v8/test/cctest/test-mark-compact.cc
bak@chromium.org 7dab62ee96 Changed allocation to allow large objects to be allocated in new space.
This avoids back-to-back mark-sweep collections.

Review URL: http://codereview.chromium.org/136001

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@2219 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2009-06-18 14:06:36 +00:00

316 lines
9.9 KiB
C++

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "v8.h"
#include "global-handles.h"
#include "snapshot.h"
#include "top.h"
#include "cctest.h"
using namespace v8::internal;
static v8::Persistent<v8::Context> env;
static void InitializeVM() {
if (env.IsEmpty()) env = v8::Context::New();
v8::HandleScope scope;
env->Enter();
}
TEST(MarkingStack) {
int mem_size = 20 * kPointerSize;
byte* mem = NewArray<byte>(20*kPointerSize);
Address low = reinterpret_cast<Address>(mem);
Address high = low + mem_size;
MarkingStack s;
s.Initialize(low, high);
Address address = NULL;
while (!s.is_full()) {
s.Push(HeapObject::FromAddress(address));
address += kPointerSize;
}
while (!s.is_empty()) {
Address value = s.Pop()->address();
address -= kPointerSize;
CHECK_EQ(address, value);
}
CHECK_EQ(NULL, address);
DeleteArray(mem);
}
TEST(Promotion) {
// Test the situation that some objects in new space are promoted to the
// old space
if (Snapshot::IsEnabled()) return;
// Ensure that we get a compacting collection so that objects are promoted
// from new space.
FLAG_gc_global = true;
FLAG_always_compact = true;
Heap::ConfigureHeap(2*256*KB, 4*MB);
InitializeVM();
v8::HandleScope sc;
// Allocate a fixed array in the new space.
int array_size = (Heap::MaxObjectSizeInPagedSpace() - Array::kHeaderSize) /
(kPointerSize * 4);
Object* obj = Heap::AllocateFixedArray(array_size);
CHECK(!obj->IsFailure());
Handle<FixedArray> array(FixedArray::cast(obj));
// Array should be in the new space.
CHECK(Heap::InSpace(*array, NEW_SPACE));
// Call the m-c collector, so array becomes an old object.
CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE));
// Array now sits in the old space
CHECK(Heap::InSpace(*array, OLD_POINTER_SPACE));
}
TEST(NoPromotion) {
if (Snapshot::IsEnabled()) return;
Heap::ConfigureHeap(2*256*KB, 4*MB);
// Test the situation that some objects in new space are promoted to
// the old space
InitializeVM();
v8::HandleScope sc;
// Do a mark compact GC to shrink the heap.
CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE));
// Allocate a big Fixed array in the new space.
int size = (Heap::MaxObjectSizeInPagedSpace() - Array::kHeaderSize) /
kPointerSize;
Object* obj = Heap::AllocateFixedArray(size);
Handle<FixedArray> array(FixedArray::cast(obj));
// Array still stays in the new space.
CHECK(Heap::InSpace(*array, NEW_SPACE));
// Allocate objects in the old space until out of memory.
FixedArray* host = *array;
while (true) {
Object* obj = Heap::AllocateFixedArray(100, TENURED);
if (obj->IsFailure()) break;
host->set(0, obj);
host = FixedArray::cast(obj);
}
// Call mark compact GC, and it should pass.
CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE));
// array should not be promoted because the old space is full.
CHECK(Heap::InSpace(*array, NEW_SPACE));
}
TEST(MarkCompactCollector) {
InitializeVM();
v8::HandleScope sc;
// call mark-compact when heap is empty
CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE));
// keep allocating garbage in new space until it fails
const int ARRAY_SIZE = 100;
Object* array;
do {
array = Heap::AllocateFixedArray(ARRAY_SIZE);
} while (!array->IsFailure());
CHECK(Heap::CollectGarbage(0, NEW_SPACE));
array = Heap::AllocateFixedArray(ARRAY_SIZE);
CHECK(!array->IsFailure());
// keep allocating maps until it fails
Object* mapp;
do {
mapp = Heap::AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
} while (!mapp->IsFailure());
CHECK(Heap::CollectGarbage(0, MAP_SPACE));
mapp = Heap::AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
CHECK(!mapp->IsFailure());
// allocate a garbage
String* func_name = String::cast(Heap::LookupAsciiSymbol("theFunction"));
SharedFunctionInfo* function_share =
SharedFunctionInfo::cast(Heap::AllocateSharedFunctionInfo(func_name));
JSFunction* function =
JSFunction::cast(Heap::AllocateFunction(*Top::function_map(),
function_share,
Heap::undefined_value()));
Map* initial_map =
Map::cast(Heap::AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize));
function->set_initial_map(initial_map);
Top::context()->global()->SetProperty(func_name, function, NONE);
JSObject* obj = JSObject::cast(Heap::AllocateJSObject(function));
CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE));
func_name = String::cast(Heap::LookupAsciiSymbol("theFunction"));
CHECK(Top::context()->global()->HasLocalProperty(func_name));
Object* func_value = Top::context()->global()->GetProperty(func_name);
CHECK(func_value->IsJSFunction());
function = JSFunction::cast(func_value);
obj = JSObject::cast(Heap::AllocateJSObject(function));
String* obj_name = String::cast(Heap::LookupAsciiSymbol("theObject"));
Top::context()->global()->SetProperty(obj_name, obj, NONE);
String* prop_name = String::cast(Heap::LookupAsciiSymbol("theSlot"));
obj->SetProperty(prop_name, Smi::FromInt(23), NONE);
CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE));
obj_name = String::cast(Heap::LookupAsciiSymbol("theObject"));
CHECK(Top::context()->global()->HasLocalProperty(obj_name));
CHECK(Top::context()->global()->GetProperty(obj_name)->IsJSObject());
obj = JSObject::cast(Top::context()->global()->GetProperty(obj_name));
prop_name = String::cast(Heap::LookupAsciiSymbol("theSlot"));
CHECK(obj->GetProperty(prop_name) == Smi::FromInt(23));
}
static int gc_starts = 0;
static int gc_ends = 0;
static void GCPrologueCallbackFunc() {
CHECK(gc_starts == gc_ends);
gc_starts++;
}
static void GCEpilogueCallbackFunc() {
CHECK(gc_starts == gc_ends + 1);
gc_ends++;
}
TEST(GCCallback) {
InitializeVM();
Heap::SetGlobalGCPrologueCallback(&GCPrologueCallbackFunc);
Heap::SetGlobalGCEpilogueCallback(&GCEpilogueCallbackFunc);
// Scavenge does not call GC callback functions.
Heap::PerformScavenge();
CHECK_EQ(0, gc_starts);
CHECK_EQ(gc_ends, gc_starts);
CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE));
CHECK_EQ(1, gc_starts);
CHECK_EQ(gc_ends, gc_starts);
}
static int NumberOfWeakCalls = 0;
static void WeakPointerCallback(v8::Persistent<v8::Value> handle, void* id) {
NumberOfWeakCalls++;
}
TEST(ObjectGroups) {
InitializeVM();
NumberOfWeakCalls = 0;
v8::HandleScope handle_scope;
Handle<Object> g1s1 =
GlobalHandles::Create(Heap::AllocateFixedArray(1));
Handle<Object> g1s2 =
GlobalHandles::Create(Heap::AllocateFixedArray(1));
GlobalHandles::MakeWeak(g1s1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
GlobalHandles::MakeWeak(g1s2.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
Handle<Object> g2s1 =
GlobalHandles::Create(Heap::AllocateFixedArray(1));
Handle<Object> g2s2 =
GlobalHandles::Create(Heap::AllocateFixedArray(1));
GlobalHandles::MakeWeak(g2s1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
GlobalHandles::MakeWeak(g2s2.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
Handle<Object> root = GlobalHandles::Create(*g1s1); // make a root.
// Connect group 1 and 2, make a cycle.
Handle<FixedArray>::cast(g1s2)->set(0, *g2s2);
Handle<FixedArray>::cast(g2s1)->set(0, *g1s1);
{
Object** g1_objects[] = { g1s1.location(), g1s2.location() };
Object** g2_objects[] = { g2s1.location(), g2s2.location() };
GlobalHandles::AddGroup(g1_objects, 2);
GlobalHandles::AddGroup(g2_objects, 2);
}
// Do a full GC
CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE));
// All object should be alive.
CHECK_EQ(0, NumberOfWeakCalls);
// Weaken the root.
GlobalHandles::MakeWeak(root.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
// Groups are deleted, rebuild groups.
{
Object** g1_objects[] = { g1s1.location(), g1s2.location() };
Object** g2_objects[] = { g2s1.location(), g2s2.location() };
GlobalHandles::AddGroup(g1_objects, 2);
GlobalHandles::AddGroup(g2_objects, 2);
}
CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE));
// All objects should be gone. 5 global handles in total.
CHECK_EQ(5, NumberOfWeakCalls);
}