v8/src/arm64/instructions-arm64.cc
Clemens Hammacher 5f6510825a [cleanup] Fix remaining (D)CHECK macro usages
This CL fixes all occurences that don't require special OWNER reviews,
or can be reviewed by Michi.

After this one, we should be able to reenable the readability/check
cpplint check.

R=mstarzinger@chromium.org

Bug: v8:6837, v8:6921
Cq-Include-Trybots: master.tryserver.chromium.linux:linux_chromium_rel_ng;master.tryserver.v8:v8_linux_noi18n_rel_ng
Change-Id: Ic81d68d5534eaa795b7197fed5c41ed158361d62
Reviewed-on: https://chromium-review.googlesource.com/721120
Commit-Queue: Clemens Hammacher <clemensh@chromium.org>
Reviewed-by: Michael Starzinger <mstarzinger@chromium.org>
Cr-Commit-Position: refs/heads/master@{#48670}
2017-10-18 10:12:31 +00:00

749 lines
21 KiB
C++

// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_ARM64
#include "src/arm64/assembler-arm64-inl.h"
#include "src/arm64/instructions-arm64.h"
namespace v8 {
namespace internal {
bool Instruction::IsLoad() const {
if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
return false;
}
if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
return Mask(LoadStorePairLBit) != 0;
} else {
LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
switch (op) {
case LDRB_w:
case LDRH_w:
case LDR_w:
case LDR_x:
case LDRSB_w:
case LDRSB_x:
case LDRSH_w:
case LDRSH_x:
case LDRSW_x:
case LDR_b:
case LDR_h:
case LDR_s:
case LDR_d:
case LDR_q:
return true;
default: return false;
}
}
}
bool Instruction::IsStore() const {
if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
return false;
}
if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
return Mask(LoadStorePairLBit) == 0;
} else {
LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
switch (op) {
case STRB_w:
case STRH_w:
case STR_w:
case STR_x:
case STR_b:
case STR_h:
case STR_s:
case STR_d:
case STR_q:
return true;
default: return false;
}
}
}
static uint64_t RotateRight(uint64_t value,
unsigned int rotate,
unsigned int width) {
DCHECK_LE(width, 64);
rotate &= 63;
return ((value & ((1UL << rotate) - 1UL)) << (width - rotate)) |
(value >> rotate);
}
static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
uint64_t value,
unsigned width) {
DCHECK((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
(width == 32));
DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
uint64_t result = value & ((1UL << width) - 1UL);
for (unsigned i = width; i < reg_size; i *= 2) {
result |= (result << i);
}
return result;
}
// Logical immediates can't encode zero, so a return value of zero is used to
// indicate a failure case. Specifically, where the constraints on imm_s are not
// met.
uint64_t Instruction::ImmLogical() {
unsigned reg_size = SixtyFourBits() ? kXRegSizeInBits : kWRegSizeInBits;
int32_t n = BitN();
int32_t imm_s = ImmSetBits();
int32_t imm_r = ImmRotate();
// An integer is constructed from the n, imm_s and imm_r bits according to
// the following table:
//
// N imms immr size S R
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
// (s bits must not be all set)
//
// A pattern is constructed of size bits, where the least significant S+1
// bits are set. The pattern is rotated right by R, and repeated across a
// 32 or 64-bit value, depending on destination register width.
//
if (n == 1) {
if (imm_s == 0x3F) {
return 0;
}
uint64_t bits = (1UL << (imm_s + 1)) - 1;
return RotateRight(bits, imm_r, 64);
} else {
if ((imm_s >> 1) == 0x1F) {
return 0;
}
for (int width = 0x20; width >= 0x2; width >>= 1) {
if ((imm_s & width) == 0) {
int mask = width - 1;
if ((imm_s & mask) == mask) {
return 0;
}
uint64_t bits = (1UL << ((imm_s & mask) + 1)) - 1;
return RepeatBitsAcrossReg(reg_size,
RotateRight(bits, imm_r & mask, width),
width);
}
}
}
UNREACHABLE();
}
uint32_t Instruction::ImmNEONabcdefgh() const {
return ImmNEONabc() << 5 | ImmNEONdefgh();
}
float Instruction::ImmFP32() { return Imm8ToFP32(ImmFP()); }
double Instruction::ImmFP64() { return Imm8ToFP64(ImmFP()); }
float Instruction::ImmNEONFP32() const { return Imm8ToFP32(ImmNEONabcdefgh()); }
double Instruction::ImmNEONFP64() const {
return Imm8ToFP64(ImmNEONabcdefgh());
}
unsigned CalcLSDataSize(LoadStoreOp op) {
DCHECK_EQ(static_cast<unsigned>(LSSize_offset + LSSize_width),
kInstructionSize * 8);
unsigned size = static_cast<Instr>(op) >> LSSize_offset;
if ((op & LSVector_mask) != 0) {
// Vector register memory operations encode the access size in the "size"
// and "opc" fields.
if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
size = kQRegSizeLog2;
}
}
return size;
}
unsigned CalcLSPairDataSize(LoadStorePairOp op) {
static_assert(kXRegSize == kDRegSize, "X and D registers must be same size.");
static_assert(kWRegSize == kSRegSize, "W and S registers must be same size.");
switch (op) {
case STP_q:
case LDP_q:
return kQRegSizeLog2;
case STP_x:
case LDP_x:
case STP_d:
case LDP_d:
return kXRegSizeLog2;
default:
return kWRegSizeLog2;
}
}
int64_t Instruction::ImmPCOffset() {
int64_t offset;
if (IsPCRelAddressing()) {
// PC-relative addressing. Only ADR is supported.
offset = ImmPCRel();
} else if (BranchType() != UnknownBranchType) {
// All PC-relative branches.
// Relative branch offsets are instruction-size-aligned.
offset = ImmBranch() << kInstructionSizeLog2;
} else if (IsUnresolvedInternalReference()) {
// Internal references are always word-aligned.
offset = ImmUnresolvedInternalReference() << kInstructionSizeLog2;
} else {
// Load literal (offset from PC).
DCHECK(IsLdrLiteral());
// The offset is always shifted by 2 bits, even for loads to 64-bits
// registers.
offset = ImmLLiteral() << kInstructionSizeLog2;
}
return offset;
}
Instruction* Instruction::ImmPCOffsetTarget() {
return InstructionAtOffset(ImmPCOffset());
}
bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
ptrdiff_t offset) {
return is_intn(offset, ImmBranchRangeBitwidth(branch_type));
}
bool Instruction::IsTargetInImmPCOffsetRange(Instruction* target) {
return IsValidImmPCOffset(BranchType(), DistanceTo(target));
}
void Instruction::SetImmPCOffsetTarget(Assembler::IsolateData isolate_data,
Instruction* target) {
if (IsPCRelAddressing()) {
SetPCRelImmTarget(isolate_data, target);
} else if (BranchType() != UnknownBranchType) {
SetBranchImmTarget(target);
} else if (IsUnresolvedInternalReference()) {
SetUnresolvedInternalReferenceImmTarget(isolate_data, target);
} else {
// Load literal (offset from PC).
SetImmLLiteral(target);
}
}
void Instruction::SetPCRelImmTarget(Assembler::IsolateData isolate_data,
Instruction* target) {
// ADRP is not supported, so 'this' must point to an ADR instruction.
DCHECK(IsAdr());
ptrdiff_t target_offset = DistanceTo(target);
Instr imm;
if (Instruction::IsValidPCRelOffset(target_offset)) {
imm = Assembler::ImmPCRelAddress(static_cast<int>(target_offset));
SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
} else {
PatchingAssembler patcher(isolate_data, reinterpret_cast<byte*>(this),
PatchingAssembler::kAdrFarPatchableNInstrs);
patcher.PatchAdrFar(target_offset);
}
}
void Instruction::SetBranchImmTarget(Instruction* target) {
DCHECK(IsAligned(DistanceTo(target), kInstructionSize));
DCHECK(IsValidImmPCOffset(BranchType(),
DistanceTo(target) >> kInstructionSizeLog2));
int offset = static_cast<int>(DistanceTo(target) >> kInstructionSizeLog2);
Instr branch_imm = 0;
uint32_t imm_mask = 0;
switch (BranchType()) {
case CondBranchType: {
branch_imm = Assembler::ImmCondBranch(offset);
imm_mask = ImmCondBranch_mask;
break;
}
case UncondBranchType: {
branch_imm = Assembler::ImmUncondBranch(offset);
imm_mask = ImmUncondBranch_mask;
break;
}
case CompareBranchType: {
branch_imm = Assembler::ImmCmpBranch(offset);
imm_mask = ImmCmpBranch_mask;
break;
}
case TestBranchType: {
branch_imm = Assembler::ImmTestBranch(offset);
imm_mask = ImmTestBranch_mask;
break;
}
default: UNREACHABLE();
}
SetInstructionBits(Mask(~imm_mask) | branch_imm);
}
void Instruction::SetUnresolvedInternalReferenceImmTarget(
Assembler::IsolateData isolate_data, Instruction* target) {
DCHECK(IsUnresolvedInternalReference());
DCHECK(IsAligned(DistanceTo(target), kInstructionSize));
DCHECK(is_int32(DistanceTo(target) >> kInstructionSizeLog2));
int32_t target_offset =
static_cast<int32_t>(DistanceTo(target) >> kInstructionSizeLog2);
uint32_t high16 = unsigned_bitextract_32(31, 16, target_offset);
uint32_t low16 = unsigned_bitextract_32(15, 0, target_offset);
PatchingAssembler patcher(isolate_data, reinterpret_cast<byte*>(this), 2);
patcher.brk(high16);
patcher.brk(low16);
}
void Instruction::SetImmLLiteral(Instruction* source) {
DCHECK(IsLdrLiteral());
DCHECK(IsAligned(DistanceTo(source), kInstructionSize));
DCHECK(Assembler::IsImmLLiteral(DistanceTo(source)));
Instr imm = Assembler::ImmLLiteral(
static_cast<int>(DistanceTo(source) >> kLoadLiteralScaleLog2));
Instr mask = ImmLLiteral_mask;
SetInstructionBits(Mask(~mask) | imm);
}
// TODO(jbramley): We can't put this inline in the class because things like
// xzr and Register are not defined in that header. Consider adding
// instructions-arm64-inl.h to work around this.
bool InstructionSequence::IsInlineData() const {
// Inline data is encoded as a single movz instruction which writes to xzr
// (x31).
return IsMovz() && SixtyFourBits() && (Rd() == kZeroRegCode);
// TODO(all): If we extend ::InlineData() to support bigger data, we need
// to update this method too.
}
// TODO(jbramley): We can't put this inline in the class because things like
// xzr and Register are not defined in that header. Consider adding
// instructions-arm64-inl.h to work around this.
uint64_t InstructionSequence::InlineData() const {
DCHECK(IsInlineData());
uint64_t payload = ImmMoveWide();
// TODO(all): If we extend ::InlineData() to support bigger data, we need
// to update this method too.
return payload;
}
VectorFormat VectorFormatHalfWidth(VectorFormat vform) {
DCHECK(vform == kFormat8H || vform == kFormat4S || vform == kFormat2D ||
vform == kFormatH || vform == kFormatS || vform == kFormatD);
switch (vform) {
case kFormat8H:
return kFormat8B;
case kFormat4S:
return kFormat4H;
case kFormat2D:
return kFormat2S;
case kFormatH:
return kFormatB;
case kFormatS:
return kFormatH;
case kFormatD:
return kFormatS;
default:
UNREACHABLE();
}
}
VectorFormat VectorFormatDoubleWidth(VectorFormat vform) {
DCHECK(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S ||
vform == kFormatB || vform == kFormatH || vform == kFormatS);
switch (vform) {
case kFormat8B:
return kFormat8H;
case kFormat4H:
return kFormat4S;
case kFormat2S:
return kFormat2D;
case kFormatB:
return kFormatH;
case kFormatH:
return kFormatS;
case kFormatS:
return kFormatD;
default:
UNREACHABLE();
}
}
VectorFormat VectorFormatFillQ(VectorFormat vform) {
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B:
return kFormat16B;
case kFormatH:
case kFormat4H:
case kFormat8H:
return kFormat8H;
case kFormatS:
case kFormat2S:
case kFormat4S:
return kFormat4S;
case kFormatD:
case kFormat1D:
case kFormat2D:
return kFormat2D;
default:
UNREACHABLE();
}
}
VectorFormat VectorFormatHalfWidthDoubleLanes(VectorFormat vform) {
switch (vform) {
case kFormat4H:
return kFormat8B;
case kFormat8H:
return kFormat16B;
case kFormat2S:
return kFormat4H;
case kFormat4S:
return kFormat8H;
case kFormat1D:
return kFormat2S;
case kFormat2D:
return kFormat4S;
default:
UNREACHABLE();
}
}
VectorFormat VectorFormatDoubleLanes(VectorFormat vform) {
DCHECK(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S);
switch (vform) {
case kFormat8B:
return kFormat16B;
case kFormat4H:
return kFormat8H;
case kFormat2S:
return kFormat4S;
default:
UNREACHABLE();
}
}
VectorFormat VectorFormatHalfLanes(VectorFormat vform) {
DCHECK(vform == kFormat16B || vform == kFormat8H || vform == kFormat4S);
switch (vform) {
case kFormat16B:
return kFormat8B;
case kFormat8H:
return kFormat4H;
case kFormat4S:
return kFormat2S;
default:
UNREACHABLE();
}
}
VectorFormat ScalarFormatFromLaneSize(int laneSize) {
switch (laneSize) {
case 8:
return kFormatB;
case 16:
return kFormatH;
case 32:
return kFormatS;
case 64:
return kFormatD;
default:
UNREACHABLE();
}
}
VectorFormat ScalarFormatFromFormat(VectorFormat vform) {
return ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform));
}
unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) {
return RegisterSizeInBitsFromFormat(vform) / 8;
}
unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) {
DCHECK_NE(vform, kFormatUndefined);
switch (vform) {
case kFormatB:
return kBRegSizeInBits;
case kFormatH:
return kHRegSizeInBits;
case kFormatS:
return kSRegSizeInBits;
case kFormatD:
return kDRegSizeInBits;
case kFormat8B:
case kFormat4H:
case kFormat2S:
case kFormat1D:
return kDRegSizeInBits;
default:
return kQRegSizeInBits;
}
}
unsigned LaneSizeInBitsFromFormat(VectorFormat vform) {
DCHECK_NE(vform, kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B:
return 8;
case kFormatH:
case kFormat4H:
case kFormat8H:
return 16;
case kFormatS:
case kFormat2S:
case kFormat4S:
return 32;
case kFormatD:
case kFormat1D:
case kFormat2D:
return 64;
default:
UNREACHABLE();
}
}
int LaneSizeInBytesFromFormat(VectorFormat vform) {
return LaneSizeInBitsFromFormat(vform) / 8;
}
int LaneSizeInBytesLog2FromFormat(VectorFormat vform) {
DCHECK_NE(vform, kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B:
return 0;
case kFormatH:
case kFormat4H:
case kFormat8H:
return 1;
case kFormatS:
case kFormat2S:
case kFormat4S:
return 2;
case kFormatD:
case kFormat1D:
case kFormat2D:
return 3;
default:
UNREACHABLE();
}
}
int LaneCountFromFormat(VectorFormat vform) {
DCHECK_NE(vform, kFormatUndefined);
switch (vform) {
case kFormat16B:
return 16;
case kFormat8B:
case kFormat8H:
return 8;
case kFormat4H:
case kFormat4S:
return 4;
case kFormat2S:
case kFormat2D:
return 2;
case kFormat1D:
case kFormatB:
case kFormatH:
case kFormatS:
case kFormatD:
return 1;
default:
UNREACHABLE();
}
}
int MaxLaneCountFromFormat(VectorFormat vform) {
DCHECK_NE(vform, kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B:
return 16;
case kFormatH:
case kFormat4H:
case kFormat8H:
return 8;
case kFormatS:
case kFormat2S:
case kFormat4S:
return 4;
case kFormatD:
case kFormat1D:
case kFormat2D:
return 2;
default:
UNREACHABLE();
}
}
// Does 'vform' indicate a vector format or a scalar format?
bool IsVectorFormat(VectorFormat vform) {
DCHECK_NE(vform, kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormatH:
case kFormatS:
case kFormatD:
return false;
default:
return true;
}
}
int64_t MaxIntFromFormat(VectorFormat vform) {
return INT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
}
int64_t MinIntFromFormat(VectorFormat vform) {
return INT64_MIN >> (64 - LaneSizeInBitsFromFormat(vform));
}
uint64_t MaxUintFromFormat(VectorFormat vform) {
return UINT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
}
NEONFormatDecoder::NEONFormatDecoder(const Instruction* instr) {
instrbits_ = instr->InstructionBits();
SetFormatMaps(IntegerFormatMap());
}
NEONFormatDecoder::NEONFormatDecoder(const Instruction* instr,
const NEONFormatMap* format) {
instrbits_ = instr->InstructionBits();
SetFormatMaps(format);
}
NEONFormatDecoder::NEONFormatDecoder(const Instruction* instr,
const NEONFormatMap* format0,
const NEONFormatMap* format1) {
instrbits_ = instr->InstructionBits();
SetFormatMaps(format0, format1);
}
NEONFormatDecoder::NEONFormatDecoder(const Instruction* instr,
const NEONFormatMap* format0,
const NEONFormatMap* format1,
const NEONFormatMap* format2) {
instrbits_ = instr->InstructionBits();
SetFormatMaps(format0, format1, format2);
}
void NEONFormatDecoder::SetFormatMaps(const NEONFormatMap* format0,
const NEONFormatMap* format1,
const NEONFormatMap* format2) {
DCHECK_NOT_NULL(format0);
formats_[0] = format0;
formats_[1] = (format1 == nullptr) ? formats_[0] : format1;
formats_[2] = (format2 == nullptr) ? formats_[1] : format2;
}
void NEONFormatDecoder::SetFormatMap(unsigned index,
const NEONFormatMap* format) {
DCHECK_LT(index, arraysize(formats_));
DCHECK_NOT_NULL(format);
formats_[index] = format;
}
const char* NEONFormatDecoder::SubstitutePlaceholders(const char* string) {
return Substitute(string, kPlaceholder, kPlaceholder, kPlaceholder);
}
const char* NEONFormatDecoder::Substitute(const char* string,
SubstitutionMode mode0,
SubstitutionMode mode1,
SubstitutionMode mode2) {
snprintf(form_buffer_, sizeof(form_buffer_), string, GetSubstitute(0, mode0),
GetSubstitute(1, mode1), GetSubstitute(2, mode2));
return form_buffer_;
}
const char* NEONFormatDecoder::Mnemonic(const char* mnemonic) {
if ((instrbits_ & NEON_Q) != 0) {
snprintf(mne_buffer_, sizeof(mne_buffer_), "%s2", mnemonic);
return mne_buffer_;
}
return mnemonic;
}
VectorFormat NEONFormatDecoder::GetVectorFormat(int format_index) {
return GetVectorFormat(formats_[format_index]);
}
VectorFormat NEONFormatDecoder::GetVectorFormat(
const NEONFormatMap* format_map) {
static const VectorFormat vform[] = {
kFormatUndefined, kFormat8B, kFormat16B, kFormat4H, kFormat8H,
kFormat2S, kFormat4S, kFormat1D, kFormat2D, kFormatB,
kFormatH, kFormatS, kFormatD};
DCHECK_LT(GetNEONFormat(format_map), arraysize(vform));
return vform[GetNEONFormat(format_map)];
}
const char* NEONFormatDecoder::GetSubstitute(int index, SubstitutionMode mode) {
if (mode == kFormat) {
return NEONFormatAsString(GetNEONFormat(formats_[index]));
}
DCHECK_EQ(mode, kPlaceholder);
return NEONFormatAsPlaceholder(GetNEONFormat(formats_[index]));
}
NEONFormat NEONFormatDecoder::GetNEONFormat(const NEONFormatMap* format_map) {
return format_map->map[PickBits(format_map->bits)];
}
const char* NEONFormatDecoder::NEONFormatAsString(NEONFormat format) {
static const char* formats[] = {"undefined", "8b", "16b", "4h", "8h",
"2s", "4s", "1d", "2d", "b",
"h", "s", "d"};
DCHECK_LT(format, arraysize(formats));
return formats[format];
}
const char* NEONFormatDecoder::NEONFormatAsPlaceholder(NEONFormat format) {
DCHECK((format == NF_B) || (format == NF_H) || (format == NF_S) ||
(format == NF_D) || (format == NF_UNDEF));
static const char* formats[] = {
"undefined", "undefined", "undefined", "undefined", "undefined",
"undefined", "undefined", "undefined", "undefined", "'B",
"'H", "'S", "'D"};
return formats[format];
}
uint8_t NEONFormatDecoder::PickBits(const uint8_t bits[]) {
uint8_t result = 0;
for (unsigned b = 0; b < kNEONFormatMaxBits; b++) {
if (bits[b] == 0) break;
result <<= 1;
result |= ((instrbits_ & (1 << bits[b])) == 0) ? 0 : 1;
}
return result;
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_ARM64