4531c865a9
Instead of using the WASM_I32V_* macros (and other) from wasm-macro-gen.h, use the appropriate methods to encode LEB integers. This also saves some spaces for the wasm bytecode generated from asm.js. Specifically, this CL 1) renames EmitVarInt to EmitI32V and EmitVarUint to EmitU32V (on WasmFunctionBuilder). 2) introduces more methods on the WasmFunctionBuilder to emit i64v, u64v, f32, and f64 values. 3) uses the ZoneBuffer instead of a plain ZoneVector<char> in the WasmFunctionBuilder to build the body of the function. 4) introduces more helper functions on the ZoneBuffer to encode i64v, u64v, f32 and f64 values. R=ahaas@chromium.org Change-Id: Ifa59a6a67380ecf9a3823c382daf00855f5bc61e Reviewed-on: https://chromium-review.googlesource.com/486803 Reviewed-by: Andreas Haas <ahaas@chromium.org> Commit-Queue: Clemens Hammacher <clemensh@chromium.org> Cr-Commit-Position: refs/heads/master@{#44842}
438 lines
14 KiB
C++
438 lines
14 KiB
C++
// Copyright 2017 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <algorithm>
|
|
|
|
#include "include/v8.h"
|
|
#include "src/isolate.h"
|
|
#include "src/objects-inl.h"
|
|
#include "src/objects.h"
|
|
#include "src/ostreams.h"
|
|
#include "src/wasm/wasm-interpreter.h"
|
|
#include "src/wasm/wasm-module-builder.h"
|
|
#include "src/wasm/wasm-module.h"
|
|
#include "test/common/wasm/test-signatures.h"
|
|
#include "test/common/wasm/wasm-module-runner.h"
|
|
#include "test/fuzzer/fuzzer-support.h"
|
|
|
|
#define WASM_CODE_FUZZER_HASH_SEED 83
|
|
|
|
typedef uint8_t byte;
|
|
|
|
using namespace v8::internal::wasm;
|
|
|
|
namespace {
|
|
|
|
class DataRange {
|
|
const uint8_t* data_;
|
|
size_t size_;
|
|
|
|
public:
|
|
DataRange(const uint8_t* data, size_t size) : data_(data), size_(size) {}
|
|
|
|
size_t size() const { return size_; }
|
|
|
|
std::pair<DataRange, DataRange> split(uint32_t index) const {
|
|
return std::make_pair(DataRange(data_, index),
|
|
DataRange(data_ + index, size() - index));
|
|
}
|
|
|
|
std::pair<DataRange, DataRange> split() {
|
|
uint16_t index = get<uint16_t>();
|
|
if (size() > 0) {
|
|
index = index % size();
|
|
} else {
|
|
index = 0;
|
|
}
|
|
return split(index);
|
|
}
|
|
|
|
template <typename T>
|
|
T get() {
|
|
if (size() == 0) {
|
|
return T();
|
|
} else {
|
|
// We want to support the case where we have less than sizeof(T) bytes
|
|
// remaining in the slice. For example, if we emit an i32 constant, it's
|
|
// okay if we don't have a full four bytes available, we'll just use what
|
|
// we have. We aren't concerned about endianness because we are generating
|
|
// arbitrary expressions.
|
|
const size_t num_bytes = std::min(sizeof(T), size());
|
|
T result = T();
|
|
memcpy(&result, data_, num_bytes);
|
|
data_ += num_bytes;
|
|
size_ -= num_bytes;
|
|
return result;
|
|
}
|
|
}
|
|
};
|
|
|
|
class WasmGenerator {
|
|
template <WasmOpcode Op, ValueType... Args>
|
|
std::function<void(DataRange)> op() {
|
|
return [this](DataRange data) {
|
|
Generate<Args...>(data);
|
|
builder_->Emit(Op);
|
|
};
|
|
}
|
|
|
|
template <ValueType T>
|
|
std::function<void(DataRange)> block() {
|
|
return [this](DataRange data) {
|
|
blocks_.push_back(T);
|
|
builder_->EmitWithU8(
|
|
kExprBlock, static_cast<uint8_t>(WasmOpcodes::ValueTypeCodeFor(T)));
|
|
Generate<T>(data);
|
|
builder_->Emit(kExprEnd);
|
|
blocks_.pop_back();
|
|
};
|
|
}
|
|
|
|
template <ValueType T>
|
|
std::function<void(DataRange)> block_br() {
|
|
return [this](DataRange data) {
|
|
blocks_.push_back(T);
|
|
builder_->EmitWithU8(
|
|
kExprBlock, static_cast<uint8_t>(WasmOpcodes::ValueTypeCodeFor(T)));
|
|
|
|
const uint32_t target_block = data.get<uint32_t>() % blocks_.size();
|
|
const ValueType break_type = blocks_[target_block];
|
|
|
|
Generate(break_type, data);
|
|
builder_->EmitWithI32V(kExprBr, target_block);
|
|
builder_->Emit(kExprEnd);
|
|
blocks_.pop_back();
|
|
};
|
|
}
|
|
|
|
public:
|
|
WasmGenerator(v8::internal::wasm::WasmFunctionBuilder* fn) : builder_(fn) {}
|
|
|
|
void Generate(ValueType type, DataRange data);
|
|
|
|
template <ValueType T>
|
|
void Generate(DataRange data);
|
|
|
|
template <ValueType T1, ValueType T2, ValueType... Ts>
|
|
void Generate(DataRange data) {
|
|
const auto parts = data.split();
|
|
Generate<T1>(parts.first);
|
|
Generate<T2, Ts...>(parts.second);
|
|
}
|
|
|
|
private:
|
|
v8::internal::wasm::WasmFunctionBuilder* builder_;
|
|
std::vector<ValueType> blocks_;
|
|
};
|
|
|
|
template <>
|
|
void WasmGenerator::Generate<kWasmI32>(DataRange data) {
|
|
if (data.size() <= sizeof(uint32_t)) {
|
|
builder_->EmitI32Const(data.get<uint32_t>());
|
|
} else {
|
|
const std::function<void(DataRange)> alternates[] = {
|
|
op<kExprI32Eqz, kWasmI32>(), //
|
|
op<kExprI32Eq, kWasmI32, kWasmI32>(),
|
|
op<kExprI32Ne, kWasmI32, kWasmI32>(),
|
|
op<kExprI32LtS, kWasmI32, kWasmI32>(),
|
|
op<kExprI32LtU, kWasmI32, kWasmI32>(),
|
|
op<kExprI32GeS, kWasmI32, kWasmI32>(),
|
|
op<kExprI32GeU, kWasmI32, kWasmI32>(),
|
|
|
|
op<kExprI64Eqz, kWasmI64>(), //
|
|
op<kExprI64Eq, kWasmI64, kWasmI64>(),
|
|
op<kExprI64Ne, kWasmI64, kWasmI64>(),
|
|
op<kExprI64LtS, kWasmI64, kWasmI64>(),
|
|
op<kExprI64LtU, kWasmI64, kWasmI64>(),
|
|
op<kExprI64GeS, kWasmI64, kWasmI64>(),
|
|
op<kExprI64GeU, kWasmI64, kWasmI64>(),
|
|
|
|
op<kExprF32Eq, kWasmF32, kWasmF32>(),
|
|
op<kExprF32Ne, kWasmF32, kWasmF32>(),
|
|
op<kExprF32Lt, kWasmF32, kWasmF32>(),
|
|
op<kExprF32Ge, kWasmF32, kWasmF32>(),
|
|
|
|
op<kExprF64Eq, kWasmF64, kWasmF64>(),
|
|
op<kExprF64Ne, kWasmF64, kWasmF64>(),
|
|
op<kExprF64Lt, kWasmF64, kWasmF64>(),
|
|
op<kExprF64Ge, kWasmF64, kWasmF64>(),
|
|
|
|
op<kExprI32Add, kWasmI32, kWasmI32>(),
|
|
op<kExprI32Sub, kWasmI32, kWasmI32>(),
|
|
op<kExprI32Mul, kWasmI32, kWasmI32>(),
|
|
|
|
op<kExprI32DivS, kWasmI32, kWasmI32>(),
|
|
op<kExprI32DivU, kWasmI32, kWasmI32>(),
|
|
op<kExprI32RemS, kWasmI32, kWasmI32>(),
|
|
op<kExprI32RemU, kWasmI32, kWasmI32>(),
|
|
|
|
op<kExprI32And, kWasmI32, kWasmI32>(),
|
|
op<kExprI32Ior, kWasmI32, kWasmI32>(),
|
|
op<kExprI32Xor, kWasmI32, kWasmI32>(),
|
|
op<kExprI32Shl, kWasmI32, kWasmI32>(),
|
|
op<kExprI32ShrU, kWasmI32, kWasmI32>(),
|
|
op<kExprI32ShrS, kWasmI32, kWasmI32>(),
|
|
op<kExprI32Ror, kWasmI32, kWasmI32>(),
|
|
op<kExprI32Rol, kWasmI32, kWasmI32>(),
|
|
|
|
op<kExprI32Clz, kWasmI32>(), //
|
|
op<kExprI32Ctz, kWasmI32>(), //
|
|
op<kExprI32Popcnt, kWasmI32>(),
|
|
|
|
op<kExprI32ConvertI64, kWasmI64>(), //
|
|
op<kExprI32SConvertF32, kWasmF32>(),
|
|
op<kExprI32UConvertF32, kWasmF32>(),
|
|
op<kExprI32SConvertF64, kWasmF64>(),
|
|
op<kExprI32UConvertF64, kWasmF64>(),
|
|
op<kExprI32ReinterpretF32, kWasmF32>(),
|
|
|
|
block<kWasmI32>(),
|
|
block_br<kWasmI32>()};
|
|
|
|
static_assert(arraysize(alternates) < std::numeric_limits<uint8_t>::max(),
|
|
"Too many alternates. Replace with a bigger type if needed.");
|
|
const auto which = data.get<uint8_t>();
|
|
|
|
alternates[which % arraysize(alternates)](data);
|
|
}
|
|
}
|
|
|
|
template <>
|
|
void WasmGenerator::Generate<kWasmI64>(DataRange data) {
|
|
if (data.size() <= sizeof(uint64_t)) {
|
|
builder_->EmitI64Const(data.get<int64_t>());
|
|
} else {
|
|
const std::function<void(DataRange)> alternates[] = {
|
|
op<kExprI64Add, kWasmI64, kWasmI64>(),
|
|
op<kExprI64Sub, kWasmI64, kWasmI64>(),
|
|
op<kExprI64Mul, kWasmI64, kWasmI64>(),
|
|
|
|
op<kExprI64DivS, kWasmI64, kWasmI64>(),
|
|
op<kExprI64DivU, kWasmI64, kWasmI64>(),
|
|
op<kExprI64RemS, kWasmI64, kWasmI64>(),
|
|
op<kExprI64RemU, kWasmI64, kWasmI64>(),
|
|
|
|
op<kExprI64And, kWasmI64, kWasmI64>(),
|
|
op<kExprI64Ior, kWasmI64, kWasmI64>(),
|
|
op<kExprI64Xor, kWasmI64, kWasmI64>(),
|
|
op<kExprI64Shl, kWasmI64, kWasmI64>(),
|
|
op<kExprI64ShrU, kWasmI64, kWasmI64>(),
|
|
op<kExprI64ShrS, kWasmI64, kWasmI64>(),
|
|
op<kExprI64Ror, kWasmI64, kWasmI64>(),
|
|
op<kExprI64Rol, kWasmI64, kWasmI64>(),
|
|
|
|
op<kExprI64Clz, kWasmI64>(),
|
|
op<kExprI64Ctz, kWasmI64>(),
|
|
op<kExprI64Popcnt, kWasmI64>(),
|
|
|
|
block<kWasmI64>(),
|
|
block_br<kWasmI64>()};
|
|
|
|
static_assert(arraysize(alternates) < std::numeric_limits<uint8_t>::max(),
|
|
"Too many alternates. Replace with a bigger type if needed.");
|
|
const auto which = data.get<uint8_t>();
|
|
|
|
alternates[which % arraysize(alternates)](data);
|
|
}
|
|
}
|
|
|
|
template <>
|
|
void WasmGenerator::Generate<kWasmF32>(DataRange data) {
|
|
if (data.size() <= sizeof(float)) {
|
|
builder_->EmitF32Const(data.get<float>());
|
|
} else {
|
|
const std::function<void(DataRange)> alternates[] = {
|
|
op<kExprF32Add, kWasmF32, kWasmF32>(),
|
|
op<kExprF32Sub, kWasmF32, kWasmF32>(),
|
|
op<kExprF32Mul, kWasmF32, kWasmF32>(),
|
|
|
|
block<kWasmF32>(), block_br<kWasmF32>()};
|
|
|
|
static_assert(arraysize(alternates) < std::numeric_limits<uint8_t>::max(),
|
|
"Too many alternates. Replace with a bigger type if needed.");
|
|
const auto which = data.get<uint8_t>();
|
|
|
|
alternates[which % arraysize(alternates)](data);
|
|
}
|
|
}
|
|
|
|
template <>
|
|
void WasmGenerator::Generate<kWasmF64>(DataRange data) {
|
|
if (data.size() <= sizeof(double)) {
|
|
builder_->EmitF64Const(data.get<double>());
|
|
} else {
|
|
const std::function<void(DataRange)> alternates[] = {
|
|
op<kExprF64Add, kWasmF64, kWasmF64>(),
|
|
op<kExprF64Sub, kWasmF64, kWasmF64>(),
|
|
op<kExprF64Mul, kWasmF64, kWasmF64>(),
|
|
|
|
block<kWasmF64>(), block_br<kWasmF64>()};
|
|
|
|
static_assert(arraysize(alternates) < std::numeric_limits<uint8_t>::max(),
|
|
"Too many alternates. Replace with a bigger type if needed.");
|
|
const auto which = data.get<uint8_t>();
|
|
|
|
alternates[which % arraysize(alternates)](data);
|
|
}
|
|
}
|
|
|
|
void WasmGenerator::Generate(ValueType type, DataRange data) {
|
|
switch (type) {
|
|
case kWasmI32:
|
|
return Generate<kWasmI32>(data);
|
|
case kWasmI64:
|
|
return Generate<kWasmI64>(data);
|
|
case kWasmF32:
|
|
return Generate<kWasmF32>(data);
|
|
case kWasmF64:
|
|
return Generate<kWasmF64>(data);
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
}
|
|
|
|
extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
|
|
// Save the flag so that we can change it and restore it later.
|
|
bool generate_test = v8::internal::FLAG_wasm_code_fuzzer_gen_test;
|
|
if (generate_test) {
|
|
v8::internal::OFStream os(stdout);
|
|
|
|
os << "// Copyright 2017 the V8 project authors. All rights reserved."
|
|
<< std::endl;
|
|
os << "// Use of this source code is governed by a BSD-style license that "
|
|
"can be"
|
|
<< std::endl;
|
|
os << "// found in the LICENSE file." << std::endl;
|
|
os << std::endl;
|
|
os << "load(\"test/mjsunit/wasm/wasm-constants.js\");" << std::endl;
|
|
os << "load(\"test/mjsunit/wasm/wasm-module-builder.js\");" << std::endl;
|
|
os << std::endl;
|
|
os << "(function() {" << std::endl;
|
|
os << " var builder = new WasmModuleBuilder();" << std::endl;
|
|
os << " builder.addMemory(16, 32, false);" << std::endl;
|
|
os << " builder.addFunction(\"test\", kSig_i_iii)" << std::endl;
|
|
os << " .addBodyWithEnd([" << std::endl;
|
|
}
|
|
v8_fuzzer::FuzzerSupport* support = v8_fuzzer::FuzzerSupport::Get();
|
|
v8::Isolate* isolate = support->GetIsolate();
|
|
v8::internal::Isolate* i_isolate =
|
|
reinterpret_cast<v8::internal::Isolate*>(isolate);
|
|
|
|
// Clear any pending exceptions from a prior run.
|
|
if (i_isolate->has_pending_exception()) {
|
|
i_isolate->clear_pending_exception();
|
|
}
|
|
|
|
v8::Isolate::Scope isolate_scope(isolate);
|
|
v8::HandleScope handle_scope(isolate);
|
|
v8::Context::Scope context_scope(support->GetContext());
|
|
v8::TryCatch try_catch(isolate);
|
|
|
|
v8::internal::AccountingAllocator allocator;
|
|
v8::internal::Zone zone(&allocator, ZONE_NAME);
|
|
|
|
TestSignatures sigs;
|
|
|
|
WasmModuleBuilder builder(&zone);
|
|
|
|
v8::internal::wasm::WasmFunctionBuilder* f =
|
|
builder.AddFunction(sigs.i_iii());
|
|
|
|
WasmGenerator gen(f);
|
|
gen.Generate<kWasmI32>(DataRange(data, static_cast<uint32_t>(size)));
|
|
|
|
uint8_t end_opcode = kExprEnd;
|
|
f->EmitCode(&end_opcode, 1);
|
|
f->ExportAs(v8::internal::CStrVector("main"));
|
|
|
|
ZoneBuffer buffer(&zone);
|
|
builder.WriteTo(buffer);
|
|
|
|
v8::internal::wasm::testing::SetupIsolateForWasmModule(i_isolate);
|
|
|
|
v8::internal::HandleScope scope(i_isolate);
|
|
|
|
ErrorThrower interpreter_thrower(i_isolate, "Interpreter");
|
|
std::unique_ptr<const WasmModule> module(testing::DecodeWasmModuleForTesting(
|
|
i_isolate, &interpreter_thrower, buffer.begin(), buffer.end(),
|
|
v8::internal::wasm::ModuleOrigin::kWasmOrigin, true));
|
|
|
|
// Clear the flag so that the WebAssembly code is not printed twice.
|
|
v8::internal::FLAG_wasm_code_fuzzer_gen_test = false;
|
|
if (module == nullptr) {
|
|
if (generate_test) {
|
|
v8::internal::OFStream os(stdout);
|
|
os << " ])" << std::endl;
|
|
os << " .exportFunc();" << std::endl;
|
|
os << " assertThrows(function() { builder.instantiate(); });"
|
|
<< std::endl;
|
|
os << "})();" << std::endl;
|
|
}
|
|
return 0;
|
|
}
|
|
if (generate_test) {
|
|
v8::internal::OFStream os(stdout);
|
|
os << " ])" << std::endl;
|
|
os << " .exportFunc();" << std::endl;
|
|
os << " var module = builder.instantiate();" << std::endl;
|
|
os << " module.exports.test(1, 2, 3);" << std::endl;
|
|
os << "})();" << std::endl;
|
|
}
|
|
|
|
ModuleWireBytes wire_bytes(buffer.begin(), buffer.end());
|
|
int32_t result_interpreted;
|
|
bool possible_nondeterminism = false;
|
|
{
|
|
WasmVal args[] = {WasmVal(1), WasmVal(2), WasmVal(3)};
|
|
result_interpreted = testing::InterpretWasmModule(
|
|
i_isolate, &interpreter_thrower, module.get(), wire_bytes, 0, args,
|
|
&possible_nondeterminism);
|
|
}
|
|
|
|
ErrorThrower compiler_thrower(i_isolate, "Compiler");
|
|
v8::internal::Handle<v8::internal::JSObject> instance =
|
|
testing::InstantiateModuleForTesting(i_isolate, &compiler_thrower,
|
|
module.get(), wire_bytes);
|
|
// Restore the flag.
|
|
v8::internal::FLAG_wasm_code_fuzzer_gen_test = generate_test;
|
|
if (!interpreter_thrower.error()) {
|
|
CHECK(!instance.is_null());
|
|
} else {
|
|
return 0;
|
|
}
|
|
int32_t result_compiled;
|
|
{
|
|
v8::internal::Handle<v8::internal::Object> arguments[] = {
|
|
v8::internal::handle(v8::internal::Smi::FromInt(1), i_isolate),
|
|
v8::internal::handle(v8::internal::Smi::FromInt(2), i_isolate),
|
|
v8::internal::handle(v8::internal::Smi::FromInt(3), i_isolate)};
|
|
result_compiled = testing::CallWasmFunctionForTesting(
|
|
i_isolate, instance, &compiler_thrower, "main", arraysize(arguments),
|
|
arguments, v8::internal::wasm::ModuleOrigin::kWasmOrigin);
|
|
}
|
|
if (result_interpreted == bit_cast<int32_t>(0xdeadbeef) &&
|
|
!possible_nondeterminism) {
|
|
CHECK(i_isolate->has_pending_exception());
|
|
i_isolate->clear_pending_exception();
|
|
} else {
|
|
// The WebAssembly spec allows the sign bit of NaN to be non-deterministic.
|
|
// This sign bit may cause result_interpreted to be different than
|
|
// result_compiled. Therefore we do not check the equality of the results
|
|
// if the execution may have produced a NaN at some point.
|
|
if (!possible_nondeterminism && (result_interpreted != result_compiled)) {
|
|
printf("\nInterpreter returned 0x%x but compiled code returned 0x%x\n",
|
|
result_interpreted, result_compiled);
|
|
V8_Fatal(__FILE__, __LINE__, "WasmCodeFuzzerHash=%x",
|
|
v8::internal::StringHasher::HashSequentialString(
|
|
data, static_cast<int>(size), WASM_CODE_FUZZER_HASH_SEED));
|
|
}
|
|
}
|
|
return 0;
|
|
}
|