v8/test/cctest/test-assembler-ppc.cc
Maciej Goszczycki 9d7b0f1c5f [cleanup] Switch to CodeBuilder everywhere
Switch all uses of NewCode and TryNewCode to CodeBuilder and remove these
methods.

NewCode and TryNewCode use a large number of default parameters, which makes
it difficult to use and add any new ones. Large chunks of code were also
duplicated across TryNewCode and NewCode. The previous CL
(https://chromium-review.googlesource.com/c/v8/v8/+/1585736) added a new
CodeBuilder class which allows much simpler building of Code objects.

Bug: v8:9183
Change-Id: I9f6884f35a3284cbd40746376f0f27e36f9051b5
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1585737
Commit-Queue: Maciej Goszczycki <goszczycki@google.com>
Reviewed-by: Jakob Gruber <jgruber@chromium.org>
Reviewed-by: Hannes Payer <hpayer@chromium.org>
Reviewed-by: Michael Starzinger <mstarzinger@chromium.org>
Reviewed-by: Dan Elphick <delphick@chromium.org>
Cr-Commit-Position: refs/heads/master@{#61096}
2019-04-29 16:48:39 +00:00

1041 lines
27 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/v8.h"
#include "src/disassembler.h"
#include "src/heap/factory.h"
#include "src/ppc/assembler-ppc-inl.h"
#include "src/simulator.h"
#include "test/cctest/cctest.h"
#include "test/common/assembler-tester.h"
namespace v8 {
namespace internal {
// TODO(ppc): Refine these signatures per test case, they can have arbitrary
// return and argument types and arbitrary number of arguments.
using F_iiiii = void*(int x, int p1, int p2, int p3, int p4);
using F_piiii = void*(void* p0, int p1, int p2, int p3, int p4);
using F_ppiii = void*(void* p0, void* p1, int p2, int p3, int p4);
using F_pppii = void*(void* p0, void* p1, void* p2, int p3, int p4);
using F_ippii = void*(int p0, void* p1, void* p2, int p3, int p4);
#define __ assm.
// Simple add parameter 1 to parameter 2 and return
TEST(0) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
__ add(r3, r3, r4);
__ blr();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
code->Print();
#endif
auto f = GeneratedCode<F_iiiii>::FromCode(*code);
intptr_t res = reinterpret_cast<intptr_t>(f.Call(3, 4, 0, 0, 0));
::printf("f() = %" V8PRIdPTR "\n", res);
CHECK_EQ(7, static_cast<int>(res));
}
// Loop 100 times, adding loop counter to result
TEST(1) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
Label L, C;
__ mr(r4, r3);
__ li(r3, Operand::Zero());
__ b(&C);
__ bind(&L);
__ add(r3, r3, r4);
__ subi(r4, r4, Operand(1));
__ bind(&C);
__ cmpi(r4, Operand::Zero());
__ bne(&L);
__ blr();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
code->Print();
#endif
auto f = GeneratedCode<F_iiiii>::FromCode(*code);
intptr_t res = reinterpret_cast<intptr_t>(f.Call(100, 0, 0, 0, 0));
::printf("f() = %" V8PRIdPTR "\n", res);
CHECK_EQ(5050, static_cast<int>(res));
}
TEST(2) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
Label L, C;
__ mr(r4, r3);
__ li(r3, Operand(1));
__ b(&C);
__ bind(&L);
#if defined(V8_TARGET_ARCH_PPC64)
__ mulld(r3, r4, r3);
#else
__ mullw(r3, r4, r3);
#endif
__ subi(r4, r4, Operand(1));
__ bind(&C);
__ cmpi(r4, Operand::Zero());
__ bne(&L);
__ blr();
// some relocated stuff here, not executed
__ RecordComment("dead code, just testing relocations");
__ mov(r0, Operand(isolate->factory()->true_value()));
__ RecordComment("dead code, just testing immediate operands");
__ mov(r0, Operand(-1));
__ mov(r0, Operand(0xFF000000));
__ mov(r0, Operand(0xF0F0F0F0));
__ mov(r0, Operand(0xFFF0FFFF));
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
code->Print();
#endif
auto f = GeneratedCode<F_iiiii>::FromCode(*code);
intptr_t res = reinterpret_cast<intptr_t>(f.Call(10, 0, 0, 0, 0));
::printf("f() = %" V8PRIdPTR "\n", res);
CHECK_EQ(3628800, static_cast<int>(res));
}
TEST(3) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int i;
char c;
int16_t s;
} T;
T t;
Assembler assm(AssemblerOptions{});
// build a frame
#if V8_TARGET_ARCH_PPC64
__ stdu(sp, MemOperand(sp, -32));
__ std(fp, MemOperand(sp, 24));
#else
__ stwu(sp, MemOperand(sp, -16));
__ stw(fp, MemOperand(sp, 12));
#endif
__ mr(fp, sp);
// r4 points to our struct
__ mr(r4, r3);
// modify field int i of struct
__ lwz(r3, MemOperand(r4, offsetof(T, i)));
__ srwi(r5, r3, Operand(1));
__ stw(r5, MemOperand(r4, offsetof(T, i)));
// modify field char c of struct
__ lbz(r5, MemOperand(r4, offsetof(T, c)));
__ add(r3, r5, r3);
__ slwi(r5, r5, Operand(2));
__ stb(r5, MemOperand(r4, offsetof(T, c)));
// modify field int16_t s of struct
__ lhz(r5, MemOperand(r4, offsetof(T, s)));
__ add(r3, r5, r3);
__ srwi(r5, r5, Operand(3));
__ sth(r5, MemOperand(r4, offsetof(T, s)));
// restore frame
#if V8_TARGET_ARCH_PPC64
__ addi(r11, fp, Operand(32));
__ ld(fp, MemOperand(r11, -8));
#else
__ addi(r11, fp, Operand(16));
__ lwz(fp, MemOperand(r11, -4));
#endif
__ mr(sp, r11);
__ blr();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
code->Print();
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
t.i = 100000;
t.c = 10;
t.s = 1000;
intptr_t res = reinterpret_cast<intptr_t>(f.Call(&t, 0, 0, 0, 0));
::printf("f() = %" V8PRIdPTR "\n", res);
CHECK_EQ(101010, static_cast<int>(res));
CHECK_EQ(100000 / 2, t.i);
CHECK_EQ(10 * 4, t.c);
CHECK_EQ(1000 / 8, t.s);
}
#if 0
TEST(4) {
// Test the VFP floating point instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
double c;
double d;
double e;
double f;
double g;
double h;
int i;
double m;
double n;
float x;
float y;
} T;
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the doubles and floats.
Assembler assm(AssemblerOptions{});
Label L, C;
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
__ mov(ip, Operand(sp));
__ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
__ sub(fp, ip, Operand(4));
__ mov(r4, Operand(r0));
__ vldr(d6, r4, offsetof(T, a));
__ vldr(d7, r4, offsetof(T, b));
__ vadd(d5, d6, d7);
__ vstr(d5, r4, offsetof(T, c));
__ vmov(r2, r3, d5);
__ vmov(d4, r2, r3);
__ vstr(d4, r4, offsetof(T, b));
// Load t.x and t.y, switch values, and store back to the struct.
__ vldr(s0, r4, offsetof(T, x));
__ vldr(s31, r4, offsetof(T, y));
__ vmov(s16, s0);
__ vmov(s0, s31);
__ vmov(s31, s16);
__ vstr(s0, r4, offsetof(T, x));
__ vstr(s31, r4, offsetof(T, y));
// Move a literal into a register that can be encoded in the instruction.
__ vmov(d4, 1.0);
__ vstr(d4, r4, offsetof(T, e));
// Move a literal into a register that requires 64 bits to encode.
// 0x3FF0000010000000 = 1.000000059604644775390625
__ vmov(d4, 1.000000059604644775390625);
__ vstr(d4, r4, offsetof(T, d));
// Convert from floating point to integer.
__ vmov(d4, 2.0);
__ vcvt_s32_f64(s31, d4);
__ vstr(s31, r4, offsetof(T, i));
// Convert from integer to floating point.
__ mov(lr, Operand(42));
__ vmov(s31, lr);
__ vcvt_f64_s32(d4, s31);
__ vstr(d4, r4, offsetof(T, f));
// Test vabs.
__ vldr(d1, r4, offsetof(T, g));
__ vabs(d0, d1);
__ vstr(d0, r4, offsetof(T, g));
__ vldr(d2, r4, offsetof(T, h));
__ vabs(d0, d2);
__ vstr(d0, r4, offsetof(T, h));
// Test vneg.
__ vldr(d1, r4, offsetof(T, m));
__ vneg(d0, d1);
__ vstr(d0, r4, offsetof(T, m));
__ vldr(d1, r4, offsetof(T, n));
__ vneg(d0, d1);
__ vstr(d0, r4, offsetof(T, n));
__ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
CodeDesc desc;
assm.GetCode(isolate, &desc);
Object code = isolate->heap()->CreateCode(
desc,
Code::STUB,
Handle<Code>())->ToObjectChecked();
CHECK(code->IsCode());
#ifdef DEBUG
Code::cast(code)->Print();
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
t.a = 1.5;
t.b = 2.75;
t.c = 17.17;
t.d = 0.0;
t.e = 0.0;
t.f = 0.0;
t.g = -2718.2818;
t.h = 31415926.5;
t.i = 0;
t.m = -2718.2818;
t.n = 123.456;
t.x = 4.5;
t.y = 9.0;
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(4.5, t.y);
CHECK_EQ(9.0, t.x);
CHECK_EQ(-123.456, t.n);
CHECK_EQ(2718.2818, t.m);
CHECK_EQ(2, t.i);
CHECK_EQ(2718.2818, t.g);
CHECK_EQ(31415926.5, t.h);
CHECK_EQ(42.0, t.f);
CHECK_EQ(1.0, t.e);
CHECK_EQ(1.000000059604644775390625, t.d);
CHECK_EQ(4.25, t.c);
CHECK_EQ(4.25, t.b);
CHECK_EQ(1.5, t.a);
}
}
TEST(5) {
// Test the ARMv7 bitfield instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
if (CpuFeatures::IsSupported(ARMv7)) {
CpuFeatures::Scope scope(ARMv7);
// On entry, r0 = 0xAAAAAAAA = 0b10..10101010.
__ ubfx(r0, r0, 1, 12); // 0b00..010101010101 = 0x555
__ sbfx(r0, r0, 0, 5); // 0b11..111111110101 = -11
__ bfc(r0, 1, 3); // 0b11..111111110001 = -15
__ mov(r1, Operand(7));
__ bfi(r0, r1, 3, 3); // 0b11..111111111001 = -7
__ mov(pc, Operand(lr));
CodeDesc desc;
assm.GetCode(isolate, &desc);
Object code = isolate->heap()->CreateCode(
desc,
Code::STUB,
Handle<Code>())->ToObjectChecked();
CHECK(code->IsCode());
#ifdef DEBUG
Code::cast(code)->Print();
#endif
auto f = GeneratedCode<F_iiiii>::FromCode(*code);
int res = reinterpret_cast<int>(f.Call(0xAAAAAAAA, 0, 0, 0, 0));
::printf("f() = %d\n", res);
CHECK_EQ(-7, res);
}
}
TEST(6) {
// Test saturating instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
if (CpuFeatures::IsSupported(ARMv7)) {
CpuFeatures::Scope scope(ARMv7);
__ usat(r1, 8, Operand(r0)); // Sat 0xFFFF to 0-255 = 0xFF.
__ usat(r2, 12, Operand(r0, ASR, 9)); // Sat (0xFFFF>>9) to 0-4095 = 0x7F.
__ usat(r3, 1, Operand(r0, LSL, 16)); // Sat (0xFFFF<<16) to 0-1 = 0x0.
__ addi(r0, r1, Operand(r2));
__ addi(r0, r0, Operand(r3));
__ mov(pc, Operand(lr));
CodeDesc desc;
assm.GetCode(isolate, &desc);
Object code = isolate->heap()->CreateCode(
desc,
Code::STUB,
Handle<Code>())->ToObjectChecked();
CHECK(code->IsCode());
#ifdef DEBUG
Code::cast(code)->Print();
#endif
auto f = GeneratedCode<F_iiiii>::FromCode(*code);
int res = reinterpret_cast<int>(f.Call(0xFFFF, 0, 0, 0, 0));
::printf("f() = %d\n", res);
CHECK_EQ(382, res);
}
}
enum VCVTTypes {
s32_f64,
u32_f64
};
static void TestRoundingMode(VCVTTypes types,
VFPRoundingMode mode,
double value,
int expected,
bool expected_exception = false) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
Label wrong_exception;
__ vmrs(r1);
// Set custom FPSCR.
__ bic(r2, r1, Operand(kVFPRoundingModeMask | kVFPExceptionMask));
__ orr(r2, r2, Operand(mode));
__ vmsr(r2);
// Load value, convert, and move back result to r0 if everything went well.
__ vmov(d1, value);
switch (types) {
case s32_f64:
__ vcvt_s32_f64(s0, d1, kFPSCRRounding);
break;
case u32_f64:
__ vcvt_u32_f64(s0, d1, kFPSCRRounding);
break;
default:
UNREACHABLE();
break;
}
// Check for vfp exceptions
__ vmrs(r2);
__ tst(r2, Operand(kVFPExceptionMask));
// Check that we behaved as expected.
__ b(&wrong_exception,
expected_exception ? eq : ne);
// There was no exception. Retrieve the result and return.
__ vmov(r0, s0);
__ mov(pc, Operand(lr));
// The exception behaviour is not what we expected.
// Load a special value and return.
__ bind(&wrong_exception);
__ mov(r0, Operand(11223344));
__ mov(pc, Operand(lr));
CodeDesc desc;
assm.GetCode(isolate, &desc);
Object code = isolate->heap()->CreateCode(
desc,
Code::STUB,
Handle<Code>())->ToObjectChecked();
CHECK(code->IsCode());
#ifdef DEBUG
Code::cast(code)->Print();
#endif
auto f = GeneratedCode<F_iiiii>::FromCode(*code);
int res = reinterpret_cast<int>(f.Call(0, 0, 0, 0, 0));
::printf("res = %d\n", res);
CHECK_EQ(expected, res);
}
}
TEST(7) {
// Test vfp rounding modes.
// s32_f64 (double to integer).
TestRoundingMode(s32_f64, RN, 0, 0);
TestRoundingMode(s32_f64, RN, 0.5, 0);
TestRoundingMode(s32_f64, RN, -0.5, 0);
TestRoundingMode(s32_f64, RN, 1.5, 2);
TestRoundingMode(s32_f64, RN, -1.5, -2);
TestRoundingMode(s32_f64, RN, 123.7, 124);
TestRoundingMode(s32_f64, RN, -123.7, -124);
TestRoundingMode(s32_f64, RN, 123456.2, 123456);
TestRoundingMode(s32_f64, RN, -123456.2, -123456);
TestRoundingMode(s32_f64, RN, static_cast<double>(kMaxInt), kMaxInt);
TestRoundingMode(s32_f64, RN, (kMaxInt + 0.49), kMaxInt);
TestRoundingMode(s32_f64, RN, (kMaxInt + 1.0), kMaxInt, true);
TestRoundingMode(s32_f64, RN, (kMaxInt + 0.5), kMaxInt, true);
TestRoundingMode(s32_f64, RN, static_cast<double>(kMinInt), kMinInt);
TestRoundingMode(s32_f64, RN, (kMinInt - 0.5), kMinInt);
TestRoundingMode(s32_f64, RN, (kMinInt - 1.0), kMinInt, true);
TestRoundingMode(s32_f64, RN, (kMinInt - 0.51), kMinInt, true);
TestRoundingMode(s32_f64, RM, 0, 0);
TestRoundingMode(s32_f64, RM, 0.5, 0);
TestRoundingMode(s32_f64, RM, -0.5, -1);
TestRoundingMode(s32_f64, RM, 123.7, 123);
TestRoundingMode(s32_f64, RM, -123.7, -124);
TestRoundingMode(s32_f64, RM, 123456.2, 123456);
TestRoundingMode(s32_f64, RM, -123456.2, -123457);
TestRoundingMode(s32_f64, RM, static_cast<double>(kMaxInt), kMaxInt);
TestRoundingMode(s32_f64, RM, (kMaxInt + 0.5), kMaxInt);
TestRoundingMode(s32_f64, RM, (kMaxInt + 1.0), kMaxInt, true);
TestRoundingMode(s32_f64, RM, static_cast<double>(kMinInt), kMinInt);
TestRoundingMode(s32_f64, RM, (kMinInt - 0.5), kMinInt, true);
TestRoundingMode(s32_f64, RM, (kMinInt + 0.5), kMinInt);
TestRoundingMode(s32_f64, RZ, 0, 0);
TestRoundingMode(s32_f64, RZ, 0.5, 0);
TestRoundingMode(s32_f64, RZ, -0.5, 0);
TestRoundingMode(s32_f64, RZ, 123.7, 123);
TestRoundingMode(s32_f64, RZ, -123.7, -123);
TestRoundingMode(s32_f64, RZ, 123456.2, 123456);
TestRoundingMode(s32_f64, RZ, -123456.2, -123456);
TestRoundingMode(s32_f64, RZ, static_cast<double>(kMaxInt), kMaxInt);
TestRoundingMode(s32_f64, RZ, (kMaxInt + 0.5), kMaxInt);
TestRoundingMode(s32_f64, RZ, (kMaxInt + 1.0), kMaxInt, true);
TestRoundingMode(s32_f64, RZ, static_cast<double>(kMinInt), kMinInt);
TestRoundingMode(s32_f64, RZ, (kMinInt - 0.5), kMinInt);
TestRoundingMode(s32_f64, RZ, (kMinInt - 1.0), kMinInt, true);
// u32_f64 (double to integer).
// Negative values.
TestRoundingMode(u32_f64, RN, -0.5, 0);
TestRoundingMode(u32_f64, RN, -123456.7, 0, true);
TestRoundingMode(u32_f64, RN, static_cast<double>(kMinInt), 0, true);
TestRoundingMode(u32_f64, RN, kMinInt - 1.0, 0, true);
TestRoundingMode(u32_f64, RM, -0.5, 0, true);
TestRoundingMode(u32_f64, RM, -123456.7, 0, true);
TestRoundingMode(u32_f64, RM, static_cast<double>(kMinInt), 0, true);
TestRoundingMode(u32_f64, RM, kMinInt - 1.0, 0, true);
TestRoundingMode(u32_f64, RZ, -0.5, 0);
TestRoundingMode(u32_f64, RZ, -123456.7, 0, true);
TestRoundingMode(u32_f64, RZ, static_cast<double>(kMinInt), 0, true);
TestRoundingMode(u32_f64, RZ, kMinInt - 1.0, 0, true);
// Positive values.
// kMaxInt is the maximum *signed* integer: 0x7FFFFFFF.
static const uint32_t kMaxUInt = 0xFFFFFFFFu;
TestRoundingMode(u32_f64, RZ, 0, 0);
TestRoundingMode(u32_f64, RZ, 0.5, 0);
TestRoundingMode(u32_f64, RZ, 123.7, 123);
TestRoundingMode(u32_f64, RZ, 123456.2, 123456);
TestRoundingMode(u32_f64, RZ, static_cast<double>(kMaxInt), kMaxInt);
TestRoundingMode(u32_f64, RZ, (kMaxInt + 0.5), kMaxInt);
TestRoundingMode(u32_f64, RZ, (kMaxInt + 1.0),
static_cast<uint32_t>(kMaxInt) + 1);
TestRoundingMode(u32_f64, RZ, (kMaxUInt + 0.5), kMaxUInt);
TestRoundingMode(u32_f64, RZ, (kMaxUInt + 1.0), kMaxUInt, true);
TestRoundingMode(u32_f64, RM, 0, 0);
TestRoundingMode(u32_f64, RM, 0.5, 0);
TestRoundingMode(u32_f64, RM, 123.7, 123);
TestRoundingMode(u32_f64, RM, 123456.2, 123456);
TestRoundingMode(u32_f64, RM, static_cast<double>(kMaxInt), kMaxInt);
TestRoundingMode(u32_f64, RM, (kMaxInt + 0.5), kMaxInt);
TestRoundingMode(u32_f64, RM, (kMaxInt + 1.0),
static_cast<uint32_t>(kMaxInt) + 1);
TestRoundingMode(u32_f64, RM, (kMaxUInt + 0.5), kMaxUInt);
TestRoundingMode(u32_f64, RM, (kMaxUInt + 1.0), kMaxUInt, true);
TestRoundingMode(u32_f64, RN, 0, 0);
TestRoundingMode(u32_f64, RN, 0.5, 0);
TestRoundingMode(u32_f64, RN, 1.5, 2);
TestRoundingMode(u32_f64, RN, 123.7, 124);
TestRoundingMode(u32_f64, RN, 123456.2, 123456);
TestRoundingMode(u32_f64, RN, static_cast<double>(kMaxInt), kMaxInt);
TestRoundingMode(u32_f64, RN, (kMaxInt + 0.49), kMaxInt);
TestRoundingMode(u32_f64, RN, (kMaxInt + 0.5),
static_cast<uint32_t>(kMaxInt) + 1);
TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.49), kMaxUInt);
TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.5), kMaxUInt, true);
TestRoundingMode(u32_f64, RN, (kMaxUInt + 1.0), kMaxUInt, true);
}
TEST(8) {
// Test VFP multi load/store with ia_w.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
double c;
double d;
double e;
double f;
double g;
double h;
} D;
D d;
typedef struct {
float a;
float b;
float c;
float d;
float e;
float f;
float g;
float h;
} F;
F f;
// Create a function that uses vldm/vstm to move some double and
// single precision values around in memory.
Assembler assm(AssemblerOptions{});
if (CpuFeatures::IsSupported(VFP2)) {
CpuFeatures::Scope scope(VFP2);
__ mov(ip, Operand(sp));
__ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
__ sub(fp, ip, Operand(4));
__ addi(r4, r0, Operand(offsetof(D, a)));
__ vldm(ia_w, r4, d0, d3);
__ vldm(ia_w, r4, d4, d7);
__ addi(r4, r0, Operand(offsetof(D, a)));
__ vstm(ia_w, r4, d6, d7);
__ vstm(ia_w, r4, d0, d5);
__ addi(r4, r1, Operand(offsetof(F, a)));
__ vldm(ia_w, r4, s0, s3);
__ vldm(ia_w, r4, s4, s7);
__ addi(r4, r1, Operand(offsetof(F, a)));
__ vstm(ia_w, r4, s6, s7);
__ vstm(ia_w, r4, s0, s5);
__ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
CodeDesc desc;
assm.GetCode(isolate, &desc);
Object code = isolate->heap()->CreateCode(
desc,
Code::STUB,
Handle<Code>())->ToObjectChecked();
CHECK(code->IsCode());
#ifdef DEBUG
Code::cast(code)->Print();
#endif
auto fn = GeneratedCode<F_ppiii>::FromCode(*code);
d.a = 1.1;
d.b = 2.2;
d.c = 3.3;
d.d = 4.4;
d.e = 5.5;
d.f = 6.6;
d.g = 7.7;
d.h = 8.8;
f.a = 1.0;
f.b = 2.0;
f.c = 3.0;
f.d = 4.0;
f.e = 5.0;
f.f = 6.0;
f.g = 7.0;
f.h = 8.0;
fn.Call(&d, &f, 0, 0, 0);
CHECK_EQ(7.7, d.a);
CHECK_EQ(8.8, d.b);
CHECK_EQ(1.1, d.c);
CHECK_EQ(2.2, d.d);
CHECK_EQ(3.3, d.e);
CHECK_EQ(4.4, d.f);
CHECK_EQ(5.5, d.g);
CHECK_EQ(6.6, d.h);
CHECK_EQ(7.0, f.a);
CHECK_EQ(8.0, f.b);
CHECK_EQ(1.0, f.c);
CHECK_EQ(2.0, f.d);
CHECK_EQ(3.0, f.e);
CHECK_EQ(4.0, f.f);
CHECK_EQ(5.0, f.g);
CHECK_EQ(6.0, f.h);
}
}
TEST(9) {
// Test VFP multi load/store with ia.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
double c;
double d;
double e;
double f;
double g;
double h;
} D;
D d;
typedef struct {
float a;
float b;
float c;
float d;
float e;
float f;
float g;
float h;
} F;
F f;
// Create a function that uses vldm/vstm to move some double and
// single precision values around in memory.
Assembler assm(AssemblerOptions{});
if (CpuFeatures::IsSupported(VFP2)) {
CpuFeatures::Scope scope(VFP2);
__ mov(ip, Operand(sp));
__ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
__ sub(fp, ip, Operand(4));
__ addi(r4, r0, Operand(offsetof(D, a)));
__ vldm(ia, r4, d0, d3);
__ addi(r4, r4, Operand(4 * 8));
__ vldm(ia, r4, d4, d7);
__ addi(r4, r0, Operand(offsetof(D, a)));
__ vstm(ia, r4, d6, d7);
__ addi(r4, r4, Operand(2 * 8));
__ vstm(ia, r4, d0, d5);
__ addi(r4, r1, Operand(offsetof(F, a)));
__ vldm(ia, r4, s0, s3);
__ addi(r4, r4, Operand(4 * 4));
__ vldm(ia, r4, s4, s7);
__ addi(r4, r1, Operand(offsetof(F, a)));
__ vstm(ia, r4, s6, s7);
__ addi(r4, r4, Operand(2 * 4));
__ vstm(ia, r4, s0, s5);
__ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
CodeDesc desc;
assm.GetCode(isolate, &desc);
Object code = isolate->heap()->CreateCode(
desc,
Code::STUB,
Handle<Code>())->ToObjectChecked();
CHECK(code->IsCode());
#ifdef DEBUG
Code::cast(code)->Print();
#endif
auto fn = GeneratedCode<F_ppiii>::FromCode(*code);
d.a = 1.1;
d.b = 2.2;
d.c = 3.3;
d.d = 4.4;
d.e = 5.5;
d.f = 6.6;
d.g = 7.7;
d.h = 8.8;
f.a = 1.0;
f.b = 2.0;
f.c = 3.0;
f.d = 4.0;
f.e = 5.0;
f.f = 6.0;
f.g = 7.0;
f.h = 8.0;
fn.Call(&d, &f, 0, 0, 0);
CHECK_EQ(7.7, d.a);
CHECK_EQ(8.8, d.b);
CHECK_EQ(1.1, d.c);
CHECK_EQ(2.2, d.d);
CHECK_EQ(3.3, d.e);
CHECK_EQ(4.4, d.f);
CHECK_EQ(5.5, d.g);
CHECK_EQ(6.6, d.h);
CHECK_EQ(7.0, f.a);
CHECK_EQ(8.0, f.b);
CHECK_EQ(1.0, f.c);
CHECK_EQ(2.0, f.d);
CHECK_EQ(3.0, f.e);
CHECK_EQ(4.0, f.f);
CHECK_EQ(5.0, f.g);
CHECK_EQ(6.0, f.h);
}
}
TEST(10) {
// Test VFP multi load/store with db_w.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
double c;
double d;
double e;
double f;
double g;
double h;
} D;
D d;
typedef struct {
float a;
float b;
float c;
float d;
float e;
float f;
float g;
float h;
} F;
F f;
// Create a function that uses vldm/vstm to move some double and
// single precision values around in memory.
Assembler assm(AssemblerOptions{});
if (CpuFeatures::IsSupported(VFP2)) {
CpuFeatures::Scope scope(VFP2);
__ mov(ip, Operand(sp));
__ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
__ sub(fp, ip, Operand(4));
__ addi(r4, r0, Operand(offsetof(D, h) + 8));
__ vldm(db_w, r4, d4, d7);
__ vldm(db_w, r4, d0, d3);
__ addi(r4, r0, Operand(offsetof(D, h) + 8));
__ vstm(db_w, r4, d0, d5);
__ vstm(db_w, r4, d6, d7);
__ addi(r4, r1, Operand(offsetof(F, h) + 4));
__ vldm(db_w, r4, s4, s7);
__ vldm(db_w, r4, s0, s3);
__ addi(r4, r1, Operand(offsetof(F, h) + 4));
__ vstm(db_w, r4, s0, s5);
__ vstm(db_w, r4, s6, s7);
__ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
CodeDesc desc;
assm.GetCode(isolate, &desc);
Object code = isolate->heap()->CreateCode(
desc,
Code::STUB,
Handle<Code>())->ToObjectChecked();
CHECK(code->IsCode());
#ifdef DEBUG
Code::cast(code)->Print();
#endif
auto fn = GeneratedCode<F_ppiii>::FromCode(*code);
d.a = 1.1;
d.b = 2.2;
d.c = 3.3;
d.d = 4.4;
d.e = 5.5;
d.f = 6.6;
d.g = 7.7;
d.h = 8.8;
f.a = 1.0;
f.b = 2.0;
f.c = 3.0;
f.d = 4.0;
f.e = 5.0;
f.f = 6.0;
f.g = 7.0;
f.h = 8.0;
fn.Call(&d, &f, 0, 0, 0);
CHECK_EQ(7.7, d.a);
CHECK_EQ(8.8, d.b);
CHECK_EQ(1.1, d.c);
CHECK_EQ(2.2, d.d);
CHECK_EQ(3.3, d.e);
CHECK_EQ(4.4, d.f);
CHECK_EQ(5.5, d.g);
CHECK_EQ(6.6, d.h);
CHECK_EQ(7.0, f.a);
CHECK_EQ(8.0, f.b);
CHECK_EQ(1.0, f.c);
CHECK_EQ(2.0, f.d);
CHECK_EQ(3.0, f.e);
CHECK_EQ(4.0, f.f);
CHECK_EQ(5.0, f.g);
CHECK_EQ(6.0, f.h);
}
}
TEST(11) {
// Test instructions using the carry flag.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int32_t a;
int32_t b;
int32_t c;
int32_t d;
} I;
I i;
i.a = 0xABCD0001;
i.b = 0xABCD0000;
Assembler assm(AssemblerOptions{});
// Test HeapObject untagging.
__ ldr(r1, MemOperand(r0, offsetof(I, a)));
__ mov(r1, Operand(r1, ASR, 1), SetCC);
__ adc(r1, r1, Operand(r1), LeaveCC, cs);
__ str(r1, MemOperand(r0, offsetof(I, a)));
__ ldr(r2, MemOperand(r0, offsetof(I, b)));
__ mov(r2, Operand(r2, ASR, 1), SetCC);
__ adc(r2, r2, Operand(r2), LeaveCC, cs);
__ str(r2, MemOperand(r0, offsetof(I, b)));
// Test corner cases.
__ mov(r1, Operand(0xFFFFFFFF));
__ mov(r2, Operand::Zero());
__ mov(r3, Operand(r1, ASR, 1), SetCC); // Set the carry.
__ adc(r3, r1, Operand(r2));
__ str(r3, MemOperand(r0, offsetof(I, c)));
__ mov(r1, Operand(0xFFFFFFFF));
__ mov(r2, Operand::Zero());
__ mov(r3, Operand(r2, ASR, 1), SetCC); // Unset the carry.
__ adc(r3, r1, Operand(r2));
__ str(r3, MemOperand(r0, offsetof(I, d)));
__ mov(pc, Operand(lr));
CodeDesc desc;
assm.GetCode(isolate, &desc);
Object code = isolate->heap()->CreateCode(
desc,
Code::STUB,
Handle<Code>())->ToObjectChecked();
CHECK(code->IsCode());
#ifdef DEBUG
Code::cast(code)->Print();
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
f.Call(&i, 0, 0, 0, 0);
CHECK_EQ(0xABCD0001, i.a);
CHECK_EQ(static_cast<int32_t>(0xABCD0000) >> 1, i.b);
CHECK_EQ(0x00000000, i.c);
CHECK_EQ(0xFFFFFFFF, i.d);
}
TEST(12) {
// Test chaining of label usages within instructions (issue 1644).
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
Label target;
__ b(eq, &target);
__ b(ne, &target);
__ bind(&target);
__ nop();
}
#endif
#undef __
} // namespace internal
} // namespace v8