5f6510825a
This CL fixes all occurences that don't require special OWNER reviews, or can be reviewed by Michi. After this one, we should be able to reenable the readability/check cpplint check. R=mstarzinger@chromium.org Bug: v8:6837, v8:6921 Cq-Include-Trybots: master.tryserver.chromium.linux:linux_chromium_rel_ng;master.tryserver.v8:v8_linux_noi18n_rel_ng Change-Id: Ic81d68d5534eaa795b7197fed5c41ed158361d62 Reviewed-on: https://chromium-review.googlesource.com/721120 Commit-Queue: Clemens Hammacher <clemensh@chromium.org> Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> Cr-Commit-Position: refs/heads/master@{#48670}
749 lines
21 KiB
C++
749 lines
21 KiB
C++
// Copyright 2013 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#if V8_TARGET_ARCH_ARM64
|
|
|
|
#include "src/arm64/assembler-arm64-inl.h"
|
|
#include "src/arm64/instructions-arm64.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
bool Instruction::IsLoad() const {
|
|
if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
|
|
return false;
|
|
}
|
|
|
|
if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
|
|
return Mask(LoadStorePairLBit) != 0;
|
|
} else {
|
|
LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
|
|
switch (op) {
|
|
case LDRB_w:
|
|
case LDRH_w:
|
|
case LDR_w:
|
|
case LDR_x:
|
|
case LDRSB_w:
|
|
case LDRSB_x:
|
|
case LDRSH_w:
|
|
case LDRSH_x:
|
|
case LDRSW_x:
|
|
case LDR_b:
|
|
case LDR_h:
|
|
case LDR_s:
|
|
case LDR_d:
|
|
case LDR_q:
|
|
return true;
|
|
default: return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool Instruction::IsStore() const {
|
|
if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
|
|
return false;
|
|
}
|
|
|
|
if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
|
|
return Mask(LoadStorePairLBit) == 0;
|
|
} else {
|
|
LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
|
|
switch (op) {
|
|
case STRB_w:
|
|
case STRH_w:
|
|
case STR_w:
|
|
case STR_x:
|
|
case STR_b:
|
|
case STR_h:
|
|
case STR_s:
|
|
case STR_d:
|
|
case STR_q:
|
|
return true;
|
|
default: return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static uint64_t RotateRight(uint64_t value,
|
|
unsigned int rotate,
|
|
unsigned int width) {
|
|
DCHECK_LE(width, 64);
|
|
rotate &= 63;
|
|
return ((value & ((1UL << rotate) - 1UL)) << (width - rotate)) |
|
|
(value >> rotate);
|
|
}
|
|
|
|
|
|
static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
|
|
uint64_t value,
|
|
unsigned width) {
|
|
DCHECK((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
|
|
(width == 32));
|
|
DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
|
|
uint64_t result = value & ((1UL << width) - 1UL);
|
|
for (unsigned i = width; i < reg_size; i *= 2) {
|
|
result |= (result << i);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
// Logical immediates can't encode zero, so a return value of zero is used to
|
|
// indicate a failure case. Specifically, where the constraints on imm_s are not
|
|
// met.
|
|
uint64_t Instruction::ImmLogical() {
|
|
unsigned reg_size = SixtyFourBits() ? kXRegSizeInBits : kWRegSizeInBits;
|
|
int32_t n = BitN();
|
|
int32_t imm_s = ImmSetBits();
|
|
int32_t imm_r = ImmRotate();
|
|
|
|
// An integer is constructed from the n, imm_s and imm_r bits according to
|
|
// the following table:
|
|
//
|
|
// N imms immr size S R
|
|
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
|
|
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
|
|
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
|
|
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
|
|
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
|
|
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
|
|
// (s bits must not be all set)
|
|
//
|
|
// A pattern is constructed of size bits, where the least significant S+1
|
|
// bits are set. The pattern is rotated right by R, and repeated across a
|
|
// 32 or 64-bit value, depending on destination register width.
|
|
//
|
|
|
|
if (n == 1) {
|
|
if (imm_s == 0x3F) {
|
|
return 0;
|
|
}
|
|
uint64_t bits = (1UL << (imm_s + 1)) - 1;
|
|
return RotateRight(bits, imm_r, 64);
|
|
} else {
|
|
if ((imm_s >> 1) == 0x1F) {
|
|
return 0;
|
|
}
|
|
for (int width = 0x20; width >= 0x2; width >>= 1) {
|
|
if ((imm_s & width) == 0) {
|
|
int mask = width - 1;
|
|
if ((imm_s & mask) == mask) {
|
|
return 0;
|
|
}
|
|
uint64_t bits = (1UL << ((imm_s & mask) + 1)) - 1;
|
|
return RepeatBitsAcrossReg(reg_size,
|
|
RotateRight(bits, imm_r & mask, width),
|
|
width);
|
|
}
|
|
}
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
uint32_t Instruction::ImmNEONabcdefgh() const {
|
|
return ImmNEONabc() << 5 | ImmNEONdefgh();
|
|
}
|
|
|
|
float Instruction::ImmFP32() { return Imm8ToFP32(ImmFP()); }
|
|
|
|
double Instruction::ImmFP64() { return Imm8ToFP64(ImmFP()); }
|
|
|
|
float Instruction::ImmNEONFP32() const { return Imm8ToFP32(ImmNEONabcdefgh()); }
|
|
|
|
double Instruction::ImmNEONFP64() const {
|
|
return Imm8ToFP64(ImmNEONabcdefgh());
|
|
}
|
|
|
|
unsigned CalcLSDataSize(LoadStoreOp op) {
|
|
DCHECK_EQ(static_cast<unsigned>(LSSize_offset + LSSize_width),
|
|
kInstructionSize * 8);
|
|
unsigned size = static_cast<Instr>(op) >> LSSize_offset;
|
|
if ((op & LSVector_mask) != 0) {
|
|
// Vector register memory operations encode the access size in the "size"
|
|
// and "opc" fields.
|
|
if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
|
|
size = kQRegSizeLog2;
|
|
}
|
|
}
|
|
return size;
|
|
}
|
|
|
|
unsigned CalcLSPairDataSize(LoadStorePairOp op) {
|
|
static_assert(kXRegSize == kDRegSize, "X and D registers must be same size.");
|
|
static_assert(kWRegSize == kSRegSize, "W and S registers must be same size.");
|
|
switch (op) {
|
|
case STP_q:
|
|
case LDP_q:
|
|
return kQRegSizeLog2;
|
|
case STP_x:
|
|
case LDP_x:
|
|
case STP_d:
|
|
case LDP_d:
|
|
return kXRegSizeLog2;
|
|
default:
|
|
return kWRegSizeLog2;
|
|
}
|
|
}
|
|
|
|
|
|
int64_t Instruction::ImmPCOffset() {
|
|
int64_t offset;
|
|
if (IsPCRelAddressing()) {
|
|
// PC-relative addressing. Only ADR is supported.
|
|
offset = ImmPCRel();
|
|
} else if (BranchType() != UnknownBranchType) {
|
|
// All PC-relative branches.
|
|
// Relative branch offsets are instruction-size-aligned.
|
|
offset = ImmBranch() << kInstructionSizeLog2;
|
|
} else if (IsUnresolvedInternalReference()) {
|
|
// Internal references are always word-aligned.
|
|
offset = ImmUnresolvedInternalReference() << kInstructionSizeLog2;
|
|
} else {
|
|
// Load literal (offset from PC).
|
|
DCHECK(IsLdrLiteral());
|
|
// The offset is always shifted by 2 bits, even for loads to 64-bits
|
|
// registers.
|
|
offset = ImmLLiteral() << kInstructionSizeLog2;
|
|
}
|
|
return offset;
|
|
}
|
|
|
|
|
|
Instruction* Instruction::ImmPCOffsetTarget() {
|
|
return InstructionAtOffset(ImmPCOffset());
|
|
}
|
|
|
|
|
|
bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
|
|
ptrdiff_t offset) {
|
|
return is_intn(offset, ImmBranchRangeBitwidth(branch_type));
|
|
}
|
|
|
|
|
|
bool Instruction::IsTargetInImmPCOffsetRange(Instruction* target) {
|
|
return IsValidImmPCOffset(BranchType(), DistanceTo(target));
|
|
}
|
|
|
|
void Instruction::SetImmPCOffsetTarget(Assembler::IsolateData isolate_data,
|
|
Instruction* target) {
|
|
if (IsPCRelAddressing()) {
|
|
SetPCRelImmTarget(isolate_data, target);
|
|
} else if (BranchType() != UnknownBranchType) {
|
|
SetBranchImmTarget(target);
|
|
} else if (IsUnresolvedInternalReference()) {
|
|
SetUnresolvedInternalReferenceImmTarget(isolate_data, target);
|
|
} else {
|
|
// Load literal (offset from PC).
|
|
SetImmLLiteral(target);
|
|
}
|
|
}
|
|
|
|
void Instruction::SetPCRelImmTarget(Assembler::IsolateData isolate_data,
|
|
Instruction* target) {
|
|
// ADRP is not supported, so 'this' must point to an ADR instruction.
|
|
DCHECK(IsAdr());
|
|
|
|
ptrdiff_t target_offset = DistanceTo(target);
|
|
Instr imm;
|
|
if (Instruction::IsValidPCRelOffset(target_offset)) {
|
|
imm = Assembler::ImmPCRelAddress(static_cast<int>(target_offset));
|
|
SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
|
|
} else {
|
|
PatchingAssembler patcher(isolate_data, reinterpret_cast<byte*>(this),
|
|
PatchingAssembler::kAdrFarPatchableNInstrs);
|
|
patcher.PatchAdrFar(target_offset);
|
|
}
|
|
}
|
|
|
|
|
|
void Instruction::SetBranchImmTarget(Instruction* target) {
|
|
DCHECK(IsAligned(DistanceTo(target), kInstructionSize));
|
|
DCHECK(IsValidImmPCOffset(BranchType(),
|
|
DistanceTo(target) >> kInstructionSizeLog2));
|
|
int offset = static_cast<int>(DistanceTo(target) >> kInstructionSizeLog2);
|
|
Instr branch_imm = 0;
|
|
uint32_t imm_mask = 0;
|
|
switch (BranchType()) {
|
|
case CondBranchType: {
|
|
branch_imm = Assembler::ImmCondBranch(offset);
|
|
imm_mask = ImmCondBranch_mask;
|
|
break;
|
|
}
|
|
case UncondBranchType: {
|
|
branch_imm = Assembler::ImmUncondBranch(offset);
|
|
imm_mask = ImmUncondBranch_mask;
|
|
break;
|
|
}
|
|
case CompareBranchType: {
|
|
branch_imm = Assembler::ImmCmpBranch(offset);
|
|
imm_mask = ImmCmpBranch_mask;
|
|
break;
|
|
}
|
|
case TestBranchType: {
|
|
branch_imm = Assembler::ImmTestBranch(offset);
|
|
imm_mask = ImmTestBranch_mask;
|
|
break;
|
|
}
|
|
default: UNREACHABLE();
|
|
}
|
|
SetInstructionBits(Mask(~imm_mask) | branch_imm);
|
|
}
|
|
|
|
void Instruction::SetUnresolvedInternalReferenceImmTarget(
|
|
Assembler::IsolateData isolate_data, Instruction* target) {
|
|
DCHECK(IsUnresolvedInternalReference());
|
|
DCHECK(IsAligned(DistanceTo(target), kInstructionSize));
|
|
DCHECK(is_int32(DistanceTo(target) >> kInstructionSizeLog2));
|
|
int32_t target_offset =
|
|
static_cast<int32_t>(DistanceTo(target) >> kInstructionSizeLog2);
|
|
uint32_t high16 = unsigned_bitextract_32(31, 16, target_offset);
|
|
uint32_t low16 = unsigned_bitextract_32(15, 0, target_offset);
|
|
|
|
PatchingAssembler patcher(isolate_data, reinterpret_cast<byte*>(this), 2);
|
|
patcher.brk(high16);
|
|
patcher.brk(low16);
|
|
}
|
|
|
|
|
|
void Instruction::SetImmLLiteral(Instruction* source) {
|
|
DCHECK(IsLdrLiteral());
|
|
DCHECK(IsAligned(DistanceTo(source), kInstructionSize));
|
|
DCHECK(Assembler::IsImmLLiteral(DistanceTo(source)));
|
|
Instr imm = Assembler::ImmLLiteral(
|
|
static_cast<int>(DistanceTo(source) >> kLoadLiteralScaleLog2));
|
|
Instr mask = ImmLLiteral_mask;
|
|
|
|
SetInstructionBits(Mask(~mask) | imm);
|
|
}
|
|
|
|
|
|
// TODO(jbramley): We can't put this inline in the class because things like
|
|
// xzr and Register are not defined in that header. Consider adding
|
|
// instructions-arm64-inl.h to work around this.
|
|
bool InstructionSequence::IsInlineData() const {
|
|
// Inline data is encoded as a single movz instruction which writes to xzr
|
|
// (x31).
|
|
return IsMovz() && SixtyFourBits() && (Rd() == kZeroRegCode);
|
|
// TODO(all): If we extend ::InlineData() to support bigger data, we need
|
|
// to update this method too.
|
|
}
|
|
|
|
|
|
// TODO(jbramley): We can't put this inline in the class because things like
|
|
// xzr and Register are not defined in that header. Consider adding
|
|
// instructions-arm64-inl.h to work around this.
|
|
uint64_t InstructionSequence::InlineData() const {
|
|
DCHECK(IsInlineData());
|
|
uint64_t payload = ImmMoveWide();
|
|
// TODO(all): If we extend ::InlineData() to support bigger data, we need
|
|
// to update this method too.
|
|
return payload;
|
|
}
|
|
|
|
VectorFormat VectorFormatHalfWidth(VectorFormat vform) {
|
|
DCHECK(vform == kFormat8H || vform == kFormat4S || vform == kFormat2D ||
|
|
vform == kFormatH || vform == kFormatS || vform == kFormatD);
|
|
switch (vform) {
|
|
case kFormat8H:
|
|
return kFormat8B;
|
|
case kFormat4S:
|
|
return kFormat4H;
|
|
case kFormat2D:
|
|
return kFormat2S;
|
|
case kFormatH:
|
|
return kFormatB;
|
|
case kFormatS:
|
|
return kFormatH;
|
|
case kFormatD:
|
|
return kFormatS;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
VectorFormat VectorFormatDoubleWidth(VectorFormat vform) {
|
|
DCHECK(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S ||
|
|
vform == kFormatB || vform == kFormatH || vform == kFormatS);
|
|
switch (vform) {
|
|
case kFormat8B:
|
|
return kFormat8H;
|
|
case kFormat4H:
|
|
return kFormat4S;
|
|
case kFormat2S:
|
|
return kFormat2D;
|
|
case kFormatB:
|
|
return kFormatH;
|
|
case kFormatH:
|
|
return kFormatS;
|
|
case kFormatS:
|
|
return kFormatD;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
VectorFormat VectorFormatFillQ(VectorFormat vform) {
|
|
switch (vform) {
|
|
case kFormatB:
|
|
case kFormat8B:
|
|
case kFormat16B:
|
|
return kFormat16B;
|
|
case kFormatH:
|
|
case kFormat4H:
|
|
case kFormat8H:
|
|
return kFormat8H;
|
|
case kFormatS:
|
|
case kFormat2S:
|
|
case kFormat4S:
|
|
return kFormat4S;
|
|
case kFormatD:
|
|
case kFormat1D:
|
|
case kFormat2D:
|
|
return kFormat2D;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
VectorFormat VectorFormatHalfWidthDoubleLanes(VectorFormat vform) {
|
|
switch (vform) {
|
|
case kFormat4H:
|
|
return kFormat8B;
|
|
case kFormat8H:
|
|
return kFormat16B;
|
|
case kFormat2S:
|
|
return kFormat4H;
|
|
case kFormat4S:
|
|
return kFormat8H;
|
|
case kFormat1D:
|
|
return kFormat2S;
|
|
case kFormat2D:
|
|
return kFormat4S;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
VectorFormat VectorFormatDoubleLanes(VectorFormat vform) {
|
|
DCHECK(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S);
|
|
switch (vform) {
|
|
case kFormat8B:
|
|
return kFormat16B;
|
|
case kFormat4H:
|
|
return kFormat8H;
|
|
case kFormat2S:
|
|
return kFormat4S;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
VectorFormat VectorFormatHalfLanes(VectorFormat vform) {
|
|
DCHECK(vform == kFormat16B || vform == kFormat8H || vform == kFormat4S);
|
|
switch (vform) {
|
|
case kFormat16B:
|
|
return kFormat8B;
|
|
case kFormat8H:
|
|
return kFormat4H;
|
|
case kFormat4S:
|
|
return kFormat2S;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
VectorFormat ScalarFormatFromLaneSize(int laneSize) {
|
|
switch (laneSize) {
|
|
case 8:
|
|
return kFormatB;
|
|
case 16:
|
|
return kFormatH;
|
|
case 32:
|
|
return kFormatS;
|
|
case 64:
|
|
return kFormatD;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
VectorFormat ScalarFormatFromFormat(VectorFormat vform) {
|
|
return ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform));
|
|
}
|
|
|
|
unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) {
|
|
return RegisterSizeInBitsFromFormat(vform) / 8;
|
|
}
|
|
|
|
unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) {
|
|
DCHECK_NE(vform, kFormatUndefined);
|
|
switch (vform) {
|
|
case kFormatB:
|
|
return kBRegSizeInBits;
|
|
case kFormatH:
|
|
return kHRegSizeInBits;
|
|
case kFormatS:
|
|
return kSRegSizeInBits;
|
|
case kFormatD:
|
|
return kDRegSizeInBits;
|
|
case kFormat8B:
|
|
case kFormat4H:
|
|
case kFormat2S:
|
|
case kFormat1D:
|
|
return kDRegSizeInBits;
|
|
default:
|
|
return kQRegSizeInBits;
|
|
}
|
|
}
|
|
|
|
unsigned LaneSizeInBitsFromFormat(VectorFormat vform) {
|
|
DCHECK_NE(vform, kFormatUndefined);
|
|
switch (vform) {
|
|
case kFormatB:
|
|
case kFormat8B:
|
|
case kFormat16B:
|
|
return 8;
|
|
case kFormatH:
|
|
case kFormat4H:
|
|
case kFormat8H:
|
|
return 16;
|
|
case kFormatS:
|
|
case kFormat2S:
|
|
case kFormat4S:
|
|
return 32;
|
|
case kFormatD:
|
|
case kFormat1D:
|
|
case kFormat2D:
|
|
return 64;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
int LaneSizeInBytesFromFormat(VectorFormat vform) {
|
|
return LaneSizeInBitsFromFormat(vform) / 8;
|
|
}
|
|
|
|
int LaneSizeInBytesLog2FromFormat(VectorFormat vform) {
|
|
DCHECK_NE(vform, kFormatUndefined);
|
|
switch (vform) {
|
|
case kFormatB:
|
|
case kFormat8B:
|
|
case kFormat16B:
|
|
return 0;
|
|
case kFormatH:
|
|
case kFormat4H:
|
|
case kFormat8H:
|
|
return 1;
|
|
case kFormatS:
|
|
case kFormat2S:
|
|
case kFormat4S:
|
|
return 2;
|
|
case kFormatD:
|
|
case kFormat1D:
|
|
case kFormat2D:
|
|
return 3;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
int LaneCountFromFormat(VectorFormat vform) {
|
|
DCHECK_NE(vform, kFormatUndefined);
|
|
switch (vform) {
|
|
case kFormat16B:
|
|
return 16;
|
|
case kFormat8B:
|
|
case kFormat8H:
|
|
return 8;
|
|
case kFormat4H:
|
|
case kFormat4S:
|
|
return 4;
|
|
case kFormat2S:
|
|
case kFormat2D:
|
|
return 2;
|
|
case kFormat1D:
|
|
case kFormatB:
|
|
case kFormatH:
|
|
case kFormatS:
|
|
case kFormatD:
|
|
return 1;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
int MaxLaneCountFromFormat(VectorFormat vform) {
|
|
DCHECK_NE(vform, kFormatUndefined);
|
|
switch (vform) {
|
|
case kFormatB:
|
|
case kFormat8B:
|
|
case kFormat16B:
|
|
return 16;
|
|
case kFormatH:
|
|
case kFormat4H:
|
|
case kFormat8H:
|
|
return 8;
|
|
case kFormatS:
|
|
case kFormat2S:
|
|
case kFormat4S:
|
|
return 4;
|
|
case kFormatD:
|
|
case kFormat1D:
|
|
case kFormat2D:
|
|
return 2;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
// Does 'vform' indicate a vector format or a scalar format?
|
|
bool IsVectorFormat(VectorFormat vform) {
|
|
DCHECK_NE(vform, kFormatUndefined);
|
|
switch (vform) {
|
|
case kFormatB:
|
|
case kFormatH:
|
|
case kFormatS:
|
|
case kFormatD:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
int64_t MaxIntFromFormat(VectorFormat vform) {
|
|
return INT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
|
|
}
|
|
|
|
int64_t MinIntFromFormat(VectorFormat vform) {
|
|
return INT64_MIN >> (64 - LaneSizeInBitsFromFormat(vform));
|
|
}
|
|
|
|
uint64_t MaxUintFromFormat(VectorFormat vform) {
|
|
return UINT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
|
|
}
|
|
|
|
NEONFormatDecoder::NEONFormatDecoder(const Instruction* instr) {
|
|
instrbits_ = instr->InstructionBits();
|
|
SetFormatMaps(IntegerFormatMap());
|
|
}
|
|
|
|
NEONFormatDecoder::NEONFormatDecoder(const Instruction* instr,
|
|
const NEONFormatMap* format) {
|
|
instrbits_ = instr->InstructionBits();
|
|
SetFormatMaps(format);
|
|
}
|
|
|
|
NEONFormatDecoder::NEONFormatDecoder(const Instruction* instr,
|
|
const NEONFormatMap* format0,
|
|
const NEONFormatMap* format1) {
|
|
instrbits_ = instr->InstructionBits();
|
|
SetFormatMaps(format0, format1);
|
|
}
|
|
|
|
NEONFormatDecoder::NEONFormatDecoder(const Instruction* instr,
|
|
const NEONFormatMap* format0,
|
|
const NEONFormatMap* format1,
|
|
const NEONFormatMap* format2) {
|
|
instrbits_ = instr->InstructionBits();
|
|
SetFormatMaps(format0, format1, format2);
|
|
}
|
|
|
|
void NEONFormatDecoder::SetFormatMaps(const NEONFormatMap* format0,
|
|
const NEONFormatMap* format1,
|
|
const NEONFormatMap* format2) {
|
|
DCHECK_NOT_NULL(format0);
|
|
formats_[0] = format0;
|
|
formats_[1] = (format1 == nullptr) ? formats_[0] : format1;
|
|
formats_[2] = (format2 == nullptr) ? formats_[1] : format2;
|
|
}
|
|
|
|
void NEONFormatDecoder::SetFormatMap(unsigned index,
|
|
const NEONFormatMap* format) {
|
|
DCHECK_LT(index, arraysize(formats_));
|
|
DCHECK_NOT_NULL(format);
|
|
formats_[index] = format;
|
|
}
|
|
|
|
const char* NEONFormatDecoder::SubstitutePlaceholders(const char* string) {
|
|
return Substitute(string, kPlaceholder, kPlaceholder, kPlaceholder);
|
|
}
|
|
|
|
const char* NEONFormatDecoder::Substitute(const char* string,
|
|
SubstitutionMode mode0,
|
|
SubstitutionMode mode1,
|
|
SubstitutionMode mode2) {
|
|
snprintf(form_buffer_, sizeof(form_buffer_), string, GetSubstitute(0, mode0),
|
|
GetSubstitute(1, mode1), GetSubstitute(2, mode2));
|
|
return form_buffer_;
|
|
}
|
|
|
|
const char* NEONFormatDecoder::Mnemonic(const char* mnemonic) {
|
|
if ((instrbits_ & NEON_Q) != 0) {
|
|
snprintf(mne_buffer_, sizeof(mne_buffer_), "%s2", mnemonic);
|
|
return mne_buffer_;
|
|
}
|
|
return mnemonic;
|
|
}
|
|
|
|
VectorFormat NEONFormatDecoder::GetVectorFormat(int format_index) {
|
|
return GetVectorFormat(formats_[format_index]);
|
|
}
|
|
|
|
VectorFormat NEONFormatDecoder::GetVectorFormat(
|
|
const NEONFormatMap* format_map) {
|
|
static const VectorFormat vform[] = {
|
|
kFormatUndefined, kFormat8B, kFormat16B, kFormat4H, kFormat8H,
|
|
kFormat2S, kFormat4S, kFormat1D, kFormat2D, kFormatB,
|
|
kFormatH, kFormatS, kFormatD};
|
|
DCHECK_LT(GetNEONFormat(format_map), arraysize(vform));
|
|
return vform[GetNEONFormat(format_map)];
|
|
}
|
|
|
|
const char* NEONFormatDecoder::GetSubstitute(int index, SubstitutionMode mode) {
|
|
if (mode == kFormat) {
|
|
return NEONFormatAsString(GetNEONFormat(formats_[index]));
|
|
}
|
|
DCHECK_EQ(mode, kPlaceholder);
|
|
return NEONFormatAsPlaceholder(GetNEONFormat(formats_[index]));
|
|
}
|
|
|
|
NEONFormat NEONFormatDecoder::GetNEONFormat(const NEONFormatMap* format_map) {
|
|
return format_map->map[PickBits(format_map->bits)];
|
|
}
|
|
|
|
const char* NEONFormatDecoder::NEONFormatAsString(NEONFormat format) {
|
|
static const char* formats[] = {"undefined", "8b", "16b", "4h", "8h",
|
|
"2s", "4s", "1d", "2d", "b",
|
|
"h", "s", "d"};
|
|
DCHECK_LT(format, arraysize(formats));
|
|
return formats[format];
|
|
}
|
|
|
|
const char* NEONFormatDecoder::NEONFormatAsPlaceholder(NEONFormat format) {
|
|
DCHECK((format == NF_B) || (format == NF_H) || (format == NF_S) ||
|
|
(format == NF_D) || (format == NF_UNDEF));
|
|
static const char* formats[] = {
|
|
"undefined", "undefined", "undefined", "undefined", "undefined",
|
|
"undefined", "undefined", "undefined", "undefined", "'B",
|
|
"'H", "'S", "'D"};
|
|
return formats[format];
|
|
}
|
|
|
|
uint8_t NEONFormatDecoder::PickBits(const uint8_t bits[]) {
|
|
uint8_t result = 0;
|
|
for (unsigned b = 0; b < kNEONFormatMaxBits; b++) {
|
|
if (bits[b] == 0) break;
|
|
result <<= 1;
|
|
result |= ((instrbits_ & (1 << bits[b])) == 0) ? 0 : 1;
|
|
}
|
|
return result;
|
|
}
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
#endif // V8_TARGET_ARCH_ARM64
|