v8/src/code-stubs-hydrogen.cc

1425 lines
49 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "code-stubs.h"
#include "hydrogen.h"
#include "lithium.h"
namespace v8 {
namespace internal {
static LChunk* OptimizeGraph(HGraph* graph) {
DisallowHeapAllocation no_allocation;
DisallowHandleAllocation no_handles;
DisallowHandleDereference no_deref;
ASSERT(graph != NULL);
BailoutReason bailout_reason = kNoReason;
if (!graph->Optimize(&bailout_reason)) {
FATAL(GetBailoutReason(bailout_reason));
}
LChunk* chunk = LChunk::NewChunk(graph);
if (chunk == NULL) {
FATAL(GetBailoutReason(graph->info()->bailout_reason()));
}
return chunk;
}
class CodeStubGraphBuilderBase : public HGraphBuilder {
public:
CodeStubGraphBuilderBase(Isolate* isolate, HydrogenCodeStub* stub)
: HGraphBuilder(&info_),
arguments_length_(NULL),
info_(stub, isolate),
context_(NULL) {
descriptor_ = stub->GetInterfaceDescriptor(isolate);
parameters_.Reset(new HParameter*[descriptor_->register_param_count_]);
}
virtual bool BuildGraph();
protected:
virtual HValue* BuildCodeStub() = 0;
HParameter* GetParameter(int parameter) {
ASSERT(parameter < descriptor_->register_param_count_);
return parameters_[parameter];
}
HValue* GetArgumentsLength() {
// This is initialized in BuildGraph()
ASSERT(arguments_length_ != NULL);
return arguments_length_;
}
CompilationInfo* info() { return &info_; }
HydrogenCodeStub* stub() { return info_.code_stub(); }
HContext* context() { return context_; }
Isolate* isolate() { return info_.isolate(); }
HLoadNamedField* BuildLoadNamedField(HValue* object,
Representation representation,
int offset,
bool is_inobject);
enum ArgumentClass {
NONE,
SINGLE,
MULTIPLE
};
HValue* BuildArrayConstructor(ElementsKind kind,
AllocationSiteOverrideMode override_mode,
ArgumentClass argument_class);
HValue* BuildInternalArrayConstructor(ElementsKind kind,
ArgumentClass argument_class);
void BuildInstallOptimizedCode(HValue* js_function, HValue* native_context,
HValue* code_object);
void BuildInstallCode(HValue* js_function, HValue* shared_info);
void BuildInstallFromOptimizedCodeMap(HValue* js_function,
HValue* shared_info,
HValue* native_context);
private:
HValue* BuildArraySingleArgumentConstructor(JSArrayBuilder* builder);
HValue* BuildArrayNArgumentsConstructor(JSArrayBuilder* builder,
ElementsKind kind);
SmartArrayPointer<HParameter*> parameters_;
HValue* arguments_length_;
CompilationInfoWithZone info_;
CodeStubInterfaceDescriptor* descriptor_;
HContext* context_;
};
bool CodeStubGraphBuilderBase::BuildGraph() {
// Update the static counter each time a new code stub is generated.
isolate()->counters()->code_stubs()->Increment();
if (FLAG_trace_hydrogen_stubs) {
const char* name = CodeStub::MajorName(stub()->MajorKey(), false);
PrintF("-----------------------------------------------------------\n");
PrintF("Compiling stub %s using hydrogen\n", name);
isolate()->GetHTracer()->TraceCompilation(&info_);
}
int param_count = descriptor_->register_param_count_;
HEnvironment* start_environment = graph()->start_environment();
HBasicBlock* next_block = CreateBasicBlock(start_environment);
Goto(next_block);
next_block->SetJoinId(BailoutId::StubEntry());
set_current_block(next_block);
bool runtime_stack_params = descriptor_->stack_parameter_count_.is_valid();
HInstruction* stack_parameter_count = NULL;
for (int i = 0; i < param_count; ++i) {
Representation r = descriptor_->IsParameterCountRegister(i)
? Representation::Integer32()
: Representation::Tagged();
HParameter* param = Add<HParameter>(i, HParameter::REGISTER_PARAMETER, r);
start_environment->Bind(i, param);
parameters_[i] = param;
if (descriptor_->IsParameterCountRegister(i)) {
param->set_type(HType::Smi());
stack_parameter_count = param;
arguments_length_ = stack_parameter_count;
}
}
ASSERT(!runtime_stack_params || arguments_length_ != NULL);
if (!runtime_stack_params) {
stack_parameter_count = graph()->GetConstantMinus1();
arguments_length_ = graph()->GetConstant0();
}
context_ = Add<HContext>();
start_environment->BindContext(context_);
Add<HSimulate>(BailoutId::StubEntry());
NoObservableSideEffectsScope no_effects(this);
HValue* return_value = BuildCodeStub();
// We might have extra expressions to pop from the stack in addition to the
// arguments above.
HInstruction* stack_pop_count = stack_parameter_count;
if (descriptor_->function_mode_ == JS_FUNCTION_STUB_MODE) {
if (!stack_parameter_count->IsConstant() &&
descriptor_->hint_stack_parameter_count_ < 0) {
HInstruction* constant_one = graph()->GetConstant1();
stack_pop_count = AddUncasted<HAdd>(stack_parameter_count, constant_one);
stack_pop_count->ClearFlag(HValue::kCanOverflow);
// TODO(mvstanton): verify that stack_parameter_count+1 really fits in a
// smi.
} else {
int count = descriptor_->hint_stack_parameter_count_;
stack_pop_count = Add<HConstant>(count);
}
}
if (current_block() != NULL) {
HReturn* hreturn_instruction = New<HReturn>(return_value,
stack_pop_count);
FinishCurrentBlock(hreturn_instruction);
}
return true;
}
template <class Stub>
class CodeStubGraphBuilder: public CodeStubGraphBuilderBase {
public:
CodeStubGraphBuilder(Isolate* isolate, Stub* stub)
: CodeStubGraphBuilderBase(isolate, stub) {}
protected:
virtual HValue* BuildCodeStub() {
if (casted_stub()->IsUninitialized()) {
return BuildCodeUninitializedStub();
} else {
return BuildCodeInitializedStub();
}
}
virtual HValue* BuildCodeInitializedStub() {
UNIMPLEMENTED();
return NULL;
}
virtual HValue* BuildCodeUninitializedStub() {
// Force a deopt that falls back to the runtime.
HValue* undefined = graph()->GetConstantUndefined();
IfBuilder builder(this);
builder.IfNot<HCompareObjectEqAndBranch, HValue*>(undefined, undefined);
builder.Then();
builder.ElseDeopt("Forced deopt to runtime");
return undefined;
}
Stub* casted_stub() { return static_cast<Stub*>(stub()); }
};
Handle<Code> HydrogenCodeStub::GenerateLightweightMissCode(Isolate* isolate) {
Factory* factory = isolate->factory();
// Generate the new code.
MacroAssembler masm(isolate, NULL, 256);
{
// Update the static counter each time a new code stub is generated.
isolate->counters()->code_stubs()->Increment();
// Generate the code for the stub.
masm.set_generating_stub(true);
NoCurrentFrameScope scope(&masm);
GenerateLightweightMiss(&masm);
}
// Create the code object.
CodeDesc desc;
masm.GetCode(&desc);
// Copy the generated code into a heap object.
Code::Flags flags = Code::ComputeFlags(
GetCodeKind(),
GetICState(),
GetExtraICState(),
GetStubType());
Handle<Code> new_object = factory->NewCode(
desc, flags, masm.CodeObject(), NeedsImmovableCode());
return new_object;
}
template <class Stub>
static Handle<Code> DoGenerateCode(Isolate* isolate, Stub* stub) {
CodeStub::Major major_key =
static_cast<HydrogenCodeStub*>(stub)->MajorKey();
CodeStubInterfaceDescriptor* descriptor =
isolate->code_stub_interface_descriptor(major_key);
if (descriptor->register_param_count_ < 0) {
stub->InitializeInterfaceDescriptor(isolate, descriptor);
}
// If we are uninitialized we can use a light-weight stub to enter
// the runtime that is significantly faster than using the standard
// stub-failure deopt mechanism.
if (stub->IsUninitialized() && descriptor->has_miss_handler()) {
ASSERT(!descriptor->stack_parameter_count_.is_valid());
return stub->GenerateLightweightMissCode(isolate);
}
ElapsedTimer timer;
if (FLAG_profile_hydrogen_code_stub_compilation) {
timer.Start();
}
CodeStubGraphBuilder<Stub> builder(isolate, stub);
LChunk* chunk = OptimizeGraph(builder.CreateGraph());
Handle<Code> code = chunk->Codegen();
if (FLAG_profile_hydrogen_code_stub_compilation) {
double ms = timer.Elapsed().InMillisecondsF();
PrintF("[Lazy compilation of %s took %0.3f ms]\n",
stub->GetName().get(), ms);
}
return code;
}
template <>
HValue* CodeStubGraphBuilder<ToNumberStub>::BuildCodeStub() {
HValue* value = GetParameter(0);
// Check if the parameter is already a SMI or heap number.
IfBuilder if_number(this);
if_number.If<HIsSmiAndBranch>(value);
if_number.OrIf<HCompareMap>(value, isolate()->factory()->heap_number_map());
if_number.Then();
// Return the number.
Push(value);
if_number.Else();
// Convert the parameter to number using the builtin.
HValue* function = AddLoadJSBuiltin(Builtins::TO_NUMBER);
Add<HPushArgument>(value);
Push(Add<HInvokeFunction>(function, 1));
if_number.End();
return Pop();
}
Handle<Code> ToNumberStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template <>
HValue* CodeStubGraphBuilder<NumberToStringStub>::BuildCodeStub() {
info()->MarkAsSavesCallerDoubles();
HValue* number = GetParameter(NumberToStringStub::kNumber);
return BuildNumberToString(number, Type::Number(zone()));
}
Handle<Code> NumberToStringStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template <>
HValue* CodeStubGraphBuilder<FastCloneShallowArrayStub>::BuildCodeStub() {
Factory* factory = isolate()->factory();
HValue* undefined = graph()->GetConstantUndefined();
AllocationSiteMode alloc_site_mode = casted_stub()->allocation_site_mode();
FastCloneShallowArrayStub::Mode mode = casted_stub()->mode();
int length = casted_stub()->length();
HInstruction* allocation_site = Add<HLoadKeyed>(GetParameter(0),
GetParameter(1),
static_cast<HValue*>(NULL),
FAST_ELEMENTS);
IfBuilder checker(this);
checker.IfNot<HCompareObjectEqAndBranch, HValue*>(allocation_site,
undefined);
checker.Then();
HObjectAccess access = HObjectAccess::ForAllocationSiteOffset(
AllocationSite::kTransitionInfoOffset);
HInstruction* boilerplate = Add<HLoadNamedField>(
allocation_site, static_cast<HValue*>(NULL), access);
HValue* push_value;
if (mode == FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS) {
HValue* elements = AddLoadElements(boilerplate);
IfBuilder if_fixed_cow(this);
if_fixed_cow.If<HCompareMap>(elements, factory->fixed_cow_array_map());
if_fixed_cow.Then();
push_value = BuildCloneShallowArray(boilerplate,
allocation_site,
alloc_site_mode,
FAST_ELEMENTS,
0/*copy-on-write*/);
environment()->Push(push_value);
if_fixed_cow.Else();
IfBuilder if_fixed(this);
if_fixed.If<HCompareMap>(elements, factory->fixed_array_map());
if_fixed.Then();
push_value = BuildCloneShallowArray(boilerplate,
allocation_site,
alloc_site_mode,
FAST_ELEMENTS,
length);
environment()->Push(push_value);
if_fixed.Else();
push_value = BuildCloneShallowArray(boilerplate,
allocation_site,
alloc_site_mode,
FAST_DOUBLE_ELEMENTS,
length);
environment()->Push(push_value);
} else {
ElementsKind elements_kind = casted_stub()->ComputeElementsKind();
push_value = BuildCloneShallowArray(boilerplate,
allocation_site,
alloc_site_mode,
elements_kind,
length);
environment()->Push(push_value);
}
checker.ElseDeopt("Uninitialized boilerplate literals");
checker.End();
return environment()->Pop();
}
Handle<Code> FastCloneShallowArrayStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template <>
HValue* CodeStubGraphBuilder<FastCloneShallowObjectStub>::BuildCodeStub() {
HValue* undefined = graph()->GetConstantUndefined();
HInstruction* allocation_site = Add<HLoadKeyed>(GetParameter(0),
GetParameter(1),
static_cast<HValue*>(NULL),
FAST_ELEMENTS);
IfBuilder checker(this);
checker.IfNot<HCompareObjectEqAndBranch, HValue*>(allocation_site,
undefined);
checker.And();
HObjectAccess access = HObjectAccess::ForAllocationSiteOffset(
AllocationSite::kTransitionInfoOffset);
HInstruction* boilerplate = Add<HLoadNamedField>(
allocation_site, static_cast<HValue*>(NULL), access);
int size = JSObject::kHeaderSize + casted_stub()->length() * kPointerSize;
int object_size = size;
if (FLAG_allocation_site_pretenuring) {
size += AllocationMemento::kSize;
}
HValue* boilerplate_map = Add<HLoadNamedField>(
boilerplate, static_cast<HValue*>(NULL),
HObjectAccess::ForMap());
HValue* boilerplate_size = Add<HLoadNamedField>(
boilerplate_map, static_cast<HValue*>(NULL),
HObjectAccess::ForMapInstanceSize());
HValue* size_in_words = Add<HConstant>(object_size >> kPointerSizeLog2);
checker.If<HCompareNumericAndBranch>(boilerplate_size,
size_in_words, Token::EQ);
checker.Then();
HValue* size_in_bytes = Add<HConstant>(size);
HInstruction* object = Add<HAllocate>(size_in_bytes, HType::JSObject(),
NOT_TENURED, JS_OBJECT_TYPE);
for (int i = 0; i < object_size; i += kPointerSize) {
HObjectAccess access = HObjectAccess::ForObservableJSObjectOffset(i);
Add<HStoreNamedField>(
object, access, Add<HLoadNamedField>(
boilerplate, static_cast<HValue*>(NULL), access));
}
ASSERT(FLAG_allocation_site_pretenuring || (size == object_size));
if (FLAG_allocation_site_pretenuring) {
BuildCreateAllocationMemento(
object, Add<HConstant>(object_size), allocation_site);
}
environment()->Push(object);
checker.ElseDeopt("Uninitialized boilerplate in fast clone");
checker.End();
return environment()->Pop();
}
Handle<Code> FastCloneShallowObjectStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template <>
HValue* CodeStubGraphBuilder<CreateAllocationSiteStub>::BuildCodeStub() {
HValue* size = Add<HConstant>(AllocationSite::kSize);
HInstruction* object = Add<HAllocate>(size, HType::JSObject(), TENURED,
JS_OBJECT_TYPE);
// Store the map
Handle<Map> allocation_site_map = isolate()->factory()->allocation_site_map();
AddStoreMapConstant(object, allocation_site_map);
// Store the payload (smi elements kind)
HValue* initial_elements_kind = Add<HConstant>(GetInitialFastElementsKind());
Add<HStoreNamedField>(object,
HObjectAccess::ForAllocationSiteOffset(
AllocationSite::kTransitionInfoOffset),
initial_elements_kind);
// Unlike literals, constructed arrays don't have nested sites
Add<HStoreNamedField>(object,
HObjectAccess::ForAllocationSiteOffset(
AllocationSite::kNestedSiteOffset),
graph()->GetConstant0());
// Pretenuring calculation field.
Add<HStoreNamedField>(object,
HObjectAccess::ForAllocationSiteOffset(
AllocationSite::kPretenureDataOffset),
graph()->GetConstant0());
// Pretenuring memento creation count field.
Add<HStoreNamedField>(object,
HObjectAccess::ForAllocationSiteOffset(
AllocationSite::kPretenureCreateCountOffset),
graph()->GetConstant0());
// Store an empty fixed array for the code dependency.
HConstant* empty_fixed_array =
Add<HConstant>(isolate()->factory()->empty_fixed_array());
HStoreNamedField* store = Add<HStoreNamedField>(
object,
HObjectAccess::ForAllocationSiteOffset(
AllocationSite::kDependentCodeOffset),
empty_fixed_array);
// Link the object to the allocation site list
HValue* site_list = Add<HConstant>(
ExternalReference::allocation_sites_list_address(isolate()));
HValue* site = Add<HLoadNamedField>(
site_list, static_cast<HValue*>(NULL),
HObjectAccess::ForAllocationSiteList());
store = Add<HStoreNamedField>(object,
HObjectAccess::ForAllocationSiteOffset(AllocationSite::kWeakNextOffset),
site);
store->SkipWriteBarrier();
Add<HStoreNamedField>(site_list, HObjectAccess::ForAllocationSiteList(),
object);
HInstruction* feedback_vector = GetParameter(0);
HInstruction* slot = GetParameter(1);
Add<HStoreKeyed>(feedback_vector, slot, object, FAST_ELEMENTS,
INITIALIZING_STORE);
return feedback_vector;
}
Handle<Code> CreateAllocationSiteStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template <>
HValue* CodeStubGraphBuilder<KeyedLoadFastElementStub>::BuildCodeStub() {
HInstruction* load = BuildUncheckedMonomorphicElementAccess(
GetParameter(0), GetParameter(1), NULL,
casted_stub()->is_js_array(), casted_stub()->elements_kind(),
LOAD, NEVER_RETURN_HOLE, STANDARD_STORE);
return load;
}
Handle<Code> KeyedLoadFastElementStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
HLoadNamedField* CodeStubGraphBuilderBase::BuildLoadNamedField(
HValue* object,
Representation representation,
int offset,
bool is_inobject) {
HObjectAccess access = is_inobject
? HObjectAccess::ForObservableJSObjectOffset(offset, representation)
: HObjectAccess::ForBackingStoreOffset(offset, representation);
if (representation.IsDouble()) {
// Load the heap number.
object = Add<HLoadNamedField>(
object, static_cast<HValue*>(NULL),
access.WithRepresentation(Representation::Tagged()));
// Load the double value from it.
access = HObjectAccess::ForHeapNumberValue();
}
return Add<HLoadNamedField>(object, static_cast<HValue*>(NULL), access);
}
template<>
HValue* CodeStubGraphBuilder<LoadFieldStub>::BuildCodeStub() {
return BuildLoadNamedField(GetParameter(0),
casted_stub()->representation(),
casted_stub()->offset(),
casted_stub()->is_inobject());
}
Handle<Code> LoadFieldStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template<>
HValue* CodeStubGraphBuilder<KeyedLoadFieldStub>::BuildCodeStub() {
return BuildLoadNamedField(GetParameter(0),
casted_stub()->representation(),
casted_stub()->offset(),
casted_stub()->is_inobject());
}
Handle<Code> KeyedLoadFieldStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template <>
HValue* CodeStubGraphBuilder<KeyedStoreFastElementStub>::BuildCodeStub() {
BuildUncheckedMonomorphicElementAccess(
GetParameter(0), GetParameter(1), GetParameter(2),
casted_stub()->is_js_array(), casted_stub()->elements_kind(),
STORE, NEVER_RETURN_HOLE, casted_stub()->store_mode());
return GetParameter(2);
}
Handle<Code> KeyedStoreFastElementStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template <>
HValue* CodeStubGraphBuilder<TransitionElementsKindStub>::BuildCodeStub() {
info()->MarkAsSavesCallerDoubles();
BuildTransitionElementsKind(GetParameter(0),
GetParameter(1),
casted_stub()->from_kind(),
casted_stub()->to_kind(),
true);
return GetParameter(0);
}
Handle<Code> TransitionElementsKindStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
HValue* CodeStubGraphBuilderBase::BuildArrayConstructor(
ElementsKind kind,
AllocationSiteOverrideMode override_mode,
ArgumentClass argument_class) {
HValue* constructor = GetParameter(ArrayConstructorStubBase::kConstructor);
HValue* alloc_site = GetParameter(ArrayConstructorStubBase::kAllocationSite);
JSArrayBuilder array_builder(this, kind, alloc_site, constructor,
override_mode);
HValue* result = NULL;
switch (argument_class) {
case NONE:
result = array_builder.AllocateEmptyArray();
break;
case SINGLE:
result = BuildArraySingleArgumentConstructor(&array_builder);
break;
case MULTIPLE:
result = BuildArrayNArgumentsConstructor(&array_builder, kind);
break;
}
return result;
}
HValue* CodeStubGraphBuilderBase::BuildInternalArrayConstructor(
ElementsKind kind, ArgumentClass argument_class) {
HValue* constructor = GetParameter(
InternalArrayConstructorStubBase::kConstructor);
JSArrayBuilder array_builder(this, kind, constructor);
HValue* result = NULL;
switch (argument_class) {
case NONE:
result = array_builder.AllocateEmptyArray();
break;
case SINGLE:
result = BuildArraySingleArgumentConstructor(&array_builder);
break;
case MULTIPLE:
result = BuildArrayNArgumentsConstructor(&array_builder, kind);
break;
}
return result;
}
HValue* CodeStubGraphBuilderBase::BuildArraySingleArgumentConstructor(
JSArrayBuilder* array_builder) {
// Smi check and range check on the input arg.
HValue* constant_one = graph()->GetConstant1();
HValue* constant_zero = graph()->GetConstant0();
HInstruction* elements = Add<HArgumentsElements>(false);
HInstruction* argument = Add<HAccessArgumentsAt>(
elements, constant_one, constant_zero);
return BuildAllocateArrayFromLength(array_builder, argument);
}
HValue* CodeStubGraphBuilderBase::BuildArrayNArgumentsConstructor(
JSArrayBuilder* array_builder, ElementsKind kind) {
// Insert a bounds check because the number of arguments might exceed
// the kInitialMaxFastElementArray limit. This cannot happen for code
// that was parsed, but calling via Array.apply(thisArg, [...]) might
// trigger it.
HValue* length = GetArgumentsLength();
HConstant* max_alloc_length =
Add<HConstant>(JSObject::kInitialMaxFastElementArray);
HValue* checked_length = Add<HBoundsCheck>(length, max_alloc_length);
// We need to fill with the hole if it's a smi array in the multi-argument
// case because we might have to bail out while copying arguments into
// the array because they aren't compatible with a smi array.
// If it's a double array, no problem, and if it's fast then no
// problem either because doubles are boxed.
//
// TODO(mvstanton): consider an instruction to memset fill the array
// with zero in this case instead.
JSArrayBuilder::FillMode fill_mode = IsFastSmiElementsKind(kind)
? JSArrayBuilder::FILL_WITH_HOLE
: JSArrayBuilder::DONT_FILL_WITH_HOLE;
HValue* new_object = array_builder->AllocateArray(checked_length,
checked_length,
fill_mode);
HValue* elements = array_builder->GetElementsLocation();
ASSERT(elements != NULL);
// Now populate the elements correctly.
LoopBuilder builder(this,
context(),
LoopBuilder::kPostIncrement);
HValue* start = graph()->GetConstant0();
HValue* key = builder.BeginBody(start, checked_length, Token::LT);
HInstruction* argument_elements = Add<HArgumentsElements>(false);
HInstruction* argument = Add<HAccessArgumentsAt>(
argument_elements, checked_length, key);
Add<HStoreKeyed>(elements, key, argument, kind);
builder.EndBody();
return new_object;
}
template <>
HValue* CodeStubGraphBuilder<ArrayNoArgumentConstructorStub>::BuildCodeStub() {
ElementsKind kind = casted_stub()->elements_kind();
AllocationSiteOverrideMode override_mode = casted_stub()->override_mode();
return BuildArrayConstructor(kind, override_mode, NONE);
}
Handle<Code> ArrayNoArgumentConstructorStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template <>
HValue* CodeStubGraphBuilder<ArraySingleArgumentConstructorStub>::
BuildCodeStub() {
ElementsKind kind = casted_stub()->elements_kind();
AllocationSiteOverrideMode override_mode = casted_stub()->override_mode();
return BuildArrayConstructor(kind, override_mode, SINGLE);
}
Handle<Code> ArraySingleArgumentConstructorStub::GenerateCode(
Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template <>
HValue* CodeStubGraphBuilder<ArrayNArgumentsConstructorStub>::BuildCodeStub() {
ElementsKind kind = casted_stub()->elements_kind();
AllocationSiteOverrideMode override_mode = casted_stub()->override_mode();
return BuildArrayConstructor(kind, override_mode, MULTIPLE);
}
Handle<Code> ArrayNArgumentsConstructorStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template <>
HValue* CodeStubGraphBuilder<InternalArrayNoArgumentConstructorStub>::
BuildCodeStub() {
ElementsKind kind = casted_stub()->elements_kind();
return BuildInternalArrayConstructor(kind, NONE);
}
Handle<Code> InternalArrayNoArgumentConstructorStub::GenerateCode(
Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template <>
HValue* CodeStubGraphBuilder<InternalArraySingleArgumentConstructorStub>::
BuildCodeStub() {
ElementsKind kind = casted_stub()->elements_kind();
return BuildInternalArrayConstructor(kind, SINGLE);
}
Handle<Code> InternalArraySingleArgumentConstructorStub::GenerateCode(
Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template <>
HValue* CodeStubGraphBuilder<InternalArrayNArgumentsConstructorStub>::
BuildCodeStub() {
ElementsKind kind = casted_stub()->elements_kind();
return BuildInternalArrayConstructor(kind, MULTIPLE);
}
Handle<Code> InternalArrayNArgumentsConstructorStub::GenerateCode(
Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template <>
HValue* CodeStubGraphBuilder<CompareNilICStub>::BuildCodeInitializedStub() {
Isolate* isolate = graph()->isolate();
CompareNilICStub* stub = casted_stub();
HIfContinuation continuation;
Handle<Map> sentinel_map(isolate->heap()->meta_map());
Type* type = stub->GetType(zone(), sentinel_map);
BuildCompareNil(GetParameter(0), type, &continuation);
IfBuilder if_nil(this, &continuation);
if_nil.Then();
if (continuation.IsFalseReachable()) {
if_nil.Else();
if_nil.Return(graph()->GetConstant0());
}
if_nil.End();
return continuation.IsTrueReachable()
? graph()->GetConstant1()
: graph()->GetConstantUndefined();
}
Handle<Code> CompareNilICStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template <>
HValue* CodeStubGraphBuilder<BinaryOpICStub>::BuildCodeInitializedStub() {
BinaryOpIC::State state = casted_stub()->state();
HValue* left = GetParameter(BinaryOpICStub::kLeft);
HValue* right = GetParameter(BinaryOpICStub::kRight);
Type* left_type = state.GetLeftType(zone());
Type* right_type = state.GetRightType(zone());
Type* result_type = state.GetResultType(zone());
ASSERT(!left_type->Is(Type::None()) && !right_type->Is(Type::None()) &&
(state.HasSideEffects() || !result_type->Is(Type::None())));
HValue* result = NULL;
HAllocationMode allocation_mode(NOT_TENURED);
if (state.op() == Token::ADD &&
(left_type->Maybe(Type::String()) || right_type->Maybe(Type::String())) &&
!left_type->Is(Type::String()) && !right_type->Is(Type::String())) {
// For the generic add stub a fast case for string addition is performance
// critical.
if (left_type->Maybe(Type::String())) {
IfBuilder if_leftisstring(this);
if_leftisstring.If<HIsStringAndBranch>(left);
if_leftisstring.Then();
{
Push(BuildBinaryOperation(
state.op(), left, right,
Type::String(zone()), right_type,
result_type, state.fixed_right_arg(),
allocation_mode));
}
if_leftisstring.Else();
{
Push(BuildBinaryOperation(
state.op(), left, right,
left_type, right_type, result_type,
state.fixed_right_arg(), allocation_mode));
}
if_leftisstring.End();
result = Pop();
} else {
IfBuilder if_rightisstring(this);
if_rightisstring.If<HIsStringAndBranch>(right);
if_rightisstring.Then();
{
Push(BuildBinaryOperation(
state.op(), left, right,
left_type, Type::String(zone()),
result_type, state.fixed_right_arg(),
allocation_mode));
}
if_rightisstring.Else();
{
Push(BuildBinaryOperation(
state.op(), left, right,
left_type, right_type, result_type,
state.fixed_right_arg(), allocation_mode));
}
if_rightisstring.End();
result = Pop();
}
} else {
result = BuildBinaryOperation(
state.op(), left, right,
left_type, right_type, result_type,
state.fixed_right_arg(), allocation_mode);
}
// If we encounter a generic argument, the number conversion is
// observable, thus we cannot afford to bail out after the fact.
if (!state.HasSideEffects()) {
if (result_type->Is(Type::Smi())) {
if (state.op() == Token::SHR) {
// TODO(olivf) Replace this by a SmiTagU Instruction.
// 0x40000000: this number would convert to negative when interpreting
// the register as signed value;
IfBuilder if_of(this);
if_of.IfNot<HCompareNumericAndBranch>(result,
Add<HConstant>(static_cast<int>(SmiValuesAre32Bits()
? 0x80000000 : 0x40000000)), Token::EQ_STRICT);
if_of.Then();
if_of.ElseDeopt("UInt->Smi oveflow");
if_of.End();
}
}
result = EnforceNumberType(result, result_type);
}
// Reuse the double box of one of the operands if we are allowed to (i.e.
// chained binops).
if (state.CanReuseDoubleBox()) {
HValue* operand = (state.mode() == OVERWRITE_LEFT) ? left : right;
IfBuilder if_heap_number(this);
if_heap_number.IfNot<HIsSmiAndBranch>(operand);
if_heap_number.Then();
Add<HStoreNamedField>(operand, HObjectAccess::ForHeapNumberValue(), result);
Push(operand);
if_heap_number.Else();
Push(result);
if_heap_number.End();
result = Pop();
}
return result;
}
Handle<Code> BinaryOpICStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template <>
HValue* CodeStubGraphBuilder<BinaryOpWithAllocationSiteStub>::BuildCodeStub() {
BinaryOpIC::State state = casted_stub()->state();
HValue* allocation_site = GetParameter(
BinaryOpWithAllocationSiteStub::kAllocationSite);
HValue* left = GetParameter(BinaryOpWithAllocationSiteStub::kLeft);
HValue* right = GetParameter(BinaryOpWithAllocationSiteStub::kRight);
Type* left_type = state.GetLeftType(zone());
Type* right_type = state.GetRightType(zone());
Type* result_type = state.GetResultType(zone());
HAllocationMode allocation_mode(allocation_site);
return BuildBinaryOperation(state.op(), left, right,
left_type, right_type, result_type,
state.fixed_right_arg(), allocation_mode);
}
Handle<Code> BinaryOpWithAllocationSiteStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template <>
HValue* CodeStubGraphBuilder<StringAddStub>::BuildCodeInitializedStub() {
StringAddStub* stub = casted_stub();
StringAddFlags flags = stub->flags();
PretenureFlag pretenure_flag = stub->pretenure_flag();
HValue* left = GetParameter(StringAddStub::kLeft);
HValue* right = GetParameter(StringAddStub::kRight);
// Make sure that both arguments are strings if not known in advance.
if ((flags & STRING_ADD_CHECK_LEFT) == STRING_ADD_CHECK_LEFT) {
left = BuildCheckString(left);
}
if ((flags & STRING_ADD_CHECK_RIGHT) == STRING_ADD_CHECK_RIGHT) {
right = BuildCheckString(right);
}
return BuildStringAdd(left, right, HAllocationMode(pretenure_flag));
}
Handle<Code> StringAddStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template <>
HValue* CodeStubGraphBuilder<ToBooleanStub>::BuildCodeInitializedStub() {
ToBooleanStub* stub = casted_stub();
IfBuilder if_true(this);
if_true.If<HBranch>(GetParameter(0), stub->GetTypes());
if_true.Then();
if_true.Return(graph()->GetConstant1());
if_true.Else();
if_true.End();
return graph()->GetConstant0();
}
Handle<Code> ToBooleanStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template <>
HValue* CodeStubGraphBuilder<StoreGlobalStub>::BuildCodeInitializedStub() {
StoreGlobalStub* stub = casted_stub();
Handle<Object> hole(isolate()->heap()->the_hole_value(), isolate());
Handle<Object> placeholer_value(Smi::FromInt(0), isolate());
Handle<PropertyCell> placeholder_cell =
isolate()->factory()->NewPropertyCell(placeholer_value);
HParameter* receiver = GetParameter(0);
HParameter* value = GetParameter(2);
// Check that the map of the global has not changed: use a placeholder map
// that will be replaced later with the global object's map.
Handle<Map> placeholder_map = isolate()->factory()->meta_map();
Add<HCheckMaps>(receiver, placeholder_map, top_info());
HValue* cell = Add<HConstant>(placeholder_cell);
HObjectAccess access(HObjectAccess::ForCellPayload(isolate()));
HValue* cell_contents = Add<HLoadNamedField>(
cell, static_cast<HValue*>(NULL), access);
if (stub->is_constant()) {
IfBuilder builder(this);
builder.If<HCompareObjectEqAndBranch>(cell_contents, value);
builder.Then();
builder.ElseDeopt("Unexpected cell contents in constant global store");
builder.End();
} else {
// Load the payload of the global parameter cell. A hole indicates that the
// property has been deleted and that the store must be handled by the
// runtime.
IfBuilder builder(this);
HValue* hole_value = Add<HConstant>(hole);
builder.If<HCompareObjectEqAndBranch>(cell_contents, hole_value);
builder.Then();
builder.Deopt("Unexpected cell contents in global store");
builder.Else();
Add<HStoreNamedField>(cell, access, value);
builder.End();
}
return value;
}
Handle<Code> StoreGlobalStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template<>
HValue* CodeStubGraphBuilder<ElementsTransitionAndStoreStub>::BuildCodeStub() {
HValue* value = GetParameter(0);
HValue* map = GetParameter(1);
HValue* key = GetParameter(2);
HValue* object = GetParameter(3);
if (FLAG_trace_elements_transitions) {
// Tracing elements transitions is the job of the runtime.
Add<HDeoptimize>("Tracing elements transitions", Deoptimizer::EAGER);
} else {
info()->MarkAsSavesCallerDoubles();
BuildTransitionElementsKind(object, map,
casted_stub()->from_kind(),
casted_stub()->to_kind(),
casted_stub()->is_jsarray());
BuildUncheckedMonomorphicElementAccess(object, key, value,
casted_stub()->is_jsarray(),
casted_stub()->to_kind(),
STORE, ALLOW_RETURN_HOLE,
casted_stub()->store_mode());
}
return value;
}
Handle<Code> ElementsTransitionAndStoreStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
void CodeStubGraphBuilderBase::BuildInstallOptimizedCode(
HValue* js_function,
HValue* native_context,
HValue* code_object) {
Counters* counters = isolate()->counters();
AddIncrementCounter(counters->fast_new_closure_install_optimized());
// TODO(fschneider): Idea: store proper code pointers in the optimized code
// map and either unmangle them on marking or do nothing as the whole map is
// discarded on major GC anyway.
Add<HStoreCodeEntry>(js_function, code_object);
// Now link a function into a list of optimized functions.
HValue* optimized_functions_list = Add<HLoadNamedField>(
native_context, static_cast<HValue*>(NULL),
HObjectAccess::ForContextSlot(Context::OPTIMIZED_FUNCTIONS_LIST));
Add<HStoreNamedField>(js_function,
HObjectAccess::ForNextFunctionLinkPointer(),
optimized_functions_list);
// This store is the only one that should have a write barrier.
Add<HStoreNamedField>(native_context,
HObjectAccess::ForContextSlot(Context::OPTIMIZED_FUNCTIONS_LIST),
js_function);
}
void CodeStubGraphBuilderBase::BuildInstallCode(HValue* js_function,
HValue* shared_info) {
Add<HStoreNamedField>(js_function,
HObjectAccess::ForNextFunctionLinkPointer(),
graph()->GetConstantUndefined());
HValue* code_object = Add<HLoadNamedField>(
shared_info, static_cast<HValue*>(NULL), HObjectAccess::ForCodeOffset());
Add<HStoreCodeEntry>(js_function, code_object);
}
void CodeStubGraphBuilderBase::BuildInstallFromOptimizedCodeMap(
HValue* js_function,
HValue* shared_info,
HValue* native_context) {
Counters* counters = isolate()->counters();
IfBuilder is_optimized(this);
HInstruction* optimized_map = Add<HLoadNamedField>(
shared_info, static_cast<HValue*>(NULL),
HObjectAccess::ForOptimizedCodeMap());
HValue* null_constant = Add<HConstant>(0);
is_optimized.If<HCompareObjectEqAndBranch>(optimized_map, null_constant);
is_optimized.Then();
{
BuildInstallCode(js_function, shared_info);
}
is_optimized.Else();
{
AddIncrementCounter(counters->fast_new_closure_try_optimized());
// optimized_map points to fixed array of 3-element entries
// (native context, optimized code, literals).
// Map must never be empty, so check the first elements.
Label install_optimized;
HValue* first_context_slot = Add<HLoadNamedField>(
optimized_map, static_cast<HValue*>(NULL),
HObjectAccess::ForFirstContextSlot());
HValue* first_osr_ast_slot = Add<HLoadNamedField>(
optimized_map, static_cast<HValue*>(NULL),
HObjectAccess::ForFirstOsrAstIdSlot());
HValue* osr_ast_id_none = Add<HConstant>(BailoutId::None().ToInt());
IfBuilder already_in(this);
already_in.If<HCompareObjectEqAndBranch>(native_context,
first_context_slot);
already_in.AndIf<HCompareObjectEqAndBranch>(first_osr_ast_slot,
osr_ast_id_none);
already_in.Then();
{
HValue* code_object = Add<HLoadNamedField>(
optimized_map, static_cast<HValue*>(NULL),
HObjectAccess::ForFirstCodeSlot());
BuildInstallOptimizedCode(js_function, native_context, code_object);
}
already_in.Else();
{
HValue* shared_function_entry_length =
Add<HConstant>(SharedFunctionInfo::kEntryLength);
LoopBuilder loop_builder(this,
context(),
LoopBuilder::kPostDecrement,
shared_function_entry_length);
HValue* array_length = Add<HLoadNamedField>(
optimized_map, static_cast<HValue*>(NULL),
HObjectAccess::ForFixedArrayLength());
HValue* slot_iterator = loop_builder.BeginBody(array_length,
graph()->GetConstant0(),
Token::GT);
{
// Iterate through the rest of map backwards.
// Do not double check first entry.
HValue* second_entry_index =
Add<HConstant>(SharedFunctionInfo::kSecondEntryIndex);
IfBuilder restore_check(this);
restore_check.If<HCompareNumericAndBranch>(
slot_iterator, second_entry_index, Token::EQ);
restore_check.Then();
{
// Store the unoptimized code
BuildInstallCode(js_function, shared_info);
loop_builder.Break();
}
restore_check.Else();
{
STATIC_ASSERT(SharedFunctionInfo::kContextOffset == 0);
STATIC_ASSERT(SharedFunctionInfo::kEntryLength -
SharedFunctionInfo::kOsrAstIdOffset == 1);
HValue* native_context_slot = AddUncasted<HSub>(
slot_iterator, shared_function_entry_length);
HValue* osr_ast_id_slot = AddUncasted<HSub>(
slot_iterator, graph()->GetConstant1());
HInstruction* native_context_entry = Add<HLoadKeyed>(optimized_map,
native_context_slot, static_cast<HValue*>(NULL), FAST_ELEMENTS);
HInstruction* osr_ast_id_entry = Add<HLoadKeyed>(optimized_map,
osr_ast_id_slot, static_cast<HValue*>(NULL), FAST_ELEMENTS);
IfBuilder done_check(this);
done_check.If<HCompareObjectEqAndBranch>(native_context,
native_context_entry);
done_check.AndIf<HCompareObjectEqAndBranch>(osr_ast_id_entry,
osr_ast_id_none);
done_check.Then();
{
// Hit: fetch the optimized code.
HValue* code_slot = AddUncasted<HAdd>(
native_context_slot, graph()->GetConstant1());
HValue* code_object = Add<HLoadKeyed>(optimized_map,
code_slot, static_cast<HValue*>(NULL), FAST_ELEMENTS);
BuildInstallOptimizedCode(js_function, native_context, code_object);
// Fall out of the loop
loop_builder.Break();
}
done_check.Else();
done_check.End();
}
restore_check.End();
}
loop_builder.EndBody();
}
already_in.End();
}
is_optimized.End();
}
template<>
HValue* CodeStubGraphBuilder<FastNewClosureStub>::BuildCodeStub() {
Counters* counters = isolate()->counters();
Factory* factory = isolate()->factory();
HInstruction* empty_fixed_array =
Add<HConstant>(factory->empty_fixed_array());
HValue* shared_info = GetParameter(0);
AddIncrementCounter(counters->fast_new_closure_total());
// Create a new closure from the given function info in new space
HValue* size = Add<HConstant>(JSFunction::kSize);
HInstruction* js_function = Add<HAllocate>(size, HType::JSObject(),
NOT_TENURED, JS_FUNCTION_TYPE);
int map_index = Context::FunctionMapIndex(casted_stub()->language_mode(),
casted_stub()->is_generator());
// Compute the function map in the current native context and set that
// as the map of the allocated object.
HInstruction* native_context = BuildGetNativeContext();
HInstruction* map_slot_value = Add<HLoadNamedField>(
native_context, static_cast<HValue*>(NULL),
HObjectAccess::ForContextSlot(map_index));
Add<HStoreNamedField>(js_function, HObjectAccess::ForMap(), map_slot_value);
// Initialize the rest of the function.
Add<HStoreNamedField>(js_function, HObjectAccess::ForPropertiesPointer(),
empty_fixed_array);
Add<HStoreNamedField>(js_function, HObjectAccess::ForElementsPointer(),
empty_fixed_array);
Add<HStoreNamedField>(js_function, HObjectAccess::ForLiteralsPointer(),
empty_fixed_array);
Add<HStoreNamedField>(js_function, HObjectAccess::ForPrototypeOrInitialMap(),
graph()->GetConstantHole());
Add<HStoreNamedField>(js_function,
HObjectAccess::ForSharedFunctionInfoPointer(),
shared_info);
Add<HStoreNamedField>(js_function, HObjectAccess::ForFunctionContextPointer(),
context());
// Initialize the code pointer in the function to be the one
// found in the shared function info object.
// But first check if there is an optimized version for our context.
if (FLAG_cache_optimized_code) {
BuildInstallFromOptimizedCodeMap(js_function, shared_info, native_context);
} else {
BuildInstallCode(js_function, shared_info);
}
return js_function;
}
Handle<Code> FastNewClosureStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template<>
HValue* CodeStubGraphBuilder<FastNewContextStub>::BuildCodeStub() {
int length = casted_stub()->slots() + Context::MIN_CONTEXT_SLOTS;
// Get the function.
HParameter* function = GetParameter(FastNewContextStub::kFunction);
// Allocate the context in new space.
HAllocate* function_context = Add<HAllocate>(
Add<HConstant>(length * kPointerSize + FixedArray::kHeaderSize),
HType::Tagged(), NOT_TENURED, FIXED_ARRAY_TYPE);
// Set up the object header.
AddStoreMapConstant(function_context,
isolate()->factory()->function_context_map());
Add<HStoreNamedField>(function_context,
HObjectAccess::ForFixedArrayLength(),
Add<HConstant>(length));
// Set up the fixed slots.
Add<HStoreNamedField>(function_context,
HObjectAccess::ForContextSlot(Context::CLOSURE_INDEX),
function);
Add<HStoreNamedField>(function_context,
HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX),
context());
Add<HStoreNamedField>(function_context,
HObjectAccess::ForContextSlot(Context::EXTENSION_INDEX),
graph()->GetConstant0());
// Copy the global object from the previous context.
HValue* global_object = Add<HLoadNamedField>(
context(), static_cast<HValue*>(NULL),
HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
Add<HStoreNamedField>(function_context,
HObjectAccess::ForContextSlot(
Context::GLOBAL_OBJECT_INDEX),
global_object);
// Initialize the rest of the slots to undefined.
for (int i = Context::MIN_CONTEXT_SLOTS; i < length; ++i) {
Add<HStoreNamedField>(function_context,
HObjectAccess::ForContextSlot(i),
graph()->GetConstantUndefined());
}
return function_context;
}
Handle<Code> FastNewContextStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template<>
HValue* CodeStubGraphBuilder<KeyedLoadDictionaryElementStub>::BuildCodeStub() {
HValue* receiver = GetParameter(0);
HValue* key = GetParameter(1);
Add<HCheckSmi>(key);
return BuildUncheckedDictionaryElementLoad(receiver, key);
}
Handle<Code> KeyedLoadDictionaryElementStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
template<>
HValue* CodeStubGraphBuilder<RegExpConstructResultStub>::BuildCodeStub() {
// Determine the parameters.
HValue* length = GetParameter(RegExpConstructResultStub::kLength);
HValue* index = GetParameter(RegExpConstructResultStub::kIndex);
HValue* input = GetParameter(RegExpConstructResultStub::kInput);
return BuildRegExpConstructResult(length, index, input);
}
Handle<Code> RegExpConstructResultStub::GenerateCode(Isolate* isolate) {
return DoGenerateCode(isolate, this);
}
} } // namespace v8::internal