v8/test/mjsunit/math-floor-of-div-nosudiv.js
yangguo@chromium.org e536abb777 Handle non-constant divisor in MathFloorOfDiv, on ia32/x64
Zheng Liu
zheng.z.liu@intel.com

Review URL: https://chromiumcodereview.appspot.com/11624022
Patch from Zheng Liu <zheng.z.liu@intel.com>.

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@13289 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-12-28 15:52:17 +00:00

289 lines
13 KiB
JavaScript

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Flags: --allow-natives-syntax --nouse_inlining --noenable_sudiv
// Use this function as reference. Make sure it is not inlined.
function div(a, b) {
return a / b;
}
var limit = 0x1000000;
var exhaustive_limit = 100;
var step = 10;
var values = [0x10000001,
0x12345678,
-0x789abcdf, // 0x87654321
0x01234567,
0x76543210,
-0x80000000, // 0x80000000
0x7fffffff,
-0x0fffffff, // 0xf0000001
0x00000010,
-0x01000000 // 0xff000000
];
function test_div() {
var c = 0;
for (var k = 0; k <= limit; k++) {
if (k > exhaustive_limit) { c += step; k += c; }
assertEquals(Math.floor(div(k, 1)), Math.floor(k / 1));
assertEquals(Math.floor(div(k, -1)), Math.floor(k / -1));
assertEquals(Math.floor(div(k, 2)), Math.floor(k / 2));
assertEquals(Math.floor(div(k, -2)), Math.floor(k / -2));
assertEquals(Math.floor(div(k, 3)), Math.floor(k / 3));
assertEquals(Math.floor(div(k, -3)), Math.floor(k / -3));
assertEquals(Math.floor(div(k, 4)), Math.floor(k / 4));
assertEquals(Math.floor(div(k, -4)), Math.floor(k / -4));
assertEquals(Math.floor(div(k, 5)), Math.floor(k / 5));
assertEquals(Math.floor(div(k, -5)), Math.floor(k / -5));
assertEquals(Math.floor(div(k, 6)), Math.floor(k / 6));
assertEquals(Math.floor(div(k, -6)), Math.floor(k / -6));
assertEquals(Math.floor(div(k, 7)), Math.floor(k / 7));
assertEquals(Math.floor(div(k, -7)), Math.floor(k / -7));
assertEquals(Math.floor(div(k, 8)), Math.floor(k / 8));
assertEquals(Math.floor(div(k, -8)), Math.floor(k / -8));
assertEquals(Math.floor(div(k, 9)), Math.floor(k / 9));
assertEquals(Math.floor(div(k, -9)), Math.floor(k / -9));
assertEquals(Math.floor(div(k, 10)), Math.floor(k / 10));
assertEquals(Math.floor(div(k, -10)), Math.floor(k / -10));
assertEquals(Math.floor(div(k, 11)), Math.floor(k / 11));
assertEquals(Math.floor(div(k, -11)), Math.floor(k / -11));
assertEquals(Math.floor(div(k, 12)), Math.floor(k / 12));
assertEquals(Math.floor(div(k, -12)), Math.floor(k / -12));
assertEquals(Math.floor(div(k, 13)), Math.floor(k / 13));
assertEquals(Math.floor(div(k, -13)), Math.floor(k / -13));
assertEquals(Math.floor(div(k, 14)), Math.floor(k / 14));
assertEquals(Math.floor(div(k, -14)), Math.floor(k / -14));
assertEquals(Math.floor(div(k, 15)), Math.floor(k / 15));
assertEquals(Math.floor(div(k, -15)), Math.floor(k / -15));
assertEquals(Math.floor(div(k, 16)), Math.floor(k / 16));
assertEquals(Math.floor(div(k, -16)), Math.floor(k / -16));
assertEquals(Math.floor(div(k, 17)), Math.floor(k / 17));
assertEquals(Math.floor(div(k, -17)), Math.floor(k / -17));
assertEquals(Math.floor(div(k, 18)), Math.floor(k / 18));
assertEquals(Math.floor(div(k, -18)), Math.floor(k / -18));
assertEquals(Math.floor(div(k, 19)), Math.floor(k / 19));
assertEquals(Math.floor(div(k, -19)), Math.floor(k / -19));
assertEquals(Math.floor(div(k, 20)), Math.floor(k / 20));
assertEquals(Math.floor(div(k, -20)), Math.floor(k / -20));
assertEquals(Math.floor(div(k, 21)), Math.floor(k / 21));
assertEquals(Math.floor(div(k, -21)), Math.floor(k / -21));
assertEquals(Math.floor(div(k, 22)), Math.floor(k / 22));
assertEquals(Math.floor(div(k, -22)), Math.floor(k / -22));
assertEquals(Math.floor(div(k, 23)), Math.floor(k / 23));
assertEquals(Math.floor(div(k, -23)), Math.floor(k / -23));
assertEquals(Math.floor(div(k, 24)), Math.floor(k / 24));
assertEquals(Math.floor(div(k, -24)), Math.floor(k / -24));
assertEquals(Math.floor(div(k, 25)), Math.floor(k / 25));
assertEquals(Math.floor(div(k, -25)), Math.floor(k / -25));
assertEquals(Math.floor(div(k, 125)), Math.floor(k / 125));
assertEquals(Math.floor(div(k, -125)), Math.floor(k / -125));
assertEquals(Math.floor(div(k, 625)), Math.floor(k / 625));
assertEquals(Math.floor(div(k, -625)), Math.floor(k / -625));
}
c = 0;
for (var k = 0; k <= limit; k++) {
if (k > exhaustive_limit) { c += step; k += c; }
assertEquals(Math.floor(div(-k, 1)), Math.floor(-k / 1));
assertEquals(Math.floor(div(-k, -1)), Math.floor(-k / -1));
assertEquals(Math.floor(div(-k, 2)), Math.floor(-k / 2));
assertEquals(Math.floor(div(-k, -2)), Math.floor(-k / -2));
assertEquals(Math.floor(div(-k, 3)), Math.floor(-k / 3));
assertEquals(Math.floor(div(-k, -3)), Math.floor(-k / -3));
assertEquals(Math.floor(div(-k, 4)), Math.floor(-k / 4));
assertEquals(Math.floor(div(-k, -4)), Math.floor(-k / -4));
assertEquals(Math.floor(div(-k, 5)), Math.floor(-k / 5));
assertEquals(Math.floor(div(-k, -5)), Math.floor(-k / -5));
assertEquals(Math.floor(div(-k, 6)), Math.floor(-k / 6));
assertEquals(Math.floor(div(-k, -6)), Math.floor(-k / -6));
assertEquals(Math.floor(div(-k, 7)), Math.floor(-k / 7));
assertEquals(Math.floor(div(-k, -7)), Math.floor(-k / -7));
assertEquals(Math.floor(div(-k, 8)), Math.floor(-k / 8));
assertEquals(Math.floor(div(-k, -8)), Math.floor(-k / -8));
assertEquals(Math.floor(div(-k, 9)), Math.floor(-k / 9));
assertEquals(Math.floor(div(-k, -9)), Math.floor(-k / -9));
assertEquals(Math.floor(div(-k, 10)), Math.floor(-k / 10));
assertEquals(Math.floor(div(-k, -10)), Math.floor(-k / -10));
assertEquals(Math.floor(div(-k, 11)), Math.floor(-k / 11));
assertEquals(Math.floor(div(-k, -11)), Math.floor(-k / -11));
assertEquals(Math.floor(div(-k, 12)), Math.floor(-k / 12));
assertEquals(Math.floor(div(-k, -12)), Math.floor(-k / -12));
assertEquals(Math.floor(div(-k, 13)), Math.floor(-k / 13));
assertEquals(Math.floor(div(-k, -13)), Math.floor(-k / -13));
assertEquals(Math.floor(div(-k, 14)), Math.floor(-k / 14));
assertEquals(Math.floor(div(-k, -14)), Math.floor(-k / -14));
assertEquals(Math.floor(div(-k, 15)), Math.floor(-k / 15));
assertEquals(Math.floor(div(-k, -15)), Math.floor(-k / -15));
assertEquals(Math.floor(div(-k, 16)), Math.floor(-k / 16));
assertEquals(Math.floor(div(-k, -16)), Math.floor(-k / -16));
assertEquals(Math.floor(div(-k, 17)), Math.floor(-k / 17));
assertEquals(Math.floor(div(-k, -17)), Math.floor(-k / -17));
assertEquals(Math.floor(div(-k, 18)), Math.floor(-k / 18));
assertEquals(Math.floor(div(-k, -18)), Math.floor(-k / -18));
assertEquals(Math.floor(div(-k, 19)), Math.floor(-k / 19));
assertEquals(Math.floor(div(-k, -19)), Math.floor(-k / -19));
assertEquals(Math.floor(div(-k, 20)), Math.floor(-k / 20));
assertEquals(Math.floor(div(-k, -20)), Math.floor(-k / -20));
assertEquals(Math.floor(div(-k, 21)), Math.floor(-k / 21));
assertEquals(Math.floor(div(-k, -21)), Math.floor(-k / -21));
assertEquals(Math.floor(div(-k, 22)), Math.floor(-k / 22));
assertEquals(Math.floor(div(-k, -22)), Math.floor(-k / -22));
assertEquals(Math.floor(div(-k, 23)), Math.floor(-k / 23));
assertEquals(Math.floor(div(-k, -23)), Math.floor(-k / -23));
assertEquals(Math.floor(div(-k, 24)), Math.floor(-k / 24));
assertEquals(Math.floor(div(-k, -24)), Math.floor(-k / -24));
assertEquals(Math.floor(div(-k, 25)), Math.floor(-k / 25));
assertEquals(Math.floor(div(-k, -25)), Math.floor(-k / -25));
assertEquals(Math.floor(div(-k, 125)), Math.floor(-k / 125));
assertEquals(Math.floor(div(-k, -125)), Math.floor(-k / -125));
assertEquals(Math.floor(div(-k, 625)), Math.floor(-k / 625));
assertEquals(Math.floor(div(-k, -625)), Math.floor(-k / -625));
}
// Test for edge cases.
// Use (values[key] | 0) to force the integer type.
for (var i = 0; i < values.length; i++) {
for (var j = 0; j < values.length; j++) {
assertEquals(Math.floor(div((values[i] | 0), (values[j] | 0))),
Math.floor((values[i] | 0) / (values[j] | 0)));
assertEquals(Math.floor(div(-(values[i] | 0), (values[j] | 0))),
Math.floor(-(values[i] | 0) / (values[j] | 0)));
assertEquals(Math.floor(div((values[i] | 0), -(values[j] | 0))),
Math.floor((values[i] | 0) / -(values[j] | 0)));
assertEquals(Math.floor(div(-(values[i] | 0), -(values[j] | 0))),
Math.floor(-(values[i] | 0) / -(values[j] | 0)));
}
}
}
test_div();
%OptimizeFunctionOnNextCall(test_div);
test_div();
// Test for ia32/x64 flooring correctness.
var values2 = [1, 3, 10, 99, 100, 101, 0x7fffffff];
function test_div2() {
for (var i = 0; i < values2.length; i++) {
for (var j = 0; j < values2.length; j++) {
assertEquals(Math.floor(div((values2[i] | 0), (values2[j] | 0))),
Math.floor((values2[i] | 0) / (values2[j] | 0)));
assertEquals(Math.floor(div(-(values2[i] | 0), (values2[j] | 0))),
Math.floor(-(values2[i] | 0) / (values2[j] | 0)));
assertEquals(Math.floor(div((values2[i] | 0), -(values2[j] | 0))),
Math.floor((values2[i] | 0) / -(values2[j] | 0)));
assertEquals(Math.floor(div(-(values2[i] | 0), -(values2[j] | 0))),
Math.floor(-(values2[i] | 0) / -(values2[j] | 0)));
}
}
}
test_div2();
%OptimizeFunctionOnNextCall(test_div2);
test_div2();
// Test for negative zero, overflow and division by 0.
// Separate the tests to prevent deoptimizations from making the other optimized
// test unreachable.
// We box the value in an array to avoid constant propagation.
var neg_one_in_array = [-1];
var zero_in_array = [0];
var min_int_in_array = [-2147483648];
// Test for dividing by constant.
function IsNegativeZero(x) {
assertTrue(x == 0); // Is 0 or -0.
var y = 1 / x;
assertFalse(isFinite(y));
return y < 0;
}
function test_div_deopt_minus_zero() {
for (var i = 0; i < 2; ++i) {
assertTrue(IsNegativeZero(Math.floor((zero_in_array[0] | 0) / -1)));
}
}
function test_div_deopt_overflow() {
for (var i = 0; i < 2; ++i) {
// We use '| 0' to force the representation to int32.
assertEquals(-min_int_in_array[0],
Math.floor((min_int_in_array[0] | 0) / -1));
}
}
function test_div_deopt_div_by_zero() {
for (var i = 0; i < 2; ++i) {
assertEquals(div(i, 0),
Math.floor(i / 0));
}
}
test_div_deopt_minus_zero();
test_div_deopt_overflow();
test_div_deopt_div_by_zero();
%OptimizeFunctionOnNextCall(test_div_deopt_minus_zero);
%OptimizeFunctionOnNextCall(test_div_deopt_overflow);
%OptimizeFunctionOnNextCall(test_div_deopt_div_by_zero);
test_div_deopt_minus_zero();
test_div_deopt_overflow();
test_div_deopt_div_by_zero();
// Test for dividing by variable.
function test_div_deopt_minus_zero_v() {
for (var i = 0; i < 2; ++i) {
assertTrue(IsNegativeZero(Math.floor((zero_in_array[0] | 0) /
neg_one_in_array[0])));
}
}
function test_div_deopt_overflow_v() {
for (var i = 0; i < 2; ++i) {
// We use '| 0' to force the representation to int32.
assertEquals(-min_int_in_array[0],
Math.floor((min_int_in_array[0] | 0) / neg_one_in_array[0]));
}
}
function test_div_deopt_div_by_zero_v() {
for (var i = 0; i < 2; ++i) {
assertEquals(div(i, 0),
Math.floor(i / zero_in_array[0]));
}
}
test_div_deopt_minus_zero_v();
test_div_deopt_overflow_v();
test_div_deopt_div_by_zero_v();
%OptimizeFunctionOnNextCall(test_div_deopt_minus_zero_v);
%OptimizeFunctionOnNextCall(test_div_deopt_overflow_v);
%OptimizeFunctionOnNextCall(test_div_deopt_div_by_zero_v);
test_div_deopt_minus_zero_v();
test_div_deopt_overflow_v();
test_div_deopt_div_by_zero_v();