v8/test/cctest/wasm/test-run-wasm-atomics.cc
Deepti Gandluri 9a0f254687 [compiler] Remove AtomicNarrow machine operators, macroize tests
The AtomicNarrow operations are currently used for wider 64-bit
operations, that only operate on 32-bits of data or less
(Ex:I64AtomicAdd8U). Removing these because this can be handled
in int64-lowering by zeroing the higher order node.
Explicitly zeroing these in code-gen is not
required because -

 - The spec requires only the data exchange to be atomic, for narrow
   ops this uses only the low word.
 - The return values are not in memory, so are not visible to other
   workers/threads

BUG:v8:6532

Change-Id: I90a795ab6c21c70cb096f59a137de653c9c6a178
Reviewed-on: https://chromium-review.googlesource.com/1194428
Reviewed-by: Ben Titzer <titzer@chromium.org>
Reviewed-by: Ben Smith <binji@chromium.org>
Commit-Queue: Deepti Gandluri <gdeepti@chromium.org>
Cr-Commit-Position: refs/heads/master@{#55499}
2018-08-29 16:11:48 +00:00

289 lines
9.9 KiB
C++

// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/cctest/wasm/wasm-atomics-utils.h"
#include "test/common/wasm/wasm-macro-gen.h"
namespace v8 {
namespace internal {
namespace wasm {
namespace test_run_wasm_atomics {
void RunU32BinOp(ExecutionTier execution_tier, WasmOpcode wasm_op,
Uint32BinOp expected_op) {
EXPERIMENTAL_FLAG_SCOPE(threads);
WasmRunner<uint32_t, uint32_t> r(execution_tier);
uint32_t* memory =
r.builder().AddMemoryElems<uint32_t>(kWasmPageSize / sizeof(uint32_t));
r.builder().SetHasSharedMemory();
BUILD(r, WASM_ATOMICS_BINOP(wasm_op, WASM_I32V_1(0), WASM_GET_LOCAL(0),
MachineRepresentation::kWord32));
FOR_UINT32_INPUTS(i) {
uint32_t initial = *i;
FOR_UINT32_INPUTS(j) {
r.builder().WriteMemory(&memory[0], initial);
CHECK_EQ(initial, r.Call(*j));
uint32_t expected = expected_op(*i, *j);
CHECK_EQ(expected, r.builder().ReadMemory(&memory[0]));
}
}
}
#define TEST_OPERATION(Name) \
WASM_EXEC_TEST(I32Atomic##Name) { \
RunU32BinOp(execution_tier, kExprI32Atomic##Name, Name); \
}
OPERATION_LIST(TEST_OPERATION)
#undef TEST_OPERATION
void RunU16BinOp(ExecutionTier tier, WasmOpcode wasm_op,
Uint16BinOp expected_op) {
EXPERIMENTAL_FLAG_SCOPE(threads);
WasmRunner<uint32_t, uint32_t> r(tier);
r.builder().SetHasSharedMemory();
uint16_t* memory =
r.builder().AddMemoryElems<uint16_t>(kWasmPageSize / sizeof(uint16_t));
BUILD(r, WASM_ATOMICS_BINOP(wasm_op, WASM_I32V_1(0), WASM_GET_LOCAL(0),
MachineRepresentation::kWord16));
FOR_UINT16_INPUTS(i) {
uint16_t initial = *i;
FOR_UINT16_INPUTS(j) {
r.builder().WriteMemory(&memory[0], initial);
CHECK_EQ(initial, r.Call(*j));
uint16_t expected = expected_op(*i, *j);
CHECK_EQ(expected, r.builder().ReadMemory(&memory[0]));
}
}
}
#define TEST_OPERATION(Name) \
WASM_EXEC_TEST(I32Atomic##Name##16U) { \
RunU16BinOp(execution_tier, kExprI32Atomic##Name##16U, Name); \
}
OPERATION_LIST(TEST_OPERATION)
#undef TEST_OPERATION
void RunU8BinOp(ExecutionTier execution_tier, WasmOpcode wasm_op,
Uint8BinOp expected_op) {
EXPERIMENTAL_FLAG_SCOPE(threads);
WasmRunner<uint32_t, uint32_t> r(execution_tier);
r.builder().SetHasSharedMemory();
uint8_t* memory = r.builder().AddMemoryElems<uint8_t>(kWasmPageSize);
BUILD(r, WASM_ATOMICS_BINOP(wasm_op, WASM_I32V_1(0), WASM_GET_LOCAL(0),
MachineRepresentation::kWord8));
FOR_UINT8_INPUTS(i) {
uint8_t initial = *i;
FOR_UINT8_INPUTS(j) {
r.builder().WriteMemory(&memory[0], initial);
CHECK_EQ(initial, r.Call(*j));
uint8_t expected = expected_op(*i, *j);
CHECK_EQ(expected, r.builder().ReadMemory(&memory[0]));
}
}
}
#define TEST_OPERATION(Name) \
WASM_EXEC_TEST(I32Atomic##Name##8U) { \
RunU8BinOp(execution_tier, kExprI32Atomic##Name##8U, Name); \
}
OPERATION_LIST(TEST_OPERATION)
#undef TEST_OPERATION
WASM_EXEC_TEST(I32AtomicCompareExchange) {
EXPERIMENTAL_FLAG_SCOPE(threads);
WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier);
r.builder().SetHasSharedMemory();
uint32_t* memory =
r.builder().AddMemoryElems<uint32_t>(kWasmPageSize / sizeof(uint32_t));
BUILD(r, WASM_ATOMICS_TERNARY_OP(
kExprI32AtomicCompareExchange, WASM_I32V_1(0), WASM_GET_LOCAL(0),
WASM_GET_LOCAL(1), MachineRepresentation::kWord32));
FOR_UINT32_INPUTS(i) {
uint32_t initial = *i;
FOR_UINT32_INPUTS(j) {
r.builder().WriteMemory(&memory[0], initial);
CHECK_EQ(initial, r.Call(*i, *j));
uint32_t expected = CompareExchange(initial, *i, *j);
CHECK_EQ(expected, r.builder().ReadMemory(&memory[0]));
}
}
}
WASM_EXEC_TEST(I32AtomicCompareExchange16U) {
EXPERIMENTAL_FLAG_SCOPE(threads);
WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier);
r.builder().SetHasSharedMemory();
uint16_t* memory =
r.builder().AddMemoryElems<uint16_t>(kWasmPageSize / sizeof(uint16_t));
BUILD(r, WASM_ATOMICS_TERNARY_OP(kExprI32AtomicCompareExchange16U,
WASM_I32V_1(0), WASM_GET_LOCAL(0),
WASM_GET_LOCAL(1),
MachineRepresentation::kWord16));
FOR_UINT16_INPUTS(i) {
uint16_t initial = *i;
FOR_UINT16_INPUTS(j) {
r.builder().WriteMemory(&memory[0], initial);
CHECK_EQ(initial, r.Call(*i, *j));
uint16_t expected = CompareExchange(initial, *i, *j);
CHECK_EQ(expected, r.builder().ReadMemory(&memory[0]));
}
}
}
WASM_EXEC_TEST(I32AtomicCompareExchange8U) {
EXPERIMENTAL_FLAG_SCOPE(threads);
WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier);
r.builder().SetHasSharedMemory();
uint8_t* memory = r.builder().AddMemoryElems<uint8_t>(kWasmPageSize);
BUILD(r,
WASM_ATOMICS_TERNARY_OP(kExprI32AtomicCompareExchange8U, WASM_I32V_1(0),
WASM_GET_LOCAL(0), WASM_GET_LOCAL(1),
MachineRepresentation::kWord8));
FOR_UINT8_INPUTS(i) {
uint8_t initial = *i;
FOR_UINT8_INPUTS(j) {
r.builder().WriteMemory(&memory[0], initial);
CHECK_EQ(initial, r.Call(*i, *j));
uint8_t expected = CompareExchange(initial, *i, *j);
CHECK_EQ(expected, r.builder().ReadMemory(&memory[0]));
}
}
}
WASM_EXEC_TEST(I32AtomicLoad) {
EXPERIMENTAL_FLAG_SCOPE(threads);
WasmRunner<uint32_t> r(execution_tier);
r.builder().SetHasSharedMemory();
uint32_t* memory =
r.builder().AddMemoryElems<uint32_t>(kWasmPageSize / sizeof(uint32_t));
BUILD(r, WASM_ATOMICS_LOAD_OP(kExprI32AtomicLoad, WASM_ZERO,
MachineRepresentation::kWord32));
FOR_UINT32_INPUTS(i) {
uint32_t expected = *i;
r.builder().WriteMemory(&memory[0], expected);
CHECK_EQ(expected, r.Call());
}
}
WASM_EXEC_TEST(I32AtomicLoad16U) {
EXPERIMENTAL_FLAG_SCOPE(threads);
WasmRunner<uint32_t> r(execution_tier);
r.builder().SetHasSharedMemory();
uint16_t* memory =
r.builder().AddMemoryElems<uint16_t>(kWasmPageSize / sizeof(uint16_t));
BUILD(r, WASM_ATOMICS_LOAD_OP(kExprI32AtomicLoad16U, WASM_ZERO,
MachineRepresentation::kWord16));
FOR_UINT16_INPUTS(i) {
uint16_t expected = *i;
r.builder().WriteMemory(&memory[0], expected);
CHECK_EQ(expected, r.Call());
}
}
WASM_EXEC_TEST(I32AtomicLoad8U) {
EXPERIMENTAL_FLAG_SCOPE(threads);
WasmRunner<uint32_t> r(execution_tier);
r.builder().SetHasSharedMemory();
uint8_t* memory = r.builder().AddMemoryElems<uint8_t>(kWasmPageSize);
BUILD(r, WASM_ATOMICS_LOAD_OP(kExprI32AtomicLoad8U, WASM_ZERO,
MachineRepresentation::kWord8));
FOR_UINT8_INPUTS(i) {
uint8_t expected = *i;
r.builder().WriteMemory(&memory[0], expected);
CHECK_EQ(expected, r.Call());
}
}
WASM_EXEC_TEST(I32AtomicStoreLoad) {
EXPERIMENTAL_FLAG_SCOPE(threads);
WasmRunner<uint32_t, uint32_t> r(execution_tier);
r.builder().SetHasSharedMemory();
uint32_t* memory =
r.builder().AddMemoryElems<uint32_t>(kWasmPageSize / sizeof(uint32_t));
BUILD(r,
WASM_ATOMICS_STORE_OP(kExprI32AtomicStore, WASM_ZERO, WASM_GET_LOCAL(0),
MachineRepresentation::kWord32),
WASM_ATOMICS_LOAD_OP(kExprI32AtomicLoad, WASM_ZERO,
MachineRepresentation::kWord32));
FOR_UINT32_INPUTS(i) {
uint32_t expected = *i;
CHECK_EQ(expected, r.Call(*i));
CHECK_EQ(expected, r.builder().ReadMemory(&memory[0]));
}
}
WASM_EXEC_TEST(I32AtomicStoreLoad16U) {
EXPERIMENTAL_FLAG_SCOPE(threads);
WasmRunner<uint32_t, uint32_t> r(execution_tier);
r.builder().SetHasSharedMemory();
uint16_t* memory =
r.builder().AddMemoryElems<uint16_t>(kWasmPageSize / sizeof(uint16_t));
BUILD(
r,
WASM_ATOMICS_STORE_OP(kExprI32AtomicStore16U, WASM_ZERO,
WASM_GET_LOCAL(0), MachineRepresentation::kWord16),
WASM_ATOMICS_LOAD_OP(kExprI32AtomicLoad16U, WASM_ZERO,
MachineRepresentation::kWord16));
FOR_UINT16_INPUTS(i) {
uint16_t expected = *i;
CHECK_EQ(expected, r.Call(*i));
CHECK_EQ(expected, r.builder().ReadMemory(&memory[0]));
}
}
WASM_EXEC_TEST(I32AtomicStoreLoad8U) {
EXPERIMENTAL_FLAG_SCOPE(threads);
WasmRunner<uint32_t, uint32_t> r(execution_tier);
r.builder().SetHasSharedMemory();
uint8_t* memory = r.builder().AddMemoryElems<uint8_t>(kWasmPageSize);
BUILD(r,
WASM_ATOMICS_STORE_OP(kExprI32AtomicStore8U, WASM_ZERO,
WASM_GET_LOCAL(0), MachineRepresentation::kWord8),
WASM_ATOMICS_LOAD_OP(kExprI32AtomicLoad8U, WASM_ZERO,
MachineRepresentation::kWord8));
FOR_UINT8_INPUTS(i) {
uint8_t expected = *i;
CHECK_EQ(expected, r.Call(*i));
CHECK_EQ(*i, r.builder().ReadMemory(&memory[0]));
}
}
WASM_EXEC_TEST(I32AtomicStoreParameter) {
EXPERIMENTAL_FLAG_SCOPE(threads);
WasmRunner<uint32_t, uint32_t> r(execution_tier);
uint32_t* memory =
r.builder().AddMemoryElems<uint32_t>(kWasmPageSize / sizeof(uint32_t));
r.builder().SetHasSharedMemory();
BUILD(r,
WASM_ATOMICS_STORE_OP(kExprI32AtomicStore, WASM_ZERO, WASM_GET_LOCAL(0),
MachineRepresentation::kWord8),
WASM_ATOMICS_BINOP(kExprI32AtomicAdd, WASM_I32V_1(0), WASM_GET_LOCAL(0),
MachineRepresentation::kWord32));
CHECK_EQ(10, r.Call(10));
CHECK_EQ(20, r.builder().ReadMemory(&memory[0]));
}
} // namespace test_run_wasm_atomics
} // namespace wasm
} // namespace internal
} // namespace v8