NumberToSize(isolate, buffer->byte_length())
>= buffer_offset + sizeof(T));
uint8_t* source =
static_cast<uint8_t*>(buffer->backing_store()) + buffer_offset;
if (NeedToFlipBytes(is_little_endian)) {
FlipBytes<sizeof(T)>(value.bytes, source);
} else {
CopyBytes<sizeof(T)>(value.bytes, source);
}
*result = value.data;
return true;
}
template<typename T>
static bool DataViewSetValue(
Isolate* isolate,
Handle<JSDataView> data_view,
Handle<Object> byte_offset_obj,
bool is_little_endian,
T data) {
size_t byte_offset = NumberToSize(isolate, *byte_offset_obj);
Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(data_view->buffer()));
size_t data_view_byte_offset =
NumberToSize(isolate, data_view->byte_offset());
size_t data_view_byte_length =
NumberToSize(isolate, data_view->byte_length());
if (byte_offset + sizeof(T) > data_view_byte_length ||
byte_offset + sizeof(T) < byte_offset) { // overflow
return false;
}
union Value {
T data;
uint8_t bytes[sizeof(T)];
};
Value value;
value.data = data;
size_t buffer_offset = data_view_byte_offset + byte_offset;
ASSERT(
NumberToSize(isolate, buffer->byte_length())
>= buffer_offset + sizeof(T));
uint8_t* target =
static_cast<uint8_t*>(buffer->backing_store()) + buffer_offset;
if (NeedToFlipBytes(is_little_endian)) {
FlipBytes<sizeof(T)>(target, value.bytes);
} else {
CopyBytes<sizeof(T)>(target, value.bytes);
}
return true;
}
#define DATA_VIEW_GETTER(TypeName, Type, Converter) \
RUNTIME_FUNCTION(MaybeObject*, Runtime_DataViewGet##TypeName) { \
HandleScope scope(isolate); \
ASSERT(args.length() == 3); \
CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0); \
CONVERT_ARG_HANDLE_CHECKED(Object, offset, 1); \
CONVERT_BOOLEAN_ARG_CHECKED(is_little_endian, 2); \
Type result; \
if (DataViewGetValue( \
isolate, holder, offset, is_little_endian, &result)) { \
return isolate->heap()->Converter(result); \
} else { \
return isolate->Throw(*isolate->factory()->NewRangeError( \
"invalid_data_view_accessor_offset", \
HandleVector<Object>(NULL, 0))); \
} \
}
DATA_VIEW_GETTER(Uint8, uint8_t, NumberFromUint32)
DATA_VIEW_GETTER(Int8, int8_t, NumberFromInt32)
DATA_VIEW_GETTER(Uint16, uint16_t, NumberFromUint32)
DATA_VIEW_GETTER(Int16, int16_t, NumberFromInt32)
DATA_VIEW_GETTER(Uint32, uint32_t, NumberFromUint32)
DATA_VIEW_GETTER(Int32, int32_t, NumberFromInt32)
DATA_VIEW_GETTER(Float32, float, NumberFromDouble)
DATA_VIEW_GETTER(Float64, double, NumberFromDouble)
#undef DATA_VIEW_GETTER
#define DATA_VIEW_SETTER(TypeName, Type) \
RUNTIME_FUNCTION(MaybeObject*, Runtime_DataViewSet##TypeName) { \
HandleScope scope(isolate); \
ASSERT(args.length() == 4); \
CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0); \
CONVERT_ARG_HANDLE_CHECKED(Object, offset, 1); \
CONVERT_ARG_HANDLE_CHECKED(Object, value, 2); \
CONVERT_BOOLEAN_ARG_CHECKED(is_little_endian, 3); \
Type v = static_cast<Type>(value->Number()); \
if (DataViewSetValue( \
isolate, holder, offset, is_little_endian, v)) { \
return isolate->heap()->undefined_value(); \
} else { \
return isolate->Throw(*isolate->factory()->NewRangeError( \
"invalid_data_view_accessor_offset", \
HandleVector<Object>(NULL, 0))); \
} \
}
DATA_VIEW_SETTER(Uint8, uint8_t)
DATA_VIEW_SETTER(Int8, int8_t)
DATA_VIEW_SETTER(Uint16, uint16_t)
DATA_VIEW_SETTER(Int16, int16_t)
DATA_VIEW_SETTER(Uint32, uint32_t)
DATA_VIEW_SETTER(Int32, int32_t)
DATA_VIEW_SETTER(Float32, float)
DATA_VIEW_SETTER(Float64, double)
#undef DATA_VIEW_SETTER
RUNTIME_FUNCTION(MaybeObject*, Runtime_SetInitialize) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
Handle<ObjectHashSet> table = isolate->factory()->NewObjectHashSet(0);
holder->set_table(*table);
return *holder;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_SetAdd) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
Handle<Object> key(args[1], isolate);
Handle<ObjectHashSet> table(ObjectHashSet::cast(holder->table()));
table = ObjectHashSetAdd(table, key);
holder->set_table(*table);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_SetHas) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
Handle<Object> key(args[1], isolate);
Handle<ObjectHashSet> table(ObjectHashSet::cast(holder->table()));
return isolate->heap()->ToBoolean(table->Contains(*key));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_SetDelete) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
Handle<Object> key(args[1], isolate);
Handle<ObjectHashSet> table(ObjectHashSet::cast(holder->table()));
table = ObjectHashSetRemove(table, key);
holder->set_table(*table);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_SetGetSize) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
Handle<ObjectHashSet> table(ObjectHashSet::cast(holder->table()));
return Smi::FromInt(table->NumberOfElements());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_MapInitialize) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
Handle<ObjectHashTable> table = isolate->factory()->NewObjectHashTable(0);
holder->set_table(*table);
return *holder;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_MapGet) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table()));
Handle<Object> lookup(table->Lookup(*key), isolate);
return lookup->IsTheHole() ? isolate->heap()->undefined_value() : *lookup;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_MapHas) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table()));
Handle<Object> lookup(table->Lookup(*key), isolate);
return isolate->heap()->ToBoolean(!lookup->IsTheHole());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_MapDelete) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table()));
Handle<Object> lookup(table->Lookup(*key), isolate);
Handle<ObjectHashTable> new_table =
PutIntoObjectHashTable(table, key, isolate->factory()->the_hole_value());
holder->set_table(*new_table);
return isolate->heap()->ToBoolean(!lookup->IsTheHole());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_MapSet) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table()));
Handle<ObjectHashTable> new_table = PutIntoObjectHashTable(table, key, value);
holder->set_table(*new_table);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_MapGetSize) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table()));
return Smi::FromInt(table->NumberOfElements());
}
static JSWeakMap* WeakMapInitialize(Isolate* isolate,
Handle<JSWeakMap> weakmap) {
ASSERT(weakmap->map()->inobject_properties() == 0);
Handle<ObjectHashTable> table = isolate->factory()->NewObjectHashTable(0);
weakmap->set_table(*table);
weakmap->set_next(Smi::FromInt(0));
return *weakmap;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_WeakMapInitialize) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSWeakMap, weakmap, 0);
return WeakMapInitialize(isolate, weakmap);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_WeakMapGet) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSWeakMap, weakmap, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
Handle<ObjectHashTable> table(ObjectHashTable::cast(weakmap->table()));
Handle<Object> lookup(table->Lookup(*key), isolate);
return lookup->IsTheHole() ? isolate->heap()->undefined_value() : *lookup;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_WeakMapHas) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSWeakMap, weakmap, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
Handle<ObjectHashTable> table(ObjectHashTable::cast(weakmap->table()));
Handle<Object> lookup(table->Lookup(*key), isolate);
return isolate->heap()->ToBoolean(!lookup->IsTheHole());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_WeakMapDelete) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSWeakMap, weakmap, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
Handle<ObjectHashTable> table(ObjectHashTable::cast(weakmap->table()));
Handle<Object> lookup(table->Lookup(*key), isolate);
Handle<ObjectHashTable> new_table =
PutIntoObjectHashTable(table, key, isolate->factory()->the_hole_value());
weakmap->set_table(*new_table);
return isolate->heap()->ToBoolean(!lookup->IsTheHole());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_WeakMapSet) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(JSWeakMap, weakmap, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
Handle<Object> value(args[2], isolate);
Handle<ObjectHashTable> table(ObjectHashTable::cast(weakmap->table()));
Handle<ObjectHashTable> new_table = PutIntoObjectHashTable(table, key, value);
weakmap->set_table(*new_table);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_ClassOf) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
Object* obj = args[0];
if (!obj->IsJSObject()) return isolate->heap()->null_value();
return JSObject::cast(obj)->class_name();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetPrototype) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(Object, obj, 0);
// We don't expect access checks to be needed on JSProxy objects.
ASSERT(!obj->IsAccessCheckNeeded() || obj->IsJSObject());
do {
if (obj->IsAccessCheckNeeded() &&
!isolate->MayNamedAccess(JSObject::cast(obj),
isolate->heap()->proto_string(),
v8::ACCESS_GET)) {
isolate->ReportFailedAccessCheck(JSObject::cast(obj), v8::ACCESS_GET);
return isolate->heap()->undefined_value();
}
obj = obj->GetPrototype(isolate);
} while (obj->IsJSObject() &&
JSObject::cast(obj)->map()->is_hidden_prototype());
return obj;
}
static inline Object* GetPrototypeSkipHiddenPrototypes(Isolate* isolate,
Object* receiver) {
Object* current = receiver->GetPrototype(isolate);
while (current->IsJSObject() &&
JSObject::cast(current)->map()->is_hidden_prototype()) {
current = current->GetPrototype(isolate);
}
return current;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_SetPrototype) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
if (FLAG_harmony_observation && obj->map()->is_observed()) {
Handle<Object> old_value(
GetPrototypeSkipHiddenPrototypes(isolate, *obj), isolate);
Handle<Object> result = JSObject::SetPrototype(obj, prototype, true);
RETURN_IF_EMPTY_HANDLE(isolate, result);
Handle<Object> new_value(
GetPrototypeSkipHiddenPrototypes(isolate, *obj), isolate);
if (!new_value->SameValue(*old_value)) {
JSObject::EnqueueChangeRecord(obj, "prototype",
isolate->factory()->proto_string(),
old_value);
}
return *result;
}
Handle<Object> result = JSObject::SetPrototype(obj, prototype, true);
RETURN_IF_EMPTY_HANDLE(isolate, result);
return *result;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_IsInPrototypeChain) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
// See ECMA-262, section 15.3.5.3, page 88 (steps 5 - 8).
Object* O = args[0];
Object* V = args[1];
while (true) {
Object* prototype = V->GetPrototype(isolate);
if (prototype->IsNull()) return isolate->heap()->false_value();
if (O == prototype) return isolate->heap()->true_value();
V = prototype;
}
}
static bool CheckAccessException(Object* callback,
v8::AccessType access_type) {
if (callback->IsAccessorInfo()) {
AccessorInfo* info = AccessorInfo::cast(callback);
return
(access_type == v8::ACCESS_HAS &&
(info->all_can_read() || info->all_can_write())) ||
(access_type == v8::ACCESS_GET && info->all_can_read()) ||
(access_type == v8::ACCESS_SET && info->all_can_write());
}
return false;
}
template<class Key>
static bool CheckGenericAccess(
JSObject* receiver,
JSObject* holder,
Key key,
v8::AccessType access_type,
bool (Isolate::*mayAccess)(JSObject*, Key, v8::AccessType)) {
Isolate* isolate = receiver->GetIsolate();
for (JSObject* current = receiver;
true;
current = JSObject::cast(current->GetPrototype())) {
if (current->IsAccessCheckNeeded() &&
!(isolate->*mayAccess)(current, key, access_type)) {
return false;
}
if (current == holder) break;
}
return true;
}
enum AccessCheckResult {
ACCESS_FORBIDDEN,
ACCESS_ALLOWED,
ACCESS_ABSENT
};
static AccessCheckResult CheckElementAccess(
JSObject* obj,
uint32_t index,
v8::AccessType access_type) {
// TODO(1095): we should traverse hidden prototype hierachy as well.
if (CheckGenericAccess(
obj, obj, index, access_type, &Isolate::MayIndexedAccess)) {
return ACCESS_ALLOWED;
}
obj->GetIsolate()->ReportFailedAccessCheck(obj, access_type);
return ACCESS_FORBIDDEN;
}
static AccessCheckResult CheckPropertyAccess(
JSObject* obj,
Name* name,
v8::AccessType access_type) {
uint32_t index;
if (name->AsArrayIndex(&index)) {
return CheckElementAccess(obj, index, access_type);
}
LookupResult lookup(obj->GetIsolate());
obj->LocalLookup(name, &lookup, true);
if (!lookup.IsProperty()) return ACCESS_ABSENT;
if (CheckGenericAccess<Object*>(
obj, lookup.holder(), name, access_type, &Isolate::MayNamedAccess)) {
return ACCESS_ALLOWED;
}
// Access check callback denied the access, but some properties
// can have a special permissions which override callbacks descision
// (currently see v8::AccessControl).
// API callbacks can have per callback access exceptions.
switch (lookup.type()) {
case CALLBACKS:
if (CheckAccessException(lookup.GetCallbackObject(), access_type)) {
return ACCESS_ALLOWED;
}
break;
case INTERCEPTOR:
// If the object has an interceptor, try real named properties.
// Overwrite the result to fetch the correct property later.
lookup.holder()->LookupRealNamedProperty(name, &lookup);
if (lookup.IsProperty() && lookup.IsPropertyCallbacks()) {
if (CheckAccessException(lookup.GetCallbackObject(), access_type)) {
return ACCESS_ALLOWED;
}
}
break;
default:
break;
}
obj->GetIsolate()->ReportFailedAccessCheck(obj, access_type);
return ACCESS_FORBIDDEN;
}
// Enumerator used as indices into the array returned from GetOwnProperty
enum PropertyDescriptorIndices {
IS_ACCESSOR_INDEX,
VALUE_INDEX,
GETTER_INDEX,
SETTER_INDEX,
WRITABLE_INDEX,
ENUMERABLE_INDEX,
CONFIGURABLE_INDEX,
DESCRIPTOR_SIZE
};
static MaybeObject* GetOwnProperty(Isolate* isolate,
Handle<JSObject> obj,
Handle<Name> name) {
Heap* heap = isolate->heap();
// Due to some WebKit tests, we want to make sure that we do not log
// more than one access failure here.
switch (CheckPropertyAccess(*obj, *name, v8::ACCESS_HAS)) {
case ACCESS_FORBIDDEN: return heap->false_value();
case ACCESS_ALLOWED: break;
case ACCESS_ABSENT: return heap->undefined_value();
}
PropertyAttributes attrs = obj->GetLocalPropertyAttribute(*name);
if (attrs == ABSENT) return heap->undefined_value();
AccessorPair* raw_accessors = obj->GetLocalPropertyAccessorPair(*name);
Handle<AccessorPair> accessors(raw_accessors, isolate);
Handle<FixedArray> elms = isolate->factory()->NewFixedArray(DESCRIPTOR_SIZE);
elms->set(ENUMERABLE_INDEX, heap->ToBoolean((attrs & DONT_ENUM) == 0));
elms->set(CONFIGURABLE_INDEX, heap->ToBoolean((attrs & DONT_DELETE) == 0));
elms->set(IS_ACCESSOR_INDEX, heap->ToBoolean(raw_accessors != NULL));
if (raw_accessors == NULL) {
elms->set(WRITABLE_INDEX, heap->ToBoolean((attrs & READ_ONLY) == 0));
// GetProperty does access check.
Handle<Object> value = GetProperty(isolate, obj, name);
RETURN_IF_EMPTY_HANDLE(isolate, value);
elms->set(VALUE_INDEX, *value);
} else {
// Access checks are performed for both accessors separately.
// When they fail, the respective field is not set in the descriptor.
Object* getter = accessors->GetComponent(ACCESSOR_GETTER);
Object* setter = accessors->GetComponent(ACCESSOR_SETTER);
if (!getter->IsMap() && CheckPropertyAccess(*obj, *name, v8::ACCESS_GET)) {
elms->set(GETTER_INDEX, getter);
}
if (!setter->IsMap() && CheckPropertyAccess(*obj, *name, v8::ACCESS_SET)) {
elms->set(SETTER_INDEX, setter);
}
}
return *isolate->factory()->NewJSArrayWithElements(elms);
}
// Returns an array with the property description:
// if args[1] is not a property on args[0]
// returns undefined
// if args[1] is a data property on args[0]
// [false, value, Writeable, Enumerable, Configurable]
// if args[1] is an accessor on args[0]
// [true, GetFunction, SetFunction, Enumerable, Configurable]
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetOwnProperty) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
return GetOwnProperty(isolate, obj, name);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_PreventExtensions) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSObject, obj, 0);
return obj->PreventExtensions();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_IsExtensible) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSObject, obj, 0);
if (obj->IsJSGlobalProxy()) {
Object* proto = obj->GetPrototype();
if (proto->IsNull()) return isolate->heap()->false_value();
ASSERT(proto->IsJSGlobalObject());
obj = JSObject::cast(proto);
}
return isolate->heap()->ToBoolean(obj->map()->is_extensible());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpCompile) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(JSRegExp, re, 0);
CONVERT_ARG_HANDLE_CHECKED(String, pattern, 1);
CONVERT_ARG_HANDLE_CHECKED(String, flags, 2);
Handle<Object> result =
RegExpImpl::Compile(re, pattern, flags);
RETURN_IF_EMPTY_HANDLE(isolate, result);
return *result;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateApiFunction) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(FunctionTemplateInfo, data, 0);
return *isolate->factory()->CreateApiFunction(data);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_IsTemplate) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
Object* arg = args[0];
bool result = arg->IsObjectTemplateInfo() || arg->IsFunctionTemplateInfo();
return isolate->heap()->ToBoolean(result);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetTemplateField) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(HeapObject, templ, 0);
CONVERT_SMI_ARG_CHECKED(index, 1)
int offset = index * kPointerSize + HeapObject::kHeaderSize;
InstanceType type = templ->map()->instance_type();
RUNTIME_ASSERT(type == FUNCTION_TEMPLATE_INFO_TYPE ||
type == OBJECT_TEMPLATE_INFO_TYPE);
RUNTIME_ASSERT(offset > 0);
if (type == FUNCTION_TEMPLATE_INFO_TYPE) {
RUNTIME_ASSERT(offset < FunctionTemplateInfo::kSize);
} else {
RUNTIME_ASSERT(offset < ObjectTemplateInfo::kSize);
}
return *HeapObject::RawField(templ, offset);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DisableAccessChecks) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(HeapObject, object, 0);
Map* old_map = object->map();
bool needs_access_checks = old_map->is_access_check_needed();
if (needs_access_checks) {
// Copy map so it won't interfere constructor's initial map.
Map* new_map;
MaybeObject* maybe_new_map = old_map->Copy();
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
new_map->set_is_access_check_needed(false);
object->set_map(new_map);
}
return isolate->heap()->ToBoolean(needs_access_checks);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_EnableAccessChecks) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(HeapObject, object, 0);
Map* old_map = object->map();
if (!old_map->is_access_check_needed()) {
// Copy map so it won't interfere constructor's initial map.
Map* new_map;
MaybeObject* maybe_new_map = old_map->Copy();
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
new_map->set_is_access_check_needed(true);
object->set_map(new_map);
}
return isolate->heap()->undefined_value();
}
static Failure* ThrowRedeclarationError(Isolate* isolate,
const char* type,
Handle<String> name) {
HandleScope scope(isolate);
Handle<Object> type_handle =
isolate->factory()->NewStringFromAscii(CStrVector(type));
Handle<Object> args[2] = { type_handle, name };
Handle<Object> error =
isolate->factory()->NewTypeError("redeclaration", HandleVector(args, 2));
return isolate->Throw(*error);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DeclareGlobals) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
Handle<GlobalObject> global = Handle<GlobalObject>(
isolate->context()->global_object());
Handle<Context> context = args.at<Context>(0);
CONVERT_ARG_HANDLE_CHECKED(FixedArray, pairs, 1);
CONVERT_SMI_ARG_CHECKED(flags, 2);
// Traverse the name/value pairs and set the properties.
int length = pairs->length();
for (int i = 0; i < length; i += 2) {
HandleScope scope(isolate);
Handle<String> name(String::cast(pairs->get(i)));
Handle<Object> value(pairs->get(i + 1), isolate);
// We have to declare a global const property. To capture we only
// assign to it when evaluating the assignment for "const x =
// <expr>" the initial value is the hole.
bool is_var = value->IsUndefined();
bool is_const = value->IsTheHole();
bool is_function = value->IsSharedFunctionInfo();
ASSERT(is_var + is_const + is_function == 1);
if (is_var || is_const) {
// Lookup the property in the global object, and don't set the
// value of the variable if the property is already there.
// Do the lookup locally only, see ES5 erratum.
LookupResult lookup(isolate);
if (FLAG_es52_globals) {
global->LocalLookup(*name, &lookup, true);
} else {
global->Lookup(*name, &lookup);
}
if (lookup.IsFound()) {
// We found an existing property. Unless it was an interceptor
// that claims the property is absent, skip this declaration.
if (!lookup.IsInterceptor()) continue;
PropertyAttributes attributes = global->GetPropertyAttribute(*name);
if (attributes != ABSENT) continue;
// Fall-through and introduce the absent property by using
// SetProperty.
}
} else if (is_function) {
// Copy the function and update its context. Use it as value.
Handle<SharedFunctionInfo> shared =
Handle<SharedFunctionInfo>::cast(value);
Handle<JSFunction> function =
isolate->factory()->NewFunctionFromSharedFunctionInfo(
shared, context, TENURED);
value = function;
}
LookupResult lookup(isolate);
global->LocalLookup(*name, &lookup, true);
// Compute the property attributes. According to ECMA-262,
// the property must be non-configurable except in eval.
int attr = NONE;
bool is_eval = DeclareGlobalsEvalFlag::decode(flags);
if (!is_eval) {
attr |= DONT_DELETE;
}
bool is_native = DeclareGlobalsNativeFlag::decode(flags);
if (is_const || (is_native && is_function)) {
attr |= READ_ONLY;
}
LanguageMode language_mode = DeclareGlobalsLanguageMode::decode(flags);
if (!lookup.IsFound() || is_function) {
// If the local property exists, check that we can reconfigure it
// as required for function declarations.
if (lookup.IsFound() && lookup.IsDontDelete()) {
if (lookup.IsReadOnly() || lookup.IsDontEnum() ||
lookup.IsPropertyCallbacks()) {
return ThrowRedeclarationError(isolate, "function", name);
}
// If the existing property is not configurable, keep its attributes.
attr = lookup.GetAttributes();
}
// Define or redefine own property.
RETURN_IF_EMPTY_HANDLE(isolate,
JSObject::SetLocalPropertyIgnoreAttributes(
global, name, value, static_cast<PropertyAttributes>(attr)));
} else {
// Do a [[Put]] on the existing (own) property.
RETURN_IF_EMPTY_HANDLE(isolate,
JSObject::SetProperty(
global, name, value, static_cast<PropertyAttributes>(attr),
language_mode == CLASSIC_MODE ? kNonStrictMode : kStrictMode));
}
}
ASSERT(!isolate->has_pending_exception());
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DeclareContextSlot) {
HandleScope scope(isolate);
ASSERT(args.length() == 4);
// Declarations are always made in a function or native context. In the
// case of eval code, the context passed is the context of the caller,
// which may be some nested context and not the declaration context.
RUNTIME_ASSERT(args[0]->IsContext());
Handle<Context> context(Context::cast(args[0])->declaration_context());
Handle<String> name(String::cast(args[1]));
PropertyAttributes mode = static_cast<PropertyAttributes>(args.smi_at(2));
RUNTIME_ASSERT(mode == READ_ONLY || mode == NONE);
Handle<Object> initial_value(args[3], isolate);
int index;
PropertyAttributes attributes;
ContextLookupFlags flags = DONT_FOLLOW_CHAINS;
BindingFlags binding_flags;
Handle<Object> holder =
context->Lookup(name, flags, &index, &attributes, &binding_flags);
if (attributes != ABSENT) {
// The name was declared before; check for conflicting re-declarations.
// Note: this is actually inconsistent with what happens for globals (where
// we silently ignore such declarations).
if (((attributes & READ_ONLY) != 0) || (mode == READ_ONLY)) {
// Functions are not read-only.
ASSERT(mode != READ_ONLY || initial_value->IsTheHole());
const char* type = ((attributes & READ_ONLY) != 0) ? "const" : "var";
return ThrowRedeclarationError(isolate, type, name);
}
// Initialize it if necessary.
if (*initial_value != NULL) {
if (index >= 0) {
ASSERT(holder.is_identical_to(context));
if (((attributes & READ_ONLY) == 0) ||
context->get(index)->IsTheHole()) {
context->set(index, *initial_value);
}
} else {
// Slow case: The property is in the context extension object of a
// function context or the global object of a native context.
Handle<JSObject> object = Handle<JSObject>::cast(holder);
RETURN_IF_EMPTY_HANDLE(
isolate,
JSReceiver::SetProperty(object, name, initial_value, mode,
kNonStrictMode));
}
}
} else {
// The property is not in the function context. It needs to be
// "declared" in the function context's extension context or as a
// property of the the global object.
Handle<JSObject> object;
if (context->has_extension()) {
object = Handle<JSObject>(JSObject::cast(context->extension()));
} else {
// Context extension objects are allocated lazily.
ASSERT(context->IsFunctionContext());
object = isolate->factory()->NewJSObject(
isolate->context_extension_function());
context->set_extension(*object);
}
ASSERT(*object != NULL);
// Declare the property by setting it to the initial value if provided,
// or undefined, and use the correct mode (e.g. READ_ONLY attribute for
// constant declarations).
ASSERT(!object->HasLocalProperty(*name));
Handle<Object> value(isolate->heap()->undefined_value(), isolate);
if (*initial_value != NULL) value = initial_value;
// Declaring a const context slot is a conflicting declaration if
// there is a callback with that name in a prototype. It is
// allowed to introduce const variables in
// JSContextExtensionObjects. They are treated specially in
// SetProperty and no setters are invoked for those since they are
// not real JSObjects.
if (initial_value->IsTheHole() &&
!object->IsJSContextExtensionObject()) {
LookupResult lookup(isolate);
object->Lookup(*name, &lookup);
if (lookup.IsPropertyCallbacks()) {
return ThrowRedeclarationError(isolate, "const", name);
}
}
if (object->IsJSGlobalObject()) {
// Define own property on the global object.
RETURN_IF_EMPTY_HANDLE(isolate,
JSObject::SetLocalPropertyIgnoreAttributes(object, name, value, mode));
} else {
RETURN_IF_EMPTY_HANDLE(isolate,
JSReceiver::SetProperty(object, name, value, mode, kNonStrictMode));
}
}
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_InitializeVarGlobal) {
SealHandleScope shs(isolate);
// args[0] == name
// args[1] == language_mode
// args[2] == value (optional)
// Determine if we need to assign to the variable if it already
// exists (based on the number of arguments).
RUNTIME_ASSERT(args.length() == 2 || args.length() == 3);
bool assign = args.length() == 3;
CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
GlobalObject* global = isolate->context()->global_object();
RUNTIME_ASSERT(args[1]->IsSmi());
CONVERT_LANGUAGE_MODE_ARG(language_mode, 1);
StrictModeFlag strict_mode_flag = (language_mode == CLASSIC_MODE)
? kNonStrictMode : kStrictMode;
// According to ECMA-262, section 12.2, page 62, the property must
// not be deletable.
PropertyAttributes attributes = DONT_DELETE;
// Lookup the property locally in the global object. If it isn't
// there, there is a property with this name in the prototype chain.
// We follow Safari and Firefox behavior and only set the property
// locally if there is an explicit initialization value that we have
// to assign to the property.
// Note that objects can have hidden prototypes, so we need to traverse
// the whole chain of hidden prototypes to do a 'local' lookup.
Object* object = global;
LookupResult lookup(isolate);
JSObject::cast(object)->LocalLookup(*name, &lookup, true);
if (lookup.IsInterceptor()) {
HandleScope handle_scope(isolate);
PropertyAttributes intercepted =
lookup.holder()->GetPropertyAttribute(*name);
if (intercepted != ABSENT && (intercepted & READ_ONLY) == 0) {
// Found an interceptor that's not read only.
if (assign) {
return lookup.holder()->SetProperty(
&lookup, *name, args[2], attributes, strict_mode_flag);
} else {
return isolate->heap()->undefined_value();
}
}
}
// Reload global in case the loop above performed a GC.
global = isolate->context()->global_object();
if (assign) {
return global->SetProperty(*name, args[2], attributes, strict_mode_flag);
}
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_InitializeConstGlobal) {
SealHandleScope shs(isolate);
// All constants are declared with an initial value. The name
// of the constant is the first argument and the initial value
// is the second.
RUNTIME_ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
Handle<Object> value = args.at<Object>(1);
// Get the current global object from top.
GlobalObject* global = isolate->context()->global_object();
// According to ECMA-262, section 12.2, page 62, the property must
// not be deletable. Since it's a const, it must be READ_ONLY too.
PropertyAttributes attributes =
static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY);
// Lookup the property locally in the global object. If it isn't
// there, we add the property and take special precautions to always
// add it as a local property even in case of callbacks in the
// prototype chain (this rules out using SetProperty).
// We use SetLocalPropertyIgnoreAttributes instead
LookupResult lookup(isolate);
global->LocalLookup(*name, &lookup);
if (!lookup.IsFound()) {
return global->SetLocalPropertyIgnoreAttributes(*name,
*value,
attributes);
}
if (!lookup.IsReadOnly()) {
// Restore global object from context (in case of GC) and continue
// with setting the value.
HandleScope handle_scope(isolate);
Handle<GlobalObject> global(isolate->context()->global_object());
// BUG 1213575: Handle the case where we have to set a read-only
// property through an interceptor and only do it if it's
// uninitialized, e.g. the hole. Nirk...
// Passing non-strict mode because the property is writable.
RETURN_IF_EMPTY_HANDLE(
isolate,
JSReceiver::SetProperty(global, name, value, attributes,
kNonStrictMode));
return *value;
}
// Set the value, but only if we're assigning the initial value to a
// constant. For now, we determine this by checking if the
// current value is the hole.
// Strict mode handling not needed (const is disallowed in strict mode).
if (lookup.IsField()) {
FixedArray* properties = global->properties();
int index = lookup.GetFieldIndex().field_index();
if (properties->get(index)->IsTheHole() || !lookup.IsReadOnly()) {
properties->set(index, *value);
}
} else if (lookup.IsNormal()) {
if (global->GetNormalizedProperty(&lookup)->IsTheHole() ||
!lookup.IsReadOnly()) {
HandleScope scope(isolate);
JSObject::SetNormalizedProperty(Handle<JSObject>(global), &lookup, value);
}
} else {
// Ignore re-initialization of constants that have already been
// assigned a function value.
ASSERT(lookup.IsReadOnly() && lookup.IsConstantFunction());
}
// Use the set value as the result of the operation.
return *value;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_InitializeConstContextSlot) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
Handle<Object> value(args[0], isolate);
ASSERT(!value->IsTheHole());
// Initializations are always done in a function or native context.
RUNTIME_ASSERT(args[1]->IsContext());
Handle<Context> context(Context::cast(args[1])->declaration_context());
Handle<String> name(String::cast(args[2]));
int index;
PropertyAttributes attributes;
ContextLookupFlags flags = FOLLOW_CHAINS;
BindingFlags binding_flags;
Handle<Object> holder =
context->Lookup(name, flags, &index, &attributes, &binding_flags);
if (index >= 0) {
ASSERT(holder->IsContext());
// Property was found in a context. Perform the assignment if we
// found some non-constant or an uninitialized constant.
Handle<Context> context = Handle<Context>::cast(holder);
if ((attributes & READ_ONLY) == 0 || context->get(index)->IsTheHole()) {
context->set(index, *value);
}
return *value;
}
// The property could not be found, we introduce it as a property of the
// global object.
if (attributes == ABSENT) {
Handle<JSObject> global = Handle<JSObject>(
isolate->context()->global_object());
// Strict mode not needed (const disallowed in strict mode).
RETURN_IF_EMPTY_HANDLE(
isolate,
JSReceiver::SetProperty(global, name, value, NONE, kNonStrictMode));
return *value;
}
// The property was present in some function's context extension object,
// as a property on the subject of a with, or as a property of the global
// object.
//
// In most situations, eval-introduced consts should still be present in
// the context extension object. However, because declaration and
// initialization are separate, the property might have been deleted
// before we reach the initialization point.
//
// Example:
//
// function f() { eval("delete x; const x;"); }
//
// In that case, the initialization behaves like a normal assignment.
Handle<JSObject> object = Handle<JSObject>::cast(holder);
if (*object == context->extension()) {
// This is the property that was introduced by the const declaration.
// Set it if it hasn't been set before. NOTE: We cannot use
// GetProperty() to get the current value as it 'unholes' the value.
LookupResult lookup(isolate);
object->LocalLookupRealNamedProperty(*name, &lookup);
ASSERT(lookup.IsFound()); // the property was declared
ASSERT(lookup.IsReadOnly()); // and it was declared as read-only
if (lookup.IsField()) {
FixedArray* properties = object->properties();
int index = lookup.GetFieldIndex().field_index();
if (properties->get(index)->IsTheHole()) {
properties->set(index, *value);
}
} else if (lookup.IsNormal()) {
if (object->GetNormalizedProperty(&lookup)->IsTheHole()) {
JSObject::SetNormalizedProperty(object, &lookup, value);
}
} else {
// We should not reach here. Any real, named property should be
// either a field or a dictionary slot.
UNREACHABLE();
}
} else {
// The property was found on some other object. Set it if it is not a
// read-only property.
if ((attributes & READ_ONLY) == 0) {
// Strict mode not needed (const disallowed in strict mode).
RETURN_IF_EMPTY_HANDLE(
isolate,
JSReceiver::SetProperty(object, name, value, attributes,
kNonStrictMode));
}
}
return *value;
}
RUNTIME_FUNCTION(MaybeObject*,
Runtime_OptimizeObjectForAddingMultipleProperties) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
CONVERT_SMI_ARG_CHECKED(properties, 1);
if (object->HasFastProperties()) {
JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, properties);
}
return *object;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpExec) {
HandleScope scope(isolate);
ASSERT(args.length() == 4);
CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0);
CONVERT_ARG_HANDLE_CHECKED(String, subject, 1);
// Due to the way the JS calls are constructed this must be less than the
// length of a string, i.e. it is always a Smi. We check anyway for security.
CONVERT_SMI_ARG_CHECKED(index, 2);
CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 3);
RUNTIME_ASSERT(index >= 0);
RUNTIME_ASSERT(index <= subject->length());
isolate->counters()->regexp_entry_runtime()->Increment();
Handle<Object> result = RegExpImpl::Exec(regexp,
subject,
index,
last_match_info);
RETURN_IF_EMPTY_HANDLE(isolate, result);
return *result;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpConstructResult) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 3);
CONVERT_SMI_ARG_CHECKED(elements_count, 0);
if (elements_count < 0 ||
elements_count > FixedArray::kMaxLength ||
!Smi::IsValid(elements_count)) {
return isolate->ThrowIllegalOperation();
}
Object* new_object;
{ MaybeObject* maybe_new_object =
isolate->heap()->AllocateFixedArrayWithHoles(elements_count);
if (!maybe_new_object->ToObject(&new_object)) return maybe_new_object;
}
FixedArray* elements = FixedArray::cast(new_object);
{ MaybeObject* maybe_new_object = isolate->heap()->AllocateRaw(
JSRegExpResult::kSize, NEW_SPACE, OLD_POINTER_SPACE);
if (!maybe_new_object->ToObject(&new_object)) return maybe_new_object;
}
{
DisallowHeapAllocation no_gc;
HandleScope scope(isolate);
reinterpret_cast<HeapObject*>(new_object)->
set_map(isolate->native_context()->regexp_result_map());
}
JSArray* array = JSArray::cast(new_object);
array->set_properties(isolate->heap()->empty_fixed_array());
array->set_elements(elements);
array->set_length(Smi::FromInt(elements_count));
// Write in-object properties after the length of the array.
array->InObjectPropertyAtPut(JSRegExpResult::kIndexIndex, args[1]);
array->InObjectPropertyAtPut(JSRegExpResult::kInputIndex, args[2]);
return array;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpInitializeObject) {
SealHandleScope shs(isolate);
DisallowHeapAllocation no_allocation;
ASSERT(args.length() == 5);
CONVERT_ARG_CHECKED(JSRegExp, regexp, 0);
CONVERT_ARG_CHECKED(String, source, 1);
// If source is the empty string we set it to "(?:)" instead as
// suggested by ECMA-262, 5th, section 15.10.4.1.
if (source->length() == 0) source = isolate->heap()->query_colon_string();
Object* global = args[2];
if (!global->IsTrue()) global = isolate->heap()->false_value();
Object* ignoreCase = args[3];
if (!ignoreCase->IsTrue()) ignoreCase = isolate->heap()->false_value();
Object* multiline = args[4];
if (!multiline->IsTrue()) multiline = isolate->heap()->false_value();
Map* map = regexp->map();
Object* constructor = map->constructor();
if (constructor->IsJSFunction() &&
JSFunction::cast(constructor)->initial_map() == map) {
// If we still have the original map, set in-object properties directly.
regexp->InObjectPropertyAtPut(JSRegExp::kSourceFieldIndex, source);
// Both true and false are immovable immortal objects so no need for write
// barrier.
regexp->InObjectPropertyAtPut(
JSRegExp::kGlobalFieldIndex, global, SKIP_WRITE_BARRIER);
regexp->InObjectPropertyAtPut(
JSRegExp::kIgnoreCaseFieldIndex, ignoreCase, SKIP_WRITE_BARRIER);
regexp->InObjectPropertyAtPut(
JSRegExp::kMultilineFieldIndex, multiline, SKIP_WRITE_BARRIER);
regexp->InObjectPropertyAtPut(
JSRegExp::kLastIndexFieldIndex, Smi::FromInt(0), SKIP_WRITE_BARRIER);
return regexp;
}
// Map has changed, so use generic, but slower, method.
PropertyAttributes final =
static_cast<PropertyAttributes>(READ_ONLY | DONT_ENUM | DONT_DELETE);
PropertyAttributes writable =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
Heap* heap = isolate->heap();
MaybeObject* result;
result = regexp->SetLocalPropertyIgnoreAttributes(heap->source_string(),
source,
final);
// TODO(jkummerow): Turn these back into ASSERTs when we can be certain
// that it never fires in Release mode in the wild.
CHECK(!result->IsFailure());
result = regexp->SetLocalPropertyIgnoreAttributes(heap->global_string(),
global,
final);
CHECK(!result->IsFailure());
result =
regexp->SetLocalPropertyIgnoreAttributes(heap->ignore_case_string(),
ignoreCase,
final);
CHECK(!result->IsFailure());
result = regexp->SetLocalPropertyIgnoreAttributes(heap->multiline_string(),
multiline,
final);
CHECK(!result->IsFailure());
result =
regexp->SetLocalPropertyIgnoreAttributes(heap->last_index_string(),
Smi::FromInt(0),
writable);
CHECK(!result->IsFailure());
USE(result);
return regexp;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FinishArrayPrototypeSetup) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSArray, prototype, 0);
// This is necessary to enable fast checks for absence of elements
// on Array.prototype and below.
prototype->set_elements(isolate->heap()->empty_fixed_array());
return Smi::FromInt(0);
}
static Handle<JSFunction> InstallBuiltin(Isolate* isolate,
Handle<JSObject> holder,
const char* name,
Builtins::Name builtin_name) {
Handle<String> key = isolate->factory()->InternalizeUtf8String(name);
Handle<Code> code(isolate->builtins()->builtin(builtin_name));
Handle<JSFunction> optimized =
isolate->factory()->NewFunction(key,
JS_OBJECT_TYPE,
JSObject::kHeaderSize,
code,
false);
optimized->shared()->DontAdaptArguments();
JSReceiver::SetProperty(holder, key, optimized, NONE, kStrictMode);
return optimized;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_SpecialArrayFunctions) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSObject, holder, 0);
InstallBuiltin(isolate, holder, "pop", Builtins::kArrayPop);
InstallBuiltin(isolate, holder, "push", Builtins::kArrayPush);
InstallBuiltin(isolate, holder, "shift", Builtins::kArrayShift);
InstallBuiltin(isolate, holder, "unshift", Builtins::kArrayUnshift);
InstallBuiltin(isolate, holder, "slice", Builtins::kArraySlice);
InstallBuiltin(isolate, holder, "splice", Builtins::kArraySplice);
InstallBuiltin(isolate, holder, "concat", Builtins::kArrayConcat);
return *holder;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_IsClassicModeFunction) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSReceiver, callable, 0);
if (!callable->IsJSFunction()) {
HandleScope scope(isolate);
bool threw = false;
Handle<Object> delegate =
Execution::TryGetFunctionDelegate(Handle<JSReceiver>(callable), &threw);
if (threw) return Failure::Exception();
callable = JSFunction::cast(*delegate);
}
JSFunction* function = JSFunction::cast(callable);
SharedFunctionInfo* shared = function->shared();
return isolate->heap()->ToBoolean(shared->is_classic_mode());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetDefaultReceiver) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSReceiver, callable, 0);
if (!callable->IsJSFunction()) {
HandleScope scope(isolate);
bool threw = false;
Handle<Object> delegate =
Execution::TryGetFunctionDelegate(Handle<JSReceiver>(callable), &threw);
if (threw) return Failure::Exception();
callable = JSFunction::cast(*delegate);
}
JSFunction* function = JSFunction::cast(callable);
SharedFunctionInfo* shared = function->shared();
if (shared->native() || !shared->is_classic_mode()) {
return isolate->heap()->undefined_value();
}
// Returns undefined for strict or native functions, or
// the associated global receiver for "normal" functions.
Context* native_context =
function->context()->global_object()->native_context();
return native_context->global_object()->global_receiver();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_MaterializeRegExpLiteral) {
HandleScope scope(isolate);
ASSERT(args.length() == 4);
CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
int index = args.smi_at(1);
Handle<String> pattern = args.at<String>(2);
Handle<String> flags = args.at<String>(3);
// Get the RegExp function from the context in the literals array.
// This is the RegExp function from the context in which the
// function was created. We do not use the RegExp function from the
// current native context because this might be the RegExp function
// from another context which we should not have access to.
Handle<JSFunction> constructor =
Handle<JSFunction>(
JSFunction::NativeContextFromLiterals(*literals)->regexp_function());
// Compute the regular expression literal.
bool has_pending_exception;
Handle<Object> regexp =
RegExpImpl::CreateRegExpLiteral(constructor, pattern, flags,
&has_pending_exception);
if (has_pending_exception) {
ASSERT(isolate->has_pending_exception());
return Failure::Exception();
}
literals->set(index, *regexp);
return *regexp;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetName) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSFunction, f, 0);
return f->shared()->name();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetName) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSFunction, f, 0);
CONVERT_ARG_CHECKED(String, name, 1);
f->shared()->set_name(name);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionNameShouldPrintAsAnonymous) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSFunction, f, 0);
return isolate->heap()->ToBoolean(
f->shared()->name_should_print_as_anonymous());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionMarkNameShouldPrintAsAnonymous) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSFunction, f, 0);
f->shared()->set_name_should_print_as_anonymous(true);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionIsGenerator) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSFunction, f, 0);
return isolate->heap()->ToBoolean(f->shared()->is_generator());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionRemovePrototype) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSFunction, f, 0);
f->RemovePrototype();
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetScript) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSFunction, fun, 0);
Handle<Object> script = Handle<Object>(fun->shared()->script(), isolate);
if (!script->IsScript()) return isolate->heap()->undefined_value();
return *GetScriptWrapper(Handle<Script>::cast(script));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetSourceCode) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, f, 0);
Handle<SharedFunctionInfo> shared(f->shared());
return *shared->GetSourceCode();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetScriptSourcePosition) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSFunction, fun, 0);
int pos = fun->shared()->start_position();
return Smi::FromInt(pos);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetPositionForOffset) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(Code, code, 0);
CONVERT_NUMBER_CHECKED(int, offset, Int32, args[1]);
RUNTIME_ASSERT(0 <= offset && offset < code->Size());
Address pc = code->address() + offset;
return Smi::FromInt(code->SourcePosition(pc));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetInstanceClassName) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSFunction, fun, 0);
CONVERT_ARG_CHECKED(String, name, 1);
fun->SetInstanceClassName(name);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetLength) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSFunction, fun, 0);
CONVERT_SMI_ARG_CHECKED(length, 1);
fun->shared()->set_length(length);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetPrototype) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSFunction, fun, 0);
ASSERT(fun->should_have_prototype());
Object* obj;
{ MaybeObject* maybe_obj =
Accessors::FunctionSetPrototype(fun, args[1], NULL);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
return args[0]; // return TOS
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetReadOnlyPrototype) {
SealHandleScope shs(isolate);
RUNTIME_ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSFunction, function, 0);
String* name = isolate->heap()->prototype_string();
if (function->HasFastProperties()) {
// Construct a new field descriptor with updated attributes.
DescriptorArray* instance_desc = function->map()->instance_descriptors();
int index = instance_desc->SearchWithCache(name, function->map());
ASSERT(index != DescriptorArray::kNotFound);
PropertyDetails details = instance_desc->GetDetails(index);
CallbacksDescriptor new_desc(name,
instance_desc->GetValue(index),
static_cast<PropertyAttributes>(details.attributes() | READ_ONLY));
// Create a new map featuring the new field descriptors array.
Map* new_map;
MaybeObject* maybe_map =
function->map()->CopyReplaceDescriptor(
instance_desc, &new_desc, index, OMIT_TRANSITION);
if (!maybe_map->To(&new_map)) return maybe_map;
function->set_map(new_map);
} else { // Dictionary properties.
// Directly manipulate the property details.
int entry = function->property_dictionary()->FindEntry(name);
ASSERT(entry != NameDictionary::kNotFound);
PropertyDetails details = function->property_dictionary()->DetailsAt(entry);
PropertyDetails new_details(
static_cast<PropertyAttributes>(details.attributes() | READ_ONLY),
details.type(),
details.dictionary_index());
function->property_dictionary()->DetailsAtPut(entry, new_details);
}
return function;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionIsAPIFunction) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSFunction, f, 0);
return isolate->heap()->ToBoolean(f->shared()->IsApiFunction());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionIsBuiltin) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSFunction, f, 0);
return isolate->heap()->ToBoolean(f->IsBuiltin());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_SetCode) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, target, 0);
Handle<Object> code = args.at<Object>(1);
if (code->IsNull()) return *target;
RUNTIME_ASSERT(code->IsJSFunction());
Handle<JSFunction> source = Handle<JSFunction>::cast(code);
Handle<SharedFunctionInfo> target_shared(target->shared());
Handle<SharedFunctionInfo> source_shared(source->shared());
if (!JSFunction::EnsureCompiled(source, KEEP_EXCEPTION)) {
return Failure::Exception();
}
// Mark both, the source and the target, as un-flushable because the
// shared unoptimized code makes them impossible to enqueue in a list.
ASSERT(target_shared->code()->gc_metadata() == NULL);
ASSERT(source_shared->code()->gc_metadata() == NULL);
target_shared->set_dont_flush(true);
source_shared->set_dont_flush(true);
// Set the code, scope info, formal parameter count, and the length
// of the target shared function info. Set the source code of the
// target function to undefined. SetCode is only used for built-in
// constructors like String, Array, and Object, and some web code
// doesn't like seeing source code for constructors.
target_shared->ReplaceCode(source_shared->code());
target_shared->set_scope_info(source_shared->scope_info());
target_shared->set_length(source_shared->length());
target_shared->set_formal_parameter_count(
source_shared->formal_parameter_count());
target_shared->set_script(isolate->heap()->undefined_value());
// Since we don't store the source we should never optimize this.
target_shared->code()->set_optimizable(false);
// Set the code of the target function.
target->ReplaceCode(source_shared->code());
ASSERT(target->next_function_link()->IsUndefined());
// Make sure we get a fresh copy of the literal vector to avoid cross
// context contamination.
Handle<Context> context(source->context());
int number_of_literals = source->NumberOfLiterals();
Handle<FixedArray> literals =
isolate->factory()->NewFixedArray(number_of_literals, TENURED);
if (number_of_literals > 0) {
literals->set(JSFunction::kLiteralNativeContextIndex,
context->native_context());
}
target->set_context(*context);
target->set_literals(*literals);
if (isolate->logger()->is_logging_code_events() ||
isolate->cpu_profiler()->is_profiling()) {
isolate->logger()->LogExistingFunction(
source_shared, Handle<Code>(source_shared->code()));
}
return *target;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_SetExpectedNumberOfProperties) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
CONVERT_SMI_ARG_CHECKED(num, 1);
RUNTIME_ASSERT(num >= 0);
SetExpectedNofProperties(function, num);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateJSGeneratorObject) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 0);
JavaScriptFrameIterator it(isolate);
JavaScriptFrame* frame = it.frame();
JSFunction* function = frame->function();
RUNTIME_ASSERT(function->shared()->is_generator());
JSGeneratorObject* generator;
if (frame->IsConstructor()) {
generator = JSGeneratorObject::cast(frame->receiver());
} else {
MaybeObject* maybe_generator =
isolate->heap()->AllocateJSGeneratorObject(function);
if (!maybe_generator->To(&generator)) return maybe_generator;
}
generator->set_function(function);
generator->set_context(Context::cast(frame->context()));
generator->set_receiver(frame->receiver());
generator->set_continuation(0);
generator->set_operand_stack(isolate->heap()->empty_fixed_array());
generator->set_stack_handler_index(-1);
return generator;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_SuspendJSGeneratorObject) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSGeneratorObject, generator_object, 0);
JavaScriptFrameIterator stack_iterator(isolate);
JavaScriptFrame* frame = stack_iterator.frame();
RUNTIME_ASSERT(frame->function()->shared()->is_generator());
ASSERT_EQ(frame->function(), generator_object->function());
// The caller should have saved the context and continuation already.
ASSERT_EQ(generator_object->context(), Context::cast(frame->context()));
ASSERT_LT(0, generator_object->continuation());
// We expect there to be at least two values on the operand stack: the return
// value of the yield expression, and the argument to this runtime call.
// Neither of those should be saved.
int operands_count = frame->ComputeOperandsCount();
ASSERT_GE(operands_count, 2);
operands_count -= 2;
if (operands_count == 0) {
// Although it's semantically harmless to call this function with an
// operands_count of zero, it is also unnecessary.
ASSERT_EQ(generator_object->operand_stack(),
isolate->heap()->empty_fixed_array());
ASSERT_EQ(generator_object->stack_handler_index(), -1);
// If there are no operands on the stack, there shouldn't be a handler
// active either.
ASSERT(!frame->HasHandler());
} else {
int stack_handler_index = -1;
MaybeObject* alloc = isolate->heap()->AllocateFixedArray(operands_count);
FixedArray* operand_stack;
if (!alloc->To(&operand_stack)) return alloc;
frame->SaveOperandStack(operand_stack, &stack_handler_index);
generator_object->set_operand_stack(operand_stack);
generator_object->set_stack_handler_index(stack_handler_index);
}
return isolate->heap()->undefined_value();
}
// Note that this function is the slow path for resuming generators. It is only
// called if the suspended activation had operands on the stack, stack handlers
// needing rewinding, or if the resume should throw an exception. The fast path
// is handled directly in FullCodeGenerator::EmitGeneratorResume(), which is
// inlined into GeneratorNext and GeneratorThrow. EmitGeneratorResumeResume is
// called in any case, as it needs to reconstruct the stack frame and make space
// for arguments and operands.
RUNTIME_FUNCTION(MaybeObject*, Runtime_ResumeJSGeneratorObject) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(JSGeneratorObject, generator_object, 0);
CONVERT_ARG_CHECKED(Object, value, 1);
CONVERT_SMI_ARG_CHECKED(resume_mode_int, 2);
JavaScriptFrameIterator stack_iterator(isolate);
JavaScriptFrame* frame = stack_iterator.frame();
ASSERT_EQ(frame->function(), generator_object->function());
STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting <= 0);
STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed <= 0);
Address pc = generator_object->function()->code()->instruction_start();
int offset = generator_object->continuation();
ASSERT(offset > 0);
frame->set_pc(pc + offset);
generator_object->set_continuation(JSGeneratorObject::kGeneratorExecuting);
FixedArray* operand_stack = generator_object->operand_stack();
int operands_count = operand_stack->length();
if (operands_count != 0) {
frame->RestoreOperandStack(operand_stack,
generator_object->stack_handler_index());
generator_object->set_operand_stack(isolate->heap()->empty_fixed_array());
generator_object->set_stack_handler_index(-1);
}
JSGeneratorObject::ResumeMode resume_mode =
static_cast<JSGeneratorObject::ResumeMode>(resume_mode_int);
switch (resume_mode) {
case JSGeneratorObject::NEXT:
return value;
case JSGeneratorObject::THROW:
return isolate->Throw(value);
}
UNREACHABLE();
return isolate->ThrowIllegalOperation();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_ThrowGeneratorStateError) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
int continuation = generator->continuation();
const char* message = continuation == JSGeneratorObject::kGeneratorClosed ?
"generator_finished" : "generator_running";
Vector< Handle<Object> > argv = HandleVector<Object>(NULL, 0);
Handle<Object> error = isolate->factory()->NewError(message, argv);
return isolate->Throw(*error);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_ObjectFreeze) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSObject, object, 0);
return object->Freeze(isolate);
}
MUST_USE_RESULT static MaybeObject* CharFromCode(Isolate* isolate,
Object* char_code) {
if (char_code->IsNumber()) {
return isolate->heap()->LookupSingleCharacterStringFromCode(
NumberToUint32(char_code) & 0xffff);
}
return isolate->heap()->empty_string();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringCharCodeAt) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(String, subject, 0);
CONVERT_NUMBER_CHECKED(uint32_t, i, Uint32, args[1]);
// Flatten the string. If someone wants to get a char at an index
// in a cons string, it is likely that more indices will be
// accessed.
Object* flat;
{ MaybeObject* maybe_flat = subject->TryFlatten();
if (!maybe_flat->ToObject(&flat)) return maybe_flat;
}
subject = String::cast(flat);
if (i >= static_cast<uint32_t>(subject->length())) {
return isolate->heap()->nan_value();
}
return Smi::FromInt(subject->Get(i));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_CharFromCode) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
return CharFromCode(isolate, args[0]);
}
class FixedArrayBuilder {
public:
explicit FixedArrayBuilder(Isolate* isolate, int initial_capacity)
: array_(isolate->factory()->NewFixedArrayWithHoles(initial_capacity)),
length_(0),
has_non_smi_elements_(false) {
// Require a non-zero initial size. Ensures that doubling the size to
// extend the array will work.
ASSERT(initial_capacity > 0);
}
explicit FixedArrayBuilder(Handle<FixedArray> backing_store)
: array_(backing_store),
length_(0),
has_non_smi_elements_(false) {
// Require a non-zero initial size. Ensures that doubling the size to
// extend the array will work.
ASSERT(backing_store->length() > 0);
}
bool HasCapacity(int elements) {
int length = array_->length();
int required_length = length_ + elements;
return (length >= required_length);
}
void EnsureCapacity(int elements) {
int length = array_->length();
int required_length = length_ + elements;
if (length < required_length) {
int new_length = length;
do {
new_length *= 2;
} while (new_length < required_length);
Handle<FixedArray> extended_array =
array_->GetIsolate()->factory()->NewFixedArrayWithHoles(new_length);
array_->CopyTo(0, *extended_array, 0, length_);
array_ = extended_array;
}
}
void Add(Object* value) {
ASSERT(!value->IsSmi());
ASSERT(length_ < capacity());
array_->set(length_, value);
length_++;
has_non_smi_elements_ = true;
}
void Add(Smi* value) {
ASSERT(value->IsSmi());
ASSERT(length_ < capacity());
array_->set(length_, value);
length_++;
}
Handle<FixedArray> array() {
return array_;
}
int length() {
return length_;
}
int capacity() {
return array_->length();
}
Handle<JSArray> ToJSArray(Handle<JSArray> target_array) {
Factory* factory = target_array->GetIsolate()->factory();
factory->SetContent(target_array, array_);
target_array->set_length(Smi::FromInt(length_));
return target_array;
}
private:
Handle<FixedArray> array_;
int length_;
bool has_non_smi_elements_;
};
// Forward declarations.
const int kStringBuilderConcatHelperLengthBits = 11;
const int kStringBuilderConcatHelperPositionBits = 19;
template <typename schar>
static inline void StringBuilderConcatHelper(String*,
schar*,
FixedArray*,
int);
typedef BitField<int, 0, kStringBuilderConcatHelperLengthBits>
StringBuilderSubstringLength;
typedef BitField<int,
kStringBuilderConcatHelperLengthBits,
kStringBuilderConcatHelperPositionBits>
StringBuilderSubstringPosition;
class ReplacementStringBuilder {
public:
ReplacementStringBuilder(Heap* heap,
Handle<String> subject,
int estimated_part_count)
: heap_(heap),
array_builder_(heap->isolate(), estimated_part_count),
subject_(subject),
character_count_(0),
is_ascii_(subject->IsOneByteRepresentation()) {
// Require a non-zero initial size. Ensures that doubling the size to
// extend the array will work.
ASSERT(estimated_part_count > 0);
}
static inline void AddSubjectSlice(FixedArrayBuilder* builder,
int from,
int to) {
ASSERT(from >= 0);
int length = to - from;
ASSERT(length > 0);
if (StringBuilderSubstringLength::is_valid(length) &&
StringBuilderSubstringPosition::is_valid(from)) {
int encoded_slice = StringBuilderSubstringLength::encode(length) |
StringBuilderSubstringPosition::encode(from);
builder->Add(Smi::FromInt(encoded_slice));
} else {
// Otherwise encode as two smis.
builder->Add(Smi::FromInt(-length));
builder->Add(Smi::FromInt(from));
}
}
void EnsureCapacity(int elements) {
array_builder_.EnsureCapacity(elements);
}
void AddSubjectSlice(int from, int to) {
AddSubjectSlice(&array_builder_, from, to);
IncrementCharacterCount(to - from);
}
void AddString(Handle<String> string) {
int length = string->length();
ASSERT(length > 0);
AddElement(*string);
if (!string->IsOneByteRepresentation()) {
is_ascii_ = false;
}
IncrementCharacterCount(length);
}
Handle<String> ToString() {
if (array_builder_.length() == 0) {
return heap_->isolate()->factory()->empty_string();
}
Handle<String> joined_string;
if (is_ascii_) {
Handle<SeqOneByteString> seq = NewRawOneByteString(character_count_);
DisallowHeapAllocation no_gc;
uint8_t* char_buffer = seq->GetChars();
StringBuilderConcatHelper(*subject_,
char_buffer,
*array_builder_.array(),
array_builder_.length());
joined_string = Handle<String>::cast(seq);
} else {
// Non-ASCII.
Handle<SeqTwoByteString> seq = NewRawTwoByteString(character_count_);
DisallowHeapAllocation no_gc;
uc16* char_buffer = seq->GetChars();
StringBuilderConcatHelper(*subject_,
char_buffer,
*array_builder_.array(),
array_builder_.length());
joined_string = Handle<String>::cast(seq);
}
return joined_string;
}
void IncrementCharacterCount(int by) {
if (character_count_ > String::kMaxLength - by) {
V8::FatalProcessOutOfMemory("String.replace result too large.");
}
character_count_ += by;
}
private:
Handle<SeqOneByteString> NewRawOneByteString(int length) {
return heap_->isolate()->factory()->NewRawOneByteString(length);
}
Handle<SeqTwoByteString> NewRawTwoByteString(int length) {
return heap_->isolate()->factory()->NewRawTwoByteString(length);
}
void AddElement(Object* element) {
ASSERT(element->IsSmi() || element->IsString());
ASSERT(array_builder_.capacity() > array_builder_.length());
array_builder_.Add(element);
}
Heap* heap_;
FixedArrayBuilder array_builder_;
Handle<String> subject_;
int character_count_;
bool is_ascii_;
};
class CompiledReplacement {
public:
explicit CompiledReplacement(Zone* zone)
: parts_(1, zone), replacement_substrings_(0, zone), zone_(zone) {}
// Return whether the replacement is simple.
bool Compile(Handle<String> replacement,
int capture_count,
int subject_length);
// Use Apply only if Compile returned false.
void Apply(ReplacementStringBuilder* builder,
int match_from,
int match_to,
int32_t* match);
// Number of distinct parts of the replacement pattern.
int parts() {
return parts_.length();
}
Zone* zone() const { return zone_; }
private:
enum PartType {
SUBJECT_PREFIX = 1,
SUBJECT_SUFFIX,
SUBJECT_CAPTURE,
REPLACEMENT_SUBSTRING,
REPLACEMENT_STRING,
NUMBER_OF_PART_TYPES
};
struct ReplacementPart {
static inline ReplacementPart SubjectMatch() {
return ReplacementPart(SUBJECT_CAPTURE, 0);
}
static inline ReplacementPart SubjectCapture(int capture_index) {
return ReplacementPart(SUBJECT_CAPTURE, capture_index);
}
static inline ReplacementPart SubjectPrefix() {
return ReplacementPart(SUBJECT_PREFIX, 0);
}
static inline ReplacementPart SubjectSuffix(int subject_length) {
return ReplacementPart(SUBJECT_SUFFIX, subject_length);
}
static inline ReplacementPart ReplacementString() {
return ReplacementPart(REPLACEMENT_STRING, 0);
}
static inline ReplacementPart ReplacementSubString(int from, int to) {
ASSERT(from >= 0);
ASSERT(to > from);
return ReplacementPart(-from, to);
}
// If tag <= 0 then it is the negation of a start index of a substring of
// the replacement pattern, otherwise it's a value from PartType.
ReplacementPart(int tag, int data)
: tag(tag), data(data) {
// Must be non-positive or a PartType value.
ASSERT(tag < NUMBER_OF_PART_TYPES);
}
// Either a value of PartType or a non-positive number that is
// the negation of an index into the replacement string.
int tag;
// The data value's interpretation depends on the value of tag:
// tag == SUBJECT_PREFIX ||
// tag == SUBJECT_SUFFIX: data is unused.
// tag == SUBJECT_CAPTURE: data is the number of the capture.
// tag == REPLACEMENT_SUBSTRING ||
// tag == REPLACEMENT_STRING: data is index into array of substrings
// of the replacement string.
// tag <= 0: Temporary representation of the substring of the replacement
// string ranging over -tag .. data.
// Is replaced by REPLACEMENT_{SUB,}STRING when we create the
// substring objects.
int data;
};
template<typename Char>
bool ParseReplacementPattern(ZoneList<ReplacementPart>* parts,
Vector<Char> characters,
int capture_count,
int subject_length,
Zone* zone) {
int length = characters.length();
int last = 0;
for (int i = 0; i < length; i++) {
Char c = characters[i];
if (c == '$') {
int next_index = i + 1;
if (next_index == length) { // No next character!
break;
}
Char c2 = characters[next_index];
switch (c2) {
case '$':
if (i > last) {
// There is a substring before. Include the first "$".
parts->Add(ReplacementPart::ReplacementSubString(last, next_index),
zone);
last = next_index + 1; // Continue after the second "$".
} else {
// Let the next substring start with the second "$".
last = next_index;
}
i = next_index;
break;
case '`':
if (i > last) {
parts->Add(ReplacementPart::ReplacementSubString(last, i), zone);
}
parts->Add(ReplacementPart::SubjectPrefix(), zone);
i = next_index;
last = i + 1;
break;
case '\'':
if (i > last) {
parts->Add(ReplacementPart::ReplacementSubString(last, i), zone);
}
parts->Add(ReplacementPart::SubjectSuffix(subject_length), zone);
i = next_index;
last = i + 1;
break;
case '&':
if (i > last) {
parts->Add(ReplacementPart::ReplacementSubString(last, i), zone);
}
parts->Add(ReplacementPart::SubjectMatch(), zone);
i = next_index;
last = i + 1;
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9': {
int capture_ref = c2 - '0';
if (capture_ref > capture_count) {
i = next_index;
continue;
}
int second_digit_index = next_index + 1;
if (second_digit_index < length) {
// Peek ahead to see if we have two digits.
Char c3 = characters[second_digit_index];
if ('0' <= c3 && c3 <= '9') { // Double digits.
int double_digit_ref = capture_ref * 10 + c3 - '0';
if (double_digit_ref <= capture_count) {
next_index = second_digit_index;
capture_ref = double_digit_ref;
}
}
}
if (capture_ref > 0) {
if (i > last) {
parts->Add(ReplacementPart::ReplacementSubString(last, i), zone);
}
ASSERT(capture_ref <= capture_count);
parts->Add(ReplacementPart::SubjectCapture(capture_ref), zone);
last = next_index + 1;
}
i = next_index;
break;
}
default:
i = next_index;
break;
}
}
}
if (length > last) {
if (last == 0) {
// Replacement is simple. Do not use Apply to do the replacement.
return true;
} else {
parts->Add(ReplacementPart::ReplacementSubString(last, length), zone);
}
}
return false;
}
ZoneList<ReplacementPart> parts_;
ZoneList<Handle<String> > replacement_substrings_;
Zone* zone_;
};
bool CompiledReplacement::Compile(Handle<String> replacement,
int capture_count,
int subject_length) {
{
DisallowHeapAllocation no_gc;
String::FlatContent content = replacement->GetFlatContent();
ASSERT(content.IsFlat());
bool simple = false;
if (content.IsAscii()) {
simple = ParseReplacementPattern(&parts_,
content.ToOneByteVector(),
capture_count,
subject_length,
zone());
} else {
ASSERT(content.IsTwoByte());
simple = ParseReplacementPattern(&parts_,
content.ToUC16Vector(),
capture_count,
subject_length,
zone());
}
if (simple) return true;
}
Isolate* isolate = replacement->GetIsolate();
// Find substrings of replacement string and create them as String objects.
int substring_index = 0;
for (int i = 0, n = parts_.length(); i < n; i++) {
int tag = parts_[i].tag;
if (tag <= 0) { // A replacement string slice.
int from = -tag;
int to = parts_[i].data;
replacement_substrings_.Add(
isolate->factory()->NewSubString(replacement, from, to), zone());
parts_[i].tag = REPLACEMENT_SUBSTRING;
parts_[i].data = substring_index;
substring_index++;
} else if (tag == REPLACEMENT_STRING) {
replacement_substrings_.Add(replacement, zone());
parts_[i].data = substring_index;
substring_index++;
}
}
return false;
}
void CompiledReplacement::Apply(ReplacementStringBuilder* builder,
int match_from,
int match_to,
int32_t* match) {
ASSERT_LT(0, parts_.length());
for (int i = 0, n = parts_.length(); i < n; i++) {
ReplacementPart part = parts_[i];
switch (part.tag) {
case SUBJECT_PREFIX:
if (match_from > 0) builder->AddSubjectSlice(0, match_from);
break;
case SUBJECT_SUFFIX: {
int subject_length = part.data;
if (match_to < subject_length) {
builder->AddSubjectSlice(match_to, subject_length);
}
break;
}
case SUBJECT_CAPTURE: {
int capture = part.data;
int from = match[capture * 2];
int to = match[capture * 2 + 1];
if (from >= 0 && to > from) {
builder->AddSubjectSlice(from, to);
}
break;
}
case REPLACEMENT_SUBSTRING:
case REPLACEMENT_STRING:
builder->AddString(replacement_substrings_[part.data]);
break;
default:
UNREACHABLE();
}
}
}
void FindAsciiStringIndices(Vector<const uint8_t> subject,
char pattern,
ZoneList<int>* indices,
unsigned int limit,
Zone* zone) {
ASSERT(limit > 0);
// Collect indices of pattern in subject using memchr.
// Stop after finding at most limit values.
const uint8_t* subject_start = subject.start();
const uint8_t* subject_end = subject_start + subject.length();
const uint8_t* pos = subject_start;
while (limit > 0) {
pos = reinterpret_cast<const uint8_t*>(
memchr(pos, pattern, subject_end - pos));
if (pos == NULL) return;
indices->Add(static_cast<int>(pos - subject_start), zone);
pos++;
limit--;
}
}
void FindTwoByteStringIndices(const Vector<const uc16> subject,
uc16 pattern,
ZoneList<int>* indices,
unsigned int limit,
Zone* zone) {
ASSERT(limit > 0);
const uc16* subject_start = subject.start();
const uc16* subject_end = subject_start + subject.length();
for (const uc16* pos = subject_start; pos < subject_end && limit > 0; pos++) {
if (*pos == pattern) {
indices->Add(static_cast<int>(pos - subject_start), zone);
limit--;
}
}
}
template <typename SubjectChar, typename PatternChar>
void FindStringIndices(Isolate* isolate,
Vector<const SubjectChar> subject,
Vector<const PatternChar> pattern,
ZoneList<int>* indices,
unsigned int limit,
Zone* zone) {
ASSERT(limit > 0);
// Collect indices of pattern in subject.
// Stop after finding at most limit values.
int pattern_length = pattern.length();
int index = 0;
StringSearch<PatternChar, SubjectChar> search(isolate, pattern);
while (limit > 0) {
index = search.Search(subject, index);
if (index < 0) return;
indices->Add(index, zone);
index += pattern_length;
limit--;
}
}
void FindStringIndicesDispatch(Isolate* isolate,
String* subject,
String* pattern,
ZoneList<int>* indices,
unsigned int limit,
Zone* zone) {
{
DisallowHeapAllocation no_gc;
String::FlatContent subject_content = subject->GetFlatContent();
String::FlatContent pattern_content = pattern->GetFlatContent();
ASSERT(subject_content.IsFlat());
ASSERT(pattern_content.IsFlat());
if (subject_content.IsAscii()) {
Vector<const uint8_t> subject_vector = subject_content.ToOneByteVector();
if (pattern_content.IsAscii()) {
Vector<const uint8_t> pattern_vector =
pattern_content.ToOneByteVector();
if (pattern_vector.length() == 1) {
FindAsciiStringIndices(subject_vector,
pattern_vector[0],
indices,
limit,
zone);
} else {
FindStringIndices(isolate,
subject_vector,
pattern_vector,
indices,
limit,
zone);
}
} else {
FindStringIndices(isolate,
subject_vector,
pattern_content.ToUC16Vector(),
indices,
limit,
zone);
}
} else {
Vector<const uc16> subject_vector = subject_content.ToUC16Vector();
if (pattern_content.IsAscii()) {
Vector<const uint8_t> pattern_vector =
pattern_content.ToOneByteVector();
if (pattern_vector.length() == 1) {
FindTwoByteStringIndices(subject_vector,
pattern_vector[0],
indices,
limit,
zone);
} else {
FindStringIndices(isolate,
subject_vector,
pattern_vector,
indices,
limit,
zone);
}
} else {
Vector<const uc16> pattern_vector = pattern_content.ToUC16Vector();
if (pattern_vector.length() == 1) {
FindTwoByteStringIndices(subject_vector,
pattern_vector[0],
indices,
limit,
zone);
} else {
FindStringIndices(isolate,
subject_vector,
pattern_vector,
indices,
limit,
zone);
}
}
}
}
}
template<typename ResultSeqString>
MUST_USE_RESULT static MaybeObject* StringReplaceGlobalAtomRegExpWithString(
Isolate* isolate,
Handle<String> subject,
Handle<JSRegExp> pattern_regexp,
Handle<String> replacement,
Handle<JSArray> last_match_info) {
ASSERT(subject->IsFlat());
ASSERT(replacement->IsFlat());
ZoneScope zone_scope(isolate->runtime_zone());
ZoneList<int> indices(8, zone_scope.zone());
ASSERT_EQ(JSRegExp::ATOM, pattern_regexp->TypeTag());
String* pattern =
String::cast(pattern_regexp->DataAt(JSRegExp::kAtomPatternIndex));
int subject_len = subject->length();
int pattern_len = pattern->length();
int replacement_len = replacement->length();
FindStringIndicesDispatch(
isolate, *subject, pattern, &indices, 0xffffffff, zone_scope.zone());
int matches = indices.length();
if (matches == 0) return *subject;
// Detect integer overflow.
int64_t result_len_64 =
(static_cast<int64_t>(replacement_len) -
static_cast<int64_t>(pattern_len)) *
static_cast<int64_t>(matches) +
static_cast<int64_t>(subject_len);
if (result_len_64 > INT_MAX) return Failure::OutOfMemoryException(0x11);
int result_len = static_cast<int>(result_len_64);
int subject_pos = 0;
int result_pos = 0;
Handle<ResultSeqString> result;
if (ResultSeqString::kHasAsciiEncoding) {
result = Handle<ResultSeqString>::cast(
isolate->factory()->NewRawOneByteString(result_len));
} else {
result = Handle<ResultSeqString>::cast(
isolate->factory()->NewRawTwoByteString(result_len));
}
for (int i = 0; i < matches; i++) {
// Copy non-matched subject content.
if (subject_pos < indices.at(i)) {
String::WriteToFlat(*subject,
result->GetChars() + result_pos,
subject_pos,
indices.at(i));
result_pos += indices.at(i) - subject_pos;
}
// Replace match.
if (replacement_len > 0) {
String::WriteToFlat(*replacement,
result->GetChars() + result_pos,
0,
replacement_len);
result_pos += replacement_len;
}
subject_pos = indices.at(i) + pattern_len;
}
// Add remaining subject content at the end.
if (subject_pos < subject_len) {
String::WriteToFlat(*subject,
result->GetChars() + result_pos,
subject_pos,
subject_len);
}
int32_t match_indices[] = { indices.at(matches - 1),
indices.at(matches - 1) + pattern_len };
RegExpImpl::SetLastMatchInfo(last_match_info, subject, 0, match_indices);
return *result;
}
MUST_USE_RESULT static MaybeObject* StringReplaceGlobalRegExpWithString(
Isolate* isolate,
Handle<String> subject,
Handle<JSRegExp> regexp,
Handle<String> replacement,
Handle<JSArray> last_match_info) {
ASSERT(subject->IsFlat());
ASSERT(replacement->IsFlat());
int capture_count = regexp->CaptureCount();
int subject_length = subject->length();
// CompiledReplacement uses zone allocation.
ZoneScope zone_scope(isolate->runtime_zone());
CompiledReplacement compiled_replacement(zone_scope.zone());
bool simple_replace = compiled_replacement.Compile(replacement,
capture_count,
subject_length);
// Shortcut for simple non-regexp global replacements
if (regexp->TypeTag() == JSRegExp::ATOM && simple_replace) {
if (subject->HasOnlyOneByteChars() &&
replacement->HasOnlyOneByteChars()) {
return StringReplaceGlobalAtomRegExpWithString<SeqOneByteString>(
isolate, subject, regexp, replacement, last_match_info);
} else {
return StringReplaceGlobalAtomRegExpWithString<SeqTwoByteString>(
isolate, subject, regexp, replacement, last_match_info);
}
}
RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
if (global_cache.HasException()) return Failure::Exception();
int32_t* current_match = global_cache.FetchNext();
if (current_match == NULL) {
if (global_cache.HasException()) return Failure::Exception();
return *subject;
}
// Guessing the number of parts that the final result string is built
// from. Global regexps can match any number of times, so we guess
// conservatively.
int expected_parts = (compiled_replacement.parts() + 1) * 4 + 1;
ReplacementStringBuilder builder(isolate->heap(),
subject,
expected_parts);
// Number of parts added by compiled replacement plus preceeding
// string and possibly suffix after last match. It is possible for
// all components to use two elements when encoded as two smis.
const int parts_added_per_loop = 2 * (compiled_replacement.parts() + 2);
int prev = 0;
do {
builder.EnsureCapacity(parts_added_per_loop);
int start = current_match[0];
int end = current_match[1];
if (prev < start) {
builder.AddSubjectSlice(prev, start);
}
if (simple_replace) {
builder.AddString(replacement);
} else {
compiled_replacement.Apply(&builder,
start,
end,
current_match);
}
prev = end;
current_match = global_cache.FetchNext();
} while (current_match != NULL);
if (global_cache.HasException()) return Failure::Exception();
if (prev < subject_length) {
builder.EnsureCapacity(2);
builder.AddSubjectSlice(prev, subject_length);
}
RegExpImpl::SetLastMatchInfo(last_match_info,
subject,
capture_count,
global_cache.LastSuccessfulMatch());
return *(builder.ToString());
}
template <typename ResultSeqString>
MUST_USE_RESULT static MaybeObject* StringReplaceGlobalRegExpWithEmptyString(
Isolate* isolate,
Handle<String> subject,
Handle<JSRegExp> regexp,
Handle<JSArray> last_match_info) {
ASSERT(subject->IsFlat());
// Shortcut for simple non-regexp global replacements
if (regexp->TypeTag() == JSRegExp::ATOM) {
Handle<String> empty_string = isolate->factory()->empty_string();
if (subject->IsOneByteRepresentation()) {
return StringReplaceGlobalAtomRegExpWithString<SeqOneByteString>(
isolate, subject, regexp, empty_string, last_match_info);
} else {
return StringReplaceGlobalAtomRegExpWithString<SeqTwoByteString>(
isolate, subject, regexp, empty_string, last_match_info);
}
}
RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
if (global_cache.HasException()) return Failure::Exception();
int32_t* current_match = global_cache.FetchNext();
if (current_match == NULL) {
if (global_cache.HasException()) return Failure::Exception();
return *subject;
}
int start = current_match[0];
int end = current_match[1];
int capture_count = regexp->CaptureCount();
int subject_length = subject->length();
int new_length = subject_length - (end - start);
if (new_length == 0) return isolate->heap()->empty_string();
Handle<ResultSeqString> answer;
if (ResultSeqString::kHasAsciiEncoding) {
answer = Handle<ResultSeqString>::cast(
isolate->factory()->NewRawOneByteString(new_length));
} else {
answer = Handle<ResultSeqString>::cast(
isolate->factory()->NewRawTwoByteString(new_length));
}
int prev = 0;
int position = 0;
do {
start = current_match[0];
end = current_match[1];
if (prev < start) {
// Add substring subject[prev;start] to answer string.
String::WriteToFlat(*subject, answer->GetChars() + position, prev, start);
position += start - prev;
}
prev = end;
current_match = global_cache.FetchNext();
} while (current_match != NULL);
if (global_cache.HasException()) return Failure::Exception();
RegExpImpl::SetLastMatchInfo(last_match_info,
subject,
capture_count,
global_cache.LastSuccessfulMatch());
if (prev < subject_length) {
// Add substring subject[prev;length] to answer string.
String::WriteToFlat(
*subject, answer->GetChars() + position, prev, subject_length);
position += subject_length - prev;
}
if (position == 0) return isolate->heap()->empty_string();
// Shorten string and fill
int string_size = ResultSeqString::SizeFor(position);
int allocated_string_size = ResultSeqString::SizeFor(new_length);
int delta = allocated_string_size - string_size;
answer->set_length(position);
if (delta == 0) return *answer;
Address end_of_string = answer->address() + string_size;
isolate->heap()->CreateFillerObjectAt(end_of_string, delta);
if (Marking::IsBlack(Marking::MarkBitFrom(*answer))) {
MemoryChunk::IncrementLiveBytesFromMutator(answer->address(), -delta);
}
return *answer;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringReplaceGlobalRegExpWithString) {
HandleScope scope(isolate);
ASSERT(args.length() == 4);
CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
CONVERT_ARG_HANDLE_CHECKED(String, replacement, 2);
CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1);
CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 3);
ASSERT(regexp->GetFlags().is_global());
if (!subject->IsFlat()) subject = FlattenGetString(subject);
if (replacement->length() == 0) {
if (subject->HasOnlyOneByteChars()) {
return StringReplaceGlobalRegExpWithEmptyString<SeqOneByteString>(
isolate, subject, regexp, last_match_info);
} else {
return StringReplaceGlobalRegExpWithEmptyString<SeqTwoByteString>(
isolate, subject, regexp, last_match_info);
}
}
if (!replacement->IsFlat()) replacement = FlattenGetString(replacement);
return StringReplaceGlobalRegExpWithString(
isolate, subject, regexp, replacement, last_match_info);
}
Handle<String> StringReplaceOneCharWithString(Isolate* isolate,
Handle<String> subject,
Handle<String> search,
Handle<String> replace,
bool* found,
int recursion_limit) {
if (recursion_limit == 0) return Handle<String>::null();
if (subject->IsConsString()) {
ConsString* cons = ConsString::cast(*subject);
Handle<String> first = Handle<String>(cons->first());
Handle<String> second = Handle<String>(cons->second());
Handle<String> new_first =
StringReplaceOneCharWithString(isolate,
first,
search,
replace,
found,
recursion_limit - 1);
if (*found) return isolate->factory()->NewConsString(new_first, second);
if (new_first.is_null()) return new_first;
Handle<String> new_second =
StringReplaceOneCharWithString(isolate,
second,
search,
replace,
found,
recursion_limit - 1);
if (*found) return isolate->factory()->NewConsString(first, new_second);
if (new_second.is_null()) return new_second;
return subject;
} else {
int index = Runtime::StringMatch(isolate, subject, search, 0);
if (index == -1) return subject;
*found = true;
Handle<String> first = isolate->factory()->NewSubString(subject, 0, index);
Handle<String> cons1 = isolate->factory()->NewConsString(first, replace);
Handle<String> second =
isolate->factory()->NewSubString(subject, index + 1, subject->length());
return isolate->factory()->NewConsString(cons1, second);
}
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringReplaceOneCharWithString) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
CONVERT_ARG_HANDLE_CHECKED(String, search, 1);
CONVERT_ARG_HANDLE_CHECKED(String, replace, 2);
// If the cons string tree is too deep, we simply abort the recursion and
// retry with a flattened subject string.
const int kRecursionLimit = 0x1000;
bool found = false;
Handle<String> result = StringReplaceOneCharWithString(isolate,
subject,
search,
replace,
&found,
kRecursionLimit);
if (!result.is_null()) return *result;
return *StringReplaceOneCharWithString(isolate,
FlattenGetString(subject),
search,
replace,
&found,
kRecursionLimit);
}
// Perform string match of pattern on subject, starting at start index.
// Caller must ensure that 0 <= start_index <= sub->length(),
// and should check that pat->length() + start_index <= sub->length().
int Runtime::StringMatch(Isolate* isolate,
Handle<String> sub,
Handle<String> pat,
int start_index) {
ASSERT(0 <= start_index);
ASSERT(start_index <= sub->length());
int pattern_length = pat->length();
if (pattern_length == 0) return start_index;
int subject_length = sub->length();
if (start_index + pattern_length > subject_length) return -1;
if (!sub->IsFlat()) FlattenString(sub);
if (!pat->IsFlat()) FlattenString(pat);
DisallowHeapAllocation no_gc; // ensure vectors stay valid
// Extract flattened substrings of cons strings before determining asciiness.
String::FlatContent seq_sub = sub->GetFlatContent();
String::FlatContent seq_pat = pat->GetFlatContent();
// dispatch on type of strings
if (seq_pat.IsAscii()) {
Vector<const uint8_t> pat_vector = seq_pat.ToOneByteVector();
if (seq_sub.IsAscii()) {
return SearchString(isolate,
seq_sub.ToOneByteVector(),
pat_vector,
start_index);
}
return SearchString(isolate,
seq_sub.ToUC16Vector(),
pat_vector,
start_index);
}
Vector<const uc16> pat_vector = seq_pat.ToUC16Vector();
if (seq_sub.IsAscii()) {
return SearchString(isolate,
seq_sub.ToOneByteVector(),
pat_vector,
start_index);
}
return SearchString(isolate,
seq_sub.ToUC16Vector(),
pat_vector,
start_index);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringIndexOf) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
Object* index = args[2];
uint32_t start_index;
if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
RUNTIME_ASSERT(start_index <= static_cast<uint32_t>(sub->length()));
int position =
Runtime::StringMatch(isolate, sub, pat, start_index);
return Smi::FromInt(position);
}
template <typename schar, typename pchar>
static int StringMatchBackwards(Vector<const schar> subject,
Vector<const pchar> pattern,
int idx) {
int pattern_length = pattern.length();
ASSERT(pattern_length >= 1);
ASSERT(idx + pattern_length <= subject.length());
if (sizeof(schar) == 1 && sizeof(pchar) > 1) {
for (int i = 0; i < pattern_length; i++) {
uc16 c = pattern[i];
if (c > String::kMaxOneByteCharCode) {
return -1;
}
}
}
pchar pattern_first_char = pattern[0];
for (int i = idx; i >= 0; i--) {
if (subject[i] != pattern_first_char) continue;
int j = 1;
while (j < pattern_length) {
if (pattern[j] != subject[i+j]) {
break;
}
j++;
}
if (j == pattern_length) {
return i;
}
}
return -1;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringLastIndexOf) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
Object* index = args[2];
uint32_t start_index;
if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
uint32_t pat_length = pat->length();
uint32_t sub_length = sub->length();
if (start_index + pat_length > sub_length) {
start_index = sub_length - pat_length;
}
if (pat_length == 0) {
return Smi::FromInt(start_index);
}
if (!sub->IsFlat()) FlattenString(sub);
if (!pat->IsFlat()) FlattenString(pat);
int position = -1;
DisallowHeapAllocation no_gc; // ensure vectors stay valid
String::FlatContent sub_content = sub->GetFlatContent();
String::FlatContent pat_content = pat->GetFlatContent();
if (pat_content.IsAscii()) {
Vector<const uint8_t> pat_vector = pat_content.ToOneByteVector();
if (sub_content.IsAscii()) {
position = StringMatchBackwards(sub_content.ToOneByteVector(),
pat_vector,
start_index);
} else {
position = StringMatchBackwards(sub_content.ToUC16Vector(),
pat_vector,
start_index);
}
} else {
Vector<const uc16> pat_vector = pat_content.ToUC16Vector();
if (sub_content.IsAscii()) {
position = StringMatchBackwards(sub_content.ToOneByteVector(),
pat_vector,
start_index);
} else {
position = StringMatchBackwards(sub_content.ToUC16Vector(),
pat_vector,
start_index);
}
}
return Smi::FromInt(position);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringLocaleCompare) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(String, str1, 0);
CONVERT_ARG_CHECKED(String, str2, 1);
if (str1 == str2) return Smi::FromInt(0); // Equal.
int str1_length = str1->length();
int str2_length = str2->length();
// Decide trivial cases without flattening.
if (str1_length == 0) {
if (str2_length == 0) return Smi::FromInt(0); // Equal.
return Smi::FromInt(-str2_length);
} else {
if (str2_length == 0) return Smi::FromInt(str1_length);
}
int end = str1_length < str2_length ? str1_length : str2_length;
// No need to flatten if we are going to find the answer on the first
// character. At this point we know there is at least one character
// in each string, due to the trivial case handling above.
int d = str1->Get(0) - str2->Get(0);
if (d != 0) return Smi::FromInt(d);
str1->TryFlatten();
str2->TryFlatten();
ConsStringIteratorOp* op1 =
isolate->runtime_state()->string_locale_compare_it1();
ConsStringIteratorOp* op2 =
isolate->runtime_state()->string_locale_compare_it2();
// TODO(dcarney) Can do array compares here more efficiently.
StringCharacterStream stream1(str1, op1);
StringCharacterStream stream2(str2, op2);
for (int i = 0; i < end; i++) {
uint16_t char1 = stream1.GetNext();
uint16_t char2 = stream2.GetNext();
if (char1 != char2) return Smi::FromInt(char1 - char2);
}
return Smi::FromInt(str1_length - str2_length);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_SubString) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(String, value, 0);
int start, end;
// We have a fast integer-only case here to avoid a conversion to double in
// the common case where from and to are Smis.
if (args[1]->IsSmi() && args[2]->IsSmi()) {
CONVERT_SMI_ARG_CHECKED(from_number, 1);
CONVERT_SMI_ARG_CHECKED(to_number, 2);
start = from_number;
end = to_number;
} else {
CONVERT_DOUBLE_ARG_CHECKED(from_number, 1);
CONVERT_DOUBLE_ARG_CHECKED(to_number, 2);
start = FastD2IChecked(from_number);
end = FastD2IChecked(to_number);
}
RUNTIME_ASSERT(end >= start);
RUNTIME_ASSERT(start >= 0);
RUNTIME_ASSERT(end <= value->length());
isolate->counters()->sub_string_runtime()->Increment();
if (end - start == 1) {
return isolate->heap()->LookupSingleCharacterStringFromCode(
value->Get(start));
}
return value->SubString(start, end);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringMatch) {
HandleScope handles(isolate);
ASSERT_EQ(3, args.length());
CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1);
CONVERT_ARG_HANDLE_CHECKED(JSArray, regexp_info, 2);
RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
if (global_cache.HasException()) return Failure::Exception();
int capture_count = regexp->CaptureCount();
ZoneScope zone_scope(isolate->runtime_zone());
ZoneList<int> offsets(8, zone_scope.zone());
while (true) {
int32_t* match = global_cache.FetchNext();
if (match == NULL) break;
offsets.Add(match[0], zone_scope.zone()); // start
offsets.Add(match[1], zone_scope.zone()); // end
}
if (global_cache.HasException()) return Failure::Exception();
if (offsets.length() == 0) {
// Not a single match.
return isolate->heap()->null_value();
}
RegExpImpl::SetLastMatchInfo(regexp_info,
subject,
capture_count,
global_cache.LastSuccessfulMatch());
int matches = offsets.length() / 2;
Handle<FixedArray> elements = isolate->factory()->NewFixedArray(matches);
Handle<String> substring =
isolate->factory()->NewSubString(subject, offsets.at(0), offsets.at(1));
elements->set(0, *substring);
for (int i = 1; i < matches; i++) {
HandleScope temp_scope(isolate);
int from = offsets.at(i * 2);
int to = offsets.at(i * 2 + 1);
Handle<String> substring =
isolate->factory()->NewProperSubString(subject, from, to);
elements->set(i, *substring);
}
Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(elements);
result->set_length(Smi::FromInt(matches));
return *result;
}
// Only called from Runtime_RegExpExecMultiple so it doesn't need to maintain
// separate last match info. See comment on that function.
template<bool has_capture>
static MaybeObject* SearchRegExpMultiple(
Isolate* isolate,
Handle<String> subject,
Handle<JSRegExp> regexp,
Handle<JSArray> last_match_array,
Handle<JSArray> result_array) {
ASSERT(subject->IsFlat());
ASSERT_NE(has_capture, regexp->CaptureCount() == 0);
int capture_count = regexp->CaptureCount();
int subject_length = subject->length();
static const int kMinLengthToCache = 0x1000;
if (subject_length > kMinLengthToCache) {
Handle<Object> cached_answer(RegExpResultsCache::Lookup(
isolate->heap(),
*subject,
regexp->data(),
RegExpResultsCache::REGEXP_MULTIPLE_INDICES), isolate);
if (*cached_answer != Smi::FromInt(0)) {
Handle<FixedArray> cached_fixed_array =
Handle<FixedArray>(FixedArray::cast(*cached_answer));
// The cache FixedArray is a COW-array and can therefore be reused.
isolate->factory()->SetContent(result_array, cached_fixed_array);
// The actual length of the result array is stored in the last element of
// the backing store (the backing FixedArray may have a larger capacity).
Object* cached_fixed_array_last_element =
cached_fixed_array->get(cached_fixed_array->length() - 1);
Smi* js_array_length = Smi::cast(cached_fixed_array_last_element);
result_array->set_length(js_array_length);
RegExpImpl::SetLastMatchInfo(
last_match_array, subject, capture_count, NULL);
return *result_array;
}
}
RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
if (global_cache.HasException()) return Failure::Exception();
Handle<FixedArray> result_elements;
if (result_array->HasFastObjectElements()) {
result_elements =
Handle<FixedArray>(FixedArray::cast(result_array->elements()));
}
if (result_elements.is_null() || result_elements->length() < 16) {
result_elements = isolate->factory()->NewFixedArrayWithHoles(16);
}
FixedArrayBuilder builder(result_elements);
// Position to search from.
int match_start = -1;
int match_end = 0;
bool first = true;
// Two smis before and after the match, for very long strings.
static const int kMaxBuilderEntriesPerRegExpMatch = 5;
while (true) {
int32_t* current_match = global_cache.FetchNext();
if (current_match == NULL) break;
match_start = current_match[0];
builder.EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch);
if (match_end < match_start) {
ReplacementStringBuilder::AddSubjectSlice(&builder,
match_end,
match_start);
}
match_end = current_match[1];
{
// Avoid accumulating new handles inside loop.
HandleScope temp_scope(isolate);
Handle<String> match;
if (!first) {
match = isolate->factory()->NewProperSubString(subject,
match_start,
match_end);
} else {
match = isolate->factory()->NewSubString(subject,
match_start,
match_end);
first = false;
}
if (has_capture) {
// Arguments array to replace function is match, captures, index and
// subject, i.e., 3 + capture count in total.
Handle<FixedArray> elements =
isolate->factory()->NewFixedArray(3 + capture_count);
elements->set(0, *match);
for (int i = 1; i <= capture_count; i++) {
int start = current_match[i * 2];
if (start >= 0) {
int end = current_match[i * 2 + 1];
ASSERT(start <= end);
Handle<String> substring =
isolate->factory()->NewSubString(subject, start, end);
elements->set(i, *substring);
} else {
ASSERT(current_match[i * 2 + 1] < 0);
elements->set(i, isolate->heap()->undefined_value());
}
}
elements->set(capture_count + 1, Smi::FromInt(match_start));
elements->set(capture_count + 2, *subject);
builder.Add(*isolate->factory()->NewJSArrayWithElements(elements));
} else {
builder.Add(*match);
}
}
}
if (global_cache.HasException()) return Failure::Exception();
if (match_start >= 0) {
// Finished matching, with at least one match.
if (match_end < subject_length) {
ReplacementStringBuilder::AddSubjectSlice(&builder,
match_end,
subject_length);
}
RegExpImpl::SetLastMatchInfo(
last_match_array, subject, capture_count, NULL);
if (subject_length > kMinLengthToCache) {
// Store the length of the result array into the last element of the
// backing FixedArray.
builder.EnsureCapacity(1);
Handle<FixedArray> fixed_array = builder.array();
fixed_array->set(fixed_array->length() - 1,
Smi::FromInt(builder.length()));
// Cache the result and turn the FixedArray into a COW array.
RegExpResultsCache::Enter(isolate->heap(),
*subject,
regexp->data(),
*fixed_array,
RegExpResultsCache::REGEXP_MULTIPLE_INDICES);
}
return *builder.ToJSArray(result_array);
} else {
return isolate->heap()->null_value(); // No matches at all.
}
}
// This is only called for StringReplaceGlobalRegExpWithFunction. This sets
// lastMatchInfoOverride to maintain the last match info, so we don't need to
// set any other last match array info.
RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpExecMultiple) {
HandleScope handles(isolate);
ASSERT(args.length() == 4);
CONVERT_ARG_HANDLE_CHECKED(String, subject, 1);
if (!subject->IsFlat()) FlattenString(subject);
CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0);
CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 2);
CONVERT_ARG_HANDLE_CHECKED(JSArray, result_array, 3);
ASSERT(regexp->GetFlags().is_global());
if (regexp->CaptureCount() == 0) {
return SearchRegExpMultiple<false>(
isolate, subject, regexp, last_match_info, result_array);
} else {
return SearchRegExpMultiple<true>(
isolate, subject, regexp, last_match_info, result_array);
}
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToRadixString) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_SMI_ARG_CHECKED(radix, 1);
RUNTIME_ASSERT(2 <= radix && radix <= 36);
// Fast case where the result is a one character string.
if (args[0]->IsSmi()) {
int value = args.smi_at(0);
if (value >= 0 && value < radix) {
// Character array used for conversion.
static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz";
return isolate->heap()->
LookupSingleCharacterStringFromCode(kCharTable[value]);
}
}
// Slow case.
CONVERT_DOUBLE_ARG_CHECKED(value, 0);
if (std::isnan(value)) {
return *isolate->factory()->nan_string();
}
if (std::isinf(value)) {
if (value < 0) {
return *isolate->factory()->minus_infinity_string();
}
return *isolate->factory()->infinity_string();
}
char* str = DoubleToRadixCString(value, radix);
MaybeObject* result =
isolate->heap()->AllocateStringFromOneByte(CStrVector(str));
DeleteArray(str);
return result;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToFixed) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(value, 0);
CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
int f = FastD2IChecked(f_number);
RUNTIME_ASSERT(f >= 0);
char* str = DoubleToFixedCString(value, f);
MaybeObject* res =
isolate->heap()->AllocateStringFromOneByte(CStrVector(str));
DeleteArray(str);
return res;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToExponential) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(value, 0);
CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
int f = FastD2IChecked(f_number);
RUNTIME_ASSERT(f >= -1 && f <= 20);
char* str = DoubleToExponentialCString(value, f);
MaybeObject* res =
isolate->heap()->AllocateStringFromOneByte(CStrVector(str));
DeleteArray(str);
return res;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToPrecision) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(value, 0);
CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
int f = FastD2IChecked(f_number);
RUNTIME_ASSERT(f >= 1 && f <= 21);
char* str = DoubleToPrecisionCString(value, f);
MaybeObject* res =
isolate->heap()->AllocateStringFromOneByte(CStrVector(str));
DeleteArray(str);
return res;
}
// Returns a single character string where first character equals
// string->Get(index).
static Handle<Object> GetCharAt(Handle<String> string, uint32_t index) {
if (index < static_cast<uint32_t>(string->length())) {
string->TryFlatten();
return LookupSingleCharacterStringFromCode(
string->GetIsolate(),
string->Get(index));
}
return Execution::CharAt(string, index);
}
MaybeObject* Runtime::GetElementOrCharAtOrFail(Isolate* isolate,
Handle<Object> object,
uint32_t index) {
CALL_HEAP_FUNCTION_PASS_EXCEPTION(isolate,
GetElementOrCharAt(isolate, object, index));
}
MaybeObject* Runtime::GetElementOrCharAt(Isolate* isolate,
Handle<Object> object,
uint32_t index) {
// Handle [] indexing on Strings
if (object->IsString()) {
Handle<Object> result = GetCharAt(Handle<String>::cast(object), index);
if (!result->IsUndefined()) return *result;
}
// Handle [] indexing on String objects
if (object->IsStringObjectWithCharacterAt(index)) {
Handle<JSValue> js_value = Handle<JSValue>::cast(object);
Handle<Object> result =
GetCharAt(Handle<String>(String::cast(js_value->value())), index);
if (!result->IsUndefined()) return *result;
}
if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
return object->GetPrototype(isolate)->GetElement(index);
}
return object->GetElement(index);
}
MaybeObject* Runtime::HasObjectProperty(Isolate* isolate,
Handle<JSReceiver> object,
Handle<Object> key) {
HandleScope scope(isolate);
// Check if the given key is an array index.
uint32_t index;
if (key->ToArrayIndex(&index)) {
return isolate->heap()->ToBoolean(object->HasElement(index));
}
// Convert the key to a name - possibly by calling back into JavaScript.
Handle<Name> name;
if (key->IsName()) {
name = Handle<Name>::cast(key);
} else {
bool has_pending_exception = false;
Handle<Object> converted =
Execution::ToString(key, &has_pending_exception);
if (has_pending_exception) return Failure::Exception();
name = Handle<Name>::cast(converted);
}
return isolate->heap()->ToBoolean(object->HasProperty(*name));
}
MaybeObject* Runtime::GetObjectPropertyOrFail(
Isolate* isolate,
Handle<Object> object,
Handle<Object> key) {
CALL_HEAP_FUNCTION_PASS_EXCEPTION(isolate,
GetObjectProperty(isolate, object, key));
}
MaybeObject* Runtime::GetObjectProperty(Isolate* isolate,
Handle<Object> object,
Handle<Object> key) {
HandleScope scope(isolate);
if (object->IsUndefined() || object->IsNull()) {
Handle<Object> args[2] = { key, object };
Handle<Object> error =
isolate->factory()->NewTypeError("non_object_property_load",
HandleVector(args, 2));
return isolate->Throw(*error);
}
// Check if the given key is an array index.
uint32_t index;
if (key->ToArrayIndex(&index)) {
return GetElementOrCharAt(isolate, object, index);
}
// Convert the key to a name - possibly by calling back into JavaScript.
Handle<Name> name;
if (key->IsName()) {
name = Handle<Name>::cast(key);
} else {
bool has_pending_exception = false;
Handle<Object> converted =
Execution::ToString(key, &has_pending_exception);
if (has_pending_exception) return Failure::Exception();
name = Handle<Name>::cast(converted);
}
// Check if the name is trivially convertible to an index and get
// the element if so.
if (name->AsArrayIndex(&index)) {
return GetElementOrCharAt(isolate, object, index);
} else {
return object->GetProperty(*name);
}
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetProperty) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
Handle<Object> object = args.at<Object>(0);
Handle<Object> key = args.at<Object>(1);
return Runtime::GetObjectProperty(isolate, object, key);
}
// KeyedGetProperty is called from KeyedLoadIC::GenerateGeneric.
RUNTIME_FUNCTION(MaybeObject*, Runtime_KeyedGetProperty) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
// Fast cases for getting named properties of the receiver JSObject
// itself.
//
// The global proxy objects has to be excluded since LocalLookup on
// the global proxy object can return a valid result even though the
// global proxy object never has properties. This is the case
// because the global proxy object forwards everything to its hidden
// prototype including local lookups.
//
// Additionally, we need to make sure that we do not cache results
// for objects that require access checks.
if (args[0]->IsJSObject()) {
if (!args[0]->IsJSGlobalProxy() &&
!args[0]->IsAccessCheckNeeded() &&
args[1]->IsName()) {
JSObject* receiver = JSObject::cast(args[0]);
Name* key = Name::cast(args[1]);
if (receiver->HasFastProperties()) {
// Attempt to use lookup cache.
Map* receiver_map = receiver->map();
KeyedLookupCache* keyed_lookup_cache = isolate->keyed_lookup_cache();
int offset = keyed_lookup_cache->Lookup(receiver_map, key);
if (offset != -1) {
// Doubles are not cached, so raw read the value.
Object* value = receiver->RawFastPropertyAt(offset);
return value->IsTheHole()
? isolate->heap()->undefined_value()
: value;
}
// Lookup cache miss. Perform lookup and update the cache if
// appropriate.
LookupResult result(isolate);
receiver->LocalLookup(key, &result);
if (result.IsField()) {
int offset = result.GetFieldIndex().field_index();
// Do not track double fields in the keyed lookup cache. Reading
// double values requires boxing.
if (!FLAG_track_double_fields ||
!result.representation().IsDouble()) {
keyed_lookup_cache->Update(receiver_map, key, offset);
}
return receiver->FastPropertyAt(result.representation(), offset);
}
} else {
// Attempt dictionary lookup.
NameDictionary* dictionary = receiver->property_dictionary();
int entry = dictionary->FindEntry(key);
if ((entry != NameDictionary::kNotFound) &&
(dictionary->DetailsAt(entry).type() == NORMAL)) {
Object* value = dictionary->ValueAt(entry);
if (!receiver->IsGlobalObject()) return value;
value = PropertyCell::cast(value)->value();
if (!value->IsTheHole()) return value;
// If value is the hole do the general lookup.
}
}
} else if (FLAG_smi_only_arrays && args.at<Object>(1)->IsSmi()) {
// JSObject without a name key. If the key is a Smi, check for a
// definite out-of-bounds access to elements, which is a strong indicator
// that subsequent accesses will also call the runtime. Proactively
// transition elements to FAST_*_ELEMENTS to avoid excessive boxing of
// doubles for those future calls in the case that the elements would
// become FAST_DOUBLE_ELEMENTS.
Handle<JSObject> js_object(args.at<JSObject>(0));
ElementsKind elements_kind = js_object->GetElementsKind();
if (IsFastDoubleElementsKind(elements_kind)) {
FixedArrayBase* elements = js_object->elements();
if (args.at<Smi>(1)->value() >= elements->length()) {
if (IsFastHoleyElementsKind(elements_kind)) {
elements_kind = FAST_HOLEY_ELEMENTS;
} else {
elements_kind = FAST_ELEMENTS;
}
MaybeObject* maybe_object = TransitionElements(js_object,
elements_kind,
isolate);
if (maybe_object->IsFailure()) return maybe_object;
}
} else {
ASSERT(IsFastSmiOrObjectElementsKind(elements_kind) ||
!IsFastElementsKind(elements_kind));
}
}
} else if (args[0]->IsString() && args[1]->IsSmi()) {
// Fast case for string indexing using [] with a smi index.
HandleScope scope(isolate);
Handle<String> str = args.at<String>(0);
int index = args.smi_at(1);
if (index >= 0 && index < str->length()) {
Handle<Object> result = GetCharAt(str, index);
return *result;
}
}
// Fall back to GetObjectProperty.
return Runtime::GetObjectProperty(isolate,
args.at<Object>(0),
args.at<Object>(1));
}
static bool IsValidAccessor(Handle<Object> obj) {
return obj->IsUndefined() || obj->IsSpecFunction() || obj->IsNull();
}
// Implements part of 8.12.9 DefineOwnProperty.
// There are 3 cases that lead here:
// Step 4b - define a new accessor property.
// Steps 9c & 12 - replace an existing data property with an accessor property.
// Step 12 - update an existing accessor property with an accessor or generic
// descriptor.
RUNTIME_FUNCTION(MaybeObject*, Runtime_DefineOrRedefineAccessorProperty) {
HandleScope scope(isolate);
ASSERT(args.length() == 5);
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
RUNTIME_ASSERT(!obj->IsNull());
CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, getter, 2);
RUNTIME_ASSERT(IsValidAccessor(getter));
CONVERT_ARG_HANDLE_CHECKED(Object, setter, 3);
RUNTIME_ASSERT(IsValidAccessor(setter));
CONVERT_SMI_ARG_CHECKED(unchecked, 4);
RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
bool fast = obj->HasFastProperties();
JSObject::DefineAccessor(obj, name, getter, setter, attr);
if (fast) JSObject::TransformToFastProperties(obj, 0);
return isolate->heap()->undefined_value();
}
// Implements part of 8.12.9 DefineOwnProperty.
// There are 3 cases that lead here:
// Step 4a - define a new data property.
// Steps 9b & 12 - replace an existing accessor property with a data property.
// Step 12 - update an existing data property with a data or generic
// descriptor.
RUNTIME_FUNCTION(MaybeObject*, Runtime_DefineOrRedefineDataProperty) {
HandleScope scope(isolate);
ASSERT(args.length() == 4);
CONVERT_ARG_HANDLE_CHECKED(JSObject, js_object, 0);
CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, obj_value, 2);
CONVERT_SMI_ARG_CHECKED(unchecked, 3);
RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
LookupResult result(isolate);
js_object->LocalLookupRealNamedProperty(*name, &result);
// Special case for callback properties.
if (result.IsPropertyCallbacks()) {
Object* callback = result.GetCallbackObject();
// To be compatible with Safari we do not change the value on API objects
// in Object.defineProperty(). Firefox disagrees here, and actually changes
// the value.
if (callback->IsAccessorInfo()) {
return isolate->heap()->undefined_value();
}
// Avoid redefining foreign callback as data property, just use the stored
// setter to update the value instead.
// TODO(mstarzinger): So far this only works if property attributes don't
// change, this should be fixed once we cleanup the underlying code.
if (callback->IsForeign() && result.GetAttributes() == attr) {
return js_object->SetPropertyWithCallback(callback,
*name,
*obj_value,
result.holder(),
kStrictMode);
}
}
// Take special care when attributes are different and there is already
// a property. For simplicity we normalize the property which enables us
// to not worry about changing the instance_descriptor and creating a new
// map. The current version of SetObjectProperty does not handle attributes
// correctly in the case where a property is a field and is reset with
// new attributes.
if (result.IsFound() &&
(attr != result.GetAttributes() || result.IsPropertyCallbacks())) {
// New attributes - normalize to avoid writing to instance descriptor
if (js_object->IsJSGlobalProxy()) {
// Since the result is a property, the prototype will exist so
// we don't have to check for null.
js_object = Handle<JSObject>(JSObject::cast(js_object->GetPrototype()));
}
JSObject::NormalizeProperties(js_object, CLEAR_INOBJECT_PROPERTIES, 0);
// Use IgnoreAttributes version since a readonly property may be
// overridden and SetProperty does not allow this.
return js_object->SetLocalPropertyIgnoreAttributes(*name,
*obj_value,
attr);
}
return Runtime::ForceSetObjectProperty(isolate,
js_object,
name,
obj_value,
attr);
}
// Return property without being observable by accessors or interceptors.
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetDataProperty) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
LookupResult lookup(isolate);
object->LookupRealNamedProperty(*key, &lookup);
if (!lookup.IsFound()) return isolate->heap()->undefined_value();
switch (lookup.type()) {
case NORMAL:
return lookup.holder()->GetNormalizedProperty(&lookup);
case FIELD:
return lookup.holder()->FastPropertyAt(
lookup.representation(),
lookup.GetFieldIndex().field_index());
case CONSTANT_FUNCTION:
return lookup.GetConstantFunction();
case CALLBACKS:
case HANDLER:
case INTERCEPTOR:
case TRANSITION:
return isolate->heap()->undefined_value();
case NONEXISTENT:
UNREACHABLE();
}
return isolate->heap()->undefined_value();
}
MaybeObject* Runtime::SetObjectPropertyOrFail(
Isolate* isolate,
Handle<Object> object,
Handle<Object> key,
Handle<Object> value,
PropertyAttributes attr,
StrictModeFlag strict_mode) {
CALL_HEAP_FUNCTION_PASS_EXCEPTION(isolate,
SetObjectProperty(isolate, object, key, value, attr, strict_mode));
}
MaybeObject* Runtime::SetObjectProperty(Isolate* isolate,
Handle<Object> object,
Handle<Object> key,
Handle<Object> value,
PropertyAttributes attr,
StrictModeFlag strict_mode) {
SetPropertyMode set_mode = attr == NONE ? SET_PROPERTY : DEFINE_PROPERTY;
HandleScope scope(isolate);
if (object->IsUndefined() || object->IsNull()) {
Handle<Object> args[2] = { key, object };
Handle<Object> error =
isolate->factory()->NewTypeError("non_object_property_store",
HandleVector(args, 2));
return isolate->Throw(*error);
}
if (object->IsJSProxy()) {
bool has_pending_exception = false;
Handle<Object> name = key->IsSymbol()
? key : Execution::ToString(key, &has_pending_exception);
if (has_pending_exception) return Failure::Exception();
return JSProxy::cast(*object)->SetProperty(
Name::cast(*name), *value, attr, strict_mode);
}
// If the object isn't a JavaScript object, we ignore the store.
if (!object->IsJSObject()) return *value;
Handle<JSObject> js_object = Handle<JSObject>::cast(object);
// Check if the given key is an array index.
uint32_t index;
if (key->ToArrayIndex(&index)) {
// In Firefox/SpiderMonkey, Safari and Opera you can access the characters
// of a string using [] notation. We need to support this too in
// JavaScript.
// In the case of a String object we just need to redirect the assignment to
// the underlying string if the index is in range. Since the underlying
// string does nothing with the assignment then we can ignore such
// assignments.
if (js_object->IsStringObjectWithCharacterAt(index)) {
return *value;
}
js_object->ValidateElements();
if (js_object->HasExternalArrayElements()) {
if (!value->IsNumber() && !value->IsUndefined()) {
bool has_exception;
Handle<Object> number = Execution::ToNumber(value, &has_exception);
if (has_exception) return Failure::Exception();
value = number;
}
}
MaybeObject* result = js_object->SetElement(
index, *value, attr, strict_mode, true, set_mode);
js_object->ValidateElements();
if (result->IsFailure()) return result;
return *value;
}
if (key->IsName()) {
MaybeObject* result;
Handle<Name> name = Handle<Name>::cast(key);
if (name->AsArrayIndex(&index)) {
if (js_object->HasExternalArrayElements()) {
if (!value->IsNumber() && !value->IsUndefined()) {
bool has_exception;
Handle<Object> number = Execution::ToNumber(value, &has_exception);
if (has_exception) return Failure::Exception();
value = number;
}
}
result = js_object->SetElement(
index, *value, attr, strict_mode, true, set_mode);
} else {
if (name->IsString()) Handle<String>::cast(name)->TryFlatten();
result = js_object->SetProperty(*name, *value, attr, strict_mode);
}
if (result->IsFailure()) return result;
return *value;
}
// Call-back into JavaScript to convert the key to a string.
bool has_pending_exception = false;
Handle<Object> converted = Execution::ToString(key, &has_pending_exception);
if (has_pending_exception) return Failure::Exception();
Handle<String> name = Handle<String>::cast(converted);
if (name->AsArrayIndex(&index)) {
return js_object->SetElement(
index, *value, attr, strict_mode, true, set_mode);
} else {
return js_object->SetProperty(*name, *value, attr, strict_mode);
}
}
MaybeObject* Runtime::ForceSetObjectProperty(Isolate* isolate,
Handle<JSObject> js_object,
Handle<Object> key,
Handle<Object> value,
PropertyAttributes attr) {
HandleScope scope(isolate);
// Check if the given key is an array index.
uint32_t index;
if (key->ToArrayIndex(&index)) {
// In Firefox/SpiderMonkey, Safari and Opera you can access the characters
// of a string using [] notation. We need to support this too in
// JavaScript.
// In the case of a String object we just need to redirect the assignment to
// the underlying string if the index is in range. Since the underlying
// string does nothing with the assignment then we can ignore such
// assignments.
if (js_object->IsStringObjectWithCharacterAt(index)) {
return *value;
}
return js_object->SetElement(
index, *value, attr, kNonStrictMode, false, DEFINE_PROPERTY);
}
if (key->IsName()) {
Handle<Name> name = Handle<Name>::cast(key);
if (name->AsArrayIndex(&index)) {
return js_object->SetElement(
index, *value, attr, kNonStrictMode, false, DEFINE_PROPERTY);
} else {
if (name->IsString()) Handle<String>::cast(name)->TryFlatten();
return js_object->SetLocalPropertyIgnoreAttributes(*name, *value, attr);
}
}
// Call-back into JavaScript to convert the key to a string.
bool has_pending_exception = false;
Handle<Object> converted = Execution::ToString(key, &has_pending_exception);
if (has_pending_exception) return Failure::Exception();
Handle<String> name = Handle<String>::cast(converted);
if (name->AsArrayIndex(&index)) {
return js_object->SetElement(
index, *value, attr, kNonStrictMode, false, DEFINE_PROPERTY);
} else {
return js_object->SetLocalPropertyIgnoreAttributes(*name, *value, attr);
}
}
MaybeObject* Runtime::DeleteObjectProperty(Isolate* isolate,
Handle<JSReceiver> receiver,
Handle<Object> key,
JSReceiver::DeleteMode mode) {
HandleScope scope(isolate);
// Check if the given key is an array index.
uint32_t index;
if (key->ToArrayIndex(&index)) {
// In Firefox/SpiderMonkey, Safari and Opera you can access the
// characters of a string using [] notation. In the case of a
// String object we just need to redirect the deletion to the
// underlying string if the index is in range. Since the
// underlying string does nothing with the deletion, we can ignore
// such deletions.
if (receiver->IsStringObjectWithCharacterAt(index)) {
return isolate->heap()->true_value();
}
return receiver->DeleteElement(index, mode);
}
Handle<Name> name;
if (key->IsName()) {
name = Handle<Name>::cast(key);
} else {
// Call-back into JavaScript to convert the key to a string.
bool has_pending_exception = false;
Handle<Object> converted = Execution::ToString(key, &has_pending_exception);
if (has_pending_exception) return Failure::Exception();
name = Handle<String>::cast(converted);
}
if (name->IsString()) Handle<String>::cast(name)->TryFlatten();
return receiver->DeleteProperty(*name, mode);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_SetProperty) {
SealHandleScope shs(isolate);
RUNTIME_ASSERT(args.length() == 4 || args.length() == 5);
Handle<Object> object = args.at<Object>(0);
Handle<Object> key = args.at<Object>(1);
Handle<Object> value = args.at<Object>(2);
CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3);
RUNTIME_ASSERT(
(unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
// Compute attributes.
PropertyAttributes attributes =
static_cast<PropertyAttributes>(unchecked_attributes);
StrictModeFlag strict_mode = kNonStrictMode;
if (args.length() == 5) {
CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode_flag, 4);
strict_mode = strict_mode_flag;
}
return Runtime::SetObjectProperty(isolate,
object,
key,
value,
attributes,
strict_mode);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_TransitionElementsKind) {
HandleScope scope(isolate);
RUNTIME_ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
CONVERT_ARG_HANDLE_CHECKED(Map, map, 1);
JSObject::TransitionElementsKind(array, map->elements_kind());
return *array;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_TransitionElementsSmiToDouble) {
SealHandleScope shs(isolate);
RUNTIME_ASSERT(args.length() == 1);
Handle<Object> object = args.at<Object>(0);
if (object->IsJSObject()) {
Handle<JSObject> js_object(Handle<JSObject>::cast(object));
ASSERT(!js_object->map()->is_observed());
ElementsKind new_kind = js_object->HasFastHoleyElements()
? FAST_HOLEY_DOUBLE_ELEMENTS
: FAST_DOUBLE_ELEMENTS;
return TransitionElements(object, new_kind, isolate);
} else {
return *object;
}
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_TransitionElementsDoubleToObject) {
SealHandleScope shs(isolate);
RUNTIME_ASSERT(args.length() == 1);
Handle<Object> object = args.at<Object>(0);
if (object->IsJSObject()) {
Handle<JSObject> js_object(Handle<JSObject>::cast(object));
ASSERT(!js_object->map()->is_observed());
ElementsKind new_kind = js_object->HasFastHoleyElements()
? FAST_HOLEY_ELEMENTS
: FAST_ELEMENTS;
return TransitionElements(object, new_kind, isolate);
} else {
return *object;
}
}
// Set the native flag on the function.
// This is used to decide if we should transform null and undefined
// into the global object when doing call and apply.
RUNTIME_FUNCTION(MaybeObject*, Runtime_SetNativeFlag) {
SealHandleScope shs(isolate);
RUNTIME_ASSERT(args.length() == 1);
Handle<Object> object = args.at<Object>(0);
if (object->IsJSFunction()) {
JSFunction* func = JSFunction::cast(*object);
func->shared()->set_native(true);
}
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StoreArrayLiteralElement) {
HandleScope scope(isolate);
RUNTIME_ASSERT(args.length() == 5);
CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
CONVERT_SMI_ARG_CHECKED(store_index, 1);
Handle<Object> value = args.at<Object>(2);
CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 3);
CONVERT_SMI_ARG_CHECKED(literal_index, 4);
Object* raw_literal_cell = literals->get(literal_index);
JSArray* boilerplate = NULL;
if (raw_literal_cell->IsAllocationSite()) {
AllocationSite* site = AllocationSite::cast(raw_literal_cell);
boilerplate = JSArray::cast(site->transition_info());
} else {
boilerplate = JSArray::cast(raw_literal_cell);
}
Handle<JSArray> boilerplate_object(boilerplate);
ElementsKind elements_kind = object->GetElementsKind();
ASSERT(IsFastElementsKind(elements_kind));
// Smis should never trigger transitions.
ASSERT(!value->IsSmi());
if (value->IsNumber()) {
ASSERT(IsFastSmiElementsKind(elements_kind));
ElementsKind transitioned_kind = IsFastHoleyElementsKind(elements_kind)
? FAST_HOLEY_DOUBLE_ELEMENTS
: FAST_DOUBLE_ELEMENTS;
if (IsMoreGeneralElementsKindTransition(
boilerplate_object->GetElementsKind(),
transitioned_kind)) {
JSObject::TransitionElementsKind(boilerplate_object, transitioned_kind);
}
JSObject::TransitionElementsKind(object, transitioned_kind);
ASSERT(IsFastDoubleElementsKind(object->GetElementsKind()));
FixedDoubleArray* double_array = FixedDoubleArray::cast(object->elements());
HeapNumber* number = HeapNumber::cast(*value);
double_array->set(store_index, number->Number());
} else {
ASSERT(IsFastSmiElementsKind(elements_kind) ||
IsFastDoubleElementsKind(elements_kind));
ElementsKind transitioned_kind = IsFastHoleyElementsKind(elements_kind)
? FAST_HOLEY_ELEMENTS
: FAST_ELEMENTS;
JSObject::TransitionElementsKind(object, transitioned_kind);
if (IsMoreGeneralElementsKindTransition(
boilerplate_object->GetElementsKind(),
transitioned_kind)) {
JSObject::TransitionElementsKind(boilerplate_object, transitioned_kind);
}
FixedArray* object_array = FixedArray::cast(object->elements());
object_array->set(store_index, *value);
}
return *object;
}
// Check whether debugger and is about to step into the callback that is passed
// to a built-in function such as Array.forEach.
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugCallbackSupportsStepping) {
SealHandleScope shs(isolate);
#ifdef ENABLE_DEBUGGER_SUPPORT
if (!isolate->IsDebuggerActive() || !isolate->debug()->StepInActive()) {
return isolate->heap()->false_value();
}
CONVERT_ARG_CHECKED(Object, callback, 0);
// We do not step into the callback if it's a builtin or not even a function.
if (!callback->IsJSFunction() || JSFunction::cast(callback)->IsBuiltin()) {
return isolate->heap()->false_value();
}
return isolate->heap()->true_value();
#else
return isolate->heap()->false_value();
#endif // ENABLE_DEBUGGER_SUPPORT
}
// Set one shot breakpoints for the callback function that is passed to a
// built-in function such as Array.forEach to enable stepping into the callback.
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPrepareStepInIfStepping) {
SealHandleScope shs(isolate);
#ifdef ENABLE_DEBUGGER_SUPPORT
Debug* debug = isolate->debug();
if (!debug->IsStepping()) return isolate->heap()->undefined_value();
CONVERT_ARG_HANDLE_CHECKED(JSFunction, callback, 0);
HandleScope scope(isolate);
// When leaving the callback, step out has been activated, but not performed
// if we do not leave the builtin. To be able to step into the callback
// again, we need to clear the step out at this point.
debug->ClearStepOut();
debug->FloodWithOneShot(callback);
#endif // ENABLE_DEBUGGER_SUPPORT
return isolate->heap()->undefined_value();
}
// Set a local property, even if it is READ_ONLY. If the property does not
// exist, it will be added with attributes NONE.
RUNTIME_FUNCTION(MaybeObject*, Runtime_IgnoreAttributesAndSetProperty) {
SealHandleScope shs(isolate);
RUNTIME_ASSERT(args.length() == 3 || args.length() == 4);
CONVERT_ARG_CHECKED(JSObject, object, 0);
CONVERT_ARG_CHECKED(Name, name, 1);
// Compute attributes.
PropertyAttributes attributes = NONE;
if (args.length() == 4) {
CONVERT_SMI_ARG_CHECKED(unchecked_value, 3);
// Only attribute bits should be set.
RUNTIME_ASSERT(
(unchecked_value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
attributes = static_cast<PropertyAttributes>(unchecked_value);
}
return object->
SetLocalPropertyIgnoreAttributes(name, args[2], attributes);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DeleteProperty) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(JSReceiver, object, 0);
CONVERT_ARG_CHECKED(Name, key, 1);
CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 2);
return object->DeleteProperty(key, (strict_mode == kStrictMode)
? JSReceiver::STRICT_DELETION
: JSReceiver::NORMAL_DELETION);
}
static Object* HasLocalPropertyImplementation(Isolate* isolate,
Handle<JSObject> object,
Handle<Name> key) {
if (object->HasLocalProperty(*key)) return isolate->heap()->true_value();
// Handle hidden prototypes. If there's a hidden prototype above this thing
// then we have to check it for properties, because they are supposed to
// look like they are on this object.
Handle<Object> proto(object->GetPrototype(), isolate);
if (proto->IsJSObject() &&
Handle<JSObject>::cast(proto)->map()->is_hidden_prototype()) {
return HasLocalPropertyImplementation(isolate,
Handle<JSObject>::cast(proto),
key);
}
return isolate->heap()->false_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_HasLocalProperty) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(Name, key, 1);
uint32_t index;
const bool key_is_array_index = key->AsArrayIndex(&index);
Object* obj = args[0];
// Only JS objects can have properties.
if (obj->IsJSObject()) {
JSObject* object = JSObject::cast(obj);
// Fast case: either the key is a real named property or it is not
// an array index and there are no interceptors or hidden
// prototypes.
if (object->HasRealNamedProperty(isolate, key))
return isolate->heap()->true_value();
Map* map = object->map();
if (!key_is_array_index &&
!map->has_named_interceptor() &&
!HeapObject::cast(map->prototype())->map()->is_hidden_prototype()) {
return isolate->heap()->false_value();
}
// Slow case.
HandleScope scope(isolate);
return HasLocalPropertyImplementation(isolate,
Handle<JSObject>(object),
Handle<Name>(key));
} else if (obj->IsString() && key_is_array_index) {
// Well, there is one exception: Handle [] on strings.
String* string = String::cast(obj);
if (index < static_cast<uint32_t>(string->length())) {
return isolate->heap()->true_value();
}
}
return isolate->heap()->false_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_HasProperty) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSReceiver, receiver, 0);
CONVERT_ARG_CHECKED(Name, key, 1);
bool result = receiver->HasProperty(key);
if (isolate->has_pending_exception()) return Failure::Exception();
return isolate->heap()->ToBoolean(result);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_HasElement) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSReceiver, receiver, 0);
CONVERT_SMI_ARG_CHECKED(index, 1);
bool result = receiver->HasElement(index);
if (isolate->has_pending_exception()) return Failure::Exception();
return isolate->heap()->ToBoolean(result);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_IsPropertyEnumerable) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSObject, object, 0);
CONVERT_ARG_CHECKED(Name, key, 1);
PropertyAttributes att = object->GetLocalPropertyAttribute(key);
return isolate->heap()->ToBoolean(att != ABSENT && (att & DONT_ENUM) == 0);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetPropertyNames) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0);
bool threw = false;
Handle<JSArray> result = GetKeysFor(object, &threw);
if (threw) return Failure::Exception();
return *result;
}
// Returns either a FixedArray as Runtime_GetPropertyNames,
// or, if the given object has an enum cache that contains
// all enumerable properties of the object and its prototypes
// have none, the map of the object. This is used to speed up
// the check for deletions during a for-in.
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetPropertyNamesFast) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSReceiver, raw_object, 0);
if (raw_object->IsSimpleEnum()) return raw_object->map();
HandleScope scope(isolate);
Handle<JSReceiver> object(raw_object);
bool threw = false;
Handle<FixedArray> content =
GetKeysInFixedArrayFor(object, INCLUDE_PROTOS, &threw);
if (threw) return Failure::Exception();
// Test again, since cache may have been built by preceding call.
if (object->IsSimpleEnum()) return object->map();
return *content;
}
// Find the length of the prototype chain that is to to handled as one. If a
// prototype object is hidden it is to be viewed as part of the the object it
// is prototype for.
static int LocalPrototypeChainLength(JSObject* obj) {
int count = 1;
Object* proto = obj->GetPrototype();
while (proto->IsJSObject() &&
JSObject::cast(proto)->map()->is_hidden_prototype()) {
count++;
proto = JSObject::cast(proto)->GetPrototype();
}
return count;
}
// Return the names of the local named properties.
// args[0]: object
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLocalPropertyNames) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
if (!args[0]->IsJSObject()) {
return isolate->heap()->undefined_value();
}
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
CONVERT_BOOLEAN_ARG_CHECKED(include_symbols, 1);
PropertyAttributes filter = include_symbols ? NONE : SYMBOLIC;
// Skip the global proxy as it has no properties and always delegates to the
// real global object.
if (obj->IsJSGlobalProxy()) {
// Only collect names if access is permitted.
if (obj->IsAccessCheckNeeded() &&
!isolate->MayNamedAccess(*obj,
isolate->heap()->undefined_value(),
v8::ACCESS_KEYS)) {
isolate->ReportFailedAccessCheck(*obj, v8::ACCESS_KEYS);
return *isolate->factory()->NewJSArray(0);
}
obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype()));
}
// Find the number of objects making up this.
int length = LocalPrototypeChainLength(*obj);
// Find the number of local properties for each of the objects.
ScopedVector<int> local_property_count(length);
int total_property_count = 0;
Handle<JSObject> jsproto = obj;
for (int i = 0; i < length; i++) {
// Only collect names if access is permitted.
if (jsproto->IsAccessCheckNeeded() &&
!isolate->MayNamedAccess(*jsproto,
isolate->heap()->undefined_value(),
v8::ACCESS_KEYS)) {
isolate->ReportFailedAccessCheck(*jsproto, v8::ACCESS_KEYS);
return *isolate->factory()->NewJSArray(0);
}
int n;
n = jsproto->NumberOfLocalProperties(filter);
local_property_count[i] = n;
total_property_count += n;
if (i < length - 1) {
jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype()));
}
}
// Allocate an array with storage for all the property names.
Handle<FixedArray> names =
isolate->factory()->NewFixedArray(total_property_count);
// Get the property names.
jsproto = obj;
int proto_with_hidden_properties = 0;
int next_copy_index = 0;
for (int i = 0; i < length; i++) {
jsproto->GetLocalPropertyNames(*names, next_copy_index, filter);
next_copy_index += local_property_count[i];
if (jsproto->HasHiddenProperties()) {
proto_with_hidden_properties++;
}
if (i < length - 1) {
jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype()));
}
}
// Filter out name of hidden properties object.
if (proto_with_hidden_properties > 0) {
Handle<FixedArray> old_names = names;
names = isolate->factory()->NewFixedArray(
names->length() - proto_with_hidden_properties);
int dest_pos = 0;
for (int i = 0; i < total_property_count; i++) {
Object* name = old_names->get(i);
if (name == isolate->heap()->hidden_string()) {
continue;
}
names->set(dest_pos++, name);
}
}
return *isolate->factory()->NewJSArrayWithElements(names);
}
// Return the names of the local indexed properties.
// args[0]: object
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLocalElementNames) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
if (!args[0]->IsJSObject()) {
return isolate->heap()->undefined_value();
}
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
int n = obj->NumberOfLocalElements(static_cast<PropertyAttributes>(NONE));
Handle<FixedArray> names = isolate->factory()->NewFixedArray(n);
obj->GetLocalElementKeys(*names, static_cast<PropertyAttributes>(NONE));
return *isolate->factory()->NewJSArrayWithElements(names);
}
// Return information on whether an object has a named or indexed interceptor.
// args[0]: object
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetInterceptorInfo) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
if (!args[0]->IsJSObject()) {
return Smi::FromInt(0);
}
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
int result = 0;
if (obj->HasNamedInterceptor()) result |= 2;
if (obj->HasIndexedInterceptor()) result |= 1;
return Smi::FromInt(result);
}
// Return property names from named interceptor.
// args[0]: object
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetNamedInterceptorPropertyNames) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
if (obj->HasNamedInterceptor()) {
v8::Handle<v8::Array> result = GetKeysForNamedInterceptor(obj, obj);
if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result);
}
return isolate->heap()->undefined_value();
}
// Return element names from indexed interceptor.
// args[0]: object
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetIndexedInterceptorElementNames) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
if (obj->HasIndexedInterceptor()) {
v8::Handle<v8::Array> result = GetKeysForIndexedInterceptor(obj, obj);
if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result);
}
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_LocalKeys) {
HandleScope scope(isolate);
ASSERT_EQ(args.length(), 1);
CONVERT_ARG_CHECKED(JSObject, raw_object, 0);
Handle<JSObject> object(raw_object);
if (object->IsJSGlobalProxy()) {
// Do access checks before going to the global object.
if (object->IsAccessCheckNeeded() &&
!isolate->MayNamedAccess(*object, isolate->heap()->undefined_value(),
v8::ACCESS_KEYS)) {
isolate->ReportFailedAccessCheck(*object, v8::ACCESS_KEYS);
return *isolate->factory()->NewJSArray(0);
}
Handle<Object> proto(object->GetPrototype(), isolate);
// If proxy is detached we simply return an empty array.
if (proto->IsNull()) return *isolate->factory()->NewJSArray(0);
object = Handle<JSObject>::cast(proto);
}
bool threw = false;
Handle<FixedArray> contents =
GetKeysInFixedArrayFor(object, LOCAL_ONLY, &threw);
if (threw) return Failure::Exception();
// Some fast paths through GetKeysInFixedArrayFor reuse a cached
// property array and since the result is mutable we have to create
// a fresh clone on each invocation.
int length = contents->length();
Handle<FixedArray> copy = isolate->factory()->NewFixedArray(length);
for (int i = 0; i < length; i++) {
Object* entry = contents->get(i);
if (entry->IsString()) {
copy->set(i, entry);
} else {
ASSERT(entry->IsNumber());
HandleScope scope(isolate);
Handle<Object> entry_handle(entry, isolate);
Handle<Object> entry_str =
isolate->factory()->NumberToString(entry_handle);
copy->set(i, *entry_str);
}
}
return *isolate->factory()->NewJSArrayWithElements(copy);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetArgumentsProperty) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
// Compute the frame holding the arguments.
JavaScriptFrameIterator it(isolate);
it.AdvanceToArgumentsFrame();
JavaScriptFrame* frame = it.frame();
// Get the actual number of provided arguments.
const uint32_t n = frame->ComputeParametersCount();
// Try to convert the key to an index. If successful and within
// index return the the argument from the frame.
uint32_t index;
if (args[0]->ToArrayIndex(&index) && index < n) {
return frame->GetParameter(index);
}
if (args[0]->IsSymbol()) {
// Lookup in the initial Object.prototype object.
return isolate->initial_object_prototype()->GetProperty(
Symbol::cast(args[0]));
}
// Convert the key to a string.
HandleScope scope(isolate);
bool exception = false;
Handle<Object> converted =
Execution::ToString(args.at<Object>(0), &exception);
if (exception) return Failure::Exception();
Handle<String> key = Handle<String>::cast(converted);
// Try to convert the string key into an array index.
if (key->AsArrayIndex(&index)) {
if (index < n) {
return frame->GetParameter(index);
} else {
return isolate->initial_object_prototype()->GetElement(index);
}
}
// Handle special arguments properties.
if (key->Equals(isolate->heap()->length_string())) return Smi::FromInt(n);
if (key->Equals(isolate->heap()->callee_string())) {
JSFunction* function = frame->function();
if (!function->shared()->is_classic_mode()) {
return isolate->Throw(*isolate->factory()->NewTypeError(
"strict_arguments_callee", HandleVector<Object>(NULL, 0)));
}
return function;
}
// Lookup in the initial Object.prototype object.
return isolate->initial_object_prototype()->GetProperty(*key);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_ToFastProperties) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
Object* object = args[0];
return (object->IsJSObject() && !object->IsGlobalObject())
? JSObject::cast(object)->TransformToFastProperties(0)
: object;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_ToBool) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
return isolate->heap()->ToBoolean(args[0]->BooleanValue());
}
// Returns the type string of a value; see ECMA-262, 11.4.3 (p 47).
// Possible optimizations: put the type string into the oddballs.
RUNTIME_FUNCTION(MaybeObject*, Runtime_Typeof) {
SealHandleScope shs(isolate);
Object* obj = args[0];
if (obj->IsNumber()) return isolate->heap()->number_string();
HeapObject* heap_obj = HeapObject::cast(obj);
// typeof an undetectable object is 'undefined'
if (heap_obj->map()->is_undetectable()) {
return isolate->heap()->undefined_string();
}
InstanceType instance_type = heap_obj->map()->instance_type();
if (instance_type < FIRST_NONSTRING_TYPE) {
return isolate->heap()->string_string();
}
switch (instance_type) {
case ODDBALL_TYPE:
if (heap_obj->IsTrue() || heap_obj->IsFalse()) {
return isolate->heap()->boolean_string();
}
if (heap_obj->IsNull()) {
return FLAG_harmony_typeof
? isolate->heap()->null_string()
: isolate->heap()->object_string();
}
ASSERT(heap_obj->IsUndefined());
return isolate->heap()->undefined_string();
case SYMBOL_TYPE:
return isolate->heap()->symbol_string();
case JS_FUNCTION_TYPE:
case JS_FUNCTION_PROXY_TYPE:
return isolate->heap()->function_string();
default:
// For any kind of object not handled above, the spec rule for
// host objects gives that it is okay to return "object"
return isolate->heap()->object_string();
}
}
static bool AreDigits(const uint8_t*s, int from, int to) {
for (int i = from; i < to; i++) {
if (s[i] < '0' || s[i] > '9') return false;
}
return true;
}
static int ParseDecimalInteger(const uint8_t*s, int from, int to) {
ASSERT(to - from < 10); // Overflow is not possible.
ASSERT(from < to);
int d = s[from] - '0';
for (int i = from + 1; i < to; i++) {
d = 10 * d + (s[i] - '0');
}
return d;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToNumber) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(String, subject, 0);
subject->TryFlatten();
// Fast case: short integer or some sorts of junk values.
int len = subject->length();
if (subject->IsSeqOneByteString()) {
if (len == 0) return Smi::FromInt(0);
uint8_t const* data = SeqOneByteString::cast(subject)->GetChars();
bool minus = (data[0] == '-');
int start_pos = (minus ? 1 : 0);
if (start_pos == len) {
return isolate->heap()->nan_value();
} else if (data[start_pos] > '9') {
// Fast check for a junk value. A valid string may start from a
// whitespace, a sign ('+' or '-'), the decimal point, a decimal digit or
// the 'I' character ('Infinity'). All of that have codes not greater than
// '9' except 'I' and &nbsp;.
if (data[start_pos] != 'I' && data[start_pos] != 0xa0) {
return isolate->heap()->nan_value();
}
} else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) {
// The maximal/minimal smi has 10 digits. If the string has less digits we
// know it will fit into the smi-data type.
int d = ParseDecimalInteger(data, start_pos, len);
if (minus) {
if (d == 0) return isolate->heap()->minus_zero_value();
d = -d;
} else if (!subject->HasHashCode() &&
len <= String::kMaxArrayIndexSize &&
(len == 1 || data[0] != '0')) {
// String hash is not calculated yet but all the data are present.
// Update the hash field to speed up sequential convertions.
uint32_t hash = StringHasher::MakeArrayIndexHash(d, len);
#ifdef DEBUG
subject->Hash(); // Force hash calculation.
ASSERT_EQ(static_cast<int>(subject->hash_field()),
static_cast<int>(hash));
#endif
subject->set_hash_field(hash);
}
return Smi::FromInt(d);
}
}
// Slower case.
return isolate->heap()->NumberFromDouble(
StringToDouble(isolate->unicode_cache(), subject, ALLOW_HEX));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NewString) {
SealHandleScope shs(isolate);
CONVERT_SMI_ARG_CHECKED(length, 0);
CONVERT_BOOLEAN_ARG_CHECKED(is_one_byte, 1);
if (length == 0) return isolate->heap()->empty_string();
if (is_one_byte) {
return isolate->heap()->AllocateRawOneByteString(length);
} else {
return isolate->heap()->AllocateRawTwoByteString(length);
}
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_TruncateString) {
HandleScope scope(isolate);
CONVERT_ARG_HANDLE_CHECKED(SeqString, string, 0);
CONVERT_SMI_ARG_CHECKED(new_length, 1);
return *SeqString::Truncate(string, new_length);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_URIEscape) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
Handle<String> string = FlattenGetString(source);
ASSERT(string->IsFlat());
Handle<String> result = string->IsOneByteRepresentationUnderneath()
? URIEscape::Escape<uint8_t>(isolate, source)
: URIEscape::Escape<uc16>(isolate, source);
if (result.is_null()) return Failure::OutOfMemoryException(0x12);
return *result;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_URIUnescape) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
Handle<String> string = FlattenGetString(source);
ASSERT(string->IsFlat());
return string->IsOneByteRepresentationUnderneath()
? *URIUnescape::Unescape<uint8_t>(isolate, source)
: *URIUnescape::Unescape<uc16>(isolate, source);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_QuoteJSONString) {
HandleScope scope(isolate);
CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
ASSERT(args.length() == 1);
return BasicJsonStringifier::StringifyString(isolate, string);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_BasicJSONStringify) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
BasicJsonStringifier stringifier(isolate);
return stringifier.Stringify(Handle<Object>(args[0], isolate));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringParseInt) {
SealHandleScope shs(isolate);
CONVERT_ARG_CHECKED(String, s, 0);
CONVERT_SMI_ARG_CHECKED(radix, 1);
s->TryFlatten();
RUNTIME_ASSERT(radix == 0 || (2 <= radix && radix <= 36));
double value = StringToInt(isolate->unicode_cache(), s, radix);
return isolate->heap()->NumberFromDouble(value);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringParseFloat) {
SealHandleScope shs(isolate);
CONVERT_ARG_CHECKED(String, str, 0);
// ECMA-262 section 15.1.2.3, empty string is NaN
double value = StringToDouble(isolate->unicode_cache(),
str, ALLOW_TRAILING_JUNK, OS::nan_value());
// Create a number object from the value.
return isolate->heap()->NumberFromDouble(value);
}
template <class Converter>
MUST_USE_RESULT static MaybeObject* ConvertCaseHelper(
Isolate* isolate,
String* s,
int length,
int input_string_length,
unibrow::Mapping<Converter, 128>* mapping) {
// We try this twice, once with the assumption that the result is no longer
// than the input and, if that assumption breaks, again with the exact
// length. This may not be pretty, but it is nicer than what was here before
// and I hereby claim my vaffel-is.
//
// Allocate the resulting string.
//
// NOTE: This assumes that the upper/lower case of an ASCII
// character is also ASCII. This is currently the case, but it
// might break in the future if we implement more context and locale
// dependent upper/lower conversions.
Object* o;
{ MaybeObject* maybe_o = s->IsOneByteRepresentation()
? isolate->heap()->AllocateRawOneByteString(length)
: isolate->heap()->AllocateRawTwoByteString(length);
if (!maybe_o->ToObject(&o)) return maybe_o;
}
String* result = String::cast(o);
bool has_changed_character = false;
// Convert all characters to upper case, assuming that they will fit
// in the buffer
Access<ConsStringIteratorOp> op(
isolate->runtime_state()->string_iterator());
StringCharacterStream stream(s, op.value());
unibrow::uchar chars[Converter::kMaxWidth];
// We can assume that the string is not empty
uc32 current = stream.GetNext();
for (int i = 0; i < length;) {
bool has_next = stream.HasMore();
uc32 next = has_next ? stream.GetNext() : 0;
int char_length = mapping->get(current, next, chars);
if (char_length == 0) {
// The case conversion of this character is the character itself.
result->Set(i, current);
i++;
} else if (char_length == 1) {
// Common case: converting the letter resulted in one character.
ASSERT(static_cast<uc32>(chars[0]) != current);
result->Set(i, chars[0]);
has_changed_character = true;
i++;
} else if (length == input_string_length) {
// We've assumed that the result would be as long as the
// input but here is a character that converts to several
// characters. No matter, we calculate the exact length
// of the result and try the whole thing again.
//
// Note that this leaves room for optimization. We could just
// memcpy what we already have to the result string. Also,
// the result string is the last object allocated we could
// "realloc" it and probably, in the vast majority of cases,
// extend the existing string to be able to hold the full
// result.
int next_length = 0;
if (has_next) {
next_length = mapping->get(next, 0, chars);
if (next_length == 0) next_length = 1;
}
int current_length = i + char_length + next_length;
while (stream.HasMore()) {
current = stream.GetNext();
// NOTE: we use 0 as the next character here because, while
// the next character may affect what a character converts to,
// it does not in any case affect the length of what it convert
// to.
int char_length = mapping->get(current, 0, chars);
if (char_length == 0) char_length = 1;
current_length += char_length;
if (current_length > Smi::kMaxValue) {
isolate->context()->mark_out_of_memory();
return Failure::OutOfMemoryException(0x13);
}
}
// Try again with the real length.
return Smi::FromInt(current_length);
} else {
for (int j = 0; j < char_length; j++) {
result->Set(i, chars[j]);
i++;
}
has_changed_character = true;
}
current = next;
}
if (has_changed_character) {
return result;
} else {
// If we didn't actually change anything in doing the conversion
// we simple return the result and let the converted string
// become garbage; there is no reason to keep two identical strings
// alive.
return s;
}
}
namespace {
static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF;
static const uintptr_t kAsciiMask = kOneInEveryByte << 7;
// Given a word and two range boundaries returns a word with high bit
// set in every byte iff the corresponding input byte was strictly in
// the range (m, n). All the other bits in the result are cleared.
// This function is only useful when it can be inlined and the
// boundaries are statically known.
// Requires: all bytes in the input word and the boundaries must be
// ASCII (less than 0x7F).
static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) {
// Use strict inequalities since in edge cases the function could be
// further simplified.
ASSERT(0 < m && m < n);
// Has high bit set in every w byte less than n.
uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w;
// Has high bit set in every w byte greater than m.
uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m);
return (tmp1 & tmp2 & (kOneInEveryByte * 0x80));
}
enum AsciiCaseConversion {
ASCII_TO_LOWER,
ASCII_TO_UPPER
};
template <AsciiCaseConversion dir>
struct FastAsciiConverter {
static bool Convert(char* dst, char* src, int length, bool* changed_out) {
#ifdef DEBUG
char* saved_dst = dst;
char* saved_src = src;
#endif
// We rely on the distance between upper and lower case letters
// being a known power of 2.
ASSERT('a' - 'A' == (1 << 5));
// Boundaries for the range of input characters than require conversion.
const char lo = (dir == ASCII_TO_LOWER) ? 'A' - 1 : 'a' - 1;
const char hi = (dir == ASCII_TO_LOWER) ? 'Z' + 1 : 'z' + 1;
bool changed = false;
uintptr_t or_acc = 0;
char* const limit = src + length;
#ifdef V8_HOST_CAN_READ_UNALIGNED
// Process the prefix of the input that requires no conversion one
// (machine) word at a time.
while (src <= limit - sizeof(uintptr_t)) {
uintptr_t w = *reinterpret_cast<uintptr_t*>(src);
or_acc |= w;
if (AsciiRangeMask(w, lo, hi) != 0) {
changed = true;
break;
}
*reinterpret_cast<uintptr_t*>(dst) = w;
src += sizeof(uintptr_t);
dst += sizeof(uintptr_t);
}
// Process the remainder of the input performing conversion when
// required one word at a time.
while (src <= limit - sizeof(uintptr_t)) {
uintptr_t w = *reinterpret_cast<uintptr_t*>(src);
or_acc |= w;
uintptr_t m = AsciiRangeMask(w, lo, hi);
// The mask has high (7th) bit set in every byte that needs
// conversion and we know that the distance between cases is
// 1 << 5.
*reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2);
src += sizeof(uintptr_t);
dst += sizeof(uintptr_t);
}
#endif
// Process the last few bytes of the input (or the whole input if
// unaligned access is not supported).
while (src < limit) {
char c = *src;
or_acc |= c;
if (lo < c && c < hi) {
c ^= (1 << 5);
changed = true;
}
*dst = c;
++src;
++dst;
}
if ((or_acc & kAsciiMask) != 0) {
return false;
}
#ifdef DEBUG
CheckConvert(saved_dst, saved_src, length, changed);
#endif
*changed_out = changed;
return true;
}
#ifdef DEBUG
static void CheckConvert(char* dst, char* src, int length, bool changed) {
bool expected_changed = false;
for (int i = 0; i < length; i++) {
if (dst[i] == src[i]) continue;
expected_changed = true;
if (dir == ASCII_TO_LOWER) {
ASSERT('A' <= src[i] && src[i] <= 'Z');
ASSERT(dst[i] == src[i] + ('a' - 'A'));
} else {
ASSERT(dir == ASCII_TO_UPPER);
ASSERT('a' <= src[i] && src[i] <= 'z');
ASSERT(dst[i] == src[i] - ('a' - 'A'));
}
}
ASSERT(expected_changed == changed);
}
#endif
};
struct ToLowerTraits {
typedef unibrow::ToLowercase UnibrowConverter;
typedef FastAsciiConverter<ASCII_TO_LOWER> AsciiConverter;
};
struct ToUpperTraits {
typedef unibrow::ToUppercase UnibrowConverter;
typedef FastAsciiConverter<ASCII_TO_UPPER> AsciiConverter;
};
} // namespace
template <typename ConvertTraits>
MUST_USE_RESULT static MaybeObject* ConvertCase(
Arguments args,
Isolate* isolate,
unibrow::Mapping<typename ConvertTraits::UnibrowConverter, 128>* mapping) {
SealHandleScope shs(isolate);
CONVERT_ARG_CHECKED(String, s, 0);
s = s->TryFlattenGetString();
const int length = s->length();
// Assume that the string is not empty; we need this assumption later
if (length == 0) return s;
// Simpler handling of ASCII strings.
//
// NOTE: This assumes that the upper/lower case of an ASCII
// character is also ASCII. This is currently the case, but it
// might break in the future if we implement more context and locale
// dependent upper/lower conversions.
if (s->IsSeqOneByteString()) {
Object* o;
{ MaybeObject* maybe_o = isolate->heap()->AllocateRawOneByteString(length);
if (!maybe_o->ToObject(&o)) return maybe_o;
}
SeqOneByteString* result = SeqOneByteString::cast(o);
bool has_changed_character;
bool is_ascii = ConvertTraits::AsciiConverter::Convert(
reinterpret_cast<char*>(result->GetChars()),
reinterpret_cast<char*>(SeqOneByteString::cast(s)->GetChars()),
length,
&has_changed_character);
// If not ASCII, we discard the result and take the 2 byte path.
if (is_ascii) {
return has_changed_character ? result : s;
}
}
Object* answer;
{ MaybeObject* maybe_answer =
ConvertCaseHelper(isolate, s, length, length, mapping);
if (!maybe_answer->ToObject(&answer)) return maybe_answer;
}
if (answer->IsSmi()) {
// Retry with correct length.
{ MaybeObject* maybe_answer =
ConvertCaseHelper(isolate,
s, Smi::cast(answer)->value(), length, mapping);
if (!maybe_answer->ToObject(&answer)) return maybe_answer;
}
}
return answer;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToLowerCase) {
return ConvertCase<ToLowerTraits>(
args, isolate, isolate->runtime_state()->to_lower_mapping());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToUpperCase) {
return ConvertCase<ToUpperTraits>(
args, isolate, isolate->runtime_state()->to_upper_mapping());
}
static inline bool IsTrimWhiteSpace(unibrow::uchar c) {
return unibrow::WhiteSpace::Is(c) || c == 0x200b || c == 0xfeff;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringTrim) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(String, s, 0);
CONVERT_BOOLEAN_ARG_CHECKED(trimLeft, 1);
CONVERT_BOOLEAN_ARG_CHECKED(trimRight, 2);
s->TryFlatten();
int length = s->length();
int left = 0;
if (trimLeft) {
while (left < length && IsTrimWhiteSpace(s->Get(left))) {
left++;
}
}
int right = length;
if (trimRight) {
while (right > left && IsTrimWhiteSpace(s->Get(right - 1))) {
right--;
}
}
return s->SubString(left, right);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringSplit) {
HandleScope handle_scope(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
CONVERT_ARG_HANDLE_CHECKED(String, pattern, 1);
CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[2]);
int subject_length = subject->length();
int pattern_length = pattern->length();
RUNTIME_ASSERT(pattern_length > 0);
if (limit == 0xffffffffu) {
Handle<Object> cached_answer(
RegExpResultsCache::Lookup(isolate->heap(),
*subject,
*pattern,
RegExpResultsCache::STRING_SPLIT_SUBSTRINGS),
isolate);
if (*cached_answer != Smi::FromInt(0)) {
// The cache FixedArray is a COW-array and can therefore be reused.
Handle<JSArray> result =
isolate->factory()->NewJSArrayWithElements(
Handle<FixedArray>::cast(cached_answer));
return *result;
}
}
// The limit can be very large (0xffffffffu), but since the pattern
// isn't empty, we can never create more parts than ~half the length
// of the subject.
if (!subject->IsFlat()) FlattenString(subject);
static const int kMaxInitialListCapacity = 16;
ZoneScope zone_scope(isolate->runtime_zone());
// Find (up to limit) indices of separator and end-of-string in subject
int initial_capacity = Min<uint32_t>(kMaxInitialListCapacity, limit);
ZoneList<int> indices(initial_capacity, zone_scope.zone());
if (!pattern->IsFlat()) FlattenString(pattern);
FindStringIndicesDispatch(isolate, *subject, *pattern,
&indices, limit, zone_scope.zone());
if (static_cast<uint32_t>(indices.length()) < limit) {
indices.Add(subject_length, zone_scope.zone());
}
// The list indices now contains the end of each part to create.
// Create JSArray of substrings separated by separator.
int part_count = indices.length();
Handle<JSArray> result = isolate->factory()->NewJSArray(part_count);
MaybeObject* maybe_result = result->EnsureCanContainHeapObjectElements();
if (maybe_result->IsFailure()) return maybe_result;
result->set_length(Smi::FromInt(part_count));
ASSERT(result->HasFastObjectElements());
if (part_count == 1 && indices.at(0) == subject_length) {
FixedArray::cast(result->elements())->set(0, *subject);
return *result;
}
Handle<FixedArray> elements(FixedArray::cast(result->elements()));
int part_start = 0;
for (int i = 0; i < part_count; i++) {
HandleScope local_loop_handle(isolate);
int part_end = indices.at(i);
Handle<String> substring =
isolate->factory()->NewProperSubString(subject, part_start, part_end);
elements->set(i, *substring);
part_start = part_end + pattern_length;
}
if (limit == 0xffffffffu) {
if (result->HasFastObjectElements()) {
RegExpResultsCache::Enter(isolate->heap(),
*subject,
*pattern,
*elements,
RegExpResultsCache::STRING_SPLIT_SUBSTRINGS);
}
}
return *result;
}
// Copies ASCII characters to the given fixed array looking up
// one-char strings in the cache. Gives up on the first char that is
// not in the cache and fills the remainder with smi zeros. Returns
// the length of the successfully copied prefix.
static int CopyCachedAsciiCharsToArray(Heap* heap,
const uint8_t* chars,
FixedArray* elements,
int length) {
DisallowHeapAllocation no_gc;
FixedArray* ascii_cache = heap->single_character_string_cache();
Object* undefined = heap->undefined_value();
int i;
WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc);
for (i = 0; i < length; ++i) {
Object* value = ascii_cache->get(chars[i]);
if (value == undefined) break;
elements->set(i, value, mode);
}
if (i < length) {
ASSERT(Smi::FromInt(0) == 0);
memset(elements->data_start() + i, 0, kPointerSize * (length - i));
}
#ifdef DEBUG
for (int j = 0; j < length; ++j) {
Object* element = elements->get(j);
ASSERT(element == Smi::FromInt(0) ||
(element->IsString() && String::cast(element)->LooksValid()));
}
#endif
return i;
}
// Converts a String to JSArray.
// For example, "foo" => ["f", "o", "o"].
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToArray) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
s = FlattenGetString(s);
const int length = static_cast<int>(Min<uint32_t>(s->length(), limit));
Handle<FixedArray> elements;
int position = 0;
if (s->IsFlat() && s->IsOneByteRepresentation()) {
// Try using cached chars where possible.
Object* obj;
{ MaybeObject* maybe_obj =
isolate->heap()->AllocateUninitializedFixedArray(length);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
elements = Handle<FixedArray>(FixedArray::cast(obj), isolate);
DisallowHeapAllocation no_gc;
String::FlatContent content = s->GetFlatContent();
if (content.IsAscii()) {
Vector<const uint8_t> chars = content.ToOneByteVector();
// Note, this will initialize all elements (not only the prefix)
// to prevent GC from seeing partially initialized array.
position = CopyCachedAsciiCharsToArray(isolate->heap(),
chars.start(),
*elements,
length);
} else {
MemsetPointer(elements->data_start(),
isolate->heap()->undefined_value(),
length);
}
} else {
elements = isolate->factory()->NewFixedArray(length);
}
for (int i = position; i < length; ++i) {
Handle<Object> str =
LookupSingleCharacterStringFromCode(isolate, s->Get(i));
elements->set(i, *str);
}
#ifdef DEBUG
for (int i = 0; i < length; ++i) {
ASSERT(String::cast(elements->get(i))->length() == 1);
}
#endif
return *isolate->factory()->NewJSArrayWithElements(elements);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NewStringWrapper) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(String, value, 0);
return value->ToObject();
}
bool Runtime::IsUpperCaseChar(RuntimeState* runtime_state, uint16_t ch) {
unibrow::uchar chars[unibrow::ToUppercase::kMaxWidth];
int char_length = runtime_state->to_upper_mapping()->get(ch, 0, chars);
return char_length == 0;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToString) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
Object* number = args[0];
RUNTIME_ASSERT(number->IsNumber());
return isolate->heap()->NumberToString(number);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToStringSkipCache) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
Object* number = args[0];
RUNTIME_ASSERT(number->IsNumber());
return isolate->heap()->NumberToString(
number, false, isolate->heap()->GetPretenureMode());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToInteger) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_DOUBLE_ARG_CHECKED(number, 0);
// We do not include 0 so that we don't have to treat +0 / -0 cases.
if (number > 0 && number <= Smi::kMaxValue) {
return Smi::FromInt(static_cast<int>(number));
}
return isolate->heap()->NumberFromDouble(DoubleToInteger(number));
}
// ES6 draft 9.1.11
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToPositiveInteger) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_DOUBLE_ARG_CHECKED(number, 0);
// We do not include 0 so that we don't have to treat +0 / -0 cases.
if (number > 0 && number <= Smi::kMaxValue) {
return Smi::FromInt(static_cast<int>(number));
}
if (number <= 0) {
return Smi::FromInt(0);
}
return isolate->heap()->NumberFromDouble(DoubleToInteger(number));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToIntegerMapMinusZero) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_DOUBLE_ARG_CHECKED(number, 0);
// We do not include 0 so that we don't have to treat +0 / -0 cases.
if (number > 0 && number <= Smi::kMaxValue) {
return Smi::FromInt(static_cast<int>(number));
}
double double_value = DoubleToInteger(number);
// Map both -0 and +0 to +0.
if (double_value == 0) double_value = 0;
return isolate->heap()->NumberFromDouble(double_value);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToJSUint32) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, args[0]);
return isolate->heap()->NumberFromUint32(number);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToJSInt32) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_DOUBLE_ARG_CHECKED(number, 0);
// We do not include 0 so that we don't have to treat +0 / -0 cases.
if (number > 0 && number <= Smi::kMaxValue) {
return Smi::FromInt(static_cast<int>(number));
}
return isolate->heap()->NumberFromInt32(DoubleToInt32(number));
}
// Converts a Number to a Smi, if possible. Returns NaN if the number is not
// a small integer.
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToSmi) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
Object* obj = args[0];
if (obj->IsSmi()) {
return obj;
}
if (obj->IsHeapNumber()) {
double value = HeapNumber::cast(obj)->value();
int int_value = FastD2I(value);
if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
return Smi::FromInt(int_value);
}
}
return isolate->heap()->nan_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_AllocateHeapNumber) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 0);
return isolate->heap()->AllocateHeapNumber(0);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberAdd) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
return isolate->heap()->NumberFromDouble(x + y);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberSub) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
return isolate->heap()->NumberFromDouble(x - y);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberMul) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
return isolate->heap()->NumberFromDouble(x * y);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberUnaryMinus) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
return isolate->heap()->NumberFromDouble(-x);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberAlloc) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 0);
return isolate->heap()->NumberFromDouble(9876543210.0);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberDiv) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
return isolate->heap()->NumberFromDouble(x / y);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberMod) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
x = modulo(x, y);
// NumberFromDouble may return a Smi instead of a Number object
return isolate->heap()->NumberFromDouble(x);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberImul) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return isolate->heap()->NumberFromInt32(x * y);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringAdd) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(String, str1, 0);
CONVERT_ARG_CHECKED(String, str2, 1);
isolate->counters()->string_add_runtime()->Increment();
return isolate->heap()->AllocateConsString(str1, str2);
}
template <typename sinkchar>
static inline void StringBuilderConcatHelper(String* special,
sinkchar* sink,
FixedArray* fixed_array,
int array_length) {
int position = 0;
for (int i = 0; i < array_length; i++) {
Object* element = fixed_array->get(i);
if (element->IsSmi()) {
// Smi encoding of position and length.
int encoded_slice = Smi::cast(element)->value();
int pos;
int len;
if (encoded_slice > 0) {
// Position and length encoded in one smi.
pos = StringBuilderSubstringPosition::decode(encoded_slice);
len = StringBuilderSubstringLength::decode(encoded_slice);
} else {
// Position and length encoded in two smis.
Object* obj = fixed_array->get(++i);
ASSERT(obj->IsSmi());
pos = Smi::cast(obj)->value();
len = -encoded_slice;
}
String::WriteToFlat(special,
sink + position,
pos,
pos + len);
position += len;
} else {
String* string = String::cast(element);
int element_length = string->length();
String::WriteToFlat(string, sink + position, 0, element_length);
position += element_length;
}
}
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringBuilderConcat) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(JSArray, array, 0);
if (!args[1]->IsSmi()) {
isolate->context()->mark_out_of_memory();
return Failure::OutOfMemoryException(0x14);
}
int array_length = args.smi_at(1);
CONVERT_ARG_CHECKED(String, special, 2);
// This assumption is used by the slice encoding in one or two smis.
ASSERT(Smi::kMaxValue >= String::kMaxLength);
MaybeObject* maybe_result = array->EnsureCanContainHeapObjectElements();
if (maybe_result->IsFailure()) return maybe_result;
int special_length = special->length();
if (!array->HasFastObjectElements()) {
return isolate->Throw(isolate->heap()->illegal_argument_string());
}
FixedArray* fixed_array = FixedArray::cast(array->elements());
if (fixed_array->length() < array_length) {
array_length = fixed_array->length();
}
if (array_length == 0) {
return isolate->heap()->empty_string();
} else if (array_length == 1) {
Object* first = fixed_array->get(0);
if (first->IsString()) return first;
}
bool one_byte = special->HasOnlyOneByteChars();
int position = 0;
for (int i = 0; i < array_length; i++) {
int increment = 0;
Object* elt = fixed_array->get(i);
if (elt->IsSmi()) {
// Smi encoding of position and length.
int smi_value = Smi::cast(elt)->value();
int pos;
int len;
if (smi_value > 0) {
// Position and length encoded in one smi.
pos = StringBuilderSubstringPosition::decode(smi_value);
len = StringBuilderSubstringLength::decode(smi_value);
} else {
// Position and length encoded in two smis.
len = -smi_value;
// Get the position and check that it is a positive smi.
i++;
if (i >= array_length) {
return isolate->Throw(isolate->heap()->illegal_argument_string());
}
Object* next_smi = fixed_array->get(i);
if (!next_smi->IsSmi()) {
return isolate->Throw(isolate->heap()->illegal_argument_string());
}
pos = Smi::cast(next_smi)->value();
if (pos < 0) {
return isolate->Throw(isolate->heap()->illegal_argument_string());
}
}
ASSERT(pos >= 0);
ASSERT(len >= 0);
if (pos > special_length || len > special_length - pos) {
return isolate->Throw(isolate->heap()->illegal_argument_string());
}
increment = len;
} else if (elt->IsString()) {
String* element = String::cast(elt);
int element_length = element->length();
increment = element_length;
if (one_byte && !element->HasOnlyOneByteChars()) {
one_byte = false;
}
} else {
ASSERT(!elt->IsTheHole());
return isolate->Throw(isolate->heap()->illegal_argument_string());
}
if (increment > String::kMaxLength - position) {
isolate->context()->mark_out_of_memory();
return Failure::OutOfMemoryException(0x15);
}
position += increment;
}
int length = position;
Object* object;
if (one_byte) {
{ MaybeObject* maybe_object =
isolate->heap()->AllocateRawOneByteString(length);
if (!maybe_object->ToObject(&object)) return maybe_object;
}
SeqOneByteString* answer = SeqOneByteString::cast(object);
StringBuilderConcatHelper(special,
answer->GetChars(),
fixed_array,
array_length);
return answer;
} else {
{ MaybeObject* maybe_object =
isolate->heap()->AllocateRawTwoByteString(length);
if (!maybe_object->ToObject(&object)) return maybe_object;
}
SeqTwoByteString* answer = SeqTwoByteString::cast(object);
StringBuilderConcatHelper(special,
answer->GetChars(),
fixed_array,
array_length);
return answer;
}
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringBuilderJoin) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(JSArray, array, 0);
if (!args[1]->IsSmi()) {
isolate->context()->mark_out_of_memory();
return Failure::OutOfMemoryException(0x16);
}
int array_length = args.smi_at(1);
CONVERT_ARG_CHECKED(String, separator, 2);
if (!array->HasFastObjectElements()) {
return isolate->Throw(isolate->heap()->illegal_argument_string());
}
FixedArray* fixed_array = FixedArray::cast(array->elements());
if (fixed_array->length() < array_length) {
array_length = fixed_array->length();
}
if (array_length == 0) {
return isolate->heap()->empty_string();
} else if (array_length == 1) {
Object* first = fixed_array->get(0);
if (first->IsString()) return first;
}
int separator_length = separator->length();
int max_nof_separators =
(String::kMaxLength + separator_length - 1) / separator_length;
if (max_nof_separators < (array_length - 1)) {
isolate->context()->mark_out_of_memory();
return Failure::OutOfMemoryException(0x17);
}
int length = (array_length - 1) * separator_length;
for (int i = 0; i < array_length; i++) {
Object* element_obj = fixed_array->get(i);
if (!element_obj->IsString()) {
// TODO(1161): handle this case.
return isolate->Throw(isolate->heap()->illegal_argument_string());
}
String* element = String::cast(element_obj);
int increment = element->length();
if (increment > String::kMaxLength - length) {
isolate->context()->mark_out_of_memory();
return Failure::OutOfMemoryException(0x18);
}
length += increment;
}
Object* object;
{ MaybeObject* maybe_object =
isolate->heap()->AllocateRawTwoByteString(length);
if (!maybe_object->ToObject(&object)) return maybe_object;
}
SeqTwoByteString* answer = SeqTwoByteString::cast(object);
uc16* sink = answer->GetChars();
#ifdef DEBUG
uc16* end = sink + length;
#endif
String* first = String::cast(fixed_array->get(0));
int first_length = first->length();
String::WriteToFlat(first, sink, 0, first_length);
sink += first_length;
for (int i = 1; i < array_length; i++) {
ASSERT(sink + separator_length <= end);
String::WriteToFlat(separator, sink, 0, separator_length);
sink += separator_length;
String* element = String::cast(fixed_array->get(i));
int element_length = element->length();
ASSERT(sink + element_length <= end);
String::WriteToFlat(element, sink, 0, element_length);
sink += element_length;
}
ASSERT(sink == end);
// Use %_FastAsciiArrayJoin instead.
ASSERT(!answer->IsOneByteRepresentation());
return answer;
}
template <typename Char>
static void JoinSparseArrayWithSeparator(FixedArray* elements,
int elements_length,
uint32_t array_length,
String* separator,
Vector<Char> buffer) {
int previous_separator_position = 0;
int separator_length = separator->length();
int cursor = 0;
for (int i = 0; i < elements_length; i += 2) {
int position = NumberToInt32(elements->get(i));
String* string = String::cast(elements->get(i + 1));
int string_length = string->length();
if (string->length() > 0) {
while (previous_separator_position < position) {
String::WriteToFlat<Char>(separator, &buffer[cursor],
0, separator_length);
cursor += separator_length;
previous_separator_position++;
}
String::WriteToFlat<Char>(string, &buffer[cursor],
0, string_length);
cursor += string->length();
}
}
if (separator_length > 0) {
// Array length must be representable as a signed 32-bit number,
// otherwise the total string length would have been too large.
ASSERT(array_length <= 0x7fffffff); // Is int32_t.
int last_array_index = static_cast<int>(array_length - 1);
while (previous_separator_position < last_array_index) {
String::WriteToFlat<Char>(separator, &buffer[cursor],
0, separator_length);
cursor += separator_length;
previous_separator_position++;
}
}
ASSERT(cursor <= buffer.length());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_SparseJoinWithSeparator) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(JSArray, elements_array, 0);
RUNTIME_ASSERT(elements_array->HasFastSmiOrObjectElements());
CONVERT_NUMBER_CHECKED(uint32_t, array_length, Uint32, args[1]);
CONVERT_ARG_CHECKED(String, separator, 2);
// elements_array is fast-mode JSarray of alternating positions
// (increasing order) and strings.
// array_length is length of original array (used to add separators);
// separator is string to put between elements. Assumed to be non-empty.
// Find total length of join result.
int string_length = 0;
bool is_ascii = separator->IsOneByteRepresentation();
int max_string_length;
if (is_ascii) {
max_string_length = SeqOneByteString::kMaxLength;
} else {
max_string_length = SeqTwoByteString::kMaxLength;
}
bool overflow = false;
CONVERT_NUMBER_CHECKED(int, elements_length,
Int32, elements_array->length());
RUNTIME_ASSERT((elements_length & 1) == 0); // Even length.
FixedArray* elements = FixedArray::cast(elements_array->elements());
for (int i = 0; i < elements_length; i += 2) {
RUNTIME_ASSERT(elements->get(i)->IsNumber());
RUNTIME_ASSERT(elements->get(i + 1)->IsString());
String* string = String::cast(elements->get(i + 1));
int length = string->length();
if (is_ascii && !string->IsOneByteRepresentation()) {
is_ascii = false;
max_string_length = SeqTwoByteString::kMaxLength;
}
if (length > max_string_length ||
max_string_length - length < string_length) {
overflow = true;
break;
}
string_length += length;
}
int separator_length = separator->length();
if (!overflow && separator_length > 0) {
if (array_length <= 0x7fffffffu) {
int separator_count = static_cast<int>(array_length) - 1;
int remaining_length = max_string_length - string_length;
if ((remaining_length / separator_length) >= separator_count) {
string_length += separator_length * (array_length - 1);
} else {
// Not room for the separators within the maximal string length.
overflow = true;
}
} else {
// Nonempty separator and at least 2^31-1 separators necessary
// means that the string is too large to create.
STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
overflow = true;
}
}
if (overflow) {
// Throw OutOfMemory exception for creating too large a string.
V8::FatalProcessOutOfMemory("Array join result too large.");
}
if (is_ascii) {
MaybeObject* result_allocation =
isolate->heap()->AllocateRawOneByteString(string_length);
if (result_allocation->IsFailure()) return result_allocation;
SeqOneByteString* result_string =
SeqOneByteString::cast(result_allocation->ToObjectUnchecked());
JoinSparseArrayWithSeparator<uint8_t>(elements,
elements_length,
array_length,
separator,
Vector<uint8_t>(
result_string->GetChars(),
string_length));
return result_string;
} else {
MaybeObject* result_allocation =
isolate->heap()->AllocateRawTwoByteString(string_length);
if (result_allocation->IsFailure()) return result_allocation;
SeqTwoByteString* result_string =
SeqTwoByteString::cast(result_allocation->ToObjectUnchecked());
JoinSparseArrayWithSeparator<uc16>(elements,
elements_length,
array_length,
separator,
Vector<uc16>(result_string->GetChars(),
string_length));
return result_string;
}
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberOr) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return isolate->heap()->NumberFromInt32(x | y);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberAnd) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return isolate->heap()->NumberFromInt32(x & y);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberXor) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return isolate->heap()->NumberFromInt32(x ^ y);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberNot) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
return isolate->heap()->NumberFromInt32(~x);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberShl) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return isolate->heap()->NumberFromInt32(x << (y & 0x1f));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberShr) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return isolate->heap()->NumberFromUint32(x >> (y & 0x1f));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberSar) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return isolate->heap()->NumberFromInt32(ArithmeticShiftRight(x, y & 0x1f));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberEquals) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
if (std::isnan(x)) return Smi::FromInt(NOT_EQUAL);
if (std::isnan(y)) return Smi::FromInt(NOT_EQUAL);
if (x == y) return Smi::FromInt(EQUAL);
Object* result;
if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) {
result = Smi::FromInt(EQUAL);
} else {
result = Smi::FromInt(NOT_EQUAL);
}
return result;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringEquals) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(String, x, 0);
CONVERT_ARG_CHECKED(String, y, 1);
bool not_equal = !x->Equals(y);
// This is slightly convoluted because the value that signifies
// equality is 0 and inequality is 1 so we have to negate the result
// from String::Equals.
ASSERT(not_equal == 0 || not_equal == 1);
STATIC_CHECK(EQUAL == 0);
STATIC_CHECK(NOT_EQUAL == 1);
return Smi::FromInt(not_equal);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberCompare) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 3);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
if (std::isnan(x) || std::isnan(y)) return args[2];
if (x == y) return Smi::FromInt(EQUAL);
if (isless(x, y)) return Smi::FromInt(LESS);
return Smi::FromInt(GREATER);
}
// Compare two Smis as if they were converted to strings and then
// compared lexicographically.
RUNTIME_FUNCTION(MaybeObject*, Runtime_SmiLexicographicCompare) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_SMI_ARG_CHECKED(x_value, 0);
CONVERT_SMI_ARG_CHECKED(y_value, 1);
// If the integers are equal so are the string representations.
if (x_value == y_value) return Smi::FromInt(EQUAL);
// If one of the integers is zero the normal integer order is the
// same as the lexicographic order of the string representations.
if (x_value == 0 || y_value == 0)
return Smi::FromInt(x_value < y_value ? LESS : GREATER);
// If only one of the integers is negative the negative number is
// smallest because the char code of '-' is less than the char code
// of any digit. Otherwise, we make both values positive.
// Use unsigned values otherwise the logic is incorrect for -MIN_INT on
// architectures using 32-bit Smis.
uint32_t x_scaled = x_value;
uint32_t y_scaled = y_value;
if (x_value < 0 || y_value < 0) {
if (y_value >= 0) return Smi::FromInt(LESS);
if (x_value >= 0) return Smi::FromInt(GREATER);
x_scaled = -x_value;
y_scaled = -y_value;
}
static const uint32_t kPowersOf10[] = {
1, 10, 100, 1000, 10*1000, 100*1000,
1000*1000, 10*1000*1000, 100*1000*1000,
1000*1000*1000
};
// If the integers have the same number of decimal digits they can be
// compared directly as the numeric order is the same as the
// lexicographic order. If one integer has fewer digits, it is scaled
// by some power of 10 to have the same number of digits as the longer
// integer. If the scaled integers are equal it means the shorter
// integer comes first in the lexicographic order.
// From http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
int x_log2 = IntegerLog2(x_scaled);
int x_log10 = ((x_log2 + 1) * 1233) >> 12;
x_log10 -= x_scaled < kPowersOf10[x_log10];
int y_log2 = IntegerLog2(y_scaled);
int y_log10 = ((y_log2 + 1) * 1233) >> 12;
y_log10 -= y_scaled < kPowersOf10[y_log10];
int tie = EQUAL;
if (x_log10 < y_log10) {
// X has fewer digits. We would like to simply scale up X but that
// might overflow, e.g when comparing 9 with 1_000_000_000, 9 would
// be scaled up to 9_000_000_000. So we scale up by the next
// smallest power and scale down Y to drop one digit. It is OK to
// drop one digit from the longer integer since the final digit is
// past the length of the shorter integer.
x_scaled *= kPowersOf10[y_log10 - x_log10 - 1];
y_scaled /= 10;
tie = LESS;
} else if (y_log10 < x_log10) {
y_scaled *= kPowersOf10[x_log10 - y_log10 - 1];
x_scaled /= 10;
tie = GREATER;
}
if (x_scaled < y_scaled) return Smi::FromInt(LESS);
if (x_scaled > y_scaled) return Smi::FromInt(GREATER);
return Smi::FromInt(tie);
}
static Object* StringCharacterStreamCompare(RuntimeState* state,
String* x,
String* y) {
StringCharacterStream stream_x(x, state->string_iterator_compare_x());
StringCharacterStream stream_y(y, state->string_iterator_compare_y());
while (stream_x.HasMore() && stream_y.HasMore()) {
int d = stream_x.GetNext() - stream_y.GetNext();
if (d < 0) return Smi::FromInt(LESS);
else if (d > 0) return Smi::FromInt(GREATER);
}
// x is (non-trivial) prefix of y:
if (stream_y.HasMore()) return Smi::FromInt(LESS);
// y is prefix of x:
return Smi::FromInt(stream_x.HasMore() ? GREATER : EQUAL);
}
static Object* FlatStringCompare(String* x, String* y) {
ASSERT(x->IsFlat());
ASSERT(y->IsFlat());
Object* equal_prefix_result = Smi::FromInt(EQUAL);
int prefix_length = x->length();
if (y->length() < prefix_length) {
prefix_length = y->length();
equal_prefix_result = Smi::FromInt(GREATER);
} else if (y->length() > prefix_length) {
equal_prefix_result = Smi::FromInt(LESS);
}
int r;
DisallowHeapAllocation no_gc;
String::FlatContent x_content = x->GetFlatContent();
String::FlatContent y_content = y->GetFlatContent();
if (x_content.IsAscii()) {
Vector<const uint8_t> x_chars = x_content.ToOneByteVector();
if (y_content.IsAscii()) {
Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
} else {
Vector<const uc16> y_chars = y_content.ToUC16Vector();
r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
}
} else {
Vector<const uc16> x_chars = x_content.ToUC16Vector();
if (y_content.IsAscii()) {
Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
} else {
Vector<const uc16> y_chars = y_content.ToUC16Vector();
r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
}
}
Object* result;
if (r == 0) {
result = equal_prefix_result;
} else {
result = (r < 0) ? Smi::FromInt(LESS) : Smi::FromInt(GREATER);
}
ASSERT(result ==
StringCharacterStreamCompare(Isolate::Current()->runtime_state(), x, y));
return result;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StringCompare) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(String, x, 0);
CONVERT_ARG_CHECKED(String, y, 1);
isolate->counters()->string_compare_runtime()->Increment();
// A few fast case tests before we flatten.
if (x == y) return Smi::FromInt(EQUAL);
if (y->length() == 0) {
if (x->length() == 0) return Smi::FromInt(EQUAL);
return Smi::FromInt(GREATER);
} else if (x->length() == 0) {
return Smi::FromInt(LESS);
}
int d = x->Get(0) - y->Get(0);
if (d < 0) return Smi::FromInt(LESS);
else if (d > 0) return Smi::FromInt(GREATER);
Object* obj;
{ MaybeObject* maybe_obj = isolate->heap()->PrepareForCompare(x);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
{ MaybeObject* maybe_obj = isolate->heap()->PrepareForCompare(y);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
return (x->IsFlat() && y->IsFlat()) ? FlatStringCompare(x, y)
: StringCharacterStreamCompare(isolate->runtime_state(), x, y);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_acos) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
isolate->counters()->math_acos()->Increment();
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
return isolate->transcendental_cache()->Get(TranscendentalCache::ACOS, x);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_asin) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
isolate->counters()->math_asin()->Increment();
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
return isolate->transcendental_cache()->Get(TranscendentalCache::ASIN, x);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_atan) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
isolate->counters()->math_atan()->Increment();
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
return isolate->transcendental_cache()->Get(TranscendentalCache::ATAN, x);
}
static const double kPiDividedBy4 = 0.78539816339744830962;
RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_atan2) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
isolate->counters()->math_atan2()->Increment();
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
double result;
if (std::isinf(x) && std::isinf(y)) {
// Make sure that the result in case of two infinite arguments
// is a multiple of Pi / 4. The sign of the result is determined
// by the first argument (x) and the sign of the second argument
// determines the multiplier: one or three.
int multiplier = (x < 0) ? -1 : 1;
if (y < 0) multiplier *= 3;
result = multiplier * kPiDividedBy4;
} else {
result = atan2(x, y);
}
return isolate->heap()->AllocateHeapNumber(result);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_ceil) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
isolate->counters()->math_ceil()->Increment();
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
return isolate->heap()->NumberFromDouble(ceiling(x));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_cos) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
isolate->counters()->math_cos()->Increment();
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
return isolate->transcendental_cache()->Get(TranscendentalCache::COS, x);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_exp) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
isolate->counters()->math_exp()->Increment();
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
lazily_initialize_fast_exp();
return isolate->heap()->NumberFromDouble(fast_exp(x));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_floor) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
isolate->counters()->math_floor()->Increment();
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
return isolate->heap()->NumberFromDouble(floor(x));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_log) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
isolate->counters()->math_log()->Increment();
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
return isolate->transcendental_cache()->Get(TranscendentalCache::LOG, x);
}
// Slow version of Math.pow. We check for fast paths for special cases.
// Used if SSE2/VFP3 is not available.
RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_pow) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
isolate->counters()->math_pow()->Increment();
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
// If the second argument is a smi, it is much faster to call the
// custom powi() function than the generic pow().
if (args[1]->IsSmi()) {
int y = args.smi_at(1);
return isolate->heap()->NumberFromDouble(power_double_int(x, y));
}
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
double result = power_helper(x, y);
if (std::isnan(result)) return isolate->heap()->nan_value();
return isolate->heap()->AllocateHeapNumber(result);
}
// Fast version of Math.pow if we know that y is not an integer and y is not
// -0.5 or 0.5. Used as slow case from full codegen.
RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_pow_cfunction) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
isolate->counters()->math_pow()->Increment();
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
if (y == 0) {
return Smi::FromInt(1);
} else {
double result = power_double_double(x, y);
if (std::isnan(result)) return isolate->heap()->nan_value();
return isolate->heap()->AllocateHeapNumber(result);
}
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_RoundNumber) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
isolate->counters()->math_round()->Increment();
if (!args[0]->IsHeapNumber()) {
// Must be smi. Return the argument unchanged for all the other types
// to make fuzz-natives test happy.
return args[0];
}
HeapNumber* number = reinterpret_cast<HeapNumber*>(args[0]);
double value = number->value();
int exponent = number->get_exponent();
int sign = number->get_sign();
if (exponent < -1) {
// Number in range ]-0.5..0.5[. These always round to +/-zero.
if (sign) return isolate->heap()->minus_zero_value();
return Smi::FromInt(0);
}
// We compare with kSmiValueSize - 2 because (2^30 - 0.1) has exponent 29 and
// should be rounded to 2^30, which is not smi (for 31-bit smis, similar
// argument holds for 32-bit smis).
if (!sign && exponent < kSmiValueSize - 2) {
return Smi::FromInt(static_cast<int>(value + 0.5));
}
// If the magnitude is big enough, there's no place for fraction part. If we
// try to add 0.5 to this number, 1.0 will be added instead.
if (exponent >= 52) {
return number;
}
if (sign && value >= -0.5) return isolate->heap()->minus_zero_value();
// Do not call NumberFromDouble() to avoid extra checks.
return isolate->heap()->AllocateHeapNumber(floor(value + 0.5));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_sin) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
isolate->counters()->math_sin()->Increment();
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
return isolate->transcendental_cache()->Get(TranscendentalCache::SIN, x);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_sqrt) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
isolate->counters()->math_sqrt()->Increment();
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
return isolate->heap()->AllocateHeapNumber(fast_sqrt(x));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_tan) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
isolate->counters()->math_tan()->Increment();
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
return isolate->transcendental_cache()->Get(TranscendentalCache::TAN, x);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DateMakeDay) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_SMI_ARG_CHECKED(year, 0);
CONVERT_SMI_ARG_CHECKED(month, 1);
return Smi::FromInt(isolate->date_cache()->DaysFromYearMonth(year, month));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DateSetValue) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(JSDate, date, 0);
CONVERT_DOUBLE_ARG_CHECKED(time, 1);
CONVERT_SMI_ARG_CHECKED(is_utc, 2);
DateCache* date_cache = isolate->date_cache();
Object* value = NULL;
bool is_value_nan = false;
if (std::isnan(time)) {
value = isolate->heap()->nan_value();
is_value_nan = true;
} else if (!is_utc &&
(time < -DateCache::kMaxTimeBeforeUTCInMs ||
time > DateCache::kMaxTimeBeforeUTCInMs)) {
value = isolate->heap()->nan_value();
is_value_nan = true;
} else {
time = is_utc ? time : date_cache->ToUTC(static_cast<int64_t>(time));
if (time < -DateCache::kMaxTimeInMs ||
time > DateCache::kMaxTimeInMs) {
value = isolate->heap()->nan_value();
is_value_nan = true;
} else {
MaybeObject* maybe_result =
isolate->heap()->AllocateHeapNumber(DoubleToInteger(time));
if (!maybe_result->ToObject(&value)) return maybe_result;
}
}
date->SetValue(value, is_value_nan);
return value;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NewArgumentsFast) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
Handle<JSFunction> callee = args.at<JSFunction>(0);
Object** parameters = reinterpret_cast<Object**>(args[1]);
const int argument_count = Smi::cast(args[2])->value();
Handle<JSObject> result =
isolate->factory()->NewArgumentsObject(callee, argument_count);
// Allocate the elements if needed.
int parameter_count = callee->shared()->formal_parameter_count();
if (argument_count > 0) {
if (parameter_count > 0) {
int mapped_count = Min(argument_count, parameter_count);
Handle<FixedArray> parameter_map =
isolate->factory()->NewFixedArray(mapped_count + 2, NOT_TENURED);
parameter_map->set_map(
isolate->heap()->non_strict_arguments_elements_map());
Handle<Map> old_map(result->map());
Handle<Map> new_map = isolate->factory()->CopyMap(old_map);
new_map->set_elements_kind(NON_STRICT_ARGUMENTS_ELEMENTS);
result->set_map(*new_map);
result->set_elements(*parameter_map);
// Store the context and the arguments array at the beginning of the
// parameter map.
Handle<Context> context(isolate->context());
Handle<FixedArray> arguments =
isolate->factory()->NewFixedArray(argument_count, NOT_TENURED);
parameter_map->set(0, *context);
parameter_map->set(1, *arguments);
// Loop over the actual parameters backwards.
int index = argument_count - 1;
while (index >= mapped_count) {
// These go directly in the arguments array and have no
// corresponding slot in the parameter map.
arguments->set(index, *(parameters - index - 1));
--index;
}
Handle<ScopeInfo> scope_info(callee->shared()->scope_info());
while (index >= 0) {
// Detect duplicate names to the right in the parameter list.
Handle<String> name(scope_info->ParameterName(index));
int context_local_count = scope_info->ContextLocalCount();
bool duplicate = false;
for (int j = index + 1; j < parameter_count; ++j) {
if (scope_info->ParameterName(j) == *name) {
duplicate = true;
break;
}
}
if (duplicate) {
// This goes directly in the arguments array with a hole in the
// parameter map.
arguments->set(index, *(parameters - index - 1));
parameter_map->set_the_hole(index + 2);
} else {
// The context index goes in the parameter map with a hole in the
// arguments array.
int context_index = -1;
for (int j = 0; j < context_local_count; ++j) {
if (scope_info->ContextLocalName(j) == *name) {
context_index = j;
break;
}
}
ASSERT(context_index >= 0);
arguments->set_the_hole(index);
parameter_map->set(index + 2, Smi::FromInt(
Context::MIN_CONTEXT_SLOTS + context_index));
}
--index;
}
} else {
// If there is no aliasing, the arguments object elements are not
// special in any way.
Handle<FixedArray> elements =
isolate->factory()->NewFixedArray(argument_count, NOT_TENURED);
result->set_elements(*elements);
for (int i = 0; i < argument_count; ++i) {
elements->set(i, *(parameters - i - 1));
}
}
}
return *result;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NewStrictArgumentsFast) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 3);
JSFunction* callee = JSFunction::cast(args[0]);
Object** parameters = reinterpret_cast<Object**>(args[1]);
const int length = args.smi_at(2);
Object* result;
{ MaybeObject* maybe_result =
isolate->heap()->AllocateArgumentsObject(callee, length);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// Allocate the elements if needed.
if (length > 0) {
// Allocate the fixed array.
Object* obj;
{ MaybeObject* maybe_obj = isolate->heap()->AllocateRawFixedArray(length);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
DisallowHeapAllocation no_gc;
FixedArray* array = reinterpret_cast<FixedArray*>(obj);
array->set_map_no_write_barrier(isolate->heap()->fixed_array_map());
array->set_length(length);
WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc);
for (int i = 0; i < length; i++) {
array->set(i, *--parameters, mode);
}
JSObject::cast(result)->set_elements(FixedArray::cast(obj));
}
return result;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NewClosure) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(Context, context, 0);
CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared, 1);
CONVERT_BOOLEAN_ARG_CHECKED(pretenure, 2);
// The caller ensures that we pretenure closures that are assigned
// directly to properties.
PretenureFlag pretenure_flag = pretenure ? TENURED : NOT_TENURED;
Handle<JSFunction> result =
isolate->factory()->NewFunctionFromSharedFunctionInfo(shared,
context,
pretenure_flag);
return *result;
}
// Find the arguments of the JavaScript function invocation that called
// into C++ code. Collect these in a newly allocated array of handles (possibly
// prefixed by a number of empty handles).
static SmartArrayPointer<Handle<Object> > GetCallerArguments(
Isolate* isolate,
int prefix_argc,
int* total_argc) {
// Find frame containing arguments passed to the caller.
JavaScriptFrameIterator it(isolate);
JavaScriptFrame* frame = it.frame();
List<JSFunction*> functions(2);
frame->GetFunctions(&functions);
if (functions.length() > 1) {
int inlined_jsframe_index = functions.length() - 1;
JSFunction* inlined_function = functions[inlined_jsframe_index];
Vector<SlotRef> args_slots =
SlotRef::ComputeSlotMappingForArguments(
frame,
inlined_jsframe_index,
inlined_function->shared()->formal_parameter_count());
int args_count = args_slots.length();
*total_argc = prefix_argc + args_count;
SmartArrayPointer<Handle<Object> > param_data(
NewArray<Handle<Object> >(*total_argc));
for (int i = 0; i < args_count; i++) {
Handle<Object> val = args_slots[i].GetValue(isolate);
param_data[prefix_argc + i] = val;
}
args_slots.Dispose();
return param_data;
} else {
it.AdvanceToArgumentsFrame();
frame = it.frame();
int args_count = frame->ComputeParametersCount();
*total_argc = prefix_argc + args_count;
SmartArrayPointer<Handle<Object> > param_data(
NewArray<Handle<Object> >(*total_argc));
for (int i = 0; i < args_count; i++) {
Handle<Object> val = Handle<Object>(frame->GetParameter(i), isolate);
param_data[prefix_argc + i] = val;
}
return param_data;
}
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionBindArguments) {
HandleScope scope(isolate);
ASSERT(args.length() == 4);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, bound_function, 0);
RUNTIME_ASSERT(args[3]->IsNumber());
Handle<Object> bindee = args.at<Object>(1);
// TODO(lrn): Create bound function in C++ code from premade shared info.
bound_function->shared()->set_bound(true);
// Get all arguments of calling function (Function.prototype.bind).
int argc = 0;
SmartArrayPointer<Handle<Object> > arguments =
GetCallerArguments(isolate, 0, &argc);
// Don't count the this-arg.
if (argc > 0) {
ASSERT(*arguments[0] == args[2]);
argc--;
} else {
ASSERT(args[2]->IsUndefined());
}
// Initialize array of bindings (function, this, and any existing arguments
// if the function was already bound).
Handle<FixedArray> new_bindings;
int i;
if (bindee->IsJSFunction() && JSFunction::cast(*bindee)->shared()->bound()) {
Handle<FixedArray> old_bindings(
JSFunction::cast(*bindee)->function_bindings());
new_bindings =
isolate->factory()->NewFixedArray(old_bindings->length() + argc);
bindee = Handle<Object>(old_bindings->get(JSFunction::kBoundFunctionIndex),
isolate);
i = 0;
for (int n = old_bindings->length(); i < n; i++) {
new_bindings->set(i, old_bindings->get(i));
}
} else {
int array_size = JSFunction::kBoundArgumentsStartIndex + argc;
new_bindings = isolate->factory()->NewFixedArray(array_size);
new_bindings->set(JSFunction::kBoundFunctionIndex, *bindee);
new_bindings->set(JSFunction::kBoundThisIndex, args[2]);
i = 2;
}
// Copy arguments, skipping the first which is "this_arg".
for (int j = 0; j < argc; j++, i++) {
new_bindings->set(i, *arguments[j + 1]);
}
new_bindings->set_map_no_write_barrier(
isolate->heap()->fixed_cow_array_map());
bound_function->set_function_bindings(*new_bindings);
// Update length.
Handle<String> length_string = isolate->factory()->length_string();
Handle<Object> new_length(args.at<Object>(3));
PropertyAttributes attr =
static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY);
ForceSetProperty(bound_function, length_string, new_length, attr);
return *bound_function;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_BoundFunctionGetBindings) {
HandleScope handles(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSReceiver, callable, 0);
if (callable->IsJSFunction()) {
Handle<JSFunction> function = Handle<JSFunction>::cast(callable);
if (function->shared()->bound()) {
Handle<FixedArray> bindings(function->function_bindings());
ASSERT(bindings->map() == isolate->heap()->fixed_cow_array_map());
return *isolate->factory()->NewJSArrayWithElements(bindings);
}
}
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NewObjectFromBound) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
// First argument is a function to use as a constructor.
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
RUNTIME_ASSERT(function->shared()->bound());
// The argument is a bound function. Extract its bound arguments
// and callable.
Handle<FixedArray> bound_args =
Handle<FixedArray>(FixedArray::cast(function->function_bindings()));
int bound_argc = bound_args->length() - JSFunction::kBoundArgumentsStartIndex;
Handle<Object> bound_function(
JSReceiver::cast(bound_args->get(JSFunction::kBoundFunctionIndex)),
isolate);
ASSERT(!bound_function->IsJSFunction() ||
!Handle<JSFunction>::cast(bound_function)->shared()->bound());
int total_argc = 0;
SmartArrayPointer<Handle<Object> > param_data =
GetCallerArguments(isolate, bound_argc, &total_argc);
for (int i = 0; i < bound_argc; i++) {
param_data[i] = Handle<Object>(bound_args->get(
JSFunction::kBoundArgumentsStartIndex + i), isolate);
}
if (!bound_function->IsJSFunction()) {
bool exception_thrown;
bound_function = Execution::TryGetConstructorDelegate(bound_function,
&exception_thrown);
if (exception_thrown) return Failure::Exception();
}
ASSERT(bound_function->IsJSFunction());
bool exception = false;
Handle<Object> result =
Execution::New(Handle<JSFunction>::cast(bound_function),
total_argc, *param_data, &exception);
if (exception) {
return Failure::Exception();
}
ASSERT(!result.is_null());
return *result;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NewObject) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
Handle<Object> constructor = args.at<Object>(0);
// If the constructor isn't a proper function we throw a type error.
if (!constructor->IsJSFunction()) {
Vector< Handle<Object> > arguments = HandleVector(&constructor, 1);
Handle<Object> type_error =
isolate->factory()->NewTypeError("not_constructor", arguments);
return isolate->Throw(*type_error);
}
Handle<JSFunction> function = Handle<JSFunction>::cast(constructor);
// If function should not have prototype, construction is not allowed. In this
// case generated code bailouts here, since function has no initial_map.
if (!function->should_have_prototype() && !function->shared()->bound()) {
Vector< Handle<Object> > arguments = HandleVector(&constructor, 1);
Handle<Object> type_error =
isolate->factory()->NewTypeError("not_constructor", arguments);
return isolate->Throw(*type_error);
}
#ifdef ENABLE_DEBUGGER_SUPPORT
Debug* debug = isolate->debug();
// Handle stepping into constructors if step into is active.
if (debug->StepInActive()) {
debug->HandleStepIn(function, Handle<Object>::null(), 0, true);
}
#endif
if (function->has_initial_map()) {
if (function->initial_map()->instance_type() == JS_FUNCTION_TYPE) {
// The 'Function' function ignores the receiver object when
// called using 'new' and creates a new JSFunction object that
// is returned. The receiver object is only used for error
// reporting if an error occurs when constructing the new
// JSFunction. Factory::NewJSObject() should not be used to
// allocate JSFunctions since it does not properly initialize
// the shared part of the function. Since the receiver is
// ignored anyway, we use the global object as the receiver
// instead of a new JSFunction object. This way, errors are
// reported the same way whether or not 'Function' is called
// using 'new'.
return isolate->context()->global_object();
}
}
// The function should be compiled for the optimization hints to be
// available.
JSFunction::EnsureCompiled(function, CLEAR_EXCEPTION);
Handle<SharedFunctionInfo> shared(function->shared(), isolate);
if (!function->has_initial_map() &&
shared->IsInobjectSlackTrackingInProgress()) {
// The tracking is already in progress for another function. We can only
// track one initial_map at a time, so we force the completion before the
// function is called as a constructor for the first time.
shared->CompleteInobjectSlackTracking();
}
Handle<JSObject> result = isolate->factory()->NewJSObject(function);
RETURN_IF_EMPTY_HANDLE(isolate, result);
isolate->counters()->constructed_objects()->Increment();
isolate->counters()->constructed_objects_runtime()->Increment();
return *result;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FinalizeInstanceSize) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
function->shared()->CompleteInobjectSlackTracking();
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_LazyCompile) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
Handle<JSFunction> function = args.at<JSFunction>(0);
#ifdef DEBUG
if (FLAG_trace_lazy && !function->shared()->is_compiled()) {
PrintF("[lazy: ");
function->PrintName();
PrintF("]\n");
}
#endif
// Compile the target function.
ASSERT(!function->is_compiled());
if (!JSFunction::CompileLazy(function, KEEP_EXCEPTION)) {
return Failure::Exception();
}
// All done. Return the compiled code.
ASSERT(function->is_compiled());
return function->code();
}
bool AllowOptimization(Isolate* isolate, Handle<JSFunction> function) {
// If the function is not compiled ignore the lazy
// recompilation. This can happen if the debugger is activated and
// the function is returned to the not compiled state.
if (!function->shared()->is_compiled()) return false;
// If the function is not optimizable or debugger is active continue using the
// code from the full compiler.
if (!FLAG_crankshaft ||
function->shared()->optimization_disabled() ||
isolate->DebuggerHasBreakPoints()) {
if (FLAG_trace_opt) {
PrintF("[failed to optimize ");
function->PrintName();
PrintF(": is code optimizable: %s, is debugger enabled: %s]\n",
function->shared()->optimization_disabled() ? "F" : "T",
isolate->DebuggerHasBreakPoints() ? "T" : "F");
}
return false;
}
return true;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_LazyRecompile) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
Handle<JSFunction> function = args.at<JSFunction>(0);
if (!AllowOptimization(isolate, function)) {
function->ReplaceCode(function->shared()->code());
return function->code();
}
function->shared()->code()->set_profiler_ticks(0);
if (JSFunction::CompileOptimized(function,
BailoutId::None(),
CLEAR_EXCEPTION)) {
return function->code();
}
if (FLAG_trace_opt) {
PrintF("[failed to optimize ");
function->PrintName();
PrintF(": optimized compilation failed]\n");
}
function->ReplaceCode(function->shared()->code());
return function->code();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_ParallelRecompile) {
HandleScope handle_scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
if (!AllowOptimization(isolate, function)) {
function->ReplaceCode(function->shared()->code());
return isolate->heap()->undefined_value();
}
function->shared()->code()->set_profiler_ticks(0);
ASSERT(FLAG_parallel_recompilation);
Compiler::RecompileParallel(function);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_InstallRecompiledCode) {
HandleScope handle_scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
ASSERT(V8::UseCrankshaft() && FLAG_parallel_recompilation);
isolate->optimizing_compiler_thread()->InstallOptimizedFunctions();
return function->code();
}
class ActivationsFinder : public ThreadVisitor {
public:
explicit ActivationsFinder(JSFunction* function)
: function_(function), has_activations_(false) {}
void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
if (has_activations_) return;
for (JavaScriptFrameIterator it(isolate, top); !it.done(); it.Advance()) {
JavaScriptFrame* frame = it.frame();
if (frame->is_optimized() && frame->function() == function_) {
has_activations_ = true;
return;
}
}
}
bool has_activations() { return has_activations_; }
private:
JSFunction* function_;
bool has_activations_;
};
RUNTIME_FUNCTION(MaybeObject*, Runtime_NotifyStubFailure) {
HandleScope scope(isolate);
ASSERT(args.length() == 0);
Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate);
ASSERT(AllowHeapAllocation::IsAllowed());
delete deoptimizer;
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NotifyDeoptimized) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
RUNTIME_ASSERT(args[0]->IsSmi());
Deoptimizer::BailoutType type =
static_cast<Deoptimizer::BailoutType>(args.smi_at(0));
Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate);
ASSERT(AllowHeapAllocation::IsAllowed());
ASSERT(deoptimizer->compiled_code_kind() == Code::OPTIMIZED_FUNCTION);
// Make sure to materialize objects before causing any allocation.
JavaScriptFrameIterator it(isolate);
deoptimizer->MaterializeHeapObjects(&it);
delete deoptimizer;
JavaScriptFrame* frame = it.frame();
RUNTIME_ASSERT(frame->function()->IsJSFunction());
Handle<JSFunction> function(frame->function(), isolate);
Handle<Code> optimized_code(function->code());
RUNTIME_ASSERT((type != Deoptimizer::EAGER &&
type != Deoptimizer::SOFT) || function->IsOptimized());
// Avoid doing too much work when running with --always-opt and keep
// the optimized code around.
if (FLAG_always_opt || type == Deoptimizer::LAZY) {
return isolate->heap()->undefined_value();
}
// Find other optimized activations of the function or functions that
// share the same optimized code.
bool has_other_activations = false;
while (!it.done()) {
JavaScriptFrame* frame = it.frame();
JSFunction* other_function = frame->function();
if (frame->is_optimized() && other_function->code() == function->code()) {
has_other_activations = true;
break;
}
it.Advance();
}
if (!has_other_activations) {
ActivationsFinder activations_finder(*function);
isolate->thread_manager()->IterateArchivedThreads(&activations_finder);
has_other_activations = activations_finder.has_activations();
}
if (!has_other_activations) {
if (FLAG_trace_deopt) {
PrintF("[removing optimized code for: ");
function->PrintName();
PrintF("]\n");
}
function->ReplaceCode(function->shared()->code());
} else {
Deoptimizer::DeoptimizeFunction(*function);
}
// Evict optimized code for this function from the cache so that it doesn't
// get used for new closures.
function->shared()->EvictFromOptimizedCodeMap(*optimized_code,
"notify deoptimized");
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NotifyOSR) {
SealHandleScope shs(isolate);
Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate);
delete deoptimizer;
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DeoptimizeFunction) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
if (!function->IsOptimized()) return isolate->heap()->undefined_value();
Deoptimizer::DeoptimizeFunction(*function);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_ClearFunctionTypeFeedback) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
Code* unoptimized = function->shared()->code();
if (unoptimized->kind() == Code::FUNCTION) {
unoptimized->ClearInlineCaches();
unoptimized->ClearTypeFeedbackCells(isolate->heap());
}
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_RunningInSimulator) {
SealHandleScope shs(isolate);
#if defined(USE_SIMULATOR)
return isolate->heap()->true_value();
#else
return isolate->heap()->false_value();
#endif
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_IsParallelRecompilationSupported) {
HandleScope scope(isolate);
return FLAG_parallel_recompilation
? isolate->heap()->true_value() : isolate->heap()->false_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_OptimizeFunctionOnNextCall) {
HandleScope scope(isolate);
RUNTIME_ASSERT(args.length() == 1 || args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
if (!function->IsOptimizable()) return isolate->heap()->undefined_value();
function->MarkForLazyRecompilation();
Code* unoptimized = function->shared()->code();
if (args.length() == 2 &&
unoptimized->kind() == Code::FUNCTION) {
CONVERT_ARG_HANDLE_CHECKED(String, type, 1);
if (type->IsOneByteEqualTo(STATIC_ASCII_VECTOR("osr"))) {
for (int i = 0; i <= Code::kMaxLoopNestingMarker; i++) {
unoptimized->set_allow_osr_at_loop_nesting_level(i);
isolate->runtime_profiler()->AttemptOnStackReplacement(*function);
}
} else if (type->IsOneByteEqualTo(STATIC_ASCII_VECTOR("parallel"))) {
function->MarkForParallelRecompilation();
}
}
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NeverOptimize) {
HandleScope scope(isolate);
if (args.length() == 0) {
// Disable optimization for the calling function.
JavaScriptFrameIterator it(isolate);
if (!it.done()) {
it.frame()->function()->shared()->set_optimization_disabled(true);
}
return isolate->heap()->undefined_value();
}
// Disable optimization for the functions passed.
for (int i = 0; i < args.length(); i++) {
CONVERT_ARG_CHECKED(JSFunction, function, i);
function->shared()->set_optimization_disabled(true);
}
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_CompleteOptimization) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
if (FLAG_parallel_recompilation && V8::UseCrankshaft()) {
// While function is in optimization pipeline, it is marked accordingly.
// Note that if the debugger is activated during parallel recompilation,
// the function will be marked with the lazy-recompile builtin, which is
// not related to parallel recompilation.
while (function->IsMarkedForParallelRecompilation() ||
function->IsInRecompileQueue() ||
function->IsMarkedForInstallingRecompiledCode()) {
isolate->optimizing_compiler_thread()->InstallOptimizedFunctions();
OS::Sleep(50);
}
}
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetOptimizationStatus) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
// The least significant bit (after untagging) indicates whether the
// function is currently optimized, regardless of reason.
if (!V8::UseCrankshaft()) {
return Smi::FromInt(4); // 4 == "never".
}
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
if (FLAG_parallel_recompilation) {
if (function->IsMarkedForLazyRecompilation()) {
return Smi::FromInt(5);
}
}
if (FLAG_always_opt) {
// We may have always opt, but that is more best-effort than a real
// promise, so we still say "no" if it is not optimized.
return function->IsOptimized() ? Smi::FromInt(3) // 3 == "always".
: Smi::FromInt(2); // 2 == "no".
}
return function->IsOptimized() ? Smi::FromInt(1) // 1 == "yes".
: Smi::FromInt(2); // 2 == "no".
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetOptimizationCount) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
return Smi::FromInt(function->shared()->opt_count());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_CompileForOnStackReplacement) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
// We're not prepared to handle a function with arguments object.
ASSERT(!function->shared()->uses_arguments());
// We have hit a back edge in an unoptimized frame for a function that was
// selected for on-stack replacement. Find the unoptimized code object.
Handle<Code> unoptimized(function->shared()->code(), isolate);
// Keep track of whether we've succeeded in optimizing.
bool succeeded = unoptimized->optimizable();
if (succeeded) {
// If we are trying to do OSR when there are already optimized
// activations of the function, it means (a) the function is directly or
// indirectly recursive and (b) an optimized invocation has been
// deoptimized so that we are currently in an unoptimized activation.
// Check for optimized activations of this function.
JavaScriptFrameIterator it(isolate);
while (succeeded && !it.done()) {
JavaScriptFrame* frame = it.frame();
succeeded = !frame->is_optimized() || frame->function() != *function;
it.Advance();
}
}
BailoutId ast_id = BailoutId::None();
if (succeeded) {
// The top JS function is this one, the PC is somewhere in the
// unoptimized code.
JavaScriptFrameIterator it(isolate);
JavaScriptFrame* frame = it.frame();
ASSERT(frame->function() == *function);
ASSERT(frame->LookupCode() == *unoptimized);
ASSERT(unoptimized->contains(frame->pc()));
// Use linear search of the unoptimized code's back edge table to find
// the AST id matching the PC.
Address start = unoptimized->instruction_start();
unsigned target_pc_offset = static_cast<unsigned>(frame->pc() - start);
Address table_cursor = start + unoptimized->back_edge_table_offset();
uint32_t table_length = Memory::uint32_at(table_cursor);
table_cursor += kIntSize;
uint8_t loop_depth = 0;
for (unsigned i = 0; i < table_length; ++i) {
// Table entries are (AST id, pc offset) pairs.
uint32_t pc_offset = Memory::uint32_at(table_cursor + kIntSize);
if (pc_offset == target_pc_offset) {
ast_id = BailoutId(static_cast<int>(Memory::uint32_at(table_cursor)));
loop_depth = Memory::uint8_at(table_cursor + 2 * kIntSize);
break;
}
table_cursor += FullCodeGenerator::kBackEdgeEntrySize;
}
ASSERT(!ast_id.IsNone());
if (FLAG_trace_osr) {
PrintF("[replacing on-stack at AST id %d, loop depth %d in ",
ast_id.ToInt(), loop_depth);
function->PrintName();
PrintF("]\n");
}
// Try to compile the optimized code. A true return value from
// CompileOptimized means that compilation succeeded, not necessarily
// that optimization succeeded.
if (JSFunction::CompileOptimized(function, ast_id, CLEAR_EXCEPTION) &&
function->IsOptimized()) {
DeoptimizationInputData* data = DeoptimizationInputData::cast(
function->code()->deoptimization_data());
if (data->OsrPcOffset()->value() >= 0) {
if (FLAG_trace_osr) {
PrintF("[on-stack replacement offset %d in optimized code]\n",
data->OsrPcOffset()->value());
}
ASSERT(BailoutId(data->OsrAstId()->value()) == ast_id);
} else {
// We may never generate the desired OSR entry if we emit an
// early deoptimize.
succeeded = false;
}
} else {
succeeded = false;
}
}
// Revert to the original interrupt calls in the original unoptimized code.
if (FLAG_trace_osr) {
PrintF("[restoring original interrupt calls in ");
function->PrintName();
PrintF("]\n");
}
InterruptStub interrupt_stub;
Handle<Code> interrupt_code = interrupt_stub.GetCode(isolate);
Handle<Code> replacement_code = isolate->builtins()->OnStackReplacement();
Deoptimizer::RevertInterruptCode(*unoptimized,
*interrupt_code,
*replacement_code);
// If the optimization attempt succeeded, return the AST id tagged as a
// smi. This tells the builtin that we need to translate the unoptimized
// frame to an optimized one.
if (succeeded) {
ASSERT(function->code()->kind() == Code::OPTIMIZED_FUNCTION);
return Smi::FromInt(ast_id.ToInt());
} else {
if (function->IsMarkedForLazyRecompilation()) {
function->ReplaceCode(function->shared()->code());
}
return Smi::FromInt(-1);
}
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_CheckIsBootstrapping) {
SealHandleScope shs(isolate);
RUNTIME_ASSERT(isolate->bootstrapper()->IsActive());
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetRootNaN) {
SealHandleScope shs(isolate);
RUNTIME_ASSERT(isolate->bootstrapper()->IsActive());
return isolate->heap()->nan_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_Call) {
HandleScope scope(isolate);
ASSERT(args.length() >= 2);
int argc = args.length() - 2;
CONVERT_ARG_CHECKED(JSReceiver, fun, argc + 1);
Object* receiver = args[0];
// If there are too many arguments, allocate argv via malloc.
const int argv_small_size = 10;
Handle<Object> argv_small_buffer[argv_small_size];
SmartArrayPointer<Handle<Object> > argv_large_buffer;
Handle<Object>* argv = argv_small_buffer;
if (argc > argv_small_size) {
argv = new Handle<Object>[argc];
if (argv == NULL) return isolate->StackOverflow();
argv_large_buffer = SmartArrayPointer<Handle<Object> >(argv);
}
for (int i = 0; i < argc; ++i) {
MaybeObject* maybe = args[1 + i];
Object* object;
if (!maybe->To<Object>(&object)) return maybe;
argv[i] = Handle<Object>(object, isolate);
}
bool threw;
Handle<JSReceiver> hfun(fun);
Handle<Object> hreceiver(receiver, isolate);
Handle<Object> result =
Execution::Call(hfun, hreceiver, argc, argv, &threw, true);
if (threw) return Failure::Exception();
return *result;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_Apply) {
HandleScope scope(isolate);
ASSERT(args.length() == 5);
CONVERT_ARG_HANDLE_CHECKED(JSReceiver, fun, 0);
Handle<Object> receiver = args.at<Object>(1);
CONVERT_ARG_HANDLE_CHECKED(JSObject, arguments, 2);
CONVERT_SMI_ARG_CHECKED(offset, 3);
CONVERT_SMI_ARG_CHECKED(argc, 4);
ASSERT(offset >= 0);
ASSERT(argc >= 0);
// If there are too many arguments, allocate argv via malloc.
const int argv_small_size = 10;
Handle<Object> argv_small_buffer[argv_small_size];
SmartArrayPointer<Handle<Object> > argv_large_buffer;
Handle<Object>* argv = argv_small_buffer;
if (argc > argv_small_size) {
argv = new Handle<Object>[argc];
if (argv == NULL) return isolate->StackOverflow();
argv_large_buffer = SmartArrayPointer<Handle<Object> >(argv);
}
for (int i = 0; i < argc; ++i) {
argv[i] = Object::GetElement(arguments, offset + i);
}
bool threw;
Handle<Object> result =
Execution::Call(fun, receiver, argc, argv, &threw, true);
if (threw) return Failure::Exception();
return *result;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFunctionDelegate) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
RUNTIME_ASSERT(!args[0]->IsJSFunction());
return *Execution::GetFunctionDelegate(args.at<Object>(0));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetConstructorDelegate) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
RUNTIME_ASSERT(!args[0]->IsJSFunction());
return *Execution::GetConstructorDelegate(args.at<Object>(0));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NewGlobalContext) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSFunction, function, 0);
CONVERT_ARG_CHECKED(ScopeInfo, scope_info, 1);
Context* result;
MaybeObject* maybe_result =
isolate->heap()->AllocateGlobalContext(function, scope_info);
if (!maybe_result->To(&result)) return maybe_result;
ASSERT(function->context() == isolate->context());
ASSERT(function->context()->global_object() == result->global_object());
isolate->set_context(result);
result->global_object()->set_global_context(result);
return result; // non-failure
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_NewFunctionContext) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSFunction, function, 0);
int length = function->shared()->scope_info()->ContextLength();
Context* result;
MaybeObject* maybe_result =
isolate->heap()->AllocateFunctionContext(length, function);
if (!maybe_result->To(&result)) return maybe_result;
isolate->set_context(result);
return result; // non-failure
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_PushWithContext) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
JSObject* extension_object;
if (args[0]->IsJSObject()) {
extension_object = JSObject::cast(args[0]);
} else {
// Convert the object to a proper JavaScript object.
MaybeObject* maybe_js_object = args[0]->ToObject();
if (!maybe_js_object->To(&extension_object)) {
if (Failure::cast(maybe_js_object)->IsInternalError()) {
HandleScope scope(isolate);
Handle<Object> handle = args.at<Object>(0);
Handle<Object> result =
isolate->factory()->NewTypeError("with_expression",
HandleVector(&handle, 1));
return isolate->Throw(*result);
} else {
return maybe_js_object;
}
}
}
JSFunction* function;
if (args[1]->IsSmi()) {
// A smi sentinel indicates a context nested inside global code rather
// than some function. There is a canonical empty function that can be
// gotten from the native context.
function = isolate->context()->native_context()->closure();
} else {
function = JSFunction::cast(args[1]);
}
Context* context;
MaybeObject* maybe_context =
isolate->heap()->AllocateWithContext(function,
isolate->context(),
extension_object);
if (!maybe_context->To(&context)) return maybe_context;
isolate->set_context(context);
return context;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_PushCatchContext) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 3);
String* name = String::cast(args[0]);
Object* thrown_object = args[1];
JSFunction* function;
if (args[2]->IsSmi()) {
// A smi sentinel indicates a context nested inside global code rather
// than some function. There is a canonical empty function that can be
// gotten from the native context.
function = isolate->context()->native_context()->closure();
} else {
function = JSFunction::cast(args[2]);
}
Context* context;
MaybeObject* maybe_context =
isolate->heap()->AllocateCatchContext(function,
isolate->context(),
name,
thrown_object);
if (!maybe_context->To(&context)) return maybe_context;
isolate->set_context(context);
return context;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_PushBlockContext) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
ScopeInfo* scope_info = ScopeInfo::cast(args[0]);
JSFunction* function;
if (args[1]->IsSmi()) {
// A smi sentinel indicates a context nested inside global code rather
// than some function. There is a canonical empty function that can be
// gotten from the native context.
function = isolate->context()->native_context()->closure();
} else {
function = JSFunction::cast(args[1]);
}
Context* context;
MaybeObject* maybe_context =
isolate->heap()->AllocateBlockContext(function,
isolate->context(),
scope_info);
if (!maybe_context->To(&context)) return maybe_context;
isolate->set_context(context);
return context;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_IsJSModule) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
Object* obj = args[0];
return isolate->heap()->ToBoolean(obj->IsJSModule());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_PushModuleContext) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_SMI_ARG_CHECKED(index, 0);
if (!args[1]->IsScopeInfo()) {
// Module already initialized. Find hosting context and retrieve context.
Context* host = Context::cast(isolate->context())->global_context();
Context* context = Context::cast(host->get(index));
ASSERT(context->previous() == isolate->context());
isolate->set_context(context);
return context;
}
CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 1);
// Allocate module context.
HandleScope scope(isolate);
Factory* factory = isolate->factory();
Handle<Context> context = factory->NewModuleContext(scope_info);
Handle<JSModule> module = factory->NewJSModule(context, scope_info);
context->set_module(*module);
Context* previous = isolate->context();
context->set_previous(previous);
context->set_closure(previous->closure());
context->set_global_object(previous->global_object());
isolate->set_context(*context);
// Find hosting scope and initialize internal variable holding module there.
previous->global_context()->set(index, *context);
return *context;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DeclareModules) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(FixedArray, descriptions, 0);
Context* host_context = isolate->context();
for (int i = 0; i < descriptions->length(); ++i) {
Handle<ModuleInfo> description(ModuleInfo::cast(descriptions->get(i)));
int host_index = description->host_index();
Handle<Context> context(Context::cast(host_context->get(host_index)));
Handle<JSModule> module(context->module());
for (int j = 0; j < description->length(); ++j) {
Handle<String> name(description->name(j));
VariableMode mode = description->mode(j);
int index = description->index(j);
switch (mode) {
case VAR:
case LET:
case CONST:
case CONST_HARMONY: {
PropertyAttributes attr =
IsImmutableVariableMode(mode) ? FROZEN : SEALED;
Handle<AccessorInfo> info =
Accessors::MakeModuleExport(name, index, attr);
Handle<Object> result = SetAccessor(module, info);
ASSERT(!(result.is_null() || result->IsUndefined()));
USE(result);
break;
}
case MODULE: {
Object* referenced_context = Context::cast(host_context)->get(index);
Handle<JSModule> value(Context::cast(referenced_context)->module());
JSReceiver::SetProperty(module, name, value, FROZEN, kStrictMode);
break;
}
case INTERNAL:
case TEMPORARY:
case DYNAMIC:
case DYNAMIC_GLOBAL:
case DYNAMIC_LOCAL:
UNREACHABLE();
}
}
JSObject::PreventExtensions(module);
}
ASSERT(!isolate->has_pending_exception());
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DeleteContextSlot) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(Context, context, 0);
CONVERT_ARG_HANDLE_CHECKED(String, name, 1);
int index;
PropertyAttributes attributes;
ContextLookupFlags flags = FOLLOW_CHAINS;
BindingFlags binding_flags;
Handle<Object> holder = context->Lookup(name,
flags,
&index,
&attributes,
&binding_flags);
// If the slot was not found the result is true.
if (holder.is_null()) {
return isolate->heap()->true_value();
}
// If the slot was found in a context, it should be DONT_DELETE.
if (holder->IsContext()) {
return isolate->heap()->false_value();
}
// The slot was found in a JSObject, either a context extension object,
// the global object, or the subject of a with. Try to delete it
// (respecting DONT_DELETE).
Handle<JSObject> object = Handle<JSObject>::cast(holder);
return object->DeleteProperty(*name, JSReceiver::NORMAL_DELETION);
}
// A mechanism to return a pair of Object pointers in registers (if possible).
// How this is achieved is calling convention-dependent.
// All currently supported x86 compiles uses calling conventions that are cdecl
// variants where a 64-bit value is returned in two 32-bit registers
// (edx:eax on ia32, r1:r0 on ARM).
// In AMD-64 calling convention a struct of two pointers is returned in rdx:rax.
// In Win64 calling convention, a struct of two pointers is returned in memory,
// allocated by the caller, and passed as a pointer in a hidden first parameter.
#ifdef V8_HOST_ARCH_64_BIT
struct ObjectPair {
MaybeObject* x;
MaybeObject* y;
};
static inline ObjectPair MakePair(MaybeObject* x, MaybeObject* y) {
ObjectPair result = {x, y};
// Pointers x and y returned in rax and rdx, in AMD-x64-abi.
// In Win64 they are assigned to a hidden first argument.
return result;
}
#else
typedef uint64_t ObjectPair;
static inline ObjectPair MakePair(MaybeObject* x, MaybeObject* y) {
return reinterpret_cast<uint32_t>(x) |
(reinterpret_cast<ObjectPair>(y) << 32);
}
#endif
static inline MaybeObject* Unhole(Heap* heap,
MaybeObject* x,
PropertyAttributes attributes) {
ASSERT(!x->IsTheHole() || (attributes & READ_ONLY) != 0);
USE(attributes);
return x->IsTheHole() ? heap->undefined_value() : x;
}
static Object* ComputeReceiverForNonGlobal(Isolate* isolate,
JSObject* holder) {
ASSERT(!holder->IsGlobalObject());
Context* top = isolate->context();
// Get the context extension function.
JSFunction* context_extension_function =
top->native_context()->context_extension_function();
// If the holder isn't a context extension object, we just return it
// as the receiver. This allows arguments objects to be used as
// receivers, but only if they are put in the context scope chain
// explicitly via a with-statement.
Object* constructor = holder->map()->constructor();
if (constructor != context_extension_function) return holder;
// Fall back to using the global object as the implicit receiver if
// the property turns out to be a local variable allocated in a
// context extension object - introduced via eval. Implicit global
// receivers are indicated with the hole value.
return isolate->heap()->the_hole_value();
}
static ObjectPair LoadContextSlotHelper(Arguments args,
Isolate* isolate,
bool throw_error) {
HandleScope scope(isolate);
ASSERT_EQ(2, args.length());
if (!args[0]->IsContext() || !args[1]->IsString()) {
return MakePair(isolate->ThrowIllegalOperation(), NULL);
}
Handle<Context> context = args.at<Context>(0);
Handle<String> name = args.at<String>(1);
int index;
PropertyAttributes attributes;
ContextLookupFlags flags = FOLLOW_CHAINS;
BindingFlags binding_flags;
Handle<Object> holder = context->Lookup(name,
flags,
&index,
&attributes,
&binding_flags);
// If the index is non-negative, the slot has been found in a context.
if (index >= 0) {
ASSERT(holder->IsContext());
// If the "property" we were looking for is a local variable, the
// receiver is the global object; see ECMA-262, 3rd., 10.1.6 and 10.2.3.
//
// Use the hole as the receiver to signal that the receiver is implicit
// and that the global receiver should be used (as distinguished from an
// explicit receiver that happens to be a global object).
Handle<Object> receiver = isolate->factory()->the_hole_value();
Object* value = Context::cast(*holder)->get(index);
// Check for uninitialized bindings.
switch (binding_flags) {
case MUTABLE_CHECK_INITIALIZED:
case IMMUTABLE_CHECK_INITIALIZED_HARMONY:
if (value->IsTheHole()) {
Handle<Object> reference_error =
isolate->factory()->NewReferenceError("not_defined",
HandleVector(&name, 1));
return MakePair(isolate->Throw(*reference_error), NULL);
}
// FALLTHROUGH
case MUTABLE_IS_INITIALIZED:
case IMMUTABLE_IS_INITIALIZED:
case IMMUTABLE_IS_INITIALIZED_HARMONY:
ASSERT(!value->IsTheHole());
return MakePair(value, *receiver);
case IMMUTABLE_CHECK_INITIALIZED:
return MakePair(Unhole(isolate->heap(), value, attributes), *receiver);
case MISSING_BINDING:
UNREACHABLE();
return MakePair(NULL, NULL);
}
}
// Otherwise, if the slot was found the holder is a context extension
// object, subject of a with, or a global object. We read the named
// property from it.
if (!holder.is_null()) {
Handle<JSObject> object = Handle<JSObject>::cast(holder);
ASSERT(object->HasProperty(*name));
// GetProperty below can cause GC.
Handle<Object> receiver_handle(
object->IsGlobalObject()
? GlobalObject::cast(*object)->global_receiver()
: ComputeReceiverForNonGlobal(isolate, *object),
isolate);
// No need to unhole the value here. This is taken care of by the
// GetProperty function.
MaybeObject* value = object->GetProperty(*name);
return MakePair(value, *receiver_handle);
}
if (throw_error) {
// The property doesn't exist - throw exception.
Handle<Object> reference_error =
isolate->factory()->NewReferenceError("not_defined",
HandleVector(&name, 1));
return MakePair(isolate->Throw(*reference_error), NULL);
} else {
// The property doesn't exist - return undefined.
return MakePair(isolate->heap()->undefined_value(),
isolate->heap()->undefined_value());
}
}
RUNTIME_FUNCTION(ObjectPair, Runtime_LoadContextSlot) {
return LoadContextSlotHelper(args, isolate, true);
}
RUNTIME_FUNCTION(ObjectPair, Runtime_LoadContextSlotNoReferenceError) {
return LoadContextSlotHelper(args, isolate, false);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StoreContextSlot) {
HandleScope scope(isolate);
ASSERT(args.length() == 4);
Handle<Object> value(args[0], isolate);
CONVERT_ARG_HANDLE_CHECKED(Context, context, 1);
CONVERT_ARG_HANDLE_CHECKED(String, name, 2);
CONVERT_LANGUAGE_MODE_ARG(language_mode, 3);
StrictModeFlag strict_mode = (language_mode == CLASSIC_MODE)
? kNonStrictMode : kStrictMode;
int index;
PropertyAttributes attributes;
ContextLookupFlags flags = FOLLOW_CHAINS;
BindingFlags binding_flags;
Handle<Object> holder = context->Lookup(name,
flags,
&index,
&attributes,
&binding_flags);
if (index >= 0) {
// The property was found in a context slot.
Handle<Context> context = Handle<Context>::cast(holder);
if (binding_flags == MUTABLE_CHECK_INITIALIZED &&
context->get(index)->IsTheHole()) {
Handle<Object> error =
isolate->factory()->NewReferenceError("not_defined",
HandleVector(&name, 1));
return isolate->Throw(*error);
}
// Ignore if read_only variable.
if ((attributes & READ_ONLY) == 0) {
// Context is a fixed array and set cannot fail.
context->set(index, *value);
} else if (strict_mode == kStrictMode) {
// Setting read only property in strict mode.
Handle<Object> error =
isolate->factory()->NewTypeError("strict_cannot_assign",
HandleVector(&name, 1));
return isolate->Throw(*error);
}
return *value;
}
// Slow case: The property is not in a context slot. It is either in a
// context extension object, a property of the subject of a with, or a
// property of the global object.
Handle<JSObject> object;
if (!holder.is_null()) {
// The property exists on the holder.
object = Handle<JSObject>::cast(holder);
} else {
// The property was not found.
ASSERT(attributes == ABSENT);
if (strict_mode == kStrictMode) {
// Throw in strict mode (assignment to undefined variable).
Handle<Object> error =
isolate->factory()->NewReferenceError(
"not_defined", HandleVector(&name, 1));
return isolate->Throw(*error);
}
// In non-strict mode, the property is added to the global object.
attributes = NONE;
object = Handle<JSObject>(isolate->context()->global_object());
}
// Set the property if it's not read only or doesn't yet exist.
if ((attributes & READ_ONLY) == 0 ||
(object->GetLocalPropertyAttribute(*name) == ABSENT)) {
RETURN_IF_EMPTY_HANDLE(
isolate,
JSReceiver::SetProperty(object, name, value, NONE, strict_mode));
} else if (strict_mode == kStrictMode && (attributes & READ_ONLY) != 0) {
// Setting read only property in strict mode.
Handle<Object> error =
isolate->factory()->NewTypeError(
"strict_cannot_assign", HandleVector(&name, 1));
return isolate->Throw(*error);
}
return *value;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_Throw) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
return isolate->Throw(args[0]);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_ReThrow) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
return isolate->ReThrow(args[0]);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_PromoteScheduledException) {
SealHandleScope shs(isolate);
ASSERT_EQ(0, args.length());
return isolate->PromoteScheduledException();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_ThrowReferenceError) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
Handle<Object> name(args[0], isolate);
Handle<Object> reference_error =
isolate->factory()->NewReferenceError("not_defined",
HandleVector(&name, 1));
return isolate->Throw(*reference_error);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_ThrowNotDateError) {
HandleScope scope(isolate);
ASSERT(args.length() == 0);
return isolate->Throw(*isolate->factory()->NewTypeError(
"not_date_object", HandleVector<Object>(NULL, 0)));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_StackGuard) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 0);
// First check if this is a real stack overflow.
if (isolate->stack_guard()->IsStackOverflow()) {
SealHandleScope shs(isolate);
return isolate->StackOverflow();
}
return Execution::HandleStackGuardInterrupt(isolate);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_Interrupt) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 0);
return Execution::HandleStackGuardInterrupt(isolate);
}
static int StackSize(Isolate* isolate) {
int n = 0;
for (JavaScriptFrameIterator it(isolate); !it.done(); it.Advance()) n++;
return n;
}
static void PrintTransition(Isolate* isolate, Object* result) {
// indentation
{ const int nmax = 80;
int n = StackSize(isolate);
if (n <= nmax)
PrintF("%4d:%*s", n, n, "");
else
PrintF("%4d:%*s", n, nmax, "...");
}
if (result == NULL) {
JavaScriptFrame::PrintTop(isolate, stdout, true, false);
PrintF(" {\n");
} else {
// function result
PrintF("} -> ");
result->ShortPrint();
PrintF("\n");
}
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_TraceEnter) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 0);
PrintTransition(isolate, NULL);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_TraceExit) {
SealHandleScope shs(isolate);
PrintTransition(isolate, args[0]);
return args[0]; // return TOS
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPrint) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
#ifdef DEBUG
if (args[0]->IsString()) {
// If we have a string, assume it's a code "marker"
// and print some interesting cpu debugging info.
JavaScriptFrameIterator it(isolate);
JavaScriptFrame* frame = it.frame();
PrintF("fp = %p, sp = %p, caller_sp = %p: ",
frame->fp(), frame->sp(), frame->caller_sp());
} else {
PrintF("DebugPrint: ");
}
args[0]->Print();
if (args[0]->IsHeapObject()) {
PrintF("\n");
HeapObject::cast(args[0])->map()->Print();
}
#else
// ShortPrint is available in release mode. Print is not.
args[0]->ShortPrint();
#endif
PrintF("\n");
Flush();
return args[0]; // return TOS
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugTrace) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 0);
isolate->PrintStack(stdout);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DateCurrentTime) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 0);
// According to ECMA-262, section 15.9.1, page 117, the precision of
// the number in a Date object representing a particular instant in
// time is milliseconds. Therefore, we floor the result of getting
// the OS time.
double millis = floor(OS::TimeCurrentMillis());
return isolate->heap()->NumberFromDouble(millis);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DateParseString) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(String, str, 0);
FlattenString(str);
CONVERT_ARG_HANDLE_CHECKED(JSArray, output, 1);
MaybeObject* maybe_result_array =
output->EnsureCanContainHeapObjectElements();
if (maybe_result_array->IsFailure()) return maybe_result_array;
RUNTIME_ASSERT(output->HasFastObjectElements());
DisallowHeapAllocation no_gc;
FixedArray* output_array = FixedArray::cast(output->elements());
RUNTIME_ASSERT(output_array->length() >= DateParser::OUTPUT_SIZE);
bool result;
String::FlatContent str_content = str->GetFlatContent();
if (str_content.IsAscii()) {
result = DateParser::Parse(str_content.ToOneByteVector(),
output_array,
isolate->unicode_cache());
} else {
ASSERT(str_content.IsTwoByte());
result = DateParser::Parse(str_content.ToUC16Vector(),
output_array,
isolate->unicode_cache());
}
if (result) {
return *output;
} else {
return isolate->heap()->null_value();
}
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DateLocalTimezone) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
int64_t time = isolate->date_cache()->EquivalentTime(static_cast<int64_t>(x));
const char* zone = OS::LocalTimezone(static_cast<double>(time));
return isolate->heap()->AllocateStringFromUtf8(CStrVector(zone));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DateToUTC) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
int64_t time = isolate->date_cache()->ToUTC(static_cast<int64_t>(x));
return isolate->heap()->NumberFromDouble(static_cast<double>(time));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GlobalReceiver) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
Object* global = args[0];
if (!global->IsJSGlobalObject()) return isolate->heap()->null_value();
return JSGlobalObject::cast(global)->global_receiver();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_ParseJson) {
HandleScope scope(isolate);
ASSERT_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
source = Handle<String>(source->TryFlattenGetString());
// Optimized fast case where we only have ASCII characters.
Handle<Object> result;
if (source->IsSeqOneByteString()) {
result = JsonParser<true>::Parse(source);
} else {
result = JsonParser<false>::Parse(source);
}
if (result.is_null()) {
// Syntax error or stack overflow in scanner.
ASSERT(isolate->has_pending_exception());
return Failure::Exception();
}
return *result;
}
bool CodeGenerationFromStringsAllowed(Isolate* isolate,
Handle<Context> context) {
ASSERT(context->allow_code_gen_from_strings()->IsFalse());
// Check with callback if set.
AllowCodeGenerationFromStringsCallback callback =
isolate->allow_code_gen_callback();
if (callback == NULL) {
// No callback set and code generation disallowed.
return false;
} else {
// Callback set. Let it decide if code generation is allowed.
VMState<EXTERNAL> state(isolate);
return callback(v8::Utils::ToLocal(context));
}
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_CompileString) {
HandleScope scope(isolate);
ASSERT_EQ(2, args.length());
CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
CONVERT_BOOLEAN_ARG_CHECKED(function_literal_only, 1);
// Extract native context.
Handle<Context> context(isolate->context()->native_context());
// Check if native context allows code generation from
// strings. Throw an exception if it doesn't.
if (context->allow_code_gen_from_strings()->IsFalse() &&
!CodeGenerationFromStringsAllowed(isolate, context)) {
Handle<Object> error_message =
context->ErrorMessageForCodeGenerationFromStrings();
return isolate->Throw(*isolate->factory()->NewEvalError(
"code_gen_from_strings", HandleVector<Object>(&error_message, 1)));
}
// Compile source string in the native context.
ParseRestriction restriction = function_literal_only
? ONLY_SINGLE_FUNCTION_LITERAL : NO_PARSE_RESTRICTION;
Handle<SharedFunctionInfo> shared = Compiler::CompileEval(
source, context, true, CLASSIC_MODE, restriction, RelocInfo::kNoPosition);
RETURN_IF_EMPTY_HANDLE(isolate, shared);
Handle<JSFunction> fun =
isolate->factory()->NewFunctionFromSharedFunctionInfo(shared,
context,
NOT_TENURED);
return *fun;
}
static ObjectPair CompileGlobalEval(Isolate* isolate,
Handle<String> source,
Handle<Object> receiver,
LanguageMode language_mode,
int scope_position) {
Handle<Context> context = Handle<Context>(isolate->context());
Handle<Context> native_context = Handle<Context>(context->native_context());
// Check if native context allows code generation from
// strings. Throw an exception if it doesn't.
if (native_context->allow_code_gen_from_strings()->IsFalse() &&
!CodeGenerationFromStringsAllowed(isolate, native_context)) {
Handle<Object> error_message =
native_context->ErrorMessageForCodeGenerationFromStrings();
isolate->Throw(*isolate->factory()->NewEvalError(
"code_gen_from_strings", HandleVector<Object>(&error_message, 1)));
return MakePair(Failure::Exception(), NULL);
}
// Deal with a normal eval call with a string argument. Compile it
// and return the compiled function bound in the local context.
Handle<SharedFunctionInfo> shared = Compiler::CompileEval(
source,
context,
context->IsNativeContext(),
language_mode,
NO_PARSE_RESTRICTION,
scope_position);
RETURN_IF_EMPTY_HANDLE_VALUE(isolate, shared,
MakePair(Failure::Exception(), NULL));
Handle<JSFunction> compiled =
isolate->factory()->NewFunctionFromSharedFunctionInfo(
shared, context, NOT_TENURED);
return MakePair(*compiled, *receiver);
}
RUNTIME_FUNCTION(ObjectPair, Runtime_ResolvePossiblyDirectEval) {
HandleScope scope(isolate);
ASSERT(args.length() == 5);
Handle<Object> callee = args.at<Object>(0);
// If "eval" didn't refer to the original GlobalEval, it's not a
// direct call to eval.
// (And even if it is, but the first argument isn't a string, just let
// execution default to an indirect call to eval, which will also return
// the first argument without doing anything).
if (*callee != isolate->native_context()->global_eval_fun() ||
!args[1]->IsString()) {
return MakePair(*callee, isolate->heap()->the_hole_value());
}
CONVERT_LANGUAGE_MODE_ARG(language_mode, 3);
ASSERT(args[4]->IsSmi());
return CompileGlobalEval(isolate,
args.at<String>(1),
args.at<Object>(2),
language_mode,
args.smi_at(4));
}
static MaybeObject* Allocate(Isolate* isolate,
int size,
AllocationSpace space) {
// Allocate a block of memory in the given space (filled with a filler).
// Use as fallback for allocation in generated code when the space
// is full.
SealHandleScope shs(isolate);
RUNTIME_ASSERT(IsAligned(size, kPointerSize));
RUNTIME_ASSERT(size > 0);
Heap* heap = isolate->heap();
RUNTIME_ASSERT(size <= heap->MaxRegularSpaceAllocationSize());
Object* allocation;
{ MaybeObject* maybe_allocation;
if (space == NEW_SPACE) {
maybe_allocation = heap->new_space()->AllocateRaw(size);
} else {
ASSERT(space == OLD_POINTER_SPACE || space == OLD_DATA_SPACE);
maybe_allocation = heap->paged_space(space)->AllocateRaw(size);
}
if (maybe_allocation->ToObject(&allocation)) {
heap->CreateFillerObjectAt(HeapObject::cast(allocation)->address(), size);
}
return maybe_allocation;
}
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_AllocateInNewSpace) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(Smi, size_smi, 0);
return Allocate(isolate, size_smi->value(), NEW_SPACE);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_AllocateInOldPointerSpace) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(Smi, size_smi, 0);
return Allocate(isolate, size_smi->value(), OLD_POINTER_SPACE);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_AllocateInOldDataSpace) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(Smi, size_smi, 0);
return Allocate(isolate, size_smi->value(), OLD_DATA_SPACE);
}
// Push an object unto an array of objects if it is not already in the
// array. Returns true if the element was pushed on the stack and
// false otherwise.
RUNTIME_FUNCTION(MaybeObject*, Runtime_PushIfAbsent) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSArray, array, 0);
CONVERT_ARG_CHECKED(JSReceiver, element, 1);
RUNTIME_ASSERT(array->HasFastSmiOrObjectElements());
int length = Smi::cast(array->length())->value();
FixedArray* elements = FixedArray::cast(array->elements());
for (int i = 0; i < length; i++) {
if (elements->get(i) == element) return isolate->heap()->false_value();
}
Object* obj;
// Strict not needed. Used for cycle detection in Array join implementation.
{ MaybeObject* maybe_obj =
array->SetFastElement(length, element, kNonStrictMode, true);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
return isolate->heap()->true_value();
}
/**
* A simple visitor visits every element of Array's.
* The backend storage can be a fixed array for fast elements case,
* or a dictionary for sparse array. Since Dictionary is a subtype
* of FixedArray, the class can be used by both fast and slow cases.
* The second parameter of the constructor, fast_elements, specifies
* whether the storage is a FixedArray or Dictionary.
*
* An index limit is used to deal with the situation that a result array
* length overflows 32-bit non-negative integer.
*/
class ArrayConcatVisitor {
public:
ArrayConcatVisitor(Isolate* isolate,
Handle<FixedArray> storage,
bool fast_elements) :
isolate_(isolate),
storage_(Handle<FixedArray>::cast(
isolate->global_handles()->Create(*storage))),
index_offset_(0u),
fast_elements_(fast_elements),
exceeds_array_limit_(false) { }
~ArrayConcatVisitor() {
clear_storage();
}
void visit(uint32_t i, Handle<Object> elm) {
if (i > JSObject::kMaxElementCount - index_offset_) {
exceeds_array_limit_ = true;
return;
}
uint32_t index = index_offset_ + i;
if (fast_elements_) {
if (index < static_cast<uint32_t>(storage_->length())) {
storage_->set(index, *elm);
return;
}
// Our initial estimate of length was foiled, possibly by
// getters on the arrays increasing the length of later arrays
// during iteration.
// This shouldn't happen in anything but pathological cases.
SetDictionaryMode(index);
// Fall-through to dictionary mode.
}
ASSERT(!fast_elements_);
Handle<SeededNumberDictionary> dict(
SeededNumberDictionary::cast(*storage_));
Handle<SeededNumberDictionary> result =
isolate_->factory()->DictionaryAtNumberPut(dict, index, elm);
if (!result.is_identical_to(dict)) {
// Dictionary needed to grow.
clear_storage();
set_storage(*result);
}
}
void increase_index_offset(uint32_t delta) {
if (JSObject::kMaxElementCount - index_offset_ < delta) {
index_offset_ = JSObject::kMaxElementCount;
} else {
index_offset_ += delta;
}
}
bool exceeds_array_limit() {
return exceeds_array_limit_;
}
Handle<JSArray> ToArray() {
Handle<JSArray> array = isolate_->factory()->NewJSArray(0);
Handle<Object> length =
isolate_->factory()->NewNumber(static_cast<double>(index_offset_));
Handle<Map> map;
if (fast_elements_) {
map = isolate_->factory()->GetElementsTransitionMap(array,
FAST_HOLEY_ELEMENTS);
} else {
map = isolate_->factory()->GetElementsTransitionMap(array,
DICTIONARY_ELEMENTS);
}
array->set_map(*map);
array->set_length(*length);
array->set_elements(*storage_);
return array;
}
private:
// Convert storage to dictionary mode.
void SetDictionaryMode(uint32_t index) {
ASSERT(fast_elements_);
Handle<FixedArray> current_storage(*storage_);
Handle<SeededNumberDictionary> slow_storage(
isolate_->factory()->NewSeededNumberDictionary(
current_storage->length()));
uint32_t current_length = static_cast<uint32_t>(current_storage->length());
for (uint32_t i = 0; i < current_length; i++) {
HandleScope loop_scope(isolate_);
Handle<Object> element(current_storage->get(i), isolate_);
if (!element->IsTheHole()) {
Handle<SeededNumberDictionary> new_storage =
isolate_->factory()->DictionaryAtNumberPut(slow_storage, i, element);
if (!new_storage.is_identical_to(slow_storage)) {
slow_storage = loop_scope.CloseAndEscape(new_storage);
}
}
}
clear_storage();
set_storage(*slow_storage);
fast_elements_ = false;
}
inline void clear_storage() {
isolate_->global_handles()->Destroy(
Handle<Object>::cast(storage_).location());
}
inline void set_storage(FixedArray* storage) {
storage_ = Handle<FixedArray>::cast(
isolate_->global_handles()->Create(storage));
}
Isolate* isolate_;
Handle<FixedArray> storage_; // Always a global handle.
// Index after last seen index. Always less than or equal to
// JSObject::kMaxElementCount.
uint32_t index_offset_;
bool fast_elements_ : 1;
bool exceeds_array_limit_ : 1;
};
static uint32_t EstimateElementCount(Handle<JSArray> array) {
uint32_t length = static_cast<uint32_t>(array->length()->Number());
int element_count = 0;
switch (array->GetElementsKind()) {
case FAST_SMI_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_HOLEY_ELEMENTS: {
// Fast elements can't have lengths that are not representable by
// a 32-bit signed integer.
ASSERT(static_cast<int32_t>(FixedArray::kMaxLength) >= 0);
int fast_length = static_cast<int>(length);
Handle<FixedArray> elements(FixedArray::cast(array->elements()));
for (int i = 0; i < fast_length; i++) {
if (!elements->get(i)->IsTheHole()) element_count++;
}
break;
}
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS: {
// Fast elements can't have lengths that are not representable by
// a 32-bit signed integer.
ASSERT(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0);
int fast_length = static_cast<int>(length);
if (array->elements()->IsFixedArray()) {
ASSERT(FixedArray::cast(array->elements())->length() == 0);
break;
}
Handle<FixedDoubleArray> elements(
FixedDoubleArray::cast(array->elements()));
for (int i = 0; i < fast_length; i++) {
if (!elements->is_the_hole(i)) element_count++;
}
break;
}
case DICTIONARY_ELEMENTS: {
Handle<SeededNumberDictionary> dictionary(
SeededNumberDictionary::cast(array->elements()));
int capacity = dictionary->Capacity();
for (int i = 0; i < capacity; i++) {
Handle<Object> key(dictionary->KeyAt(i), array->GetIsolate());
if (dictionary->IsKey(*key)) {
element_count++;
}
}
break;
}
case NON_STRICT_ARGUMENTS_ELEMENTS:
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
case EXTERNAL_PIXEL_ELEMENTS:
// External arrays are always dense.
return length;
}
// As an estimate, we assume that the prototype doesn't contain any
// inherited elements.
return element_count;
}
template<class ExternalArrayClass, class ElementType>
static void IterateExternalArrayElements(Isolate* isolate,
Handle<JSObject> receiver,
bool elements_are_ints,
bool elements_are_guaranteed_smis,
ArrayConcatVisitor* visitor) {
Handle<ExternalArrayClass> array(
ExternalArrayClass::cast(receiver->elements()));
uint32_t len = static_cast<uint32_t>(array->length());
ASSERT(visitor != NULL);
if (elements_are_ints) {
if (elements_are_guaranteed_smis) {
for (uint32_t j = 0; j < len; j++) {
HandleScope loop_scope(isolate);
Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get_scalar(j))),
isolate);
visitor->visit(j, e);
}
} else {
for (uint32_t j = 0; j < len; j++) {
HandleScope loop_scope(isolate);
int64_t val = static_cast<int64_t>(array->get_scalar(j));
if (Smi::IsValid(static_cast<intptr_t>(val))) {
Handle<Smi> e(Smi::FromInt(static_cast<int>(val)), isolate);
visitor->visit(j, e);
} else {
Handle<Object> e =
isolate->factory()->NewNumber(static_cast<ElementType>(val));
visitor->visit(j, e);
}
}
}
} else {
for (uint32_t j = 0; j < len; j++) {
HandleScope loop_scope(isolate);
Handle<Object> e = isolate->factory()->NewNumber(array->get_scalar(j));
visitor->visit(j, e);
}
}
}
// Used for sorting indices in a List<uint32_t>.
static int compareUInt32(const uint32_t* ap, const uint32_t* bp) {
uint32_t a = *ap;
uint32_t b = *bp;
return (a == b) ? 0 : (a < b) ? -1 : 1;
}
static void CollectElementIndices(Handle<JSObject> object,
uint32_t range,
List<uint32_t>* indices) {
Isolate* isolate = object->GetIsolate();
ElementsKind kind = object->GetElementsKind();
switch (kind) {
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS: {
Handle<FixedArray> elements(FixedArray::cast(object->elements()));
uint32_t length = static_cast<uint32_t>(elements->length());
if (range < length) length = range;
for (uint32_t i = 0; i < length; i++) {
if (!elements->get(i)->IsTheHole()) {
indices->Add(i);
}
}
break;
}
case FAST_HOLEY_DOUBLE_ELEMENTS:
case FAST_DOUBLE_ELEMENTS: {
// TODO(1810): Decide if it's worthwhile to implement this.
UNREACHABLE();
break;
}
case DICTIONARY_ELEMENTS: {
Handle<SeededNumberDictionary> dict(
SeededNumberDictionary::cast(object->elements()));
uint32_t capacity = dict->Capacity();
for (uint32_t j = 0; j < capacity; j++) {
HandleScope loop_scope(isolate);
Handle<Object> k(dict->KeyAt(j), isolate);
if (dict->IsKey(*k)) {
ASSERT(k->IsNumber());
uint32_t index = static_cast<uint32_t>(k->Number());
if (index < range) {
indices->Add(index);
}
}
}
break;
}
default: {
int dense_elements_length;
switch (kind) {
case EXTERNAL_PIXEL_ELEMENTS: {
dense_elements_length =
ExternalPixelArray::cast(object->elements())->length();
break;
}
case EXTERNAL_BYTE_ELEMENTS: {
dense_elements_length =
ExternalByteArray::cast(object->elements())->length();
break;
}
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: {
dense_elements_length =
ExternalUnsignedByteArray::cast(object->elements())->length();
break;
}
case EXTERNAL_SHORT_ELEMENTS: {
dense_elements_length =
ExternalShortArray::cast(object->elements())->length();
break;
}
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: {
dense_elements_length =
ExternalUnsignedShortArray::cast(object->elements())->length();
break;
}
case EXTERNAL_INT_ELEMENTS: {
dense_elements_length =
ExternalIntArray::cast(object->elements())->length();
break;
}
case EXTERNAL_UNSIGNED_INT_ELEMENTS: {
dense_elements_length =
ExternalUnsignedIntArray::cast(object->elements())->length();
break;
}
case EXTERNAL_FLOAT_ELEMENTS: {
dense_elements_length =
ExternalFloatArray::cast(object->elements())->length();
break;
}
case EXTERNAL_DOUBLE_ELEMENTS: {
dense_elements_length =
ExternalDoubleArray::cast(object->elements())->length();
break;
}
default:
UNREACHABLE();
dense_elements_length = 0;
break;
}
uint32_t length = static_cast<uint32_t>(dense_elements_length);
if (range <= length) {
length = range;
// We will add all indices, so we might as well clear it first
// and avoid duplicates.
indices->Clear();
}
for (uint32_t i = 0; i < length; i++) {
indices->Add(i);
}
if (length == range) return; // All indices accounted for already.
break;
}
}
Handle<Object> prototype(object->GetPrototype(), isolate);
if (prototype->IsJSObject()) {
// The prototype will usually have no inherited element indices,
// but we have to check.
CollectElementIndices(Handle<JSObject>::cast(prototype), range, indices);
}
}
/**
* A helper function that visits elements of a JSArray in numerical
* order.
*
* The visitor argument called for each existing element in the array
* with the element index and the element's value.
* Afterwards it increments the base-index of the visitor by the array
* length.
* Returns false if any access threw an exception, otherwise true.
*/
static bool IterateElements(Isolate* isolate,
Handle<JSArray> receiver,
ArrayConcatVisitor* visitor) {
uint32_t length = static_cast<uint32_t>(receiver->length()->Number());
switch (receiver->GetElementsKind()) {
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS: {
// Run through the elements FixedArray and use HasElement and GetElement
// to check the prototype for missing elements.
Handle<FixedArray> elements(FixedArray::cast(receiver->elements()));
int fast_length = static_cast<int>(length);
ASSERT(fast_length <= elements->length());
for (int j = 0; j < fast_length; j++) {
HandleScope loop_scope(isolate);
Handle<Object> element_value(elements->get(j), isolate);
if (!element_value->IsTheHole()) {
visitor->visit(j, element_value);
} else if (receiver->HasElement(j)) {
// Call GetElement on receiver, not its prototype, or getters won't
// have the correct receiver.
element_value = Object::GetElement(receiver, j);
RETURN_IF_EMPTY_HANDLE_VALUE(isolate, element_value, false);
visitor->visit(j, element_value);
}
}
break;
}
case FAST_HOLEY_DOUBLE_ELEMENTS:
case FAST_DOUBLE_ELEMENTS: {
// Run through the elements FixedArray and use HasElement and GetElement
// to check the prototype for missing elements.
Handle<FixedDoubleArray> elements(
FixedDoubleArray::cast(receiver->elements()));
int fast_length = static_cast<int>(length);
ASSERT(fast_length <= elements->length());
for (int j = 0; j < fast_length; j++) {
HandleScope loop_scope(isolate);
if (!elements->is_the_hole(j)) {
double double_value = elements->get_scalar(j);
Handle<Object> element_value =
isolate->factory()->NewNumber(double_value);
visitor->visit(j, element_value);
} else if (receiver->HasElement(j)) {
// Call GetElement on receiver, not its prototype, or getters won't
// have the correct receiver.
Handle<Object> element_value = Object::GetElement(receiver, j);
RETURN_IF_EMPTY_HANDLE_VALUE(isolate, element_value, false);
visitor->visit(j, element_value);
}
}
break;
}
case DICTIONARY_ELEMENTS: {
Handle<SeededNumberDictionary> dict(receiver->element_dictionary());
List<uint32_t> indices(dict->Capacity() / 2);
// Collect all indices in the object and the prototypes less
// than length. This might introduce duplicates in the indices list.
CollectElementIndices(receiver, length, &indices);
indices.Sort(&compareUInt32);
int j = 0;
int n = indices.length();
while (j < n) {
HandleScope loop_scope(isolate);
uint32_t index = indices[j];
Handle<Object> element = Object::GetElement(receiver, index);
RETURN_IF_EMPTY_HANDLE_VALUE(isolate, element, false);
visitor->visit(index, element);
// Skip to next different index (i.e., omit duplicates).
do {
j++;
} while (j < n && indices[j] == index);
}
break;
}
case EXTERNAL_PIXEL_ELEMENTS: {
Handle<ExternalPixelArray> pixels(ExternalPixelArray::cast(
receiver->elements()));
for (uint32_t j = 0; j < length; j++) {
Handle<Smi> e(Smi::FromInt(pixels->get_scalar(j)), isolate);
visitor->visit(j, e);
}
break;
}
case EXTERNAL_BYTE_ELEMENTS: {
IterateExternalArrayElements<ExternalByteArray, int8_t>(
isolate, receiver, true, true, visitor);
break;
}
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: {
IterateExternalArrayElements<ExternalUnsignedByteArray, uint8_t>(
isolate, receiver, true, true, visitor);
break;
}
case EXTERNAL_SHORT_ELEMENTS: {
IterateExternalArrayElements<ExternalShortArray, int16_t>(
isolate, receiver, true, true, visitor);
break;
}
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: {
IterateExternalArrayElements<ExternalUnsignedShortArray, uint16_t>(
isolate, receiver, true, true, visitor);
break;
}
case EXTERNAL_INT_ELEMENTS: {
IterateExternalArrayElements<ExternalIntArray, int32_t>(
isolate, receiver, true, false, visitor);
break;
}
case EXTERNAL_UNSIGNED_INT_ELEMENTS: {
IterateExternalArrayElements<ExternalUnsignedIntArray, uint32_t>(
isolate, receiver, true, false, visitor);
break;
}
case EXTERNAL_FLOAT_ELEMENTS: {
IterateExternalArrayElements<ExternalFloatArray, float>(
isolate, receiver, false, false, visitor);
break;
}
case EXTERNAL_DOUBLE_ELEMENTS: {
IterateExternalArrayElements<ExternalDoubleArray, double>(
isolate, receiver, false, false, visitor);
break;
}
default:
UNREACHABLE();
break;
}
visitor->increase_index_offset(length);
return true;
}
/**
* Array::concat implementation.
* See ECMAScript 262, 15.4.4.4.
* TODO(581): Fix non-compliance for very large concatenations and update to
* following the ECMAScript 5 specification.
*/
RUNTIME_FUNCTION(MaybeObject*, Runtime_ArrayConcat) {
HandleScope handle_scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSArray, arguments, 0);
int argument_count = static_cast<int>(arguments->length()->Number());
RUNTIME_ASSERT(arguments->HasFastObjectElements());
Handle<FixedArray> elements(FixedArray::cast(arguments->elements()));
// Pass 1: estimate the length and number of elements of the result.
// The actual length can be larger if any of the arguments have getters
// that mutate other arguments (but will otherwise be precise).
// The number of elements is precise if there are no inherited elements.
ElementsKind kind = FAST_SMI_ELEMENTS;
uint32_t estimate_result_length = 0;
uint32_t estimate_nof_elements = 0;
for (int i = 0; i < argument_count; i++) {
HandleScope loop_scope(isolate);
Handle<Object> obj(elements->get(i), isolate);
uint32_t length_estimate;
uint32_t element_estimate;
if (obj->IsJSArray()) {
Handle<JSArray> array(Handle<JSArray>::cast(obj));
length_estimate = static_cast<uint32_t>(array->length()->Number());
if (length_estimate != 0) {
ElementsKind array_kind =
GetPackedElementsKind(array->map()->elements_kind());
if (IsMoreGeneralElementsKindTransition(kind, array_kind)) {
kind = array_kind;
}
}
element_estimate = EstimateElementCount(array);
} else {
if (obj->IsHeapObject()) {
if (obj->IsNumber()) {
if (IsMoreGeneralElementsKindTransition(kind, FAST_DOUBLE_ELEMENTS)) {
kind = FAST_DOUBLE_ELEMENTS;
}
} else if (IsMoreGeneralElementsKindTransition(kind, FAST_ELEMENTS)) {
kind = FAST_ELEMENTS;
}
}
length_estimate = 1;
element_estimate = 1;
}
// Avoid overflows by capping at kMaxElementCount.
if (JSObject::kMaxElementCount - estimate_result_length <
length_estimate) {
estimate_result_length = JSObject::kMaxElementCount;
} else {
estimate_result_length += length_estimate;
}
if (JSObject::kMaxElementCount - estimate_nof_elements <
element_estimate) {
estimate_nof_elements = JSObject::kMaxElementCount;
} else {
estimate_nof_elements += element_estimate;
}
}
// If estimated number of elements is more than half of length, a
// fixed array (fast case) is more time and space-efficient than a
// dictionary.
bool fast_case = (estimate_nof_elements * 2) >= estimate_result_length;
Handle<FixedArray> storage;
if (fast_case) {
if (kind == FAST_DOUBLE_ELEMENTS) {
Handle<FixedDoubleArray> double_storage =
isolate->factory()->NewFixedDoubleArray(estimate_result_length);
int j = 0;
bool failure = false;
for (int i = 0; i < argument_count; i++) {
Handle<Object> obj(elements->get(i), isolate);
if (obj->IsSmi()) {
double_storage->set(j, Smi::cast(*obj)->value());
j++;
} else if (obj->IsNumber()) {
double_storage->set(j, obj->Number());
j++;
} else {
JSArray* array = JSArray::cast(*obj);
uint32_t length = static_cast<uint32_t>(array->length()->Number());
switch (array->map()->elements_kind()) {
case FAST_HOLEY_DOUBLE_ELEMENTS:
case FAST_DOUBLE_ELEMENTS: {
// Empty fixed array indicates that there are no elements.
if (array->elements()->IsFixedArray()) break;
FixedDoubleArray* elements =
FixedDoubleArray::cast(array->elements());
for (uint32_t i = 0; i < length; i++) {
if (elements->is_the_hole(i)) {
failure = true;
break;
}
double double_value = elements->get_scalar(i);
double_storage->set(j, double_value);
j++;
}
break;
}
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_SMI_ELEMENTS: {
FixedArray* elements(
FixedArray::cast(array->elements()));
for (uint32_t i = 0; i < length; i++) {
Object* element = elements->get(i);
if (element->IsTheHole()) {
failure = true;
break;
}
int32_t int_value = Smi::cast(element)->value();
double_storage->set(j, int_value);
j++;
}
break;
}
case FAST_HOLEY_ELEMENTS:
ASSERT_EQ(0, length);
break;
default:
UNREACHABLE();
}
}
if (failure) break;
}
Handle<JSArray> array = isolate->factory()->NewJSArray(0);
Smi* length = Smi::FromInt(j);
Handle<Map> map;
map = isolate->factory()->GetElementsTransitionMap(array, kind);
array->set_map(*map);
array->set_length(length);
array->set_elements(*double_storage);
return *array;
}
// The backing storage array must have non-existing elements to preserve
// holes across concat operations.
storage = isolate->factory()->NewFixedArrayWithHoles(
estimate_result_length);
} else {
// TODO(126): move 25% pre-allocation logic into Dictionary::Allocate
uint32_t at_least_space_for = estimate_nof_elements +
(estimate_nof_elements >> 2);
storage = Handle<FixedArray>::cast(
isolate->factory()->NewSeededNumberDictionary(at_least_space_for));
}
ArrayConcatVisitor visitor(isolate, storage, fast_case);
for (int i = 0; i < argument_count; i++) {
Handle<Object> obj(elements->get(i), isolate);
if (obj->IsJSArray()) {
Handle<JSArray> array = Handle<JSArray>::cast(obj);
if (!IterateElements(isolate, array, &visitor)) {
return Failure::Exception();
}
} else {
visitor.visit(0, obj);
visitor.increase_index_offset(1);
}
}
if (visitor.exceeds_array_limit()) {
return isolate->Throw(
*isolate->factory()->NewRangeError("invalid_array_length",
HandleVector<Object>(NULL, 0)));
}
return *visitor.ToArray();
}
// This will not allocate (flatten the string), but it may run
// very slowly for very deeply nested ConsStrings. For debugging use only.
RUNTIME_FUNCTION(MaybeObject*, Runtime_GlobalPrint) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(String, string, 0);
ConsStringIteratorOp op;
StringCharacterStream stream(string, &op);
while (stream.HasMore()) {
uint16_t character = stream.GetNext();
PrintF("%c", character);
}
return string;
}
// Moves all own elements of an object, that are below a limit, to positions
// starting at zero. All undefined values are placed after non-undefined values,
// and are followed by non-existing element. Does not change the length
// property.
// Returns the number of non-undefined elements collected.
RUNTIME_FUNCTION(MaybeObject*, Runtime_RemoveArrayHoles) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSObject, object, 0);
CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
return object->PrepareElementsForSort(limit);
}
// Move contents of argument 0 (an array) to argument 1 (an array)
RUNTIME_FUNCTION(MaybeObject*, Runtime_MoveArrayContents) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSArray, from, 0);
CONVERT_ARG_CHECKED(JSArray, to, 1);
from->ValidateElements();
to->ValidateElements();
FixedArrayBase* new_elements = from->elements();
ElementsKind from_kind = from->GetElementsKind();
MaybeObject* maybe_new_map;
maybe_new_map = to->GetElementsTransitionMap(isolate, from_kind);
Object* new_map;
if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map;
to->set_map_and_elements(Map::cast(new_map), new_elements);
to->set_length(from->length());
Object* obj;
{ MaybeObject* maybe_obj = from->ResetElements();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
from->set_length(Smi::FromInt(0));
to->ValidateElements();
return to;
}
// How many elements does this object/array have?
RUNTIME_FUNCTION(MaybeObject*, Runtime_EstimateNumberOfElements) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSObject, object, 0);
HeapObject* elements = object->elements();
if (elements->IsDictionary()) {
int result = SeededNumberDictionary::cast(elements)->NumberOfElements();
return Smi::FromInt(result);
} else if (object->IsJSArray()) {
return JSArray::cast(object)->length();
} else {
return Smi::FromInt(FixedArray::cast(elements)->length());
}
}
// Returns an array that tells you where in the [0, length) interval an array
// might have elements. Can either return an array of keys (positive integers
// or undefined) or a number representing the positive length of an interval
// starting at index 0.
// Intervals can span over some keys that are not in the object.
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetArrayKeys) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0);
CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]);
if (array->elements()->IsDictionary()) {
Handle<FixedArray> keys = isolate->factory()->empty_fixed_array();
for (Handle<Object> p = array;
!p->IsNull();
p = Handle<Object>(p->GetPrototype(isolate), isolate)) {
if (p->IsJSProxy() || JSObject::cast(*p)->HasIndexedInterceptor()) {
// Bail out if we find a proxy or interceptor, likely not worth
// collecting keys in that case.
return *isolate->factory()->NewNumberFromUint(length);
}
Handle<JSObject> current = Handle<JSObject>::cast(p);
Handle<FixedArray> current_keys =
isolate->factory()->NewFixedArray(
current->NumberOfLocalElements(NONE));
current->GetLocalElementKeys(*current_keys, NONE);
keys = UnionOfKeys(keys, current_keys);
}
// Erase any keys >= length.
// TODO(adamk): Remove this step when the contract of %GetArrayKeys
// is changed to let this happen on the JS side.
for (int i = 0; i < keys->length(); i++) {
if (NumberToUint32(keys->get(i)) >= length) keys->set_undefined(i);
}
return *isolate->factory()->NewJSArrayWithElements(keys);
} else {
ASSERT(array->HasFastSmiOrObjectElements() ||
array->HasFastDoubleElements());
uint32_t actual_length = static_cast<uint32_t>(array->elements()->length());
return *isolate->factory()->NewNumberFromUint(Min(actual_length, length));
}
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_LookupAccessor) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(JSReceiver, receiver, 0);
CONVERT_ARG_CHECKED(Name, name, 1);
CONVERT_SMI_ARG_CHECKED(flag, 2);
AccessorComponent component = flag == 0 ? ACCESSOR_GETTER : ACCESSOR_SETTER;
if (!receiver->IsJSObject()) return isolate->heap()->undefined_value();
return JSObject::cast(receiver)->LookupAccessor(name, component);
}
#ifdef ENABLE_DEBUGGER_SUPPORT
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugBreak) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 0);
return Execution::DebugBreakHelper();
}
// Helper functions for wrapping and unwrapping stack frame ids.
static Smi* WrapFrameId(StackFrame::Id id) {
ASSERT(IsAligned(OffsetFrom(id), static_cast<intptr_t>(4)));
return Smi::FromInt(id >> 2);
}
static StackFrame::Id UnwrapFrameId(int wrapped) {
return static_cast<StackFrame::Id>(wrapped << 2);
}
// Adds a JavaScript function as a debug event listener.
// args[0]: debug event listener function to set or null or undefined for
// clearing the event listener function
// args[1]: object supplied during callback
RUNTIME_FUNCTION(MaybeObject*, Runtime_SetDebugEventListener) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
RUNTIME_ASSERT(args[0]->IsJSFunction() ||
args[0]->IsUndefined() ||
args[0]->IsNull());
Handle<Object> callback = args.at<Object>(0);
Handle<Object> data = args.at<Object>(1);
isolate->debugger()->SetEventListener(callback, data);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_Break) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 0);
isolate->stack_guard()->DebugBreak();
return isolate->heap()->undefined_value();
}
static MaybeObject* DebugLookupResultValue(Heap* heap,
Object* receiver,
Name* name,
LookupResult* result,
bool* caught_exception) {
Object* value;
switch (result->type()) {
case NORMAL:
value = result->holder()->GetNormalizedProperty(result);
if (value->IsTheHole()) {
return heap->undefined_value();
}
return value;
case FIELD: {
Object* value;
MaybeObject* maybe_value =
JSObject::cast(result->holder())->FastPropertyAt(
result->representation(),
result->GetFieldIndex().field_index());
if (!maybe_value->To(&value)) return maybe_value;
if (value->IsTheHole()) {
return heap->undefined_value();
}
return value;
}
case CONSTANT_FUNCTION:
return result->GetConstantFunction();
case CALLBACKS: {
Object* structure = result->GetCallbackObject();
if (structure->IsForeign() || structure->IsAccessorInfo()) {
MaybeObject* maybe_value = result->holder()->GetPropertyWithCallback(
receiver, structure, name);
if (!maybe_value->ToObject(&value)) {
if (maybe_value->IsRetryAfterGC()) return maybe_value;
ASSERT(maybe_value->IsException());
maybe_value = heap->isolate()->pending_exception();
heap->isolate()->clear_pending_exception();
if (caught_exception != NULL) {
*caught_exception = true;
}
return maybe_value;
}
return value;
} else {
return heap->undefined_value();
}
}
case INTERCEPTOR:
case TRANSITION:
return heap->undefined_value();
case HANDLER:
case NONEXISTENT:
UNREACHABLE();
return heap->undefined_value();
}
UNREACHABLE(); // keep the compiler happy
return heap->undefined_value();
}
// Get debugger related details for an object property.
// args[0]: object holding property
// args[1]: name of the property
//
// The array returned contains the following information:
// 0: Property value
// 1: Property details
// 2: Property value is exception
// 3: Getter function if defined
// 4: Setter function if defined
// Items 2-4 are only filled if the property has either a getter or a setter
// defined through __defineGetter__ and/or __defineSetter__.
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetPropertyDetails) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
// Make sure to set the current context to the context before the debugger was
// entered (if the debugger is entered). The reason for switching context here
// is that for some property lookups (accessors and interceptors) callbacks
// into the embedding application can occour, and the embedding application
// could have the assumption that its own native context is the current
// context and not some internal debugger context.
SaveContext save(isolate);
if (isolate->debug()->InDebugger()) {
isolate->set_context(*isolate->debug()->debugger_entry()->GetContext());
}
// Skip the global proxy as it has no properties and always delegates to the
// real global object.
if (obj->IsJSGlobalProxy()) {
obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype()));
}
// Check if the name is trivially convertible to an index and get the element
// if so.
uint32_t index;
if (name->AsArrayIndex(&index)) {
Handle<FixedArray> details = isolate->factory()->NewFixedArray(2);
Object* element_or_char;
{ MaybeObject* maybe_element_or_char =
Runtime::GetElementOrCharAt(isolate, obj, index);
if (!maybe_element_or_char->ToObject(&element_or_char)) {
return maybe_element_or_char;
}
}
details->set(0, element_or_char);
details->set(
1, PropertyDetails(NONE, NORMAL, Representation::None()).AsSmi());
return *isolate->factory()->NewJSArrayWithElements(details);
}
// Find the number of objects making up this.
int length = LocalPrototypeChainLength(*obj);
// Try local lookup on each of the objects.
Handle<JSObject> jsproto = obj;
for (int i = 0; i < length; i++) {
LookupResult result(isolate);
jsproto->LocalLookup(*name, &result);
if (result.IsFound()) {
// LookupResult is not GC safe as it holds raw object pointers.
// GC can happen later in this code so put the required fields into
// local variables using handles when required for later use.
Handle<Object> result_callback_obj;
if (result.IsPropertyCallbacks()) {
result_callback_obj = Handle<Object>(result.GetCallbackObject(),
isolate);
}
Smi* property_details = result.GetPropertyDetails().AsSmi();
// DebugLookupResultValue can cause GC so details from LookupResult needs
// to be copied to handles before this.
bool caught_exception = false;
Object* raw_value;
{ MaybeObject* maybe_raw_value =
DebugLookupResultValue(isolate->heap(), *obj, *name,
&result, &caught_exception);
if (!maybe_raw_value->ToObject(&raw_value)) return maybe_raw_value;
}
Handle<Object> value(raw_value, isolate);
// If the callback object is a fixed array then it contains JavaScript
// getter and/or setter.
bool hasJavaScriptAccessors = result.IsPropertyCallbacks() &&
result_callback_obj->IsAccessorPair();
Handle<FixedArray> details =
isolate->factory()->NewFixedArray(hasJavaScriptAccessors ? 5 : 2);
details->set(0, *value);
details->set(1, property_details);
if (hasJavaScriptAccessors) {
AccessorPair* accessors = AccessorPair::cast(*result_callback_obj);
details->set(2, isolate->heap()->ToBoolean(caught_exception));
details->set(3, accessors->GetComponent(ACCESSOR_GETTER));
details->set(4, accessors->GetComponent(ACCESSOR_SETTER));
}
return *isolate->factory()->NewJSArrayWithElements(details);
}
if (i < length - 1) {
jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype()));
}
}
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetProperty) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
LookupResult result(isolate);
obj->Lookup(*name, &result);
if (result.IsFound()) {
return DebugLookupResultValue(isolate->heap(), *obj, *name, &result, NULL);
}
return isolate->heap()->undefined_value();
}
// Return the property type calculated from the property details.
// args[0]: smi with property details.
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPropertyTypeFromDetails) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_PROPERTY_DETAILS_CHECKED(details, 0);
return Smi::FromInt(static_cast<int>(details.type()));
}
// Return the property attribute calculated from the property details.
// args[0]: smi with property details.
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPropertyAttributesFromDetails) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_PROPERTY_DETAILS_CHECKED(details, 0);
return Smi::FromInt(static_cast<int>(details.attributes()));
}
// Return the property insertion index calculated from the property details.
// args[0]: smi with property details.
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPropertyIndexFromDetails) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_PROPERTY_DETAILS_CHECKED(details, 0);
// TODO(verwaest): Depends on the type of details.
return Smi::FromInt(details.dictionary_index());
}
// Return property value from named interceptor.
// args[0]: object
// args[1]: property name
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugNamedInterceptorPropertyValue) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
RUNTIME_ASSERT(obj->HasNamedInterceptor());
CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
PropertyAttributes attributes;
return obj->GetPropertyWithInterceptor(*obj, *name, &attributes);
}
// Return element value from indexed interceptor.
// args[0]: object
// args[1]: index
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugIndexedInterceptorElementValue) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
RUNTIME_ASSERT(obj->HasIndexedInterceptor());
CONVERT_NUMBER_CHECKED(uint32_t, index, Uint32, args[1]);
return obj->GetElementWithInterceptor(*obj, index);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_CheckExecutionState) {
SealHandleScope shs(isolate);
ASSERT(args.length() >= 1);
CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
// Check that the break id is valid.
if (isolate->debug()->break_id() == 0 ||
break_id != isolate->debug()->break_id()) {
return isolate->Throw(
isolate->heap()->illegal_execution_state_string());
}
return isolate->heap()->true_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFrameCount) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
// Check arguments.
Object* result;
{ MaybeObject* maybe_result = Runtime_CheckExecutionState(
RUNTIME_ARGUMENTS(isolate, args));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// Count all frames which are relevant to debugging stack trace.
int n = 0;
StackFrame::Id id = isolate->debug()->break_frame_id();
if (id == StackFrame::NO_ID) {
// If there is no JavaScript stack frame count is 0.
return Smi::FromInt(0);
}
for (JavaScriptFrameIterator it(isolate, id); !it.done(); it.Advance()) {
n += it.frame()->GetInlineCount();
}
return Smi::FromInt(n);
}
class FrameInspector {
public:
FrameInspector(JavaScriptFrame* frame,
int inlined_jsframe_index,
Isolate* isolate)
: frame_(frame), deoptimized_frame_(NULL), isolate_(isolate) {
// Calculate the deoptimized frame.
if (frame->is_optimized()) {
deoptimized_frame_ = Deoptimizer::DebuggerInspectableFrame(
frame, inlined_jsframe_index, isolate);
}
has_adapted_arguments_ = frame_->has_adapted_arguments();
is_bottommost_ = inlined_jsframe_index == 0;
is_optimized_ = frame_->is_optimized();
}
~FrameInspector() {
// Get rid of the calculated deoptimized frame if any.
if (deoptimized_frame_ != NULL) {
Deoptimizer::DeleteDebuggerInspectableFrame(deoptimized_frame_,
isolate_);
}
}
int GetParametersCount() {
return is_optimized_
? deoptimized_frame_->parameters_count()
: frame_->ComputeParametersCount();
}
int expression_count() { return deoptimized_frame_->expression_count(); }
Object* GetFunction() {
return is_optimized_
? deoptimized_frame_->GetFunction()
: frame_->function();
}
Object* GetParameter(int index) {
return is_optimized_
? deoptimized_frame_->GetParameter(index)
: frame_->GetParameter(index);
}
Object* GetExpression(int index) {
return is_optimized_
? deoptimized_frame_->GetExpression(index)
: frame_->GetExpression(index);
}
int GetSourcePosition() {
return is_optimized_
? deoptimized_frame_->GetSourcePosition()
: frame_->LookupCode()->SourcePosition(frame_->pc());
}
bool IsConstructor() {
return is_optimized_ && !is_bottommost_
? deoptimized_frame_->HasConstructStub()
: frame_->IsConstructor();
}
// To inspect all the provided arguments the frame might need to be
// replaced with the arguments frame.
void SetArgumentsFrame(JavaScriptFrame* frame) {
ASSERT(has_adapted_arguments_);
frame_ = frame;
is_optimized_ = frame_->is_optimized();
ASSERT(!is_optimized_);
}
private:
JavaScriptFrame* frame_;
DeoptimizedFrameInfo* deoptimized_frame_;
Isolate* isolate_;
bool is_optimized_;
bool is_bottommost_;
bool has_adapted_arguments_;
DISALLOW_COPY_AND_ASSIGN(FrameInspector);
};
static const int kFrameDetailsFrameIdIndex = 0;
static const int kFrameDetailsReceiverIndex = 1;
static const int kFrameDetailsFunctionIndex = 2;
static const int kFrameDetailsArgumentCountIndex = 3;
static const int kFrameDetailsLocalCountIndex = 4;
static const int kFrameDetailsSourcePositionIndex = 5;
static const int kFrameDetailsConstructCallIndex = 6;
static const int kFrameDetailsAtReturnIndex = 7;
static const int kFrameDetailsFlagsIndex = 8;
static const int kFrameDetailsFirstDynamicIndex = 9;
static SaveContext* FindSavedContextForFrame(Isolate* isolate,
JavaScriptFrame* frame) {
SaveContext* save = isolate->save_context();
while (save != NULL && !save->IsBelowFrame(frame)) {
save = save->prev();
}
ASSERT(save != NULL);
return save;
}
// Return an array with frame details
// args[0]: number: break id
// args[1]: number: frame index
//
// The array returned contains the following information:
// 0: Frame id
// 1: Receiver
// 2: Function
// 3: Argument count
// 4: Local count
// 5: Source position
// 6: Constructor call
// 7: Is at return
// 8: Flags
// Arguments name, value
// Locals name, value
// Return value if any
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFrameDetails) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
// Check arguments.
Object* check;
{ MaybeObject* maybe_check = Runtime_CheckExecutionState(
RUNTIME_ARGUMENTS(isolate, args));
if (!maybe_check->ToObject(&check)) return maybe_check;
}
CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
Heap* heap = isolate->heap();
// Find the relevant frame with the requested index.
StackFrame::Id id = isolate->debug()->break_frame_id();
if (id == StackFrame::NO_ID) {
// If there are no JavaScript stack frames return undefined.
return heap->undefined_value();
}
int count = 0;
JavaScriptFrameIterator it(isolate, id);
for (; !it.done(); it.Advance()) {
if (index < count + it.frame()->GetInlineCount()) break;
count += it.frame()->GetInlineCount();
}
if (it.done()) return heap->undefined_value();
bool is_optimized = it.frame()->is_optimized();
int inlined_jsframe_index = 0; // Inlined frame index in optimized frame.
if (is_optimized) {
inlined_jsframe_index =
it.frame()->GetInlineCount() - (index - count) - 1;
}
FrameInspector frame_inspector(it.frame(), inlined_jsframe_index, isolate);
// Traverse the saved contexts chain to find the active context for the
// selected frame.
SaveContext* save = FindSavedContextForFrame(isolate, it.frame());
// Get the frame id.
Handle<Object> frame_id(WrapFrameId(it.frame()->id()), isolate);
// Find source position in unoptimized code.
int position = frame_inspector.GetSourcePosition();
// Check for constructor frame.
bool constructor = frame_inspector.IsConstructor();
// Get scope info and read from it for local variable information.
Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction()));
Handle<SharedFunctionInfo> shared(function->shared());
Handle<ScopeInfo> scope_info(shared->scope_info());
ASSERT(*scope_info != ScopeInfo::Empty(isolate));
// Get the locals names and values into a temporary array.
//
// TODO(1240907): Hide compiler-introduced stack variables
// (e.g. .result)? For users of the debugger, they will probably be
// confusing.
Handle<FixedArray> locals =
isolate->factory()->NewFixedArray(scope_info->LocalCount() * 2);
// Fill in the values of the locals.
int i = 0;
for (; i < scope_info->StackLocalCount(); ++i) {
// Use the value from the stack.
locals->set(i * 2, scope_info->LocalName(i));
locals->set(i * 2 + 1, frame_inspector.GetExpression(i));
}
if (i < scope_info->LocalCount()) {
// Get the context containing declarations.
Handle<Context> context(
Context::cast(it.frame()->context())->declaration_context());
for (; i < scope_info->LocalCount(); ++i) {
Handle<String> name(scope_info->LocalName(i));
VariableMode mode;
InitializationFlag init_flag;
locals->set(i * 2, *name);
locals->set(i * 2 + 1, context->get(
scope_info->ContextSlotIndex(*name, &mode, &init_flag)));
}
}
// Check whether this frame is positioned at return. If not top
// frame or if the frame is optimized it cannot be at a return.
bool at_return = false;
if (!is_optimized && index == 0) {
at_return = isolate->debug()->IsBreakAtReturn(it.frame());
}
// If positioned just before return find the value to be returned and add it
// to the frame information.
Handle<Object> return_value = isolate->factory()->undefined_value();
if (at_return) {
StackFrameIterator it2(isolate);
Address internal_frame_sp = NULL;
while (!it2.done()) {
if (it2.frame()->is_internal()) {
internal_frame_sp = it2.frame()->sp();
} else {
if (it2.frame()->is_java_script()) {
if (it2.frame()->id() == it.frame()->id()) {
// The internal frame just before the JavaScript frame contains the
// value to return on top. A debug break at return will create an
// internal frame to store the return value (eax/rax/r0) before
// entering the debug break exit frame.
if (internal_frame_sp != NULL) {
return_value =
Handle<Object>(Memory::Object_at(internal_frame_sp),
isolate);
break;
}
}
}
// Indicate that the previous frame was not an internal frame.
internal_frame_sp = NULL;
}
it2.Advance();
}
}
// Now advance to the arguments adapter frame (if any). It contains all
// the provided parameters whereas the function frame always have the number
// of arguments matching the functions parameters. The rest of the
// information (except for what is collected above) is the same.
if ((inlined_jsframe_index == 0) && it.frame()->has_adapted_arguments()) {
it.AdvanceToArgumentsFrame();
frame_inspector.SetArgumentsFrame(it.frame());
}
// Find the number of arguments to fill. At least fill the number of
// parameters for the function and fill more if more parameters are provided.
int argument_count = scope_info->ParameterCount();
if (argument_count < frame_inspector.GetParametersCount()) {
argument_count = frame_inspector.GetParametersCount();
}
// Calculate the size of the result.
int details_size = kFrameDetailsFirstDynamicIndex +
2 * (argument_count + scope_info->LocalCount()) +
(at_return ? 1 : 0);
Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size);
// Add the frame id.
details->set(kFrameDetailsFrameIdIndex, *frame_id);
// Add the function (same as in function frame).
details->set(kFrameDetailsFunctionIndex, frame_inspector.GetFunction());
// Add the arguments count.
details->set(kFrameDetailsArgumentCountIndex, Smi::FromInt(argument_count));
// Add the locals count
details->set(kFrameDetailsLocalCountIndex,
Smi::FromInt(scope_info->LocalCount()));
// Add the source position.
if (position != RelocInfo::kNoPosition) {
details->set(kFrameDetailsSourcePositionIndex, Smi::FromInt(position));
} else {
details->set(kFrameDetailsSourcePositionIndex, heap->undefined_value());
}
// Add the constructor information.
details->set(kFrameDetailsConstructCallIndex, heap->ToBoolean(constructor));
// Add the at return information.
details->set(kFrameDetailsAtReturnIndex, heap->ToBoolean(at_return));
// Add flags to indicate information on whether this frame is
// bit 0: invoked in the debugger context.
// bit 1: optimized frame.
// bit 2: inlined in optimized frame
int flags = 0;
if (*save->context() == *isolate->debug()->debug_context()) {
flags |= 1 << 0;
}
if (is_optimized) {
flags |= 1 << 1;
flags |= inlined_jsframe_index << 2;
}
details->set(kFrameDetailsFlagsIndex, Smi::FromInt(flags));
// Fill the dynamic part.
int details_index = kFrameDetailsFirstDynamicIndex;
// Add arguments name and value.
for (int i = 0; i < argument_count; i++) {
// Name of the argument.
if (i < scope_info->ParameterCount()) {
details->set(details_index++, scope_info->ParameterName(i));
} else {
details->set(details_index++, heap->undefined_value());
}
// Parameter value.
if (i < frame_inspector.GetParametersCount()) {
// Get the value from the stack.
details->set(details_index++, frame_inspector.GetParameter(i));
} else {
details->set(details_index++, heap->undefined_value());
}
}
// Add locals name and value from the temporary copy from the function frame.
for (int i = 0; i < scope_info->LocalCount() * 2; i++) {
details->set(details_index++, locals->get(i));
}
// Add the value being returned.
if (at_return) {
details->set(details_index++, *return_value);
}
// Add the receiver (same as in function frame).
// THIS MUST BE DONE LAST SINCE WE MIGHT ADVANCE
// THE FRAME ITERATOR TO WRAP THE RECEIVER.
Handle<Object> receiver(it.frame()->receiver(), isolate);
if (!receiver->IsJSObject() &&
shared->is_classic_mode() &&
!function->IsBuiltin()) {
// If the receiver is not a JSObject and the function is not a
// builtin or strict-mode we have hit an optimization where a
// value object is not converted into a wrapped JS objects. To
// hide this optimization from the debugger, we wrap the receiver
// by creating correct wrapper object based on the calling frame's
// native context.
it.Advance();
Handle<Context> calling_frames_native_context(
Context::cast(Context::cast(it.frame()->context())->native_context()));
ASSERT(!receiver->IsUndefined() && !receiver->IsNull());
receiver =
isolate->factory()->ToObject(receiver, calling_frames_native_context);
}
details->set(kFrameDetailsReceiverIndex, *receiver);
ASSERT_EQ(details_size, details_index);
return *isolate->factory()->NewJSArrayWithElements(details);
}
// Create a plain JSObject which materializes the local scope for the specified
// frame.
static Handle<JSObject> MaterializeLocalScopeWithFrameInspector(
Isolate* isolate,
JavaScriptFrame* frame,
FrameInspector* frame_inspector) {
Handle<JSFunction> function(JSFunction::cast(frame_inspector->GetFunction()));
Handle<SharedFunctionInfo> shared(function->shared());
Handle<ScopeInfo> scope_info(shared->scope_info());
// Allocate and initialize a JSObject with all the arguments, stack locals
// heap locals and extension properties of the debugged function.
Handle<JSObject> local_scope =
isolate->factory()->NewJSObject(isolate->object_function());
// First fill all parameters.
for (int i = 0; i < scope_info->ParameterCount(); ++i) {
Handle<Object> value(i < frame_inspector->GetParametersCount()
? frame_inspector->GetParameter(i)
: isolate->heap()->undefined_value(),
isolate);
RETURN_IF_EMPTY_HANDLE_VALUE(
isolate,
SetProperty(isolate,
local_scope,
Handle<String>(scope_info->ParameterName(i)),
value,
NONE,
kNonStrictMode),
Handle<JSObject>());
}
// Second fill all stack locals.
for (int i = 0; i < scope_info->StackLocalCount(); ++i) {
RETURN_IF_EMPTY_HANDLE_VALUE(
isolate,
SetProperty(isolate,
local_scope,
Handle<String>(scope_info->StackLocalName(i)),
Handle<Object>(frame_inspector->GetExpression(i), isolate),
NONE,
kNonStrictMode),
Handle<JSObject>());
}
if (scope_info->HasContext()) {
// Third fill all context locals.
Handle<Context> frame_context(Context::cast(frame->context()));
Handle<Context> function_context(frame_context->declaration_context());
if (!scope_info->CopyContextLocalsToScopeObject(
isolate, function_context, local_scope)) {
return Handle<JSObject>();
}
// Finally copy any properties from the function context extension.
// These will be variables introduced by eval.
if (function_context->closure() == *function) {
if (function_context->has_extension() &&
!function_context->IsNativeContext()) {
Handle<JSObject> ext(JSObject::cast(function_context->extension()));
bool threw = false;
Handle<FixedArray> keys =
GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS, &threw);
if (threw) return Handle<JSObject>();
for (int i = 0; i < keys->length(); i++) {
// Names of variables introduced by eval are strings.
ASSERT(keys->get(i)->IsString());
Handle<String> key(String::cast(keys->get(i)));
RETURN_IF_EMPTY_HANDLE_VALUE(
isolate,
SetProperty(isolate,
local_scope,
key,
GetProperty(isolate, ext, key),
NONE,
kNonStrictMode),
Handle<JSObject>());
}
}
}
}
return local_scope;
}
static Handle<JSObject> MaterializeLocalScope(
Isolate* isolate,
JavaScriptFrame* frame,
int inlined_jsframe_index) {
FrameInspector frame_inspector(frame, inlined_jsframe_index, isolate);
return MaterializeLocalScopeWithFrameInspector(isolate,
frame,
&frame_inspector);
}
// Set the context local variable value.
static bool SetContextLocalValue(Isolate* isolate,
Handle<ScopeInfo> scope_info,
Handle<Context> context,
Handle<String> variable_name,
Handle<Object> new_value) {
for (int i = 0; i < scope_info->ContextLocalCount(); i++) {
Handle<String> next_name(scope_info->ContextLocalName(i));
if (variable_name->Equals(*next_name)) {
VariableMode mode;
InitializationFlag init_flag;
int context_index =
scope_info->ContextSlotIndex(*next_name, &mode, &init_flag);
context->set(context_index, *new_value);
return true;
}
}
return false;
}
static bool SetLocalVariableValue(Isolate* isolate,
JavaScriptFrame* frame,
int inlined_jsframe_index,
Handle<String> variable_name,
Handle<Object> new_value) {
if (inlined_jsframe_index != 0 || frame->is_optimized()) {
// Optimized frames are not supported.
return false;
}
Handle<JSFunction> function(frame->function());
Handle<SharedFunctionInfo> shared(function->shared());
Handle<ScopeInfo> scope_info(shared->scope_info());
bool default_result = false;
// Parameters.
for (int i = 0; i < scope_info->ParameterCount(); ++i) {
if (scope_info->ParameterName(i)->Equals(*variable_name)) {
frame->SetParameterValue(i, *new_value);
// Argument might be shadowed in heap context, don't stop here.
default_result = true;
}
}
// Stack locals.
for (int i = 0; i < scope_info->StackLocalCount(); ++i) {
if (scope_info->StackLocalName(i)->Equals(*variable_name)) {
frame->SetExpression(i, *new_value);
return true;
}
}
if (scope_info->HasContext()) {
// Context locals.
Handle<Context> frame_context(Context::cast(frame->context()));
Handle<Context> function_context(frame_context->declaration_context());
if (SetContextLocalValue(
isolate, scope_info, function_context, variable_name, new_value)) {
return true;
}
// Function context extension. These are variables introduced by eval.
if (function_context->closure() == *function) {
if (function_context->has_extension() &&
!function_context->IsNativeContext()) {
Handle<JSObject> ext(JSObject::cast(function_context->extension()));
if (ext->HasProperty(*variable_name)) {
// We don't expect this to do anything except replacing
// property value.
SetProperty(isolate,
ext,
variable_name,
new_value,
NONE,
kNonStrictMode);
return true;
}
}
}
}
return default_result;
}
// Create a plain JSObject which materializes the closure content for the
// context.
static Handle<JSObject> MaterializeClosure(Isolate* isolate,
Handle<Context> context) {
ASSERT(context->IsFunctionContext());
Handle<SharedFunctionInfo> shared(context->closure()->shared());
Handle<ScopeInfo> scope_info(shared->scope_info());
// Allocate and initialize a JSObject with all the content of this function
// closure.
Handle<JSObject> closure_scope =
isolate->factory()->NewJSObject(isolate->object_function());
// Fill all context locals to the context extension.
if (!scope_info->CopyContextLocalsToScopeObject(
isolate, context, closure_scope)) {
return Handle<JSObject>();
}
// Finally copy any properties from the function context extension. This will
// be variables introduced by eval.
if (context->has_extension()) {
Handle<JSObject> ext(JSObject::cast(context->extension()));
bool threw = false;
Handle<FixedArray> keys =
GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS, &threw);
if (threw) return Handle<JSObject>();
for (int i = 0; i < keys->length(); i++) {
// Names of variables introduced by eval are strings.
ASSERT(keys->get(i)->IsString());
Handle<String> key(String::cast(keys->get(i)));
RETURN_IF_EMPTY_HANDLE_VALUE(
isolate,
SetProperty(isolate,
closure_scope,
key,
GetProperty(isolate, ext, key),
NONE,
kNonStrictMode),
Handle<JSObject>());
}
}
return closure_scope;
}
// This method copies structure of MaterializeClosure method above.
static bool SetClosureVariableValue(Isolate* isolate,
Handle<Context> context,
Handle<String> variable_name,
Handle<Object> new_value) {
ASSERT(context->IsFunctionContext());
Handle<SharedFunctionInfo> shared(context->closure()->shared());
Handle<ScopeInfo> scope_info(shared->scope_info());
// Context locals to the context extension.
if (SetContextLocalValue(
isolate, scope_info, context, variable_name, new_value)) {
return true;
}
// Properties from the function context extension. This will
// be variables introduced by eval.
if (context->has_extension()) {
Handle<JSObject> ext(JSObject::cast(context->extension()));
if (ext->HasProperty(*variable_name)) {
// We don't expect this to do anything except replacing property value.
SetProperty(isolate,
ext,
variable_name,
new_value,
NONE,
kNonStrictMode);
return true;
}
}
return false;
}
// Create a plain JSObject which materializes the scope for the specified
// catch context.
static Handle<JSObject> MaterializeCatchScope(Isolate* isolate,
Handle<Context> context) {
ASSERT(context->IsCatchContext());
Handle<String> name(String::cast(context->extension()));
Handle<Object> thrown_object(context->get(Context::THROWN_OBJECT_INDEX),
isolate);
Handle<JSObject> catch_scope =
isolate->factory()->NewJSObject(isolate->object_function());
RETURN_IF_EMPTY_HANDLE_VALUE(
isolate,
SetProperty(isolate,
catch_scope,
name,
thrown_object,
NONE,
kNonStrictMode),
Handle<JSObject>());
return catch_scope;
}
static bool SetCatchVariableValue(Isolate* isolate,
Handle<Context> context,
Handle<String> variable_name,
Handle<Object> new_value) {
ASSERT(context->IsCatchContext());
Handle<String> name(String::cast(context->extension()));
if (!name->Equals(*variable_name)) {
return false;
}
context->set(Context::THROWN_OBJECT_INDEX, *new_value);
return true;
}
// Create a plain JSObject which materializes the block scope for the specified
// block context.
static Handle<JSObject> MaterializeBlockScope(
Isolate* isolate,
Handle<Context> context) {
ASSERT(context->IsBlockContext());
Handle<ScopeInfo> scope_info(ScopeInfo::cast(context->extension()));
// Allocate and initialize a JSObject with all the arguments, stack locals
// heap locals and extension properties of the debugged function.
Handle<JSObject> block_scope =
isolate->factory()->NewJSObject(isolate->object_function());
// Fill all context locals.
if (!scope_info->CopyContextLocalsToScopeObject(
isolate, context, block_scope)) {
return Handle<JSObject>();
}
return block_scope;
}
// Create a plain JSObject which materializes the module scope for the specified
// module context.
static Handle<JSObject> MaterializeModuleScope(
Isolate* isolate,
Handle<Context> context) {
ASSERT(context->IsModuleContext());
Handle<ScopeInfo> scope_info(ScopeInfo::cast(context->extension()));
// Allocate and initialize a JSObject with all the members of the debugged
// module.
Handle<JSObject> module_scope =
isolate->factory()->NewJSObject(isolate->object_function());
// Fill all context locals.
if (!scope_info->CopyContextLocalsToScopeObject(
isolate, context, module_scope)) {
return Handle<JSObject>();
}
return module_scope;
}
// Iterate over the actual scopes visible from a stack frame or from a closure.
// The iteration proceeds from the innermost visible nested scope outwards.
// All scopes are backed by an actual context except the local scope,
// which is inserted "artificially" in the context chain.
class ScopeIterator {
public:
enum ScopeType {
ScopeTypeGlobal = 0,
ScopeTypeLocal,
ScopeTypeWith,
ScopeTypeClosure,
ScopeTypeCatch,
ScopeTypeBlock,
ScopeTypeModule
};
ScopeIterator(Isolate* isolate,
JavaScriptFrame* frame,
int inlined_jsframe_index)
: isolate_(isolate),
frame_(frame),
inlined_jsframe_index_(inlined_jsframe_index),
function_(frame->function()),
context_(Context::cast(frame->context())),
nested_scope_chain_(4),
failed_(false) {
// Catch the case when the debugger stops in an internal function.
Handle<SharedFunctionInfo> shared_info(function_->shared());
Handle<ScopeInfo> scope_info(shared_info->scope_info());
if (shared_info->script() == isolate->heap()->undefined_value()) {
while (context_->closure() == *function_) {
context_ = Handle<Context>(context_->previous(), isolate_);
}
return;
}
// Get the debug info (create it if it does not exist).
if (!isolate->debug()->EnsureDebugInfo(shared_info, function_)) {
// Return if ensuring debug info failed.
return;
}
Handle<DebugInfo> debug_info = Debug::GetDebugInfo(shared_info);
// Find the break point where execution has stopped.
BreakLocationIterator break_location_iterator(debug_info,
ALL_BREAK_LOCATIONS);
// pc points to the instruction after the current one, possibly a break
// location as well. So the "- 1" to exclude it from the search.
break_location_iterator.FindBreakLocationFromAddress(frame->pc() - 1);
if (break_location_iterator.IsExit()) {
// We are within the return sequence. At the momemt it is not possible to
// get a source position which is consistent with the current scope chain.
// Thus all nested with, catch and block contexts are skipped and we only
// provide the function scope.
if (scope_info->HasContext()) {
context_ = Handle<Context>(context_->declaration_context(), isolate_);
} else {
while (context_->closure() == *function_) {
context_ = Handle<Context>(context_->previous(), isolate_);
}
}
if (scope_info->scope_type() != EVAL_SCOPE) {
nested_scope_chain_.Add(scope_info);
}
} else {
// Reparse the code and analyze the scopes.
Handle<Script> script(Script::cast(shared_info->script()));
Scope* scope = NULL;
// Check whether we are in global, eval or function code.
Handle<ScopeInfo> scope_info(shared_info->scope_info());
if (scope_info->scope_type() != FUNCTION_SCOPE) {
// Global or eval code.
CompilationInfoWithZone info(script);
if (scope_info->scope_type() == GLOBAL_SCOPE) {
info.MarkAsGlobal();
} else {
ASSERT(scope_info->scope_type() == EVAL_SCOPE);
info.MarkAsEval();
info.SetContext(Handle<Context>(function_->context()));
}
if (Parser::Parse(&info) && Scope::Analyze(&info)) {
scope = info.function()->scope();
}
RetrieveScopeChain(scope, shared_info);
} else {
// Function code
CompilationInfoWithZone info(shared_info);
if (Parser::Parse(&info) && Scope::Analyze(&info)) {
scope = info.function()->scope();
}
RetrieveScopeChain(scope, shared_info);
}
}
}
ScopeIterator(Isolate* isolate,
Handle<JSFunction> function)
: isolate_(isolate),
frame_(NULL),
inlined_jsframe_index_(0),
function_(function),
context_(function->context()),
failed_(false) {
if (function->IsBuiltin()) {
context_ = Handle<Context>();
}
}
// More scopes?
bool Done() {
ASSERT(!failed_);
return context_.is_null();
}
bool Failed() { return failed_; }
// Move to the next scope.
void Next() {
ASSERT(!failed_);
ScopeType scope_type = Type();
if (scope_type == ScopeTypeGlobal) {
// The global scope is always the last in the chain.
ASSERT(context_->IsNativeContext());
context_ = Handle<Context>();
return;
}
if (nested_scope_chain_.is_empty()) {
context_ = Handle<Context>(context_->previous(), isolate_);
} else {
if (nested_scope_chain_.last()->HasContext()) {
ASSERT(context_->previous() != NULL);
context_ = Handle<Context>(context_->previous(), isolate_);
}
nested_scope_chain_.RemoveLast();
}
}
// Return the type of the current scope.
ScopeType Type() {
ASSERT(!failed_);
if (!nested_scope_chain_.is_empty()) {
Handle<ScopeInfo> scope_info = nested_scope_chain_.last();
switch (scope_info->scope_type()) {
case FUNCTION_SCOPE:
ASSERT(context_->IsFunctionContext() ||
!scope_info->HasContext());
return ScopeTypeLocal;
case MODULE_SCOPE:
ASSERT(context_->IsModuleContext());
return ScopeTypeModule;
case GLOBAL_SCOPE:
ASSERT(context_->IsNativeContext());
return ScopeTypeGlobal;
case WITH_SCOPE:
ASSERT(context_->IsWithContext());
return ScopeTypeWith;
case CATCH_SCOPE:
ASSERT(context_->IsCatchContext());
return ScopeTypeCatch;
case BLOCK_SCOPE:
ASSERT(!scope_info->HasContext() ||
context_->IsBlockContext());
return ScopeTypeBlock;
case EVAL_SCOPE:
UNREACHABLE();
}
}
if (context_->IsNativeContext()) {
ASSERT(context_->global_object()->IsGlobalObject());
return ScopeTypeGlobal;
}
if (context_->IsFunctionContext()) {
return ScopeTypeClosure;
}
if (context_->IsCatchContext()) {
return ScopeTypeCatch;
}
if (context_->IsBlockContext()) {
return ScopeTypeBlock;
}
if (context_->IsModuleContext()) {
return ScopeTypeModule;
}
ASSERT(context_->IsWithContext());
return ScopeTypeWith;
}
// Return the JavaScript object with the content of the current scope.
Handle<JSObject> ScopeObject() {
ASSERT(!failed_);
switch (Type()) {
case ScopeIterator::ScopeTypeGlobal:
return Handle<JSObject>(CurrentContext()->global_object());
case ScopeIterator::ScopeTypeLocal:
// Materialize the content of the local scope into a JSObject.
ASSERT(nested_scope_chain_.length() == 1);
return MaterializeLocalScope(isolate_, frame_, inlined_jsframe_index_);
case ScopeIterator::ScopeTypeWith:
// Return the with object.
return Handle<JSObject>(JSObject::cast(CurrentContext()->extension()));
case ScopeIterator::ScopeTypeCatch:
return MaterializeCatchScope(isolate_, CurrentContext());
case ScopeIterator::ScopeTypeClosure:
// Materialize the content of the closure scope into a JSObject.
return MaterializeClosure(isolate_, CurrentContext());
case ScopeIterator::ScopeTypeBlock:
return MaterializeBlockScope(isolate_, CurrentContext());
case ScopeIterator::ScopeTypeModule:
return MaterializeModuleScope(isolate_, CurrentContext());
}
UNREACHABLE();
return Handle<JSObject>();
}
bool SetVariableValue(Handle<String> variable_name,
Handle<Object> new_value) {
ASSERT(!failed_);
switch (Type()) {
case ScopeIterator::ScopeTypeGlobal:
break;
case ScopeIterator::ScopeTypeLocal:
return SetLocalVariableValue(isolate_, frame_, inlined_jsframe_index_,
variable_name, new_value);
case ScopeIterator::ScopeTypeWith:
break;
case ScopeIterator::ScopeTypeCatch:
return SetCatchVariableValue(isolate_, CurrentContext(),
variable_name, new_value);
case ScopeIterator::ScopeTypeClosure:
return SetClosureVariableValue(isolate_, CurrentContext(),
variable_name, new_value);
case ScopeIterator::ScopeTypeBlock:
// TODO(2399): should we implement it?
break;
case ScopeIterator::ScopeTypeModule:
// TODO(2399): should we implement it?
break;
}
return false;
}
Handle<ScopeInfo> CurrentScopeInfo() {
ASSERT(!failed_);
if (!nested_scope_chain_.is_empty()) {
return nested_scope_chain_.last();
} else if (context_->IsBlockContext()) {
return Handle<ScopeInfo>(ScopeInfo::cast(context_->extension()));
} else if (context_->IsFunctionContext()) {
return Handle<ScopeInfo>(context_->closure()->shared()->scope_info());
}
return Handle<ScopeInfo>::null();
}
// Return the context for this scope. For the local context there might not
// be an actual context.
Handle<Context> CurrentContext() {
ASSERT(!failed_);
if (Type() == ScopeTypeGlobal ||
nested_scope_chain_.is_empty()) {
return context_;
} else if (nested_scope_chain_.last()->HasContext()) {
return context_;
} else {
return Handle<Context>();
}
}
#ifdef DEBUG
// Debug print of the content of the current scope.
void DebugPrint() {
ASSERT(!failed_);
switch (Type()) {
case ScopeIterator::ScopeTypeGlobal:
PrintF("Global:\n");
CurrentContext()->Print();
break;
case ScopeIterator::ScopeTypeLocal: {
PrintF("Local:\n");
function_->shared()->scope_info()->Print();
if (!CurrentContext().is_null()) {
CurrentContext()->Print();
if (CurrentContext()->has_extension()) {
Handle<Object> extension(CurrentContext()->extension(), isolate_);
if (extension->IsJSContextExtensionObject()) {
extension->Print();
}
}
}
break;
}
case ScopeIterator::ScopeTypeWith:
PrintF("With:\n");
CurrentContext()->extension()->Print();
break;
case ScopeIterator::ScopeTypeCatch:
PrintF("Catch:\n");
CurrentContext()->extension()->Print();
CurrentContext()->get(Context::THROWN_OBJECT_INDEX)->Print();
break;
case ScopeIterator::ScopeTypeClosure:
PrintF("Closure:\n");
CurrentContext()->Print();
if (CurrentContext()->has_extension()) {
Handle<Object> extension(CurrentContext()->extension(), isolate_);
if (extension->IsJSContextExtensionObject()) {
extension->Print();
}
}
break;
default:
UNREACHABLE();
}
PrintF("\n");
}
#endif
private:
Isolate* isolate_;
JavaScriptFrame* frame_;
int inlined_jsframe_index_;
Handle<JSFunction> function_;
Handle<Context> context_;
List<Handle<ScopeInfo> > nested_scope_chain_;
bool failed_;
void RetrieveScopeChain(Scope* scope,
Handle<SharedFunctionInfo> shared_info) {
if (scope != NULL) {
int source_position = shared_info->code()->SourcePosition(frame_->pc());
scope->GetNestedScopeChain(&nested_scope_chain_, source_position);
} else {
// A failed reparse indicates that the preparser has diverged from the
// parser or that the preparse data given to the initial parse has been
// faulty. We fail in debug mode but in release mode we only provide the
// information we get from the context chain but nothing about
// completely stack allocated scopes or stack allocated locals.
// Or it could be due to stack overflow.
ASSERT(isolate_->has_pending_exception());
failed_ = true;
}
}
DISALLOW_IMPLICIT_CONSTRUCTORS(ScopeIterator);
};
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetScopeCount) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
// Check arguments.
Object* check;
{ MaybeObject* maybe_check = Runtime_CheckExecutionState(
RUNTIME_ARGUMENTS(isolate, args));
if (!maybe_check->ToObject(&check)) return maybe_check;
}
CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
// Get the frame where the debugging is performed.
StackFrame::Id id = UnwrapFrameId(wrapped_id);
JavaScriptFrameIterator it(isolate, id);
JavaScriptFrame* frame = it.frame();
// Count the visible scopes.
int n = 0;
for (ScopeIterator it(isolate, frame, 0);
!it.Done();
it.Next()) {
n++;
}
return Smi::FromInt(n);
}
// Returns the list of step-in positions (text offset) in a function of the
// stack frame in a range from the current debug break position to the end
// of the corresponding statement.
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetStepInPositions) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
// Check arguments.
Object* check;
{ MaybeObject* maybe_check = Runtime_CheckExecutionState(
RUNTIME_ARGUMENTS(isolate, args));
if (!maybe_check->ToObject(&check)) return maybe_check;
}
CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
// Get the frame where the debugging is performed.
StackFrame::Id id = UnwrapFrameId(wrapped_id);
JavaScriptFrameIterator frame_it(isolate, id);
JavaScriptFrame* frame = frame_it.frame();
Handle<SharedFunctionInfo> shared =
Handle<SharedFunctionInfo>(frame->function()->shared());
Handle<DebugInfo> debug_info = Debug::GetDebugInfo(shared);
int len = 0;
Handle<JSArray> array(isolate->factory()->NewJSArray(10));
// Find the break point where execution has stopped.
BreakLocationIterator break_location_iterator(debug_info,
ALL_BREAK_LOCATIONS);
break_location_iterator.FindBreakLocationFromAddress(frame->pc());
int current_statement_pos = break_location_iterator.statement_position();
while (!break_location_iterator.Done()) {
if (break_location_iterator.IsStepInLocation(isolate)) {
Smi* position_value = Smi::FromInt(break_location_iterator.position());
JSObject::SetElement(array, len,
Handle<Object>(position_value, isolate),
NONE, kNonStrictMode);
len++;
}
// Advance iterator.
break_location_iterator.Next();
if (current_statement_pos !=
break_location_iterator.statement_position()) {
break;
}
}
return *array;
}
static const int kScopeDetailsTypeIndex = 0;
static const int kScopeDetailsObjectIndex = 1;
static const int kScopeDetailsSize = 2;
static MaybeObject* MaterializeScopeDetails(Isolate* isolate,
ScopeIterator* it) {
// Calculate the size of the result.
int details_size = kScopeDetailsSize;
Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size);
// Fill in scope details.
details->set(kScopeDetailsTypeIndex, Smi::FromInt(it->Type()));
Handle<JSObject> scope_object = it->ScopeObject();
RETURN_IF_EMPTY_HANDLE(isolate, scope_object);
details->set(kScopeDetailsObjectIndex, *scope_object);
return *isolate->factory()->NewJSArrayWithElements(details);
}
// Return an array with scope details
// args[0]: number: break id
// args[1]: number: frame index
// args[2]: number: inlined frame index
// args[3]: number: scope index
//
// The array returned contains the following information:
// 0: Scope type
// 1: Scope object
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetScopeDetails) {
HandleScope scope(isolate);
ASSERT(args.length() == 4);
// Check arguments.
Object* check;
{ MaybeObject* maybe_check = Runtime_CheckExecutionState(
RUNTIME_ARGUMENTS(isolate, args));
if (!maybe_check->ToObject(&check)) return maybe_check;
}
CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
CONVERT_NUMBER_CHECKED(int, index, Int32, args[3]);
// Get the frame where the debugging is performed.
StackFrame::Id id = UnwrapFrameId(wrapped_id);
JavaScriptFrameIterator frame_it(isolate, id);
JavaScriptFrame* frame = frame_it.frame();
// Find the requested scope.
int n = 0;
ScopeIterator it(isolate, frame, inlined_jsframe_index);
for (; !it.Done() && n < index; it.Next()) {
n++;
}
if (it.Done()) {
return isolate->heap()->undefined_value();
}
return MaterializeScopeDetails(isolate, &it);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFunctionScopeCount) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
// Check arguments.
CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
// Count the visible scopes.
int n = 0;
for (ScopeIterator it(isolate, fun); !it.Done(); it.Next()) {
n++;
}
return Smi::FromInt(n);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFunctionScopeDetails) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
// Check arguments.
CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
// Find the requested scope.
int n = 0;
ScopeIterator it(isolate, fun);
for (; !it.Done() && n < index; it.Next()) {
n++;
}
if (it.Done()) {
return isolate->heap()->undefined_value();
}
return MaterializeScopeDetails(isolate, &it);
}
static bool SetScopeVariableValue(ScopeIterator* it, int index,
Handle<String> variable_name,
Handle<Object> new_value) {
for (int n = 0; !it->Done() && n < index; it->Next()) {
n++;
}
if (it->Done()) {
return false;
}
return it->SetVariableValue(variable_name, new_value);
}
// Change variable value in closure or local scope
// args[0]: number or JsFunction: break id or function
// args[1]: number: frame index (when arg[0] is break id)
// args[2]: number: inlined frame index (when arg[0] is break id)
// args[3]: number: scope index
// args[4]: string: variable name
// args[5]: object: new value
//
// Return true if success and false otherwise
RUNTIME_FUNCTION(MaybeObject*, Runtime_SetScopeVariableValue) {
HandleScope scope(isolate);
ASSERT(args.length() == 6);
// Check arguments.
CONVERT_NUMBER_CHECKED(int, index, Int32, args[3]);
CONVERT_ARG_HANDLE_CHECKED(String, variable_name, 4);
Handle<Object> new_value = args.at<Object>(5);
bool res;
if (args[0]->IsNumber()) {
Object* check;
{ MaybeObject* maybe_check = Runtime_CheckExecutionState(
RUNTIME_ARGUMENTS(isolate, args));
if (!maybe_check->ToObject(&check)) return maybe_check;
}
CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
// Get the frame where the debugging is performed.
StackFrame::Id id = UnwrapFrameId(wrapped_id);
JavaScriptFrameIterator frame_it(isolate, id);
JavaScriptFrame* frame = frame_it.frame();
ScopeIterator it(isolate, frame, inlined_jsframe_index);
res = SetScopeVariableValue(&it, index, variable_name, new_value);
} else {
CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
ScopeIterator it(isolate, fun);
res = SetScopeVariableValue(&it, index, variable_name, new_value);
}
return isolate->heap()->ToBoolean(res);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPrintScopes) {
HandleScope scope(isolate);
ASSERT(args.length() == 0);
#ifdef DEBUG
// Print the scopes for the top frame.
StackFrameLocator locator(isolate);
JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
for (ScopeIterator it(isolate, frame, 0);
!it.Done();
it.Next()) {
it.DebugPrint();
}
#endif
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetThreadCount) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
// Check arguments.
Object* result;
{ MaybeObject* maybe_result = Runtime_CheckExecutionState(
RUNTIME_ARGUMENTS(isolate, args));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// Count all archived V8 threads.
int n = 0;
for (ThreadState* thread =
isolate->thread_manager()->FirstThreadStateInUse();
thread != NULL;
thread = thread->Next()) {
n++;
}
// Total number of threads is current thread and archived threads.
return Smi::FromInt(n + 1);
}
static const int kThreadDetailsCurrentThreadIndex = 0;
static const int kThreadDetailsThreadIdIndex = 1;
static const int kThreadDetailsSize = 2;
// Return an array with thread details
// args[0]: number: break id
// args[1]: number: thread index
//
// The array returned contains the following information:
// 0: Is current thread?
// 1: Thread id
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetThreadDetails) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
// Check arguments.
Object* check;
{ MaybeObject* maybe_check = Runtime_CheckExecutionState(
RUNTIME_ARGUMENTS(isolate, args));
if (!maybe_check->ToObject(&check)) return maybe_check;
}
CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
// Allocate array for result.
Handle<FixedArray> details =
isolate->factory()->NewFixedArray(kThreadDetailsSize);
// Thread index 0 is current thread.
if (index == 0) {
// Fill the details.
details->set(kThreadDetailsCurrentThreadIndex,
isolate->heap()->true_value());
details->set(kThreadDetailsThreadIdIndex,
Smi::FromInt(ThreadId::Current().ToInteger()));
} else {
// Find the thread with the requested index.
int n = 1;
ThreadState* thread =
isolate->thread_manager()->FirstThreadStateInUse();
while (index != n && thread != NULL) {
thread = thread->Next();
n++;
}
if (thread == NULL) {
return isolate->heap()->undefined_value();
}
// Fill the details.
details->set(kThreadDetailsCurrentThreadIndex,
isolate->heap()->false_value());
details->set(kThreadDetailsThreadIdIndex,
Smi::FromInt(thread->id().ToInteger()));
}
// Convert to JS array and return.
return *isolate->factory()->NewJSArrayWithElements(details);
}
// Sets the disable break state
// args[0]: disable break state
RUNTIME_FUNCTION(MaybeObject*, Runtime_SetDisableBreak) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 0);
isolate->debug()->set_disable_break(disable_break);
return isolate->heap()->undefined_value();
}
static bool IsPositionAlignmentCodeCorrect(int alignment) {
return alignment == STATEMENT_ALIGNED || alignment == BREAK_POSITION_ALIGNED;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetBreakLocations) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
CONVERT_NUMBER_CHECKED(int32_t, statement_aligned_code, Int32, args[1]);
if (!IsPositionAlignmentCodeCorrect(statement_aligned_code)) {
return isolate->ThrowIllegalOperation();
}
BreakPositionAlignment alignment =
static_cast<BreakPositionAlignment>(statement_aligned_code);
Handle<SharedFunctionInfo> shared(fun->shared());
// Find the number of break points
Handle<Object> break_locations =
Debug::GetSourceBreakLocations(shared, alignment);
if (break_locations->IsUndefined()) return isolate->heap()->undefined_value();
// Return array as JS array
return *isolate->factory()->NewJSArrayWithElements(
Handle<FixedArray>::cast(break_locations));
}
// Set a break point in a function.
// args[0]: function
// args[1]: number: break source position (within the function source)
// args[2]: number: break point object
RUNTIME_FUNCTION(MaybeObject*, Runtime_SetFunctionBreakPoint) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
RUNTIME_ASSERT(source_position >= 0);
Handle<Object> break_point_object_arg = args.at<Object>(2);
// Set break point.
isolate->debug()->SetBreakPoint(function, break_point_object_arg,
&source_position);
return Smi::FromInt(source_position);
}
// Changes the state of a break point in a script and returns source position
// where break point was set. NOTE: Regarding performance see the NOTE for
// GetScriptFromScriptData.
// args[0]: script to set break point in
// args[1]: number: break source position (within the script source)
// args[2]: number, breakpoint position alignment
// args[3]: number: break point object
RUNTIME_FUNCTION(MaybeObject*, Runtime_SetScriptBreakPoint) {
HandleScope scope(isolate);
ASSERT(args.length() == 4);
CONVERT_ARG_HANDLE_CHECKED(JSValue, wrapper, 0);
CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
RUNTIME_ASSERT(source_position >= 0);
CONVERT_NUMBER_CHECKED(int32_t, statement_aligned_code, Int32, args[2]);
Handle<Object> break_point_object_arg = args.at<Object>(3);
if (!IsPositionAlignmentCodeCorrect(statement_aligned_code)) {
return isolate->ThrowIllegalOperation();
}
BreakPositionAlignment alignment =
static_cast<BreakPositionAlignment>(statement_aligned_code);
// Get the script from the script wrapper.
RUNTIME_ASSERT(wrapper->value()->IsScript());
Handle<Script> script(Script::cast(wrapper->value()));
// Set break point.
if (!isolate->debug()->SetBreakPointForScript(script, break_point_object_arg,
&source_position,
alignment)) {
return isolate->heap()->undefined_value();
}
return Smi::FromInt(source_position);
}
// Clear a break point
// args[0]: number: break point object
RUNTIME_FUNCTION(MaybeObject*, Runtime_ClearBreakPoint) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
Handle<Object> break_point_object_arg = args.at<Object>(0);
// Clear break point.
isolate->debug()->ClearBreakPoint(break_point_object_arg);
return isolate->heap()->undefined_value();
}
// Change the state of break on exceptions.
// args[0]: Enum value indicating whether to affect caught/uncaught exceptions.
// args[1]: Boolean indicating on/off.
RUNTIME_FUNCTION(MaybeObject*, Runtime_ChangeBreakOnException) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
RUNTIME_ASSERT(args[0]->IsNumber());
CONVERT_BOOLEAN_ARG_CHECKED(enable, 1);
// If the number doesn't match an enum value, the ChangeBreakOnException
// function will default to affecting caught exceptions.
ExceptionBreakType type =
static_cast<ExceptionBreakType>(NumberToUint32(args[0]));
// Update break point state.
isolate->debug()->ChangeBreakOnException(type, enable);
return isolate->heap()->undefined_value();
}
// Returns the state of break on exceptions
// args[0]: boolean indicating uncaught exceptions
RUNTIME_FUNCTION(MaybeObject*, Runtime_IsBreakOnException) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
RUNTIME_ASSERT(args[0]->IsNumber());
ExceptionBreakType type =
static_cast<ExceptionBreakType>(NumberToUint32(args[0]));
bool result = isolate->debug()->IsBreakOnException(type);
return Smi::FromInt(result);
}
// Prepare for stepping
// args[0]: break id for checking execution state
// args[1]: step action from the enumeration StepAction
// args[2]: number of times to perform the step, for step out it is the number
// of frames to step down.
RUNTIME_FUNCTION(MaybeObject*, Runtime_PrepareStep) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
// Check arguments.
Object* check;
{ MaybeObject* maybe_check = Runtime_CheckExecutionState(
RUNTIME_ARGUMENTS(isolate, args));
if (!maybe_check->ToObject(&check)) return maybe_check;
}
if (!args[1]->IsNumber() || !args[2]->IsNumber()) {
return isolate->Throw(isolate->heap()->illegal_argument_string());
}
// Get the step action and check validity.
StepAction step_action = static_cast<StepAction>(NumberToInt32(args[1]));
if (step_action != StepIn &&
step_action != StepNext &&
step_action != StepOut &&
step_action != StepInMin &&
step_action != StepMin) {
return isolate->Throw(isolate->heap()->illegal_argument_string());
}
// Get the number of steps.
int step_count = NumberToInt32(args[2]);
if (step_count < 1) {
return isolate->Throw(isolate->heap()->illegal_argument_string());
}
// Clear all current stepping setup.
isolate->debug()->ClearStepping();
// Prepare step.
isolate->debug()->PrepareStep(static_cast<StepAction>(step_action),
step_count);
return isolate->heap()->undefined_value();
}
// Clear all stepping set by PrepareStep.
RUNTIME_FUNCTION(MaybeObject*, Runtime_ClearStepping) {
HandleScope scope(isolate);
ASSERT(args.length() == 0);
isolate->debug()->ClearStepping();
return isolate->heap()->undefined_value();
}
static bool IsBlockOrCatchOrWithScope(ScopeIterator::ScopeType type) {
return type == ScopeIterator::ScopeTypeBlock ||
type == ScopeIterator::ScopeTypeCatch ||
type == ScopeIterator::ScopeTypeWith;
}
// Creates a copy of the with context chain. The copy of the context chain is
// is linked to the function context supplied.
static Handle<Context> CopyNestedScopeContextChain(Isolate* isolate,
Handle<JSFunction> function,
Handle<Context> base,
JavaScriptFrame* frame,
int inlined_jsframe_index) {
HandleScope scope(isolate);
List<Handle<ScopeInfo> > scope_chain;
List<Handle<Context> > context_chain;
ScopeIterator it(isolate, frame, inlined_jsframe_index);
if (it.Failed()) return Handle<Context>::null();
for ( ; IsBlockOrCatchOrWithScope(it.Type()); it.Next()) {
ASSERT(!it.Done());
scope_chain.Add(it.CurrentScopeInfo());
context_chain.Add(it.CurrentContext());
}
// At the end of the chain. Return the base context to link to.
Handle<Context> context = base;
// Iteratively copy and or materialize the nested contexts.
while (!scope_chain.is_empty()) {
Handle<ScopeInfo> scope_info = scope_chain.RemoveLast();
Handle<Context> current = context_chain.RemoveLast();
ASSERT(!(scope_info->HasContext() & current.is_null()));
if (scope_info->scope_type() == CATCH_SCOPE) {
ASSERT(current->IsCatchContext());
Handle<String> name(String::cast(current->extension()));
Handle<Object> thrown_object(current->get(Context::THROWN_OBJECT_INDEX),
isolate);
context =
isolate->factory()->NewCatchContext(function,
context,
name,
thrown_object);
} else if (scope_info->scope_type() == BLOCK_SCOPE) {
// Materialize the contents of the block scope into a JSObject.
ASSERT(current->IsBlockContext());
Handle<JSObject> block_scope_object =
MaterializeBlockScope(isolate, current);
CHECK(!block_scope_object.is_null());
// Allocate a new function context for the debug evaluation and set the
// extension object.
Handle<Context> new_context =
isolate->factory()->NewFunctionContext(Context::MIN_CONTEXT_SLOTS,
function);
new_context->set_extension(*block_scope_object);
new_context->set_previous(*context);
context = new_context;
} else {
ASSERT(scope_info->scope_type() == WITH_SCOPE);
ASSERT(current->IsWithContext());
Handle<JSObject> extension(JSObject::cast(current->extension()));
context =
isolate->factory()->NewWithContext(function, context, extension);
}
}
return scope.CloseAndEscape(context);
}
// Helper function to find or create the arguments object for
// Runtime_DebugEvaluate.
static Handle<Object> GetArgumentsObject(Isolate* isolate,
JavaScriptFrame* frame,
FrameInspector* frame_inspector,
Handle<ScopeInfo> scope_info,
Handle<Context> function_context) {
// Try to find the value of 'arguments' to pass as parameter. If it is not
// found (that is the debugged function does not reference 'arguments' and
// does not support eval) then create an 'arguments' object.
int index;
if (scope_info->StackLocalCount() > 0) {
index = scope_info->StackSlotIndex(isolate->heap()->arguments_string());
if (index != -1) {
return Handle<Object>(frame->GetExpression(index), isolate);
}
}
if (scope_info->HasHeapAllocatedLocals()) {
VariableMode mode;
InitializationFlag init_flag;
index = scope_info->ContextSlotIndex(
isolate->heap()->arguments_string(), &mode, &init_flag);
if (index != -1) {
return Handle<Object>(function_context->get(index), isolate);
}
}
// FunctionGetArguments can't return a non-Object.
return Handle<JSObject>(JSObject::cast(
Accessors::FunctionGetArguments(frame_inspector->GetFunction(),
NULL)->ToObjectUnchecked()), isolate);
}
// Compile and evaluate source for the given context.
static MaybeObject* DebugEvaluate(Isolate* isolate,
Handle<Context> context,
Handle<Object> context_extension,
Handle<Object> receiver,
Handle<String> source) {
if (context_extension->IsJSObject()) {
Handle<JSObject> extension = Handle<JSObject>::cast(context_extension);
Handle<JSFunction> closure(context->closure(), isolate);
context = isolate->factory()->NewWithContext(closure, context, extension);
}
Handle<SharedFunctionInfo> shared = Compiler::CompileEval(
source,
context,
context->IsNativeContext(),
CLASSIC_MODE,
NO_PARSE_RESTRICTION,
RelocInfo::kNoPosition);
RETURN_IF_EMPTY_HANDLE(isolate, shared);
Handle<JSFunction> eval_fun =
isolate->factory()->NewFunctionFromSharedFunctionInfo(
shared, context, NOT_TENURED);
bool pending_exception;
Handle<Object> result = Execution::Call(
eval_fun, receiver, 0, NULL, &pending_exception);
if (pending_exception) return Failure::Exception();
// Skip the global proxy as it has no properties and always delegates to the
// real global object.
if (result->IsJSGlobalProxy()) {
result = Handle<JSObject>(JSObject::cast(result->GetPrototype(isolate)));
}
// Clear the oneshot breakpoints so that the debugger does not step further.
isolate->debug()->ClearStepping();
return *result;
}
// Evaluate a piece of JavaScript in the context of a stack frame for
// debugging. This is done by creating a new context which in its extension
// part has all the parameters and locals of the function on the stack frame
// as well as a materialized arguments object. As this context replaces
// the context of the function on the stack frame a new (empty) function
// is created as well to be used as the closure for the context.
// This closure as replacements for the one on the stack frame presenting
// the same view of the values of parameters and local variables as if the
// piece of JavaScript was evaluated at the point where the function on the
// stack frame is currently stopped when we compile and run the (direct) eval.
// Returns array of
// #0: evaluate result
// #1: local variables materizalized again as object after evaluation, contain
// original variable values as they remained on stack
// #2: local variables materizalized as object before evaluation (and possibly
// modified by expression having been executed)
// Since user expression only reaches (and modifies) copies of local variables,
// those copies are returned to the caller to allow tracking the changes and
// manually updating the actual variables.
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugEvaluate) {
HandleScope scope(isolate);
// Check the execution state and decode arguments frame and source to be
// evaluated.
ASSERT(args.length() == 6);
Object* check_result;
{ MaybeObject* maybe_result = Runtime_CheckExecutionState(
RUNTIME_ARGUMENTS(isolate, args));
if (!maybe_result->ToObject(&check_result)) return maybe_result;
}
CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
CONVERT_ARG_HANDLE_CHECKED(String, source, 3);
CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 4);
Handle<Object> context_extension(args[5], isolate);
// Handle the processing of break.
DisableBreak disable_break_save(disable_break);
// Get the frame where the debugging is performed.
StackFrame::Id id = UnwrapFrameId(wrapped_id);
JavaScriptFrameIterator it(isolate, id);
JavaScriptFrame* frame = it.frame();
FrameInspector frame_inspector(frame, inlined_jsframe_index, isolate);
Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction()));
// Traverse the saved contexts chain to find the active context for the
// selected frame.
SaveContext* save = FindSavedContextForFrame(isolate, frame);
SaveContext savex(isolate);
isolate->set_context(*(save->context()));
// Create the (empty) function replacing the function on the stack frame for
// the purpose of evaluating in the context created below. It is important
// that this function does not describe any parameters and local variables
// in the context. If it does then this will cause problems with the lookup
// in Context::Lookup, where context slots for parameters and local variables
// are looked at before the extension object.
Handle<JSFunction> go_between =
isolate->factory()->NewFunction(isolate->factory()->empty_string(),
isolate->factory()->undefined_value());
go_between->set_context(function->context());
#ifdef DEBUG
Handle<ScopeInfo> go_between_scope_info(go_between->shared()->scope_info());
ASSERT(go_between_scope_info->ParameterCount() == 0);
ASSERT(go_between_scope_info->ContextLocalCount() == 0);
#endif
// Materialize the content of the local scope including the arguments object.
Handle<JSObject> local_scope = MaterializeLocalScopeWithFrameInspector(
isolate, frame, &frame_inspector);
RETURN_IF_EMPTY_HANDLE(isolate, local_scope);
// Do not materialize the arguments object for eval or top-level code.
if (function->shared()->is_function()) {
Handle<Context> frame_context(Context::cast(frame->context()));
Handle<Context> function_context;
Handle<ScopeInfo> scope_info(function->shared()->scope_info());
if (scope_info->HasContext()) {
function_context = Handle<Context>(frame_context->declaration_context());
}
Handle<Object> arguments = GetArgumentsObject(isolate,
frame,
&frame_inspector,
scope_info,
function_context);
SetProperty(isolate,
local_scope,
isolate->factory()->arguments_string(),
arguments,
::NONE,
kNonStrictMode);
}
// Allocate a new context for the debug evaluation and set the extension
// object build.
Handle<Context> context = isolate->factory()->NewFunctionContext(
Context::MIN_CONTEXT_SLOTS, go_between);
// Use the materialized local scope in a with context.
context =
isolate->factory()->NewWithContext(go_between, context, local_scope);
// Copy any with contexts present and chain them in front of this context.
context = CopyNestedScopeContextChain(isolate,
go_between,
context,
frame,
inlined_jsframe_index);
if (context.is_null()) {
ASSERT(isolate->has_pending_exception());
MaybeObject* exception = isolate->pending_exception();
isolate->clear_pending_exception();
return exception;
}
Handle<Object> receiver(frame->receiver(), isolate);
Object* evaluate_result_object;
{ MaybeObject* maybe_result =
DebugEvaluate(isolate, context, context_extension, receiver, source);
if (!maybe_result->ToObject(&evaluate_result_object)) return maybe_result;
}
Handle<Object> evaluate_result(evaluate_result_object, isolate);
Handle<JSObject> local_scope_control_copy =
MaterializeLocalScopeWithFrameInspector(isolate, frame,
&frame_inspector);
Handle<FixedArray> resultArray = isolate->factory()->NewFixedArray(3);
resultArray->set(0, *evaluate_result);
resultArray->set(1, *local_scope_control_copy);
resultArray->set(2, *local_scope);
return *(isolate->factory()->NewJSArrayWithElements(resultArray));
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugEvaluateGlobal) {
HandleScope scope(isolate);
// Check the execution state and decode arguments frame and source to be
// evaluated.
ASSERT(args.length() == 4);
Object* check_result;
{ MaybeObject* maybe_result = Runtime_CheckExecutionState(
RUNTIME_ARGUMENTS(isolate, args));
if (!maybe_result->ToObject(&check_result)) return maybe_result;
}
CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 2);
Handle<Object> context_extension(args[3], isolate);
// Handle the processing of break.
DisableBreak disable_break_save(disable_break);
// Enter the top context from before the debugger was invoked.
SaveContext save(isolate);
SaveContext* top = &save;
while (top != NULL && *top->context() == *isolate->debug()->debug_context()) {
top = top->prev();
}
if (top != NULL) {
isolate->set_context(*top->context());
}
// Get the native context now set to the top context from before the
// debugger was invoked.
Handle<Context> context = isolate->native_context();
Handle<Object> receiver = isolate->global_object();
return DebugEvaluate(isolate, context, context_extension, receiver, source);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetLoadedScripts) {
HandleScope scope(isolate);
ASSERT(args.length() == 0);
// Fill the script objects.
Handle<FixedArray> instances = isolate->debug()->GetLoadedScripts();
// Convert the script objects to proper JS objects.
for (int i = 0; i < instances->length(); i++) {
Handle<Script> script = Handle<Script>(Script::cast(instances->get(i)));
// Get the script wrapper in a local handle before calling GetScriptWrapper,
// because using
// instances->set(i, *GetScriptWrapper(script))
// is unsafe as GetScriptWrapper might call GC and the C++ compiler might
// already have dereferenced the instances handle.
Handle<JSValue> wrapper = GetScriptWrapper(script);
instances->set(i, *wrapper);
}
// Return result as a JS array.
Handle<JSObject> result =
isolate->factory()->NewJSObject(isolate->array_function());
isolate->factory()->SetContent(Handle<JSArray>::cast(result), instances);
return *result;
}
// Helper function used by Runtime_DebugReferencedBy below.
static int DebugReferencedBy(HeapIterator* iterator,
JSObject* target,
Object* instance_filter, int max_references,
FixedArray* instances, int instances_size,
JSFunction* arguments_function) {
Isolate* isolate = target->GetIsolate();
SealHandleScope shs(isolate);
DisallowHeapAllocation no_allocation;
// Iterate the heap.
int count = 0;
JSObject* last = NULL;
HeapObject* heap_obj = NULL;
while (((heap_obj = iterator->next()) != NULL) &&
(max_references == 0 || count < max_references)) {
// Only look at all JSObjects.
if (heap_obj->IsJSObject()) {
// Skip context extension objects and argument arrays as these are
// checked in the context of functions using them.
JSObject* obj = JSObject::cast(heap_obj);
if (obj->IsJSContextExtensionObject() ||
obj->map()->constructor() == arguments_function) {
continue;
}
// Check if the JS object has a reference to the object looked for.
if (obj->ReferencesObject(target)) {
// Check instance filter if supplied. This is normally used to avoid
// references from mirror objects (see Runtime_IsInPrototypeChain).
if (!instance_filter->IsUndefined()) {
Object* V = obj;
while (true) {
Object* prototype = V->GetPrototype(isolate);
if (prototype->IsNull()) {
break;
}
if (instance_filter == prototype) {
obj = NULL; // Don't add this object.
break;
}
V = prototype;
}
}
if (obj != NULL) {
// Valid reference found add to instance array if supplied an update
// count.
if (instances != NULL && count < instances_size) {
instances->set(count, obj);
}
last = obj;
count++;
}
}
}
}
// Check for circular reference only. This can happen when the object is only
// referenced from mirrors and has a circular reference in which case the
// object is not really alive and would have been garbage collected if not
// referenced from the mirror.
if (count == 1 && last == target) {
count = 0;
}
// Return the number of referencing objects found.
return count;
}
// Scan the heap for objects with direct references to an object
// args[0]: the object to find references to
// args[1]: constructor function for instances to exclude (Mirror)
// args[2]: the the maximum number of objects to return
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugReferencedBy) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 3);
// First perform a full GC in order to avoid references from dead objects.
isolate->heap()->CollectAllGarbage(Heap::kMakeHeapIterableMask,
"%DebugReferencedBy");
// The heap iterator reserves the right to do a GC to make the heap iterable.
// Due to the GC above we know it won't need to do that, but it seems cleaner
// to get the heap iterator constructed before we start having unprotected
// Object* locals that are not protected by handles.
// Check parameters.
CONVERT_ARG_CHECKED(JSObject, target, 0);
Object* instance_filter = args[1];
RUNTIME_ASSERT(instance_filter->IsUndefined() ||
instance_filter->IsJSObject());
CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[2]);
RUNTIME_ASSERT(max_references >= 0);
// Get the constructor function for context extension and arguments array.
JSObject* arguments_boilerplate =
isolate->context()->native_context()->arguments_boilerplate();
JSFunction* arguments_function =
JSFunction::cast(arguments_boilerplate->map()->constructor());
// Get the number of referencing objects.
int count;
Heap* heap = isolate->heap();
HeapIterator heap_iterator(heap);
count = DebugReferencedBy(&heap_iterator,
target, instance_filter, max_references,
NULL, 0, arguments_function);
// Allocate an array to hold the result.
Object* object;
{ MaybeObject* maybe_object = heap->AllocateFixedArray(count);
if (!maybe_object->ToObject(&object)) return maybe_object;
}
FixedArray* instances = FixedArray::cast(object);
// Fill the referencing objects.
// AllocateFixedArray above does not make the heap non-iterable.
ASSERT(heap->IsHeapIterable());
HeapIterator heap_iterator2(heap);
count = DebugReferencedBy(&heap_iterator2,
target, instance_filter, max_references,
instances, count, arguments_function);
// Return result as JS array.
Object* result;
MaybeObject* maybe_result = heap->AllocateJSObject(
isolate->context()->native_context()->array_function());
if (!maybe_result->ToObject(&result)) return maybe_result;
return JSArray::cast(result)->SetContent(instances);
}
// Helper function used by Runtime_DebugConstructedBy below.
static int DebugConstructedBy(HeapIterator* iterator,
JSFunction* constructor,
int max_references,
FixedArray* instances,
int instances_size) {
DisallowHeapAllocation no_allocation;
// Iterate the heap.
int count = 0;
HeapObject* heap_obj = NULL;
while (((heap_obj = iterator->next()) != NULL) &&
(max_references == 0 || count < max_references)) {
// Only look at all JSObjects.
if (heap_obj->IsJSObject()) {
JSObject* obj = JSObject::cast(heap_obj);
if (obj->map()->constructor() == constructor) {
// Valid reference found add to instance array if supplied an update
// count.
if (instances != NULL && count < instances_size) {
instances->set(count, obj);
}
count++;
}
}
}
// Return the number of referencing objects found.
return count;
}
// Scan the heap for objects constructed by a specific function.
// args[0]: the constructor to find instances of
// args[1]: the the maximum number of objects to return
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugConstructedBy) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
// First perform a full GC in order to avoid dead objects.
Heap* heap = isolate->heap();
heap->CollectAllGarbage(Heap::kMakeHeapIterableMask, "%DebugConstructedBy");
// Check parameters.
CONVERT_ARG_CHECKED(JSFunction, constructor, 0);
CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[1]);
RUNTIME_ASSERT(max_references >= 0);
// Get the number of referencing objects.
int count;
HeapIterator heap_iterator(heap);
count = DebugConstructedBy(&heap_iterator,
constructor,
max_references,
NULL,
0);
// Allocate an array to hold the result.
Object* object;
{ MaybeObject* maybe_object = heap->AllocateFixedArray(count);
if (!maybe_object->ToObject(&object)) return maybe_object;
}
FixedArray* instances = FixedArray::cast(object);
ASSERT(HEAP->IsHeapIterable());
// Fill the referencing objects.
HeapIterator heap_iterator2(heap);
count = DebugConstructedBy(&heap_iterator2,
constructor,
max_references,
instances,
count);
// Return result as JS array.
Object* result;
{ MaybeObject* maybe_result = isolate->heap()->AllocateJSObject(
isolate->context()->native_context()->array_function());
if (!maybe_result->ToObject(&result)) return maybe_result;
}
return JSArray::cast(result)->SetContent(instances);
}
// Find the effective prototype object as returned by __proto__.
// args[0]: the object to find the prototype for.
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetPrototype) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSObject, obj, 0);
return GetPrototypeSkipHiddenPrototypes(isolate, obj);
}
// Patches script source (should be called upon BeforeCompile event).
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugSetScriptSource) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSValue, script_wrapper, 0);
CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
RUNTIME_ASSERT(script_wrapper->value()->IsScript());
Handle<Script> script(Script::cast(script_wrapper->value()));
int compilation_state = Smi::cast(script->compilation_state())->value();
RUNTIME_ASSERT(compilation_state == Script::COMPILATION_STATE_INITIAL);
script->set_source(*source);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_SystemBreak) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 0);
CPU::DebugBreak();
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugDisassembleFunction) {
HandleScope scope(isolate);
#ifdef DEBUG
ASSERT(args.length() == 1);
// Get the function and make sure it is compiled.
CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0);
if (!JSFunction::EnsureCompiled(func, KEEP_EXCEPTION)) {
return Failure::Exception();
}
func->code()->PrintLn();
#endif // DEBUG
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugDisassembleConstructor) {
HandleScope scope(isolate);
#ifdef DEBUG
ASSERT(args.length() == 1);
// Get the function and make sure it is compiled.
CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0);
if (!JSFunction::EnsureCompiled(func, KEEP_EXCEPTION)) {
return Failure::Exception();
}
func->shared()->construct_stub()->PrintLn();
#endif // DEBUG
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetInferredName) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSFunction, f, 0);
return f->shared()->inferred_name();
}
static int FindSharedFunctionInfosForScript(HeapIterator* iterator,
Script* script,
FixedArray* buffer) {
DisallowHeapAllocation no_allocation;
int counter = 0;
int buffer_size = buffer->length();
for (HeapObject* obj = iterator->next();
obj != NULL;
obj = iterator->next()) {
ASSERT(obj != NULL);
if (!obj->IsSharedFunctionInfo()) {
continue;
}
SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj);
if (shared->script() != script) {
continue;
}
if (counter < buffer_size) {
buffer->set(counter, shared);
}
counter++;
}
return counter;
}
// For a script finds all SharedFunctionInfo's in the heap that points
// to this script. Returns JSArray of SharedFunctionInfo wrapped
// in OpaqueReferences.
RUNTIME_FUNCTION(MaybeObject*,
Runtime_LiveEditFindSharedFunctionInfosForScript) {
HandleScope scope(isolate);
CHECK(isolate->debugger()->live_edit_enabled());
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSValue, script_value, 0);
RUNTIME_ASSERT(script_value->value()->IsScript());
Handle<Script> script = Handle<Script>(Script::cast(script_value->value()));
const int kBufferSize = 32;
Handle<FixedArray> array;
array = isolate->factory()->NewFixedArray(kBufferSize);
int number;
Heap* heap = isolate->heap();
{
heap->EnsureHeapIsIterable();
DisallowHeapAllocation no_allocation;
HeapIterator heap_iterator(heap);
Script* scr = *script;
FixedArray* arr = *array;
number = FindSharedFunctionInfosForScript(&heap_iterator, scr, arr);
}
if (number > kBufferSize) {
array = isolate->factory()->NewFixedArray(number);
heap->EnsureHeapIsIterable();
DisallowHeapAllocation no_allocation;
HeapIterator heap_iterator(heap);
Script* scr = *script;
FixedArray* arr = *array;
FindSharedFunctionInfosForScript(&heap_iterator, scr, arr);
}
Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(array);
result->set_length(Smi::FromInt(number));
LiveEdit::WrapSharedFunctionInfos(result);
return *result;
}
// For a script calculates compilation information about all its functions.
// The script source is explicitly specified by the second argument.
// The source of the actual script is not used, however it is important that
// all generated code keeps references to this particular instance of script.
// Returns a JSArray of compilation infos. The array is ordered so that
// each function with all its descendant is always stored in a continues range
// with the function itself going first. The root function is a script function.
RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditGatherCompileInfo) {
HandleScope scope(isolate);
CHECK(isolate->debugger()->live_edit_enabled());
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSValue, script, 0);
CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
RUNTIME_ASSERT(script->value()->IsScript());
Handle<Script> script_handle = Handle<Script>(Script::cast(script->value()));
JSArray* result = LiveEdit::GatherCompileInfo(script_handle, source);
if (isolate->has_pending_exception()) {
return Failure::Exception();
}
return result;
}
// Changes the source of the script to a new_source.
// If old_script_name is provided (i.e. is a String), also creates a copy of
// the script with its original source and sends notification to debugger.
RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditReplaceScript) {
HandleScope scope(isolate);
CHECK(isolate->debugger()->live_edit_enabled());
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(JSValue, original_script_value, 0);
CONVERT_ARG_HANDLE_CHECKED(String, new_source, 1);
Handle<Object> old_script_name(args[2], isolate);
RUNTIME_ASSERT(original_script_value->value()->IsScript());
Handle<Script> original_script(Script::cast(original_script_value->value()));
Object* old_script = LiveEdit::ChangeScriptSource(original_script,
new_source,
old_script_name);
if (old_script->IsScript()) {
Handle<Script> script_handle(Script::cast(old_script));
return *(GetScriptWrapper(script_handle));
} else {
return isolate->heap()->null_value();
}
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditFunctionSourceUpdated) {
HandleScope scope(isolate);
CHECK(isolate->debugger()->live_edit_enabled());
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_info, 0);
return LiveEdit::FunctionSourceUpdated(shared_info);
}
// Replaces code of SharedFunctionInfo with a new one.
RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditReplaceFunctionCode) {
HandleScope scope(isolate);
CHECK(isolate->debugger()->live_edit_enabled());
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSArray, new_compile_info, 0);
CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_info, 1);
return LiveEdit::ReplaceFunctionCode(new_compile_info, shared_info);
}
// Connects SharedFunctionInfo to another script.
RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditFunctionSetScript) {
HandleScope scope(isolate);
CHECK(isolate->debugger()->live_edit_enabled());
ASSERT(args.length() == 2);
Handle<Object> function_object(args[0], isolate);
Handle<Object> script_object(args[1], isolate);
if (function_object->IsJSValue()) {
Handle<JSValue> function_wrapper = Handle<JSValue>::cast(function_object);
if (script_object->IsJSValue()) {
RUNTIME_ASSERT(JSValue::cast(*script_object)->value()->IsScript());
Script* script = Script::cast(JSValue::cast(*script_object)->value());
script_object = Handle<Object>(script, isolate);
}
LiveEdit::SetFunctionScript(function_wrapper, script_object);
} else {
// Just ignore this. We may not have a SharedFunctionInfo for some functions
// and we check it in this function.
}
return isolate->heap()->undefined_value();
}
// In a code of a parent function replaces original function as embedded object
// with a substitution one.
RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditReplaceRefToNestedFunction) {
HandleScope scope(isolate);
CHECK(isolate->debugger()->live_edit_enabled());
ASSERT(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(JSValue, parent_wrapper, 0);
CONVERT_ARG_HANDLE_CHECKED(JSValue, orig_wrapper, 1);
CONVERT_ARG_HANDLE_CHECKED(JSValue, subst_wrapper, 2);
LiveEdit::ReplaceRefToNestedFunction(parent_wrapper, orig_wrapper,
subst_wrapper);
return isolate->heap()->undefined_value();
}
// Updates positions of a shared function info (first parameter) according
// to script source change. Text change is described in second parameter as
// array of groups of 3 numbers:
// (change_begin, change_end, change_end_new_position).
// Each group describes a change in text; groups are sorted by change_begin.
RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditPatchFunctionPositions) {
HandleScope scope(isolate);
CHECK(isolate->debugger()->live_edit_enabled());
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_array, 0);
CONVERT_ARG_HANDLE_CHECKED(JSArray, position_change_array, 1);
return LiveEdit::PatchFunctionPositions(shared_array, position_change_array);
}
// For array of SharedFunctionInfo's (each wrapped in JSValue)
// checks that none of them have activations on stacks (of any thread).
// Returns array of the same length with corresponding results of
// LiveEdit::FunctionPatchabilityStatus type.
RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditCheckAndDropActivations) {
HandleScope scope(isolate);
CHECK(isolate->debugger()->live_edit_enabled());
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_array, 0);
CONVERT_BOOLEAN_ARG_CHECKED(do_drop, 1);
return *LiveEdit::CheckAndDropActivations(shared_array, do_drop);
}
// Compares 2 strings line-by-line, then token-wise and returns diff in form
// of JSArray of triplets (pos1, pos1_end, pos2_end) describing list
// of diff chunks.
RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditCompareStrings) {
HandleScope scope(isolate);
CHECK(isolate->debugger()->live_edit_enabled());
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(String, s1, 0);
CONVERT_ARG_HANDLE_CHECKED(String, s2, 1);
return *LiveEdit::CompareStrings(s1, s2);
}
// Restarts a call frame and completely drops all frames above.
// Returns true if successful. Otherwise returns undefined or an error message.
RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditRestartFrame) {
HandleScope scope(isolate);
CHECK(isolate->debugger()->live_edit_enabled());
ASSERT(args.length() == 2);
// Check arguments.
Object* check;
{ MaybeObject* maybe_check = Runtime_CheckExecutionState(
RUNTIME_ARGUMENTS(isolate, args));
if (!maybe_check->ToObject(&check)) return maybe_check;
}
CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
Heap* heap = isolate->heap();
// Find the relevant frame with the requested index.
StackFrame::Id id = isolate->debug()->break_frame_id();
if (id == StackFrame::NO_ID) {
// If there are no JavaScript stack frames return undefined.
return heap->undefined_value();
}
int count = 0;
JavaScriptFrameIterator it(isolate, id);
for (; !it.done(); it.Advance()) {
if (index < count + it.frame()->GetInlineCount()) break;
count += it.frame()->GetInlineCount();
}
if (it.done()) return heap->undefined_value();
const char* error_message = LiveEdit::RestartFrame(it.frame());
if (error_message) {
return *(isolate->factory()->InternalizeUtf8String(error_message));
}
return heap->true_value();
}
// A testing entry. Returns statement position which is the closest to
// source_position.
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFunctionCodePositionFromSource) {
HandleScope scope(isolate);
CHECK(isolate->debugger()->live_edit_enabled());
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
Handle<Code> code(function->code(), isolate);
if (code->kind() != Code::FUNCTION &&
code->kind() != Code::OPTIMIZED_FUNCTION) {
return isolate->heap()->undefined_value();
}
RelocIterator it(*code, RelocInfo::ModeMask(RelocInfo::STATEMENT_POSITION));
int closest_pc = 0;
int distance = kMaxInt;
while (!it.done()) {
int statement_position = static_cast<int>(it.rinfo()->data());
// Check if this break point is closer that what was previously found.
if (source_position <= statement_position &&
statement_position - source_position < distance) {
closest_pc =
static_cast<int>(it.rinfo()->pc() - code->instruction_start());
distance = statement_position - source_position;
// Check whether we can't get any closer.
if (distance == 0) break;
}
it.next();
}
return Smi::FromInt(closest_pc);
}
// Calls specified function with or without entering the debugger.
// This is used in unit tests to run code as if debugger is entered or simply
// to have a stack with C++ frame in the middle.
RUNTIME_FUNCTION(MaybeObject*, Runtime_ExecuteInDebugContext) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
CONVERT_BOOLEAN_ARG_CHECKED(without_debugger, 1);
Handle<Object> result;
bool pending_exception;
{
if (without_debugger) {
result = Execution::Call(function, isolate->global_object(), 0, NULL,
&pending_exception);
} else {
EnterDebugger enter_debugger;
result = Execution::Call(function, isolate->global_object(), 0, NULL,
&pending_exception);
}
}
if (!pending_exception) {
return *result;
} else {
return Failure::Exception();
}
}
// Sets a v8 flag.
RUNTIME_FUNCTION(MaybeObject*, Runtime_SetFlags) {
SealHandleScope shs(isolate);
CONVERT_ARG_CHECKED(String, arg, 0);
SmartArrayPointer<char> flags =
arg->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
FlagList::SetFlagsFromString(*flags, StrLength(*flags));
return isolate->heap()->undefined_value();
}
// Performs a GC.
// Presently, it only does a full GC.
RUNTIME_FUNCTION(MaybeObject*, Runtime_CollectGarbage) {
SealHandleScope shs(isolate);
isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags, "%CollectGarbage");
return isolate->heap()->undefined_value();
}
// Gets the current heap usage.
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetHeapUsage) {
SealHandleScope shs(isolate);
int usage = static_cast<int>(isolate->heap()->SizeOfObjects());
if (!Smi::IsValid(usage)) {
return *isolate->factory()->NewNumberFromInt(usage);
}
return Smi::FromInt(usage);
}
#endif // ENABLE_DEBUGGER_SUPPORT
RUNTIME_FUNCTION(MaybeObject*, Runtime_ProfilerResume) {
SealHandleScope shs(isolate);
v8::V8::ResumeProfiler();
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_ProfilerPause) {
SealHandleScope shs(isolate);
v8::V8::PauseProfiler();
return isolate->heap()->undefined_value();
}
// Finds the script object from the script data. NOTE: This operation uses
// heap traversal to find the function generated for the source position
// for the requested break point. For lazily compiled functions several heap
// traversals might be required rendering this operation as a rather slow
// operation. However for setting break points which is normally done through
// some kind of user interaction the performance is not crucial.
static Handle<Object> Runtime_GetScriptFromScriptName(
Handle<String> script_name) {
// Scan the heap for Script objects to find the script with the requested
// script data.
Handle<Script> script;
Factory* factory = script_name->GetIsolate()->factory();
Heap* heap = script_name->GetHeap();
heap->EnsureHeapIsIterable();
DisallowHeapAllocation no_allocation_during_heap_iteration;
HeapIterator iterator(heap);
HeapObject* obj = NULL;
while (script.is_null() && ((obj = iterator.next()) != NULL)) {
// If a script is found check if it has the script data requested.
if (obj->IsScript()) {
if (Script::cast(obj)->name()->IsString()) {
if (String::cast(Script::cast(obj)->name())->Equals(*script_name)) {
script = Handle<Script>(Script::cast(obj));
}
}
}
}
// If no script with the requested script data is found return undefined.
if (script.is_null()) return factory->undefined_value();
// Return the script found.
return GetScriptWrapper(script);
}
// Get the script object from script data. NOTE: Regarding performance
// see the NOTE for GetScriptFromScriptData.
// args[0]: script data for the script to find the source for
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetScript) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(String, script_name, 0);
// Find the requested script.
Handle<Object> result =
Runtime_GetScriptFromScriptName(Handle<String>(script_name));
return *result;
}
// Collect the raw data for a stack trace. Returns an array of 4
// element segments each containing a receiver, function, code and
// native code offset.
RUNTIME_FUNCTION(MaybeObject*, Runtime_CollectStackTrace) {
HandleScope scope(isolate);
ASSERT_EQ(args.length(), 3);
CONVERT_ARG_HANDLE_CHECKED(JSObject, error_object, 0);
Handle<Object> caller = args.at<Object>(1);
CONVERT_NUMBER_CHECKED(int32_t, limit, Int32, args[2]);
// Optionally capture a more detailed stack trace for the message.
isolate->CaptureAndSetDetailedStackTrace(error_object);
// Capture a simple stack trace for the stack property.
return *isolate->CaptureSimpleStackTrace(error_object, caller, limit);
}
// Mark a function to recognize when called after GC to format the stack trace.
RUNTIME_FUNCTION(MaybeObject*, Runtime_MarkOneShotGetter) {
HandleScope scope(isolate);
ASSERT_EQ(args.length(), 1);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
Handle<String> key = isolate->factory()->hidden_stack_trace_string();
JSObject::SetHiddenProperty(fun, key, key);
return *fun;
}
// Retrieve the stack trace. This could be the raw stack trace collected
// on stack overflow or the already formatted stack trace string.
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetOverflowedStackTrace) {
HandleScope scope(isolate);
ASSERT_EQ(args.length(), 1);
CONVERT_ARG_CHECKED(JSObject, error_object, 0);
String* key = isolate->heap()->hidden_stack_trace_string();
Object* result = error_object->GetHiddenProperty(key);
if (result->IsTheHole()) result = isolate->heap()->undefined_value();
RUNTIME_ASSERT(result->IsJSArray() ||
result->IsString() ||
result->IsUndefined());
return result;
}
// Set or clear the stack trace attached to an stack overflow error object.
RUNTIME_FUNCTION(MaybeObject*, Runtime_SetOverflowedStackTrace) {
HandleScope scope(isolate);
ASSERT_EQ(args.length(), 2);
CONVERT_ARG_HANDLE_CHECKED(JSObject, error_object, 0);
CONVERT_ARG_HANDLE_CHECKED(HeapObject, value, 1);
Handle<String> key = isolate->factory()->hidden_stack_trace_string();
if (value->IsUndefined()) {
error_object->DeleteHiddenProperty(*key);
} else {
RUNTIME_ASSERT(value->IsString());
JSObject::SetHiddenProperty(error_object, key, value);
}
return *error_object;
}
// Returns V8 version as a string.
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetV8Version) {
SealHandleScope shs(isolate);
ASSERT_EQ(args.length(), 0);
const char* version_string = v8::V8::GetVersion();
return isolate->heap()->AllocateStringFromOneByte(CStrVector(version_string),
NOT_TENURED);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_Abort) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
OS::PrintError("abort: %s\n",
reinterpret_cast<char*>(args[0]) + args.smi_at(1));
isolate->PrintStack(stderr);
OS::Abort();
UNREACHABLE();
return NULL;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_FlattenString) {
HandleScope scope(isolate);
ASSERT(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(String, str, 0);
FlattenString(str);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFromCache) {
SealHandleScope shs(isolate);
// This is only called from codegen, so checks might be more lax.
CONVERT_ARG_CHECKED(JSFunctionResultCache, cache, 0);
Object* key = args[1];
int finger_index = cache->finger_index();
Object* o = cache->get(finger_index);
if (o == key) {
// The fastest case: hit the same place again.
return cache->get(finger_index + 1);
}
for (int i = finger_index - 2;
i >= JSFunctionResultCache::kEntriesIndex;
i -= 2) {
o = cache->get(i);
if (o == key) {
cache->set_finger_index(i);
return cache->get(i + 1);
}
}
int size = cache->size();
ASSERT(size <= cache->length());
for (int i = size - 2; i > finger_index; i -= 2) {
o = cache->get(i);
if (o == key) {
cache->set_finger_index(i);
return cache->get(i + 1);
}
}
// There is no value in the cache. Invoke the function and cache result.
HandleScope scope(isolate);
Handle<JSFunctionResultCache> cache_handle(cache);
Handle<Object> key_handle(key, isolate);
Handle<Object> value;
{
Handle<JSFunction> factory(JSFunction::cast(
cache_handle->get(JSFunctionResultCache::kFactoryIndex)));
// TODO(antonm): consider passing a receiver when constructing a cache.
Handle<Object> receiver(isolate->native_context()->global_object(),
isolate);
// This handle is nor shared, nor used later, so it's safe.
Handle<Object> argv[] = { key_handle };
bool pending_exception;
value = Execution::Call(factory,
receiver,
ARRAY_SIZE(argv),
argv,
&pending_exception);
if (pending_exception) return Failure::Exception();
}
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
cache_handle->JSFunctionResultCacheVerify();
}
#endif
// Function invocation may have cleared the cache. Reread all the data.
finger_index = cache_handle->finger_index();
size = cache_handle->size();
// If we have spare room, put new data into it, otherwise evict post finger
// entry which is likely to be the least recently used.
int index = -1;
if (size < cache_handle->length()) {
cache_handle->set_size(size + JSFunctionResultCache::kEntrySize);
index = size;
} else {
index = finger_index + JSFunctionResultCache::kEntrySize;
if (index == cache_handle->length()) {
index = JSFunctionResultCache::kEntriesIndex;
}
}
ASSERT(index % 2 == 0);
ASSERT(index >= JSFunctionResultCache::kEntriesIndex);
ASSERT(index < cache_handle->length());
cache_handle->set(index, *key_handle);
cache_handle->set(index + 1, *value);
cache_handle->set_finger_index(index);
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
cache_handle->JSFunctionResultCacheVerify();
}
#endif
return *value;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_MessageGetStartPosition) {
SealHandleScope shs(isolate);
CONVERT_ARG_CHECKED(JSMessageObject, message, 0);
return Smi::FromInt(message->start_position());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_MessageGetScript) {
SealHandleScope shs(isolate);
CONVERT_ARG_CHECKED(JSMessageObject, message, 0);
return message->script();
}
#ifdef DEBUG
// ListNatives is ONLY used by the fuzz-natives.js in debug mode
// Exclude the code in release mode.
RUNTIME_FUNCTION(MaybeObject*, Runtime_ListNatives) {
HandleScope scope(isolate);
ASSERT(args.length() == 0);
#define COUNT_ENTRY(Name, argc, ressize) + 1
int entry_count = 0
RUNTIME_FUNCTION_LIST(COUNT_ENTRY)
INLINE_FUNCTION_LIST(COUNT_ENTRY)
INLINE_RUNTIME_FUNCTION_LIST(COUNT_ENTRY);
#undef COUNT_ENTRY
Factory* factory = isolate->factory();
Handle<FixedArray> elements = factory->NewFixedArray(entry_count);
int index = 0;
bool inline_runtime_functions = false;
#define ADD_ENTRY(Name, argc, ressize) \
{ \
HandleScope inner(isolate); \
Handle<String> name; \
/* Inline runtime functions have an underscore in front of the name. */ \
if (inline_runtime_functions) { \
name = factory->NewStringFromAscii( \
Vector<const char>("_" #Name, StrLength("_" #Name))); \
} else { \
name = factory->NewStringFromAscii( \
Vector<const char>(#Name, StrLength(#Name))); \
} \
Handle<FixedArray> pair_elements = factory->NewFixedArray(2); \
pair_elements->set(0, *name); \
pair_elements->set(1, Smi::FromInt(argc)); \
Handle<JSArray> pair = factory->NewJSArrayWithElements(pair_elements); \
elements->set(index++, *pair); \
}
inline_runtime_functions = false;
RUNTIME_FUNCTION_LIST(ADD_ENTRY)
inline_runtime_functions = true;
INLINE_FUNCTION_LIST(ADD_ENTRY)
INLINE_RUNTIME_FUNCTION_LIST(ADD_ENTRY)
#undef ADD_ENTRY
ASSERT_EQ(index, entry_count);
Handle<JSArray> result = factory->NewJSArrayWithElements(elements);
return *result;
}
#endif
RUNTIME_FUNCTION(MaybeObject*, Runtime_Log) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(String, format, 0);
CONVERT_ARG_CHECKED(JSArray, elms, 1);
DisallowHeapAllocation no_gc;
String::FlatContent format_content = format->GetFlatContent();
RUNTIME_ASSERT(format_content.IsAscii());
Vector<const uint8_t> chars = format_content.ToOneByteVector();
isolate->logger()->LogRuntime(Vector<const char>::cast(chars), elms);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_IS_VAR) {
UNREACHABLE(); // implemented as macro in the parser
return NULL;
}
#define ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(Name) \
RUNTIME_FUNCTION(MaybeObject*, Runtime_Has##Name) { \
CONVERT_ARG_CHECKED(JSObject, obj, 0); \
return isolate->heap()->ToBoolean(obj->Has##Name()); \
}
ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastSmiElements)
ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastObjectElements)
ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastSmiOrObjectElements)
ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastDoubleElements)
ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastHoleyElements)
ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(DictionaryElements)
ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(NonStrictArgumentsElements)
ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalPixelElements)
ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalArrayElements)
ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalByteElements)
ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalUnsignedByteElements)
ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalShortElements)
ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalUnsignedShortElements)
ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalIntElements)
ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalUnsignedIntElements)
ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalFloatElements)
ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalDoubleElements)
// Properties test sitting with elements tests - not fooling anyone.
ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastProperties)
#undef ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION
RUNTIME_FUNCTION(MaybeObject*, Runtime_HaveSameMap) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSObject, obj1, 0);
CONVERT_ARG_CHECKED(JSObject, obj2, 1);
return isolate->heap()->ToBoolean(obj1->map() == obj2->map());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_IsObserved) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
if (!args[0]->IsJSReceiver()) return isolate->heap()->false_value();
JSReceiver* obj = JSReceiver::cast(args[0]);
if (obj->IsJSGlobalProxy()) {
Object* proto = obj->GetPrototype();
if (proto->IsNull()) return isolate->heap()->false_value();
ASSERT(proto->IsJSGlobalObject());
obj = JSReceiver::cast(proto);
}
return isolate->heap()->ToBoolean(obj->map()->is_observed());
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_SetIsObserved) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSReceiver, obj, 0);
CONVERT_BOOLEAN_ARG_CHECKED(is_observed, 1);
if (obj->IsJSGlobalProxy()) {
Object* proto = obj->GetPrototype();
if (proto->IsNull()) return isolate->heap()->undefined_value();
ASSERT(proto->IsJSGlobalObject());
obj = JSReceiver::cast(proto);
}
ASSERT(!(obj->map()->is_observed() && obj->IsJSObject() &&
JSObject::cast(obj)->HasFastElements()));
if (obj->map()->is_observed() != is_observed) {
if (is_observed && obj->IsJSObject() &&
!JSObject::cast(obj)->HasExternalArrayElements()) {
// Go to dictionary mode, so that we don't skip map checks.
MaybeObject* maybe = JSObject::cast(obj)->NormalizeElements();
if (maybe->IsFailure()) return maybe;
ASSERT(!JSObject::cast(obj)->HasFastElements());
}
MaybeObject* maybe = obj->map()->Copy();
Map* map;
if (!maybe->To(&map)) return maybe;
map->set_is_observed(is_observed);
obj->set_map(map);
}
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_SetObserverDeliveryPending) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 0);
isolate->set_observer_delivery_pending(true);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_GetObservationState) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 0);
return isolate->heap()->observation_state();
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_ObservationWeakMapCreate) {
HandleScope scope(isolate);
ASSERT(args.length() == 0);
// TODO(adamk): Currently this runtime function is only called three times per
// isolate. If it's called more often, the map should be moved into the
// strong root list.
Handle<Map> map =
isolate->factory()->NewMap(JS_WEAK_MAP_TYPE, JSWeakMap::kSize);
Handle<JSWeakMap> weakmap =
Handle<JSWeakMap>::cast(isolate->factory()->NewJSObjectFromMap(map));
return WeakMapInitialize(isolate, weakmap);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_UnwrapGlobalProxy) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
Object* object = args[0];
if (object->IsJSGlobalProxy()) {
object = object->GetPrototype(isolate);
if (object->IsNull()) return isolate->heap()->undefined_value();
}
return object;
}
static MaybeObject* ArrayConstructorCommon(Isolate* isolate,
Handle<JSFunction> constructor,
Handle<Object> type_info,
Arguments* caller_args) {
bool holey = false;
bool can_use_type_feedback = true;
if (caller_args->length() == 1) {
Object* argument_one = (*caller_args)[0];
if (argument_one->IsSmi()) {
int value = Smi::cast(argument_one)->value();
if (value < 0 || value >= JSObject::kInitialMaxFastElementArray) {
// the array is a dictionary in this case.
can_use_type_feedback = false;
} else if (value != 0) {
holey = true;
}
} else {
// Non-smi length argument produces a dictionary
can_use_type_feedback = false;
}
}
JSArray* array;
MaybeObject* maybe_array;
if (!type_info.is_null() &&
*type_info != isolate->heap()->undefined_value() &&
Cell::cast(*type_info)->value()->IsAllocationSite() &&
can_use_type_feedback) {
Handle<Cell> cell = Handle<Cell>::cast(type_info);
Handle<AllocationSite> site = Handle<AllocationSite>(
AllocationSite::cast(cell->value()), isolate);
ASSERT(!site->IsLiteralSite());
ElementsKind to_kind = site->GetElementsKind();
if (holey && !IsFastHoleyElementsKind(to_kind)) {
to_kind = GetHoleyElementsKind(to_kind);
// Update the allocation site info to reflect the advice alteration.
site->SetElementsKind(to_kind);
}
maybe_array = isolate->heap()->AllocateJSObjectWithAllocationSite(
*constructor, site);
if (!maybe_array->To(&array)) return maybe_array;
} else {
maybe_array = isolate->heap()->AllocateJSObject(*constructor);
if (!maybe_array->To(&array)) return maybe_array;
// We might need to transition to holey
ElementsKind kind = constructor->initial_map()->elements_kind();
if (holey && !IsFastHoleyElementsKind(kind)) {
kind = GetHoleyElementsKind(kind);
maybe_array = array->TransitionElementsKind(kind);
if (maybe_array->IsFailure()) return maybe_array;
}
}
maybe_array = isolate->heap()->AllocateJSArrayStorage(array, 0, 0,
DONT_INITIALIZE_ARRAY_ELEMENTS);
if (maybe_array->IsFailure()) return maybe_array;
maybe_array = ArrayConstructInitializeElements(array, caller_args);
if (maybe_array->IsFailure()) return maybe_array;
return array;
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_ArrayConstructor) {
HandleScope scope(isolate);
// If we get 2 arguments then they are the stub parameters (constructor, type
// info). If we get 3, then the first one is a pointer to the arguments
// passed by the caller.
Arguments empty_args(0, NULL);
bool no_caller_args = args.length() == 2;
ASSERT(no_caller_args || args.length() == 3);
int parameters_start = no_caller_args ? 0 : 1;
Arguments* caller_args = no_caller_args
? &empty_args
: reinterpret_cast<Arguments*>(args[0]);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start);
CONVERT_ARG_HANDLE_CHECKED(Object, type_info, parameters_start + 1);
return ArrayConstructorCommon(isolate,
constructor,
type_info,
caller_args);
}
RUNTIME_FUNCTION(MaybeObject*, Runtime_InternalArrayConstructor) {
HandleScope scope(isolate);
Arguments empty_args(0, NULL);
bool no_caller_args = args.length() == 1;
ASSERT(no_caller_args || args.length() == 2);
int parameters_start = no_caller_args ? 0 : 1;
Arguments* caller_args = no_caller_args
? &empty_args
: reinterpret_cast<Arguments*>(args[0]);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start);
return ArrayConstructorCommon(isolate,
constructor,
Handle<Object>::null(),
caller_args);
}
// ----------------------------------------------------------------------------
// Implementation of Runtime
#define F(name, number_of_args, result_size) \
{ Runtime::k##name, Runtime::RUNTIME, #name, \
FUNCTION_ADDR(Runtime_##name), number_of_args, result_size },
#define I(name, number_of_args, result_size) \
{ Runtime::kInline##name, Runtime::INLINE, \
"_" #name, NULL, number_of_args, result_size },
static const Runtime::Function kIntrinsicFunctions[] = {
RUNTIME_FUNCTION_LIST(F)
INLINE_FUNCTION_LIST(I)
INLINE_RUNTIME_FUNCTION_LIST(I)
};
MaybeObject* Runtime::InitializeIntrinsicFunctionNames(Heap* heap,
Object* dictionary) {
ASSERT(Isolate::Current()->heap() == heap);
ASSERT(dictionary != NULL);
ASSERT(NameDictionary::cast(dictionary)->NumberOfElements() == 0);
for (int i = 0; i < kNumFunctions; ++i) {
Object* name_string;
{ MaybeObject* maybe_name_string =
heap->InternalizeUtf8String(kIntrinsicFunctions[i].name);
if (!maybe_name_string->ToObject(&name_string)) return maybe_name_string;
}
NameDictionary* name_dictionary = NameDictionary::cast(dictionary);
{ MaybeObject* maybe_dictionary = name_dictionary->Add(
String::cast(name_string),
Smi::FromInt(i),
PropertyDetails(NONE, NORMAL, Representation::None()));
if (!maybe_dictionary->ToObject(&dictionary)) {
// Non-recoverable failure. Calling code must restart heap
// initialization.
return maybe_dictionary;
}
}
}
return dictionary;
}
const Runtime::Function* Runtime::FunctionForName(Handle<String> name) {
Heap* heap = name->GetHeap();
int entry = heap->intrinsic_function_names()->FindEntry(*name);
if (entry != kNotFound) {
Object* smi_index = heap->intrinsic_function_names()->ValueAt(entry);
int function_index = Smi::cast(smi_index)->value();
return &(kIntrinsicFunctions[function_index]);
}
return NULL;
}
const Runtime::Function* Runtime::FunctionForId(Runtime::FunctionId id) {
return &(kIntrinsicFunctions[static_cast<int>(id)]);
}
void Runtime::PerformGC(Object* result) {
Isolate* isolate = Isolate::Current();
Failure* failure = Failure::cast(result);
if (failure->IsRetryAfterGC()) {
if (isolate->heap()->new_space()->AddFreshPage()) {
return;
}
// Try to do a garbage collection; ignore it if it fails. The C
// entry stub will throw an out-of-memory exception in that case.
isolate->heap()->CollectGarbage(failure->allocation_space(),
"Runtime::PerformGC");
} else {
// Handle last resort GC and make sure to allow future allocations
// to grow the heap without causing GCs (if possible).
isolate->counters()->gc_last_resort_from_js()->Increment();
isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags,
"Runtime::PerformGC");
}
}
} } // namespace v8::internal