v8/test/unittests/compiler/machine-operator-reducer-unittest.cc
Peter Kasting a7f4ca5fd0 Place bit_cast<>() in the v8::base:: namespace.
This prevents ambiguity errors in C++20 due to ADL when casting types in
std::, which gains std::bit_cast<>().

Bug: chromium:1284275
Change-Id: I25046d1952a9304852e481ad8b84049c6769c289
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3625838
Auto-Submit: Peter Kasting <pkasting@chromium.org>
Reviewed-by: Adam Klein <adamk@chromium.org>
Reviewed-by: Michael Lippautz <mlippautz@chromium.org>
Commit-Queue: Adam Klein <adamk@chromium.org>
Cr-Commit-Position: refs/heads/main@{#80378}
2022-05-05 17:56:39 +00:00

2914 lines
107 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/machine-operator-reducer.h"
#include <limits>
#include "src/base/bits.h"
#include "src/base/division-by-constant.h"
#include "src/base/ieee754.h"
#include "src/base/overflowing-math.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/machine-operator.h"
#include "src/compiler/typer.h"
#include "src/numbers/conversions-inl.h"
#include "test/unittests/compiler/graph-unittest.h"
#include "test/unittests/compiler/node-test-utils.h"
#include "testing/gmock-support.h"
using testing::AllOf;
using testing::BitEq;
using testing::Capture;
using testing::CaptureEq;
using testing::NanSensitiveDoubleEq;
namespace v8 {
namespace internal {
namespace compiler {
class MachineOperatorReducerTest : public GraphTest {
public:
explicit MachineOperatorReducerTest(int num_parameters = 2)
: GraphTest(num_parameters),
machine_(zone(), MachineType::PointerRepresentation(),
MachineOperatorBuilder::kAllOptionalOps),
common_(zone()),
javascript_(zone()),
jsgraph_(isolate(), graph(), &common_, &javascript_, nullptr,
&machine_),
graph_reducer_(zone(), graph(), tick_counter(), broker(),
jsgraph_.Dead()) {}
protected:
Reduction Reduce(Node* node) {
JSOperatorBuilder javascript(zone());
JSGraph jsgraph(isolate(), graph(), common(), &javascript, nullptr,
&machine_);
MachineOperatorReducer reducer(&graph_reducer_, &jsgraph);
return reducer.Reduce(node);
}
Matcher<Node*> IsTruncatingDiv(const Matcher<Node*>& dividend_matcher,
const int32_t divisor) {
base::MagicNumbersForDivision<uint32_t> const mag =
base::SignedDivisionByConstant(base::bit_cast<uint32_t>(divisor));
int32_t const multiplier = base::bit_cast<int32_t>(mag.multiplier);
int32_t const shift = base::bit_cast<int32_t>(mag.shift);
Matcher<Node*> quotient_matcher =
IsInt32MulHigh(dividend_matcher, IsInt32Constant(multiplier));
if (divisor > 0 && multiplier < 0) {
quotient_matcher = IsInt32Add(quotient_matcher, dividend_matcher);
} else if (divisor < 0 && multiplier > 0) {
quotient_matcher = IsInt32Sub(quotient_matcher, dividend_matcher);
}
if (shift) {
quotient_matcher = IsWord32Sar(quotient_matcher, IsInt32Constant(shift));
}
return IsInt32Add(quotient_matcher,
IsWord32Shr(dividend_matcher, IsInt32Constant(31)));
}
MachineOperatorBuilder* machine() { return &machine_; }
private:
MachineOperatorBuilder machine_;
CommonOperatorBuilder common_;
JSOperatorBuilder javascript_;
JSGraph jsgraph_;
GraphReducer graph_reducer_;
};
template <typename T>
class MachineOperatorReducerTestWithParam
: public MachineOperatorReducerTest,
public ::testing::WithParamInterface<T> {
public:
explicit MachineOperatorReducerTestWithParam(int num_parameters = 2)
: MachineOperatorReducerTest(num_parameters) {}
~MachineOperatorReducerTestWithParam() override = default;
};
namespace {
const float kFloat32Values[] = {
-std::numeric_limits<float>::infinity(), -2.70497e+38f, -1.4698e+37f,
-1.22813e+35f, -1.20555e+35f, -1.34584e+34f,
-1.0079e+32f, -6.49364e+26f, -3.06077e+25f,
-1.46821e+25f, -1.17658e+23f, -1.9617e+22f,
-2.7357e+20f, -1.48708e+13f, -1.89633e+12f,
-4.66622e+11f, -2.22581e+11f, -1.45381e+10f,
-1.3956e+09f, -1.32951e+09f, -1.30721e+09f,
-1.19756e+09f, -9.26822e+08f, -6.35647e+08f,
-4.00037e+08f, -1.81227e+08f, -5.09256e+07f,
-964300.0f, -192446.0f, -28455.0f,
-27194.0f, -26401.0f, -20575.0f,
-17069.0f, -9167.0f, -960.178f,
-113.0f, -62.0f, -15.0f,
-7.0f, -0.0256635f, -4.60374e-07f,
-3.63759e-10f, -4.30175e-14f, -5.27385e-15f,
-1.48084e-15f, -1.05755e-19f, -3.2995e-21f,
-1.67354e-23f, -1.11885e-23f, -1.78506e-30f,
-5.07594e-31f, -3.65799e-31f, -1.43718e-34f,
-1.27126e-38f, -0.0f, 0.0f,
1.17549e-38f, 1.56657e-37f, 4.08512e-29f,
3.31357e-28f, 6.25073e-22f, 4.1723e-13f,
1.44343e-09f, 5.27004e-08f, 9.48298e-08f,
5.57888e-07f, 4.89988e-05f, 0.244326f,
12.4895f, 19.0f, 47.0f,
106.0f, 538.324f, 564.536f,
819.124f, 7048.0f, 12611.0f,
19878.0f, 20309.0f, 797056.0f,
1.77219e+09f, 1.51116e+11f, 4.18193e+13f,
3.59167e+16f, 3.38211e+19f, 2.67488e+20f,
1.78831e+21f, 9.20914e+21f, 8.35654e+23f,
1.4495e+24f, 5.94015e+25f, 4.43608e+30f,
2.44502e+33f, 2.61152e+33f, 1.38178e+37f,
1.71306e+37f, 3.31899e+38f, 3.40282e+38f,
std::numeric_limits<float>::infinity()};
const double kFloat64Values[] = {
-V8_INFINITY, -4.23878e+275, -5.82632e+265, -6.60355e+220, -6.26172e+212,
-2.56222e+211, -4.82408e+201, -1.84106e+157, -1.63662e+127, -1.55772e+100,
-1.67813e+72, -2.3382e+55, -3.179e+30, -1.441e+09, -1.0647e+09,
-7.99361e+08, -5.77375e+08, -2.20984e+08, -32757, -13171,
-9970, -3984, -107, -105, -92,
-77, -61, -0.000208163, -1.86685e-06, -1.17296e-10,
-9.26358e-11, -5.08004e-60, -1.74753e-65, -1.06561e-71, -5.67879e-79,
-5.78459e-130, -2.90989e-171, -7.15489e-243, -3.76242e-252, -1.05639e-263,
-4.40497e-267, -2.19666e-273, -4.9998e-276, -5.59821e-278, -2.03855e-282,
-5.99335e-283, -7.17554e-284, -3.11744e-309, -0.0, 0.0,
2.22507e-308, 1.30127e-270, 7.62898e-260, 4.00313e-249, 3.16829e-233,
1.85244e-228, 2.03544e-129, 1.35126e-110, 1.01182e-106, 5.26333e-94,
1.35292e-90, 2.85394e-83, 1.78323e-77, 5.4967e-57, 1.03207e-25,
4.57401e-25, 1.58738e-05, 2, 125, 2310,
9636, 14802, 17168, 28945, 29305,
4.81336e+07, 1.41207e+08, 4.65962e+08, 1.40499e+09, 2.12648e+09,
8.80006e+30, 1.4446e+45, 1.12164e+54, 2.48188e+89, 6.71121e+102,
3.074e+112, 4.9699e+152, 5.58383e+166, 4.30654e+172, 7.08824e+185,
9.6586e+214, 2.028e+223, 6.63277e+243, 1.56192e+261, 1.23202e+269,
5.72883e+289, 8.5798e+290, 1.40256e+294, 1.79769e+308, V8_INFINITY};
const int32_t kInt32Values[] = {
std::numeric_limits<int32_t>::min(), -1914954528, -1698749618,
-1578693386, -1577976073, -1573998034,
-1529085059, -1499540537, -1299205097,
-1090814845, -938186388, -806828902,
-750927650, -520676892, -513661538,
-453036354, -433622833, -282638793,
-28375, -27788, -22770,
-18806, -14173, -11956,
-11200, -10212, -8160,
-3751, -2758, -1522,
-121, -120, -118,
-117, -106, -84,
-80, -74, -59,
-52, -48, -39,
-35, -17, -11,
-10, -9, -7,
-5, 0, 9,
12, 17, 23,
29, 31, 33,
35, 40, 47,
55, 56, 62,
64, 67, 68,
69, 74, 79,
84, 89, 90,
97, 104, 118,
124, 126, 127,
7278, 17787, 24136,
24202, 25570, 26680,
30242, 32399, 420886487,
642166225, 821912648, 822577803,
851385718, 1212241078, 1411419304,
1589626102, 1596437184, 1876245816,
1954730266, 2008792749, 2045320228,
std::numeric_limits<int32_t>::max()};
const int64_t kInt64Values[] = {std::numeric_limits<int64_t>::min(),
int64_t{-8974392461363618006},
int64_t{-8874367046689588135},
int64_t{-8269197512118230839},
int64_t{-8146091527100606733},
int64_t{-7550917981466150848},
int64_t{-7216590251577894337},
int64_t{-6464086891160048440},
int64_t{-6365616494908257190},
int64_t{-6305630541365849726},
int64_t{-5982222642272245453},
int64_t{-5510103099058504169},
int64_t{-5496838675802432701},
int64_t{-4047626578868642657},
int64_t{-4033755046900164544},
int64_t{-3554299241457877041},
int64_t{-2482258764588614470},
int64_t{-1688515425526875335},
int64_t{-924784137176548532},
int64_t{-725316567157391307},
int64_t{-439022654781092241},
int64_t{-105545757668917080},
int64_t{-2088319373},
int64_t{-2073699916},
int64_t{-1844949911},
int64_t{-1831090548},
int64_t{-1756711933},
int64_t{-1559409497},
int64_t{-1281179700},
int64_t{-1211513985},
int64_t{-1182371520},
int64_t{-785934753},
int64_t{-767480697},
int64_t{-705745662},
int64_t{-514362436},
int64_t{-459916580},
int64_t{-312328082},
int64_t{-302949707},
int64_t{-285499304},
int64_t{-125701262},
int64_t{-95139843},
int64_t{-32768},
int64_t{-27542},
int64_t{-23600},
int64_t{-18582},
int64_t{-17770},
int64_t{-9086},
int64_t{-9010},
int64_t{-8244},
int64_t{-2890},
int64_t{-103},
int64_t{-34},
int64_t{-27},
int64_t{-25},
int64_t{-9},
int64_t{-7},
int64_t{0},
int64_t{2},
int64_t{38},
int64_t{58},
int64_t{65},
int64_t{93},
int64_t{111},
int64_t{1003},
int64_t{1267},
int64_t{12797},
int64_t{23122},
int64_t{28200},
int64_t{30888},
int64_t{42648848},
int64_t{116836693},
int64_t{263003643},
int64_t{571039860},
int64_t{1079398689},
int64_t{1145196402},
int64_t{1184846321},
int64_t{1758281648},
int64_t{1859991374},
int64_t{1960251588},
int64_t{2042443199},
int64_t{296220586027987448},
int64_t{1015494173071134726},
int64_t{1151237951914455318},
int64_t{1331941174616854174},
int64_t{2022020418667972654},
int64_t{2450251424374977035},
int64_t{3668393562685561486},
int64_t{4858229301215502171},
int64_t{4919426235170669383},
int64_t{5034286595330341762},
int64_t{5055797915536941182},
int64_t{6072389716149252074},
int64_t{6185309910199801210},
int64_t{6297328311011094138},
int64_t{6932372858072165827},
int64_t{8483640924987737210},
int64_t{8663764179455849203},
int64_t{8877197042645298254},
int64_t{8901543506779157333},
std::numeric_limits<int64_t>::max()};
const uint32_t kUint32Values[] = {
0x00000000, 0x00000001, 0xFFFFFFFF, 0x1B09788B, 0x04C5FCE8, 0xCC0DE5BF,
0x273A798E, 0x187937A3, 0xECE3AF83, 0x5495A16B, 0x0B668ECC, 0x11223344,
0x0000009E, 0x00000043, 0x0000AF73, 0x0000116B, 0x00658ECC, 0x002B3B4C,
0x88776655, 0x70000000, 0x07200000, 0x7FFFFFFF, 0x56123761, 0x7FFFFF00,
0x761C4761, 0x80000000, 0x88888888, 0xA0000000, 0xDDDDDDDD, 0xE0000000,
0xEEEEEEEE, 0xFFFFFFFD, 0xF0000000, 0x007FFFFF, 0x003FFFFF, 0x001FFFFF,
0x000FFFFF, 0x0007FFFF, 0x0003FFFF, 0x0001FFFF, 0x0000FFFF, 0x00007FFF,
0x00003FFF, 0x00001FFF, 0x00000FFF, 0x000007FF, 0x000003FF, 0x000001FF};
struct ComparisonBinaryOperator {
const Operator* (MachineOperatorBuilder::*constructor)();
const char* constructor_name;
};
std::ostream& operator<<(std::ostream& os,
ComparisonBinaryOperator const& cbop) {
return os << cbop.constructor_name;
}
const ComparisonBinaryOperator kComparisonBinaryOperators[] = {
#define OPCODE(Opcode) \
{ &MachineOperatorBuilder::Opcode, #Opcode } \
,
MACHINE_COMPARE_BINOP_LIST(OPCODE)
#undef OPCODE
};
// Avoid undefined behavior on signed integer overflow.
int32_t Shl(int32_t x, int32_t y) { return static_cast<uint32_t>(x) << y; }
int64_t Shl(int64_t x, int64_t y) { return static_cast<uint64_t>(x) << y; }
} // namespace
// -----------------------------------------------------------------------------
// ChangeFloat64ToFloat32
TEST_F(MachineOperatorReducerTest, ChangeFloat64ToFloat32WithConstant) {
TRACED_FOREACH(float, x, kFloat32Values) {
Reduction reduction = Reduce(graph()->NewNode(
machine()->ChangeFloat32ToFloat64(), Float32Constant(x)));
ASSERT_TRUE(reduction.Changed());
EXPECT_THAT(reduction.replacement(), IsFloat64Constant(BitEq<double>(x)));
}
}
// -----------------------------------------------------------------------------
// ChangeFloat64ToInt32
TEST_F(MachineOperatorReducerTest,
ChangeFloat64ToInt32WithChangeInt32ToFloat64) {
Node* value = Parameter(0);
Reduction reduction = Reduce(graph()->NewNode(
machine()->ChangeFloat64ToInt32(),
graph()->NewNode(machine()->ChangeInt32ToFloat64(), value)));
ASSERT_TRUE(reduction.Changed());
EXPECT_EQ(value, reduction.replacement());
}
TEST_F(MachineOperatorReducerTest, ChangeFloat64ToInt32WithConstant) {
TRACED_FOREACH(int32_t, x, kInt32Values) {
Reduction reduction = Reduce(graph()->NewNode(
machine()->ChangeFloat64ToInt32(), Float64Constant(FastI2D(x))));
ASSERT_TRUE(reduction.Changed());
EXPECT_THAT(reduction.replacement(), IsInt32Constant(x));
}
}
// -----------------------------------------------------------------------------
// ChangeFloat64ToInt64
TEST_F(MachineOperatorReducerTest,
ChangeFloat64ToInt64WithChangeInt64ToFloat64) {
Node* value = Parameter(0);
Reduction reduction = Reduce(graph()->NewNode(
machine()->ChangeFloat64ToInt64(),
graph()->NewNode(machine()->ChangeInt64ToFloat64(), value)));
ASSERT_TRUE(reduction.Changed());
EXPECT_EQ(value, reduction.replacement());
}
TEST_F(MachineOperatorReducerTest, ChangeFloat64ToInt64WithConstant) {
TRACED_FOREACH(int32_t, x, kInt32Values) {
Reduction reduction = Reduce(graph()->NewNode(
machine()->ChangeFloat64ToInt64(), Float64Constant(FastI2D(x))));
ASSERT_TRUE(reduction.Changed());
EXPECT_THAT(reduction.replacement(), IsInt64Constant(x));
}
}
// -----------------------------------------------------------------------------
// ChangeFloat64ToUint32
TEST_F(MachineOperatorReducerTest,
ChangeFloat64ToUint32WithChangeUint32ToFloat64) {
Node* value = Parameter(0);
Reduction reduction = Reduce(graph()->NewNode(
machine()->ChangeFloat64ToUint32(),
graph()->NewNode(machine()->ChangeUint32ToFloat64(), value)));
ASSERT_TRUE(reduction.Changed());
EXPECT_EQ(value, reduction.replacement());
}
TEST_F(MachineOperatorReducerTest, ChangeFloat64ToUint32WithConstant) {
TRACED_FOREACH(uint32_t, x, kUint32Values) {
Reduction reduction = Reduce(graph()->NewNode(
machine()->ChangeFloat64ToUint32(), Float64Constant(FastUI2D(x))));
ASSERT_TRUE(reduction.Changed());
EXPECT_THAT(reduction.replacement(),
IsInt32Constant(base::bit_cast<int32_t>(x)));
}
}
// -----------------------------------------------------------------------------
// ChangeInt32ToFloat64
TEST_F(MachineOperatorReducerTest, ChangeInt32ToFloat64WithConstant) {
TRACED_FOREACH(int32_t, x, kInt32Values) {
Reduction reduction = Reduce(
graph()->NewNode(machine()->ChangeInt32ToFloat64(), Int32Constant(x)));
ASSERT_TRUE(reduction.Changed());
EXPECT_THAT(reduction.replacement(), IsFloat64Constant(BitEq(FastI2D(x))));
}
}
// -----------------------------------------------------------------------------
// ChangeInt32ToInt64
TEST_F(MachineOperatorReducerTest, ChangeInt32ToInt64WithConstant) {
TRACED_FOREACH(int32_t, x, kInt32Values) {
Reduction reduction = Reduce(
graph()->NewNode(machine()->ChangeInt32ToInt64(), Int32Constant(x)));
ASSERT_TRUE(reduction.Changed());
EXPECT_THAT(reduction.replacement(), IsInt64Constant(x));
}
}
// -----------------------------------------------------------------------------
// ChangeInt64ToFloat64
TEST_F(MachineOperatorReducerTest,
ChangeInt64ToFloat64WithChangeFloat64ToInt64) {
Node* value = Parameter(0);
Reduction reduction = Reduce(graph()->NewNode(
machine()->ChangeInt64ToFloat64(),
graph()->NewNode(machine()->ChangeFloat64ToInt64(), value)));
ASSERT_TRUE(reduction.Changed());
EXPECT_EQ(value, reduction.replacement());
}
TEST_F(MachineOperatorReducerTest, ChangeInt64ToFloat64WithConstant) {
TRACED_FOREACH(int32_t, x, kInt32Values) {
Reduction reduction = Reduce(
graph()->NewNode(machine()->ChangeInt64ToFloat64(), Int64Constant(x)));
ASSERT_TRUE(reduction.Changed());
EXPECT_THAT(reduction.replacement(), IsFloat64Constant(BitEq(FastI2D(x))));
}
}
// -----------------------------------------------------------------------------
// ChangeUint32ToFloat64
TEST_F(MachineOperatorReducerTest, ChangeUint32ToFloat64WithConstant) {
TRACED_FOREACH(uint32_t, x, kUint32Values) {
Reduction reduction =
Reduce(graph()->NewNode(machine()->ChangeUint32ToFloat64(),
Int32Constant(base::bit_cast<int32_t>(x))));
ASSERT_TRUE(reduction.Changed());
EXPECT_THAT(reduction.replacement(), IsFloat64Constant(BitEq(FastUI2D(x))));
}
}
// -----------------------------------------------------------------------------
// ChangeUint32ToUint64
TEST_F(MachineOperatorReducerTest, ChangeUint32ToUint64WithConstant) {
TRACED_FOREACH(uint32_t, x, kUint32Values) {
Reduction reduction =
Reduce(graph()->NewNode(machine()->ChangeUint32ToUint64(),
Int32Constant(base::bit_cast<int32_t>(x))));
ASSERT_TRUE(reduction.Changed());
EXPECT_THAT(
reduction.replacement(),
IsInt64Constant(base::bit_cast<int64_t>(static_cast<uint64_t>(x))));
}
}
// -----------------------------------------------------------------------------
// TruncateFloat64ToFloat32
TEST_F(MachineOperatorReducerTest,
TruncateFloat64ToFloat32WithChangeFloat32ToFloat64) {
Node* value = Parameter(0);
Reduction reduction = Reduce(graph()->NewNode(
machine()->TruncateFloat64ToFloat32(),
graph()->NewNode(machine()->ChangeFloat32ToFloat64(), value)));
ASSERT_TRUE(reduction.Changed());
EXPECT_EQ(value, reduction.replacement());
}
TEST_F(MachineOperatorReducerTest, TruncateFloat64ToFloat32WithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction reduction = Reduce(graph()->NewNode(
machine()->TruncateFloat64ToFloat32(), Float64Constant(x)));
ASSERT_TRUE(reduction.Changed());
EXPECT_THAT(reduction.replacement(),
IsFloat32Constant(BitEq(DoubleToFloat32(x))));
}
}
// -----------------------------------------------------------------------------
// TruncateFloat64ToWord32
TEST_F(MachineOperatorReducerTest,
TruncateFloat64ToWord32WithChangeInt32ToFloat64) {
Node* value = Parameter(0);
Reduction reduction = Reduce(graph()->NewNode(
machine()->TruncateFloat64ToWord32(),
graph()->NewNode(machine()->ChangeInt32ToFloat64(), value)));
ASSERT_TRUE(reduction.Changed());
EXPECT_EQ(value, reduction.replacement());
}
TEST_F(MachineOperatorReducerTest, TruncateFloat64ToWord32WithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction reduction = Reduce(graph()->NewNode(
machine()->TruncateFloat64ToWord32(), Float64Constant(x)));
ASSERT_TRUE(reduction.Changed());
EXPECT_THAT(reduction.replacement(), IsInt32Constant(DoubleToInt32(x)));
}
}
// -----------------------------------------------------------------------------
// TruncateInt64ToInt32
TEST_F(MachineOperatorReducerTest, TruncateInt64ToInt32WithChangeInt32ToInt64) {
Node* value = Parameter(0);
Reduction reduction = Reduce(graph()->NewNode(
machine()->TruncateInt64ToInt32(),
graph()->NewNode(machine()->ChangeInt32ToInt64(), value)));
ASSERT_TRUE(reduction.Changed());
EXPECT_EQ(value, reduction.replacement());
}
TEST_F(MachineOperatorReducerTest, TruncateInt64ToInt32WithConstant) {
TRACED_FOREACH(int64_t, x, kInt64Values) {
Reduction reduction = Reduce(
graph()->NewNode(machine()->TruncateInt64ToInt32(), Int64Constant(x)));
ASSERT_TRUE(reduction.Changed());
EXPECT_THAT(reduction.replacement(),
IsInt32Constant(base::bit_cast<int32_t>(
static_cast<uint32_t>(base::bit_cast<uint64_t>(x)))));
}
}
// -----------------------------------------------------------------------------
// RoundFloat64ToInt32
TEST_F(MachineOperatorReducerTest,
RoundFloat64ToInt32WithChangeInt32ToFloat64) {
Node* value = Parameter(0);
Reduction reduction = Reduce(graph()->NewNode(
machine()->RoundFloat64ToInt32(),
graph()->NewNode(machine()->ChangeInt32ToFloat64(), value)));
ASSERT_TRUE(reduction.Changed());
EXPECT_EQ(value, reduction.replacement());
}
TEST_F(MachineOperatorReducerTest, RoundFloat64ToInt32WithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction reduction = Reduce(
graph()->NewNode(machine()->RoundFloat64ToInt32(), Float64Constant(x)));
ASSERT_TRUE(reduction.Changed());
EXPECT_THAT(reduction.replacement(), IsInt32Constant(DoubleToInt32(x)));
}
}
// -----------------------------------------------------------------------------
// Word32And
TEST_F(MachineOperatorReducerTest, Word32AndWithWord32ShlWithConstant) {
Node* const p0 = Parameter(0);
TRACED_FORRANGE(int32_t, l, 1, 31) {
TRACED_FORRANGE(int32_t, k, 1, l) {
// (x << L) & (-1 << K) => x << L
Reduction const r1 = Reduce(graph()->NewNode(
machine()->Word32And(),
graph()->NewNode(machine()->Word32Shl(), p0, Int32Constant(l)),
Int32Constant(Shl(-1, k))));
ASSERT_TRUE(r1.Changed());
EXPECT_THAT(r1.replacement(), IsWord32Shl(p0, IsInt32Constant(l)));
// (-1 << K) & (x << L) => x << L
Reduction const r2 = Reduce(graph()->NewNode(
machine()->Word32And(), Int32Constant(Shl(-1, k)),
graph()->NewNode(machine()->Word32Shl(), p0, Int32Constant(l))));
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(), IsWord32Shl(p0, IsInt32Constant(l)));
}
}
}
TEST_F(MachineOperatorReducerTest, Word32AndWithWord32AndWithConstant) {
Node* const p0 = Parameter(0);
TRACED_FOREACH(int32_t, k, kInt32Values) {
TRACED_FOREACH(int32_t, l, kInt32Values) {
if (k == 0 || k == -1 || l == 0 || l == -1) continue;
// (x & K) & L => x & (K & L)
Reduction const r1 = Reduce(graph()->NewNode(
machine()->Word32And(),
graph()->NewNode(machine()->Word32And(), p0, Int32Constant(k)),
Int32Constant(l)));
ASSERT_TRUE(r1.Changed());
EXPECT_THAT(r1.replacement(),
(k & l) ? IsWord32And(p0, IsInt32Constant(k & l))
: IsInt32Constant(0));
// (K & x) & L => x & (K & L)
Reduction const r2 = Reduce(graph()->NewNode(
machine()->Word32And(),
graph()->NewNode(machine()->Word32And(), Int32Constant(k), p0),
Int32Constant(l)));
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(),
(k & l) ? IsWord32And(p0, IsInt32Constant(k & l))
: IsInt32Constant(0));
}
}
}
TEST_F(MachineOperatorReducerTest, Word32AndWithInt32AddAndConstant) {
Node* const p0 = Parameter(0);
Node* const p1 = Parameter(1);
TRACED_FORRANGE(int32_t, l, 1, 31) {
TRACED_FOREACH(int32_t, k, kInt32Values) {
if (Shl(k, l) == 0) continue;
// (x + (K << L)) & (-1 << L) => (x & (-1 << L)) + (K << L)
Reduction const r = Reduce(graph()->NewNode(
machine()->Word32And(),
graph()->NewNode(machine()->Int32Add(), p0, Int32Constant(Shl(k, l))),
Int32Constant(Shl(-1, l))));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsInt32Add(IsWord32And(p0, IsInt32Constant(Shl(-1, l))),
IsInt32Constant(Shl(k, l))));
}
Node* s1 = graph()->NewNode(machine()->Word32Shl(), p1, Int32Constant(l));
// (y << L + x) & (-1 << L) => (x & (-1 << L)) + y << L
Reduction const r1 = Reduce(graph()->NewNode(
machine()->Word32And(), graph()->NewNode(machine()->Int32Add(), s1, p0),
Int32Constant(Shl(-1, l))));
ASSERT_TRUE(r1.Changed());
EXPECT_THAT(r1.replacement(),
IsInt32Add(IsWord32And(p0, IsInt32Constant(Shl(-1, l))), s1));
// (x + y << L) & (-1 << L) => (x & (-1 << L)) + y << L
Reduction const r2 = Reduce(graph()->NewNode(
machine()->Word32And(), graph()->NewNode(machine()->Int32Add(), p0, s1),
Int32Constant(Shl(-1, l))));
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(),
IsInt32Add(IsWord32And(p0, IsInt32Constant(Shl(-1, l))), s1));
}
}
TEST_F(MachineOperatorReducerTest, Word32AndWithInt32MulAndConstant) {
Node* const p0 = Parameter(0);
TRACED_FORRANGE(int32_t, l, 1, 31) {
TRACED_FOREACH(int32_t, k, kInt32Values) {
if (Shl(k, l) == 0) continue;
// (x * (K << L)) & (-1 << L) => x * (K << L)
Reduction const r1 = Reduce(graph()->NewNode(
machine()->Word32And(),
graph()->NewNode(machine()->Int32Mul(), p0, Int32Constant(Shl(k, l))),
Int32Constant(Shl(-1, l))));
ASSERT_TRUE(r1.Changed());
EXPECT_THAT(r1.replacement(), IsInt32Mul(p0, IsInt32Constant(Shl(k, l))));
// ((K << L) * x) & (-1 << L) => x * (K << L)
Reduction const r2 = Reduce(graph()->NewNode(
machine()->Word32And(),
graph()->NewNode(machine()->Int32Mul(), Int32Constant(Shl(k, l)), p0),
Int32Constant(Shl(-1, l))));
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(), IsInt32Mul(p0, IsInt32Constant(Shl(k, l))));
}
}
}
TEST_F(MachineOperatorReducerTest,
Word32AndWithInt32AddAndInt32MulAndConstant) {
Node* const p0 = Parameter(0);
Node* const p1 = Parameter(1);
TRACED_FORRANGE(int32_t, l, 1, 31) {
TRACED_FOREACH(int32_t, k, kInt32Values) {
if (Shl(k, l) == 0) continue;
// (y * (K << L) + x) & (-1 << L) => (x & (-1 << L)) + y * (K << L)
Reduction const r1 = Reduce(graph()->NewNode(
machine()->Word32And(),
graph()->NewNode(machine()->Int32Add(),
graph()->NewNode(machine()->Int32Mul(), p1,
Int32Constant(Shl(k, l))),
p0),
Int32Constant(Shl(-1, l))));
ASSERT_TRUE(r1.Changed());
EXPECT_THAT(r1.replacement(),
IsInt32Add(IsWord32And(p0, IsInt32Constant(Shl(-1, l))),
IsInt32Mul(p1, IsInt32Constant(Shl(k, l)))));
// (x + y * (K << L)) & (-1 << L) => (x & (-1 << L)) + y * (K << L)
Reduction const r2 = Reduce(graph()->NewNode(
machine()->Word32And(),
graph()->NewNode(machine()->Int32Add(), p0,
graph()->NewNode(machine()->Int32Mul(), p1,
Int32Constant(Shl(k, l)))),
Int32Constant(Shl(-1, l))));
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(),
IsInt32Add(IsWord32And(p0, IsInt32Constant(Shl(-1, l))),
IsInt32Mul(p1, IsInt32Constant(Shl(k, l)))));
}
}
}
TEST_F(MachineOperatorReducerTest, Word32AndWithComparisonAndConstantOne) {
Node* const p0 = Parameter(0);
Node* const p1 = Parameter(1);
TRACED_FOREACH(ComparisonBinaryOperator, cbop, kComparisonBinaryOperators) {
Node* cmp = graph()->NewNode((machine()->*cbop.constructor)(), p0, p1);
// cmp & 1 => cmp
Reduction const r1 =
Reduce(graph()->NewNode(machine()->Word32And(), cmp, Int32Constant(1)));
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(cmp, r1.replacement());
// 1 & cmp => cmp
Reduction const r2 =
Reduce(graph()->NewNode(machine()->Word32And(), Int32Constant(1), cmp));
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(cmp, r2.replacement());
}
}
TEST_F(MachineOperatorReducerTest, Word32AndWithBitFields) {
Node* const p = Parameter(0);
for (int i = 0; i < 2; ++i) {
bool truncate_from_64_bit = i == 1;
auto truncate = [&](Node* const input) {
return truncate_from_64_bit
? graph()->NewNode(machine()->TruncateInt64ToInt32(), input)
: input;
};
// Simulate getting some bitfields from a Torque bitfield struct and
// checking them all, like `x.a == 5 & x.b & !x.c & x.d == 2`. This is
// looking for the pattern: xxxxxxxxxxxxxxxxxxxx10xxx0x1x101. The inputs are
// in an already-reduced state as would be created by
// ReduceWord32EqualForConstantRhs, so the only shift operation remaining is
// the one for selecting a single true bit.
Node* three_bits =
graph()->NewNode(machine()->Word32Equal(), Int32Constant(5),
graph()->NewNode(machine()->Word32And(),
Int32Constant(7), truncate(p)));
Node* single_bit_true =
truncate_from_64_bit
? truncate(graph()->NewNode(machine()->Word64And(),
Int64Constant(1),
graph()->NewNode(machine()->Word64Shr(),
p, Int64Constant(4))))
: graph()->NewNode(machine()->Word32And(), Int32Constant(1),
graph()->NewNode(machine()->Word32Shr(), p,
Int32Constant(4)));
Node* single_bit_false =
graph()->NewNode(machine()->Word32Equal(), Int32Constant(0),
graph()->NewNode(machine()->Word32And(),
Int32Constant(1 << 6), truncate(p)));
Node* two_bits =
graph()->NewNode(machine()->Word32Equal(), Int32Constant(2 << 10),
graph()->NewNode(machine()->Word32And(),
Int32Constant(3 << 10), truncate(p)));
Reduction r1 = Reduce(
graph()->NewNode(machine()->Word32And(), three_bits, single_bit_true));
ASSERT_TRUE(r1.Changed());
EXPECT_THAT(
r1.replacement(),
IsWord32Equal(
IsWord32And(truncate_from_64_bit ? IsTruncateInt64ToInt32(p) : p,
IsInt32Constant(7 | (1 << 4))),
IsInt32Constant(5 | (1 << 4))));
Reduction r2 = Reduce(
graph()->NewNode(machine()->Word32And(), single_bit_false, two_bits));
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(
r2.replacement(),
IsWord32Equal(
IsWord32And(truncate_from_64_bit ? IsTruncateInt64ToInt32(p) : p,
IsInt32Constant((1 << 6) | (3 << 10))),
IsInt32Constant(2 << 10)));
Reduction const r3 = Reduce(graph()->NewNode(
machine()->Word32And(), r1.replacement(), r2.replacement()));
ASSERT_TRUE(r3.Changed());
EXPECT_THAT(
r3.replacement(),
IsWord32Equal(
IsWord32And(truncate_from_64_bit ? IsTruncateInt64ToInt32(p) : p,
IsInt32Constant(7 | (1 << 4) | (1 << 6) | (3 << 10))),
IsInt32Constant(5 | (1 << 4) | (2 << 10))));
}
}
TEST_F(MachineOperatorReducerTest, Word32AndWithIncorrectBitField) {
Reduction const r = Reduce(graph()->NewNode(
machine()->Word32And(), Parameter(0),
graph()->NewNode(machine()->Word32Equal(),
graph()->NewNode(machine()->Word32And(), Parameter(0),
Int32Constant(4)),
Parameter(0))));
ASSERT_FALSE(r.Changed());
}
// -----------------------------------------------------------------------------
// Word32Or
TEST_F(MachineOperatorReducerTest, Word32OrWithWord32And) {
Node* const p0 = Parameter(0);
TRACED_FOREACH(int32_t, m, kUint32Values) {
TRACED_FOREACH(int32_t, rhs, kUint32Values) {
// To get better coverage of interesting cases, run this test twice:
// once with the mask from kUint32Values, and once with its inverse.
for (int32_t mask : {m, ~m}) {
Reduction const r = Reduce(graph()->NewNode(
machine()->Word32Or(),
graph()->NewNode(machine()->Word32And(), p0, Int32Constant(mask)),
Int32Constant(rhs)));
switch (rhs) {
case 0: // x | 0 => x
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsWord32And(p0, IsInt32Constant(mask)));
break;
case -1: // x | -1 => -1
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(-1));
break;
default: // (x & K1) | K2 => x | K2, if K1 | K2 == -1
if ((mask | rhs) == -1) {
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsWord32Or(p0, IsInt32Constant(rhs)));
} else {
ASSERT_TRUE(!r.Changed());
}
break;
}
}
}
}
}
// -----------------------------------------------------------------------------
// Word32Xor
TEST_F(MachineOperatorReducerTest, Word32XorWithWord32XorAndMinusOne) {
Node* const p0 = Parameter(0);
// (x ^ -1) ^ -1 => x
Reduction r1 = Reduce(graph()->NewNode(
machine()->Word32Xor(),
graph()->NewNode(machine()->Word32Xor(), p0, Int32Constant(-1)),
Int32Constant(-1)));
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), p0);
// -1 ^ (x ^ -1) => x
Reduction r2 = Reduce(graph()->NewNode(
machine()->Word32Xor(), Int32Constant(-1),
graph()->NewNode(machine()->Word32Xor(), p0, Int32Constant(-1))));
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), p0);
// (-1 ^ x) ^ -1 => x
Reduction r3 = Reduce(graph()->NewNode(
machine()->Word32Xor(),
graph()->NewNode(machine()->Word32Xor(), Int32Constant(-1), p0),
Int32Constant(-1)));
ASSERT_TRUE(r3.Changed());
EXPECT_EQ(r3.replacement(), p0);
// -1 ^ (-1 ^ x) => x
Reduction r4 = Reduce(graph()->NewNode(
machine()->Word32Xor(), Int32Constant(-1),
graph()->NewNode(machine()->Word32Xor(), Int32Constant(-1), p0)));
ASSERT_TRUE(r4.Changed());
EXPECT_EQ(r4.replacement(), p0);
}
// -----------------------------------------------------------------------------
// Word32Ror
TEST_F(MachineOperatorReducerTest, ReduceToWord32RorWithParameters) {
Node* value = Parameter(0);
Node* shift = Parameter(1);
Node* sub = graph()->NewNode(machine()->Int32Sub(), Int32Constant(32), shift);
// Testing rotate left.
Node* shl_l = graph()->NewNode(machine()->Word32Shl(), value, shift);
Node* shr_l = graph()->NewNode(machine()->Word32Shr(), value, sub);
// (x << y) | (x >>> (32 - y)) => x ror (32 - y)
Node* node1 = graph()->NewNode(machine()->Word32Or(), shl_l, shr_l);
Reduction reduction1 = Reduce(node1);
EXPECT_TRUE(reduction1.Changed());
EXPECT_EQ(reduction1.replacement(), node1);
EXPECT_THAT(reduction1.replacement(), IsWord32Ror(value, sub));
// (x >>> (32 - y)) | (x << y) => x ror (32 - y)
Node* node2 = graph()->NewNode(machine()->Word32Or(), shr_l, shl_l);
Reduction reduction2 = Reduce(node2);
EXPECT_TRUE(reduction2.Changed());
EXPECT_EQ(reduction2.replacement(), node2);
EXPECT_THAT(reduction2.replacement(), IsWord32Ror(value, sub));
// (x << y) ^ (x >>> (32 - y)) => x ror (32 - y)
Node* node3 = graph()->NewNode(machine()->Word32Xor(), shl_l, shr_l);
Reduction reduction3 = Reduce(node3);
EXPECT_FALSE(reduction3.Changed());
// (x >>> (32 - y)) ^ (x << y) => x ror (32 - y)
Node* node4 = graph()->NewNode(machine()->Word32Xor(), shr_l, shl_l);
Reduction reduction4 = Reduce(node4);
EXPECT_FALSE(reduction4.Changed());
// Testing rotate right.
Node* shl_r = graph()->NewNode(machine()->Word32Shl(), value, sub);
Node* shr_r = graph()->NewNode(machine()->Word32Shr(), value, shift);
// (x << (32 - y)) | (x >>> y) => x ror y
Node* node5 = graph()->NewNode(machine()->Word32Or(), shl_r, shr_r);
Reduction reduction5 = Reduce(node5);
EXPECT_TRUE(reduction5.Changed());
EXPECT_EQ(reduction5.replacement(), node5);
EXPECT_THAT(reduction5.replacement(), IsWord32Ror(value, shift));
// (x >>> y) | (x << (32 - y)) => x ror y
Node* node6 = graph()->NewNode(machine()->Word32Or(), shr_r, shl_r);
Reduction reduction6 = Reduce(node6);
EXPECT_TRUE(reduction6.Changed());
EXPECT_EQ(reduction6.replacement(), node6);
EXPECT_THAT(reduction6.replacement(), IsWord32Ror(value, shift));
// (x << (32 - y)) ^ (x >>> y) => x ror y
Node* node7 = graph()->NewNode(machine()->Word32Xor(), shl_r, shr_r);
Reduction reduction7 = Reduce(node7);
EXPECT_FALSE(reduction7.Changed());
// (x >>> y) ^ (x << (32 - y)) => x ror y
Node* node8 = graph()->NewNode(machine()->Word32Xor(), shr_r, shl_r);
Reduction reduction8 = Reduce(node8);
EXPECT_FALSE(reduction8.Changed());
}
TEST_F(MachineOperatorReducerTest, ReduceToWord32RorWithConstant) {
Node* value = Parameter(0);
TRACED_FORRANGE(int32_t, k, 0, 31) {
Node* shl =
graph()->NewNode(machine()->Word32Shl(), value, Int32Constant(k));
Node* shr =
graph()->NewNode(machine()->Word32Shr(), value, Int32Constant(32 - k));
// (x << K) | (x >>> ((32 - K) - y)) => x ror (32 - K)
Node* node1 = graph()->NewNode(machine()->Word32Or(), shl, shr);
Reduction reduction1 = Reduce(node1);
EXPECT_TRUE(reduction1.Changed());
EXPECT_EQ(reduction1.replacement(), node1);
EXPECT_THAT(reduction1.replacement(),
IsWord32Ror(value, IsInt32Constant(32 - k)));
// (x >>> (32 - K)) | (x << K) => x ror (32 - K)
Node* node2 = graph()->NewNode(machine()->Word32Or(), shr, shl);
Reduction reduction2 = Reduce(node2);
EXPECT_TRUE(reduction2.Changed());
EXPECT_EQ(reduction2.replacement(), node2);
EXPECT_THAT(reduction2.replacement(),
IsWord32Ror(value, IsInt32Constant(32 - k)));
}
}
TEST_F(MachineOperatorReducerTest, Word32RorWithZeroShift) {
Node* value = Parameter(0);
Node* node =
graph()->NewNode(machine()->Word32Ror(), value, Int32Constant(0));
Reduction reduction = Reduce(node);
EXPECT_TRUE(reduction.Changed());
EXPECT_EQ(reduction.replacement(), value);
}
TEST_F(MachineOperatorReducerTest, Word32RorWithConstants) {
TRACED_FOREACH(int32_t, x, kUint32Values) {
TRACED_FORRANGE(int32_t, y, 0, 31) {
Node* node = graph()->NewNode(machine()->Word32Ror(), Int32Constant(x),
Int32Constant(y));
Reduction reduction = Reduce(node);
EXPECT_TRUE(reduction.Changed());
EXPECT_THAT(reduction.replacement(),
IsInt32Constant(base::bits::RotateRight32(x, y)));
}
}
}
// -----------------------------------------------------------------------------
// Word32Sar
TEST_F(MachineOperatorReducerTest, Word32SarWithWord32ShlAndComparison) {
Node* const p0 = Parameter(0);
Node* const p1 = Parameter(1);
TRACED_FOREACH(ComparisonBinaryOperator, cbop, kComparisonBinaryOperators) {
Node* cmp = graph()->NewNode((machine()->*cbop.constructor)(), p0, p1);
// cmp << 31 >> 31 => 0 - cmp
Reduction const r = Reduce(graph()->NewNode(
machine()->Word32Sar(),
graph()->NewNode(machine()->Word32Shl(), cmp, Int32Constant(31)),
Int32Constant(31)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Sub(IsInt32Constant(0), cmp));
}
}
TEST_F(MachineOperatorReducerTest, Word32SarWithWord32ShlAndLoad) {
Node* const p0 = Parameter(0);
Node* const p1 = Parameter(1);
{
Node* const l = graph()->NewNode(machine()->Load(MachineType::Int8()), p0,
p1, graph()->start(), graph()->start());
Reduction const r = Reduce(graph()->NewNode(
machine()->Word32Sar(),
graph()->NewNode(machine()->Word32Shl(), l, Int32Constant(24)),
Int32Constant(24)));
ASSERT_TRUE(r.Changed());
EXPECT_EQ(l, r.replacement());
}
{
Node* const l = graph()->NewNode(machine()->Load(MachineType::Int16()), p0,
p1, graph()->start(), graph()->start());
Reduction const r = Reduce(graph()->NewNode(
machine()->Word32Sar(),
graph()->NewNode(machine()->Word32Shl(), l, Int32Constant(16)),
Int32Constant(16)));
ASSERT_TRUE(r.Changed());
EXPECT_EQ(l, r.replacement());
}
}
// -----------------------------------------------------------------------------
// Word32Shr
TEST_F(MachineOperatorReducerTest, Word32ShrWithWord32And) {
Node* const p0 = Parameter(0);
TRACED_FORRANGE(int32_t, shift, 1, 31) {
uint32_t mask =
base::SubWithWraparound(base::ShlWithWraparound(1, shift), 1);
Node* node = graph()->NewNode(
machine()->Word32Shr(),
graph()->NewNode(machine()->Word32And(), p0, Int32Constant(mask)),
Int32Constant(shift));
Reduction r = Reduce(node);
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
}
}
// -----------------------------------------------------------------------------
// Word32Shl
TEST_F(MachineOperatorReducerTest, Word32ShlWithZeroShift) {
Node* p0 = Parameter(0);
Node* node = graph()->NewNode(machine()->Word32Shl(), p0, Int32Constant(0));
Reduction r = Reduce(node);
ASSERT_TRUE(r.Changed());
EXPECT_EQ(p0, r.replacement());
}
TEST_F(MachineOperatorReducerTest, Word32ShlWithWord32Sar) {
Node* p0 = Parameter(0);
TRACED_FORRANGE(int32_t, x, 1, 31) {
Node* node = graph()->NewNode(
machine()->Word32Shl(),
graph()->NewNode(machine()->Word32Sar(), p0, Int32Constant(x)),
Int32Constant(x));
Reduction r = Reduce(node);
ASSERT_TRUE(r.Changed());
int32_t m = static_cast<int32_t>(~((1U << x) - 1U));
EXPECT_THAT(r.replacement(), IsWord32And(p0, IsInt32Constant(m)));
}
}
TEST_F(MachineOperatorReducerTest,
Word32ShlWithWord32SarAndInt32AddAndConstant) {
Node* const p0 = Parameter(0);
TRACED_FOREACH(int32_t, k, kInt32Values) {
TRACED_FORRANGE(int32_t, l, 1, 31) {
if (Shl(k, l) == 0) continue;
// (x + (K << L)) >> L << L => (x & (-1 << L)) + (K << L)
Reduction const r = Reduce(graph()->NewNode(
machine()->Word32Shl(),
graph()->NewNode(machine()->Word32Sar(),
graph()->NewNode(machine()->Int32Add(), p0,
Int32Constant(Shl(k, l))),
Int32Constant(l)),
Int32Constant(l)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsInt32Add(IsWord32And(p0, IsInt32Constant(Shl(-1, l))),
IsInt32Constant(Shl(k, l))));
}
}
}
TEST_F(MachineOperatorReducerTest, Word32ShlWithWord32Shr) {
Node* p0 = Parameter(0);
TRACED_FORRANGE(int32_t, x, 1, 31) {
Node* node = graph()->NewNode(
machine()->Word32Shl(),
graph()->NewNode(machine()->Word32Shr(), p0, Int32Constant(x)),
Int32Constant(x));
Reduction r = Reduce(node);
ASSERT_TRUE(r.Changed());
int32_t m = static_cast<int32_t>(std::numeric_limits<uint32_t>::max() << x);
EXPECT_THAT(r.replacement(), IsWord32And(p0, IsInt32Constant(m)));
}
}
TEST_F(MachineOperatorReducerTest, Word32ShlWithWord32SarShiftOutZeros) {
Node* p = Parameter(0);
TRACED_FORRANGE(int32_t, x, 1, 31) {
TRACED_FORRANGE(int32_t, y, 0, 31) {
Node* node = graph()->NewNode(
machine()->Word32Shl(),
graph()->NewNode(machine()->Word32Sar(ShiftKind::kShiftOutZeros), p,
Int32Constant(x)),
Int32Constant(y));
Reduction r = Reduce(node);
ASSERT_TRUE(r.Changed());
if (x == y) {
// (p >> x) << y => p
EXPECT_THAT(r.replacement(), p);
} else if (x < y) {
// (p >> x) << y => p << (y - x)
EXPECT_THAT(r.replacement(), IsWord32Shl(p, IsInt32Constant(y - x)));
} else {
// (p >> x) << y => p >> (x - y)
EXPECT_THAT(r.replacement(), IsWord32Sar(p, IsInt32Constant(x - y)));
}
}
}
}
// -----------------------------------------------------------------------------
// Word64Shl
TEST_F(MachineOperatorReducerTest, Word64ShlWithZeroShift) {
Node* p0 = Parameter(0);
Node* node = graph()->NewNode(machine()->Word64Shl(), p0, Int64Constant(0));
Reduction r = Reduce(node);
ASSERT_TRUE(r.Changed());
EXPECT_EQ(p0, r.replacement());
}
TEST_F(MachineOperatorReducerTest, Word64ShlWithWord64Sar) {
Node* p0 = Parameter(0);
TRACED_FORRANGE(int64_t, x, 1, 63) {
Node* node = graph()->NewNode(
machine()->Word64Shl(),
graph()->NewNode(machine()->Word64Sar(), p0, Int64Constant(x)),
Int64Constant(x));
Reduction r = Reduce(node);
ASSERT_TRUE(r.Changed());
int64_t m = static_cast<int64_t>(~((uint64_t{1} << x) - 1));
EXPECT_THAT(r.replacement(), IsWord64And(p0, IsInt64Constant(m)));
}
}
TEST_F(MachineOperatorReducerTest,
Word64ShlWithWord64SarAndInt64AddAndConstant) {
Node* const p0 = Parameter(0);
TRACED_FOREACH(int64_t, k, kInt64Values) {
TRACED_FORRANGE(int64_t, l, 1, 63) {
if (Shl(k, l) == 0) continue;
// (x + (K << L)) >> L << L => (x & (-1 << L)) + (K << L)
Reduction const r = Reduce(graph()->NewNode(
machine()->Word64Shl(),
graph()->NewNode(machine()->Word64Sar(),
graph()->NewNode(machine()->Int64Add(), p0,
Int64Constant(Shl(k, l))),
Int64Constant(l)),
Int64Constant(l)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsInt64Add(IsWord64And(p0, IsInt64Constant(Shl(int64_t{-1}, l))),
IsInt64Constant(Shl(k, l))));
}
}
}
TEST_F(MachineOperatorReducerTest, Word64ShlWithWord64Shr) {
Node* p0 = Parameter(0);
TRACED_FORRANGE(int64_t, x, 1, 63) {
Node* node = graph()->NewNode(
machine()->Word64Shl(),
graph()->NewNode(machine()->Word64Shr(), p0, Int64Constant(x)),
Int64Constant(x));
Reduction r = Reduce(node);
ASSERT_TRUE(r.Changed());
int64_t m = static_cast<int64_t>(std::numeric_limits<uint64_t>::max() << x);
EXPECT_THAT(r.replacement(), IsWord64And(p0, IsInt64Constant(m)));
}
}
TEST_F(MachineOperatorReducerTest, Word64ShlWithWord64SarShiftOutZeros) {
Node* p = Parameter(0);
TRACED_FORRANGE(int64_t, x, 1, 63) {
TRACED_FORRANGE(int64_t, y, 0, 63) {
Node* node = graph()->NewNode(
machine()->Word64Shl(),
graph()->NewNode(machine()->Word64Sar(ShiftKind::kShiftOutZeros), p,
Int64Constant(x)),
Int64Constant(y));
Reduction r = Reduce(node);
ASSERT_TRUE(r.Changed());
if (x == y) {
// (p >> x) << y => p
EXPECT_THAT(r.replacement(), p);
} else if (x < y) {
// (p >> x) << y => p << (y - x)
EXPECT_THAT(r.replacement(), IsWord64Shl(p, IsInt64Constant(y - x)));
} else {
// (p >> x) << y => p >> (x - y)
EXPECT_THAT(r.replacement(), IsWord64Sar(p, IsInt64Constant(x - y)));
}
}
}
}
// -----------------------------------------------------------------------------
// Word32Equal
TEST_F(MachineOperatorReducerTest,
Word32EqualWithShiftedMaskedValueAndConstant) {
// ((x >> K1) & K2) == K3 => (x & (K2 << K1)) == (K3 << K1)
Node* const p0 = Parameter(0);
TRACED_FOREACH(uint32_t, mask, kUint32Values) {
TRACED_FOREACH(uint32_t, rhs, kUint32Values) {
TRACED_FORRANGE(uint32_t, shift_bits, 1, 31) {
Node* node = graph()->NewNode(
machine()->Word32Equal(),
graph()->NewNode(machine()->Word32And(),
graph()->NewNode(machine()->Word32Shr(), p0,
Uint32Constant(shift_bits)),
Uint32Constant(mask)),
Uint32Constant(rhs));
Reduction r = Reduce(node);
uint32_t new_mask = mask << shift_bits;
uint32_t new_rhs = rhs << shift_bits;
if (new_mask >> shift_bits == mask && new_rhs >> shift_bits == rhs) {
ASSERT_TRUE(r.Changed());
// The left-hand side of the equality is now a Word32And operation,
// unless the mask is zero in which case the newly-created Word32And
// is immediately reduced away.
Matcher<Node*> lhs = mask == 0
? IsInt32Constant(0)
: IsWord32And(p0, IsInt32Constant(new_mask));
EXPECT_THAT(r.replacement(),
IsWord32Equal(lhs, IsInt32Constant(new_rhs)));
} else {
ASSERT_FALSE(r.Changed());
}
}
}
}
}
// -----------------------------------------------------------------------------
// Branch
TEST_F(MachineOperatorReducerTest, BranchWithShiftedMaskedValue) {
// Branch condition (x >> K1) & K2 => x & (K2 << K1)
Node* const p0 = Parameter(0);
TRACED_FOREACH(uint32_t, mask, kUint32Values) {
TRACED_FORRANGE(uint32_t, shift_bits, 1, 31) {
Node* node = graph()->NewNode(
common()->Branch(),
graph()->NewNode(machine()->Word32And(),
graph()->NewNode(machine()->Word32Shr(), p0,
Uint32Constant(shift_bits)),
Uint32Constant(mask)),
graph()->start());
Reduction r = Reduce(node);
uint32_t new_mask = mask << shift_bits;
if (new_mask >> shift_bits == mask) {
ASSERT_TRUE(r.Changed());
// The branch condition is now a Word32And operation, unless the mask is
// zero in which case the newly-created Word32And is immediately reduced
// away.
Matcher<Node*> lhs = mask == 0
? IsInt32Constant(0)
: IsWord32And(p0, IsInt32Constant(new_mask));
EXPECT_THAT(r.replacement(), IsBranch(lhs, graph()->start()));
} else {
ASSERT_FALSE(r.Changed());
}
}
}
}
// -----------------------------------------------------------------------------
// Int32Sub
TEST_F(MachineOperatorReducerTest, Int32SubWithConstant) {
Node* const p0 = Parameter(0);
TRACED_FOREACH(int32_t, k, kInt32Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Int32Sub(), p0, Int32Constant(k)));
ASSERT_TRUE(r.Changed());
if (k == 0) {
EXPECT_EQ(p0, r.replacement());
} else {
EXPECT_THAT(
r.replacement(),
IsInt32Add(p0, IsInt32Constant(base::NegateWithWraparound(k))));
}
}
}
// -----------------------------------------------------------------------------
// Int32Div
TEST_F(MachineOperatorReducerTest, Int32DivWithConstant) {
Node* const p0 = Parameter(0);
{
Reduction const r = Reduce(graph()->NewNode(
machine()->Int32Div(), p0, Int32Constant(0), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
}
{
Reduction const r = Reduce(graph()->NewNode(
machine()->Int32Div(), p0, Int32Constant(1), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_EQ(r.replacement(), p0);
}
{
Reduction const r = Reduce(graph()->NewNode(
machine()->Int32Div(), p0, Int32Constant(-1), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Sub(IsInt32Constant(0), p0));
}
{
Reduction const r = Reduce(graph()->NewNode(
machine()->Int32Div(), p0, Int32Constant(2), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsWord32Sar(IsInt32Add(IsWord32Shr(p0, IsInt32Constant(31)), p0),
IsInt32Constant(1)));
}
{
Reduction const r = Reduce(graph()->NewNode(
machine()->Int32Div(), p0, Int32Constant(-2), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsInt32Sub(
IsInt32Constant(0),
IsWord32Sar(IsInt32Add(IsWord32Shr(p0, IsInt32Constant(31)), p0),
IsInt32Constant(1))));
}
TRACED_FORRANGE(int32_t, shift, 2, 30) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Int32Div(), p0,
Int32Constant(1 << shift), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsWord32Sar(IsInt32Add(IsWord32Shr(IsWord32Sar(p0, IsInt32Constant(31)),
IsInt32Constant(32 - shift)),
p0),
IsInt32Constant(shift)));
}
TRACED_FORRANGE(int32_t, shift, 2, 31) {
Reduction const r = Reduce(graph()->NewNode(machine()->Int32Div(), p0,
Int32Constant(Shl(-1, shift)),
graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsInt32Sub(
IsInt32Constant(0),
IsWord32Sar(
IsInt32Add(IsWord32Shr(IsWord32Sar(p0, IsInt32Constant(31)),
IsInt32Constant(32 - shift)),
p0),
IsInt32Constant(shift))));
}
TRACED_FOREACH(int32_t, divisor, kInt32Values) {
if (divisor < 0) {
if (divisor == kMinInt || base::bits::IsPowerOfTwo(-divisor)) continue;
Reduction const r = Reduce(graph()->NewNode(
machine()->Int32Div(), p0, Int32Constant(divisor), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Sub(IsInt32Constant(0),
IsTruncatingDiv(p0, -divisor)));
} else if (divisor > 0) {
if (base::bits::IsPowerOfTwo(divisor)) continue;
Reduction const r = Reduce(graph()->NewNode(
machine()->Int32Div(), p0, Int32Constant(divisor), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsTruncatingDiv(p0, divisor));
}
}
}
TEST_F(MachineOperatorReducerTest, Int32DivWithParameters) {
Node* const p0 = Parameter(0);
Reduction const r =
Reduce(graph()->NewNode(machine()->Int32Div(), p0, p0, graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsWord32Equal(IsWord32Equal(p0, IsInt32Constant(0)), IsInt32Constant(0)));
}
// -----------------------------------------------------------------------------
// Uint32Div
TEST_F(MachineOperatorReducerTest, Uint32DivWithConstant) {
Node* const p0 = Parameter(0);
{
Reduction const r = Reduce(graph()->NewNode(
machine()->Uint32Div(), Int32Constant(0), p0, graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
}
{
Reduction const r = Reduce(graph()->NewNode(
machine()->Uint32Div(), p0, Int32Constant(0), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
}
{
Reduction const r = Reduce(graph()->NewNode(
machine()->Uint32Div(), p0, Int32Constant(1), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_EQ(r.replacement(), p0);
}
TRACED_FOREACH(uint32_t, dividend, kUint32Values) {
TRACED_FOREACH(uint32_t, divisor, kUint32Values) {
Reduction const r = Reduce(
graph()->NewNode(machine()->Uint32Div(), Uint32Constant(dividend),
Uint32Constant(divisor), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsInt32Constant(base::bit_cast<int32_t>(
base::bits::UnsignedDiv32(dividend, divisor))));
}
}
TRACED_FORRANGE(uint32_t, shift, 1, 31) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Uint32Div(), p0,
Uint32Constant(1u << shift), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsWord32Shr(p0, IsInt32Constant(static_cast<int32_t>(shift))));
}
}
TEST_F(MachineOperatorReducerTest, Uint32DivWithParameters) {
Node* const p0 = Parameter(0);
Reduction const r = Reduce(
graph()->NewNode(machine()->Uint32Div(), p0, p0, graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsWord32Equal(IsWord32Equal(p0, IsInt32Constant(0)), IsInt32Constant(0)));
}
// -----------------------------------------------------------------------------
// Int32Mod
TEST_F(MachineOperatorReducerTest, Int32ModWithConstant) {
Node* const p0 = Parameter(0);
{
Reduction const r = Reduce(graph()->NewNode(
machine()->Int32Mod(), Int32Constant(0), p0, graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
}
{
Reduction const r = Reduce(graph()->NewNode(
machine()->Int32Mod(), p0, Int32Constant(0), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
}
{
Reduction const r = Reduce(graph()->NewNode(
machine()->Int32Mod(), p0, Int32Constant(1), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
}
{
Reduction const r = Reduce(graph()->NewNode(
machine()->Int32Mod(), p0, Int32Constant(-1), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
}
TRACED_FOREACH(int32_t, dividend, kInt32Values) {
TRACED_FOREACH(int32_t, divisor, kInt32Values) {
Reduction const r = Reduce(
graph()->NewNode(machine()->Int32Mod(), Int32Constant(dividend),
Int32Constant(divisor), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsInt32Constant(base::bits::SignedMod32(dividend, divisor)));
}
}
TRACED_FORRANGE(int32_t, shift, 1, 30) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Int32Mod(), p0,
Int32Constant(1 << shift), graph()->start()));
int32_t const mask = (1 << shift) - 1;
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsPhi(
MachineRepresentation::kWord32,
IsInt32Sub(IsInt32Constant(0),
IsWord32And(IsInt32Sub(IsInt32Constant(0), p0),
IsInt32Constant(mask))),
IsWord32And(p0, IsInt32Constant(mask)),
IsMerge(IsIfTrue(IsBranch(IsInt32LessThan(p0, IsInt32Constant(0)),
graph()->start())),
IsIfFalse(IsBranch(IsInt32LessThan(p0, IsInt32Constant(0)),
graph()->start())))));
}
TRACED_FORRANGE(int32_t, shift, 1, 31) {
Reduction const r = Reduce(graph()->NewNode(machine()->Int32Mod(), p0,
Int32Constant(Shl(-1, shift)),
graph()->start()));
int32_t const mask = static_cast<int32_t>((1U << shift) - 1U);
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsPhi(
MachineRepresentation::kWord32,
IsInt32Sub(IsInt32Constant(0),
IsWord32And(IsInt32Sub(IsInt32Constant(0), p0),
IsInt32Constant(mask))),
IsWord32And(p0, IsInt32Constant(mask)),
IsMerge(IsIfTrue(IsBranch(IsInt32LessThan(p0, IsInt32Constant(0)),
graph()->start())),
IsIfFalse(IsBranch(IsInt32LessThan(p0, IsInt32Constant(0)),
graph()->start())))));
}
TRACED_FOREACH(int32_t, divisor, kInt32Values) {
if (divisor == 0 || base::bits::IsPowerOfTwo(Abs(divisor))) continue;
Reduction const r = Reduce(graph()->NewNode(
machine()->Int32Mod(), p0, Int32Constant(divisor), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsInt32Sub(p0, IsInt32Mul(IsTruncatingDiv(p0, Abs(divisor)),
IsInt32Constant(Abs(divisor)))));
}
}
TEST_F(MachineOperatorReducerTest, Int32ModWithParameters) {
Node* const p0 = Parameter(0);
Reduction const r =
Reduce(graph()->NewNode(machine()->Int32Mod(), p0, p0, graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
}
// -----------------------------------------------------------------------------
// Uint32Mod
TEST_F(MachineOperatorReducerTest, Uint32ModWithConstant) {
Node* const p0 = Parameter(0);
{
Reduction const r = Reduce(graph()->NewNode(
machine()->Uint32Mod(), p0, Int32Constant(0), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
}
{
Reduction const r = Reduce(graph()->NewNode(
machine()->Uint32Mod(), Int32Constant(0), p0, graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
}
{
Reduction const r = Reduce(graph()->NewNode(
machine()->Uint32Mod(), p0, Int32Constant(1), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
}
TRACED_FOREACH(uint32_t, dividend, kUint32Values) {
TRACED_FOREACH(uint32_t, divisor, kUint32Values) {
Reduction const r = Reduce(
graph()->NewNode(machine()->Uint32Mod(), Uint32Constant(dividend),
Uint32Constant(divisor), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsInt32Constant(base::bit_cast<int32_t>(
base::bits::UnsignedMod32(dividend, divisor))));
}
}
TRACED_FORRANGE(uint32_t, shift, 1, 31) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Uint32Mod(), p0,
Uint32Constant(1u << shift), graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsWord32And(p0, IsInt32Constant(
static_cast<int32_t>((1u << shift) - 1u))));
}
}
TEST_F(MachineOperatorReducerTest, Uint32ModWithParameters) {
Node* const p0 = Parameter(0);
Reduction const r = Reduce(
graph()->NewNode(machine()->Uint32Mod(), p0, p0, graph()->start()));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
}
// -----------------------------------------------------------------------------
// Int32Add, Int64Add
TEST_F(MachineOperatorReducerTest, Int32AddWithInt32SubWithConstantZero) {
Node* const p0 = Parameter(0);
Node* const p1 = Parameter(1);
Reduction const r1 = Reduce(graph()->NewNode(
machine()->Int32Add(),
graph()->NewNode(machine()->Int32Sub(), Int32Constant(0), p0), p1));
ASSERT_TRUE(r1.Changed());
EXPECT_THAT(r1.replacement(), IsInt32Sub(p1, p0));
Reduction const r2 = Reduce(graph()->NewNode(
machine()->Int32Add(), p0,
graph()->NewNode(machine()->Int32Sub(), Int32Constant(0), p1)));
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(), IsInt32Sub(p0, p1));
}
TEST_F(MachineOperatorReducerTest, Int32AddMergeConstants) {
Node* const p0 = Parameter(0);
Reduction const r1 = Reduce(graph()->NewNode(
machine()->Int32Add(),
graph()->NewNode(machine()->Int32Add(), p0, Int32Constant(1)),
Int32Constant(2)));
ASSERT_TRUE(r1.Changed());
EXPECT_THAT(r1.replacement(), IsInt32Add(p0, IsInt32Constant(3)));
Reduction const r2 = Reduce(graph()->NewNode(
machine()->Int32Add(), Int32Constant(2),
graph()->NewNode(machine()->Int32Add(), p0, Int32Constant(1))));
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(), IsInt32Add(p0, IsInt32Constant(3)));
}
TEST_F(MachineOperatorReducerTest, Int64AddMergeConstants) {
Node* const p0 = Parameter(0);
Reduction const r1 = Reduce(graph()->NewNode(
machine()->Int64Add(),
graph()->NewNode(machine()->Int64Add(), p0, Int64Constant(1)),
Int64Constant(2)));
ASSERT_TRUE(r1.Changed());
EXPECT_THAT(r1.replacement(), IsInt64Add(p0, IsInt64Constant(3)));
Reduction const r2 = Reduce(graph()->NewNode(
machine()->Int64Add(), Int64Constant(2),
graph()->NewNode(machine()->Int64Add(), p0, Int64Constant(1))));
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(), IsInt64Add(p0, IsInt64Constant(3)));
}
// -----------------------------------------------------------------------------
// Int32Mul, Int64Mul
TEST_F(MachineOperatorReducerTest, Int32MulMergeConstants) {
Node* const p0 = Parameter(0);
Reduction const r1 = Reduce(graph()->NewNode(
machine()->Int32Mul(),
graph()->NewNode(machine()->Int32Mul(), p0, Int32Constant(5)),
Int32Constant(3)));
ASSERT_TRUE(r1.Changed());
EXPECT_THAT(r1.replacement(), IsInt32Mul(p0, IsInt32Constant(15)));
Reduction const r2 = Reduce(graph()->NewNode(
machine()->Int32Mul(), Int32Constant(5),
graph()->NewNode(machine()->Int32Mul(), p0, Int32Constant(3))));
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(), IsInt32Mul(p0, IsInt32Constant(15)));
}
TEST_F(MachineOperatorReducerTest, Int64MulMergeConstants) {
Node* const p0 = Parameter(0);
Reduction const r1 = Reduce(graph()->NewNode(
machine()->Int64Mul(),
graph()->NewNode(machine()->Int64Mul(), p0, Int64Constant(5)),
Int64Constant(3)));
ASSERT_TRUE(r1.Changed());
EXPECT_THAT(r1.replacement(), IsInt64Mul(p0, IsInt64Constant(15)));
Reduction const r2 = Reduce(graph()->NewNode(
machine()->Int64Mul(), Int64Constant(5),
graph()->NewNode(machine()->Int64Mul(), p0, Int64Constant(3))));
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(), IsInt64Mul(p0, IsInt64Constant(15)));
}
// -----------------------------------------------------------------------------
// Int32AddWithOverflow
TEST_F(MachineOperatorReducerTest, Int32AddWithOverflowWithZero) {
Node* control = graph()->start();
Node* p0 = Parameter(0);
{
Node* add = graph()->NewNode(machine()->Int32AddWithOverflow(),
Int32Constant(0), p0, control);
Reduction r =
Reduce(graph()->NewNode(common()->Projection(1), add, control));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
r = Reduce(graph()->NewNode(common()->Projection(0), add, control));
ASSERT_TRUE(r.Changed());
EXPECT_EQ(p0, r.replacement());
}
{
Node* add = graph()->NewNode(machine()->Int32AddWithOverflow(), p0,
Int32Constant(0), control);
Reduction r =
Reduce(graph()->NewNode(common()->Projection(1), add, control));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
r = Reduce(graph()->NewNode(common()->Projection(0), add, control));
ASSERT_TRUE(r.Changed());
EXPECT_EQ(p0, r.replacement());
}
}
TEST_F(MachineOperatorReducerTest, Int32AddWithOverflowWithConstant) {
Node* control = graph()->start();
TRACED_FOREACH(int32_t, x, kInt32Values) {
TRACED_FOREACH(int32_t, y, kInt32Values) {
int32_t z;
Node* add = graph()->NewNode(machine()->Int32AddWithOverflow(),
Int32Constant(x), Int32Constant(y), control);
Reduction r =
Reduce(graph()->NewNode(common()->Projection(1), add, control));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsInt32Constant(base::bits::SignedAddOverflow32(x, y, &z)));
r = Reduce(graph()->NewNode(common()->Projection(0), add, control));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(z));
}
}
}
// -----------------------------------------------------------------------------
// Int32SubWithOverflow
TEST_F(MachineOperatorReducerTest, Int32SubWithOverflowWithZero) {
Node* control = graph()->start();
Node* p0 = Parameter(0);
Node* add = graph()->NewNode(machine()->Int32SubWithOverflow(), p0,
Int32Constant(0), control);
Reduction r = Reduce(graph()->NewNode(common()->Projection(1), add, control));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
r = Reduce(graph()->NewNode(common()->Projection(0), add, control));
ASSERT_TRUE(r.Changed());
EXPECT_EQ(p0, r.replacement());
}
TEST_F(MachineOperatorReducerTest, Int32SubWithOverflowWithConstant) {
Node* control = graph()->start();
TRACED_FOREACH(int32_t, x, kInt32Values) {
TRACED_FOREACH(int32_t, y, kInt32Values) {
int32_t z;
Node* add = graph()->NewNode(machine()->Int32SubWithOverflow(),
Int32Constant(x), Int32Constant(y), control);
Reduction r =
Reduce(graph()->NewNode(common()->Projection(1), add, control));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsInt32Constant(base::bits::SignedSubOverflow32(x, y, &z)));
r = Reduce(graph()->NewNode(common()->Projection(0), add, control));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(z));
}
}
}
// -----------------------------------------------------------------------------
// Int32MulWithOverflow
TEST_F(MachineOperatorReducerTest, Int32MulWithOverflowWithZero) {
Node* control = graph()->start();
Node* p0 = Parameter(0);
{
Node* mul = graph()->NewNode(machine()->Int32MulWithOverflow(),
Int32Constant(0), p0, control);
Reduction r =
Reduce(graph()->NewNode(common()->Projection(1), mul, control));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
r = Reduce(graph()->NewNode(common()->Projection(0), mul, control));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
}
{
Node* mul = graph()->NewNode(machine()->Int32MulWithOverflow(), p0,
Int32Constant(0), control);
Reduction r =
Reduce(graph()->NewNode(common()->Projection(1), mul, control));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
r = Reduce(graph()->NewNode(common()->Projection(0), mul, control));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
}
}
TEST_F(MachineOperatorReducerTest, Int32MulWithOverflowWithOne) {
Node* control = graph()->start();
Node* p0 = Parameter(0);
{
Node* mul = graph()->NewNode(machine()->Int32MulWithOverflow(),
Int32Constant(1), p0, control);
Reduction r =
Reduce(graph()->NewNode(common()->Projection(1), mul, control));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
r = Reduce(graph()->NewNode(common()->Projection(0), mul, control));
ASSERT_TRUE(r.Changed());
EXPECT_EQ(p0, r.replacement());
}
{
Node* mul = graph()->NewNode(machine()->Int32MulWithOverflow(), p0,
Int32Constant(1), control);
Reduction r =
Reduce(graph()->NewNode(common()->Projection(1), mul, control));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(0));
r = Reduce(graph()->NewNode(common()->Projection(0), mul, control));
ASSERT_TRUE(r.Changed());
EXPECT_EQ(p0, r.replacement());
}
}
TEST_F(MachineOperatorReducerTest, Int32MulWithOverflowWithMinusOne) {
Node* control = graph()->start();
Node* p0 = Parameter(0);
{
Reduction r = Reduce(graph()->NewNode(machine()->Int32MulWithOverflow(),
Int32Constant(-1), p0, control));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsInt32SubWithOverflow(IsInt32Constant(0), p0));
}
{
Reduction r = Reduce(graph()->NewNode(machine()->Int32MulWithOverflow(), p0,
Int32Constant(-1), control));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsInt32SubWithOverflow(IsInt32Constant(0), p0));
}
}
TEST_F(MachineOperatorReducerTest, Int32MulWithOverflowWithTwo) {
Node* control = graph()->start();
Node* p0 = Parameter(0);
{
Reduction r = Reduce(graph()->NewNode(machine()->Int32MulWithOverflow(),
Int32Constant(2), p0, control));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32AddWithOverflow(p0, p0));
}
{
Reduction r = Reduce(graph()->NewNode(machine()->Int32MulWithOverflow(), p0,
Int32Constant(2), control));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32AddWithOverflow(p0, p0));
}
}
TEST_F(MachineOperatorReducerTest, Int32MulWithOverflowWithConstant) {
Node* control = graph()->start();
TRACED_FOREACH(int32_t, x, kInt32Values) {
TRACED_FOREACH(int32_t, y, kInt32Values) {
int32_t z;
Node* mul = graph()->NewNode(machine()->Int32MulWithOverflow(),
Int32Constant(x), Int32Constant(y), control);
Reduction r =
Reduce(graph()->NewNode(common()->Projection(1), mul, control));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsInt32Constant(base::bits::SignedMulOverflow32(x, y, &z)));
r = Reduce(graph()->NewNode(common()->Projection(0), mul, control));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(z));
}
}
}
// -----------------------------------------------------------------------------
// Int64Mul
TEST_F(MachineOperatorReducerTest, Int64MulWithZero) {
Node* p0 = Parameter(0);
{
Node* mul = graph()->NewNode(machine()->Int64Mul(), Int64Constant(0), p0);
Reduction r = Reduce(mul);
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt64Constant(0));
}
{
Node* mul = graph()->NewNode(machine()->Int64Mul(), p0, Int64Constant(0));
Reduction r = Reduce(mul);
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt64Constant(0));
}
}
TEST_F(MachineOperatorReducerTest, Int64MulWithOne) {
Node* p0 = Parameter(0);
{
Node* mul = graph()->NewNode(machine()->Int64Mul(), Int64Constant(1), p0);
Reduction r = Reduce(mul);
ASSERT_TRUE(r.Changed());
EXPECT_EQ(p0, r.replacement());
}
{
Node* mul = graph()->NewNode(machine()->Int64Mul(), p0, Int64Constant(1));
Reduction r = Reduce(mul);
ASSERT_TRUE(r.Changed());
EXPECT_EQ(p0, r.replacement());
}
}
TEST_F(MachineOperatorReducerTest, Int64MulWithMinusOne) {
Node* p0 = Parameter(0);
{
Reduction r =
Reduce(graph()->NewNode(machine()->Int64Mul(), Int64Constant(-1), p0));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt64Sub(IsInt64Constant(0), p0));
}
{
Reduction r =
Reduce(graph()->NewNode(machine()->Int64Mul(), p0, Int64Constant(-1)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt64Sub(IsInt64Constant(0), p0));
}
}
TEST_F(MachineOperatorReducerTest, Int64MulWithPowerOfTwo) {
Node* p0 = Parameter(0);
{
Reduction r =
Reduce(graph()->NewNode(machine()->Int64Mul(), Int64Constant(8), p0));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsWord64Shl(p0, IsInt64Constant(3)));
}
{
Reduction r =
Reduce(graph()->NewNode(machine()->Int64Mul(), p0, Int64Constant(8)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsWord64Shl(p0, IsInt64Constant(3)));
}
}
TEST_F(MachineOperatorReducerTest, Int64MulWithConstant) {
TRACED_FOREACH(int64_t, x, kInt64Values) {
TRACED_FOREACH(int64_t, y, kInt64Values) {
Node* mul = graph()->NewNode(machine()->Int64Mul(), Int64Constant(x),
Int64Constant(y));
Reduction r = Reduce(mul);
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsInt64Constant(base::MulWithWraparound(x, y)));
}
}
}
// -----------------------------------------------------------------------------
// Int32LessThan
TEST_F(MachineOperatorReducerTest, Int32LessThanWithWord32Or) {
Node* const p0 = Parameter(0);
TRACED_FOREACH(int32_t, x, kInt32Values) {
Node* word32_or =
graph()->NewNode(machine()->Word32Or(), p0, Int32Constant(x));
Node* less_than = graph()->NewNode(machine()->Int32LessThan(), word32_or,
Int32Constant(0));
Reduction r = Reduce(less_than);
if (x < 0) {
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(1));
} else {
ASSERT_FALSE(r.Changed());
}
}
}
TEST_F(MachineOperatorReducerTest, Int32LessThanWithWord32SarShiftOutZeros) {
Node* const p0 = Parameter(0);
Node* const p1 = Parameter(1);
TRACED_FORRANGE(int32_t, shift0, 1, 3) {
TRACED_FORRANGE(int32_t, shift1, 1, 3) {
Node* const node =
graph()->NewNode(machine()->Int32LessThan(),
graph()->NewNode(machine()->Word32SarShiftOutZeros(),
p0, Int32Constant(shift0)),
graph()->NewNode(machine()->Word32SarShiftOutZeros(),
p1, Int32Constant(shift1)));
Reduction r = Reduce(node);
if (shift0 == shift1) {
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32LessThan(p0, p1));
} else {
ASSERT_FALSE(r.Changed());
}
}
}
}
// -----------------------------------------------------------------------------
// Uint32LessThan
TEST_F(MachineOperatorReducerTest, Uint32LessThanWithWord32Sar) {
Node* const p0 = Parameter(0);
TRACED_FORRANGE(uint32_t, shift, 1, 3) {
const uint32_t limit = (kMaxInt >> shift) - 1;
Node* const node = graph()->NewNode(
machine()->Uint32LessThan(),
graph()->NewNode(machine()->Word32Sar(), p0, Uint32Constant(shift)),
Uint32Constant(limit));
Reduction r = Reduce(node);
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsUint32LessThan(
p0, IsInt32Constant(static_cast<int32_t>(limit << shift))));
}
}
TEST_F(MachineOperatorReducerTest, Uint32LessThanWithWord32SarShiftOutZeros) {
Node* const p0 = Parameter(0);
Node* const p1 = Parameter(1);
TRACED_FORRANGE(int32_t, shift0, 1, 3) {
TRACED_FORRANGE(int32_t, shift1, 1, 3) {
Node* const node =
graph()->NewNode(machine()->Uint32LessThan(),
graph()->NewNode(machine()->Word32SarShiftOutZeros(),
p0, Int32Constant(shift0)),
graph()->NewNode(machine()->Word32SarShiftOutZeros(),
p1, Int32Constant(shift1)));
Reduction r = Reduce(node);
if (shift0 == shift1) {
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsUint32LessThan(p0, p1));
} else {
ASSERT_FALSE(r.Changed());
}
}
}
}
// -----------------------------------------------------------------------------
// Uint64LessThan
TEST_F(MachineOperatorReducerTest, Uint64LessThanWithWord64SarShiftOutZeros) {
Node* const p0 = Parameter(0);
Node* const p1 = Parameter(1);
TRACED_FORRANGE(int64_t, shift0, 1, 3) {
TRACED_FORRANGE(int64_t, shift1, 1, 3) {
Node* const node =
graph()->NewNode(machine()->Uint64LessThan(),
graph()->NewNode(machine()->Word64SarShiftOutZeros(),
p0, Int64Constant(shift0)),
graph()->NewNode(machine()->Word64SarShiftOutZeros(),
p1, Int64Constant(shift1)));
Reduction r = Reduce(node);
if (shift0 == shift1) {
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsUint64LessThan(p0, p1));
} else {
ASSERT_FALSE(r.Changed());
}
}
}
}
// -----------------------------------------------------------------------------
// Int64LessThan
TEST_F(MachineOperatorReducerTest, Int64LessThanWithWord64SarShiftOutZeros) {
Node* const p0 = Parameter(0);
Node* const p1 = Parameter(1);
TRACED_FORRANGE(int64_t, shift0, 1, 3) {
TRACED_FORRANGE(int64_t, shift1, 1, 3) {
Node* const node =
graph()->NewNode(machine()->Int64LessThan(),
graph()->NewNode(machine()->Word64SarShiftOutZeros(),
p0, Int64Constant(shift0)),
graph()->NewNode(machine()->Word64SarShiftOutZeros(),
p1, Int64Constant(shift1)));
Reduction r = Reduce(node);
if (shift0 == shift1) {
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt64LessThan(p0, p1));
} else {
ASSERT_FALSE(r.Changed());
}
}
}
}
// -----------------------------------------------------------------------------
// Float64Mul
TEST_F(MachineOperatorReducerTest, Float64MulWithMinusOne) {
Node* const p0 = Parameter(0);
{
Reduction r = Reduce(
graph()->NewNode(machine()->Float64Mul(), p0, Float64Constant(-1.0)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsFloat64Sub(IsFloat64Constant(BitEq(-0.0)), p0));
}
{
Reduction r = Reduce(
graph()->NewNode(machine()->Float64Mul(), Float64Constant(-1.0), p0));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsFloat64Sub(IsFloat64Constant(BitEq(-0.0)), p0));
}
}
TEST_F(MachineOperatorReducerTest, Float64SubMinusZeroMinusX) {
Node* const p0 = Parameter(0);
{
Reduction r = Reduce(
graph()->NewNode(machine()->Float64Sub(), Float64Constant(-0.0), p0));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsFloat64Neg(p0));
}
}
TEST_F(MachineOperatorReducerTest, Float32SubMinusZeroMinusX) {
Node* const p0 = Parameter(0);
{
Reduction r = Reduce(
graph()->NewNode(machine()->Float32Sub(), Float32Constant(-0.0), p0));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsFloat32Neg(p0));
}
}
TEST_F(MachineOperatorReducerTest, Float64MulWithTwo) {
Node* const p0 = Parameter(0);
{
Reduction r = Reduce(
graph()->NewNode(machine()->Float64Mul(), Float64Constant(2.0), p0));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsFloat64Add(p0, p0));
}
{
Reduction r = Reduce(
graph()->NewNode(machine()->Float64Mul(), p0, Float64Constant(2.0)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsFloat64Add(p0, p0));
}
}
// -----------------------------------------------------------------------------
// Float64Div
TEST_F(MachineOperatorReducerTest, Float64DivWithMinusOne) {
Node* const p0 = Parameter(0);
{
Reduction r = Reduce(
graph()->NewNode(machine()->Float64Div(), p0, Float64Constant(-1.0)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsFloat64Neg(p0));
}
}
TEST_F(MachineOperatorReducerTest, Float64DivWithPowerOfTwo) {
Node* const p0 = Parameter(0);
TRACED_FORRANGE(uint64_t, exponent, 1, 0x7FE) {
base::Double divisor =
base::Double(exponent << base::Double::kPhysicalSignificandSize);
if (divisor.value() == 1.0) continue; // Skip x / 1.0 => x.
Reduction r = Reduce(graph()->NewNode(machine()->Float64Div(), p0,
Float64Constant(divisor.value())));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsFloat64Mul(p0, IsFloat64Constant(1.0 / divisor.value())));
}
}
// -----------------------------------------------------------------------------
// Float64Acos
TEST_F(MachineOperatorReducerTest, Float64AcosWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64Acos(), Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsFloat64Constant(NanSensitiveDoubleEq(base::ieee754::acos(x))));
}
}
// -----------------------------------------------------------------------------
// Float64Acosh
TEST_F(MachineOperatorReducerTest, Float64AcoshWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64Acosh(), Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsFloat64Constant(NanSensitiveDoubleEq(base::ieee754::acosh(x))));
}
}
// -----------------------------------------------------------------------------
// Float64Asin
TEST_F(MachineOperatorReducerTest, Float64AsinWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64Asin(), Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsFloat64Constant(NanSensitiveDoubleEq(base::ieee754::asin(x))));
}
}
// -----------------------------------------------------------------------------
// Float64Asinh
TEST_F(MachineOperatorReducerTest, Float64AsinhWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64Asinh(), Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsFloat64Constant(NanSensitiveDoubleEq(base::ieee754::asinh(x))));
}
}
// -----------------------------------------------------------------------------
// Float64Atan
TEST_F(MachineOperatorReducerTest, Float64AtanWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64Atan(), Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsFloat64Constant(NanSensitiveDoubleEq(base::ieee754::atan(x))));
}
}
// -----------------------------------------------------------------------------
// Float64Atanh
TEST_F(MachineOperatorReducerTest, Float64AtanhWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64Atanh(), Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsFloat64Constant(NanSensitiveDoubleEq(base::ieee754::atanh(x))));
}
}
// -----------------------------------------------------------------------------
// Float64Atan2
TEST_F(MachineOperatorReducerTest, Float64Atan2WithConstant) {
TRACED_FOREACH(double, y, kFloat64Values) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction const r = Reduce(graph()->NewNode(
machine()->Float64Atan2(), Float64Constant(y), Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsFloat64Constant(NanSensitiveDoubleEq(base::ieee754::atan2(y, x))));
}
}
}
TEST_F(MachineOperatorReducerTest, Float64Atan2WithNaN) {
Node* const p0 = Parameter(0);
const double nan = std::numeric_limits<double>::quiet_NaN();
Node* const nan_node = Float64Constant(nan);
{
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64Atan2(), p0, nan_node));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsFloat64Constant(NanSensitiveDoubleEq(nan)));
}
{
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64Atan2(), nan_node, p0));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsFloat64Constant(NanSensitiveDoubleEq(nan)));
}
}
// -----------------------------------------------------------------------------
// Float64Cos
TEST_F(MachineOperatorReducerTest, Float64CosWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64Cos(), Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsFloat64Constant(NanSensitiveDoubleEq(base::ieee754::cos(x))));
}
}
// -----------------------------------------------------------------------------
// Float64Cosh
TEST_F(MachineOperatorReducerTest, Float64CoshWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64Cosh(), Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsFloat64Constant(NanSensitiveDoubleEq(base::ieee754::cosh(x))));
}
}
// -----------------------------------------------------------------------------
// Float64Exp
TEST_F(MachineOperatorReducerTest, Float64ExpWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64Exp(), Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsFloat64Constant(NanSensitiveDoubleEq(base::ieee754::exp(x))));
}
}
// -----------------------------------------------------------------------------
// Float64Log
TEST_F(MachineOperatorReducerTest, Float64LogWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64Log(), Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsFloat64Constant(NanSensitiveDoubleEq(base::ieee754::log(x))));
}
}
// -----------------------------------------------------------------------------
// Float64Log1p
TEST_F(MachineOperatorReducerTest, Float64Log1pWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64Log1p(), Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsFloat64Constant(NanSensitiveDoubleEq(base::ieee754::log1p(x))));
}
}
// -----------------------------------------------------------------------------
// Float64Pow
TEST_F(MachineOperatorReducerTest, Float64PowWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
TRACED_FOREACH(double, y, kFloat64Values) {
Reduction const r = Reduce(graph()->NewNode(
machine()->Float64Pow(), Float64Constant(x), Float64Constant(y)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsFloat64Constant(NanSensitiveDoubleEq(base::ieee754::pow(x, y))));
}
}
}
TEST_F(MachineOperatorReducerTest, Float64PowWithZeroExponent) {
Node* const p0 = Parameter(0);
{
Reduction const r = Reduce(
graph()->NewNode(machine()->Float64Pow(), p0, Float64Constant(-0.0)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsFloat64Constant(1.0));
}
{
Reduction const r = Reduce(
graph()->NewNode(machine()->Float64Pow(), p0, Float64Constant(0.0)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsFloat64Constant(1.0));
}
}
// -----------------------------------------------------------------------------
// Float64Sin
TEST_F(MachineOperatorReducerTest, Float64SinWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64Sin(), Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsFloat64Constant(NanSensitiveDoubleEq(base::ieee754::sin(x))));
}
}
// -----------------------------------------------------------------------------
// Float64Sinh
TEST_F(MachineOperatorReducerTest, Float64SinhWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64Sinh(), Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsFloat64Constant(NanSensitiveDoubleEq(base::ieee754::sinh(x))));
}
}
// -----------------------------------------------------------------------------
// Float64Tan
TEST_F(MachineOperatorReducerTest, Float64TanWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64Tan(), Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsFloat64Constant(NanSensitiveDoubleEq(base::ieee754::tan(x))));
}
}
// -----------------------------------------------------------------------------
// Float64Tanh
TEST_F(MachineOperatorReducerTest, Float64TanhWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64Tanh(), Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsFloat64Constant(NanSensitiveDoubleEq(base::ieee754::tanh(x))));
}
}
// -----------------------------------------------------------------------------
// Float64InsertLowWord32
TEST_F(MachineOperatorReducerTest, Float64InsertLowWord32WithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
TRACED_FOREACH(uint32_t, y, kUint32Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64InsertLowWord32(),
Float64Constant(x), Uint32Constant(y)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(
r.replacement(),
IsFloat64Constant(BitEq(base::bit_cast<double>(
(base::bit_cast<uint64_t>(x) & uint64_t{0xFFFFFFFF00000000}) |
y))));
}
}
}
// -----------------------------------------------------------------------------
// Float64InsertHighWord32
TEST_F(MachineOperatorReducerTest, Float64InsertHighWord32WithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
TRACED_FOREACH(uint32_t, y, kUint32Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64InsertHighWord32(),
Float64Constant(x), Uint32Constant(y)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsFloat64Constant(BitEq(base::bit_cast<double>(
(base::bit_cast<uint64_t>(x) & uint64_t{0xFFFFFFFF}) |
(static_cast<uint64_t>(y) << 32)))));
}
}
}
// -----------------------------------------------------------------------------
// Float64Equal
TEST_F(MachineOperatorReducerTest, Float64EqualWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
TRACED_FOREACH(double, y, kFloat64Values) {
Reduction const r = Reduce(graph()->NewNode(
machine()->Float64Equal(), Float64Constant(x), Float64Constant(y)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(x == y));
}
}
}
TEST_F(MachineOperatorReducerTest, Float64EqualWithFloat32Conversions) {
Node* const p0 = Parameter(0);
Node* const p1 = Parameter(1);
Reduction const r = Reduce(graph()->NewNode(
machine()->Float64Equal(),
graph()->NewNode(machine()->ChangeFloat32ToFloat64(), p0),
graph()->NewNode(machine()->ChangeFloat32ToFloat64(), p1)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsFloat32Equal(p0, p1));
}
TEST_F(MachineOperatorReducerTest, Float64EqualWithFloat32Constant) {
Node* const p0 = Parameter(0);
TRACED_FOREACH(float, x, kFloat32Values) {
Reduction r = Reduce(graph()->NewNode(
machine()->Float64Equal(),
graph()->NewNode(machine()->ChangeFloat32ToFloat64(), p0),
Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsFloat32Equal(p0, IsFloat32Constant(x)));
}
}
// -----------------------------------------------------------------------------
// Float64LessThan
TEST_F(MachineOperatorReducerTest, Float64LessThanWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
TRACED_FOREACH(double, y, kFloat64Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64LessThan(),
Float64Constant(x), Float64Constant(y)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(x < y));
}
}
}
TEST_F(MachineOperatorReducerTest, Float64LessThanWithFloat32Conversions) {
Node* const p0 = Parameter(0);
Node* const p1 = Parameter(1);
Reduction const r = Reduce(graph()->NewNode(
machine()->Float64LessThan(),
graph()->NewNode(machine()->ChangeFloat32ToFloat64(), p0),
graph()->NewNode(machine()->ChangeFloat32ToFloat64(), p1)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsFloat32LessThan(p0, p1));
}
TEST_F(MachineOperatorReducerTest, Float64LessThanWithFloat32Constant) {
Node* const p0 = Parameter(0);
{
TRACED_FOREACH(float, x, kFloat32Values) {
Reduction r = Reduce(graph()->NewNode(
machine()->Float64LessThan(),
graph()->NewNode(machine()->ChangeFloat32ToFloat64(), p0),
Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsFloat32LessThan(p0, IsFloat32Constant(x)));
}
}
{
TRACED_FOREACH(float, x, kFloat32Values) {
Reduction r = Reduce(graph()->NewNode(
machine()->Float64LessThan(), Float64Constant(x),
graph()->NewNode(machine()->ChangeFloat32ToFloat64(), p0)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsFloat32LessThan(IsFloat32Constant(x), p0));
}
}
}
// -----------------------------------------------------------------------------
// Float64LessThanOrEqual
TEST_F(MachineOperatorReducerTest, Float64LessThanOrEqualWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
TRACED_FOREACH(double, y, kFloat64Values) {
Reduction const r =
Reduce(graph()->NewNode(machine()->Float64LessThanOrEqual(),
Float64Constant(x), Float64Constant(y)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsInt32Constant(x <= y));
}
}
}
TEST_F(MachineOperatorReducerTest,
Float64LessThanOrEqualWithFloat32Conversions) {
Node* const p0 = Parameter(0);
Node* const p1 = Parameter(1);
Reduction const r = Reduce(graph()->NewNode(
machine()->Float64LessThanOrEqual(),
graph()->NewNode(machine()->ChangeFloat32ToFloat64(), p0),
graph()->NewNode(machine()->ChangeFloat32ToFloat64(), p1)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsFloat32LessThanOrEqual(p0, p1));
}
TEST_F(MachineOperatorReducerTest, Float64LessThanOrEqualWithFloat32Constant) {
Node* const p0 = Parameter(0);
{
TRACED_FOREACH(float, x, kFloat32Values) {
Reduction r = Reduce(graph()->NewNode(
machine()->Float64LessThanOrEqual(),
graph()->NewNode(machine()->ChangeFloat32ToFloat64(), p0),
Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsFloat32LessThanOrEqual(p0, IsFloat32Constant(x)));
}
}
{
TRACED_FOREACH(float, x, kFloat32Values) {
Reduction r = Reduce(graph()->NewNode(
machine()->Float64LessThanOrEqual(), Float64Constant(x),
graph()->NewNode(machine()->ChangeFloat32ToFloat64(), p0)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsFloat32LessThanOrEqual(IsFloat32Constant(x), p0));
}
}
}
// -----------------------------------------------------------------------------
// Float64RoundDown
TEST_F(MachineOperatorReducerTest, Float64RoundDownWithConstant) {
TRACED_FOREACH(double, x, kFloat64Values) {
Reduction r = Reduce(graph()->NewNode(
machine()->Float64RoundDown().placeholder(), Float64Constant(x)));
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(), IsFloat64Constant(std::floor(x)));
}
}
// -----------------------------------------------------------------------------
// Store
TEST_F(MachineOperatorReducerTest, StoreRepWord8WithWord32And) {
const StoreRepresentation rep(MachineRepresentation::kWord8, kNoWriteBarrier);
Node* const base = Parameter(0);
Node* const index = Parameter(1);
Node* const value = Parameter(2);
Node* const effect = graph()->start();
Node* const control = graph()->start();
TRACED_FOREACH(uint32_t, x, kUint32Values) {
Node* const node =
graph()->NewNode(machine()->Store(rep), base, index,
graph()->NewNode(machine()->Word32And(), value,
Uint32Constant(x | 0xFFu)),
effect, control);
Reduction r = Reduce(node);
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsStore(rep, base, index, value, effect, control));
}
}
TEST_F(MachineOperatorReducerTest, StoreRepWord8WithWord32SarAndWord32Shl) {
const StoreRepresentation rep(MachineRepresentation::kWord8, kNoWriteBarrier);
Node* const base = Parameter(0);
Node* const index = Parameter(1);
Node* const value = Parameter(2);
Node* const effect = graph()->start();
Node* const control = graph()->start();
TRACED_FORRANGE(int32_t, x, 1, 24) {
Node* const node = graph()->NewNode(
machine()->Store(rep), base, index,
graph()->NewNode(
machine()->Word32Sar(),
graph()->NewNode(machine()->Word32Shl(), value, Int32Constant(x)),
Int32Constant(x)),
effect, control);
Reduction r = Reduce(node);
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsStore(rep, base, index, value, effect, control));
}
}
TEST_F(MachineOperatorReducerTest, StoreRepWord16WithWord32And) {
const StoreRepresentation rep(MachineRepresentation::kWord16,
kNoWriteBarrier);
Node* const base = Parameter(0);
Node* const index = Parameter(1);
Node* const value = Parameter(2);
Node* const effect = graph()->start();
Node* const control = graph()->start();
TRACED_FOREACH(uint32_t, x, kUint32Values) {
Node* const node =
graph()->NewNode(machine()->Store(rep), base, index,
graph()->NewNode(machine()->Word32And(), value,
Uint32Constant(x | 0xFFFFu)),
effect, control);
Reduction r = Reduce(node);
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsStore(rep, base, index, value, effect, control));
}
}
TEST_F(MachineOperatorReducerTest, StoreRepWord16WithWord32SarAndWord32Shl) {
const StoreRepresentation rep(MachineRepresentation::kWord16,
kNoWriteBarrier);
Node* const base = Parameter(0);
Node* const index = Parameter(1);
Node* const value = Parameter(2);
Node* const effect = graph()->start();
Node* const control = graph()->start();
TRACED_FORRANGE(int32_t, x, 1, 16) {
Node* const node = graph()->NewNode(
machine()->Store(rep), base, index,
graph()->NewNode(
machine()->Word32Sar(),
graph()->NewNode(machine()->Word32Shl(), value, Int32Constant(x)),
Int32Constant(x)),
effect, control);
Reduction r = Reduce(node);
ASSERT_TRUE(r.Changed());
EXPECT_THAT(r.replacement(),
IsStore(rep, base, index, value, effect, control));
}
}
TEST_F(MachineOperatorReducerTest, Select) {
static const std::vector<const Operator*> ops = {
machine()->Float32Select().op(), machine()->Float64Select().op(),
machine()->Word32Select().op(), machine()->Word64Select().op()};
TRACED_FOREACH(const Operator*, op, ops) {
Node* arg0 = Parameter(0);
Node* arg1 = Parameter(1);
Node* select_true = graph()->NewNode(op, Int32Constant(1), arg0, arg1);
Reduction r_true = Reduce(select_true);
ASSERT_TRUE(r_true.Changed());
EXPECT_THAT(r_true.replacement(), IsParameter(0));
Node* select_false = graph()->NewNode(op, Int32Constant(0), arg0, arg1);
Reduction r_false = Reduce(select_false);
ASSERT_TRUE(r_false.Changed());
EXPECT_THAT(r_false.replacement(), IsParameter(1));
}
}
} // namespace compiler
} // namespace internal
} // namespace v8